xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision 9ed8e0caab9b6f638e82979f6fdf60d67ce65b92)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/GenericDomTree.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
52 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
53 #include "llvm/Transforms/Utils/Cloning.h"
54 #include "llvm/Transforms/Utils/Local.h"
55 #include "llvm/Transforms/Utils/LoopUtils.h"
56 #include "llvm/Transforms/Utils/ValueMapper.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <iterator>
60 #include <numeric>
61 #include <utility>
62 
63 #define DEBUG_TYPE "simple-loop-unswitch"
64 
65 using namespace llvm;
66 
67 STATISTIC(NumBranches, "Number of branches unswitched");
68 STATISTIC(NumSwitches, "Number of switches unswitched");
69 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
70 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
71 STATISTIC(
72     NumCostMultiplierSkipped,
73     "Number of unswitch candidates that had their cost multiplier skipped");
74 
75 static cl::opt<bool> EnableNonTrivialUnswitch(
76     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
77     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
78              "following the configuration passed into the pass."));
79 
80 static cl::opt<int>
81     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
82                       cl::desc("The cost threshold for unswitching a loop."));
83 
84 static cl::opt<bool> EnableUnswitchCostMultiplier(
85     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
86     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
87              "explosion in nontrivial unswitch."));
88 static cl::opt<int> UnswitchSiblingsToplevelDiv(
89     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
90     cl::desc("Toplevel siblings divisor for cost multiplier."));
91 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
92     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
93     cl::desc("Number of unswitch candidates that are ignored when calculating "
94              "cost multiplier."));
95 static cl::opt<bool> UnswitchGuards(
96     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
97     cl::desc("If enabled, simple loop unswitching will also consider "
98              "llvm.experimental.guard intrinsics as unswitch candidates."));
99 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
100     "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
101     cl::init(false), cl::Hidden,
102     cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
103              "null checks to save time analyzing if we can keep it."));
104 
105 /// Collect all of the loop invariant input values transitively used by the
106 /// homogeneous instruction graph from a given root.
107 ///
108 /// This essentially walks from a root recursively through loop variant operands
109 /// which have the exact same opcode and finds all inputs which are loop
110 /// invariant. For some operations these can be re-associated and unswitched out
111 /// of the loop entirely.
112 static TinyPtrVector<Value *>
113 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
114                                          LoopInfo &LI) {
115   assert(!L.isLoopInvariant(&Root) &&
116          "Only need to walk the graph if root itself is not invariant.");
117   TinyPtrVector<Value *> Invariants;
118 
119   // Build a worklist and recurse through operators collecting invariants.
120   SmallVector<Instruction *, 4> Worklist;
121   SmallPtrSet<Instruction *, 8> Visited;
122   Worklist.push_back(&Root);
123   Visited.insert(&Root);
124   do {
125     Instruction &I = *Worklist.pop_back_val();
126     for (Value *OpV : I.operand_values()) {
127       // Skip constants as unswitching isn't interesting for them.
128       if (isa<Constant>(OpV))
129         continue;
130 
131       // Add it to our result if loop invariant.
132       if (L.isLoopInvariant(OpV)) {
133         Invariants.push_back(OpV);
134         continue;
135       }
136 
137       // If not an instruction with the same opcode, nothing we can do.
138       Instruction *OpI = dyn_cast<Instruction>(OpV);
139       if (!OpI || OpI->getOpcode() != Root.getOpcode())
140         continue;
141 
142       // Visit this operand.
143       if (Visited.insert(OpI).second)
144         Worklist.push_back(OpI);
145     }
146   } while (!Worklist.empty());
147 
148   return Invariants;
149 }
150 
151 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
152                                      Constant &Replacement) {
153   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
154 
155   // Replace uses of LIC in the loop with the given constant.
156   for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
157     // Grab the use and walk past it so we can clobber it in the use list.
158     Use *U = &*UI++;
159     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
160 
161     // Replace this use within the loop body.
162     if (UserI && L.contains(UserI))
163       U->set(&Replacement);
164   }
165 }
166 
167 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
168 /// incoming values along this edge.
169 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
170                                          BasicBlock &ExitBB) {
171   for (Instruction &I : ExitBB) {
172     auto *PN = dyn_cast<PHINode>(&I);
173     if (!PN)
174       // No more PHIs to check.
175       return true;
176 
177     // If the incoming value for this edge isn't loop invariant the unswitch
178     // won't be trivial.
179     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
180       return false;
181   }
182   llvm_unreachable("Basic blocks should never be empty!");
183 }
184 
185 /// Insert code to test a set of loop invariant values, and conditionally branch
186 /// on them.
187 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
188                                                   ArrayRef<Value *> Invariants,
189                                                   bool Direction,
190                                                   BasicBlock &UnswitchedSucc,
191                                                   BasicBlock &NormalSucc) {
192   IRBuilder<> IRB(&BB);
193 
194   Value *Cond = Direction ? IRB.CreateOr(Invariants) :
195     IRB.CreateAnd(Invariants);
196   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
197                    Direction ? &NormalSucc : &UnswitchedSucc);
198 }
199 
200 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
201 ///
202 /// Requires that the loop exit and unswitched basic block are the same, and
203 /// that the exiting block was a unique predecessor of that block. Rewrites the
204 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
205 /// PHI nodes from the old preheader that now contains the unswitched
206 /// terminator.
207 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
208                                                   BasicBlock &OldExitingBB,
209                                                   BasicBlock &OldPH) {
210   for (PHINode &PN : UnswitchedBB.phis()) {
211     // When the loop exit is directly unswitched we just need to update the
212     // incoming basic block. We loop to handle weird cases with repeated
213     // incoming blocks, but expect to typically only have one operand here.
214     for (auto i : seq<int>(0, PN.getNumOperands())) {
215       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
216              "Found incoming block different from unique predecessor!");
217       PN.setIncomingBlock(i, &OldPH);
218     }
219   }
220 }
221 
222 /// Rewrite the PHI nodes in the loop exit basic block and the split off
223 /// unswitched block.
224 ///
225 /// Because the exit block remains an exit from the loop, this rewrites the
226 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
227 /// nodes into the unswitched basic block to select between the value in the
228 /// old preheader and the loop exit.
229 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
230                                                       BasicBlock &UnswitchedBB,
231                                                       BasicBlock &OldExitingBB,
232                                                       BasicBlock &OldPH,
233                                                       bool FullUnswitch) {
234   assert(&ExitBB != &UnswitchedBB &&
235          "Must have different loop exit and unswitched blocks!");
236   Instruction *InsertPt = &*UnswitchedBB.begin();
237   for (PHINode &PN : ExitBB.phis()) {
238     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
239                                   PN.getName() + ".split", InsertPt);
240 
241     // Walk backwards over the old PHI node's inputs to minimize the cost of
242     // removing each one. We have to do this weird loop manually so that we
243     // create the same number of new incoming edges in the new PHI as we expect
244     // each case-based edge to be included in the unswitched switch in some
245     // cases.
246     // FIXME: This is really, really gross. It would be much cleaner if LLVM
247     // allowed us to create a single entry for a predecessor block without
248     // having separate entries for each "edge" even though these edges are
249     // required to produce identical results.
250     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
251       if (PN.getIncomingBlock(i) != &OldExitingBB)
252         continue;
253 
254       Value *Incoming = PN.getIncomingValue(i);
255       if (FullUnswitch)
256         // No more edge from the old exiting block to the exit block.
257         PN.removeIncomingValue(i);
258 
259       NewPN->addIncoming(Incoming, &OldPH);
260     }
261 
262     // Now replace the old PHI with the new one and wire the old one in as an
263     // input to the new one.
264     PN.replaceAllUsesWith(NewPN);
265     NewPN->addIncoming(&PN, &ExitBB);
266   }
267 }
268 
269 /// Hoist the current loop up to the innermost loop containing a remaining exit.
270 ///
271 /// Because we've removed an exit from the loop, we may have changed the set of
272 /// loops reachable and need to move the current loop up the loop nest or even
273 /// to an entirely separate nest.
274 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
275                                  DominatorTree &DT, LoopInfo &LI,
276                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
277   // If the loop is already at the top level, we can't hoist it anywhere.
278   Loop *OldParentL = L.getParentLoop();
279   if (!OldParentL)
280     return;
281 
282   SmallVector<BasicBlock *, 4> Exits;
283   L.getExitBlocks(Exits);
284   Loop *NewParentL = nullptr;
285   for (auto *ExitBB : Exits)
286     if (Loop *ExitL = LI.getLoopFor(ExitBB))
287       if (!NewParentL || NewParentL->contains(ExitL))
288         NewParentL = ExitL;
289 
290   if (NewParentL == OldParentL)
291     return;
292 
293   // The new parent loop (if different) should always contain the old one.
294   if (NewParentL)
295     assert(NewParentL->contains(OldParentL) &&
296            "Can only hoist this loop up the nest!");
297 
298   // The preheader will need to move with the body of this loop. However,
299   // because it isn't in this loop we also need to update the primary loop map.
300   assert(OldParentL == LI.getLoopFor(&Preheader) &&
301          "Parent loop of this loop should contain this loop's preheader!");
302   LI.changeLoopFor(&Preheader, NewParentL);
303 
304   // Remove this loop from its old parent.
305   OldParentL->removeChildLoop(&L);
306 
307   // Add the loop either to the new parent or as a top-level loop.
308   if (NewParentL)
309     NewParentL->addChildLoop(&L);
310   else
311     LI.addTopLevelLoop(&L);
312 
313   // Remove this loops blocks from the old parent and every other loop up the
314   // nest until reaching the new parent. Also update all of these
315   // no-longer-containing loops to reflect the nesting change.
316   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
317        OldContainingL = OldContainingL->getParentLoop()) {
318     llvm::erase_if(OldContainingL->getBlocksVector(),
319                    [&](const BasicBlock *BB) {
320                      return BB == &Preheader || L.contains(BB);
321                    });
322 
323     OldContainingL->getBlocksSet().erase(&Preheader);
324     for (BasicBlock *BB : L.blocks())
325       OldContainingL->getBlocksSet().erase(BB);
326 
327     // Because we just hoisted a loop out of this one, we have essentially
328     // created new exit paths from it. That means we need to form LCSSA PHI
329     // nodes for values used in the no-longer-nested loop.
330     formLCSSA(*OldContainingL, DT, &LI, SE);
331 
332     // We shouldn't need to form dedicated exits because the exit introduced
333     // here is the (just split by unswitching) preheader. However, after trivial
334     // unswitching it is possible to get new non-dedicated exits out of parent
335     // loop so let's conservatively form dedicated exit blocks and figure out
336     // if we can optimize later.
337     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
338                             /*PreserveLCSSA*/ true);
339   }
340 }
341 
342 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
343 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
344 // as exiting block.
345 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
346   Loop *TopMost = LI.getLoopFor(ExitBB);
347   Loop *Current = TopMost;
348   while (Current) {
349     if (Current->isLoopExiting(ExitBB))
350       TopMost = Current;
351     Current = Current->getParentLoop();
352   }
353   return TopMost;
354 }
355 
356 /// Unswitch a trivial branch if the condition is loop invariant.
357 ///
358 /// This routine should only be called when loop code leading to the branch has
359 /// been validated as trivial (no side effects). This routine checks if the
360 /// condition is invariant and one of the successors is a loop exit. This
361 /// allows us to unswitch without duplicating the loop, making it trivial.
362 ///
363 /// If this routine fails to unswitch the branch it returns false.
364 ///
365 /// If the branch can be unswitched, this routine splits the preheader and
366 /// hoists the branch above that split. Preserves loop simplified form
367 /// (splitting the exit block as necessary). It simplifies the branch within
368 /// the loop to an unconditional branch but doesn't remove it entirely. Further
369 /// cleanup can be done with some simplify-cfg like pass.
370 ///
371 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
372 /// invalidated by this.
373 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
374                                   LoopInfo &LI, ScalarEvolution *SE,
375                                   MemorySSAUpdater *MSSAU) {
376   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
377   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
378 
379   // The loop invariant values that we want to unswitch.
380   TinyPtrVector<Value *> Invariants;
381 
382   // When true, we're fully unswitching the branch rather than just unswitching
383   // some input conditions to the branch.
384   bool FullUnswitch = false;
385 
386   if (L.isLoopInvariant(BI.getCondition())) {
387     Invariants.push_back(BI.getCondition());
388     FullUnswitch = true;
389   } else {
390     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
391       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
392     if (Invariants.empty())
393       // Couldn't find invariant inputs!
394       return false;
395   }
396 
397   // Check that one of the branch's successors exits, and which one.
398   bool ExitDirection = true;
399   int LoopExitSuccIdx = 0;
400   auto *LoopExitBB = BI.getSuccessor(0);
401   if (L.contains(LoopExitBB)) {
402     ExitDirection = false;
403     LoopExitSuccIdx = 1;
404     LoopExitBB = BI.getSuccessor(1);
405     if (L.contains(LoopExitBB))
406       return false;
407   }
408   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
409   auto *ParentBB = BI.getParent();
410   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
411     return false;
412 
413   // When unswitching only part of the branch's condition, we need the exit
414   // block to be reached directly from the partially unswitched input. This can
415   // be done when the exit block is along the true edge and the branch condition
416   // is a graph of `or` operations, or the exit block is along the false edge
417   // and the condition is a graph of `and` operations.
418   if (!FullUnswitch) {
419     if (ExitDirection) {
420       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
421         return false;
422     } else {
423       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
424         return false;
425     }
426   }
427 
428   LLVM_DEBUG({
429     dbgs() << "    unswitching trivial invariant conditions for: " << BI
430            << "\n";
431     for (Value *Invariant : Invariants) {
432       dbgs() << "      " << *Invariant << " == true";
433       if (Invariant != Invariants.back())
434         dbgs() << " ||";
435       dbgs() << "\n";
436     }
437   });
438 
439   // If we have scalar evolutions, we need to invalidate them including this
440   // loop, the loop containing the exit block and the topmost parent loop
441   // exiting via LoopExitBB.
442   if (SE) {
443     if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
444       SE->forgetLoop(ExitL);
445     else
446       // Forget the entire nest as this exits the entire nest.
447       SE->forgetTopmostLoop(&L);
448   }
449 
450   if (MSSAU && VerifyMemorySSA)
451     MSSAU->getMemorySSA()->verifyMemorySSA();
452 
453   // Split the preheader, so that we know that there is a safe place to insert
454   // the conditional branch. We will change the preheader to have a conditional
455   // branch on LoopCond.
456   BasicBlock *OldPH = L.getLoopPreheader();
457   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
458 
459   // Now that we have a place to insert the conditional branch, create a place
460   // to branch to: this is the exit block out of the loop that we are
461   // unswitching. We need to split this if there are other loop predecessors.
462   // Because the loop is in simplified form, *any* other predecessor is enough.
463   BasicBlock *UnswitchedBB;
464   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
465     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
466            "A branch's parent isn't a predecessor!");
467     UnswitchedBB = LoopExitBB;
468   } else {
469     UnswitchedBB =
470         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
471   }
472 
473   if (MSSAU && VerifyMemorySSA)
474     MSSAU->getMemorySSA()->verifyMemorySSA();
475 
476   // Actually move the invariant uses into the unswitched position. If possible,
477   // we do this by moving the instructions, but when doing partial unswitching
478   // we do it by building a new merge of the values in the unswitched position.
479   OldPH->getTerminator()->eraseFromParent();
480   if (FullUnswitch) {
481     // If fully unswitching, we can use the existing branch instruction.
482     // Splice it into the old PH to gate reaching the new preheader and re-point
483     // its successors.
484     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
485                                 BI);
486     if (MSSAU) {
487       // Temporarily clone the terminator, to make MSSA update cheaper by
488       // separating "insert edge" updates from "remove edge" ones.
489       ParentBB->getInstList().push_back(BI.clone());
490     } else {
491       // Create a new unconditional branch that will continue the loop as a new
492       // terminator.
493       BranchInst::Create(ContinueBB, ParentBB);
494     }
495     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
496     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
497   } else {
498     // Only unswitching a subset of inputs to the condition, so we will need to
499     // build a new branch that merges the invariant inputs.
500     if (ExitDirection)
501       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
502                  Instruction::Or &&
503              "Must have an `or` of `i1`s for the condition!");
504     else
505       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
506                  Instruction::And &&
507              "Must have an `and` of `i1`s for the condition!");
508     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
509                                           *UnswitchedBB, *NewPH);
510   }
511 
512   // Update the dominator tree with the added edge.
513   DT.insertEdge(OldPH, UnswitchedBB);
514 
515   // After the dominator tree was updated with the added edge, update MemorySSA
516   // if available.
517   if (MSSAU) {
518     SmallVector<CFGUpdate, 1> Updates;
519     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
520     MSSAU->applyInsertUpdates(Updates, DT);
521   }
522 
523   // Finish updating dominator tree and memory ssa for full unswitch.
524   if (FullUnswitch) {
525     if (MSSAU) {
526       // Remove the cloned branch instruction.
527       ParentBB->getTerminator()->eraseFromParent();
528       // Create unconditional branch now.
529       BranchInst::Create(ContinueBB, ParentBB);
530       MSSAU->removeEdge(ParentBB, LoopExitBB);
531     }
532     DT.deleteEdge(ParentBB, LoopExitBB);
533   }
534 
535   if (MSSAU && VerifyMemorySSA)
536     MSSAU->getMemorySSA()->verifyMemorySSA();
537 
538   // Rewrite the relevant PHI nodes.
539   if (UnswitchedBB == LoopExitBB)
540     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
541   else
542     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
543                                               *ParentBB, *OldPH, FullUnswitch);
544 
545   // The constant we can replace all of our invariants with inside the loop
546   // body. If any of the invariants have a value other than this the loop won't
547   // be entered.
548   ConstantInt *Replacement = ExitDirection
549                                  ? ConstantInt::getFalse(BI.getContext())
550                                  : ConstantInt::getTrue(BI.getContext());
551 
552   // Since this is an i1 condition we can also trivially replace uses of it
553   // within the loop with a constant.
554   for (Value *Invariant : Invariants)
555     replaceLoopInvariantUses(L, Invariant, *Replacement);
556 
557   // If this was full unswitching, we may have changed the nesting relationship
558   // for this loop so hoist it to its correct parent if needed.
559   if (FullUnswitch)
560     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
561 
562   if (MSSAU && VerifyMemorySSA)
563     MSSAU->getMemorySSA()->verifyMemorySSA();
564 
565   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
566   ++NumTrivial;
567   ++NumBranches;
568   return true;
569 }
570 
571 /// Unswitch a trivial switch if the condition is loop invariant.
572 ///
573 /// This routine should only be called when loop code leading to the switch has
574 /// been validated as trivial (no side effects). This routine checks if the
575 /// condition is invariant and that at least one of the successors is a loop
576 /// exit. This allows us to unswitch without duplicating the loop, making it
577 /// trivial.
578 ///
579 /// If this routine fails to unswitch the switch it returns false.
580 ///
581 /// If the switch can be unswitched, this routine splits the preheader and
582 /// copies the switch above that split. If the default case is one of the
583 /// exiting cases, it copies the non-exiting cases and points them at the new
584 /// preheader. If the default case is not exiting, it copies the exiting cases
585 /// and points the default at the preheader. It preserves loop simplified form
586 /// (splitting the exit blocks as necessary). It simplifies the switch within
587 /// the loop by removing now-dead cases. If the default case is one of those
588 /// unswitched, it replaces its destination with a new basic block containing
589 /// only unreachable. Such basic blocks, while technically loop exits, are not
590 /// considered for unswitching so this is a stable transform and the same
591 /// switch will not be revisited. If after unswitching there is only a single
592 /// in-loop successor, the switch is further simplified to an unconditional
593 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
594 ///
595 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
596 /// invalidated by this.
597 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
598                                   LoopInfo &LI, ScalarEvolution *SE,
599                                   MemorySSAUpdater *MSSAU) {
600   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
601   Value *LoopCond = SI.getCondition();
602 
603   // If this isn't switching on an invariant condition, we can't unswitch it.
604   if (!L.isLoopInvariant(LoopCond))
605     return false;
606 
607   auto *ParentBB = SI.getParent();
608 
609   // The same check must be used both for the default and the exit cases. We
610   // should never leave edges from the switch instruction to a basic block that
611   // we are unswitching, hence the condition used to determine the default case
612   // needs to also be used to populate ExitCaseIndices, which is then used to
613   // remove cases from the switch.
614   auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
615     // BBToCheck is not an exit block if it is inside loop L.
616     if (L.contains(&BBToCheck))
617       return false;
618     // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
619     if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
620       return false;
621     // We do not unswitch a block that only has an unreachable statement, as
622     // it's possible this is a previously unswitched block. Only unswitch if
623     // either the terminator is not unreachable, or, if it is, it's not the only
624     // instruction in the block.
625     auto *TI = BBToCheck.getTerminator();
626     bool isUnreachable = isa<UnreachableInst>(TI);
627     return !isUnreachable ||
628            (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
629   };
630 
631   SmallVector<int, 4> ExitCaseIndices;
632   for (auto Case : SI.cases())
633     if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
634       ExitCaseIndices.push_back(Case.getCaseIndex());
635   BasicBlock *DefaultExitBB = nullptr;
636   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
637       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
638   if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
639     DefaultExitBB = SI.getDefaultDest();
640   } else if (ExitCaseIndices.empty())
641     return false;
642 
643   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
644 
645   if (MSSAU && VerifyMemorySSA)
646     MSSAU->getMemorySSA()->verifyMemorySSA();
647 
648   // We may need to invalidate SCEVs for the outermost loop reached by any of
649   // the exits.
650   Loop *OuterL = &L;
651 
652   if (DefaultExitBB) {
653     // Clear out the default destination temporarily to allow accurate
654     // predecessor lists to be examined below.
655     SI.setDefaultDest(nullptr);
656     // Check the loop containing this exit.
657     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
658     if (!ExitL || ExitL->contains(OuterL))
659       OuterL = ExitL;
660   }
661 
662   // Store the exit cases into a separate data structure and remove them from
663   // the switch.
664   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
665                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
666               4> ExitCases;
667   ExitCases.reserve(ExitCaseIndices.size());
668   SwitchInstProfUpdateWrapper SIW(SI);
669   // We walk the case indices backwards so that we remove the last case first
670   // and don't disrupt the earlier indices.
671   for (unsigned Index : reverse(ExitCaseIndices)) {
672     auto CaseI = SI.case_begin() + Index;
673     // Compute the outer loop from this exit.
674     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
675     if (!ExitL || ExitL->contains(OuterL))
676       OuterL = ExitL;
677     // Save the value of this case.
678     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
679     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
680     // Delete the unswitched cases.
681     SIW.removeCase(CaseI);
682   }
683 
684   if (SE) {
685     if (OuterL)
686       SE->forgetLoop(OuterL);
687     else
688       SE->forgetTopmostLoop(&L);
689   }
690 
691   // Check if after this all of the remaining cases point at the same
692   // successor.
693   BasicBlock *CommonSuccBB = nullptr;
694   if (SI.getNumCases() > 0 &&
695       std::all_of(std::next(SI.case_begin()), SI.case_end(),
696                   [&SI](const SwitchInst::CaseHandle &Case) {
697                     return Case.getCaseSuccessor() ==
698                            SI.case_begin()->getCaseSuccessor();
699                   }))
700     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
701   if (!DefaultExitBB) {
702     // If we're not unswitching the default, we need it to match any cases to
703     // have a common successor or if we have no cases it is the common
704     // successor.
705     if (SI.getNumCases() == 0)
706       CommonSuccBB = SI.getDefaultDest();
707     else if (SI.getDefaultDest() != CommonSuccBB)
708       CommonSuccBB = nullptr;
709   }
710 
711   // Split the preheader, so that we know that there is a safe place to insert
712   // the switch.
713   BasicBlock *OldPH = L.getLoopPreheader();
714   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
715   OldPH->getTerminator()->eraseFromParent();
716 
717   // Now add the unswitched switch.
718   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
719   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
720 
721   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
722   // First, we split any exit blocks with remaining in-loop predecessors. Then
723   // we update the PHIs in one of two ways depending on if there was a split.
724   // We walk in reverse so that we split in the same order as the cases
725   // appeared. This is purely for convenience of reading the resulting IR, but
726   // it doesn't cost anything really.
727   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
728   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
729   // Handle the default exit if necessary.
730   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
731   // ranges aren't quite powerful enough yet.
732   if (DefaultExitBB) {
733     if (pred_empty(DefaultExitBB)) {
734       UnswitchedExitBBs.insert(DefaultExitBB);
735       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
736     } else {
737       auto *SplitBB =
738           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
739       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
740                                                 *ParentBB, *OldPH,
741                                                 /*FullUnswitch*/ true);
742       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
743     }
744   }
745   // Note that we must use a reference in the for loop so that we update the
746   // container.
747   for (auto &ExitCase : reverse(ExitCases)) {
748     // Grab a reference to the exit block in the pair so that we can update it.
749     BasicBlock *ExitBB = std::get<1>(ExitCase);
750 
751     // If this case is the last edge into the exit block, we can simply reuse it
752     // as it will no longer be a loop exit. No mapping necessary.
753     if (pred_empty(ExitBB)) {
754       // Only rewrite once.
755       if (UnswitchedExitBBs.insert(ExitBB).second)
756         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
757       continue;
758     }
759 
760     // Otherwise we need to split the exit block so that we retain an exit
761     // block from the loop and a target for the unswitched condition.
762     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
763     if (!SplitExitBB) {
764       // If this is the first time we see this, do the split and remember it.
765       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
766       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
767                                                 *ParentBB, *OldPH,
768                                                 /*FullUnswitch*/ true);
769     }
770     // Update the case pair to point to the split block.
771     std::get<1>(ExitCase) = SplitExitBB;
772   }
773 
774   // Now add the unswitched cases. We do this in reverse order as we built them
775   // in reverse order.
776   for (auto &ExitCase : reverse(ExitCases)) {
777     ConstantInt *CaseVal = std::get<0>(ExitCase);
778     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
779 
780     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
781   }
782 
783   // If the default was unswitched, re-point it and add explicit cases for
784   // entering the loop.
785   if (DefaultExitBB) {
786     NewSIW->setDefaultDest(DefaultExitBB);
787     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
788 
789     // We removed all the exit cases, so we just copy the cases to the
790     // unswitched switch.
791     for (const auto &Case : SI.cases())
792       NewSIW.addCase(Case.getCaseValue(), NewPH,
793                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
794   } else if (DefaultCaseWeight) {
795     // We have to set branch weight of the default case.
796     uint64_t SW = *DefaultCaseWeight;
797     for (const auto &Case : SI.cases()) {
798       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
799       assert(W &&
800              "case weight must be defined as default case weight is defined");
801       SW += *W;
802     }
803     NewSIW.setSuccessorWeight(0, SW);
804   }
805 
806   // If we ended up with a common successor for every path through the switch
807   // after unswitching, rewrite it to an unconditional branch to make it easy
808   // to recognize. Otherwise we potentially have to recognize the default case
809   // pointing at unreachable and other complexity.
810   if (CommonSuccBB) {
811     BasicBlock *BB = SI.getParent();
812     // We may have had multiple edges to this common successor block, so remove
813     // them as predecessors. We skip the first one, either the default or the
814     // actual first case.
815     bool SkippedFirst = DefaultExitBB == nullptr;
816     for (auto Case : SI.cases()) {
817       assert(Case.getCaseSuccessor() == CommonSuccBB &&
818              "Non-common successor!");
819       (void)Case;
820       if (!SkippedFirst) {
821         SkippedFirst = true;
822         continue;
823       }
824       CommonSuccBB->removePredecessor(BB,
825                                       /*KeepOneInputPHIs*/ true);
826     }
827     // Now nuke the switch and replace it with a direct branch.
828     SIW.eraseFromParent();
829     BranchInst::Create(CommonSuccBB, BB);
830   } else if (DefaultExitBB) {
831     assert(SI.getNumCases() > 0 &&
832            "If we had no cases we'd have a common successor!");
833     // Move the last case to the default successor. This is valid as if the
834     // default got unswitched it cannot be reached. This has the advantage of
835     // being simple and keeping the number of edges from this switch to
836     // successors the same, and avoiding any PHI update complexity.
837     auto LastCaseI = std::prev(SI.case_end());
838 
839     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
840     SIW.setSuccessorWeight(
841         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
842     SIW.removeCase(LastCaseI);
843   }
844 
845   // Walk the unswitched exit blocks and the unswitched split blocks and update
846   // the dominator tree based on the CFG edits. While we are walking unordered
847   // containers here, the API for applyUpdates takes an unordered list of
848   // updates and requires them to not contain duplicates.
849   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
850   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
851     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
852     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
853   }
854   for (auto SplitUnswitchedPair : SplitExitBBMap) {
855     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
856     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
857   }
858   DT.applyUpdates(DTUpdates);
859 
860   if (MSSAU) {
861     MSSAU->applyUpdates(DTUpdates, DT);
862     if (VerifyMemorySSA)
863       MSSAU->getMemorySSA()->verifyMemorySSA();
864   }
865 
866   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
867 
868   // We may have changed the nesting relationship for this loop so hoist it to
869   // its correct parent if needed.
870   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
871 
872   if (MSSAU && VerifyMemorySSA)
873     MSSAU->getMemorySSA()->verifyMemorySSA();
874 
875   ++NumTrivial;
876   ++NumSwitches;
877   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
878   return true;
879 }
880 
881 /// This routine scans the loop to find a branch or switch which occurs before
882 /// any side effects occur. These can potentially be unswitched without
883 /// duplicating the loop. If a branch or switch is successfully unswitched the
884 /// scanning continues to see if subsequent branches or switches have become
885 /// trivial. Once all trivial candidates have been unswitched, this routine
886 /// returns.
887 ///
888 /// The return value indicates whether anything was unswitched (and therefore
889 /// changed).
890 ///
891 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
892 /// invalidated by this.
893 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
894                                          LoopInfo &LI, ScalarEvolution *SE,
895                                          MemorySSAUpdater *MSSAU) {
896   bool Changed = false;
897 
898   // If loop header has only one reachable successor we should keep looking for
899   // trivial condition candidates in the successor as well. An alternative is
900   // to constant fold conditions and merge successors into loop header (then we
901   // only need to check header's terminator). The reason for not doing this in
902   // LoopUnswitch pass is that it could potentially break LoopPassManager's
903   // invariants. Folding dead branches could either eliminate the current loop
904   // or make other loops unreachable. LCSSA form might also not be preserved
905   // after deleting branches. The following code keeps traversing loop header's
906   // successors until it finds the trivial condition candidate (condition that
907   // is not a constant). Since unswitching generates branches with constant
908   // conditions, this scenario could be very common in practice.
909   BasicBlock *CurrentBB = L.getHeader();
910   SmallPtrSet<BasicBlock *, 8> Visited;
911   Visited.insert(CurrentBB);
912   do {
913     // Check if there are any side-effecting instructions (e.g. stores, calls,
914     // volatile loads) in the part of the loop that the code *would* execute
915     // without unswitching.
916     if (MSSAU) // Possible early exit with MSSA
917       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
918         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
919           return Changed;
920     if (llvm::any_of(*CurrentBB,
921                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
922       return Changed;
923 
924     Instruction *CurrentTerm = CurrentBB->getTerminator();
925 
926     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
927       // Don't bother trying to unswitch past a switch with a constant
928       // condition. This should be removed prior to running this pass by
929       // simplify-cfg.
930       if (isa<Constant>(SI->getCondition()))
931         return Changed;
932 
933       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
934         // Couldn't unswitch this one so we're done.
935         return Changed;
936 
937       // Mark that we managed to unswitch something.
938       Changed = true;
939 
940       // If unswitching turned the terminator into an unconditional branch then
941       // we can continue. The unswitching logic specifically works to fold any
942       // cases it can into an unconditional branch to make it easier to
943       // recognize here.
944       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
945       if (!BI || BI->isConditional())
946         return Changed;
947 
948       CurrentBB = BI->getSuccessor(0);
949       continue;
950     }
951 
952     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
953     if (!BI)
954       // We do not understand other terminator instructions.
955       return Changed;
956 
957     // Don't bother trying to unswitch past an unconditional branch or a branch
958     // with a constant value. These should be removed by simplify-cfg prior to
959     // running this pass.
960     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
961       return Changed;
962 
963     // Found a trivial condition candidate: non-foldable conditional branch. If
964     // we fail to unswitch this, we can't do anything else that is trivial.
965     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
966       return Changed;
967 
968     // Mark that we managed to unswitch something.
969     Changed = true;
970 
971     // If we only unswitched some of the conditions feeding the branch, we won't
972     // have collapsed it to a single successor.
973     BI = cast<BranchInst>(CurrentBB->getTerminator());
974     if (BI->isConditional())
975       return Changed;
976 
977     // Follow the newly unconditional branch into its successor.
978     CurrentBB = BI->getSuccessor(0);
979 
980     // When continuing, if we exit the loop or reach a previous visited block,
981     // then we can not reach any trivial condition candidates (unfoldable
982     // branch instructions or switch instructions) and no unswitch can happen.
983   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
984 
985   return Changed;
986 }
987 
988 /// Build the cloned blocks for an unswitched copy of the given loop.
989 ///
990 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
991 /// after the split block (`SplitBB`) that will be used to select between the
992 /// cloned and original loop.
993 ///
994 /// This routine handles cloning all of the necessary loop blocks and exit
995 /// blocks including rewriting their instructions and the relevant PHI nodes.
996 /// Any loop blocks or exit blocks which are dominated by a different successor
997 /// than the one for this clone of the loop blocks can be trivially skipped. We
998 /// use the `DominatingSucc` map to determine whether a block satisfies that
999 /// property with a simple map lookup.
1000 ///
1001 /// It also correctly creates the unconditional branch in the cloned
1002 /// unswitched parent block to only point at the unswitched successor.
1003 ///
1004 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1005 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1006 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1007 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1008 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1009 /// instead the caller must recompute an accurate DT. It *does* correctly
1010 /// update the `AssumptionCache` provided in `AC`.
1011 static BasicBlock *buildClonedLoopBlocks(
1012     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1013     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1014     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1015     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1016     ValueToValueMapTy &VMap,
1017     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1018     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1019   SmallVector<BasicBlock *, 4> NewBlocks;
1020   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1021 
1022   // We will need to clone a bunch of blocks, wrap up the clone operation in
1023   // a helper.
1024   auto CloneBlock = [&](BasicBlock *OldBB) {
1025     // Clone the basic block and insert it before the new preheader.
1026     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1027     NewBB->moveBefore(LoopPH);
1028 
1029     // Record this block and the mapping.
1030     NewBlocks.push_back(NewBB);
1031     VMap[OldBB] = NewBB;
1032 
1033     return NewBB;
1034   };
1035 
1036   // We skip cloning blocks when they have a dominating succ that is not the
1037   // succ we are cloning for.
1038   auto SkipBlock = [&](BasicBlock *BB) {
1039     auto It = DominatingSucc.find(BB);
1040     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1041   };
1042 
1043   // First, clone the preheader.
1044   auto *ClonedPH = CloneBlock(LoopPH);
1045 
1046   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1047   for (auto *LoopBB : L.blocks())
1048     if (!SkipBlock(LoopBB))
1049       CloneBlock(LoopBB);
1050 
1051   // Split all the loop exit edges so that when we clone the exit blocks, if
1052   // any of the exit blocks are *also* a preheader for some other loop, we
1053   // don't create multiple predecessors entering the loop header.
1054   for (auto *ExitBB : ExitBlocks) {
1055     if (SkipBlock(ExitBB))
1056       continue;
1057 
1058     // When we are going to clone an exit, we don't need to clone all the
1059     // instructions in the exit block and we want to ensure we have an easy
1060     // place to merge the CFG, so split the exit first. This is always safe to
1061     // do because there cannot be any non-loop predecessors of a loop exit in
1062     // loop simplified form.
1063     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1064 
1065     // Rearrange the names to make it easier to write test cases by having the
1066     // exit block carry the suffix rather than the merge block carrying the
1067     // suffix.
1068     MergeBB->takeName(ExitBB);
1069     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1070 
1071     // Now clone the original exit block.
1072     auto *ClonedExitBB = CloneBlock(ExitBB);
1073     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1074            "Exit block should have been split to have one successor!");
1075     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1076            "Cloned exit block has the wrong successor!");
1077 
1078     // Remap any cloned instructions and create a merge phi node for them.
1079     for (auto ZippedInsts : llvm::zip_first(
1080              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1081              llvm::make_range(ClonedExitBB->begin(),
1082                               std::prev(ClonedExitBB->end())))) {
1083       Instruction &I = std::get<0>(ZippedInsts);
1084       Instruction &ClonedI = std::get<1>(ZippedInsts);
1085 
1086       // The only instructions in the exit block should be PHI nodes and
1087       // potentially a landing pad.
1088       assert(
1089           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1090           "Bad instruction in exit block!");
1091       // We should have a value map between the instruction and its clone.
1092       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1093 
1094       auto *MergePN =
1095           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1096                           &*MergeBB->getFirstInsertionPt());
1097       I.replaceAllUsesWith(MergePN);
1098       MergePN->addIncoming(&I, ExitBB);
1099       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1100     }
1101   }
1102 
1103   // Rewrite the instructions in the cloned blocks to refer to the instructions
1104   // in the cloned blocks. We have to do this as a second pass so that we have
1105   // everything available. Also, we have inserted new instructions which may
1106   // include assume intrinsics, so we update the assumption cache while
1107   // processing this.
1108   for (auto *ClonedBB : NewBlocks)
1109     for (Instruction &I : *ClonedBB) {
1110       RemapInstruction(&I, VMap,
1111                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1112       if (auto *II = dyn_cast<IntrinsicInst>(&I))
1113         if (II->getIntrinsicID() == Intrinsic::assume)
1114           AC.registerAssumption(II);
1115     }
1116 
1117   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1118   // have spurious incoming values.
1119   for (auto *LoopBB : L.blocks())
1120     if (SkipBlock(LoopBB))
1121       for (auto *SuccBB : successors(LoopBB))
1122         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1123           for (PHINode &PN : ClonedSuccBB->phis())
1124             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1125 
1126   // Remove the cloned parent as a predecessor of any successor we ended up
1127   // cloning other than the unswitched one.
1128   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1129   for (auto *SuccBB : successors(ParentBB)) {
1130     if (SuccBB == UnswitchedSuccBB)
1131       continue;
1132 
1133     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1134     if (!ClonedSuccBB)
1135       continue;
1136 
1137     ClonedSuccBB->removePredecessor(ClonedParentBB,
1138                                     /*KeepOneInputPHIs*/ true);
1139   }
1140 
1141   // Replace the cloned branch with an unconditional branch to the cloned
1142   // unswitched successor.
1143   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1144   Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1145   // Trivial Simplification. If Terminator is a conditional branch and
1146   // condition becomes dead - erase it.
1147   Value *ClonedConditionToErase = nullptr;
1148   if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1149     ClonedConditionToErase = BI->getCondition();
1150   else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1151     ClonedConditionToErase = SI->getCondition();
1152 
1153   ClonedTerminator->eraseFromParent();
1154   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1155 
1156   if (ClonedConditionToErase)
1157     RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1158                                                MSSAU);
1159 
1160   // If there are duplicate entries in the PHI nodes because of multiple edges
1161   // to the unswitched successor, we need to nuke all but one as we replaced it
1162   // with a direct branch.
1163   for (PHINode &PN : ClonedSuccBB->phis()) {
1164     bool Found = false;
1165     // Loop over the incoming operands backwards so we can easily delete as we
1166     // go without invalidating the index.
1167     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1168       if (PN.getIncomingBlock(i) != ClonedParentBB)
1169         continue;
1170       if (!Found) {
1171         Found = true;
1172         continue;
1173       }
1174       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1175     }
1176   }
1177 
1178   // Record the domtree updates for the new blocks.
1179   SmallPtrSet<BasicBlock *, 4> SuccSet;
1180   for (auto *ClonedBB : NewBlocks) {
1181     for (auto *SuccBB : successors(ClonedBB))
1182       if (SuccSet.insert(SuccBB).second)
1183         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1184     SuccSet.clear();
1185   }
1186 
1187   return ClonedPH;
1188 }
1189 
1190 /// Recursively clone the specified loop and all of its children.
1191 ///
1192 /// The target parent loop for the clone should be provided, or can be null if
1193 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1194 /// with the provided value map. The entire original loop must be present in
1195 /// the value map. The cloned loop is returned.
1196 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1197                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1198   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1199     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1200     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1201     for (auto *BB : OrigL.blocks()) {
1202       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1203       ClonedL.addBlockEntry(ClonedBB);
1204       if (LI.getLoopFor(BB) == &OrigL)
1205         LI.changeLoopFor(ClonedBB, &ClonedL);
1206     }
1207   };
1208 
1209   // We specially handle the first loop because it may get cloned into
1210   // a different parent and because we most commonly are cloning leaf loops.
1211   Loop *ClonedRootL = LI.AllocateLoop();
1212   if (RootParentL)
1213     RootParentL->addChildLoop(ClonedRootL);
1214   else
1215     LI.addTopLevelLoop(ClonedRootL);
1216   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1217 
1218   if (OrigRootL.isInnermost())
1219     return ClonedRootL;
1220 
1221   // If we have a nest, we can quickly clone the entire loop nest using an
1222   // iterative approach because it is a tree. We keep the cloned parent in the
1223   // data structure to avoid repeatedly querying through a map to find it.
1224   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1225   // Build up the loops to clone in reverse order as we'll clone them from the
1226   // back.
1227   for (Loop *ChildL : llvm::reverse(OrigRootL))
1228     LoopsToClone.push_back({ClonedRootL, ChildL});
1229   do {
1230     Loop *ClonedParentL, *L;
1231     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1232     Loop *ClonedL = LI.AllocateLoop();
1233     ClonedParentL->addChildLoop(ClonedL);
1234     AddClonedBlocksToLoop(*L, *ClonedL);
1235     for (Loop *ChildL : llvm::reverse(*L))
1236       LoopsToClone.push_back({ClonedL, ChildL});
1237   } while (!LoopsToClone.empty());
1238 
1239   return ClonedRootL;
1240 }
1241 
1242 /// Build the cloned loops of an original loop from unswitching.
1243 ///
1244 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1245 /// operation. We need to re-verify that there even is a loop (as the backedge
1246 /// may not have been cloned), and even if there are remaining backedges the
1247 /// backedge set may be different. However, we know that each child loop is
1248 /// undisturbed, we only need to find where to place each child loop within
1249 /// either any parent loop or within a cloned version of the original loop.
1250 ///
1251 /// Because child loops may end up cloned outside of any cloned version of the
1252 /// original loop, multiple cloned sibling loops may be created. All of them
1253 /// are returned so that the newly introduced loop nest roots can be
1254 /// identified.
1255 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1256                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1257                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1258   Loop *ClonedL = nullptr;
1259 
1260   auto *OrigPH = OrigL.getLoopPreheader();
1261   auto *OrigHeader = OrigL.getHeader();
1262 
1263   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1264   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1265 
1266   // We need to know the loops of the cloned exit blocks to even compute the
1267   // accurate parent loop. If we only clone exits to some parent of the
1268   // original parent, we want to clone into that outer loop. We also keep track
1269   // of the loops that our cloned exit blocks participate in.
1270   Loop *ParentL = nullptr;
1271   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1272   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1273   ClonedExitsInLoops.reserve(ExitBlocks.size());
1274   for (auto *ExitBB : ExitBlocks)
1275     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1276       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1277         ExitLoopMap[ClonedExitBB] = ExitL;
1278         ClonedExitsInLoops.push_back(ClonedExitBB);
1279         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1280           ParentL = ExitL;
1281       }
1282   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1283           ParentL->contains(OrigL.getParentLoop())) &&
1284          "The computed parent loop should always contain (or be) the parent of "
1285          "the original loop.");
1286 
1287   // We build the set of blocks dominated by the cloned header from the set of
1288   // cloned blocks out of the original loop. While not all of these will
1289   // necessarily be in the cloned loop, it is enough to establish that they
1290   // aren't in unreachable cycles, etc.
1291   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1292   for (auto *BB : OrigL.blocks())
1293     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1294       ClonedLoopBlocks.insert(ClonedBB);
1295 
1296   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1297   // skipped cloning some region of this loop which can in turn skip some of
1298   // the backedges so we have to rebuild the blocks in the loop based on the
1299   // backedges that remain after cloning.
1300   SmallVector<BasicBlock *, 16> Worklist;
1301   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1302   for (auto *Pred : predecessors(ClonedHeader)) {
1303     // The only possible non-loop header predecessor is the preheader because
1304     // we know we cloned the loop in simplified form.
1305     if (Pred == ClonedPH)
1306       continue;
1307 
1308     // Because the loop was in simplified form, the only non-loop predecessor
1309     // should be the preheader.
1310     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1311                                            "header other than the preheader "
1312                                            "that is not part of the loop!");
1313 
1314     // Insert this block into the loop set and on the first visit (and if it
1315     // isn't the header we're currently walking) put it into the worklist to
1316     // recurse through.
1317     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1318       Worklist.push_back(Pred);
1319   }
1320 
1321   // If we had any backedges then there *is* a cloned loop. Put the header into
1322   // the loop set and then walk the worklist backwards to find all the blocks
1323   // that remain within the loop after cloning.
1324   if (!BlocksInClonedLoop.empty()) {
1325     BlocksInClonedLoop.insert(ClonedHeader);
1326 
1327     while (!Worklist.empty()) {
1328       BasicBlock *BB = Worklist.pop_back_val();
1329       assert(BlocksInClonedLoop.count(BB) &&
1330              "Didn't put block into the loop set!");
1331 
1332       // Insert any predecessors that are in the possible set into the cloned
1333       // set, and if the insert is successful, add them to the worklist. Note
1334       // that we filter on the blocks that are definitely reachable via the
1335       // backedge to the loop header so we may prune out dead code within the
1336       // cloned loop.
1337       for (auto *Pred : predecessors(BB))
1338         if (ClonedLoopBlocks.count(Pred) &&
1339             BlocksInClonedLoop.insert(Pred).second)
1340           Worklist.push_back(Pred);
1341     }
1342 
1343     ClonedL = LI.AllocateLoop();
1344     if (ParentL) {
1345       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1346       ParentL->addChildLoop(ClonedL);
1347     } else {
1348       LI.addTopLevelLoop(ClonedL);
1349     }
1350     NonChildClonedLoops.push_back(ClonedL);
1351 
1352     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1353     // We don't want to just add the cloned loop blocks based on how we
1354     // discovered them. The original order of blocks was carefully built in
1355     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1356     // that logic, we just re-walk the original blocks (and those of the child
1357     // loops) and filter them as we add them into the cloned loop.
1358     for (auto *BB : OrigL.blocks()) {
1359       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1360       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1361         continue;
1362 
1363       // Directly add the blocks that are only in this loop.
1364       if (LI.getLoopFor(BB) == &OrigL) {
1365         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1366         continue;
1367       }
1368 
1369       // We want to manually add it to this loop and parents.
1370       // Registering it with LoopInfo will happen when we clone the top
1371       // loop for this block.
1372       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1373         PL->addBlockEntry(ClonedBB);
1374     }
1375 
1376     // Now add each child loop whose header remains within the cloned loop. All
1377     // of the blocks within the loop must satisfy the same constraints as the
1378     // header so once we pass the header checks we can just clone the entire
1379     // child loop nest.
1380     for (Loop *ChildL : OrigL) {
1381       auto *ClonedChildHeader =
1382           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1383       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1384         continue;
1385 
1386 #ifndef NDEBUG
1387       // We should never have a cloned child loop header but fail to have
1388       // all of the blocks for that child loop.
1389       for (auto *ChildLoopBB : ChildL->blocks())
1390         assert(BlocksInClonedLoop.count(
1391                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1392                "Child cloned loop has a header within the cloned outer "
1393                "loop but not all of its blocks!");
1394 #endif
1395 
1396       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1397     }
1398   }
1399 
1400   // Now that we've handled all the components of the original loop that were
1401   // cloned into a new loop, we still need to handle anything from the original
1402   // loop that wasn't in a cloned loop.
1403 
1404   // Figure out what blocks are left to place within any loop nest containing
1405   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1406   // them.
1407   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1408   if (BlocksInClonedLoop.empty())
1409     UnloopedBlockSet.insert(ClonedPH);
1410   for (auto *ClonedBB : ClonedLoopBlocks)
1411     if (!BlocksInClonedLoop.count(ClonedBB))
1412       UnloopedBlockSet.insert(ClonedBB);
1413 
1414   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1415   // backwards across these to process them inside out. The order shouldn't
1416   // matter as we're just trying to build up the map from inside-out; we use
1417   // the map in a more stably ordered way below.
1418   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1419   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1420     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1421            ExitLoopMap.lookup(RHS)->getLoopDepth();
1422   });
1423 
1424   // Populate the existing ExitLoopMap with everything reachable from each
1425   // exit, starting from the inner most exit.
1426   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1427     assert(Worklist.empty() && "Didn't clear worklist!");
1428 
1429     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1430     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1431 
1432     // Walk the CFG back until we hit the cloned PH adding everything reachable
1433     // and in the unlooped set to this exit block's loop.
1434     Worklist.push_back(ExitBB);
1435     do {
1436       BasicBlock *BB = Worklist.pop_back_val();
1437       // We can stop recursing at the cloned preheader (if we get there).
1438       if (BB == ClonedPH)
1439         continue;
1440 
1441       for (BasicBlock *PredBB : predecessors(BB)) {
1442         // If this pred has already been moved to our set or is part of some
1443         // (inner) loop, no update needed.
1444         if (!UnloopedBlockSet.erase(PredBB)) {
1445           assert(
1446               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1447               "Predecessor not mapped to a loop!");
1448           continue;
1449         }
1450 
1451         // We just insert into the loop set here. We'll add these blocks to the
1452         // exit loop after we build up the set in an order that doesn't rely on
1453         // predecessor order (which in turn relies on use list order).
1454         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1455         (void)Inserted;
1456         assert(Inserted && "Should only visit an unlooped block once!");
1457 
1458         // And recurse through to its predecessors.
1459         Worklist.push_back(PredBB);
1460       }
1461     } while (!Worklist.empty());
1462   }
1463 
1464   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1465   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1466   // in their original order adding them to the correct loop.
1467 
1468   // We need a stable insertion order. We use the order of the original loop
1469   // order and map into the correct parent loop.
1470   for (auto *BB : llvm::concat<BasicBlock *const>(
1471            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1472     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1473       OuterL->addBasicBlockToLoop(BB, LI);
1474 
1475 #ifndef NDEBUG
1476   for (auto &BBAndL : ExitLoopMap) {
1477     auto *BB = BBAndL.first;
1478     auto *OuterL = BBAndL.second;
1479     assert(LI.getLoopFor(BB) == OuterL &&
1480            "Failed to put all blocks into outer loops!");
1481   }
1482 #endif
1483 
1484   // Now that all the blocks are placed into the correct containing loop in the
1485   // absence of child loops, find all the potentially cloned child loops and
1486   // clone them into whatever outer loop we placed their header into.
1487   for (Loop *ChildL : OrigL) {
1488     auto *ClonedChildHeader =
1489         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1490     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1491       continue;
1492 
1493 #ifndef NDEBUG
1494     for (auto *ChildLoopBB : ChildL->blocks())
1495       assert(VMap.count(ChildLoopBB) &&
1496              "Cloned a child loop header but not all of that loops blocks!");
1497 #endif
1498 
1499     NonChildClonedLoops.push_back(cloneLoopNest(
1500         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1501   }
1502 }
1503 
1504 static void
1505 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1506                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1507                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1508   // Find all the dead clones, and remove them from their successors.
1509   SmallVector<BasicBlock *, 16> DeadBlocks;
1510   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1511     for (auto &VMap : VMaps)
1512       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1513         if (!DT.isReachableFromEntry(ClonedBB)) {
1514           for (BasicBlock *SuccBB : successors(ClonedBB))
1515             SuccBB->removePredecessor(ClonedBB);
1516           DeadBlocks.push_back(ClonedBB);
1517         }
1518 
1519   // Remove all MemorySSA in the dead blocks
1520   if (MSSAU) {
1521     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1522                                                  DeadBlocks.end());
1523     MSSAU->removeBlocks(DeadBlockSet);
1524   }
1525 
1526   // Drop any remaining references to break cycles.
1527   for (BasicBlock *BB : DeadBlocks)
1528     BB->dropAllReferences();
1529   // Erase them from the IR.
1530   for (BasicBlock *BB : DeadBlocks)
1531     BB->eraseFromParent();
1532 }
1533 
1534 static void deleteDeadBlocksFromLoop(Loop &L,
1535                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1536                                      DominatorTree &DT, LoopInfo &LI,
1537                                      MemorySSAUpdater *MSSAU) {
1538   // Find all the dead blocks tied to this loop, and remove them from their
1539   // successors.
1540   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1541 
1542   // Start with loop/exit blocks and get a transitive closure of reachable dead
1543   // blocks.
1544   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1545                                                 ExitBlocks.end());
1546   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1547   while (!DeathCandidates.empty()) {
1548     auto *BB = DeathCandidates.pop_back_val();
1549     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1550       for (BasicBlock *SuccBB : successors(BB)) {
1551         SuccBB->removePredecessor(BB);
1552         DeathCandidates.push_back(SuccBB);
1553       }
1554       DeadBlockSet.insert(BB);
1555     }
1556   }
1557 
1558   // Remove all MemorySSA in the dead blocks
1559   if (MSSAU)
1560     MSSAU->removeBlocks(DeadBlockSet);
1561 
1562   // Filter out the dead blocks from the exit blocks list so that it can be
1563   // used in the caller.
1564   llvm::erase_if(ExitBlocks,
1565                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1566 
1567   // Walk from this loop up through its parents removing all of the dead blocks.
1568   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1569     for (auto *BB : DeadBlockSet)
1570       ParentL->getBlocksSet().erase(BB);
1571     llvm::erase_if(ParentL->getBlocksVector(),
1572                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1573   }
1574 
1575   // Now delete the dead child loops. This raw delete will clear them
1576   // recursively.
1577   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1578     if (!DeadBlockSet.count(ChildL->getHeader()))
1579       return false;
1580 
1581     assert(llvm::all_of(ChildL->blocks(),
1582                         [&](BasicBlock *ChildBB) {
1583                           return DeadBlockSet.count(ChildBB);
1584                         }) &&
1585            "If the child loop header is dead all blocks in the child loop must "
1586            "be dead as well!");
1587     LI.destroy(ChildL);
1588     return true;
1589   });
1590 
1591   // Remove the loop mappings for the dead blocks and drop all the references
1592   // from these blocks to others to handle cyclic references as we start
1593   // deleting the blocks themselves.
1594   for (auto *BB : DeadBlockSet) {
1595     // Check that the dominator tree has already been updated.
1596     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1597     LI.changeLoopFor(BB, nullptr);
1598     // Drop all uses of the instructions to make sure we won't have dangling
1599     // uses in other blocks.
1600     for (auto &I : *BB)
1601       if (!I.use_empty())
1602         I.replaceAllUsesWith(UndefValue::get(I.getType()));
1603     BB->dropAllReferences();
1604   }
1605 
1606   // Actually delete the blocks now that they've been fully unhooked from the
1607   // IR.
1608   for (auto *BB : DeadBlockSet)
1609     BB->eraseFromParent();
1610 }
1611 
1612 /// Recompute the set of blocks in a loop after unswitching.
1613 ///
1614 /// This walks from the original headers predecessors to rebuild the loop. We
1615 /// take advantage of the fact that new blocks can't have been added, and so we
1616 /// filter by the original loop's blocks. This also handles potentially
1617 /// unreachable code that we don't want to explore but might be found examining
1618 /// the predecessors of the header.
1619 ///
1620 /// If the original loop is no longer a loop, this will return an empty set. If
1621 /// it remains a loop, all the blocks within it will be added to the set
1622 /// (including those blocks in inner loops).
1623 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1624                                                                  LoopInfo &LI) {
1625   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1626 
1627   auto *PH = L.getLoopPreheader();
1628   auto *Header = L.getHeader();
1629 
1630   // A worklist to use while walking backwards from the header.
1631   SmallVector<BasicBlock *, 16> Worklist;
1632 
1633   // First walk the predecessors of the header to find the backedges. This will
1634   // form the basis of our walk.
1635   for (auto *Pred : predecessors(Header)) {
1636     // Skip the preheader.
1637     if (Pred == PH)
1638       continue;
1639 
1640     // Because the loop was in simplified form, the only non-loop predecessor
1641     // is the preheader.
1642     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1643                                "than the preheader that is not part of the "
1644                                "loop!");
1645 
1646     // Insert this block into the loop set and on the first visit and, if it
1647     // isn't the header we're currently walking, put it into the worklist to
1648     // recurse through.
1649     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1650       Worklist.push_back(Pred);
1651   }
1652 
1653   // If no backedges were found, we're done.
1654   if (LoopBlockSet.empty())
1655     return LoopBlockSet;
1656 
1657   // We found backedges, recurse through them to identify the loop blocks.
1658   while (!Worklist.empty()) {
1659     BasicBlock *BB = Worklist.pop_back_val();
1660     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1661 
1662     // No need to walk past the header.
1663     if (BB == Header)
1664       continue;
1665 
1666     // Because we know the inner loop structure remains valid we can use the
1667     // loop structure to jump immediately across the entire nested loop.
1668     // Further, because it is in loop simplified form, we can directly jump
1669     // to its preheader afterward.
1670     if (Loop *InnerL = LI.getLoopFor(BB))
1671       if (InnerL != &L) {
1672         assert(L.contains(InnerL) &&
1673                "Should not reach a loop *outside* this loop!");
1674         // The preheader is the only possible predecessor of the loop so
1675         // insert it into the set and check whether it was already handled.
1676         auto *InnerPH = InnerL->getLoopPreheader();
1677         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1678                                       "but not contain the inner loop "
1679                                       "preheader!");
1680         if (!LoopBlockSet.insert(InnerPH).second)
1681           // The only way to reach the preheader is through the loop body
1682           // itself so if it has been visited the loop is already handled.
1683           continue;
1684 
1685         // Insert all of the blocks (other than those already present) into
1686         // the loop set. We expect at least the block that led us to find the
1687         // inner loop to be in the block set, but we may also have other loop
1688         // blocks if they were already enqueued as predecessors of some other
1689         // outer loop block.
1690         for (auto *InnerBB : InnerL->blocks()) {
1691           if (InnerBB == BB) {
1692             assert(LoopBlockSet.count(InnerBB) &&
1693                    "Block should already be in the set!");
1694             continue;
1695           }
1696 
1697           LoopBlockSet.insert(InnerBB);
1698         }
1699 
1700         // Add the preheader to the worklist so we will continue past the
1701         // loop body.
1702         Worklist.push_back(InnerPH);
1703         continue;
1704       }
1705 
1706     // Insert any predecessors that were in the original loop into the new
1707     // set, and if the insert is successful, add them to the worklist.
1708     for (auto *Pred : predecessors(BB))
1709       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1710         Worklist.push_back(Pred);
1711   }
1712 
1713   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1714 
1715   // We've found all the blocks participating in the loop, return our completed
1716   // set.
1717   return LoopBlockSet;
1718 }
1719 
1720 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1721 ///
1722 /// The removal may have removed some child loops entirely but cannot have
1723 /// disturbed any remaining child loops. However, they may need to be hoisted
1724 /// to the parent loop (or to be top-level loops). The original loop may be
1725 /// completely removed.
1726 ///
1727 /// The sibling loops resulting from this update are returned. If the original
1728 /// loop remains a valid loop, it will be the first entry in this list with all
1729 /// of the newly sibling loops following it.
1730 ///
1731 /// Returns true if the loop remains a loop after unswitching, and false if it
1732 /// is no longer a loop after unswitching (and should not continue to be
1733 /// referenced).
1734 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1735                                      LoopInfo &LI,
1736                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1737   auto *PH = L.getLoopPreheader();
1738 
1739   // Compute the actual parent loop from the exit blocks. Because we may have
1740   // pruned some exits the loop may be different from the original parent.
1741   Loop *ParentL = nullptr;
1742   SmallVector<Loop *, 4> ExitLoops;
1743   SmallVector<BasicBlock *, 4> ExitsInLoops;
1744   ExitsInLoops.reserve(ExitBlocks.size());
1745   for (auto *ExitBB : ExitBlocks)
1746     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1747       ExitLoops.push_back(ExitL);
1748       ExitsInLoops.push_back(ExitBB);
1749       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1750         ParentL = ExitL;
1751     }
1752 
1753   // Recompute the blocks participating in this loop. This may be empty if it
1754   // is no longer a loop.
1755   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1756 
1757   // If we still have a loop, we need to re-set the loop's parent as the exit
1758   // block set changing may have moved it within the loop nest. Note that this
1759   // can only happen when this loop has a parent as it can only hoist the loop
1760   // *up* the nest.
1761   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1762     // Remove this loop's (original) blocks from all of the intervening loops.
1763     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1764          IL = IL->getParentLoop()) {
1765       IL->getBlocksSet().erase(PH);
1766       for (auto *BB : L.blocks())
1767         IL->getBlocksSet().erase(BB);
1768       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1769         return BB == PH || L.contains(BB);
1770       });
1771     }
1772 
1773     LI.changeLoopFor(PH, ParentL);
1774     L.getParentLoop()->removeChildLoop(&L);
1775     if (ParentL)
1776       ParentL->addChildLoop(&L);
1777     else
1778       LI.addTopLevelLoop(&L);
1779   }
1780 
1781   // Now we update all the blocks which are no longer within the loop.
1782   auto &Blocks = L.getBlocksVector();
1783   auto BlocksSplitI =
1784       LoopBlockSet.empty()
1785           ? Blocks.begin()
1786           : std::stable_partition(
1787                 Blocks.begin(), Blocks.end(),
1788                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1789 
1790   // Before we erase the list of unlooped blocks, build a set of them.
1791   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1792   if (LoopBlockSet.empty())
1793     UnloopedBlocks.insert(PH);
1794 
1795   // Now erase these blocks from the loop.
1796   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1797     L.getBlocksSet().erase(BB);
1798   Blocks.erase(BlocksSplitI, Blocks.end());
1799 
1800   // Sort the exits in ascending loop depth, we'll work backwards across these
1801   // to process them inside out.
1802   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1803     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1804   });
1805 
1806   // We'll build up a set for each exit loop.
1807   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1808   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1809 
1810   auto RemoveUnloopedBlocksFromLoop =
1811       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1812         for (auto *BB : UnloopedBlocks)
1813           L.getBlocksSet().erase(BB);
1814         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1815           return UnloopedBlocks.count(BB);
1816         });
1817       };
1818 
1819   SmallVector<BasicBlock *, 16> Worklist;
1820   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1821     assert(Worklist.empty() && "Didn't clear worklist!");
1822     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1823 
1824     // Grab the next exit block, in decreasing loop depth order.
1825     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1826     Loop &ExitL = *LI.getLoopFor(ExitBB);
1827     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1828 
1829     // Erase all of the unlooped blocks from the loops between the previous
1830     // exit loop and this exit loop. This works because the ExitInLoops list is
1831     // sorted in increasing order of loop depth and thus we visit loops in
1832     // decreasing order of loop depth.
1833     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1834       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1835 
1836     // Walk the CFG back until we hit the cloned PH adding everything reachable
1837     // and in the unlooped set to this exit block's loop.
1838     Worklist.push_back(ExitBB);
1839     do {
1840       BasicBlock *BB = Worklist.pop_back_val();
1841       // We can stop recursing at the cloned preheader (if we get there).
1842       if (BB == PH)
1843         continue;
1844 
1845       for (BasicBlock *PredBB : predecessors(BB)) {
1846         // If this pred has already been moved to our set or is part of some
1847         // (inner) loop, no update needed.
1848         if (!UnloopedBlocks.erase(PredBB)) {
1849           assert((NewExitLoopBlocks.count(PredBB) ||
1850                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1851                  "Predecessor not in a nested loop (or already visited)!");
1852           continue;
1853         }
1854 
1855         // We just insert into the loop set here. We'll add these blocks to the
1856         // exit loop after we build up the set in a deterministic order rather
1857         // than the predecessor-influenced visit order.
1858         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1859         (void)Inserted;
1860         assert(Inserted && "Should only visit an unlooped block once!");
1861 
1862         // And recurse through to its predecessors.
1863         Worklist.push_back(PredBB);
1864       }
1865     } while (!Worklist.empty());
1866 
1867     // If blocks in this exit loop were directly part of the original loop (as
1868     // opposed to a child loop) update the map to point to this exit loop. This
1869     // just updates a map and so the fact that the order is unstable is fine.
1870     for (auto *BB : NewExitLoopBlocks)
1871       if (Loop *BBL = LI.getLoopFor(BB))
1872         if (BBL == &L || !L.contains(BBL))
1873           LI.changeLoopFor(BB, &ExitL);
1874 
1875     // We will remove the remaining unlooped blocks from this loop in the next
1876     // iteration or below.
1877     NewExitLoopBlocks.clear();
1878   }
1879 
1880   // Any remaining unlooped blocks are no longer part of any loop unless they
1881   // are part of some child loop.
1882   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1883     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1884   for (auto *BB : UnloopedBlocks)
1885     if (Loop *BBL = LI.getLoopFor(BB))
1886       if (BBL == &L || !L.contains(BBL))
1887         LI.changeLoopFor(BB, nullptr);
1888 
1889   // Sink all the child loops whose headers are no longer in the loop set to
1890   // the parent (or to be top level loops). We reach into the loop and directly
1891   // update its subloop vector to make this batch update efficient.
1892   auto &SubLoops = L.getSubLoopsVector();
1893   auto SubLoopsSplitI =
1894       LoopBlockSet.empty()
1895           ? SubLoops.begin()
1896           : std::stable_partition(
1897                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1898                   return LoopBlockSet.count(SubL->getHeader());
1899                 });
1900   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1901     HoistedLoops.push_back(HoistedL);
1902     HoistedL->setParentLoop(nullptr);
1903 
1904     // To compute the new parent of this hoisted loop we look at where we
1905     // placed the preheader above. We can't lookup the header itself because we
1906     // retained the mapping from the header to the hoisted loop. But the
1907     // preheader and header should have the exact same new parent computed
1908     // based on the set of exit blocks from the original loop as the preheader
1909     // is a predecessor of the header and so reached in the reverse walk. And
1910     // because the loops were all in simplified form the preheader of the
1911     // hoisted loop can't be part of some *other* loop.
1912     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1913       NewParentL->addChildLoop(HoistedL);
1914     else
1915       LI.addTopLevelLoop(HoistedL);
1916   }
1917   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1918 
1919   // Actually delete the loop if nothing remained within it.
1920   if (Blocks.empty()) {
1921     assert(SubLoops.empty() &&
1922            "Failed to remove all subloops from the original loop!");
1923     if (Loop *ParentL = L.getParentLoop())
1924       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1925     else
1926       LI.removeLoop(llvm::find(LI, &L));
1927     LI.destroy(&L);
1928     return false;
1929   }
1930 
1931   return true;
1932 }
1933 
1934 /// Helper to visit a dominator subtree, invoking a callable on each node.
1935 ///
1936 /// Returning false at any point will stop walking past that node of the tree.
1937 template <typename CallableT>
1938 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1939   SmallVector<DomTreeNode *, 4> DomWorklist;
1940   DomWorklist.push_back(DT[BB]);
1941 #ifndef NDEBUG
1942   SmallPtrSet<DomTreeNode *, 4> Visited;
1943   Visited.insert(DT[BB]);
1944 #endif
1945   do {
1946     DomTreeNode *N = DomWorklist.pop_back_val();
1947 
1948     // Visit this node.
1949     if (!Callable(N->getBlock()))
1950       continue;
1951 
1952     // Accumulate the child nodes.
1953     for (DomTreeNode *ChildN : *N) {
1954       assert(Visited.insert(ChildN).second &&
1955              "Cannot visit a node twice when walking a tree!");
1956       DomWorklist.push_back(ChildN);
1957     }
1958   } while (!DomWorklist.empty());
1959 }
1960 
1961 static void unswitchNontrivialInvariants(
1962     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1963     SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1964     AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1965     ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
1966   auto *ParentBB = TI.getParent();
1967   BranchInst *BI = dyn_cast<BranchInst>(&TI);
1968   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1969 
1970   // We can only unswitch switches, conditional branches with an invariant
1971   // condition, or combining invariant conditions with an instruction.
1972   assert((SI || (BI && BI->isConditional())) &&
1973          "Can only unswitch switches and conditional branch!");
1974   bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1975   if (FullUnswitch)
1976     assert(Invariants.size() == 1 &&
1977            "Cannot have other invariants with full unswitching!");
1978   else
1979     assert(isa<Instruction>(BI->getCondition()) &&
1980            "Partial unswitching requires an instruction as the condition!");
1981 
1982   if (MSSAU && VerifyMemorySSA)
1983     MSSAU->getMemorySSA()->verifyMemorySSA();
1984 
1985   // Constant and BBs tracking the cloned and continuing successor. When we are
1986   // unswitching the entire condition, this can just be trivially chosen to
1987   // unswitch towards `true`. However, when we are unswitching a set of
1988   // invariants combined with `and` or `or`, the combining operation determines
1989   // the best direction to unswitch: we want to unswitch the direction that will
1990   // collapse the branch.
1991   bool Direction = true;
1992   int ClonedSucc = 0;
1993   if (!FullUnswitch) {
1994     if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1995       assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1996                  Instruction::And &&
1997              "Only `or` and `and` instructions can combine invariants being "
1998              "unswitched.");
1999       Direction = false;
2000       ClonedSucc = 1;
2001     }
2002   }
2003 
2004   BasicBlock *RetainedSuccBB =
2005       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2006   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2007   if (BI)
2008     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2009   else
2010     for (auto Case : SI->cases())
2011       if (Case.getCaseSuccessor() != RetainedSuccBB)
2012         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2013 
2014   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2015          "Should not unswitch the same successor we are retaining!");
2016 
2017   // The branch should be in this exact loop. Any inner loop's invariant branch
2018   // should be handled by unswitching that inner loop. The caller of this
2019   // routine should filter out any candidates that remain (but were skipped for
2020   // whatever reason).
2021   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2022 
2023   // Compute the parent loop now before we start hacking on things.
2024   Loop *ParentL = L.getParentLoop();
2025   // Get blocks in RPO order for MSSA update, before changing the CFG.
2026   LoopBlocksRPO LBRPO(&L);
2027   if (MSSAU)
2028     LBRPO.perform(&LI);
2029 
2030   // Compute the outer-most loop containing one of our exit blocks. This is the
2031   // furthest up our loopnest which can be mutated, which we will use below to
2032   // update things.
2033   Loop *OuterExitL = &L;
2034   for (auto *ExitBB : ExitBlocks) {
2035     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2036     if (!NewOuterExitL) {
2037       // We exited the entire nest with this block, so we're done.
2038       OuterExitL = nullptr;
2039       break;
2040     }
2041     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2042       OuterExitL = NewOuterExitL;
2043   }
2044 
2045   // At this point, we're definitely going to unswitch something so invalidate
2046   // any cached information in ScalarEvolution for the outer most loop
2047   // containing an exit block and all nested loops.
2048   if (SE) {
2049     if (OuterExitL)
2050       SE->forgetLoop(OuterExitL);
2051     else
2052       SE->forgetTopmostLoop(&L);
2053   }
2054 
2055   // If the edge from this terminator to a successor dominates that successor,
2056   // store a map from each block in its dominator subtree to it. This lets us
2057   // tell when cloning for a particular successor if a block is dominated by
2058   // some *other* successor with a single data structure. We use this to
2059   // significantly reduce cloning.
2060   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2061   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2062            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2063     if (SuccBB->getUniquePredecessor() ||
2064         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2065           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2066         }))
2067       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2068         DominatingSucc[BB] = SuccBB;
2069         return true;
2070       });
2071 
2072   // Split the preheader, so that we know that there is a safe place to insert
2073   // the conditional branch. We will change the preheader to have a conditional
2074   // branch on LoopCond. The original preheader will become the split point
2075   // between the unswitched versions, and we will have a new preheader for the
2076   // original loop.
2077   BasicBlock *SplitBB = L.getLoopPreheader();
2078   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2079 
2080   // Keep track of the dominator tree updates needed.
2081   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2082 
2083   // Clone the loop for each unswitched successor.
2084   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2085   VMaps.reserve(UnswitchedSuccBBs.size());
2086   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2087   for (auto *SuccBB : UnswitchedSuccBBs) {
2088     VMaps.emplace_back(new ValueToValueMapTy());
2089     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2090         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2091         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2092   }
2093 
2094   // Drop metadata if we may break its semantics by moving this instr into the
2095   // split block.
2096   if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2097     if (DropNonTrivialImplicitNullChecks)
2098       // Do not spend time trying to understand if we can keep it, just drop it
2099       // to save compile time.
2100       TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2101     else {
2102       // It is only legal to preserve make.implicit metadata if we are
2103       // guaranteed no reach implicit null check after following this branch.
2104       ICFLoopSafetyInfo SafetyInfo;
2105       SafetyInfo.computeLoopSafetyInfo(&L);
2106       if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2107         TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2108     }
2109   }
2110 
2111   // The stitching of the branched code back together depends on whether we're
2112   // doing full unswitching or not with the exception that we always want to
2113   // nuke the initial terminator placed in the split block.
2114   SplitBB->getTerminator()->eraseFromParent();
2115   if (FullUnswitch) {
2116     // Splice the terminator from the original loop and rewrite its
2117     // successors.
2118     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2119 
2120     // Keep a clone of the terminator for MSSA updates.
2121     Instruction *NewTI = TI.clone();
2122     ParentBB->getInstList().push_back(NewTI);
2123 
2124     // First wire up the moved terminator to the preheaders.
2125     if (BI) {
2126       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2127       BI->setSuccessor(ClonedSucc, ClonedPH);
2128       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2129       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2130     } else {
2131       assert(SI && "Must either be a branch or switch!");
2132 
2133       // Walk the cases and directly update their successors.
2134       assert(SI->getDefaultDest() == RetainedSuccBB &&
2135              "Not retaining default successor!");
2136       SI->setDefaultDest(LoopPH);
2137       for (auto &Case : SI->cases())
2138         if (Case.getCaseSuccessor() == RetainedSuccBB)
2139           Case.setSuccessor(LoopPH);
2140         else
2141           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2142 
2143       // We need to use the set to populate domtree updates as even when there
2144       // are multiple cases pointing at the same successor we only want to
2145       // remove and insert one edge in the domtree.
2146       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2147         DTUpdates.push_back(
2148             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2149     }
2150 
2151     if (MSSAU) {
2152       DT.applyUpdates(DTUpdates);
2153       DTUpdates.clear();
2154 
2155       // Remove all but one edge to the retained block and all unswitched
2156       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2157       // when we know we only keep a single edge for each case.
2158       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2159       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2160         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2161 
2162       for (auto &VMap : VMaps)
2163         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2164                                    /*IgnoreIncomingWithNoClones=*/true);
2165       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2166 
2167       // Remove all edges to unswitched blocks.
2168       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2169         MSSAU->removeEdge(ParentBB, SuccBB);
2170     }
2171 
2172     // Now unhook the successor relationship as we'll be replacing
2173     // the terminator with a direct branch. This is much simpler for branches
2174     // than switches so we handle those first.
2175     if (BI) {
2176       // Remove the parent as a predecessor of the unswitched successor.
2177       assert(UnswitchedSuccBBs.size() == 1 &&
2178              "Only one possible unswitched block for a branch!");
2179       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2180       UnswitchedSuccBB->removePredecessor(ParentBB,
2181                                           /*KeepOneInputPHIs*/ true);
2182       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2183     } else {
2184       // Note that we actually want to remove the parent block as a predecessor
2185       // of *every* case successor. The case successor is either unswitched,
2186       // completely eliminating an edge from the parent to that successor, or it
2187       // is a duplicate edge to the retained successor as the retained successor
2188       // is always the default successor and as we'll replace this with a direct
2189       // branch we no longer need the duplicate entries in the PHI nodes.
2190       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2191       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2192              "Not retaining default successor!");
2193       for (auto &Case : NewSI->cases())
2194         Case.getCaseSuccessor()->removePredecessor(
2195             ParentBB,
2196             /*KeepOneInputPHIs*/ true);
2197 
2198       // We need to use the set to populate domtree updates as even when there
2199       // are multiple cases pointing at the same successor we only want to
2200       // remove and insert one edge in the domtree.
2201       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2202         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2203     }
2204 
2205     // After MSSAU update, remove the cloned terminator instruction NewTI.
2206     ParentBB->getTerminator()->eraseFromParent();
2207 
2208     // Create a new unconditional branch to the continuing block (as opposed to
2209     // the one cloned).
2210     BranchInst::Create(RetainedSuccBB, ParentBB);
2211   } else {
2212     assert(BI && "Only branches have partial unswitching.");
2213     assert(UnswitchedSuccBBs.size() == 1 &&
2214            "Only one possible unswitched block for a branch!");
2215     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2216     // When doing a partial unswitch, we have to do a bit more work to build up
2217     // the branch in the split block.
2218     buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2219                                           *ClonedPH, *LoopPH);
2220     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2221 
2222     if (MSSAU) {
2223       DT.applyUpdates(DTUpdates);
2224       DTUpdates.clear();
2225 
2226       // Perform MSSA cloning updates.
2227       for (auto &VMap : VMaps)
2228         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2229                                    /*IgnoreIncomingWithNoClones=*/true);
2230       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2231     }
2232   }
2233 
2234   // Apply the updates accumulated above to get an up-to-date dominator tree.
2235   DT.applyUpdates(DTUpdates);
2236 
2237   // Now that we have an accurate dominator tree, first delete the dead cloned
2238   // blocks so that we can accurately build any cloned loops. It is important to
2239   // not delete the blocks from the original loop yet because we still want to
2240   // reference the original loop to understand the cloned loop's structure.
2241   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2242 
2243   // Build the cloned loop structure itself. This may be substantially
2244   // different from the original structure due to the simplified CFG. This also
2245   // handles inserting all the cloned blocks into the correct loops.
2246   SmallVector<Loop *, 4> NonChildClonedLoops;
2247   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2248     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2249 
2250   // Now that our cloned loops have been built, we can update the original loop.
2251   // First we delete the dead blocks from it and then we rebuild the loop
2252   // structure taking these deletions into account.
2253   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2254 
2255   if (MSSAU && VerifyMemorySSA)
2256     MSSAU->getMemorySSA()->verifyMemorySSA();
2257 
2258   SmallVector<Loop *, 4> HoistedLoops;
2259   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2260 
2261   if (MSSAU && VerifyMemorySSA)
2262     MSSAU->getMemorySSA()->verifyMemorySSA();
2263 
2264   // This transformation has a high risk of corrupting the dominator tree, and
2265   // the below steps to rebuild loop structures will result in hard to debug
2266   // errors in that case so verify that the dominator tree is sane first.
2267   // FIXME: Remove this when the bugs stop showing up and rely on existing
2268   // verification steps.
2269   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2270 
2271   if (BI) {
2272     // If we unswitched a branch which collapses the condition to a known
2273     // constant we want to replace all the uses of the invariants within both
2274     // the original and cloned blocks. We do this here so that we can use the
2275     // now updated dominator tree to identify which side the users are on.
2276     assert(UnswitchedSuccBBs.size() == 1 &&
2277            "Only one possible unswitched block for a branch!");
2278     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2279 
2280     // When considering multiple partially-unswitched invariants
2281     // we cant just go replace them with constants in both branches.
2282     //
2283     // For 'AND' we infer that true branch ("continue") means true
2284     // for each invariant operand.
2285     // For 'OR' we can infer that false branch ("continue") means false
2286     // for each invariant operand.
2287     // So it happens that for multiple-partial case we dont replace
2288     // in the unswitched branch.
2289     bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
2290 
2291     ConstantInt *UnswitchedReplacement =
2292         Direction ? ConstantInt::getTrue(BI->getContext())
2293                   : ConstantInt::getFalse(BI->getContext());
2294     ConstantInt *ContinueReplacement =
2295         Direction ? ConstantInt::getFalse(BI->getContext())
2296                   : ConstantInt::getTrue(BI->getContext());
2297     for (Value *Invariant : Invariants)
2298       for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2299            UI != UE;) {
2300         // Grab the use and walk past it so we can clobber it in the use list.
2301         Use *U = &*UI++;
2302         Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2303         if (!UserI)
2304           continue;
2305 
2306         // Replace it with the 'continue' side if in the main loop body, and the
2307         // unswitched if in the cloned blocks.
2308         if (DT.dominates(LoopPH, UserI->getParent()))
2309           U->set(ContinueReplacement);
2310         else if (ReplaceUnswitched &&
2311                  DT.dominates(ClonedPH, UserI->getParent()))
2312           U->set(UnswitchedReplacement);
2313       }
2314   }
2315 
2316   // We can change which blocks are exit blocks of all the cloned sibling
2317   // loops, the current loop, and any parent loops which shared exit blocks
2318   // with the current loop. As a consequence, we need to re-form LCSSA for
2319   // them. But we shouldn't need to re-form LCSSA for any child loops.
2320   // FIXME: This could be made more efficient by tracking which exit blocks are
2321   // new, and focusing on them, but that isn't likely to be necessary.
2322   //
2323   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2324   // loop nest and update every loop that could have had its exits changed. We
2325   // also need to cover any intervening loops. We add all of these loops to
2326   // a list and sort them by loop depth to achieve this without updating
2327   // unnecessary loops.
2328   auto UpdateLoop = [&](Loop &UpdateL) {
2329 #ifndef NDEBUG
2330     UpdateL.verifyLoop();
2331     for (Loop *ChildL : UpdateL) {
2332       ChildL->verifyLoop();
2333       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2334              "Perturbed a child loop's LCSSA form!");
2335     }
2336 #endif
2337     // First build LCSSA for this loop so that we can preserve it when
2338     // forming dedicated exits. We don't want to perturb some other loop's
2339     // LCSSA while doing that CFG edit.
2340     formLCSSA(UpdateL, DT, &LI, SE);
2341 
2342     // For loops reached by this loop's original exit blocks we may
2343     // introduced new, non-dedicated exits. At least try to re-form dedicated
2344     // exits for these loops. This may fail if they couldn't have dedicated
2345     // exits to start with.
2346     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2347   };
2348 
2349   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2350   // and we can do it in any order as they don't nest relative to each other.
2351   //
2352   // Also check if any of the loops we have updated have become top-level loops
2353   // as that will necessitate widening the outer loop scope.
2354   for (Loop *UpdatedL :
2355        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2356     UpdateLoop(*UpdatedL);
2357     if (UpdatedL->isOutermost())
2358       OuterExitL = nullptr;
2359   }
2360   if (IsStillLoop) {
2361     UpdateLoop(L);
2362     if (L.isOutermost())
2363       OuterExitL = nullptr;
2364   }
2365 
2366   // If the original loop had exit blocks, walk up through the outer most loop
2367   // of those exit blocks to update LCSSA and form updated dedicated exits.
2368   if (OuterExitL != &L)
2369     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2370          OuterL = OuterL->getParentLoop())
2371       UpdateLoop(*OuterL);
2372 
2373 #ifndef NDEBUG
2374   // Verify the entire loop structure to catch any incorrect updates before we
2375   // progress in the pass pipeline.
2376   LI.verify(DT);
2377 #endif
2378 
2379   // Now that we've unswitched something, make callbacks to report the changes.
2380   // For that we need to merge together the updated loops and the cloned loops
2381   // and check whether the original loop survived.
2382   SmallVector<Loop *, 4> SibLoops;
2383   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2384     if (UpdatedL->getParentLoop() == ParentL)
2385       SibLoops.push_back(UpdatedL);
2386   UnswitchCB(IsStillLoop, SibLoops);
2387 
2388   if (MSSAU && VerifyMemorySSA)
2389     MSSAU->getMemorySSA()->verifyMemorySSA();
2390 
2391   if (BI)
2392     ++NumBranches;
2393   else
2394     ++NumSwitches;
2395 }
2396 
2397 /// Recursively compute the cost of a dominator subtree based on the per-block
2398 /// cost map provided.
2399 ///
2400 /// The recursive computation is memozied into the provided DT-indexed cost map
2401 /// to allow querying it for most nodes in the domtree without it becoming
2402 /// quadratic.
2403 static int
2404 computeDomSubtreeCost(DomTreeNode &N,
2405                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2406                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2407   // Don't accumulate cost (or recurse through) blocks not in our block cost
2408   // map and thus not part of the duplication cost being considered.
2409   auto BBCostIt = BBCostMap.find(N.getBlock());
2410   if (BBCostIt == BBCostMap.end())
2411     return 0;
2412 
2413   // Lookup this node to see if we already computed its cost.
2414   auto DTCostIt = DTCostMap.find(&N);
2415   if (DTCostIt != DTCostMap.end())
2416     return DTCostIt->second;
2417 
2418   // If not, we have to compute it. We can't use insert above and update
2419   // because computing the cost may insert more things into the map.
2420   int Cost = std::accumulate(
2421       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2422         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2423       });
2424   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2425   (void)Inserted;
2426   assert(Inserted && "Should not insert a node while visiting children!");
2427   return Cost;
2428 }
2429 
2430 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2431 /// making the following replacement:
2432 ///
2433 ///   --code before guard--
2434 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2435 ///   --code after guard--
2436 ///
2437 /// into
2438 ///
2439 ///   --code before guard--
2440 ///   br i1 %cond, label %guarded, label %deopt
2441 ///
2442 /// guarded:
2443 ///   --code after guard--
2444 ///
2445 /// deopt:
2446 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2447 ///   unreachable
2448 ///
2449 /// It also makes all relevant DT and LI updates, so that all structures are in
2450 /// valid state after this transform.
2451 static BranchInst *
2452 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2453                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2454                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2455   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2456   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2457   BasicBlock *CheckBB = GI->getParent();
2458 
2459   if (MSSAU && VerifyMemorySSA)
2460      MSSAU->getMemorySSA()->verifyMemorySSA();
2461 
2462   // Remove all CheckBB's successors from DomTree. A block can be seen among
2463   // successors more than once, but for DomTree it should be added only once.
2464   SmallPtrSet<BasicBlock *, 4> Successors;
2465   for (auto *Succ : successors(CheckBB))
2466     if (Successors.insert(Succ).second)
2467       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2468 
2469   Instruction *DeoptBlockTerm =
2470       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2471   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2472   // SplitBlockAndInsertIfThen inserts control flow that branches to
2473   // DeoptBlockTerm if the condition is true.  We want the opposite.
2474   CheckBI->swapSuccessors();
2475 
2476   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2477   GuardedBlock->setName("guarded");
2478   CheckBI->getSuccessor(1)->setName("deopt");
2479   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2480 
2481   // We now have a new exit block.
2482   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2483 
2484   if (MSSAU)
2485     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2486 
2487   GI->moveBefore(DeoptBlockTerm);
2488   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2489 
2490   // Add new successors of CheckBB into DomTree.
2491   for (auto *Succ : successors(CheckBB))
2492     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2493 
2494   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2495   // successors.
2496   for (auto *Succ : Successors)
2497     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2498 
2499   // Make proper changes to DT.
2500   DT.applyUpdates(DTUpdates);
2501   // Inform LI of a new loop block.
2502   L.addBasicBlockToLoop(GuardedBlock, LI);
2503 
2504   if (MSSAU) {
2505     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2506     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2507     if (VerifyMemorySSA)
2508       MSSAU->getMemorySSA()->verifyMemorySSA();
2509   }
2510 
2511   ++NumGuards;
2512   return CheckBI;
2513 }
2514 
2515 /// Cost multiplier is a way to limit potentially exponential behavior
2516 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2517 /// candidates available. Also accounting for the number of "sibling" loops with
2518 /// the idea to account for previous unswitches that already happened on this
2519 /// cluster of loops. There was an attempt to keep this formula simple,
2520 /// just enough to limit the worst case behavior. Even if it is not that simple
2521 /// now it is still not an attempt to provide a detailed heuristic size
2522 /// prediction.
2523 ///
2524 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2525 /// unswitch candidates, making adequate predictions instead of wild guesses.
2526 /// That requires knowing not just the number of "remaining" candidates but
2527 /// also costs of unswitching for each of these candidates.
2528 static int CalculateUnswitchCostMultiplier(
2529     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2530     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2531         UnswitchCandidates) {
2532 
2533   // Guards and other exiting conditions do not contribute to exponential
2534   // explosion as soon as they dominate the latch (otherwise there might be
2535   // another path to the latch remaining that does not allow to eliminate the
2536   // loop copy on unswitch).
2537   BasicBlock *Latch = L.getLoopLatch();
2538   BasicBlock *CondBlock = TI.getParent();
2539   if (DT.dominates(CondBlock, Latch) &&
2540       (isGuard(&TI) ||
2541        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2542          return L.contains(SuccBB);
2543        }) <= 1)) {
2544     NumCostMultiplierSkipped++;
2545     return 1;
2546   }
2547 
2548   auto *ParentL = L.getParentLoop();
2549   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2550                                : std::distance(LI.begin(), LI.end()));
2551   // Count amount of clones that all the candidates might cause during
2552   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2553   int UnswitchedClones = 0;
2554   for (auto Candidate : UnswitchCandidates) {
2555     Instruction *CI = Candidate.first;
2556     BasicBlock *CondBlock = CI->getParent();
2557     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2558     if (isGuard(CI)) {
2559       if (!SkipExitingSuccessors)
2560         UnswitchedClones++;
2561       continue;
2562     }
2563     int NonExitingSuccessors = llvm::count_if(
2564         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2565           return !SkipExitingSuccessors || L.contains(SuccBB);
2566         });
2567     UnswitchedClones += Log2_32(NonExitingSuccessors);
2568   }
2569 
2570   // Ignore up to the "unscaled candidates" number of unswitch candidates
2571   // when calculating the power-of-two scaling of the cost. The main idea
2572   // with this control is to allow a small number of unswitches to happen
2573   // and rely more on siblings multiplier (see below) when the number
2574   // of candidates is small.
2575   unsigned ClonesPower =
2576       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2577 
2578   // Allowing top-level loops to spread a bit more than nested ones.
2579   int SiblingsMultiplier =
2580       std::max((ParentL ? SiblingsCount
2581                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2582                1);
2583   // Compute the cost multiplier in a way that won't overflow by saturating
2584   // at an upper bound.
2585   int CostMultiplier;
2586   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2587       SiblingsMultiplier > UnswitchThreshold)
2588     CostMultiplier = UnswitchThreshold;
2589   else
2590     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2591                               (int)UnswitchThreshold);
2592 
2593   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2594                     << " (siblings " << SiblingsMultiplier << " * clones "
2595                     << (1 << ClonesPower) << ")"
2596                     << " for unswitch candidate: " << TI << "\n");
2597   return CostMultiplier;
2598 }
2599 
2600 static bool
2601 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2602                       AssumptionCache &AC, TargetTransformInfo &TTI,
2603                       function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2604                       ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2605   // Collect all invariant conditions within this loop (as opposed to an inner
2606   // loop which would be handled when visiting that inner loop).
2607   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2608       UnswitchCandidates;
2609 
2610   // Whether or not we should also collect guards in the loop.
2611   bool CollectGuards = false;
2612   if (UnswitchGuards) {
2613     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2614         Intrinsic::getName(Intrinsic::experimental_guard));
2615     if (GuardDecl && !GuardDecl->use_empty())
2616       CollectGuards = true;
2617   }
2618 
2619   for (auto *BB : L.blocks()) {
2620     if (LI.getLoopFor(BB) != &L)
2621       continue;
2622 
2623     if (CollectGuards)
2624       for (auto &I : *BB)
2625         if (isGuard(&I)) {
2626           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2627           // TODO: Support AND, OR conditions and partial unswitching.
2628           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2629             UnswitchCandidates.push_back({&I, {Cond}});
2630         }
2631 
2632     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2633       // We can only consider fully loop-invariant switch conditions as we need
2634       // to completely eliminate the switch after unswitching.
2635       if (!isa<Constant>(SI->getCondition()) &&
2636           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2637         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2638       continue;
2639     }
2640 
2641     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2642     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2643         BI->getSuccessor(0) == BI->getSuccessor(1))
2644       continue;
2645 
2646     if (L.isLoopInvariant(BI->getCondition())) {
2647       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2648       continue;
2649     }
2650 
2651     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2652     if (CondI.getOpcode() != Instruction::And &&
2653       CondI.getOpcode() != Instruction::Or)
2654       continue;
2655 
2656     TinyPtrVector<Value *> Invariants =
2657         collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2658     if (Invariants.empty())
2659       continue;
2660 
2661     UnswitchCandidates.push_back({BI, std::move(Invariants)});
2662   }
2663 
2664   // If we didn't find any candidates, we're done.
2665   if (UnswitchCandidates.empty())
2666     return false;
2667 
2668   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2669   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2670   // irreducible control flow into reducible control flow and introduce new
2671   // loops "out of thin air". If we ever discover important use cases for doing
2672   // this, we can add support to loop unswitch, but it is a lot of complexity
2673   // for what seems little or no real world benefit.
2674   LoopBlocksRPO RPOT(&L);
2675   RPOT.perform(&LI);
2676   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2677     return false;
2678 
2679   SmallVector<BasicBlock *, 4> ExitBlocks;
2680   L.getUniqueExitBlocks(ExitBlocks);
2681 
2682   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2683   // don't know how to split those exit blocks.
2684   // FIXME: We should teach SplitBlock to handle this and remove this
2685   // restriction.
2686   for (auto *ExitBB : ExitBlocks)
2687     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2688       dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2689       return false;
2690     }
2691 
2692   LLVM_DEBUG(
2693       dbgs() << "Considering " << UnswitchCandidates.size()
2694              << " non-trivial loop invariant conditions for unswitching.\n");
2695 
2696   // Given that unswitching these terminators will require duplicating parts of
2697   // the loop, so we need to be able to model that cost. Compute the ephemeral
2698   // values and set up a data structure to hold per-BB costs. We cache each
2699   // block's cost so that we don't recompute this when considering different
2700   // subsets of the loop for duplication during unswitching.
2701   SmallPtrSet<const Value *, 4> EphValues;
2702   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2703   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2704 
2705   // Compute the cost of each block, as well as the total loop cost. Also, bail
2706   // out if we see instructions which are incompatible with loop unswitching
2707   // (convergent, noduplicate, or cross-basic-block tokens).
2708   // FIXME: We might be able to safely handle some of these in non-duplicated
2709   // regions.
2710   TargetTransformInfo::TargetCostKind CostKind =
2711       L.getHeader()->getParent()->hasMinSize()
2712       ? TargetTransformInfo::TCK_CodeSize
2713       : TargetTransformInfo::TCK_SizeAndLatency;
2714   int LoopCost = 0;
2715   for (auto *BB : L.blocks()) {
2716     int Cost = 0;
2717     for (auto &I : *BB) {
2718       if (EphValues.count(&I))
2719         continue;
2720 
2721       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2722         return false;
2723       if (auto *CB = dyn_cast<CallBase>(&I))
2724         if (CB->isConvergent() || CB->cannotDuplicate())
2725           return false;
2726 
2727       Cost += TTI.getUserCost(&I, CostKind);
2728     }
2729     assert(Cost >= 0 && "Must not have negative costs!");
2730     LoopCost += Cost;
2731     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2732     BBCostMap[BB] = Cost;
2733   }
2734   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2735 
2736   // Now we find the best candidate by searching for the one with the following
2737   // properties in order:
2738   //
2739   // 1) An unswitching cost below the threshold
2740   // 2) The smallest number of duplicated unswitch candidates (to avoid
2741   //    creating redundant subsequent unswitching)
2742   // 3) The smallest cost after unswitching.
2743   //
2744   // We prioritize reducing fanout of unswitch candidates provided the cost
2745   // remains below the threshold because this has a multiplicative effect.
2746   //
2747   // This requires memoizing each dominator subtree to avoid redundant work.
2748   //
2749   // FIXME: Need to actually do the number of candidates part above.
2750   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2751   // Given a terminator which might be unswitched, computes the non-duplicated
2752   // cost for that terminator.
2753   auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
2754     BasicBlock &BB = *TI.getParent();
2755     SmallPtrSet<BasicBlock *, 4> Visited;
2756 
2757     int Cost = LoopCost;
2758     for (BasicBlock *SuccBB : successors(&BB)) {
2759       // Don't count successors more than once.
2760       if (!Visited.insert(SuccBB).second)
2761         continue;
2762 
2763       // If this is a partial unswitch candidate, then it must be a conditional
2764       // branch with a condition of either `or` or `and`. In that case, one of
2765       // the successors is necessarily duplicated, so don't even try to remove
2766       // its cost.
2767       if (!FullUnswitch) {
2768         auto &BI = cast<BranchInst>(TI);
2769         if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2770             Instruction::And) {
2771           if (SuccBB == BI.getSuccessor(1))
2772             continue;
2773         } else {
2774           assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2775                      Instruction::Or &&
2776                  "Only `and` and `or` conditions can result in a partial "
2777                  "unswitch!");
2778           if (SuccBB == BI.getSuccessor(0))
2779             continue;
2780         }
2781       }
2782 
2783       // This successor's domtree will not need to be duplicated after
2784       // unswitching if the edge to the successor dominates it (and thus the
2785       // entire tree). This essentially means there is no other path into this
2786       // subtree and so it will end up live in only one clone of the loop.
2787       if (SuccBB->getUniquePredecessor() ||
2788           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2789             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2790           })) {
2791         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2792         assert(Cost >= 0 &&
2793                "Non-duplicated cost should never exceed total loop cost!");
2794       }
2795     }
2796 
2797     // Now scale the cost by the number of unique successors minus one. We
2798     // subtract one because there is already at least one copy of the entire
2799     // loop. This is computing the new cost of unswitching a condition.
2800     // Note that guards always have 2 unique successors that are implicit and
2801     // will be materialized if we decide to unswitch it.
2802     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2803     assert(SuccessorsCount > 1 &&
2804            "Cannot unswitch a condition without multiple distinct successors!");
2805     return Cost * (SuccessorsCount - 1);
2806   };
2807   Instruction *BestUnswitchTI = nullptr;
2808   int BestUnswitchCost = 0;
2809   ArrayRef<Value *> BestUnswitchInvariants;
2810   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2811     Instruction &TI = *TerminatorAndInvariants.first;
2812     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2813     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2814     int CandidateCost = ComputeUnswitchedCost(
2815         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2816                                      Invariants[0] == BI->getCondition()));
2817     // Calculate cost multiplier which is a tool to limit potentially
2818     // exponential behavior of loop-unswitch.
2819     if (EnableUnswitchCostMultiplier) {
2820       int CostMultiplier =
2821           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2822       assert(
2823           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2824           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2825       CandidateCost *= CostMultiplier;
2826       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2827                         << " (multiplier: " << CostMultiplier << ")"
2828                         << " for unswitch candidate: " << TI << "\n");
2829     } else {
2830       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2831                         << " for unswitch candidate: " << TI << "\n");
2832     }
2833 
2834     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2835       BestUnswitchTI = &TI;
2836       BestUnswitchCost = CandidateCost;
2837       BestUnswitchInvariants = Invariants;
2838     }
2839   }
2840   assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2841 
2842   if (BestUnswitchCost >= UnswitchThreshold) {
2843     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2844                       << BestUnswitchCost << "\n");
2845     return false;
2846   }
2847 
2848   // If the best candidate is a guard, turn it into a branch.
2849   if (isGuard(BestUnswitchTI))
2850     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2851                                          ExitBlocks, DT, LI, MSSAU);
2852 
2853   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2854                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2855                     << "\n");
2856   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2857                                ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
2858   return true;
2859 }
2860 
2861 /// Unswitch control flow predicated on loop invariant conditions.
2862 ///
2863 /// This first hoists all branches or switches which are trivial (IE, do not
2864 /// require duplicating any part of the loop) out of the loop body. It then
2865 /// looks at other loop invariant control flows and tries to unswitch those as
2866 /// well by cloning the loop if the result is small enough.
2867 ///
2868 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2869 /// updated based on the unswitch.
2870 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
2871 ///
2872 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2873 /// true, we will attempt to do non-trivial unswitching as well as trivial
2874 /// unswitching.
2875 ///
2876 /// The `UnswitchCB` callback provided will be run after unswitching is
2877 /// complete, with the first parameter set to `true` if the provided loop
2878 /// remains a loop, and a list of new sibling loops created.
2879 ///
2880 /// If `SE` is non-null, we will update that analysis based on the unswitching
2881 /// done.
2882 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2883                          AssumptionCache &AC, TargetTransformInfo &TTI,
2884                          bool NonTrivial,
2885                          function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2886                          ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2887   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2888          "Loops must be in LCSSA form before unswitching.");
2889 
2890   // Must be in loop simplified form: we need a preheader and dedicated exits.
2891   if (!L.isLoopSimplifyForm())
2892     return false;
2893 
2894   // Try trivial unswitch first before loop over other basic blocks in the loop.
2895   if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
2896     // If we unswitched successfully we will want to clean up the loop before
2897     // processing it further so just mark it as unswitched and return.
2898     UnswitchCB(/*CurrentLoopValid*/ true, {});
2899     return true;
2900   }
2901 
2902   // If we're not doing non-trivial unswitching, we're done. We both accept
2903   // a parameter but also check a local flag that can be used for testing
2904   // a debugging.
2905   if (!NonTrivial && !EnableNonTrivialUnswitch)
2906     return false;
2907 
2908   // For non-trivial unswitching, because it often creates new loops, we rely on
2909   // the pass manager to iterate on the loops rather than trying to immediately
2910   // reach a fixed point. There is no substantial advantage to iterating
2911   // internally, and if any of the new loops are simplified enough to contain
2912   // trivial unswitching we want to prefer those.
2913 
2914   // Try to unswitch the best invariant condition. We prefer this full unswitch to
2915   // a partial unswitch when possible below the threshold.
2916   if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
2917     return true;
2918 
2919   // No other opportunities to unswitch.
2920   return false;
2921 }
2922 
2923 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2924                                               LoopStandardAnalysisResults &AR,
2925                                               LPMUpdater &U) {
2926   Function &F = *L.getHeader()->getParent();
2927   (void)F;
2928 
2929   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2930                     << "\n");
2931 
2932   // Save the current loop name in a variable so that we can report it even
2933   // after it has been deleted.
2934   std::string LoopName = std::string(L.getName());
2935 
2936   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2937                                         ArrayRef<Loop *> NewLoops) {
2938     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2939     if (!NewLoops.empty())
2940       U.addSiblingLoops(NewLoops);
2941 
2942     // If the current loop remains valid, we should revisit it to catch any
2943     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2944     if (CurrentLoopValid)
2945       U.revisitCurrentLoop();
2946     else
2947       U.markLoopAsDeleted(L, LoopName);
2948   };
2949 
2950   Optional<MemorySSAUpdater> MSSAU;
2951   if (AR.MSSA) {
2952     MSSAU = MemorySSAUpdater(AR.MSSA);
2953     if (VerifyMemorySSA)
2954       AR.MSSA->verifyMemorySSA();
2955   }
2956   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2957                     &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
2958     return PreservedAnalyses::all();
2959 
2960   if (AR.MSSA && VerifyMemorySSA)
2961     AR.MSSA->verifyMemorySSA();
2962 
2963   // Historically this pass has had issues with the dominator tree so verify it
2964   // in asserts builds.
2965   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2966 
2967   auto PA = getLoopPassPreservedAnalyses();
2968   if (AR.MSSA)
2969     PA.preserve<MemorySSAAnalysis>();
2970   return PA;
2971 }
2972 
2973 namespace {
2974 
2975 class SimpleLoopUnswitchLegacyPass : public LoopPass {
2976   bool NonTrivial;
2977 
2978 public:
2979   static char ID; // Pass ID, replacement for typeid
2980 
2981   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2982       : LoopPass(ID), NonTrivial(NonTrivial) {
2983     initializeSimpleLoopUnswitchLegacyPassPass(
2984         *PassRegistry::getPassRegistry());
2985   }
2986 
2987   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2988 
2989   void getAnalysisUsage(AnalysisUsage &AU) const override {
2990     AU.addRequired<AssumptionCacheTracker>();
2991     AU.addRequired<TargetTransformInfoWrapperPass>();
2992     if (EnableMSSALoopDependency) {
2993       AU.addRequired<MemorySSAWrapperPass>();
2994       AU.addPreserved<MemorySSAWrapperPass>();
2995     }
2996     getLoopAnalysisUsage(AU);
2997   }
2998 };
2999 
3000 } // end anonymous namespace
3001 
3002 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3003   if (skipLoop(L))
3004     return false;
3005 
3006   Function &F = *L->getHeader()->getParent();
3007 
3008   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3009                     << "\n");
3010 
3011   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3012   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3013   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3014   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3015   MemorySSA *MSSA = nullptr;
3016   Optional<MemorySSAUpdater> MSSAU;
3017   if (EnableMSSALoopDependency) {
3018     MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3019     MSSAU = MemorySSAUpdater(MSSA);
3020   }
3021 
3022   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3023   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3024 
3025   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
3026                                ArrayRef<Loop *> NewLoops) {
3027     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3028     for (auto *NewL : NewLoops)
3029       LPM.addLoop(*NewL);
3030 
3031     // If the current loop remains valid, re-add it to the queue. This is
3032     // a little wasteful as we'll finish processing the current loop as well,
3033     // but it is the best we can do in the old PM.
3034     if (CurrentLoopValid)
3035       LPM.addLoop(*L);
3036     else
3037       LPM.markLoopAsDeleted(*L);
3038   };
3039 
3040   if (MSSA && VerifyMemorySSA)
3041     MSSA->verifyMemorySSA();
3042 
3043   bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
3044                               MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
3045 
3046   if (MSSA && VerifyMemorySSA)
3047     MSSA->verifyMemorySSA();
3048 
3049   // Historically this pass has had issues with the dominator tree so verify it
3050   // in asserts builds.
3051   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3052 
3053   return Changed;
3054 }
3055 
3056 char SimpleLoopUnswitchLegacyPass::ID = 0;
3057 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3058                       "Simple unswitch loops", false, false)
3059 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3060 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3061 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3062 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3063 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3064 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3065 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3066                     "Simple unswitch loops", false, false)
3067 
3068 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3069   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3070 }
3071