xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision 91aa9097ae52c39c0b077faf03ab58af0ee15d2d)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/GuardUtils.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/GenericDomTree.h"
54 #include "llvm/Support/InstructionCost.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar/LoopPassManager.h"
57 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
58 #include "llvm/Transforms/Utils/Cloning.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 #include "llvm/Transforms/Utils/ValueMapper.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <iterator>
65 #include <numeric>
66 #include <utility>
67 
68 #define DEBUG_TYPE "simple-loop-unswitch"
69 
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 
73 STATISTIC(NumBranches, "Number of branches unswitched");
74 STATISTIC(NumSwitches, "Number of switches unswitched");
75 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
76 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
77 STATISTIC(
78     NumCostMultiplierSkipped,
79     "Number of unswitch candidates that had their cost multiplier skipped");
80 
81 static cl::opt<bool> EnableNonTrivialUnswitch(
82     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
83     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
84              "following the configuration passed into the pass."));
85 
86 static cl::opt<int>
87     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
88                       cl::desc("The cost threshold for unswitching a loop."));
89 
90 static cl::opt<bool> EnableUnswitchCostMultiplier(
91     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
92     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
93              "explosion in nontrivial unswitch."));
94 static cl::opt<int> UnswitchSiblingsToplevelDiv(
95     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
96     cl::desc("Toplevel siblings divisor for cost multiplier."));
97 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
98     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
99     cl::desc("Number of unswitch candidates that are ignored when calculating "
100              "cost multiplier."));
101 static cl::opt<bool> UnswitchGuards(
102     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
103     cl::desc("If enabled, simple loop unswitching will also consider "
104              "llvm.experimental.guard intrinsics as unswitch candidates."));
105 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
106     "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
107     cl::init(false), cl::Hidden,
108     cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
109              "null checks to save time analyzing if we can keep it."));
110 static cl::opt<unsigned>
111     MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
112                   cl::desc("Max number of memory uses to explore during "
113                            "partial unswitching analysis"),
114                   cl::init(100), cl::Hidden);
115 static cl::opt<bool> FreezeLoopUnswitchCond(
116     "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden,
117     cl::desc("If enabled, the freeze instruction will be added to condition "
118              "of loop unswitch to prevent miscompilation."));
119 
120 // Helper to skip (select x, true, false), which matches both a logical AND and
121 // OR and can confuse code that tries to determine if \p Cond is either a
122 // logical AND or OR but not both.
123 static Value *skipTrivialSelect(Value *Cond) {
124   Value *CondNext;
125   while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
126     Cond = CondNext;
127   return Cond;
128 }
129 
130 /// Collect all of the loop invariant input values transitively used by the
131 /// homogeneous instruction graph from a given root.
132 ///
133 /// This essentially walks from a root recursively through loop variant operands
134 /// which have perform the same logical operation (AND or OR) and finds all
135 /// inputs which are loop invariant. For some operations these can be
136 /// re-associated and unswitched out of the loop entirely.
137 static TinyPtrVector<Value *>
138 collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root,
139                                          const LoopInfo &LI) {
140   assert(!L.isLoopInvariant(&Root) &&
141          "Only need to walk the graph if root itself is not invariant.");
142   TinyPtrVector<Value *> Invariants;
143 
144   bool IsRootAnd = match(&Root, m_LogicalAnd());
145   bool IsRootOr  = match(&Root, m_LogicalOr());
146 
147   // Build a worklist and recurse through operators collecting invariants.
148   SmallVector<Instruction *, 4> Worklist;
149   SmallPtrSet<Instruction *, 8> Visited;
150   Worklist.push_back(&Root);
151   Visited.insert(&Root);
152   do {
153     Instruction &I = *Worklist.pop_back_val();
154     for (Value *OpV : I.operand_values()) {
155       // Skip constants as unswitching isn't interesting for them.
156       if (isa<Constant>(OpV))
157         continue;
158 
159       // Add it to our result if loop invariant.
160       if (L.isLoopInvariant(OpV)) {
161         Invariants.push_back(OpV);
162         continue;
163       }
164 
165       // If not an instruction with the same opcode, nothing we can do.
166       Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV));
167 
168       if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
169                   (IsRootOr  && match(OpI, m_LogicalOr())))) {
170         // Visit this operand.
171         if (Visited.insert(OpI).second)
172           Worklist.push_back(OpI);
173       }
174     }
175   } while (!Worklist.empty());
176 
177   return Invariants;
178 }
179 
180 static void replaceLoopInvariantUses(const Loop &L, Value *Invariant,
181                                      Constant &Replacement) {
182   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
183 
184   // Replace uses of LIC in the loop with the given constant.
185   // We use make_early_inc_range as set invalidates the iterator.
186   for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
187     Instruction *UserI = dyn_cast<Instruction>(U.getUser());
188 
189     // Replace this use within the loop body.
190     if (UserI && L.contains(UserI))
191       U.set(&Replacement);
192   }
193 }
194 
195 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
196 /// incoming values along this edge.
197 static bool areLoopExitPHIsLoopInvariant(const Loop &L,
198                                          const BasicBlock &ExitingBB,
199                                          const BasicBlock &ExitBB) {
200   for (const Instruction &I : ExitBB) {
201     auto *PN = dyn_cast<PHINode>(&I);
202     if (!PN)
203       // No more PHIs to check.
204       return true;
205 
206     // If the incoming value for this edge isn't loop invariant the unswitch
207     // won't be trivial.
208     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
209       return false;
210   }
211   llvm_unreachable("Basic blocks should never be empty!");
212 }
213 
214 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
215 /// end of \p BB and conditionally branch on the copied condition. We only
216 /// branch on a single value.
217 static void buildPartialUnswitchConditionalBranch(
218     BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
219     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze,
220     const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) {
221   IRBuilder<> IRB(&BB);
222 
223   SmallVector<Value *> FrozenInvariants;
224   for (Value *Inv : Invariants) {
225     if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT))
226       Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr");
227     FrozenInvariants.push_back(Inv);
228   }
229 
230   Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants)
231                           : IRB.CreateAnd(FrozenInvariants);
232   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
233                    Direction ? &NormalSucc : &UnswitchedSucc);
234 }
235 
236 /// Copy a set of loop invariant values, and conditionally branch on them.
237 static void buildPartialInvariantUnswitchConditionalBranch(
238     BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
239     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
240     MemorySSAUpdater *MSSAU) {
241   ValueToValueMapTy VMap;
242   for (auto *Val : reverse(ToDuplicate)) {
243     Instruction *Inst = cast<Instruction>(Val);
244     Instruction *NewInst = Inst->clone();
245     BB.getInstList().insert(BB.end(), NewInst);
246     RemapInstruction(NewInst, VMap,
247                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
248     VMap[Val] = NewInst;
249 
250     if (!MSSAU)
251       continue;
252 
253     MemorySSA *MSSA = MSSAU->getMemorySSA();
254     if (auto *MemUse =
255             dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
256       auto *DefiningAccess = MemUse->getDefiningAccess();
257       // Get the first defining access before the loop.
258       while (L.contains(DefiningAccess->getBlock())) {
259         // If the defining access is a MemoryPhi, get the incoming
260         // value for the pre-header as defining access.
261         if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
262           DefiningAccess =
263               MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
264         else
265           DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
266       }
267       MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
268                                     NewInst->getParent(),
269                                     MemorySSA::BeforeTerminator);
270     }
271   }
272 
273   IRBuilder<> IRB(&BB);
274   Value *Cond = VMap[ToDuplicate[0]];
275   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
276                    Direction ? &NormalSucc : &UnswitchedSucc);
277 }
278 
279 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
280 ///
281 /// Requires that the loop exit and unswitched basic block are the same, and
282 /// that the exiting block was a unique predecessor of that block. Rewrites the
283 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
284 /// PHI nodes from the old preheader that now contains the unswitched
285 /// terminator.
286 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
287                                                   BasicBlock &OldExitingBB,
288                                                   BasicBlock &OldPH) {
289   for (PHINode &PN : UnswitchedBB.phis()) {
290     // When the loop exit is directly unswitched we just need to update the
291     // incoming basic block. We loop to handle weird cases with repeated
292     // incoming blocks, but expect to typically only have one operand here.
293     for (auto i : seq<int>(0, PN.getNumOperands())) {
294       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
295              "Found incoming block different from unique predecessor!");
296       PN.setIncomingBlock(i, &OldPH);
297     }
298   }
299 }
300 
301 /// Rewrite the PHI nodes in the loop exit basic block and the split off
302 /// unswitched block.
303 ///
304 /// Because the exit block remains an exit from the loop, this rewrites the
305 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
306 /// nodes into the unswitched basic block to select between the value in the
307 /// old preheader and the loop exit.
308 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
309                                                       BasicBlock &UnswitchedBB,
310                                                       BasicBlock &OldExitingBB,
311                                                       BasicBlock &OldPH,
312                                                       bool FullUnswitch) {
313   assert(&ExitBB != &UnswitchedBB &&
314          "Must have different loop exit and unswitched blocks!");
315   Instruction *InsertPt = &*UnswitchedBB.begin();
316   for (PHINode &PN : ExitBB.phis()) {
317     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
318                                   PN.getName() + ".split", InsertPt);
319 
320     // Walk backwards over the old PHI node's inputs to minimize the cost of
321     // removing each one. We have to do this weird loop manually so that we
322     // create the same number of new incoming edges in the new PHI as we expect
323     // each case-based edge to be included in the unswitched switch in some
324     // cases.
325     // FIXME: This is really, really gross. It would be much cleaner if LLVM
326     // allowed us to create a single entry for a predecessor block without
327     // having separate entries for each "edge" even though these edges are
328     // required to produce identical results.
329     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
330       if (PN.getIncomingBlock(i) != &OldExitingBB)
331         continue;
332 
333       Value *Incoming = PN.getIncomingValue(i);
334       if (FullUnswitch)
335         // No more edge from the old exiting block to the exit block.
336         PN.removeIncomingValue(i);
337 
338       NewPN->addIncoming(Incoming, &OldPH);
339     }
340 
341     // Now replace the old PHI with the new one and wire the old one in as an
342     // input to the new one.
343     PN.replaceAllUsesWith(NewPN);
344     NewPN->addIncoming(&PN, &ExitBB);
345   }
346 }
347 
348 /// Hoist the current loop up to the innermost loop containing a remaining exit.
349 ///
350 /// Because we've removed an exit from the loop, we may have changed the set of
351 /// loops reachable and need to move the current loop up the loop nest or even
352 /// to an entirely separate nest.
353 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
354                                  DominatorTree &DT, LoopInfo &LI,
355                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
356   // If the loop is already at the top level, we can't hoist it anywhere.
357   Loop *OldParentL = L.getParentLoop();
358   if (!OldParentL)
359     return;
360 
361   SmallVector<BasicBlock *, 4> Exits;
362   L.getExitBlocks(Exits);
363   Loop *NewParentL = nullptr;
364   for (auto *ExitBB : Exits)
365     if (Loop *ExitL = LI.getLoopFor(ExitBB))
366       if (!NewParentL || NewParentL->contains(ExitL))
367         NewParentL = ExitL;
368 
369   if (NewParentL == OldParentL)
370     return;
371 
372   // The new parent loop (if different) should always contain the old one.
373   if (NewParentL)
374     assert(NewParentL->contains(OldParentL) &&
375            "Can only hoist this loop up the nest!");
376 
377   // The preheader will need to move with the body of this loop. However,
378   // because it isn't in this loop we also need to update the primary loop map.
379   assert(OldParentL == LI.getLoopFor(&Preheader) &&
380          "Parent loop of this loop should contain this loop's preheader!");
381   LI.changeLoopFor(&Preheader, NewParentL);
382 
383   // Remove this loop from its old parent.
384   OldParentL->removeChildLoop(&L);
385 
386   // Add the loop either to the new parent or as a top-level loop.
387   if (NewParentL)
388     NewParentL->addChildLoop(&L);
389   else
390     LI.addTopLevelLoop(&L);
391 
392   // Remove this loops blocks from the old parent and every other loop up the
393   // nest until reaching the new parent. Also update all of these
394   // no-longer-containing loops to reflect the nesting change.
395   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
396        OldContainingL = OldContainingL->getParentLoop()) {
397     llvm::erase_if(OldContainingL->getBlocksVector(),
398                    [&](const BasicBlock *BB) {
399                      return BB == &Preheader || L.contains(BB);
400                    });
401 
402     OldContainingL->getBlocksSet().erase(&Preheader);
403     for (BasicBlock *BB : L.blocks())
404       OldContainingL->getBlocksSet().erase(BB);
405 
406     // Because we just hoisted a loop out of this one, we have essentially
407     // created new exit paths from it. That means we need to form LCSSA PHI
408     // nodes for values used in the no-longer-nested loop.
409     formLCSSA(*OldContainingL, DT, &LI, SE);
410 
411     // We shouldn't need to form dedicated exits because the exit introduced
412     // here is the (just split by unswitching) preheader. However, after trivial
413     // unswitching it is possible to get new non-dedicated exits out of parent
414     // loop so let's conservatively form dedicated exit blocks and figure out
415     // if we can optimize later.
416     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
417                             /*PreserveLCSSA*/ true);
418   }
419 }
420 
421 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
422 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
423 // as exiting block.
424 static const Loop *getTopMostExitingLoop(const BasicBlock *ExitBB,
425                                          const LoopInfo &LI) {
426   const Loop *TopMost = LI.getLoopFor(ExitBB);
427   const Loop *Current = TopMost;
428   while (Current) {
429     if (Current->isLoopExiting(ExitBB))
430       TopMost = Current;
431     Current = Current->getParentLoop();
432   }
433   return TopMost;
434 }
435 
436 /// Unswitch a trivial branch if the condition is loop invariant.
437 ///
438 /// This routine should only be called when loop code leading to the branch has
439 /// been validated as trivial (no side effects). This routine checks if the
440 /// condition is invariant and one of the successors is a loop exit. This
441 /// allows us to unswitch without duplicating the loop, making it trivial.
442 ///
443 /// If this routine fails to unswitch the branch it returns false.
444 ///
445 /// If the branch can be unswitched, this routine splits the preheader and
446 /// hoists the branch above that split. Preserves loop simplified form
447 /// (splitting the exit block as necessary). It simplifies the branch within
448 /// the loop to an unconditional branch but doesn't remove it entirely. Further
449 /// cleanup can be done with some simplifycfg like pass.
450 ///
451 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
452 /// invalidated by this.
453 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
454                                   LoopInfo &LI, ScalarEvolution *SE,
455                                   MemorySSAUpdater *MSSAU) {
456   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
457   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
458 
459   // The loop invariant values that we want to unswitch.
460   TinyPtrVector<Value *> Invariants;
461 
462   // When true, we're fully unswitching the branch rather than just unswitching
463   // some input conditions to the branch.
464   bool FullUnswitch = false;
465 
466   Value *Cond = skipTrivialSelect(BI.getCondition());
467   if (L.isLoopInvariant(Cond)) {
468     Invariants.push_back(Cond);
469     FullUnswitch = true;
470   } else {
471     if (auto *CondInst = dyn_cast<Instruction>(Cond))
472       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
473     if (Invariants.empty()) {
474       LLVM_DEBUG(dbgs() << "   Couldn't find invariant inputs!\n");
475       return false;
476     }
477   }
478 
479   // Check that one of the branch's successors exits, and which one.
480   bool ExitDirection = true;
481   int LoopExitSuccIdx = 0;
482   auto *LoopExitBB = BI.getSuccessor(0);
483   if (L.contains(LoopExitBB)) {
484     ExitDirection = false;
485     LoopExitSuccIdx = 1;
486     LoopExitBB = BI.getSuccessor(1);
487     if (L.contains(LoopExitBB)) {
488       LLVM_DEBUG(dbgs() << "   Branch doesn't exit the loop!\n");
489       return false;
490     }
491   }
492   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
493   auto *ParentBB = BI.getParent();
494   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
495     LLVM_DEBUG(dbgs() << "   Loop exit PHI's aren't loop-invariant!\n");
496     return false;
497   }
498 
499   // When unswitching only part of the branch's condition, we need the exit
500   // block to be reached directly from the partially unswitched input. This can
501   // be done when the exit block is along the true edge and the branch condition
502   // is a graph of `or` operations, or the exit block is along the false edge
503   // and the condition is a graph of `and` operations.
504   if (!FullUnswitch) {
505     if (ExitDirection ? !match(Cond, m_LogicalOr())
506                       : !match(Cond, m_LogicalAnd())) {
507       LLVM_DEBUG(dbgs() << "   Branch condition is in improper form for "
508                            "non-full unswitch!\n");
509       return false;
510     }
511   }
512 
513   LLVM_DEBUG({
514     dbgs() << "    unswitching trivial invariant conditions for: " << BI
515            << "\n";
516     for (Value *Invariant : Invariants) {
517       dbgs() << "      " << *Invariant << " == true";
518       if (Invariant != Invariants.back())
519         dbgs() << " ||";
520       dbgs() << "\n";
521     }
522   });
523 
524   // If we have scalar evolutions, we need to invalidate them including this
525   // loop, the loop containing the exit block and the topmost parent loop
526   // exiting via LoopExitBB.
527   if (SE) {
528     if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
529       SE->forgetLoop(ExitL);
530     else
531       // Forget the entire nest as this exits the entire nest.
532       SE->forgetTopmostLoop(&L);
533   }
534 
535   if (MSSAU && VerifyMemorySSA)
536     MSSAU->getMemorySSA()->verifyMemorySSA();
537 
538   // Split the preheader, so that we know that there is a safe place to insert
539   // the conditional branch. We will change the preheader to have a conditional
540   // branch on LoopCond.
541   BasicBlock *OldPH = L.getLoopPreheader();
542   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
543 
544   // Now that we have a place to insert the conditional branch, create a place
545   // to branch to: this is the exit block out of the loop that we are
546   // unswitching. We need to split this if there are other loop predecessors.
547   // Because the loop is in simplified form, *any* other predecessor is enough.
548   BasicBlock *UnswitchedBB;
549   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
550     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
551            "A branch's parent isn't a predecessor!");
552     UnswitchedBB = LoopExitBB;
553   } else {
554     UnswitchedBB =
555         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
556   }
557 
558   if (MSSAU && VerifyMemorySSA)
559     MSSAU->getMemorySSA()->verifyMemorySSA();
560 
561   // Actually move the invariant uses into the unswitched position. If possible,
562   // we do this by moving the instructions, but when doing partial unswitching
563   // we do it by building a new merge of the values in the unswitched position.
564   OldPH->getTerminator()->eraseFromParent();
565   if (FullUnswitch) {
566     // If fully unswitching, we can use the existing branch instruction.
567     // Splice it into the old PH to gate reaching the new preheader and re-point
568     // its successors.
569     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
570                                 BI);
571     BI.setCondition(Cond);
572     if (MSSAU) {
573       // Temporarily clone the terminator, to make MSSA update cheaper by
574       // separating "insert edge" updates from "remove edge" ones.
575       ParentBB->getInstList().push_back(BI.clone());
576     } else {
577       // Create a new unconditional branch that will continue the loop as a new
578       // terminator.
579       BranchInst::Create(ContinueBB, ParentBB);
580     }
581     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
582     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
583   } else {
584     // Only unswitching a subset of inputs to the condition, so we will need to
585     // build a new branch that merges the invariant inputs.
586     if (ExitDirection)
587       assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) &&
588              "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
589              "condition!");
590     else
591       assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) &&
592              "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
593              " condition!");
594     buildPartialUnswitchConditionalBranch(
595         *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH,
596         FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT);
597   }
598 
599   // Update the dominator tree with the added edge.
600   DT.insertEdge(OldPH, UnswitchedBB);
601 
602   // After the dominator tree was updated with the added edge, update MemorySSA
603   // if available.
604   if (MSSAU) {
605     SmallVector<CFGUpdate, 1> Updates;
606     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
607     MSSAU->applyInsertUpdates(Updates, DT);
608   }
609 
610   // Finish updating dominator tree and memory ssa for full unswitch.
611   if (FullUnswitch) {
612     if (MSSAU) {
613       // Remove the cloned branch instruction.
614       ParentBB->getTerminator()->eraseFromParent();
615       // Create unconditional branch now.
616       BranchInst::Create(ContinueBB, ParentBB);
617       MSSAU->removeEdge(ParentBB, LoopExitBB);
618     }
619     DT.deleteEdge(ParentBB, LoopExitBB);
620   }
621 
622   if (MSSAU && VerifyMemorySSA)
623     MSSAU->getMemorySSA()->verifyMemorySSA();
624 
625   // Rewrite the relevant PHI nodes.
626   if (UnswitchedBB == LoopExitBB)
627     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
628   else
629     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
630                                               *ParentBB, *OldPH, FullUnswitch);
631 
632   // The constant we can replace all of our invariants with inside the loop
633   // body. If any of the invariants have a value other than this the loop won't
634   // be entered.
635   ConstantInt *Replacement = ExitDirection
636                                  ? ConstantInt::getFalse(BI.getContext())
637                                  : ConstantInt::getTrue(BI.getContext());
638 
639   // Since this is an i1 condition we can also trivially replace uses of it
640   // within the loop with a constant.
641   for (Value *Invariant : Invariants)
642     replaceLoopInvariantUses(L, Invariant, *Replacement);
643 
644   // If this was full unswitching, we may have changed the nesting relationship
645   // for this loop so hoist it to its correct parent if needed.
646   if (FullUnswitch)
647     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
648 
649   if (MSSAU && VerifyMemorySSA)
650     MSSAU->getMemorySSA()->verifyMemorySSA();
651 
652   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
653   ++NumTrivial;
654   ++NumBranches;
655   return true;
656 }
657 
658 /// Unswitch a trivial switch if the condition is loop invariant.
659 ///
660 /// This routine should only be called when loop code leading to the switch has
661 /// been validated as trivial (no side effects). This routine checks if the
662 /// condition is invariant and that at least one of the successors is a loop
663 /// exit. This allows us to unswitch without duplicating the loop, making it
664 /// trivial.
665 ///
666 /// If this routine fails to unswitch the switch it returns false.
667 ///
668 /// If the switch can be unswitched, this routine splits the preheader and
669 /// copies the switch above that split. If the default case is one of the
670 /// exiting cases, it copies the non-exiting cases and points them at the new
671 /// preheader. If the default case is not exiting, it copies the exiting cases
672 /// and points the default at the preheader. It preserves loop simplified form
673 /// (splitting the exit blocks as necessary). It simplifies the switch within
674 /// the loop by removing now-dead cases. If the default case is one of those
675 /// unswitched, it replaces its destination with a new basic block containing
676 /// only unreachable. Such basic blocks, while technically loop exits, are not
677 /// considered for unswitching so this is a stable transform and the same
678 /// switch will not be revisited. If after unswitching there is only a single
679 /// in-loop successor, the switch is further simplified to an unconditional
680 /// branch. Still more cleanup can be done with some simplifycfg like pass.
681 ///
682 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
683 /// invalidated by this.
684 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
685                                   LoopInfo &LI, ScalarEvolution *SE,
686                                   MemorySSAUpdater *MSSAU) {
687   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
688   Value *LoopCond = SI.getCondition();
689 
690   // If this isn't switching on an invariant condition, we can't unswitch it.
691   if (!L.isLoopInvariant(LoopCond))
692     return false;
693 
694   auto *ParentBB = SI.getParent();
695 
696   // The same check must be used both for the default and the exit cases. We
697   // should never leave edges from the switch instruction to a basic block that
698   // we are unswitching, hence the condition used to determine the default case
699   // needs to also be used to populate ExitCaseIndices, which is then used to
700   // remove cases from the switch.
701   auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
702     // BBToCheck is not an exit block if it is inside loop L.
703     if (L.contains(&BBToCheck))
704       return false;
705     // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
706     if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
707       return false;
708     // We do not unswitch a block that only has an unreachable statement, as
709     // it's possible this is a previously unswitched block. Only unswitch if
710     // either the terminator is not unreachable, or, if it is, it's not the only
711     // instruction in the block.
712     auto *TI = BBToCheck.getTerminator();
713     bool isUnreachable = isa<UnreachableInst>(TI);
714     return !isUnreachable ||
715            (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
716   };
717 
718   SmallVector<int, 4> ExitCaseIndices;
719   for (auto Case : SI.cases())
720     if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
721       ExitCaseIndices.push_back(Case.getCaseIndex());
722   BasicBlock *DefaultExitBB = nullptr;
723   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
724       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
725   if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
726     DefaultExitBB = SI.getDefaultDest();
727   } else if (ExitCaseIndices.empty())
728     return false;
729 
730   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
731 
732   if (MSSAU && VerifyMemorySSA)
733     MSSAU->getMemorySSA()->verifyMemorySSA();
734 
735   // We may need to invalidate SCEVs for the outermost loop reached by any of
736   // the exits.
737   Loop *OuterL = &L;
738 
739   if (DefaultExitBB) {
740     // Clear out the default destination temporarily to allow accurate
741     // predecessor lists to be examined below.
742     SI.setDefaultDest(nullptr);
743     // Check the loop containing this exit.
744     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
745     if (!ExitL || ExitL->contains(OuterL))
746       OuterL = ExitL;
747   }
748 
749   // Store the exit cases into a separate data structure and remove them from
750   // the switch.
751   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
752                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
753               4> ExitCases;
754   ExitCases.reserve(ExitCaseIndices.size());
755   SwitchInstProfUpdateWrapper SIW(SI);
756   // We walk the case indices backwards so that we remove the last case first
757   // and don't disrupt the earlier indices.
758   for (unsigned Index : reverse(ExitCaseIndices)) {
759     auto CaseI = SI.case_begin() + Index;
760     // Compute the outer loop from this exit.
761     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
762     if (!ExitL || ExitL->contains(OuterL))
763       OuterL = ExitL;
764     // Save the value of this case.
765     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
766     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
767     // Delete the unswitched cases.
768     SIW.removeCase(CaseI);
769   }
770 
771   if (SE) {
772     if (OuterL)
773       SE->forgetLoop(OuterL);
774     else
775       SE->forgetTopmostLoop(&L);
776   }
777 
778   // Check if after this all of the remaining cases point at the same
779   // successor.
780   BasicBlock *CommonSuccBB = nullptr;
781   if (SI.getNumCases() > 0 &&
782       all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
783         return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
784       }))
785     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
786   if (!DefaultExitBB) {
787     // If we're not unswitching the default, we need it to match any cases to
788     // have a common successor or if we have no cases it is the common
789     // successor.
790     if (SI.getNumCases() == 0)
791       CommonSuccBB = SI.getDefaultDest();
792     else if (SI.getDefaultDest() != CommonSuccBB)
793       CommonSuccBB = nullptr;
794   }
795 
796   // Split the preheader, so that we know that there is a safe place to insert
797   // the switch.
798   BasicBlock *OldPH = L.getLoopPreheader();
799   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
800   OldPH->getTerminator()->eraseFromParent();
801 
802   // Now add the unswitched switch.
803   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
804   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
805 
806   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
807   // First, we split any exit blocks with remaining in-loop predecessors. Then
808   // we update the PHIs in one of two ways depending on if there was a split.
809   // We walk in reverse so that we split in the same order as the cases
810   // appeared. This is purely for convenience of reading the resulting IR, but
811   // it doesn't cost anything really.
812   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
813   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
814   // Handle the default exit if necessary.
815   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
816   // ranges aren't quite powerful enough yet.
817   if (DefaultExitBB) {
818     if (pred_empty(DefaultExitBB)) {
819       UnswitchedExitBBs.insert(DefaultExitBB);
820       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
821     } else {
822       auto *SplitBB =
823           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
824       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
825                                                 *ParentBB, *OldPH,
826                                                 /*FullUnswitch*/ true);
827       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
828     }
829   }
830   // Note that we must use a reference in the for loop so that we update the
831   // container.
832   for (auto &ExitCase : reverse(ExitCases)) {
833     // Grab a reference to the exit block in the pair so that we can update it.
834     BasicBlock *ExitBB = std::get<1>(ExitCase);
835 
836     // If this case is the last edge into the exit block, we can simply reuse it
837     // as it will no longer be a loop exit. No mapping necessary.
838     if (pred_empty(ExitBB)) {
839       // Only rewrite once.
840       if (UnswitchedExitBBs.insert(ExitBB).second)
841         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
842       continue;
843     }
844 
845     // Otherwise we need to split the exit block so that we retain an exit
846     // block from the loop and a target for the unswitched condition.
847     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
848     if (!SplitExitBB) {
849       // If this is the first time we see this, do the split and remember it.
850       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
851       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
852                                                 *ParentBB, *OldPH,
853                                                 /*FullUnswitch*/ true);
854     }
855     // Update the case pair to point to the split block.
856     std::get<1>(ExitCase) = SplitExitBB;
857   }
858 
859   // Now add the unswitched cases. We do this in reverse order as we built them
860   // in reverse order.
861   for (auto &ExitCase : reverse(ExitCases)) {
862     ConstantInt *CaseVal = std::get<0>(ExitCase);
863     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
864 
865     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
866   }
867 
868   // If the default was unswitched, re-point it and add explicit cases for
869   // entering the loop.
870   if (DefaultExitBB) {
871     NewSIW->setDefaultDest(DefaultExitBB);
872     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
873 
874     // We removed all the exit cases, so we just copy the cases to the
875     // unswitched switch.
876     for (const auto &Case : SI.cases())
877       NewSIW.addCase(Case.getCaseValue(), NewPH,
878                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
879   } else if (DefaultCaseWeight) {
880     // We have to set branch weight of the default case.
881     uint64_t SW = *DefaultCaseWeight;
882     for (const auto &Case : SI.cases()) {
883       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
884       assert(W &&
885              "case weight must be defined as default case weight is defined");
886       SW += *W;
887     }
888     NewSIW.setSuccessorWeight(0, SW);
889   }
890 
891   // If we ended up with a common successor for every path through the switch
892   // after unswitching, rewrite it to an unconditional branch to make it easy
893   // to recognize. Otherwise we potentially have to recognize the default case
894   // pointing at unreachable and other complexity.
895   if (CommonSuccBB) {
896     BasicBlock *BB = SI.getParent();
897     // We may have had multiple edges to this common successor block, so remove
898     // them as predecessors. We skip the first one, either the default or the
899     // actual first case.
900     bool SkippedFirst = DefaultExitBB == nullptr;
901     for (auto Case : SI.cases()) {
902       assert(Case.getCaseSuccessor() == CommonSuccBB &&
903              "Non-common successor!");
904       (void)Case;
905       if (!SkippedFirst) {
906         SkippedFirst = true;
907         continue;
908       }
909       CommonSuccBB->removePredecessor(BB,
910                                       /*KeepOneInputPHIs*/ true);
911     }
912     // Now nuke the switch and replace it with a direct branch.
913     SIW.eraseFromParent();
914     BranchInst::Create(CommonSuccBB, BB);
915   } else if (DefaultExitBB) {
916     assert(SI.getNumCases() > 0 &&
917            "If we had no cases we'd have a common successor!");
918     // Move the last case to the default successor. This is valid as if the
919     // default got unswitched it cannot be reached. This has the advantage of
920     // being simple and keeping the number of edges from this switch to
921     // successors the same, and avoiding any PHI update complexity.
922     auto LastCaseI = std::prev(SI.case_end());
923 
924     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
925     SIW.setSuccessorWeight(
926         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
927     SIW.removeCase(LastCaseI);
928   }
929 
930   // Walk the unswitched exit blocks and the unswitched split blocks and update
931   // the dominator tree based on the CFG edits. While we are walking unordered
932   // containers here, the API for applyUpdates takes an unordered list of
933   // updates and requires them to not contain duplicates.
934   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
935   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
936     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
937     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
938   }
939   for (auto SplitUnswitchedPair : SplitExitBBMap) {
940     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
941     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
942   }
943 
944   if (MSSAU) {
945     MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
946     if (VerifyMemorySSA)
947       MSSAU->getMemorySSA()->verifyMemorySSA();
948   } else {
949     DT.applyUpdates(DTUpdates);
950   }
951 
952   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
953 
954   // We may have changed the nesting relationship for this loop so hoist it to
955   // its correct parent if needed.
956   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
957 
958   if (MSSAU && VerifyMemorySSA)
959     MSSAU->getMemorySSA()->verifyMemorySSA();
960 
961   ++NumTrivial;
962   ++NumSwitches;
963   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
964   return true;
965 }
966 
967 /// This routine scans the loop to find a branch or switch which occurs before
968 /// any side effects occur. These can potentially be unswitched without
969 /// duplicating the loop. If a branch or switch is successfully unswitched the
970 /// scanning continues to see if subsequent branches or switches have become
971 /// trivial. Once all trivial candidates have been unswitched, this routine
972 /// returns.
973 ///
974 /// The return value indicates whether anything was unswitched (and therefore
975 /// changed).
976 ///
977 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
978 /// invalidated by this.
979 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
980                                          LoopInfo &LI, ScalarEvolution *SE,
981                                          MemorySSAUpdater *MSSAU) {
982   bool Changed = false;
983 
984   // If loop header has only one reachable successor we should keep looking for
985   // trivial condition candidates in the successor as well. An alternative is
986   // to constant fold conditions and merge successors into loop header (then we
987   // only need to check header's terminator). The reason for not doing this in
988   // LoopUnswitch pass is that it could potentially break LoopPassManager's
989   // invariants. Folding dead branches could either eliminate the current loop
990   // or make other loops unreachable. LCSSA form might also not be preserved
991   // after deleting branches. The following code keeps traversing loop header's
992   // successors until it finds the trivial condition candidate (condition that
993   // is not a constant). Since unswitching generates branches with constant
994   // conditions, this scenario could be very common in practice.
995   BasicBlock *CurrentBB = L.getHeader();
996   SmallPtrSet<BasicBlock *, 8> Visited;
997   Visited.insert(CurrentBB);
998   do {
999     // Check if there are any side-effecting instructions (e.g. stores, calls,
1000     // volatile loads) in the part of the loop that the code *would* execute
1001     // without unswitching.
1002     if (MSSAU) // Possible early exit with MSSA
1003       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
1004         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
1005           return Changed;
1006     if (llvm::any_of(*CurrentBB,
1007                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
1008       return Changed;
1009 
1010     Instruction *CurrentTerm = CurrentBB->getTerminator();
1011 
1012     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1013       // Don't bother trying to unswitch past a switch with a constant
1014       // condition. This should be removed prior to running this pass by
1015       // simplifycfg.
1016       if (isa<Constant>(SI->getCondition()))
1017         return Changed;
1018 
1019       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
1020         // Couldn't unswitch this one so we're done.
1021         return Changed;
1022 
1023       // Mark that we managed to unswitch something.
1024       Changed = true;
1025 
1026       // If unswitching turned the terminator into an unconditional branch then
1027       // we can continue. The unswitching logic specifically works to fold any
1028       // cases it can into an unconditional branch to make it easier to
1029       // recognize here.
1030       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1031       if (!BI || BI->isConditional())
1032         return Changed;
1033 
1034       CurrentBB = BI->getSuccessor(0);
1035       continue;
1036     }
1037 
1038     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1039     if (!BI)
1040       // We do not understand other terminator instructions.
1041       return Changed;
1042 
1043     // Don't bother trying to unswitch past an unconditional branch or a branch
1044     // with a constant value. These should be removed by simplifycfg prior to
1045     // running this pass.
1046     if (!BI->isConditional() ||
1047         isa<Constant>(skipTrivialSelect(BI->getCondition())))
1048       return Changed;
1049 
1050     // Found a trivial condition candidate: non-foldable conditional branch. If
1051     // we fail to unswitch this, we can't do anything else that is trivial.
1052     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1053       return Changed;
1054 
1055     // Mark that we managed to unswitch something.
1056     Changed = true;
1057 
1058     // If we only unswitched some of the conditions feeding the branch, we won't
1059     // have collapsed it to a single successor.
1060     BI = cast<BranchInst>(CurrentBB->getTerminator());
1061     if (BI->isConditional())
1062       return Changed;
1063 
1064     // Follow the newly unconditional branch into its successor.
1065     CurrentBB = BI->getSuccessor(0);
1066 
1067     // When continuing, if we exit the loop or reach a previous visited block,
1068     // then we can not reach any trivial condition candidates (unfoldable
1069     // branch instructions or switch instructions) and no unswitch can happen.
1070   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1071 
1072   return Changed;
1073 }
1074 
1075 /// Build the cloned blocks for an unswitched copy of the given loop.
1076 ///
1077 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1078 /// after the split block (`SplitBB`) that will be used to select between the
1079 /// cloned and original loop.
1080 ///
1081 /// This routine handles cloning all of the necessary loop blocks and exit
1082 /// blocks including rewriting their instructions and the relevant PHI nodes.
1083 /// Any loop blocks or exit blocks which are dominated by a different successor
1084 /// than the one for this clone of the loop blocks can be trivially skipped. We
1085 /// use the `DominatingSucc` map to determine whether a block satisfies that
1086 /// property with a simple map lookup.
1087 ///
1088 /// It also correctly creates the unconditional branch in the cloned
1089 /// unswitched parent block to only point at the unswitched successor.
1090 ///
1091 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1092 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1093 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1094 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1095 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1096 /// instead the caller must recompute an accurate DT. It *does* correctly
1097 /// update the `AssumptionCache` provided in `AC`.
1098 static BasicBlock *buildClonedLoopBlocks(
1099     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1100     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1101     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1102     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1103     ValueToValueMapTy &VMap,
1104     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1105     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1106   SmallVector<BasicBlock *, 4> NewBlocks;
1107   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1108 
1109   // We will need to clone a bunch of blocks, wrap up the clone operation in
1110   // a helper.
1111   auto CloneBlock = [&](BasicBlock *OldBB) {
1112     // Clone the basic block and insert it before the new preheader.
1113     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1114     NewBB->moveBefore(LoopPH);
1115 
1116     // Record this block and the mapping.
1117     NewBlocks.push_back(NewBB);
1118     VMap[OldBB] = NewBB;
1119 
1120     return NewBB;
1121   };
1122 
1123   // We skip cloning blocks when they have a dominating succ that is not the
1124   // succ we are cloning for.
1125   auto SkipBlock = [&](BasicBlock *BB) {
1126     auto It = DominatingSucc.find(BB);
1127     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1128   };
1129 
1130   // First, clone the preheader.
1131   auto *ClonedPH = CloneBlock(LoopPH);
1132 
1133   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1134   for (auto *LoopBB : L.blocks())
1135     if (!SkipBlock(LoopBB))
1136       CloneBlock(LoopBB);
1137 
1138   // Split all the loop exit edges so that when we clone the exit blocks, if
1139   // any of the exit blocks are *also* a preheader for some other loop, we
1140   // don't create multiple predecessors entering the loop header.
1141   for (auto *ExitBB : ExitBlocks) {
1142     if (SkipBlock(ExitBB))
1143       continue;
1144 
1145     // When we are going to clone an exit, we don't need to clone all the
1146     // instructions in the exit block and we want to ensure we have an easy
1147     // place to merge the CFG, so split the exit first. This is always safe to
1148     // do because there cannot be any non-loop predecessors of a loop exit in
1149     // loop simplified form.
1150     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1151 
1152     // Rearrange the names to make it easier to write test cases by having the
1153     // exit block carry the suffix rather than the merge block carrying the
1154     // suffix.
1155     MergeBB->takeName(ExitBB);
1156     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1157 
1158     // Now clone the original exit block.
1159     auto *ClonedExitBB = CloneBlock(ExitBB);
1160     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1161            "Exit block should have been split to have one successor!");
1162     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1163            "Cloned exit block has the wrong successor!");
1164 
1165     // Remap any cloned instructions and create a merge phi node for them.
1166     for (auto ZippedInsts : llvm::zip_first(
1167              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1168              llvm::make_range(ClonedExitBB->begin(),
1169                               std::prev(ClonedExitBB->end())))) {
1170       Instruction &I = std::get<0>(ZippedInsts);
1171       Instruction &ClonedI = std::get<1>(ZippedInsts);
1172 
1173       // The only instructions in the exit block should be PHI nodes and
1174       // potentially a landing pad.
1175       assert(
1176           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1177           "Bad instruction in exit block!");
1178       // We should have a value map between the instruction and its clone.
1179       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1180 
1181       auto *MergePN =
1182           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1183                           &*MergeBB->getFirstInsertionPt());
1184       I.replaceAllUsesWith(MergePN);
1185       MergePN->addIncoming(&I, ExitBB);
1186       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1187     }
1188   }
1189 
1190   // Rewrite the instructions in the cloned blocks to refer to the instructions
1191   // in the cloned blocks. We have to do this as a second pass so that we have
1192   // everything available. Also, we have inserted new instructions which may
1193   // include assume intrinsics, so we update the assumption cache while
1194   // processing this.
1195   for (auto *ClonedBB : NewBlocks)
1196     for (Instruction &I : *ClonedBB) {
1197       RemapInstruction(&I, VMap,
1198                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1199       if (auto *II = dyn_cast<AssumeInst>(&I))
1200         AC.registerAssumption(II);
1201     }
1202 
1203   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1204   // have spurious incoming values.
1205   for (auto *LoopBB : L.blocks())
1206     if (SkipBlock(LoopBB))
1207       for (auto *SuccBB : successors(LoopBB))
1208         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1209           for (PHINode &PN : ClonedSuccBB->phis())
1210             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1211 
1212   // Remove the cloned parent as a predecessor of any successor we ended up
1213   // cloning other than the unswitched one.
1214   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1215   for (auto *SuccBB : successors(ParentBB)) {
1216     if (SuccBB == UnswitchedSuccBB)
1217       continue;
1218 
1219     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1220     if (!ClonedSuccBB)
1221       continue;
1222 
1223     ClonedSuccBB->removePredecessor(ClonedParentBB,
1224                                     /*KeepOneInputPHIs*/ true);
1225   }
1226 
1227   // Replace the cloned branch with an unconditional branch to the cloned
1228   // unswitched successor.
1229   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1230   Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1231   // Trivial Simplification. If Terminator is a conditional branch and
1232   // condition becomes dead - erase it.
1233   Value *ClonedConditionToErase = nullptr;
1234   if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1235     ClonedConditionToErase = BI->getCondition();
1236   else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1237     ClonedConditionToErase = SI->getCondition();
1238 
1239   ClonedTerminator->eraseFromParent();
1240   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1241 
1242   if (ClonedConditionToErase)
1243     RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1244                                                MSSAU);
1245 
1246   // If there are duplicate entries in the PHI nodes because of multiple edges
1247   // to the unswitched successor, we need to nuke all but one as we replaced it
1248   // with a direct branch.
1249   for (PHINode &PN : ClonedSuccBB->phis()) {
1250     bool Found = false;
1251     // Loop over the incoming operands backwards so we can easily delete as we
1252     // go without invalidating the index.
1253     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1254       if (PN.getIncomingBlock(i) != ClonedParentBB)
1255         continue;
1256       if (!Found) {
1257         Found = true;
1258         continue;
1259       }
1260       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1261     }
1262   }
1263 
1264   // Record the domtree updates for the new blocks.
1265   SmallPtrSet<BasicBlock *, 4> SuccSet;
1266   for (auto *ClonedBB : NewBlocks) {
1267     for (auto *SuccBB : successors(ClonedBB))
1268       if (SuccSet.insert(SuccBB).second)
1269         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1270     SuccSet.clear();
1271   }
1272 
1273   return ClonedPH;
1274 }
1275 
1276 /// Recursively clone the specified loop and all of its children.
1277 ///
1278 /// The target parent loop for the clone should be provided, or can be null if
1279 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1280 /// with the provided value map. The entire original loop must be present in
1281 /// the value map. The cloned loop is returned.
1282 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1283                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1284   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1285     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1286     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1287     for (auto *BB : OrigL.blocks()) {
1288       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1289       ClonedL.addBlockEntry(ClonedBB);
1290       if (LI.getLoopFor(BB) == &OrigL)
1291         LI.changeLoopFor(ClonedBB, &ClonedL);
1292     }
1293   };
1294 
1295   // We specially handle the first loop because it may get cloned into
1296   // a different parent and because we most commonly are cloning leaf loops.
1297   Loop *ClonedRootL = LI.AllocateLoop();
1298   if (RootParentL)
1299     RootParentL->addChildLoop(ClonedRootL);
1300   else
1301     LI.addTopLevelLoop(ClonedRootL);
1302   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1303 
1304   if (OrigRootL.isInnermost())
1305     return ClonedRootL;
1306 
1307   // If we have a nest, we can quickly clone the entire loop nest using an
1308   // iterative approach because it is a tree. We keep the cloned parent in the
1309   // data structure to avoid repeatedly querying through a map to find it.
1310   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1311   // Build up the loops to clone in reverse order as we'll clone them from the
1312   // back.
1313   for (Loop *ChildL : llvm::reverse(OrigRootL))
1314     LoopsToClone.push_back({ClonedRootL, ChildL});
1315   do {
1316     Loop *ClonedParentL, *L;
1317     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1318     Loop *ClonedL = LI.AllocateLoop();
1319     ClonedParentL->addChildLoop(ClonedL);
1320     AddClonedBlocksToLoop(*L, *ClonedL);
1321     for (Loop *ChildL : llvm::reverse(*L))
1322       LoopsToClone.push_back({ClonedL, ChildL});
1323   } while (!LoopsToClone.empty());
1324 
1325   return ClonedRootL;
1326 }
1327 
1328 /// Build the cloned loops of an original loop from unswitching.
1329 ///
1330 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1331 /// operation. We need to re-verify that there even is a loop (as the backedge
1332 /// may not have been cloned), and even if there are remaining backedges the
1333 /// backedge set may be different. However, we know that each child loop is
1334 /// undisturbed, we only need to find where to place each child loop within
1335 /// either any parent loop or within a cloned version of the original loop.
1336 ///
1337 /// Because child loops may end up cloned outside of any cloned version of the
1338 /// original loop, multiple cloned sibling loops may be created. All of them
1339 /// are returned so that the newly introduced loop nest roots can be
1340 /// identified.
1341 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1342                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1343                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1344   Loop *ClonedL = nullptr;
1345 
1346   auto *OrigPH = OrigL.getLoopPreheader();
1347   auto *OrigHeader = OrigL.getHeader();
1348 
1349   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1350   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1351 
1352   // We need to know the loops of the cloned exit blocks to even compute the
1353   // accurate parent loop. If we only clone exits to some parent of the
1354   // original parent, we want to clone into that outer loop. We also keep track
1355   // of the loops that our cloned exit blocks participate in.
1356   Loop *ParentL = nullptr;
1357   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1358   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1359   ClonedExitsInLoops.reserve(ExitBlocks.size());
1360   for (auto *ExitBB : ExitBlocks)
1361     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1362       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1363         ExitLoopMap[ClonedExitBB] = ExitL;
1364         ClonedExitsInLoops.push_back(ClonedExitBB);
1365         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1366           ParentL = ExitL;
1367       }
1368   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1369           ParentL->contains(OrigL.getParentLoop())) &&
1370          "The computed parent loop should always contain (or be) the parent of "
1371          "the original loop.");
1372 
1373   // We build the set of blocks dominated by the cloned header from the set of
1374   // cloned blocks out of the original loop. While not all of these will
1375   // necessarily be in the cloned loop, it is enough to establish that they
1376   // aren't in unreachable cycles, etc.
1377   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1378   for (auto *BB : OrigL.blocks())
1379     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1380       ClonedLoopBlocks.insert(ClonedBB);
1381 
1382   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1383   // skipped cloning some region of this loop which can in turn skip some of
1384   // the backedges so we have to rebuild the blocks in the loop based on the
1385   // backedges that remain after cloning.
1386   SmallVector<BasicBlock *, 16> Worklist;
1387   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1388   for (auto *Pred : predecessors(ClonedHeader)) {
1389     // The only possible non-loop header predecessor is the preheader because
1390     // we know we cloned the loop in simplified form.
1391     if (Pred == ClonedPH)
1392       continue;
1393 
1394     // Because the loop was in simplified form, the only non-loop predecessor
1395     // should be the preheader.
1396     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1397                                            "header other than the preheader "
1398                                            "that is not part of the loop!");
1399 
1400     // Insert this block into the loop set and on the first visit (and if it
1401     // isn't the header we're currently walking) put it into the worklist to
1402     // recurse through.
1403     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1404       Worklist.push_back(Pred);
1405   }
1406 
1407   // If we had any backedges then there *is* a cloned loop. Put the header into
1408   // the loop set and then walk the worklist backwards to find all the blocks
1409   // that remain within the loop after cloning.
1410   if (!BlocksInClonedLoop.empty()) {
1411     BlocksInClonedLoop.insert(ClonedHeader);
1412 
1413     while (!Worklist.empty()) {
1414       BasicBlock *BB = Worklist.pop_back_val();
1415       assert(BlocksInClonedLoop.count(BB) &&
1416              "Didn't put block into the loop set!");
1417 
1418       // Insert any predecessors that are in the possible set into the cloned
1419       // set, and if the insert is successful, add them to the worklist. Note
1420       // that we filter on the blocks that are definitely reachable via the
1421       // backedge to the loop header so we may prune out dead code within the
1422       // cloned loop.
1423       for (auto *Pred : predecessors(BB))
1424         if (ClonedLoopBlocks.count(Pred) &&
1425             BlocksInClonedLoop.insert(Pred).second)
1426           Worklist.push_back(Pred);
1427     }
1428 
1429     ClonedL = LI.AllocateLoop();
1430     if (ParentL) {
1431       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1432       ParentL->addChildLoop(ClonedL);
1433     } else {
1434       LI.addTopLevelLoop(ClonedL);
1435     }
1436     NonChildClonedLoops.push_back(ClonedL);
1437 
1438     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1439     // We don't want to just add the cloned loop blocks based on how we
1440     // discovered them. The original order of blocks was carefully built in
1441     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1442     // that logic, we just re-walk the original blocks (and those of the child
1443     // loops) and filter them as we add them into the cloned loop.
1444     for (auto *BB : OrigL.blocks()) {
1445       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1446       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1447         continue;
1448 
1449       // Directly add the blocks that are only in this loop.
1450       if (LI.getLoopFor(BB) == &OrigL) {
1451         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1452         continue;
1453       }
1454 
1455       // We want to manually add it to this loop and parents.
1456       // Registering it with LoopInfo will happen when we clone the top
1457       // loop for this block.
1458       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1459         PL->addBlockEntry(ClonedBB);
1460     }
1461 
1462     // Now add each child loop whose header remains within the cloned loop. All
1463     // of the blocks within the loop must satisfy the same constraints as the
1464     // header so once we pass the header checks we can just clone the entire
1465     // child loop nest.
1466     for (Loop *ChildL : OrigL) {
1467       auto *ClonedChildHeader =
1468           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1469       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1470         continue;
1471 
1472 #ifndef NDEBUG
1473       // We should never have a cloned child loop header but fail to have
1474       // all of the blocks for that child loop.
1475       for (auto *ChildLoopBB : ChildL->blocks())
1476         assert(BlocksInClonedLoop.count(
1477                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1478                "Child cloned loop has a header within the cloned outer "
1479                "loop but not all of its blocks!");
1480 #endif
1481 
1482       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1483     }
1484   }
1485 
1486   // Now that we've handled all the components of the original loop that were
1487   // cloned into a new loop, we still need to handle anything from the original
1488   // loop that wasn't in a cloned loop.
1489 
1490   // Figure out what blocks are left to place within any loop nest containing
1491   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1492   // them.
1493   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1494   if (BlocksInClonedLoop.empty())
1495     UnloopedBlockSet.insert(ClonedPH);
1496   for (auto *ClonedBB : ClonedLoopBlocks)
1497     if (!BlocksInClonedLoop.count(ClonedBB))
1498       UnloopedBlockSet.insert(ClonedBB);
1499 
1500   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1501   // backwards across these to process them inside out. The order shouldn't
1502   // matter as we're just trying to build up the map from inside-out; we use
1503   // the map in a more stably ordered way below.
1504   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1505   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1506     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1507            ExitLoopMap.lookup(RHS)->getLoopDepth();
1508   });
1509 
1510   // Populate the existing ExitLoopMap with everything reachable from each
1511   // exit, starting from the inner most exit.
1512   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1513     assert(Worklist.empty() && "Didn't clear worklist!");
1514 
1515     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1516     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1517 
1518     // Walk the CFG back until we hit the cloned PH adding everything reachable
1519     // and in the unlooped set to this exit block's loop.
1520     Worklist.push_back(ExitBB);
1521     do {
1522       BasicBlock *BB = Worklist.pop_back_val();
1523       // We can stop recursing at the cloned preheader (if we get there).
1524       if (BB == ClonedPH)
1525         continue;
1526 
1527       for (BasicBlock *PredBB : predecessors(BB)) {
1528         // If this pred has already been moved to our set or is part of some
1529         // (inner) loop, no update needed.
1530         if (!UnloopedBlockSet.erase(PredBB)) {
1531           assert(
1532               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1533               "Predecessor not mapped to a loop!");
1534           continue;
1535         }
1536 
1537         // We just insert into the loop set here. We'll add these blocks to the
1538         // exit loop after we build up the set in an order that doesn't rely on
1539         // predecessor order (which in turn relies on use list order).
1540         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1541         (void)Inserted;
1542         assert(Inserted && "Should only visit an unlooped block once!");
1543 
1544         // And recurse through to its predecessors.
1545         Worklist.push_back(PredBB);
1546       }
1547     } while (!Worklist.empty());
1548   }
1549 
1550   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1551   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1552   // in their original order adding them to the correct loop.
1553 
1554   // We need a stable insertion order. We use the order of the original loop
1555   // order and map into the correct parent loop.
1556   for (auto *BB : llvm::concat<BasicBlock *const>(
1557            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1558     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1559       OuterL->addBasicBlockToLoop(BB, LI);
1560 
1561 #ifndef NDEBUG
1562   for (auto &BBAndL : ExitLoopMap) {
1563     auto *BB = BBAndL.first;
1564     auto *OuterL = BBAndL.second;
1565     assert(LI.getLoopFor(BB) == OuterL &&
1566            "Failed to put all blocks into outer loops!");
1567   }
1568 #endif
1569 
1570   // Now that all the blocks are placed into the correct containing loop in the
1571   // absence of child loops, find all the potentially cloned child loops and
1572   // clone them into whatever outer loop we placed their header into.
1573   for (Loop *ChildL : OrigL) {
1574     auto *ClonedChildHeader =
1575         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1576     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1577       continue;
1578 
1579 #ifndef NDEBUG
1580     for (auto *ChildLoopBB : ChildL->blocks())
1581       assert(VMap.count(ChildLoopBB) &&
1582              "Cloned a child loop header but not all of that loops blocks!");
1583 #endif
1584 
1585     NonChildClonedLoops.push_back(cloneLoopNest(
1586         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1587   }
1588 }
1589 
1590 static void
1591 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1592                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1593                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1594   // Find all the dead clones, and remove them from their successors.
1595   SmallVector<BasicBlock *, 16> DeadBlocks;
1596   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1597     for (const auto &VMap : VMaps)
1598       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1599         if (!DT.isReachableFromEntry(ClonedBB)) {
1600           for (BasicBlock *SuccBB : successors(ClonedBB))
1601             SuccBB->removePredecessor(ClonedBB);
1602           DeadBlocks.push_back(ClonedBB);
1603         }
1604 
1605   // Remove all MemorySSA in the dead blocks
1606   if (MSSAU) {
1607     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1608                                                  DeadBlocks.end());
1609     MSSAU->removeBlocks(DeadBlockSet);
1610   }
1611 
1612   // Drop any remaining references to break cycles.
1613   for (BasicBlock *BB : DeadBlocks)
1614     BB->dropAllReferences();
1615   // Erase them from the IR.
1616   for (BasicBlock *BB : DeadBlocks)
1617     BB->eraseFromParent();
1618 }
1619 
1620 static void
1621 deleteDeadBlocksFromLoop(Loop &L,
1622                          SmallVectorImpl<BasicBlock *> &ExitBlocks,
1623                          DominatorTree &DT, LoopInfo &LI,
1624                          MemorySSAUpdater *MSSAU,
1625                          ScalarEvolution *SE,
1626                          function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
1627   // Find all the dead blocks tied to this loop, and remove them from their
1628   // successors.
1629   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1630 
1631   // Start with loop/exit blocks and get a transitive closure of reachable dead
1632   // blocks.
1633   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1634                                                 ExitBlocks.end());
1635   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1636   while (!DeathCandidates.empty()) {
1637     auto *BB = DeathCandidates.pop_back_val();
1638     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1639       for (BasicBlock *SuccBB : successors(BB)) {
1640         SuccBB->removePredecessor(BB);
1641         DeathCandidates.push_back(SuccBB);
1642       }
1643       DeadBlockSet.insert(BB);
1644     }
1645   }
1646 
1647   // Remove all MemorySSA in the dead blocks
1648   if (MSSAU)
1649     MSSAU->removeBlocks(DeadBlockSet);
1650 
1651   // Filter out the dead blocks from the exit blocks list so that it can be
1652   // used in the caller.
1653   llvm::erase_if(ExitBlocks,
1654                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1655 
1656   // Walk from this loop up through its parents removing all of the dead blocks.
1657   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1658     for (auto *BB : DeadBlockSet)
1659       ParentL->getBlocksSet().erase(BB);
1660     llvm::erase_if(ParentL->getBlocksVector(),
1661                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1662   }
1663 
1664   // Now delete the dead child loops. This raw delete will clear them
1665   // recursively.
1666   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1667     if (!DeadBlockSet.count(ChildL->getHeader()))
1668       return false;
1669 
1670     assert(llvm::all_of(ChildL->blocks(),
1671                         [&](BasicBlock *ChildBB) {
1672                           return DeadBlockSet.count(ChildBB);
1673                         }) &&
1674            "If the child loop header is dead all blocks in the child loop must "
1675            "be dead as well!");
1676     DestroyLoopCB(*ChildL, ChildL->getName());
1677     if (SE)
1678       SE->forgetBlockAndLoopDispositions();
1679     LI.destroy(ChildL);
1680     return true;
1681   });
1682 
1683   // Remove the loop mappings for the dead blocks and drop all the references
1684   // from these blocks to others to handle cyclic references as we start
1685   // deleting the blocks themselves.
1686   for (auto *BB : DeadBlockSet) {
1687     // Check that the dominator tree has already been updated.
1688     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1689     LI.changeLoopFor(BB, nullptr);
1690     // Drop all uses of the instructions to make sure we won't have dangling
1691     // uses in other blocks.
1692     for (auto &I : *BB)
1693       if (!I.use_empty())
1694         I.replaceAllUsesWith(PoisonValue::get(I.getType()));
1695     BB->dropAllReferences();
1696   }
1697 
1698   // Actually delete the blocks now that they've been fully unhooked from the
1699   // IR.
1700   for (auto *BB : DeadBlockSet)
1701     BB->eraseFromParent();
1702 }
1703 
1704 /// Recompute the set of blocks in a loop after unswitching.
1705 ///
1706 /// This walks from the original headers predecessors to rebuild the loop. We
1707 /// take advantage of the fact that new blocks can't have been added, and so we
1708 /// filter by the original loop's blocks. This also handles potentially
1709 /// unreachable code that we don't want to explore but might be found examining
1710 /// the predecessors of the header.
1711 ///
1712 /// If the original loop is no longer a loop, this will return an empty set. If
1713 /// it remains a loop, all the blocks within it will be added to the set
1714 /// (including those blocks in inner loops).
1715 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1716                                                                  LoopInfo &LI) {
1717   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1718 
1719   auto *PH = L.getLoopPreheader();
1720   auto *Header = L.getHeader();
1721 
1722   // A worklist to use while walking backwards from the header.
1723   SmallVector<BasicBlock *, 16> Worklist;
1724 
1725   // First walk the predecessors of the header to find the backedges. This will
1726   // form the basis of our walk.
1727   for (auto *Pred : predecessors(Header)) {
1728     // Skip the preheader.
1729     if (Pred == PH)
1730       continue;
1731 
1732     // Because the loop was in simplified form, the only non-loop predecessor
1733     // is the preheader.
1734     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1735                                "than the preheader that is not part of the "
1736                                "loop!");
1737 
1738     // Insert this block into the loop set and on the first visit and, if it
1739     // isn't the header we're currently walking, put it into the worklist to
1740     // recurse through.
1741     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1742       Worklist.push_back(Pred);
1743   }
1744 
1745   // If no backedges were found, we're done.
1746   if (LoopBlockSet.empty())
1747     return LoopBlockSet;
1748 
1749   // We found backedges, recurse through them to identify the loop blocks.
1750   while (!Worklist.empty()) {
1751     BasicBlock *BB = Worklist.pop_back_val();
1752     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1753 
1754     // No need to walk past the header.
1755     if (BB == Header)
1756       continue;
1757 
1758     // Because we know the inner loop structure remains valid we can use the
1759     // loop structure to jump immediately across the entire nested loop.
1760     // Further, because it is in loop simplified form, we can directly jump
1761     // to its preheader afterward.
1762     if (Loop *InnerL = LI.getLoopFor(BB))
1763       if (InnerL != &L) {
1764         assert(L.contains(InnerL) &&
1765                "Should not reach a loop *outside* this loop!");
1766         // The preheader is the only possible predecessor of the loop so
1767         // insert it into the set and check whether it was already handled.
1768         auto *InnerPH = InnerL->getLoopPreheader();
1769         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1770                                       "but not contain the inner loop "
1771                                       "preheader!");
1772         if (!LoopBlockSet.insert(InnerPH).second)
1773           // The only way to reach the preheader is through the loop body
1774           // itself so if it has been visited the loop is already handled.
1775           continue;
1776 
1777         // Insert all of the blocks (other than those already present) into
1778         // the loop set. We expect at least the block that led us to find the
1779         // inner loop to be in the block set, but we may also have other loop
1780         // blocks if they were already enqueued as predecessors of some other
1781         // outer loop block.
1782         for (auto *InnerBB : InnerL->blocks()) {
1783           if (InnerBB == BB) {
1784             assert(LoopBlockSet.count(InnerBB) &&
1785                    "Block should already be in the set!");
1786             continue;
1787           }
1788 
1789           LoopBlockSet.insert(InnerBB);
1790         }
1791 
1792         // Add the preheader to the worklist so we will continue past the
1793         // loop body.
1794         Worklist.push_back(InnerPH);
1795         continue;
1796       }
1797 
1798     // Insert any predecessors that were in the original loop into the new
1799     // set, and if the insert is successful, add them to the worklist.
1800     for (auto *Pred : predecessors(BB))
1801       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1802         Worklist.push_back(Pred);
1803   }
1804 
1805   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1806 
1807   // We've found all the blocks participating in the loop, return our completed
1808   // set.
1809   return LoopBlockSet;
1810 }
1811 
1812 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1813 ///
1814 /// The removal may have removed some child loops entirely but cannot have
1815 /// disturbed any remaining child loops. However, they may need to be hoisted
1816 /// to the parent loop (or to be top-level loops). The original loop may be
1817 /// completely removed.
1818 ///
1819 /// The sibling loops resulting from this update are returned. If the original
1820 /// loop remains a valid loop, it will be the first entry in this list with all
1821 /// of the newly sibling loops following it.
1822 ///
1823 /// Returns true if the loop remains a loop after unswitching, and false if it
1824 /// is no longer a loop after unswitching (and should not continue to be
1825 /// referenced).
1826 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1827                                      LoopInfo &LI,
1828                                      SmallVectorImpl<Loop *> &HoistedLoops,
1829                                      ScalarEvolution *SE) {
1830   auto *PH = L.getLoopPreheader();
1831 
1832   // Compute the actual parent loop from the exit blocks. Because we may have
1833   // pruned some exits the loop may be different from the original parent.
1834   Loop *ParentL = nullptr;
1835   SmallVector<Loop *, 4> ExitLoops;
1836   SmallVector<BasicBlock *, 4> ExitsInLoops;
1837   ExitsInLoops.reserve(ExitBlocks.size());
1838   for (auto *ExitBB : ExitBlocks)
1839     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1840       ExitLoops.push_back(ExitL);
1841       ExitsInLoops.push_back(ExitBB);
1842       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1843         ParentL = ExitL;
1844     }
1845 
1846   // Recompute the blocks participating in this loop. This may be empty if it
1847   // is no longer a loop.
1848   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1849 
1850   // If we still have a loop, we need to re-set the loop's parent as the exit
1851   // block set changing may have moved it within the loop nest. Note that this
1852   // can only happen when this loop has a parent as it can only hoist the loop
1853   // *up* the nest.
1854   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1855     // Remove this loop's (original) blocks from all of the intervening loops.
1856     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1857          IL = IL->getParentLoop()) {
1858       IL->getBlocksSet().erase(PH);
1859       for (auto *BB : L.blocks())
1860         IL->getBlocksSet().erase(BB);
1861       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1862         return BB == PH || L.contains(BB);
1863       });
1864     }
1865 
1866     LI.changeLoopFor(PH, ParentL);
1867     L.getParentLoop()->removeChildLoop(&L);
1868     if (ParentL)
1869       ParentL->addChildLoop(&L);
1870     else
1871       LI.addTopLevelLoop(&L);
1872   }
1873 
1874   // Now we update all the blocks which are no longer within the loop.
1875   auto &Blocks = L.getBlocksVector();
1876   auto BlocksSplitI =
1877       LoopBlockSet.empty()
1878           ? Blocks.begin()
1879           : std::stable_partition(
1880                 Blocks.begin(), Blocks.end(),
1881                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1882 
1883   // Before we erase the list of unlooped blocks, build a set of them.
1884   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1885   if (LoopBlockSet.empty())
1886     UnloopedBlocks.insert(PH);
1887 
1888   // Now erase these blocks from the loop.
1889   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1890     L.getBlocksSet().erase(BB);
1891   Blocks.erase(BlocksSplitI, Blocks.end());
1892 
1893   // Sort the exits in ascending loop depth, we'll work backwards across these
1894   // to process them inside out.
1895   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1896     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1897   });
1898 
1899   // We'll build up a set for each exit loop.
1900   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1901   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1902 
1903   auto RemoveUnloopedBlocksFromLoop =
1904       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1905         for (auto *BB : UnloopedBlocks)
1906           L.getBlocksSet().erase(BB);
1907         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1908           return UnloopedBlocks.count(BB);
1909         });
1910       };
1911 
1912   SmallVector<BasicBlock *, 16> Worklist;
1913   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1914     assert(Worklist.empty() && "Didn't clear worklist!");
1915     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1916 
1917     // Grab the next exit block, in decreasing loop depth order.
1918     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1919     Loop &ExitL = *LI.getLoopFor(ExitBB);
1920     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1921 
1922     // Erase all of the unlooped blocks from the loops between the previous
1923     // exit loop and this exit loop. This works because the ExitInLoops list is
1924     // sorted in increasing order of loop depth and thus we visit loops in
1925     // decreasing order of loop depth.
1926     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1927       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1928 
1929     // Walk the CFG back until we hit the cloned PH adding everything reachable
1930     // and in the unlooped set to this exit block's loop.
1931     Worklist.push_back(ExitBB);
1932     do {
1933       BasicBlock *BB = Worklist.pop_back_val();
1934       // We can stop recursing at the cloned preheader (if we get there).
1935       if (BB == PH)
1936         continue;
1937 
1938       for (BasicBlock *PredBB : predecessors(BB)) {
1939         // If this pred has already been moved to our set or is part of some
1940         // (inner) loop, no update needed.
1941         if (!UnloopedBlocks.erase(PredBB)) {
1942           assert((NewExitLoopBlocks.count(PredBB) ||
1943                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1944                  "Predecessor not in a nested loop (or already visited)!");
1945           continue;
1946         }
1947 
1948         // We just insert into the loop set here. We'll add these blocks to the
1949         // exit loop after we build up the set in a deterministic order rather
1950         // than the predecessor-influenced visit order.
1951         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1952         (void)Inserted;
1953         assert(Inserted && "Should only visit an unlooped block once!");
1954 
1955         // And recurse through to its predecessors.
1956         Worklist.push_back(PredBB);
1957       }
1958     } while (!Worklist.empty());
1959 
1960     // If blocks in this exit loop were directly part of the original loop (as
1961     // opposed to a child loop) update the map to point to this exit loop. This
1962     // just updates a map and so the fact that the order is unstable is fine.
1963     for (auto *BB : NewExitLoopBlocks)
1964       if (Loop *BBL = LI.getLoopFor(BB))
1965         if (BBL == &L || !L.contains(BBL))
1966           LI.changeLoopFor(BB, &ExitL);
1967 
1968     // We will remove the remaining unlooped blocks from this loop in the next
1969     // iteration or below.
1970     NewExitLoopBlocks.clear();
1971   }
1972 
1973   // Any remaining unlooped blocks are no longer part of any loop unless they
1974   // are part of some child loop.
1975   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1976     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1977   for (auto *BB : UnloopedBlocks)
1978     if (Loop *BBL = LI.getLoopFor(BB))
1979       if (BBL == &L || !L.contains(BBL))
1980         LI.changeLoopFor(BB, nullptr);
1981 
1982   // Sink all the child loops whose headers are no longer in the loop set to
1983   // the parent (or to be top level loops). We reach into the loop and directly
1984   // update its subloop vector to make this batch update efficient.
1985   auto &SubLoops = L.getSubLoopsVector();
1986   auto SubLoopsSplitI =
1987       LoopBlockSet.empty()
1988           ? SubLoops.begin()
1989           : std::stable_partition(
1990                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1991                   return LoopBlockSet.count(SubL->getHeader());
1992                 });
1993   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1994     HoistedLoops.push_back(HoistedL);
1995     HoistedL->setParentLoop(nullptr);
1996 
1997     // To compute the new parent of this hoisted loop we look at where we
1998     // placed the preheader above. We can't lookup the header itself because we
1999     // retained the mapping from the header to the hoisted loop. But the
2000     // preheader and header should have the exact same new parent computed
2001     // based on the set of exit blocks from the original loop as the preheader
2002     // is a predecessor of the header and so reached in the reverse walk. And
2003     // because the loops were all in simplified form the preheader of the
2004     // hoisted loop can't be part of some *other* loop.
2005     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
2006       NewParentL->addChildLoop(HoistedL);
2007     else
2008       LI.addTopLevelLoop(HoistedL);
2009   }
2010   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
2011 
2012   // Actually delete the loop if nothing remained within it.
2013   if (Blocks.empty()) {
2014     assert(SubLoops.empty() &&
2015            "Failed to remove all subloops from the original loop!");
2016     if (Loop *ParentL = L.getParentLoop())
2017       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
2018     else
2019       LI.removeLoop(llvm::find(LI, &L));
2020     // markLoopAsDeleted for L should be triggered by the caller (it is typically
2021     // done by using the UnswitchCB callback).
2022     if (SE)
2023       SE->forgetBlockAndLoopDispositions();
2024     LI.destroy(&L);
2025     return false;
2026   }
2027 
2028   return true;
2029 }
2030 
2031 /// Helper to visit a dominator subtree, invoking a callable on each node.
2032 ///
2033 /// Returning false at any point will stop walking past that node of the tree.
2034 template <typename CallableT>
2035 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2036   SmallVector<DomTreeNode *, 4> DomWorklist;
2037   DomWorklist.push_back(DT[BB]);
2038 #ifndef NDEBUG
2039   SmallPtrSet<DomTreeNode *, 4> Visited;
2040   Visited.insert(DT[BB]);
2041 #endif
2042   do {
2043     DomTreeNode *N = DomWorklist.pop_back_val();
2044 
2045     // Visit this node.
2046     if (!Callable(N->getBlock()))
2047       continue;
2048 
2049     // Accumulate the child nodes.
2050     for (DomTreeNode *ChildN : *N) {
2051       assert(Visited.insert(ChildN).second &&
2052              "Cannot visit a node twice when walking a tree!");
2053       DomWorklist.push_back(ChildN);
2054     }
2055   } while (!DomWorklist.empty());
2056 }
2057 
2058 static void unswitchNontrivialInvariants(
2059     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2060     SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo,
2061     DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2062     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2063     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2064     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2065   auto *ParentBB = TI.getParent();
2066   BranchInst *BI = dyn_cast<BranchInst>(&TI);
2067   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2068 
2069   // We can only unswitch switches, conditional branches with an invariant
2070   // condition, or combining invariant conditions with an instruction or
2071   // partially invariant instructions.
2072   assert((SI || (BI && BI->isConditional())) &&
2073          "Can only unswitch switches and conditional branch!");
2074   bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2075   bool FullUnswitch =
2076       SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] &&
2077              !PartiallyInvariant);
2078   if (FullUnswitch)
2079     assert(Invariants.size() == 1 &&
2080            "Cannot have other invariants with full unswitching!");
2081   else
2082     assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) &&
2083            "Partial unswitching requires an instruction as the condition!");
2084 
2085   if (MSSAU && VerifyMemorySSA)
2086     MSSAU->getMemorySSA()->verifyMemorySSA();
2087 
2088   // Constant and BBs tracking the cloned and continuing successor. When we are
2089   // unswitching the entire condition, this can just be trivially chosen to
2090   // unswitch towards `true`. However, when we are unswitching a set of
2091   // invariants combined with `and` or `or` or partially invariant instructions,
2092   // the combining operation determines the best direction to unswitch: we want
2093   // to unswitch the direction that will collapse the branch.
2094   bool Direction = true;
2095   int ClonedSucc = 0;
2096   if (!FullUnswitch) {
2097     Value *Cond = skipTrivialSelect(BI->getCondition());
2098     (void)Cond;
2099     assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2100             PartiallyInvariant) &&
2101            "Only `or`, `and`, an `select`, partially invariant instructions "
2102            "can combine invariants being unswitched.");
2103     if (!match(Cond, m_LogicalOr())) {
2104       if (match(Cond, m_LogicalAnd()) ||
2105           (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2106         Direction = false;
2107         ClonedSucc = 1;
2108       }
2109     }
2110   }
2111 
2112   BasicBlock *RetainedSuccBB =
2113       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2114   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2115   if (BI)
2116     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2117   else
2118     for (auto Case : SI->cases())
2119       if (Case.getCaseSuccessor() != RetainedSuccBB)
2120         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2121 
2122   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2123          "Should not unswitch the same successor we are retaining!");
2124 
2125   // The branch should be in this exact loop. Any inner loop's invariant branch
2126   // should be handled by unswitching that inner loop. The caller of this
2127   // routine should filter out any candidates that remain (but were skipped for
2128   // whatever reason).
2129   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2130 
2131   // Compute the parent loop now before we start hacking on things.
2132   Loop *ParentL = L.getParentLoop();
2133   // Get blocks in RPO order for MSSA update, before changing the CFG.
2134   LoopBlocksRPO LBRPO(&L);
2135   if (MSSAU)
2136     LBRPO.perform(&LI);
2137 
2138   // Compute the outer-most loop containing one of our exit blocks. This is the
2139   // furthest up our loopnest which can be mutated, which we will use below to
2140   // update things.
2141   Loop *OuterExitL = &L;
2142   for (auto *ExitBB : ExitBlocks) {
2143     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2144     if (!NewOuterExitL) {
2145       // We exited the entire nest with this block, so we're done.
2146       OuterExitL = nullptr;
2147       break;
2148     }
2149     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2150       OuterExitL = NewOuterExitL;
2151   }
2152 
2153   // At this point, we're definitely going to unswitch something so invalidate
2154   // any cached information in ScalarEvolution for the outer most loop
2155   // containing an exit block and all nested loops.
2156   if (SE) {
2157     if (OuterExitL)
2158       SE->forgetLoop(OuterExitL);
2159     else
2160       SE->forgetTopmostLoop(&L);
2161   }
2162 
2163   bool InsertFreeze = false;
2164   if (FreezeLoopUnswitchCond) {
2165     ICFLoopSafetyInfo SafetyInfo;
2166     SafetyInfo.computeLoopSafetyInfo(&L);
2167     InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L);
2168   }
2169 
2170   // If the edge from this terminator to a successor dominates that successor,
2171   // store a map from each block in its dominator subtree to it. This lets us
2172   // tell when cloning for a particular successor if a block is dominated by
2173   // some *other* successor with a single data structure. We use this to
2174   // significantly reduce cloning.
2175   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2176   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2177            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2178     if (SuccBB->getUniquePredecessor() ||
2179         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2180           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2181         }))
2182       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2183         DominatingSucc[BB] = SuccBB;
2184         return true;
2185       });
2186 
2187   // Split the preheader, so that we know that there is a safe place to insert
2188   // the conditional branch. We will change the preheader to have a conditional
2189   // branch on LoopCond. The original preheader will become the split point
2190   // between the unswitched versions, and we will have a new preheader for the
2191   // original loop.
2192   BasicBlock *SplitBB = L.getLoopPreheader();
2193   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2194 
2195   // Keep track of the dominator tree updates needed.
2196   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2197 
2198   // Clone the loop for each unswitched successor.
2199   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2200   VMaps.reserve(UnswitchedSuccBBs.size());
2201   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2202   for (auto *SuccBB : UnswitchedSuccBBs) {
2203     VMaps.emplace_back(new ValueToValueMapTy());
2204     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2205         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2206         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2207   }
2208 
2209   // Drop metadata if we may break its semantics by moving this instr into the
2210   // split block.
2211   if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2212     if (DropNonTrivialImplicitNullChecks)
2213       // Do not spend time trying to understand if we can keep it, just drop it
2214       // to save compile time.
2215       TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2216     else {
2217       // It is only legal to preserve make.implicit metadata if we are
2218       // guaranteed no reach implicit null check after following this branch.
2219       ICFLoopSafetyInfo SafetyInfo;
2220       SafetyInfo.computeLoopSafetyInfo(&L);
2221       if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2222         TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2223     }
2224   }
2225 
2226   // The stitching of the branched code back together depends on whether we're
2227   // doing full unswitching or not with the exception that we always want to
2228   // nuke the initial terminator placed in the split block.
2229   SplitBB->getTerminator()->eraseFromParent();
2230   if (FullUnswitch) {
2231     // Splice the terminator from the original loop and rewrite its
2232     // successors.
2233     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2234 
2235     // Keep a clone of the terminator for MSSA updates.
2236     Instruction *NewTI = TI.clone();
2237     ParentBB->getInstList().push_back(NewTI);
2238 
2239     // First wire up the moved terminator to the preheaders.
2240     if (BI) {
2241       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2242       BI->setSuccessor(ClonedSucc, ClonedPH);
2243       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2244       Value *Cond = skipTrivialSelect(BI->getCondition());
2245       if (InsertFreeze) {
2246         if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, BI, &DT))
2247           Cond = new FreezeInst(Cond, Cond->getName() + ".fr", BI);
2248       }
2249       BI->setCondition(Cond);
2250       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2251     } else {
2252       assert(SI && "Must either be a branch or switch!");
2253 
2254       // Walk the cases and directly update their successors.
2255       assert(SI->getDefaultDest() == RetainedSuccBB &&
2256              "Not retaining default successor!");
2257       SI->setDefaultDest(LoopPH);
2258       for (const auto &Case : SI->cases())
2259         if (Case.getCaseSuccessor() == RetainedSuccBB)
2260           Case.setSuccessor(LoopPH);
2261         else
2262           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2263 
2264       if (InsertFreeze) {
2265         auto Cond = SI->getCondition();
2266         if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, SI, &DT))
2267           SI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", SI));
2268       }
2269       // We need to use the set to populate domtree updates as even when there
2270       // are multiple cases pointing at the same successor we only want to
2271       // remove and insert one edge in the domtree.
2272       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2273         DTUpdates.push_back(
2274             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2275     }
2276 
2277     if (MSSAU) {
2278       DT.applyUpdates(DTUpdates);
2279       DTUpdates.clear();
2280 
2281       // Remove all but one edge to the retained block and all unswitched
2282       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2283       // when we know we only keep a single edge for each case.
2284       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2285       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2286         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2287 
2288       for (auto &VMap : VMaps)
2289         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2290                                    /*IgnoreIncomingWithNoClones=*/true);
2291       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2292 
2293       // Remove all edges to unswitched blocks.
2294       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2295         MSSAU->removeEdge(ParentBB, SuccBB);
2296     }
2297 
2298     // Now unhook the successor relationship as we'll be replacing
2299     // the terminator with a direct branch. This is much simpler for branches
2300     // than switches so we handle those first.
2301     if (BI) {
2302       // Remove the parent as a predecessor of the unswitched successor.
2303       assert(UnswitchedSuccBBs.size() == 1 &&
2304              "Only one possible unswitched block for a branch!");
2305       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2306       UnswitchedSuccBB->removePredecessor(ParentBB,
2307                                           /*KeepOneInputPHIs*/ true);
2308       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2309     } else {
2310       // Note that we actually want to remove the parent block as a predecessor
2311       // of *every* case successor. The case successor is either unswitched,
2312       // completely eliminating an edge from the parent to that successor, or it
2313       // is a duplicate edge to the retained successor as the retained successor
2314       // is always the default successor and as we'll replace this with a direct
2315       // branch we no longer need the duplicate entries in the PHI nodes.
2316       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2317       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2318              "Not retaining default successor!");
2319       for (const auto &Case : NewSI->cases())
2320         Case.getCaseSuccessor()->removePredecessor(
2321             ParentBB,
2322             /*KeepOneInputPHIs*/ true);
2323 
2324       // We need to use the set to populate domtree updates as even when there
2325       // are multiple cases pointing at the same successor we only want to
2326       // remove and insert one edge in the domtree.
2327       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2328         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2329     }
2330 
2331     // After MSSAU update, remove the cloned terminator instruction NewTI.
2332     ParentBB->getTerminator()->eraseFromParent();
2333 
2334     // Create a new unconditional branch to the continuing block (as opposed to
2335     // the one cloned).
2336     BranchInst::Create(RetainedSuccBB, ParentBB);
2337   } else {
2338     assert(BI && "Only branches have partial unswitching.");
2339     assert(UnswitchedSuccBBs.size() == 1 &&
2340            "Only one possible unswitched block for a branch!");
2341     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2342     // When doing a partial unswitch, we have to do a bit more work to build up
2343     // the branch in the split block.
2344     if (PartiallyInvariant)
2345       buildPartialInvariantUnswitchConditionalBranch(
2346           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2347     else {
2348       buildPartialUnswitchConditionalBranch(
2349           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH,
2350           FreezeLoopUnswitchCond, BI, &AC, DT);
2351     }
2352     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2353 
2354     if (MSSAU) {
2355       DT.applyUpdates(DTUpdates);
2356       DTUpdates.clear();
2357 
2358       // Perform MSSA cloning updates.
2359       for (auto &VMap : VMaps)
2360         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2361                                    /*IgnoreIncomingWithNoClones=*/true);
2362       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2363     }
2364   }
2365 
2366   // Apply the updates accumulated above to get an up-to-date dominator tree.
2367   DT.applyUpdates(DTUpdates);
2368 
2369   // Now that we have an accurate dominator tree, first delete the dead cloned
2370   // blocks so that we can accurately build any cloned loops. It is important to
2371   // not delete the blocks from the original loop yet because we still want to
2372   // reference the original loop to understand the cloned loop's structure.
2373   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2374 
2375   // Build the cloned loop structure itself. This may be substantially
2376   // different from the original structure due to the simplified CFG. This also
2377   // handles inserting all the cloned blocks into the correct loops.
2378   SmallVector<Loop *, 4> NonChildClonedLoops;
2379   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2380     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2381 
2382   // Now that our cloned loops have been built, we can update the original loop.
2383   // First we delete the dead blocks from it and then we rebuild the loop
2384   // structure taking these deletions into account.
2385   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE,DestroyLoopCB);
2386 
2387   if (MSSAU && VerifyMemorySSA)
2388     MSSAU->getMemorySSA()->verifyMemorySSA();
2389 
2390   SmallVector<Loop *, 4> HoistedLoops;
2391   bool IsStillLoop =
2392       rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE);
2393 
2394   if (MSSAU && VerifyMemorySSA)
2395     MSSAU->getMemorySSA()->verifyMemorySSA();
2396 
2397   // This transformation has a high risk of corrupting the dominator tree, and
2398   // the below steps to rebuild loop structures will result in hard to debug
2399   // errors in that case so verify that the dominator tree is sane first.
2400   // FIXME: Remove this when the bugs stop showing up and rely on existing
2401   // verification steps.
2402   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2403 
2404   if (BI && !PartiallyInvariant) {
2405     // If we unswitched a branch which collapses the condition to a known
2406     // constant we want to replace all the uses of the invariants within both
2407     // the original and cloned blocks. We do this here so that we can use the
2408     // now updated dominator tree to identify which side the users are on.
2409     assert(UnswitchedSuccBBs.size() == 1 &&
2410            "Only one possible unswitched block for a branch!");
2411     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2412 
2413     // When considering multiple partially-unswitched invariants
2414     // we cant just go replace them with constants in both branches.
2415     //
2416     // For 'AND' we infer that true branch ("continue") means true
2417     // for each invariant operand.
2418     // For 'OR' we can infer that false branch ("continue") means false
2419     // for each invariant operand.
2420     // So it happens that for multiple-partial case we dont replace
2421     // in the unswitched branch.
2422     bool ReplaceUnswitched =
2423         FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2424 
2425     ConstantInt *UnswitchedReplacement =
2426         Direction ? ConstantInt::getTrue(BI->getContext())
2427                   : ConstantInt::getFalse(BI->getContext());
2428     ConstantInt *ContinueReplacement =
2429         Direction ? ConstantInt::getFalse(BI->getContext())
2430                   : ConstantInt::getTrue(BI->getContext());
2431     for (Value *Invariant : Invariants) {
2432       assert(!isa<Constant>(Invariant) &&
2433              "Should not be replacing constant values!");
2434       // Use make_early_inc_range here as set invalidates the iterator.
2435       for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2436         Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2437         if (!UserI)
2438           continue;
2439 
2440         // Replace it with the 'continue' side if in the main loop body, and the
2441         // unswitched if in the cloned blocks.
2442         if (DT.dominates(LoopPH, UserI->getParent()))
2443           U.set(ContinueReplacement);
2444         else if (ReplaceUnswitched &&
2445                  DT.dominates(ClonedPH, UserI->getParent()))
2446           U.set(UnswitchedReplacement);
2447       }
2448     }
2449   }
2450 
2451   // We can change which blocks are exit blocks of all the cloned sibling
2452   // loops, the current loop, and any parent loops which shared exit blocks
2453   // with the current loop. As a consequence, we need to re-form LCSSA for
2454   // them. But we shouldn't need to re-form LCSSA for any child loops.
2455   // FIXME: This could be made more efficient by tracking which exit blocks are
2456   // new, and focusing on them, but that isn't likely to be necessary.
2457   //
2458   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2459   // loop nest and update every loop that could have had its exits changed. We
2460   // also need to cover any intervening loops. We add all of these loops to
2461   // a list and sort them by loop depth to achieve this without updating
2462   // unnecessary loops.
2463   auto UpdateLoop = [&](Loop &UpdateL) {
2464 #ifndef NDEBUG
2465     UpdateL.verifyLoop();
2466     for (Loop *ChildL : UpdateL) {
2467       ChildL->verifyLoop();
2468       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2469              "Perturbed a child loop's LCSSA form!");
2470     }
2471 #endif
2472     // First build LCSSA for this loop so that we can preserve it when
2473     // forming dedicated exits. We don't want to perturb some other loop's
2474     // LCSSA while doing that CFG edit.
2475     formLCSSA(UpdateL, DT, &LI, SE);
2476 
2477     // For loops reached by this loop's original exit blocks we may
2478     // introduced new, non-dedicated exits. At least try to re-form dedicated
2479     // exits for these loops. This may fail if they couldn't have dedicated
2480     // exits to start with.
2481     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2482   };
2483 
2484   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2485   // and we can do it in any order as they don't nest relative to each other.
2486   //
2487   // Also check if any of the loops we have updated have become top-level loops
2488   // as that will necessitate widening the outer loop scope.
2489   for (Loop *UpdatedL :
2490        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2491     UpdateLoop(*UpdatedL);
2492     if (UpdatedL->isOutermost())
2493       OuterExitL = nullptr;
2494   }
2495   if (IsStillLoop) {
2496     UpdateLoop(L);
2497     if (L.isOutermost())
2498       OuterExitL = nullptr;
2499   }
2500 
2501   // If the original loop had exit blocks, walk up through the outer most loop
2502   // of those exit blocks to update LCSSA and form updated dedicated exits.
2503   if (OuterExitL != &L)
2504     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2505          OuterL = OuterL->getParentLoop())
2506       UpdateLoop(*OuterL);
2507 
2508 #ifndef NDEBUG
2509   // Verify the entire loop structure to catch any incorrect updates before we
2510   // progress in the pass pipeline.
2511   LI.verify(DT);
2512 #endif
2513 
2514   // Now that we've unswitched something, make callbacks to report the changes.
2515   // For that we need to merge together the updated loops and the cloned loops
2516   // and check whether the original loop survived.
2517   SmallVector<Loop *, 4> SibLoops;
2518   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2519     if (UpdatedL->getParentLoop() == ParentL)
2520       SibLoops.push_back(UpdatedL);
2521   UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2522 
2523   if (MSSAU && VerifyMemorySSA)
2524     MSSAU->getMemorySSA()->verifyMemorySSA();
2525 
2526   if (BI)
2527     ++NumBranches;
2528   else
2529     ++NumSwitches;
2530 }
2531 
2532 /// Recursively compute the cost of a dominator subtree based on the per-block
2533 /// cost map provided.
2534 ///
2535 /// The recursive computation is memozied into the provided DT-indexed cost map
2536 /// to allow querying it for most nodes in the domtree without it becoming
2537 /// quadratic.
2538 static InstructionCost computeDomSubtreeCost(
2539     DomTreeNode &N,
2540     const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2541     SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2542   // Don't accumulate cost (or recurse through) blocks not in our block cost
2543   // map and thus not part of the duplication cost being considered.
2544   auto BBCostIt = BBCostMap.find(N.getBlock());
2545   if (BBCostIt == BBCostMap.end())
2546     return 0;
2547 
2548   // Lookup this node to see if we already computed its cost.
2549   auto DTCostIt = DTCostMap.find(&N);
2550   if (DTCostIt != DTCostMap.end())
2551     return DTCostIt->second;
2552 
2553   // If not, we have to compute it. We can't use insert above and update
2554   // because computing the cost may insert more things into the map.
2555   InstructionCost Cost = std::accumulate(
2556       N.begin(), N.end(), BBCostIt->second,
2557       [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2558         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2559       });
2560   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2561   (void)Inserted;
2562   assert(Inserted && "Should not insert a node while visiting children!");
2563   return Cost;
2564 }
2565 
2566 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2567 /// making the following replacement:
2568 ///
2569 ///   --code before guard--
2570 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2571 ///   --code after guard--
2572 ///
2573 /// into
2574 ///
2575 ///   --code before guard--
2576 ///   br i1 %cond, label %guarded, label %deopt
2577 ///
2578 /// guarded:
2579 ///   --code after guard--
2580 ///
2581 /// deopt:
2582 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2583 ///   unreachable
2584 ///
2585 /// It also makes all relevant DT and LI updates, so that all structures are in
2586 /// valid state after this transform.
2587 static BranchInst *
2588 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2589                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2590                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2591   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2592   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2593   BasicBlock *CheckBB = GI->getParent();
2594 
2595   if (MSSAU && VerifyMemorySSA)
2596      MSSAU->getMemorySSA()->verifyMemorySSA();
2597 
2598   // Remove all CheckBB's successors from DomTree. A block can be seen among
2599   // successors more than once, but for DomTree it should be added only once.
2600   SmallPtrSet<BasicBlock *, 4> Successors;
2601   for (auto *Succ : successors(CheckBB))
2602     if (Successors.insert(Succ).second)
2603       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2604 
2605   Instruction *DeoptBlockTerm =
2606       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2607   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2608   // SplitBlockAndInsertIfThen inserts control flow that branches to
2609   // DeoptBlockTerm if the condition is true.  We want the opposite.
2610   CheckBI->swapSuccessors();
2611 
2612   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2613   GuardedBlock->setName("guarded");
2614   CheckBI->getSuccessor(1)->setName("deopt");
2615   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2616 
2617   // We now have a new exit block.
2618   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2619 
2620   if (MSSAU)
2621     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2622 
2623   GI->moveBefore(DeoptBlockTerm);
2624   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2625 
2626   // Add new successors of CheckBB into DomTree.
2627   for (auto *Succ : successors(CheckBB))
2628     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2629 
2630   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2631   // successors.
2632   for (auto *Succ : Successors)
2633     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2634 
2635   // Make proper changes to DT.
2636   DT.applyUpdates(DTUpdates);
2637   // Inform LI of a new loop block.
2638   L.addBasicBlockToLoop(GuardedBlock, LI);
2639 
2640   if (MSSAU) {
2641     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2642     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2643     if (VerifyMemorySSA)
2644       MSSAU->getMemorySSA()->verifyMemorySSA();
2645   }
2646 
2647   ++NumGuards;
2648   return CheckBI;
2649 }
2650 
2651 /// Cost multiplier is a way to limit potentially exponential behavior
2652 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2653 /// candidates available. Also accounting for the number of "sibling" loops with
2654 /// the idea to account for previous unswitches that already happened on this
2655 /// cluster of loops. There was an attempt to keep this formula simple,
2656 /// just enough to limit the worst case behavior. Even if it is not that simple
2657 /// now it is still not an attempt to provide a detailed heuristic size
2658 /// prediction.
2659 ///
2660 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2661 /// unswitch candidates, making adequate predictions instead of wild guesses.
2662 /// That requires knowing not just the number of "remaining" candidates but
2663 /// also costs of unswitching for each of these candidates.
2664 static int CalculateUnswitchCostMultiplier(
2665     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2666     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2667         UnswitchCandidates) {
2668 
2669   // Guards and other exiting conditions do not contribute to exponential
2670   // explosion as soon as they dominate the latch (otherwise there might be
2671   // another path to the latch remaining that does not allow to eliminate the
2672   // loop copy on unswitch).
2673   BasicBlock *Latch = L.getLoopLatch();
2674   BasicBlock *CondBlock = TI.getParent();
2675   if (DT.dominates(CondBlock, Latch) &&
2676       (isGuard(&TI) ||
2677        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2678          return L.contains(SuccBB);
2679        }) <= 1)) {
2680     NumCostMultiplierSkipped++;
2681     return 1;
2682   }
2683 
2684   auto *ParentL = L.getParentLoop();
2685   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2686                                : std::distance(LI.begin(), LI.end()));
2687   // Count amount of clones that all the candidates might cause during
2688   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2689   int UnswitchedClones = 0;
2690   for (auto Candidate : UnswitchCandidates) {
2691     Instruction *CI = Candidate.first;
2692     BasicBlock *CondBlock = CI->getParent();
2693     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2694     if (isGuard(CI)) {
2695       if (!SkipExitingSuccessors)
2696         UnswitchedClones++;
2697       continue;
2698     }
2699     int NonExitingSuccessors = llvm::count_if(
2700         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2701           return !SkipExitingSuccessors || L.contains(SuccBB);
2702         });
2703     UnswitchedClones += Log2_32(NonExitingSuccessors);
2704   }
2705 
2706   // Ignore up to the "unscaled candidates" number of unswitch candidates
2707   // when calculating the power-of-two scaling of the cost. The main idea
2708   // with this control is to allow a small number of unswitches to happen
2709   // and rely more on siblings multiplier (see below) when the number
2710   // of candidates is small.
2711   unsigned ClonesPower =
2712       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2713 
2714   // Allowing top-level loops to spread a bit more than nested ones.
2715   int SiblingsMultiplier =
2716       std::max((ParentL ? SiblingsCount
2717                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2718                1);
2719   // Compute the cost multiplier in a way that won't overflow by saturating
2720   // at an upper bound.
2721   int CostMultiplier;
2722   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2723       SiblingsMultiplier > UnswitchThreshold)
2724     CostMultiplier = UnswitchThreshold;
2725   else
2726     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2727                               (int)UnswitchThreshold);
2728 
2729   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2730                     << " (siblings " << SiblingsMultiplier << " * clones "
2731                     << (1 << ClonesPower) << ")"
2732                     << " for unswitch candidate: " << TI << "\n");
2733   return CostMultiplier;
2734 }
2735 
2736 static bool collectUnswitchCandidates(
2737     SmallVectorImpl<std::pair<Instruction *, TinyPtrVector<Value *> > > &
2738         UnswitchCandidates,
2739     IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch,
2740     const Loop &L, const LoopInfo &LI, AAResults &AA,
2741     const MemorySSAUpdater *MSSAU) {
2742   assert(UnswitchCandidates.empty() && "Should be!");
2743   // Whether or not we should also collect guards in the loop.
2744   bool CollectGuards = false;
2745   if (UnswitchGuards) {
2746     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2747         Intrinsic::getName(Intrinsic::experimental_guard));
2748     if (GuardDecl && !GuardDecl->use_empty())
2749       CollectGuards = true;
2750   }
2751 
2752   for (auto *BB : L.blocks()) {
2753     if (LI.getLoopFor(BB) != &L)
2754       continue;
2755 
2756     if (CollectGuards)
2757       for (auto &I : *BB)
2758         if (isGuard(&I)) {
2759           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2760           // TODO: Support AND, OR conditions and partial unswitching.
2761           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2762             UnswitchCandidates.push_back({&I, {Cond}});
2763         }
2764 
2765     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2766       // We can only consider fully loop-invariant switch conditions as we need
2767       // to completely eliminate the switch after unswitching.
2768       if (!isa<Constant>(SI->getCondition()) &&
2769           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2770         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2771       continue;
2772     }
2773 
2774     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2775     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2776         BI->getSuccessor(0) == BI->getSuccessor(1))
2777       continue;
2778 
2779     Value *Cond = skipTrivialSelect(BI->getCondition());
2780     if (isa<Constant>(Cond))
2781       continue;
2782 
2783     if (L.isLoopInvariant(Cond)) {
2784       UnswitchCandidates.push_back({BI, {Cond}});
2785       continue;
2786     }
2787 
2788     Instruction &CondI = *cast<Instruction>(Cond);
2789     if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2790       TinyPtrVector<Value *> Invariants =
2791           collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2792       if (Invariants.empty())
2793         continue;
2794 
2795       UnswitchCandidates.push_back({BI, std::move(Invariants)});
2796       continue;
2797     }
2798   }
2799 
2800   if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2801       !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2802         return TerminatorAndInvariants.first == L.getHeader()->getTerminator();
2803       })) {
2804     MemorySSA *MSSA = MSSAU->getMemorySSA();
2805     if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2806       LLVM_DEBUG(
2807           dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2808                  << *Info->InstToDuplicate[0] << "\n");
2809       PartialIVInfo = *Info;
2810       PartialIVCondBranch = L.getHeader()->getTerminator();
2811       TinyPtrVector<Value *> ValsToDuplicate;
2812       llvm::append_range(ValsToDuplicate, Info->InstToDuplicate);
2813       UnswitchCandidates.push_back(
2814           {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2815     }
2816   }
2817   return !UnswitchCandidates.empty();
2818 }
2819 
2820 static bool unswitchBestCondition(
2821     Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2822     AAResults &AA, TargetTransformInfo &TTI,
2823     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2824     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2825     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2826   // Collect all invariant conditions within this loop (as opposed to an inner
2827   // loop which would be handled when visiting that inner loop).
2828   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *> >, 4>
2829   UnswitchCandidates;
2830   IVConditionInfo PartialIVInfo;
2831   Instruction *PartialIVCondBranch = nullptr;
2832   // If we didn't find any candidates, we're done.
2833   if (!collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo,
2834                                  PartialIVCondBranch, L, LI, AA, MSSAU))
2835     return false;
2836 
2837   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2838   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2839   // irreducible control flow into reducible control flow and introduce new
2840   // loops "out of thin air". If we ever discover important use cases for doing
2841   // this, we can add support to loop unswitch, but it is a lot of complexity
2842   // for what seems little or no real world benefit.
2843   LoopBlocksRPO RPOT(&L);
2844   RPOT.perform(&LI);
2845   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2846     return false;
2847 
2848   SmallVector<BasicBlock *, 4> ExitBlocks;
2849   L.getUniqueExitBlocks(ExitBlocks);
2850 
2851   // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
2852   // instruction as we don't know how to split those exit blocks.
2853   // FIXME: We should teach SplitBlock to handle this and remove this
2854   // restriction.
2855   for (auto *ExitBB : ExitBlocks) {
2856     auto *I = ExitBB->getFirstNonPHI();
2857     if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
2858       LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
2859                            "in exit block\n");
2860       return false;
2861     }
2862   }
2863 
2864   LLVM_DEBUG(
2865       dbgs() << "Considering " << UnswitchCandidates.size()
2866              << " non-trivial loop invariant conditions for unswitching.\n");
2867 
2868   // Given that unswitching these terminators will require duplicating parts of
2869   // the loop, so we need to be able to model that cost. Compute the ephemeral
2870   // values and set up a data structure to hold per-BB costs. We cache each
2871   // block's cost so that we don't recompute this when considering different
2872   // subsets of the loop for duplication during unswitching.
2873   SmallPtrSet<const Value *, 4> EphValues;
2874   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2875   SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2876 
2877   // Compute the cost of each block, as well as the total loop cost. Also, bail
2878   // out if we see instructions which are incompatible with loop unswitching
2879   // (convergent, noduplicate, or cross-basic-block tokens).
2880   // FIXME: We might be able to safely handle some of these in non-duplicated
2881   // regions.
2882   TargetTransformInfo::TargetCostKind CostKind =
2883       L.getHeader()->getParent()->hasMinSize()
2884       ? TargetTransformInfo::TCK_CodeSize
2885       : TargetTransformInfo::TCK_SizeAndLatency;
2886   InstructionCost LoopCost = 0;
2887   for (auto *BB : L.blocks()) {
2888     InstructionCost Cost = 0;
2889     for (auto &I : *BB) {
2890       if (EphValues.count(&I))
2891         continue;
2892 
2893       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2894         return false;
2895       if (auto *CB = dyn_cast<CallBase>(&I))
2896         if (CB->isConvergent() || CB->cannotDuplicate())
2897           return false;
2898 
2899       Cost += TTI.getInstructionCost(&I, CostKind);
2900     }
2901     assert(Cost >= 0 && "Must not have negative costs!");
2902     LoopCost += Cost;
2903     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2904     BBCostMap[BB] = Cost;
2905   }
2906   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2907 
2908   // Now we find the best candidate by searching for the one with the following
2909   // properties in order:
2910   //
2911   // 1) An unswitching cost below the threshold
2912   // 2) The smallest number of duplicated unswitch candidates (to avoid
2913   //    creating redundant subsequent unswitching)
2914   // 3) The smallest cost after unswitching.
2915   //
2916   // We prioritize reducing fanout of unswitch candidates provided the cost
2917   // remains below the threshold because this has a multiplicative effect.
2918   //
2919   // This requires memoizing each dominator subtree to avoid redundant work.
2920   //
2921   // FIXME: Need to actually do the number of candidates part above.
2922   SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2923   // Given a terminator which might be unswitched, computes the non-duplicated
2924   // cost for that terminator.
2925   auto ComputeUnswitchedCost = [&](Instruction &TI,
2926                                    bool FullUnswitch) -> InstructionCost {
2927     BasicBlock &BB = *TI.getParent();
2928     SmallPtrSet<BasicBlock *, 4> Visited;
2929 
2930     InstructionCost Cost = 0;
2931     for (BasicBlock *SuccBB : successors(&BB)) {
2932       // Don't count successors more than once.
2933       if (!Visited.insert(SuccBB).second)
2934         continue;
2935 
2936       // If this is a partial unswitch candidate, then it must be a conditional
2937       // branch with a condition of either `or`, `and`, their corresponding
2938       // select forms or partially invariant instructions. In that case, one of
2939       // the successors is necessarily duplicated, so don't even try to remove
2940       // its cost.
2941       if (!FullUnswitch) {
2942         auto &BI = cast<BranchInst>(TI);
2943         Value *Cond = skipTrivialSelect(BI.getCondition());
2944         if (match(Cond, m_LogicalAnd())) {
2945           if (SuccBB == BI.getSuccessor(1))
2946             continue;
2947         } else if (match(Cond, m_LogicalOr())) {
2948           if (SuccBB == BI.getSuccessor(0))
2949             continue;
2950         } else if ((PartialIVInfo.KnownValue->isOneValue() &&
2951                     SuccBB == BI.getSuccessor(0)) ||
2952                    (!PartialIVInfo.KnownValue->isOneValue() &&
2953                     SuccBB == BI.getSuccessor(1)))
2954           continue;
2955       }
2956 
2957       // This successor's domtree will not need to be duplicated after
2958       // unswitching if the edge to the successor dominates it (and thus the
2959       // entire tree). This essentially means there is no other path into this
2960       // subtree and so it will end up live in only one clone of the loop.
2961       if (SuccBB->getUniquePredecessor() ||
2962           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2963             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2964           })) {
2965         Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2966         assert(Cost <= LoopCost &&
2967                "Non-duplicated cost should never exceed total loop cost!");
2968       }
2969     }
2970 
2971     // Now scale the cost by the number of unique successors minus one. We
2972     // subtract one because there is already at least one copy of the entire
2973     // loop. This is computing the new cost of unswitching a condition.
2974     // Note that guards always have 2 unique successors that are implicit and
2975     // will be materialized if we decide to unswitch it.
2976     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2977     assert(SuccessorsCount > 1 &&
2978            "Cannot unswitch a condition without multiple distinct successors!");
2979     return (LoopCost - Cost) * (SuccessorsCount - 1);
2980   };
2981   Instruction *BestUnswitchTI = nullptr;
2982   InstructionCost BestUnswitchCost = 0;
2983   ArrayRef<Value *> BestUnswitchInvariants;
2984   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2985     Instruction &TI = *TerminatorAndInvariants.first;
2986     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2987     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2988     InstructionCost CandidateCost = ComputeUnswitchedCost(
2989         TI, /*FullUnswitch*/ !BI ||
2990                 (Invariants.size() == 1 &&
2991                  Invariants[0] == skipTrivialSelect(BI->getCondition())));
2992     // Calculate cost multiplier which is a tool to limit potentially
2993     // exponential behavior of loop-unswitch.
2994     if (EnableUnswitchCostMultiplier) {
2995       int CostMultiplier =
2996           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2997       assert(
2998           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2999           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
3000       CandidateCost *= CostMultiplier;
3001       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
3002                         << " (multiplier: " << CostMultiplier << ")"
3003                         << " for unswitch candidate: " << TI << "\n");
3004     } else {
3005       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
3006                         << " for unswitch candidate: " << TI << "\n");
3007     }
3008 
3009     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
3010       BestUnswitchTI = &TI;
3011       BestUnswitchCost = CandidateCost;
3012       BestUnswitchInvariants = Invariants;
3013     }
3014   }
3015   assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
3016 
3017   if (BestUnswitchCost >= UnswitchThreshold) {
3018     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
3019                       << BestUnswitchCost << "\n");
3020     return false;
3021   }
3022 
3023   if (BestUnswitchTI != PartialIVCondBranch)
3024     PartialIVInfo.InstToDuplicate.clear();
3025 
3026   // If the best candidate is a guard, turn it into a branch.
3027   if (isGuard(BestUnswitchTI))
3028     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
3029                                          ExitBlocks, DT, LI, MSSAU);
3030 
3031   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
3032                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
3033                     << "\n");
3034   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
3035                                ExitBlocks, PartialIVInfo, DT, LI, AC,
3036                                UnswitchCB, SE, MSSAU, DestroyLoopCB);
3037   return true;
3038 }
3039 
3040 /// Unswitch control flow predicated on loop invariant conditions.
3041 ///
3042 /// This first hoists all branches or switches which are trivial (IE, do not
3043 /// require duplicating any part of the loop) out of the loop body. It then
3044 /// looks at other loop invariant control flows and tries to unswitch those as
3045 /// well by cloning the loop if the result is small enough.
3046 ///
3047 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3048 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
3049 /// valid (i.e. its use is enabled).
3050 ///
3051 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3052 /// true, we will attempt to do non-trivial unswitching as well as trivial
3053 /// unswitching.
3054 ///
3055 /// The `UnswitchCB` callback provided will be run after unswitching is
3056 /// complete, with the first parameter set to `true` if the provided loop
3057 /// remains a loop, and a list of new sibling loops created.
3058 ///
3059 /// If `SE` is non-null, we will update that analysis based on the unswitching
3060 /// done.
3061 static bool
3062 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
3063              AAResults &AA, TargetTransformInfo &TTI, bool Trivial,
3064              bool NonTrivial,
3065              function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
3066              ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
3067              ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
3068              function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3069   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3070          "Loops must be in LCSSA form before unswitching.");
3071 
3072   // Must be in loop simplified form: we need a preheader and dedicated exits.
3073   if (!L.isLoopSimplifyForm())
3074     return false;
3075 
3076   // Try trivial unswitch first before loop over other basic blocks in the loop.
3077   if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3078     // If we unswitched successfully we will want to clean up the loop before
3079     // processing it further so just mark it as unswitched and return.
3080     UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3081     return true;
3082   }
3083 
3084   // Check whether we should continue with non-trivial conditions.
3085   // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3086   //                           unswitching for testing and debugging.
3087   // NonTrivial: Parameter that enables non-trivial unswitching for this
3088   //             invocation of the transform. But this should be allowed only
3089   //             for targets without branch divergence.
3090   //
3091   // FIXME: If divergence analysis becomes available to a loop
3092   // transform, we should allow unswitching for non-trivial uniform
3093   // branches even on targets that have divergence.
3094   // https://bugs.llvm.org/show_bug.cgi?id=48819
3095   bool ContinueWithNonTrivial =
3096       EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3097   if (!ContinueWithNonTrivial)
3098     return false;
3099 
3100   // Skip non-trivial unswitching for optsize functions.
3101   if (L.getHeader()->getParent()->hasOptSize())
3102     return false;
3103 
3104   // Skip cold loops, as unswitching them brings little benefit
3105   // but increases the code size
3106   if (PSI && PSI->hasProfileSummary() && BFI &&
3107       PSI->isFunctionColdInCallGraph(L.getHeader()->getParent(), *BFI)) {
3108     LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n");
3109     return false;
3110   }
3111 
3112   // Skip non-trivial unswitching for loops that cannot be cloned.
3113   if (!L.isSafeToClone())
3114     return false;
3115 
3116   // For non-trivial unswitching, because it often creates new loops, we rely on
3117   // the pass manager to iterate on the loops rather than trying to immediately
3118   // reach a fixed point. There is no substantial advantage to iterating
3119   // internally, and if any of the new loops are simplified enough to contain
3120   // trivial unswitching we want to prefer those.
3121 
3122   // Try to unswitch the best invariant condition. We prefer this full unswitch to
3123   // a partial unswitch when possible below the threshold.
3124   if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU,
3125                             DestroyLoopCB))
3126     return true;
3127 
3128   // No other opportunities to unswitch.
3129   return false;
3130 }
3131 
3132 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3133                                               LoopStandardAnalysisResults &AR,
3134                                               LPMUpdater &U) {
3135   Function &F = *L.getHeader()->getParent();
3136   (void)F;
3137   ProfileSummaryInfo *PSI = nullptr;
3138   if (auto OuterProxy =
3139           AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR)
3140               .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F))
3141     PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3142   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3143                     << "\n");
3144 
3145   // Save the current loop name in a variable so that we can report it even
3146   // after it has been deleted.
3147   std::string LoopName = std::string(L.getName());
3148 
3149   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3150                                         bool PartiallyInvariant,
3151                                         ArrayRef<Loop *> NewLoops) {
3152     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3153     if (!NewLoops.empty())
3154       U.addSiblingLoops(NewLoops);
3155 
3156     // If the current loop remains valid, we should revisit it to catch any
3157     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3158     if (CurrentLoopValid) {
3159       if (PartiallyInvariant) {
3160         // Mark the new loop as partially unswitched, to avoid unswitching on
3161         // the same condition again.
3162         auto &Context = L.getHeader()->getContext();
3163         MDNode *DisableUnswitchMD = MDNode::get(
3164             Context,
3165             MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
3166         MDNode *NewLoopID = makePostTransformationMetadata(
3167             Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
3168             {DisableUnswitchMD});
3169         L.setLoopID(NewLoopID);
3170       } else
3171         U.revisitCurrentLoop();
3172     } else
3173       U.markLoopAsDeleted(L, LoopName);
3174   };
3175 
3176   auto DestroyLoopCB = [&U](Loop &L, StringRef Name) {
3177     U.markLoopAsDeleted(L, Name);
3178   };
3179 
3180   Optional<MemorySSAUpdater> MSSAU;
3181   if (AR.MSSA) {
3182     MSSAU = MemorySSAUpdater(AR.MSSA);
3183     if (VerifyMemorySSA)
3184       AR.MSSA->verifyMemorySSA();
3185   }
3186   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3187                     UnswitchCB, &AR.SE, MSSAU ? MSSAU.getPointer() : nullptr,
3188                     PSI, AR.BFI, DestroyLoopCB))
3189     return PreservedAnalyses::all();
3190 
3191   if (AR.MSSA && VerifyMemorySSA)
3192     AR.MSSA->verifyMemorySSA();
3193 
3194   // Historically this pass has had issues with the dominator tree so verify it
3195   // in asserts builds.
3196   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3197 
3198   auto PA = getLoopPassPreservedAnalyses();
3199   if (AR.MSSA)
3200     PA.preserve<MemorySSAAnalysis>();
3201   return PA;
3202 }
3203 
3204 void SimpleLoopUnswitchPass::printPipeline(
3205     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3206   static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
3207       OS, MapClassName2PassName);
3208 
3209   OS << "<";
3210   OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3211   OS << (Trivial ? "" : "no-") << "trivial";
3212   OS << ">";
3213 }
3214 
3215 namespace {
3216 
3217 class SimpleLoopUnswitchLegacyPass : public LoopPass {
3218   bool NonTrivial;
3219 
3220 public:
3221   static char ID; // Pass ID, replacement for typeid
3222 
3223   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3224       : LoopPass(ID), NonTrivial(NonTrivial) {
3225     initializeSimpleLoopUnswitchLegacyPassPass(
3226         *PassRegistry::getPassRegistry());
3227   }
3228 
3229   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3230 
3231   void getAnalysisUsage(AnalysisUsage &AU) const override {
3232     AU.addRequired<AssumptionCacheTracker>();
3233     AU.addRequired<TargetTransformInfoWrapperPass>();
3234     AU.addRequired<MemorySSAWrapperPass>();
3235     AU.addPreserved<MemorySSAWrapperPass>();
3236     getLoopAnalysisUsage(AU);
3237   }
3238 };
3239 
3240 } // end anonymous namespace
3241 
3242 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3243   if (skipLoop(L))
3244     return false;
3245 
3246   Function &F = *L->getHeader()->getParent();
3247 
3248   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3249                     << "\n");
3250   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3251   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3252   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3253   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3254   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3255   MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3256   MemorySSAUpdater MSSAU(MSSA);
3257 
3258   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3259   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3260 
3261   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3262                                ArrayRef<Loop *> NewLoops) {
3263     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3264     for (auto *NewL : NewLoops)
3265       LPM.addLoop(*NewL);
3266 
3267     // If the current loop remains valid, re-add it to the queue. This is
3268     // a little wasteful as we'll finish processing the current loop as well,
3269     // but it is the best we can do in the old PM.
3270     if (CurrentLoopValid) {
3271       // If the current loop has been unswitched using a partially invariant
3272       // condition, we should not re-add the current loop to avoid unswitching
3273       // on the same condition again.
3274       if (!PartiallyInvariant)
3275         LPM.addLoop(*L);
3276     } else
3277       LPM.markLoopAsDeleted(*L);
3278   };
3279 
3280   auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) {
3281     LPM.markLoopAsDeleted(L);
3282   };
3283 
3284   if (VerifyMemorySSA)
3285     MSSA->verifyMemorySSA();
3286   bool Changed =
3287       unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, UnswitchCB, SE,
3288                    &MSSAU, nullptr, nullptr, DestroyLoopCB);
3289 
3290   if (VerifyMemorySSA)
3291     MSSA->verifyMemorySSA();
3292 
3293   // Historically this pass has had issues with the dominator tree so verify it
3294   // in asserts builds.
3295   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3296 
3297   return Changed;
3298 }
3299 
3300 char SimpleLoopUnswitchLegacyPass::ID = 0;
3301 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3302                       "Simple unswitch loops", false, false)
3303 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3304 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3305 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3306 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3307 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3308 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3309 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3310                     "Simple unswitch loops", false, false)
3311 
3312 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3313   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3314 }
3315