1 //===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/LoopAnalysisManager.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Use.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/GenericDomTree.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/Cloning.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include "llvm/Transforms/Utils/ValueMapper.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <iterator> 51 #include <numeric> 52 #include <utility> 53 54 #define DEBUG_TYPE "simple-loop-unswitch" 55 56 using namespace llvm; 57 58 STATISTIC(NumBranches, "Number of branches unswitched"); 59 STATISTIC(NumSwitches, "Number of switches unswitched"); 60 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 61 62 static cl::opt<bool> EnableNonTrivialUnswitch( 63 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 64 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 65 "following the configuration passed into the pass.")); 66 67 static cl::opt<int> 68 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 69 cl::desc("The cost threshold for unswitching a loop.")); 70 71 static void replaceLoopUsesWithConstant(Loop &L, Value &LIC, 72 Constant &Replacement) { 73 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); 74 75 // Replace uses of LIC in the loop with the given constant. 76 for (auto UI = LIC.use_begin(), UE = LIC.use_end(); UI != UE;) { 77 // Grab the use and walk past it so we can clobber it in the use list. 78 Use *U = &*UI++; 79 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 80 if (!UserI || !L.contains(UserI)) 81 continue; 82 83 // Replace this use within the loop body. 84 *U = &Replacement; 85 } 86 } 87 88 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 89 /// incoming values along this edge. 90 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 91 BasicBlock &ExitBB) { 92 for (Instruction &I : ExitBB) { 93 auto *PN = dyn_cast<PHINode>(&I); 94 if (!PN) 95 // No more PHIs to check. 96 return true; 97 98 // If the incoming value for this edge isn't loop invariant the unswitch 99 // won't be trivial. 100 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 101 return false; 102 } 103 llvm_unreachable("Basic blocks should never be empty!"); 104 } 105 106 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 107 /// 108 /// Requires that the loop exit and unswitched basic block are the same, and 109 /// that the exiting block was a unique predecessor of that block. Rewrites the 110 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 111 /// PHI nodes from the old preheader that now contains the unswitched 112 /// terminator. 113 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 114 BasicBlock &OldExitingBB, 115 BasicBlock &OldPH) { 116 for (PHINode &PN : UnswitchedBB.phis()) { 117 // When the loop exit is directly unswitched we just need to update the 118 // incoming basic block. We loop to handle weird cases with repeated 119 // incoming blocks, but expect to typically only have one operand here. 120 for (auto i : seq<int>(0, PN.getNumOperands())) { 121 assert(PN.getIncomingBlock(i) == &OldExitingBB && 122 "Found incoming block different from unique predecessor!"); 123 PN.setIncomingBlock(i, &OldPH); 124 } 125 } 126 } 127 128 /// Rewrite the PHI nodes in the loop exit basic block and the split off 129 /// unswitched block. 130 /// 131 /// Because the exit block remains an exit from the loop, this rewrites the 132 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 133 /// nodes into the unswitched basic block to select between the value in the 134 /// old preheader and the loop exit. 135 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 136 BasicBlock &UnswitchedBB, 137 BasicBlock &OldExitingBB, 138 BasicBlock &OldPH) { 139 assert(&ExitBB != &UnswitchedBB && 140 "Must have different loop exit and unswitched blocks!"); 141 Instruction *InsertPt = &*UnswitchedBB.begin(); 142 for (PHINode &PN : ExitBB.phis()) { 143 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 144 PN.getName() + ".split", InsertPt); 145 146 // Walk backwards over the old PHI node's inputs to minimize the cost of 147 // removing each one. We have to do this weird loop manually so that we 148 // create the same number of new incoming edges in the new PHI as we expect 149 // each case-based edge to be included in the unswitched switch in some 150 // cases. 151 // FIXME: This is really, really gross. It would be much cleaner if LLVM 152 // allowed us to create a single entry for a predecessor block without 153 // having separate entries for each "edge" even though these edges are 154 // required to produce identical results. 155 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 156 if (PN.getIncomingBlock(i) != &OldExitingBB) 157 continue; 158 159 Value *Incoming = PN.removeIncomingValue(i); 160 NewPN->addIncoming(Incoming, &OldPH); 161 } 162 163 // Now replace the old PHI with the new one and wire the old one in as an 164 // input to the new one. 165 PN.replaceAllUsesWith(NewPN); 166 NewPN->addIncoming(&PN, &ExitBB); 167 } 168 } 169 170 /// Unswitch a trivial branch if the condition is loop invariant. 171 /// 172 /// This routine should only be called when loop code leading to the branch has 173 /// been validated as trivial (no side effects). This routine checks if the 174 /// condition is invariant and one of the successors is a loop exit. This 175 /// allows us to unswitch without duplicating the loop, making it trivial. 176 /// 177 /// If this routine fails to unswitch the branch it returns false. 178 /// 179 /// If the branch can be unswitched, this routine splits the preheader and 180 /// hoists the branch above that split. Preserves loop simplified form 181 /// (splitting the exit block as necessary). It simplifies the branch within 182 /// the loop to an unconditional branch but doesn't remove it entirely. Further 183 /// cleanup can be done with some simplify-cfg like pass. 184 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 185 LoopInfo &LI) { 186 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 187 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 188 189 Value *LoopCond = BI.getCondition(); 190 191 // Need a trivial loop condition to unswitch. 192 if (!L.isLoopInvariant(LoopCond)) 193 return false; 194 195 // Check to see if a successor of the branch is guaranteed to 196 // exit through a unique exit block without having any 197 // side-effects. If so, determine the value of Cond that causes 198 // it to do this. 199 ConstantInt *CondVal = ConstantInt::getTrue(BI.getContext()); 200 ConstantInt *Replacement = ConstantInt::getFalse(BI.getContext()); 201 int LoopExitSuccIdx = 0; 202 auto *LoopExitBB = BI.getSuccessor(0); 203 if (L.contains(LoopExitBB)) { 204 std::swap(CondVal, Replacement); 205 LoopExitSuccIdx = 1; 206 LoopExitBB = BI.getSuccessor(1); 207 if (L.contains(LoopExitBB)) 208 return false; 209 } 210 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 211 auto *ParentBB = BI.getParent(); 212 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 213 return false; 214 215 LLVM_DEBUG(dbgs() << " unswitching trivial branch when: " << CondVal 216 << " == " << LoopCond << "\n"); 217 218 // Split the preheader, so that we know that there is a safe place to insert 219 // the conditional branch. We will change the preheader to have a conditional 220 // branch on LoopCond. 221 BasicBlock *OldPH = L.getLoopPreheader(); 222 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 223 224 // Now that we have a place to insert the conditional branch, create a place 225 // to branch to: this is the exit block out of the loop that we are 226 // unswitching. We need to split this if there are other loop predecessors. 227 // Because the loop is in simplified form, *any* other predecessor is enough. 228 BasicBlock *UnswitchedBB; 229 if (BasicBlock *PredBB = LoopExitBB->getUniquePredecessor()) { 230 (void)PredBB; 231 assert(PredBB == BI.getParent() && 232 "A branch's parent isn't a predecessor!"); 233 UnswitchedBB = LoopExitBB; 234 } else { 235 UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI); 236 } 237 238 // Now splice the branch to gate reaching the new preheader and re-point its 239 // successors. 240 OldPH->getInstList().splice(std::prev(OldPH->end()), 241 BI.getParent()->getInstList(), BI); 242 OldPH->getTerminator()->eraseFromParent(); 243 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 244 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 245 246 // Create a new unconditional branch that will continue the loop as a new 247 // terminator. 248 BranchInst::Create(ContinueBB, ParentBB); 249 250 // Rewrite the relevant PHI nodes. 251 if (UnswitchedBB == LoopExitBB) 252 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 253 else 254 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 255 *ParentBB, *OldPH); 256 257 // Now we need to update the dominator tree. 258 DT.applyUpdates( 259 {{DT.Delete, ParentBB, UnswitchedBB}, {DT.Insert, OldPH, UnswitchedBB}}); 260 261 // Since this is an i1 condition we can also trivially replace uses of it 262 // within the loop with a constant. 263 replaceLoopUsesWithConstant(L, *LoopCond, *Replacement); 264 265 ++NumTrivial; 266 ++NumBranches; 267 return true; 268 } 269 270 /// Unswitch a trivial switch if the condition is loop invariant. 271 /// 272 /// This routine should only be called when loop code leading to the switch has 273 /// been validated as trivial (no side effects). This routine checks if the 274 /// condition is invariant and that at least one of the successors is a loop 275 /// exit. This allows us to unswitch without duplicating the loop, making it 276 /// trivial. 277 /// 278 /// If this routine fails to unswitch the switch it returns false. 279 /// 280 /// If the switch can be unswitched, this routine splits the preheader and 281 /// copies the switch above that split. If the default case is one of the 282 /// exiting cases, it copies the non-exiting cases and points them at the new 283 /// preheader. If the default case is not exiting, it copies the exiting cases 284 /// and points the default at the preheader. It preserves loop simplified form 285 /// (splitting the exit blocks as necessary). It simplifies the switch within 286 /// the loop by removing now-dead cases. If the default case is one of those 287 /// unswitched, it replaces its destination with a new basic block containing 288 /// only unreachable. Such basic blocks, while technically loop exits, are not 289 /// considered for unswitching so this is a stable transform and the same 290 /// switch will not be revisited. If after unswitching there is only a single 291 /// in-loop successor, the switch is further simplified to an unconditional 292 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 293 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 294 LoopInfo &LI) { 295 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 296 Value *LoopCond = SI.getCondition(); 297 298 // If this isn't switching on an invariant condition, we can't unswitch it. 299 if (!L.isLoopInvariant(LoopCond)) 300 return false; 301 302 auto *ParentBB = SI.getParent(); 303 304 SmallVector<int, 4> ExitCaseIndices; 305 for (auto Case : SI.cases()) { 306 auto *SuccBB = Case.getCaseSuccessor(); 307 if (!L.contains(SuccBB) && 308 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 309 ExitCaseIndices.push_back(Case.getCaseIndex()); 310 } 311 BasicBlock *DefaultExitBB = nullptr; 312 if (!L.contains(SI.getDefaultDest()) && 313 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 314 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 315 DefaultExitBB = SI.getDefaultDest(); 316 else if (ExitCaseIndices.empty()) 317 return false; 318 319 LLVM_DEBUG(dbgs() << " unswitching trivial cases...\n"); 320 321 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 322 ExitCases.reserve(ExitCaseIndices.size()); 323 // We walk the case indices backwards so that we remove the last case first 324 // and don't disrupt the earlier indices. 325 for (unsigned Index : reverse(ExitCaseIndices)) { 326 auto CaseI = SI.case_begin() + Index; 327 // Save the value of this case. 328 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 329 // Delete the unswitched cases. 330 SI.removeCase(CaseI); 331 } 332 333 // Check if after this all of the remaining cases point at the same 334 // successor. 335 BasicBlock *CommonSuccBB = nullptr; 336 if (SI.getNumCases() > 0 && 337 std::all_of(std::next(SI.case_begin()), SI.case_end(), 338 [&SI](const SwitchInst::CaseHandle &Case) { 339 return Case.getCaseSuccessor() == 340 SI.case_begin()->getCaseSuccessor(); 341 })) 342 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 343 344 if (DefaultExitBB) { 345 // We can't remove the default edge so replace it with an edge to either 346 // the single common remaining successor (if we have one) or an unreachable 347 // block. 348 if (CommonSuccBB) { 349 SI.setDefaultDest(CommonSuccBB); 350 } else { 351 BasicBlock *UnreachableBB = BasicBlock::Create( 352 ParentBB->getContext(), 353 Twine(ParentBB->getName()) + ".unreachable_default", 354 ParentBB->getParent()); 355 new UnreachableInst(ParentBB->getContext(), UnreachableBB); 356 SI.setDefaultDest(UnreachableBB); 357 DT.addNewBlock(UnreachableBB, ParentBB); 358 } 359 } else { 360 // If we're not unswitching the default, we need it to match any cases to 361 // have a common successor or if we have no cases it is the common 362 // successor. 363 if (SI.getNumCases() == 0) 364 CommonSuccBB = SI.getDefaultDest(); 365 else if (SI.getDefaultDest() != CommonSuccBB) 366 CommonSuccBB = nullptr; 367 } 368 369 // Split the preheader, so that we know that there is a safe place to insert 370 // the switch. 371 BasicBlock *OldPH = L.getLoopPreheader(); 372 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 373 OldPH->getTerminator()->eraseFromParent(); 374 375 // Now add the unswitched switch. 376 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 377 378 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 379 // First, we split any exit blocks with remaining in-loop predecessors. Then 380 // we update the PHIs in one of two ways depending on if there was a split. 381 // We walk in reverse so that we split in the same order as the cases 382 // appeared. This is purely for convenience of reading the resulting IR, but 383 // it doesn't cost anything really. 384 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 385 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 386 // Handle the default exit if necessary. 387 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 388 // ranges aren't quite powerful enough yet. 389 if (DefaultExitBB) { 390 if (pred_empty(DefaultExitBB)) { 391 UnswitchedExitBBs.insert(DefaultExitBB); 392 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 393 } else { 394 auto *SplitBB = 395 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI); 396 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 397 *ParentBB, *OldPH); 398 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 399 } 400 } 401 // Note that we must use a reference in the for loop so that we update the 402 // container. 403 for (auto &CasePair : reverse(ExitCases)) { 404 // Grab a reference to the exit block in the pair so that we can update it. 405 BasicBlock *ExitBB = CasePair.second; 406 407 // If this case is the last edge into the exit block, we can simply reuse it 408 // as it will no longer be a loop exit. No mapping necessary. 409 if (pred_empty(ExitBB)) { 410 // Only rewrite once. 411 if (UnswitchedExitBBs.insert(ExitBB).second) 412 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 413 continue; 414 } 415 416 // Otherwise we need to split the exit block so that we retain an exit 417 // block from the loop and a target for the unswitched condition. 418 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 419 if (!SplitExitBB) { 420 // If this is the first time we see this, do the split and remember it. 421 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 422 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 423 *ParentBB, *OldPH); 424 } 425 // Update the case pair to point to the split block. 426 CasePair.second = SplitExitBB; 427 } 428 429 // Now add the unswitched cases. We do this in reverse order as we built them 430 // in reverse order. 431 for (auto CasePair : reverse(ExitCases)) { 432 ConstantInt *CaseVal = CasePair.first; 433 BasicBlock *UnswitchedBB = CasePair.second; 434 435 NewSI->addCase(CaseVal, UnswitchedBB); 436 } 437 438 // If the default was unswitched, re-point it and add explicit cases for 439 // entering the loop. 440 if (DefaultExitBB) { 441 NewSI->setDefaultDest(DefaultExitBB); 442 443 // We removed all the exit cases, so we just copy the cases to the 444 // unswitched switch. 445 for (auto Case : SI.cases()) 446 NewSI->addCase(Case.getCaseValue(), NewPH); 447 } 448 449 // If we ended up with a common successor for every path through the switch 450 // after unswitching, rewrite it to an unconditional branch to make it easy 451 // to recognize. Otherwise we potentially have to recognize the default case 452 // pointing at unreachable and other complexity. 453 if (CommonSuccBB) { 454 BasicBlock *BB = SI.getParent(); 455 SI.eraseFromParent(); 456 BranchInst::Create(CommonSuccBB, BB); 457 } 458 459 // Walk the unswitched exit blocks and the unswitched split blocks and update 460 // the dominator tree based on the CFG edits. While we are walking unordered 461 // containers here, the API for applyUpdates takes an unordered list of 462 // updates and requires them to not contain duplicates. 463 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 464 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 465 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 466 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 467 } 468 for (auto SplitUnswitchedPair : SplitExitBBMap) { 469 auto *UnswitchedBB = SplitUnswitchedPair.second; 470 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); 471 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 472 } 473 DT.applyUpdates(DTUpdates); 474 475 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 476 ++NumTrivial; 477 ++NumSwitches; 478 return true; 479 } 480 481 /// This routine scans the loop to find a branch or switch which occurs before 482 /// any side effects occur. These can potentially be unswitched without 483 /// duplicating the loop. If a branch or switch is successfully unswitched the 484 /// scanning continues to see if subsequent branches or switches have become 485 /// trivial. Once all trivial candidates have been unswitched, this routine 486 /// returns. 487 /// 488 /// The return value indicates whether anything was unswitched (and therefore 489 /// changed). 490 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 491 LoopInfo &LI) { 492 bool Changed = false; 493 494 // If loop header has only one reachable successor we should keep looking for 495 // trivial condition candidates in the successor as well. An alternative is 496 // to constant fold conditions and merge successors into loop header (then we 497 // only need to check header's terminator). The reason for not doing this in 498 // LoopUnswitch pass is that it could potentially break LoopPassManager's 499 // invariants. Folding dead branches could either eliminate the current loop 500 // or make other loops unreachable. LCSSA form might also not be preserved 501 // after deleting branches. The following code keeps traversing loop header's 502 // successors until it finds the trivial condition candidate (condition that 503 // is not a constant). Since unswitching generates branches with constant 504 // conditions, this scenario could be very common in practice. 505 BasicBlock *CurrentBB = L.getHeader(); 506 SmallPtrSet<BasicBlock *, 8> Visited; 507 Visited.insert(CurrentBB); 508 do { 509 // Check if there are any side-effecting instructions (e.g. stores, calls, 510 // volatile loads) in the part of the loop that the code *would* execute 511 // without unswitching. 512 if (llvm::any_of(*CurrentBB, 513 [](Instruction &I) { return I.mayHaveSideEffects(); })) 514 return Changed; 515 516 TerminatorInst *CurrentTerm = CurrentBB->getTerminator(); 517 518 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 519 // Don't bother trying to unswitch past a switch with a constant 520 // condition. This should be removed prior to running this pass by 521 // simplify-cfg. 522 if (isa<Constant>(SI->getCondition())) 523 return Changed; 524 525 if (!unswitchTrivialSwitch(L, *SI, DT, LI)) 526 // Coludn't unswitch this one so we're done. 527 return Changed; 528 529 // Mark that we managed to unswitch something. 530 Changed = true; 531 532 // If unswitching turned the terminator into an unconditional branch then 533 // we can continue. The unswitching logic specifically works to fold any 534 // cases it can into an unconditional branch to make it easier to 535 // recognize here. 536 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 537 if (!BI || BI->isConditional()) 538 return Changed; 539 540 CurrentBB = BI->getSuccessor(0); 541 continue; 542 } 543 544 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 545 if (!BI) 546 // We do not understand other terminator instructions. 547 return Changed; 548 549 // Don't bother trying to unswitch past an unconditional branch or a branch 550 // with a constant value. These should be removed by simplify-cfg prior to 551 // running this pass. 552 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 553 return Changed; 554 555 // Found a trivial condition candidate: non-foldable conditional branch. If 556 // we fail to unswitch this, we can't do anything else that is trivial. 557 if (!unswitchTrivialBranch(L, *BI, DT, LI)) 558 return Changed; 559 560 // Mark that we managed to unswitch something. 561 Changed = true; 562 563 // We unswitched the branch. This should always leave us with an 564 // unconditional branch that we can follow now. 565 BI = cast<BranchInst>(CurrentBB->getTerminator()); 566 assert(!BI->isConditional() && 567 "Cannot form a conditional branch by unswitching1"); 568 CurrentBB = BI->getSuccessor(0); 569 570 // When continuing, if we exit the loop or reach a previous visited block, 571 // then we can not reach any trivial condition candidates (unfoldable 572 // branch instructions or switch instructions) and no unswitch can happen. 573 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 574 575 return Changed; 576 } 577 578 /// Build the cloned blocks for an unswitched copy of the given loop. 579 /// 580 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 581 /// after the split block (`SplitBB`) that will be used to select between the 582 /// cloned and original loop. 583 /// 584 /// This routine handles cloning all of the necessary loop blocks and exit 585 /// blocks including rewriting their instructions and the relevant PHI nodes. 586 /// It skips loop and exit blocks that are not necessary based on the provided 587 /// set. It also correctly creates the unconditional branch in the cloned 588 /// unswitched parent block to only point at the unswitched successor. 589 /// 590 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 591 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 592 /// the cloned blocks (and their loops) are left without full `LoopInfo` 593 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 594 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 595 /// instead the caller must recompute an accurate DT. It *does* correctly 596 /// update the `AssumptionCache` provided in `AC`. 597 static BasicBlock *buildClonedLoopBlocks( 598 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 599 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 600 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 601 const SmallPtrSetImpl<BasicBlock *> &SkippedLoopAndExitBlocks, 602 ValueToValueMapTy &VMap, 603 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 604 DominatorTree &DT, LoopInfo &LI) { 605 SmallVector<BasicBlock *, 4> NewBlocks; 606 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 607 608 // We will need to clone a bunch of blocks, wrap up the clone operation in 609 // a helper. 610 auto CloneBlock = [&](BasicBlock *OldBB) { 611 // Clone the basic block and insert it before the new preheader. 612 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 613 NewBB->moveBefore(LoopPH); 614 615 // Record this block and the mapping. 616 NewBlocks.push_back(NewBB); 617 VMap[OldBB] = NewBB; 618 619 return NewBB; 620 }; 621 622 // First, clone the preheader. 623 auto *ClonedPH = CloneBlock(LoopPH); 624 625 // Then clone all the loop blocks, skipping the ones that aren't necessary. 626 for (auto *LoopBB : L.blocks()) 627 if (!SkippedLoopAndExitBlocks.count(LoopBB)) 628 CloneBlock(LoopBB); 629 630 // Split all the loop exit edges so that when we clone the exit blocks, if 631 // any of the exit blocks are *also* a preheader for some other loop, we 632 // don't create multiple predecessors entering the loop header. 633 for (auto *ExitBB : ExitBlocks) { 634 if (SkippedLoopAndExitBlocks.count(ExitBB)) 635 continue; 636 637 // When we are going to clone an exit, we don't need to clone all the 638 // instructions in the exit block and we want to ensure we have an easy 639 // place to merge the CFG, so split the exit first. This is always safe to 640 // do because there cannot be any non-loop predecessors of a loop exit in 641 // loop simplified form. 642 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 643 644 // Rearrange the names to make it easier to write test cases by having the 645 // exit block carry the suffix rather than the merge block carrying the 646 // suffix. 647 MergeBB->takeName(ExitBB); 648 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 649 650 // Now clone the original exit block. 651 auto *ClonedExitBB = CloneBlock(ExitBB); 652 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 653 "Exit block should have been split to have one successor!"); 654 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 655 "Cloned exit block has the wrong successor!"); 656 657 // Remap any cloned instructions and create a merge phi node for them. 658 for (auto ZippedInsts : llvm::zip_first( 659 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 660 llvm::make_range(ClonedExitBB->begin(), 661 std::prev(ClonedExitBB->end())))) { 662 Instruction &I = std::get<0>(ZippedInsts); 663 Instruction &ClonedI = std::get<1>(ZippedInsts); 664 665 // The only instructions in the exit block should be PHI nodes and 666 // potentially a landing pad. 667 assert( 668 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 669 "Bad instruction in exit block!"); 670 // We should have a value map between the instruction and its clone. 671 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 672 673 auto *MergePN = 674 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 675 &*MergeBB->getFirstInsertionPt()); 676 I.replaceAllUsesWith(MergePN); 677 MergePN->addIncoming(&I, ExitBB); 678 MergePN->addIncoming(&ClonedI, ClonedExitBB); 679 } 680 } 681 682 // Rewrite the instructions in the cloned blocks to refer to the instructions 683 // in the cloned blocks. We have to do this as a second pass so that we have 684 // everything available. Also, we have inserted new instructions which may 685 // include assume intrinsics, so we update the assumption cache while 686 // processing this. 687 for (auto *ClonedBB : NewBlocks) 688 for (Instruction &I : *ClonedBB) { 689 RemapInstruction(&I, VMap, 690 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 691 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 692 if (II->getIntrinsicID() == Intrinsic::assume) 693 AC.registerAssumption(II); 694 } 695 696 // Remove the cloned parent as a predecessor of the cloned continue successor 697 // if we did in fact clone it. 698 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 699 if (auto *ClonedContinueSuccBB = 700 cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB))) 701 ClonedContinueSuccBB->removePredecessor(ClonedParentBB, 702 /*DontDeleteUselessPHIs*/ true); 703 // Replace the cloned branch with an unconditional branch to the cloned 704 // unswitched successor. 705 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 706 ClonedParentBB->getTerminator()->eraseFromParent(); 707 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 708 709 // Update any PHI nodes in the cloned successors of the skipped blocks to not 710 // have spurious incoming values. 711 for (auto *LoopBB : L.blocks()) 712 if (SkippedLoopAndExitBlocks.count(LoopBB)) 713 for (auto *SuccBB : successors(LoopBB)) 714 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 715 for (PHINode &PN : ClonedSuccBB->phis()) 716 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 717 718 // Record the domtree updates for the new blocks. 719 SmallPtrSet<BasicBlock *, 4> SuccSet; 720 for (auto *ClonedBB : NewBlocks) { 721 for (auto *SuccBB : successors(ClonedBB)) 722 if (SuccSet.insert(SuccBB).second) 723 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 724 SuccSet.clear(); 725 } 726 727 return ClonedPH; 728 } 729 730 /// Recursively clone the specified loop and all of its children. 731 /// 732 /// The target parent loop for the clone should be provided, or can be null if 733 /// the clone is a top-level loop. While cloning, all the blocks are mapped 734 /// with the provided value map. The entire original loop must be present in 735 /// the value map. The cloned loop is returned. 736 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 737 const ValueToValueMapTy &VMap, LoopInfo &LI) { 738 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 739 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 740 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 741 for (auto *BB : OrigL.blocks()) { 742 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 743 ClonedL.addBlockEntry(ClonedBB); 744 if (LI.getLoopFor(BB) == &OrigL) 745 LI.changeLoopFor(ClonedBB, &ClonedL); 746 } 747 }; 748 749 // We specially handle the first loop because it may get cloned into 750 // a different parent and because we most commonly are cloning leaf loops. 751 Loop *ClonedRootL = LI.AllocateLoop(); 752 if (RootParentL) 753 RootParentL->addChildLoop(ClonedRootL); 754 else 755 LI.addTopLevelLoop(ClonedRootL); 756 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 757 758 if (OrigRootL.empty()) 759 return ClonedRootL; 760 761 // If we have a nest, we can quickly clone the entire loop nest using an 762 // iterative approach because it is a tree. We keep the cloned parent in the 763 // data structure to avoid repeatedly querying through a map to find it. 764 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 765 // Build up the loops to clone in reverse order as we'll clone them from the 766 // back. 767 for (Loop *ChildL : llvm::reverse(OrigRootL)) 768 LoopsToClone.push_back({ClonedRootL, ChildL}); 769 do { 770 Loop *ClonedParentL, *L; 771 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 772 Loop *ClonedL = LI.AllocateLoop(); 773 ClonedParentL->addChildLoop(ClonedL); 774 AddClonedBlocksToLoop(*L, *ClonedL); 775 for (Loop *ChildL : llvm::reverse(*L)) 776 LoopsToClone.push_back({ClonedL, ChildL}); 777 } while (!LoopsToClone.empty()); 778 779 return ClonedRootL; 780 } 781 782 /// Build the cloned loops of an original loop from unswitching. 783 /// 784 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 785 /// operation. We need to re-verify that there even is a loop (as the backedge 786 /// may not have been cloned), and even if there are remaining backedges the 787 /// backedge set may be different. However, we know that each child loop is 788 /// undisturbed, we only need to find where to place each child loop within 789 /// either any parent loop or within a cloned version of the original loop. 790 /// 791 /// Because child loops may end up cloned outside of any cloned version of the 792 /// original loop, multiple cloned sibling loops may be created. All of them 793 /// are returned so that the newly introduced loop nest roots can be 794 /// identified. 795 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 796 const ValueToValueMapTy &VMap, LoopInfo &LI, 797 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 798 Loop *ClonedL = nullptr; 799 800 auto *OrigPH = OrigL.getLoopPreheader(); 801 auto *OrigHeader = OrigL.getHeader(); 802 803 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 804 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 805 806 // We need to know the loops of the cloned exit blocks to even compute the 807 // accurate parent loop. If we only clone exits to some parent of the 808 // original parent, we want to clone into that outer loop. We also keep track 809 // of the loops that our cloned exit blocks participate in. 810 Loop *ParentL = nullptr; 811 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 812 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 813 ClonedExitsInLoops.reserve(ExitBlocks.size()); 814 for (auto *ExitBB : ExitBlocks) 815 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 816 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 817 ExitLoopMap[ClonedExitBB] = ExitL; 818 ClonedExitsInLoops.push_back(ClonedExitBB); 819 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 820 ParentL = ExitL; 821 } 822 assert((!ParentL || ParentL == OrigL.getParentLoop() || 823 ParentL->contains(OrigL.getParentLoop())) && 824 "The computed parent loop should always contain (or be) the parent of " 825 "the original loop."); 826 827 // We build the set of blocks dominated by the cloned header from the set of 828 // cloned blocks out of the original loop. While not all of these will 829 // necessarily be in the cloned loop, it is enough to establish that they 830 // aren't in unreachable cycles, etc. 831 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 832 for (auto *BB : OrigL.blocks()) 833 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 834 ClonedLoopBlocks.insert(ClonedBB); 835 836 // Rebuild the set of blocks that will end up in the cloned loop. We may have 837 // skipped cloning some region of this loop which can in turn skip some of 838 // the backedges so we have to rebuild the blocks in the loop based on the 839 // backedges that remain after cloning. 840 SmallVector<BasicBlock *, 16> Worklist; 841 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 842 for (auto *Pred : predecessors(ClonedHeader)) { 843 // The only possible non-loop header predecessor is the preheader because 844 // we know we cloned the loop in simplified form. 845 if (Pred == ClonedPH) 846 continue; 847 848 // Because the loop was in simplified form, the only non-loop predecessor 849 // should be the preheader. 850 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 851 "header other than the preheader " 852 "that is not part of the loop!"); 853 854 // Insert this block into the loop set and on the first visit (and if it 855 // isn't the header we're currently walking) put it into the worklist to 856 // recurse through. 857 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 858 Worklist.push_back(Pred); 859 } 860 861 // If we had any backedges then there *is* a cloned loop. Put the header into 862 // the loop set and then walk the worklist backwards to find all the blocks 863 // that remain within the loop after cloning. 864 if (!BlocksInClonedLoop.empty()) { 865 BlocksInClonedLoop.insert(ClonedHeader); 866 867 while (!Worklist.empty()) { 868 BasicBlock *BB = Worklist.pop_back_val(); 869 assert(BlocksInClonedLoop.count(BB) && 870 "Didn't put block into the loop set!"); 871 872 // Insert any predecessors that are in the possible set into the cloned 873 // set, and if the insert is successful, add them to the worklist. Note 874 // that we filter on the blocks that are definitely reachable via the 875 // backedge to the loop header so we may prune out dead code within the 876 // cloned loop. 877 for (auto *Pred : predecessors(BB)) 878 if (ClonedLoopBlocks.count(Pred) && 879 BlocksInClonedLoop.insert(Pred).second) 880 Worklist.push_back(Pred); 881 } 882 883 ClonedL = LI.AllocateLoop(); 884 if (ParentL) { 885 ParentL->addBasicBlockToLoop(ClonedPH, LI); 886 ParentL->addChildLoop(ClonedL); 887 } else { 888 LI.addTopLevelLoop(ClonedL); 889 } 890 NonChildClonedLoops.push_back(ClonedL); 891 892 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 893 // We don't want to just add the cloned loop blocks based on how we 894 // discovered them. The original order of blocks was carefully built in 895 // a way that doesn't rely on predecessor ordering. Rather than re-invent 896 // that logic, we just re-walk the original blocks (and those of the child 897 // loops) and filter them as we add them into the cloned loop. 898 for (auto *BB : OrigL.blocks()) { 899 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 900 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 901 continue; 902 903 // Directly add the blocks that are only in this loop. 904 if (LI.getLoopFor(BB) == &OrigL) { 905 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 906 continue; 907 } 908 909 // We want to manually add it to this loop and parents. 910 // Registering it with LoopInfo will happen when we clone the top 911 // loop for this block. 912 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 913 PL->addBlockEntry(ClonedBB); 914 } 915 916 // Now add each child loop whose header remains within the cloned loop. All 917 // of the blocks within the loop must satisfy the same constraints as the 918 // header so once we pass the header checks we can just clone the entire 919 // child loop nest. 920 for (Loop *ChildL : OrigL) { 921 auto *ClonedChildHeader = 922 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 923 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 924 continue; 925 926 #ifndef NDEBUG 927 // We should never have a cloned child loop header but fail to have 928 // all of the blocks for that child loop. 929 for (auto *ChildLoopBB : ChildL->blocks()) 930 assert(BlocksInClonedLoop.count( 931 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 932 "Child cloned loop has a header within the cloned outer " 933 "loop but not all of its blocks!"); 934 #endif 935 936 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 937 } 938 } 939 940 // Now that we've handled all the components of the original loop that were 941 // cloned into a new loop, we still need to handle anything from the original 942 // loop that wasn't in a cloned loop. 943 944 // Figure out what blocks are left to place within any loop nest containing 945 // the unswitched loop. If we never formed a loop, the cloned PH is one of 946 // them. 947 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 948 if (BlocksInClonedLoop.empty()) 949 UnloopedBlockSet.insert(ClonedPH); 950 for (auto *ClonedBB : ClonedLoopBlocks) 951 if (!BlocksInClonedLoop.count(ClonedBB)) 952 UnloopedBlockSet.insert(ClonedBB); 953 954 // Copy the cloned exits and sort them in ascending loop depth, we'll work 955 // backwards across these to process them inside out. The order shouldn't 956 // matter as we're just trying to build up the map from inside-out; we use 957 // the map in a more stably ordered way below. 958 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 959 llvm::sort(OrderedClonedExitsInLoops.begin(), 960 OrderedClonedExitsInLoops.end(), 961 [&](BasicBlock *LHS, BasicBlock *RHS) { 962 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 963 ExitLoopMap.lookup(RHS)->getLoopDepth(); 964 }); 965 966 // Populate the existing ExitLoopMap with everything reachable from each 967 // exit, starting from the inner most exit. 968 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 969 assert(Worklist.empty() && "Didn't clear worklist!"); 970 971 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 972 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 973 974 // Walk the CFG back until we hit the cloned PH adding everything reachable 975 // and in the unlooped set to this exit block's loop. 976 Worklist.push_back(ExitBB); 977 do { 978 BasicBlock *BB = Worklist.pop_back_val(); 979 // We can stop recursing at the cloned preheader (if we get there). 980 if (BB == ClonedPH) 981 continue; 982 983 for (BasicBlock *PredBB : predecessors(BB)) { 984 // If this pred has already been moved to our set or is part of some 985 // (inner) loop, no update needed. 986 if (!UnloopedBlockSet.erase(PredBB)) { 987 assert( 988 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 989 "Predecessor not mapped to a loop!"); 990 continue; 991 } 992 993 // We just insert into the loop set here. We'll add these blocks to the 994 // exit loop after we build up the set in an order that doesn't rely on 995 // predecessor order (which in turn relies on use list order). 996 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 997 (void)Inserted; 998 assert(Inserted && "Should only visit an unlooped block once!"); 999 1000 // And recurse through to its predecessors. 1001 Worklist.push_back(PredBB); 1002 } 1003 } while (!Worklist.empty()); 1004 } 1005 1006 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1007 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1008 // in their original order adding them to the correct loop. 1009 1010 // We need a stable insertion order. We use the order of the original loop 1011 // order and map into the correct parent loop. 1012 for (auto *BB : llvm::concat<BasicBlock *const>( 1013 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1014 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1015 OuterL->addBasicBlockToLoop(BB, LI); 1016 1017 #ifndef NDEBUG 1018 for (auto &BBAndL : ExitLoopMap) { 1019 auto *BB = BBAndL.first; 1020 auto *OuterL = BBAndL.second; 1021 assert(LI.getLoopFor(BB) == OuterL && 1022 "Failed to put all blocks into outer loops!"); 1023 } 1024 #endif 1025 1026 // Now that all the blocks are placed into the correct containing loop in the 1027 // absence of child loops, find all the potentially cloned child loops and 1028 // clone them into whatever outer loop we placed their header into. 1029 for (Loop *ChildL : OrigL) { 1030 auto *ClonedChildHeader = 1031 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1032 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1033 continue; 1034 1035 #ifndef NDEBUG 1036 for (auto *ChildLoopBB : ChildL->blocks()) 1037 assert(VMap.count(ChildLoopBB) && 1038 "Cloned a child loop header but not all of that loops blocks!"); 1039 #endif 1040 1041 NonChildClonedLoops.push_back(cloneLoopNest( 1042 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1043 } 1044 } 1045 1046 static void 1047 deleteDeadBlocksFromLoop(Loop &L, 1048 const SmallVectorImpl<BasicBlock *> &DeadBlocks, 1049 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1050 DominatorTree &DT, LoopInfo &LI) { 1051 SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(), 1052 DeadBlocks.end()); 1053 1054 // Filter out the dead blocks from the exit blocks list so that it can be 1055 // used in the caller. 1056 llvm::erase_if(ExitBlocks, 1057 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1058 1059 // Remove these blocks from their successors. 1060 for (auto *BB : DeadBlocks) 1061 for (BasicBlock *SuccBB : successors(BB)) 1062 SuccBB->removePredecessor(BB, /*DontDeleteUselessPHIs*/ true); 1063 1064 // Walk from this loop up through its parents removing all of the dead blocks. 1065 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1066 for (auto *BB : DeadBlocks) 1067 ParentL->getBlocksSet().erase(BB); 1068 llvm::erase_if(ParentL->getBlocksVector(), 1069 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1070 } 1071 1072 // Now delete the dead child loops. This raw delete will clear them 1073 // recursively. 1074 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1075 if (!DeadBlockSet.count(ChildL->getHeader())) 1076 return false; 1077 1078 assert(llvm::all_of(ChildL->blocks(), 1079 [&](BasicBlock *ChildBB) { 1080 return DeadBlockSet.count(ChildBB); 1081 }) && 1082 "If the child loop header is dead all blocks in the child loop must " 1083 "be dead as well!"); 1084 LI.destroy(ChildL); 1085 return true; 1086 }); 1087 1088 // Remove the loop mappings for the dead blocks and drop all the references 1089 // from these blocks to others to handle cyclic references as we start 1090 // deleting the blocks themselves. 1091 for (auto *BB : DeadBlocks) { 1092 // Check that the dominator tree has already been updated. 1093 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1094 LI.changeLoopFor(BB, nullptr); 1095 BB->dropAllReferences(); 1096 } 1097 1098 // Actually delete the blocks now that they've been fully unhooked from the 1099 // IR. 1100 for (auto *BB : DeadBlocks) 1101 BB->eraseFromParent(); 1102 } 1103 1104 /// Recompute the set of blocks in a loop after unswitching. 1105 /// 1106 /// This walks from the original headers predecessors to rebuild the loop. We 1107 /// take advantage of the fact that new blocks can't have been added, and so we 1108 /// filter by the original loop's blocks. This also handles potentially 1109 /// unreachable code that we don't want to explore but might be found examining 1110 /// the predecessors of the header. 1111 /// 1112 /// If the original loop is no longer a loop, this will return an empty set. If 1113 /// it remains a loop, all the blocks within it will be added to the set 1114 /// (including those blocks in inner loops). 1115 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1116 LoopInfo &LI) { 1117 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1118 1119 auto *PH = L.getLoopPreheader(); 1120 auto *Header = L.getHeader(); 1121 1122 // A worklist to use while walking backwards from the header. 1123 SmallVector<BasicBlock *, 16> Worklist; 1124 1125 // First walk the predecessors of the header to find the backedges. This will 1126 // form the basis of our walk. 1127 for (auto *Pred : predecessors(Header)) { 1128 // Skip the preheader. 1129 if (Pred == PH) 1130 continue; 1131 1132 // Because the loop was in simplified form, the only non-loop predecessor 1133 // is the preheader. 1134 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1135 "than the preheader that is not part of the " 1136 "loop!"); 1137 1138 // Insert this block into the loop set and on the first visit and, if it 1139 // isn't the header we're currently walking, put it into the worklist to 1140 // recurse through. 1141 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1142 Worklist.push_back(Pred); 1143 } 1144 1145 // If no backedges were found, we're done. 1146 if (LoopBlockSet.empty()) 1147 return LoopBlockSet; 1148 1149 // We found backedges, recurse through them to identify the loop blocks. 1150 while (!Worklist.empty()) { 1151 BasicBlock *BB = Worklist.pop_back_val(); 1152 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1153 1154 // No need to walk past the header. 1155 if (BB == Header) 1156 continue; 1157 1158 // Because we know the inner loop structure remains valid we can use the 1159 // loop structure to jump immediately across the entire nested loop. 1160 // Further, because it is in loop simplified form, we can directly jump 1161 // to its preheader afterward. 1162 if (Loop *InnerL = LI.getLoopFor(BB)) 1163 if (InnerL != &L) { 1164 assert(L.contains(InnerL) && 1165 "Should not reach a loop *outside* this loop!"); 1166 // The preheader is the only possible predecessor of the loop so 1167 // insert it into the set and check whether it was already handled. 1168 auto *InnerPH = InnerL->getLoopPreheader(); 1169 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1170 "but not contain the inner loop " 1171 "preheader!"); 1172 if (!LoopBlockSet.insert(InnerPH).second) 1173 // The only way to reach the preheader is through the loop body 1174 // itself so if it has been visited the loop is already handled. 1175 continue; 1176 1177 // Insert all of the blocks (other than those already present) into 1178 // the loop set. We expect at least the block that led us to find the 1179 // inner loop to be in the block set, but we may also have other loop 1180 // blocks if they were already enqueued as predecessors of some other 1181 // outer loop block. 1182 for (auto *InnerBB : InnerL->blocks()) { 1183 if (InnerBB == BB) { 1184 assert(LoopBlockSet.count(InnerBB) && 1185 "Block should already be in the set!"); 1186 continue; 1187 } 1188 1189 LoopBlockSet.insert(InnerBB); 1190 } 1191 1192 // Add the preheader to the worklist so we will continue past the 1193 // loop body. 1194 Worklist.push_back(InnerPH); 1195 continue; 1196 } 1197 1198 // Insert any predecessors that were in the original loop into the new 1199 // set, and if the insert is successful, add them to the worklist. 1200 for (auto *Pred : predecessors(BB)) 1201 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1202 Worklist.push_back(Pred); 1203 } 1204 1205 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1206 1207 // We've found all the blocks participating in the loop, return our completed 1208 // set. 1209 return LoopBlockSet; 1210 } 1211 1212 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1213 /// 1214 /// The removal may have removed some child loops entirely but cannot have 1215 /// disturbed any remaining child loops. However, they may need to be hoisted 1216 /// to the parent loop (or to be top-level loops). The original loop may be 1217 /// completely removed. 1218 /// 1219 /// The sibling loops resulting from this update are returned. If the original 1220 /// loop remains a valid loop, it will be the first entry in this list with all 1221 /// of the newly sibling loops following it. 1222 /// 1223 /// Returns true if the loop remains a loop after unswitching, and false if it 1224 /// is no longer a loop after unswitching (and should not continue to be 1225 /// referenced). 1226 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1227 LoopInfo &LI, 1228 SmallVectorImpl<Loop *> &HoistedLoops) { 1229 auto *PH = L.getLoopPreheader(); 1230 1231 // Compute the actual parent loop from the exit blocks. Because we may have 1232 // pruned some exits the loop may be different from the original parent. 1233 Loop *ParentL = nullptr; 1234 SmallVector<Loop *, 4> ExitLoops; 1235 SmallVector<BasicBlock *, 4> ExitsInLoops; 1236 ExitsInLoops.reserve(ExitBlocks.size()); 1237 for (auto *ExitBB : ExitBlocks) 1238 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1239 ExitLoops.push_back(ExitL); 1240 ExitsInLoops.push_back(ExitBB); 1241 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1242 ParentL = ExitL; 1243 } 1244 1245 // Recompute the blocks participating in this loop. This may be empty if it 1246 // is no longer a loop. 1247 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1248 1249 // If we still have a loop, we need to re-set the loop's parent as the exit 1250 // block set changing may have moved it within the loop nest. Note that this 1251 // can only happen when this loop has a parent as it can only hoist the loop 1252 // *up* the nest. 1253 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1254 // Remove this loop's (original) blocks from all of the intervening loops. 1255 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1256 IL = IL->getParentLoop()) { 1257 IL->getBlocksSet().erase(PH); 1258 for (auto *BB : L.blocks()) 1259 IL->getBlocksSet().erase(BB); 1260 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1261 return BB == PH || L.contains(BB); 1262 }); 1263 } 1264 1265 LI.changeLoopFor(PH, ParentL); 1266 L.getParentLoop()->removeChildLoop(&L); 1267 if (ParentL) 1268 ParentL->addChildLoop(&L); 1269 else 1270 LI.addTopLevelLoop(&L); 1271 } 1272 1273 // Now we update all the blocks which are no longer within the loop. 1274 auto &Blocks = L.getBlocksVector(); 1275 auto BlocksSplitI = 1276 LoopBlockSet.empty() 1277 ? Blocks.begin() 1278 : std::stable_partition( 1279 Blocks.begin(), Blocks.end(), 1280 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1281 1282 // Before we erase the list of unlooped blocks, build a set of them. 1283 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1284 if (LoopBlockSet.empty()) 1285 UnloopedBlocks.insert(PH); 1286 1287 // Now erase these blocks from the loop. 1288 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1289 L.getBlocksSet().erase(BB); 1290 Blocks.erase(BlocksSplitI, Blocks.end()); 1291 1292 // Sort the exits in ascending loop depth, we'll work backwards across these 1293 // to process them inside out. 1294 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1295 [&](BasicBlock *LHS, BasicBlock *RHS) { 1296 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1297 }); 1298 1299 // We'll build up a set for each exit loop. 1300 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1301 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1302 1303 auto RemoveUnloopedBlocksFromLoop = 1304 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1305 for (auto *BB : UnloopedBlocks) 1306 L.getBlocksSet().erase(BB); 1307 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1308 return UnloopedBlocks.count(BB); 1309 }); 1310 }; 1311 1312 SmallVector<BasicBlock *, 16> Worklist; 1313 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1314 assert(Worklist.empty() && "Didn't clear worklist!"); 1315 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1316 1317 // Grab the next exit block, in decreasing loop depth order. 1318 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1319 Loop &ExitL = *LI.getLoopFor(ExitBB); 1320 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1321 1322 // Erase all of the unlooped blocks from the loops between the previous 1323 // exit loop and this exit loop. This works because the ExitInLoops list is 1324 // sorted in increasing order of loop depth and thus we visit loops in 1325 // decreasing order of loop depth. 1326 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1327 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1328 1329 // Walk the CFG back until we hit the cloned PH adding everything reachable 1330 // and in the unlooped set to this exit block's loop. 1331 Worklist.push_back(ExitBB); 1332 do { 1333 BasicBlock *BB = Worklist.pop_back_val(); 1334 // We can stop recursing at the cloned preheader (if we get there). 1335 if (BB == PH) 1336 continue; 1337 1338 for (BasicBlock *PredBB : predecessors(BB)) { 1339 // If this pred has already been moved to our set or is part of some 1340 // (inner) loop, no update needed. 1341 if (!UnloopedBlocks.erase(PredBB)) { 1342 assert((NewExitLoopBlocks.count(PredBB) || 1343 ExitL.contains(LI.getLoopFor(PredBB))) && 1344 "Predecessor not in a nested loop (or already visited)!"); 1345 continue; 1346 } 1347 1348 // We just insert into the loop set here. We'll add these blocks to the 1349 // exit loop after we build up the set in a deterministic order rather 1350 // than the predecessor-influenced visit order. 1351 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1352 (void)Inserted; 1353 assert(Inserted && "Should only visit an unlooped block once!"); 1354 1355 // And recurse through to its predecessors. 1356 Worklist.push_back(PredBB); 1357 } 1358 } while (!Worklist.empty()); 1359 1360 // If blocks in this exit loop were directly part of the original loop (as 1361 // opposed to a child loop) update the map to point to this exit loop. This 1362 // just updates a map and so the fact that the order is unstable is fine. 1363 for (auto *BB : NewExitLoopBlocks) 1364 if (Loop *BBL = LI.getLoopFor(BB)) 1365 if (BBL == &L || !L.contains(BBL)) 1366 LI.changeLoopFor(BB, &ExitL); 1367 1368 // We will remove the remaining unlooped blocks from this loop in the next 1369 // iteration or below. 1370 NewExitLoopBlocks.clear(); 1371 } 1372 1373 // Any remaining unlooped blocks are no longer part of any loop unless they 1374 // are part of some child loop. 1375 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1376 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1377 for (auto *BB : UnloopedBlocks) 1378 if (Loop *BBL = LI.getLoopFor(BB)) 1379 if (BBL == &L || !L.contains(BBL)) 1380 LI.changeLoopFor(BB, nullptr); 1381 1382 // Sink all the child loops whose headers are no longer in the loop set to 1383 // the parent (or to be top level loops). We reach into the loop and directly 1384 // update its subloop vector to make this batch update efficient. 1385 auto &SubLoops = L.getSubLoopsVector(); 1386 auto SubLoopsSplitI = 1387 LoopBlockSet.empty() 1388 ? SubLoops.begin() 1389 : std::stable_partition( 1390 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1391 return LoopBlockSet.count(SubL->getHeader()); 1392 }); 1393 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1394 HoistedLoops.push_back(HoistedL); 1395 HoistedL->setParentLoop(nullptr); 1396 1397 // To compute the new parent of this hoisted loop we look at where we 1398 // placed the preheader above. We can't lookup the header itself because we 1399 // retained the mapping from the header to the hoisted loop. But the 1400 // preheader and header should have the exact same new parent computed 1401 // based on the set of exit blocks from the original loop as the preheader 1402 // is a predecessor of the header and so reached in the reverse walk. And 1403 // because the loops were all in simplified form the preheader of the 1404 // hoisted loop can't be part of some *other* loop. 1405 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1406 NewParentL->addChildLoop(HoistedL); 1407 else 1408 LI.addTopLevelLoop(HoistedL); 1409 } 1410 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1411 1412 // Actually delete the loop if nothing remained within it. 1413 if (Blocks.empty()) { 1414 assert(SubLoops.empty() && 1415 "Failed to remove all subloops from the original loop!"); 1416 if (Loop *ParentL = L.getParentLoop()) 1417 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1418 else 1419 LI.removeLoop(llvm::find(LI, &L)); 1420 LI.destroy(&L); 1421 return false; 1422 } 1423 1424 return true; 1425 } 1426 1427 /// Helper to visit a dominator subtree, invoking a callable on each node. 1428 /// 1429 /// Returning false at any point will stop walking past that node of the tree. 1430 template <typename CallableT> 1431 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1432 SmallVector<DomTreeNode *, 4> DomWorklist; 1433 DomWorklist.push_back(DT[BB]); 1434 #ifndef NDEBUG 1435 SmallPtrSet<DomTreeNode *, 4> Visited; 1436 Visited.insert(DT[BB]); 1437 #endif 1438 do { 1439 DomTreeNode *N = DomWorklist.pop_back_val(); 1440 1441 // Visit this node. 1442 if (!Callable(N->getBlock())) 1443 continue; 1444 1445 // Accumulate the child nodes. 1446 for (DomTreeNode *ChildN : *N) { 1447 assert(Visited.insert(ChildN).second && 1448 "Cannot visit a node twice when walking a tree!"); 1449 DomWorklist.push_back(ChildN); 1450 } 1451 } while (!DomWorklist.empty()); 1452 } 1453 1454 /// Take an invariant branch that has been determined to be safe and worthwhile 1455 /// to unswitch despite being non-trivial to do so and perform the unswitch. 1456 /// 1457 /// This directly updates the CFG to hoist the predicate out of the loop, and 1458 /// clone the necessary parts of the loop to maintain behavior. 1459 /// 1460 /// It also updates both dominator tree and loopinfo based on the unswitching. 1461 /// 1462 /// Once unswitching has been performed it runs the provided callback to report 1463 /// the new loops and no-longer valid loops to the caller. 1464 static bool unswitchInvariantBranch( 1465 Loop &L, BranchInst &BI, DominatorTree &DT, LoopInfo &LI, 1466 AssumptionCache &AC, 1467 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB) { 1468 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 1469 assert(L.isLoopInvariant(BI.getCondition()) && 1470 "Can only unswitch an invariant branch condition!"); 1471 1472 // Constant and BBs tracking the cloned and continuing successor. 1473 const int ClonedSucc = 0; 1474 auto *ParentBB = BI.getParent(); 1475 auto *UnswitchedSuccBB = BI.getSuccessor(ClonedSucc); 1476 auto *ContinueSuccBB = BI.getSuccessor(1 - ClonedSucc); 1477 1478 assert(UnswitchedSuccBB != ContinueSuccBB && 1479 "Should not unswitch a branch that always goes to the same place!"); 1480 1481 // The branch should be in this exact loop. Any inner loop's invariant branch 1482 // should be handled by unswitching that inner loop. The caller of this 1483 // routine should filter out any candidates that remain (but were skipped for 1484 // whatever reason). 1485 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1486 1487 SmallVector<BasicBlock *, 4> ExitBlocks; 1488 L.getUniqueExitBlocks(ExitBlocks); 1489 1490 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 1491 // don't know how to split those exit blocks. 1492 // FIXME: We should teach SplitBlock to handle this and remove this 1493 // restriction. 1494 for (auto *ExitBB : ExitBlocks) 1495 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) 1496 return false; 1497 1498 SmallPtrSet<BasicBlock *, 4> ExitBlockSet(ExitBlocks.begin(), 1499 ExitBlocks.end()); 1500 1501 // Compute the parent loop now before we start hacking on things. 1502 Loop *ParentL = L.getParentLoop(); 1503 1504 // Compute the outer-most loop containing one of our exit blocks. This is the 1505 // furthest up our loopnest which can be mutated, which we will use below to 1506 // update things. 1507 Loop *OuterExitL = &L; 1508 for (auto *ExitBB : ExitBlocks) { 1509 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1510 if (!NewOuterExitL) { 1511 // We exited the entire nest with this block, so we're done. 1512 OuterExitL = nullptr; 1513 break; 1514 } 1515 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1516 OuterExitL = NewOuterExitL; 1517 } 1518 1519 // If the edge we *aren't* cloning in the unswitch (the continuing edge) 1520 // dominates its target, we can skip cloning the dominated region of the loop 1521 // and its exits. We compute this as a set of nodes to be skipped. 1522 SmallPtrSet<BasicBlock *, 4> SkippedLoopAndExitBlocks; 1523 if (ContinueSuccBB->getUniquePredecessor() || 1524 llvm::all_of(predecessors(ContinueSuccBB), [&](BasicBlock *PredBB) { 1525 return PredBB == ParentBB || DT.dominates(ContinueSuccBB, PredBB); 1526 })) { 1527 visitDomSubTree(DT, ContinueSuccBB, [&](BasicBlock *BB) { 1528 SkippedLoopAndExitBlocks.insert(BB); 1529 return true; 1530 }); 1531 } 1532 // Similarly, if the edge we *are* cloning in the unswitch (the unswitched 1533 // edge) dominates its target, we will end up with dead nodes in the original 1534 // loop and its exits that will need to be deleted. Here, we just retain that 1535 // the property holds and will compute the deleted set later. 1536 bool DeleteUnswitchedSucc = 1537 UnswitchedSuccBB->getUniquePredecessor() || 1538 llvm::all_of(predecessors(UnswitchedSuccBB), [&](BasicBlock *PredBB) { 1539 return PredBB == ParentBB || DT.dominates(UnswitchedSuccBB, PredBB); 1540 }); 1541 1542 // Split the preheader, so that we know that there is a safe place to insert 1543 // the conditional branch. We will change the preheader to have a conditional 1544 // branch on LoopCond. The original preheader will become the split point 1545 // between the unswitched versions, and we will have a new preheader for the 1546 // original loop. 1547 BasicBlock *SplitBB = L.getLoopPreheader(); 1548 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI); 1549 1550 // Keep a mapping for the cloned values. 1551 ValueToValueMapTy VMap; 1552 1553 // Keep track of the dominator tree updates needed. 1554 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1555 1556 // Build the cloned blocks from the loop. 1557 auto *ClonedPH = buildClonedLoopBlocks( 1558 L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB, 1559 ContinueSuccBB, SkippedLoopAndExitBlocks, VMap, DTUpdates, AC, DT, LI); 1560 1561 // Remove the parent as a predecessor of the unswitched successor. 1562 UnswitchedSuccBB->removePredecessor(ParentBB, /*DontDeleteUselessPHIs*/ true); 1563 1564 // Now splice the branch from the original loop and use it to select between 1565 // the two loops. 1566 SplitBB->getTerminator()->eraseFromParent(); 1567 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), BI); 1568 BI.setSuccessor(ClonedSucc, ClonedPH); 1569 BI.setSuccessor(1 - ClonedSucc, LoopPH); 1570 1571 // Create a new unconditional branch to the continuing block (as opposed to 1572 // the one cloned). 1573 BranchInst::Create(ContinueSuccBB, ParentBB); 1574 1575 // Before we update the dominator tree, collect the dead blocks if we're going 1576 // to end up deleting the unswitched successor. 1577 SmallVector<BasicBlock *, 16> DeadBlocks; 1578 if (DeleteUnswitchedSucc) { 1579 DeadBlocks.push_back(UnswitchedSuccBB); 1580 for (int i = 0; i < (int)DeadBlocks.size(); ++i) { 1581 // If we reach an exit block, stop recursing as the unswitched loop will 1582 // end up reaching the merge block which we make the successor of the 1583 // exit. 1584 if (ExitBlockSet.count(DeadBlocks[i])) 1585 continue; 1586 1587 // Insert the children that are within the loop or exit block set. Other 1588 // children may reach out of the loop. While we don't expect these to be 1589 // dead (as the unswitched clone should reach them) we don't try to prove 1590 // that here. 1591 for (DomTreeNode *ChildN : *DT[DeadBlocks[i]]) 1592 if (L.contains(ChildN->getBlock()) || 1593 ExitBlockSet.count(ChildN->getBlock())) 1594 DeadBlocks.push_back(ChildN->getBlock()); 1595 } 1596 } 1597 1598 // Add the remaining edges to our updates and apply them to get an up-to-date 1599 // dominator tree. Note that this will cause the dead blocks above to be 1600 // unreachable and no longer in the dominator tree. 1601 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 1602 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 1603 DT.applyUpdates(DTUpdates); 1604 1605 // Build the cloned loop structure itself. This may be substantially 1606 // different from the original structure due to the simplified CFG. This also 1607 // handles inserting all the cloned blocks into the correct loops. 1608 SmallVector<Loop *, 4> NonChildClonedLoops; 1609 buildClonedLoops(L, ExitBlocks, VMap, LI, NonChildClonedLoops); 1610 1611 // Delete anything that was made dead in the original loop due to 1612 // unswitching. 1613 if (!DeadBlocks.empty()) 1614 deleteDeadBlocksFromLoop(L, DeadBlocks, ExitBlocks, DT, LI); 1615 1616 SmallVector<Loop *, 4> HoistedLoops; 1617 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 1618 1619 // This transformation has a high risk of corrupting the dominator tree, and 1620 // the below steps to rebuild loop structures will result in hard to debug 1621 // errors in that case so verify that the dominator tree is sane first. 1622 // FIXME: Remove this when the bugs stop showing up and rely on existing 1623 // verification steps. 1624 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1625 1626 // We can change which blocks are exit blocks of all the cloned sibling 1627 // loops, the current loop, and any parent loops which shared exit blocks 1628 // with the current loop. As a consequence, we need to re-form LCSSA for 1629 // them. But we shouldn't need to re-form LCSSA for any child loops. 1630 // FIXME: This could be made more efficient by tracking which exit blocks are 1631 // new, and focusing on them, but that isn't likely to be necessary. 1632 // 1633 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 1634 // loop nest and update every loop that could have had its exits changed. We 1635 // also need to cover any intervening loops. We add all of these loops to 1636 // a list and sort them by loop depth to achieve this without updating 1637 // unnecessary loops. 1638 auto UpdateLoop = [&](Loop &UpdateL) { 1639 #ifndef NDEBUG 1640 UpdateL.verifyLoop(); 1641 for (Loop *ChildL : UpdateL) { 1642 ChildL->verifyLoop(); 1643 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 1644 "Perturbed a child loop's LCSSA form!"); 1645 } 1646 #endif 1647 // First build LCSSA for this loop so that we can preserve it when 1648 // forming dedicated exits. We don't want to perturb some other loop's 1649 // LCSSA while doing that CFG edit. 1650 formLCSSA(UpdateL, DT, &LI, nullptr); 1651 1652 // For loops reached by this loop's original exit blocks we may 1653 // introduced new, non-dedicated exits. At least try to re-form dedicated 1654 // exits for these loops. This may fail if they couldn't have dedicated 1655 // exits to start with. 1656 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); 1657 }; 1658 1659 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 1660 // and we can do it in any order as they don't nest relative to each other. 1661 // 1662 // Also check if any of the loops we have updated have become top-level loops 1663 // as that will necessitate widening the outer loop scope. 1664 for (Loop *UpdatedL : 1665 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 1666 UpdateLoop(*UpdatedL); 1667 if (!UpdatedL->getParentLoop()) 1668 OuterExitL = nullptr; 1669 } 1670 if (IsStillLoop) { 1671 UpdateLoop(L); 1672 if (!L.getParentLoop()) 1673 OuterExitL = nullptr; 1674 } 1675 1676 // If the original loop had exit blocks, walk up through the outer most loop 1677 // of those exit blocks to update LCSSA and form updated dedicated exits. 1678 if (OuterExitL != &L) 1679 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 1680 OuterL = OuterL->getParentLoop()) 1681 UpdateLoop(*OuterL); 1682 1683 #ifndef NDEBUG 1684 // Verify the entire loop structure to catch any incorrect updates before we 1685 // progress in the pass pipeline. 1686 LI.verify(DT); 1687 #endif 1688 1689 // Now that we've unswitched something, make callbacks to report the changes. 1690 // For that we need to merge together the updated loops and the cloned loops 1691 // and check whether the original loop survived. 1692 SmallVector<Loop *, 4> SibLoops; 1693 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 1694 if (UpdatedL->getParentLoop() == ParentL) 1695 SibLoops.push_back(UpdatedL); 1696 UnswitchCB(IsStillLoop, SibLoops); 1697 1698 ++NumBranches; 1699 return true; 1700 } 1701 1702 /// Recursively compute the cost of a dominator subtree based on the per-block 1703 /// cost map provided. 1704 /// 1705 /// The recursive computation is memozied into the provided DT-indexed cost map 1706 /// to allow querying it for most nodes in the domtree without it becoming 1707 /// quadratic. 1708 static int 1709 computeDomSubtreeCost(DomTreeNode &N, 1710 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 1711 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 1712 // Don't accumulate cost (or recurse through) blocks not in our block cost 1713 // map and thus not part of the duplication cost being considered. 1714 auto BBCostIt = BBCostMap.find(N.getBlock()); 1715 if (BBCostIt == BBCostMap.end()) 1716 return 0; 1717 1718 // Lookup this node to see if we already computed its cost. 1719 auto DTCostIt = DTCostMap.find(&N); 1720 if (DTCostIt != DTCostMap.end()) 1721 return DTCostIt->second; 1722 1723 // If not, we have to compute it. We can't use insert above and update 1724 // because computing the cost may insert more things into the map. 1725 int Cost = std::accumulate( 1726 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 1727 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 1728 }); 1729 bool Inserted = DTCostMap.insert({&N, Cost}).second; 1730 (void)Inserted; 1731 assert(Inserted && "Should not insert a node while visiting children!"); 1732 return Cost; 1733 } 1734 1735 /// Unswitch control flow predicated on loop invariant conditions. 1736 /// 1737 /// This first hoists all branches or switches which are trivial (IE, do not 1738 /// require duplicating any part of the loop) out of the loop body. It then 1739 /// looks at other loop invariant control flows and tries to unswitch those as 1740 /// well by cloning the loop if the result is small enough. 1741 static bool 1742 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 1743 TargetTransformInfo &TTI, bool NonTrivial, 1744 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB) { 1745 assert(L.isRecursivelyLCSSAForm(DT, LI) && 1746 "Loops must be in LCSSA form before unswitching."); 1747 1748 // Must be in loop simplified form: we need a preheader and dedicated exits. 1749 if (!L.isLoopSimplifyForm()) 1750 return false; 1751 1752 // Try trivial unswitch first before loop over other basic blocks in the loop. 1753 if (unswitchAllTrivialConditions(L, DT, LI)) { 1754 // If we unswitched successfully we will want to clean up the loop before 1755 // processing it further so just mark it as unswitched and return. 1756 UnswitchCB(/*CurrentLoopValid*/ true, {}); 1757 return true; 1758 } 1759 1760 // If we're not doing non-trivial unswitching, we're done. We both accept 1761 // a parameter but also check a local flag that can be used for testing 1762 // a debugging. 1763 if (!NonTrivial && !EnableNonTrivialUnswitch) 1764 return false; 1765 1766 // Collect all remaining invariant branch conditions within this loop (as 1767 // opposed to an inner loop which would be handled when visiting that inner 1768 // loop). 1769 SmallVector<TerminatorInst *, 4> UnswitchCandidates; 1770 for (auto *BB : L.blocks()) 1771 if (LI.getLoopFor(BB) == &L) 1772 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1773 if (BI->isConditional() && L.isLoopInvariant(BI->getCondition()) && 1774 BI->getSuccessor(0) != BI->getSuccessor(1)) 1775 UnswitchCandidates.push_back(BI); 1776 1777 // If we didn't find any candidates, we're done. 1778 if (UnswitchCandidates.empty()) 1779 return false; 1780 1781 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 1782 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 1783 // irreducible control flow into reducible control flow and introduce new 1784 // loops "out of thin air". If we ever discover important use cases for doing 1785 // this, we can add support to loop unswitch, but it is a lot of complexity 1786 // for what seems little or no real world benifit. 1787 LoopBlocksRPO RPOT(&L); 1788 RPOT.perform(&LI); 1789 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 1790 return false; 1791 1792 LLVM_DEBUG( 1793 dbgs() << "Considering " << UnswitchCandidates.size() 1794 << " non-trivial loop invariant conditions for unswitching.\n"); 1795 1796 // Given that unswitching these terminators will require duplicating parts of 1797 // the loop, so we need to be able to model that cost. Compute the ephemeral 1798 // values and set up a data structure to hold per-BB costs. We cache each 1799 // block's cost so that we don't recompute this when considering different 1800 // subsets of the loop for duplication during unswitching. 1801 SmallPtrSet<const Value *, 4> EphValues; 1802 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 1803 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 1804 1805 // Compute the cost of each block, as well as the total loop cost. Also, bail 1806 // out if we see instructions which are incompatible with loop unswitching 1807 // (convergent, noduplicate, or cross-basic-block tokens). 1808 // FIXME: We might be able to safely handle some of these in non-duplicated 1809 // regions. 1810 int LoopCost = 0; 1811 for (auto *BB : L.blocks()) { 1812 int Cost = 0; 1813 for (auto &I : *BB) { 1814 if (EphValues.count(&I)) 1815 continue; 1816 1817 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 1818 return false; 1819 if (auto CS = CallSite(&I)) 1820 if (CS.isConvergent() || CS.cannotDuplicate()) 1821 return false; 1822 1823 Cost += TTI.getUserCost(&I); 1824 } 1825 assert(Cost >= 0 && "Must not have negative costs!"); 1826 LoopCost += Cost; 1827 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 1828 BBCostMap[BB] = Cost; 1829 } 1830 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 1831 1832 // Now we find the best candidate by searching for the one with the following 1833 // properties in order: 1834 // 1835 // 1) An unswitching cost below the threshold 1836 // 2) The smallest number of duplicated unswitch candidates (to avoid 1837 // creating redundant subsequent unswitching) 1838 // 3) The smallest cost after unswitching. 1839 // 1840 // We prioritize reducing fanout of unswitch candidates provided the cost 1841 // remains below the threshold because this has a multiplicative effect. 1842 // 1843 // This requires memoizing each dominator subtree to avoid redundant work. 1844 // 1845 // FIXME: Need to actually do the number of candidates part above. 1846 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 1847 // Given a terminator which might be unswitched, computes the non-duplicated 1848 // cost for that terminator. 1849 auto ComputeUnswitchedCost = [&](TerminatorInst *TI) { 1850 BasicBlock &BB = *TI->getParent(); 1851 SmallPtrSet<BasicBlock *, 4> Visited; 1852 1853 int Cost = LoopCost; 1854 for (BasicBlock *SuccBB : successors(&BB)) { 1855 // Don't count successors more than once. 1856 if (!Visited.insert(SuccBB).second) 1857 continue; 1858 1859 // This successor's domtree will not need to be duplicated after 1860 // unswitching if the edge to the successor dominates it (and thus the 1861 // entire tree). This essentially means there is no other path into this 1862 // subtree and so it will end up live in only one clone of the loop. 1863 if (SuccBB->getUniquePredecessor() || 1864 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 1865 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 1866 })) { 1867 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 1868 assert(Cost >= 0 && 1869 "Non-duplicated cost should never exceed total loop cost!"); 1870 } 1871 } 1872 1873 // Now scale the cost by the number of unique successors minus one. We 1874 // subtract one because there is already at least one copy of the entire 1875 // loop. This is computing the new cost of unswitching a condition. 1876 assert(Visited.size() > 1 && 1877 "Cannot unswitch a condition without multiple distinct successors!"); 1878 return Cost * (Visited.size() - 1); 1879 }; 1880 TerminatorInst *BestUnswitchTI = nullptr; 1881 int BestUnswitchCost; 1882 for (TerminatorInst *CandidateTI : UnswitchCandidates) { 1883 int CandidateCost = ComputeUnswitchedCost(CandidateTI); 1884 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 1885 << " for unswitch candidate: " << *CandidateTI << "\n"); 1886 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 1887 BestUnswitchTI = CandidateTI; 1888 BestUnswitchCost = CandidateCost; 1889 } 1890 } 1891 1892 if (BestUnswitchCost >= UnswitchThreshold) { 1893 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 1894 << BestUnswitchCost << "\n"); 1895 return false; 1896 } 1897 1898 LLVM_DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = " 1899 << BestUnswitchCost << ") branch: " << *BestUnswitchTI 1900 << "\n"); 1901 return unswitchInvariantBranch(L, cast<BranchInst>(*BestUnswitchTI), DT, LI, 1902 AC, UnswitchCB); 1903 } 1904 1905 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 1906 LoopStandardAnalysisResults &AR, 1907 LPMUpdater &U) { 1908 Function &F = *L.getHeader()->getParent(); 1909 (void)F; 1910 1911 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 1912 << "\n"); 1913 1914 // Save the current loop name in a variable so that we can report it even 1915 // after it has been deleted. 1916 std::string LoopName = L.getName(); 1917 1918 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 1919 ArrayRef<Loop *> NewLoops) { 1920 // If we did a non-trivial unswitch, we have added new (cloned) loops. 1921 if (!NewLoops.empty()) 1922 U.addSiblingLoops(NewLoops); 1923 1924 // If the current loop remains valid, we should revisit it to catch any 1925 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 1926 if (CurrentLoopValid) 1927 U.revisitCurrentLoop(); 1928 else 1929 U.markLoopAsDeleted(L, LoopName); 1930 }; 1931 1932 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, 1933 UnswitchCB)) 1934 return PreservedAnalyses::all(); 1935 1936 // Historically this pass has had issues with the dominator tree so verify it 1937 // in asserts builds. 1938 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 1939 return getLoopPassPreservedAnalyses(); 1940 } 1941 1942 namespace { 1943 1944 class SimpleLoopUnswitchLegacyPass : public LoopPass { 1945 bool NonTrivial; 1946 1947 public: 1948 static char ID; // Pass ID, replacement for typeid 1949 1950 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 1951 : LoopPass(ID), NonTrivial(NonTrivial) { 1952 initializeSimpleLoopUnswitchLegacyPassPass( 1953 *PassRegistry::getPassRegistry()); 1954 } 1955 1956 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 1957 1958 void getAnalysisUsage(AnalysisUsage &AU) const override { 1959 AU.addRequired<AssumptionCacheTracker>(); 1960 AU.addRequired<TargetTransformInfoWrapperPass>(); 1961 getLoopAnalysisUsage(AU); 1962 } 1963 }; 1964 1965 } // end anonymous namespace 1966 1967 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 1968 if (skipLoop(L)) 1969 return false; 1970 1971 Function &F = *L->getHeader()->getParent(); 1972 1973 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 1974 << "\n"); 1975 1976 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1977 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1978 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1979 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1980 1981 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 1982 ArrayRef<Loop *> NewLoops) { 1983 // If we did a non-trivial unswitch, we have added new (cloned) loops. 1984 for (auto *NewL : NewLoops) 1985 LPM.addLoop(*NewL); 1986 1987 // If the current loop remains valid, re-add it to the queue. This is 1988 // a little wasteful as we'll finish processing the current loop as well, 1989 // but it is the best we can do in the old PM. 1990 if (CurrentLoopValid) 1991 LPM.addLoop(*L); 1992 else 1993 LPM.markLoopAsDeleted(*L); 1994 }; 1995 1996 bool Changed = 1997 unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB); 1998 1999 // If anything was unswitched, also clear any cached information about this 2000 // loop. 2001 LPM.deleteSimpleAnalysisLoop(L); 2002 2003 // Historically this pass has had issues with the dominator tree so verify it 2004 // in asserts builds. 2005 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2006 2007 return Changed; 2008 } 2009 2010 char SimpleLoopUnswitchLegacyPass::ID = 0; 2011 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2012 "Simple unswitch loops", false, false) 2013 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2014 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2015 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2016 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2017 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2018 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2019 "Simple unswitch loops", false, false) 2020 2021 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2022 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2023 } 2024