xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision 90d2e3a16d817e23cac97f538fceb1248e4731bd)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/Utils/Local.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/GenericDomTree.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Cloning.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/ValueMapper.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <numeric>
56 #include <utility>
57 
58 #define DEBUG_TYPE "simple-loop-unswitch"
59 
60 using namespace llvm;
61 
62 STATISTIC(NumBranches, "Number of branches unswitched");
63 STATISTIC(NumSwitches, "Number of switches unswitched");
64 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
65 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
66 STATISTIC(
67     NumCostMultiplierSkipped,
68     "Number of unswitch candidates that had their cost multiplier skipped");
69 
70 static cl::opt<bool> EnableNonTrivialUnswitch(
71     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
72     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
73              "following the configuration passed into the pass."));
74 
75 static cl::opt<int>
76     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
77                       cl::desc("The cost threshold for unswitching a loop."));
78 
79 static cl::opt<bool> EnableUnswitchCostMultiplier(
80     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
81     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
82              "explosion in nontrivial unswitch."));
83 static cl::opt<int> UnswitchSiblingsToplevelDiv(
84     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
85     cl::desc("Toplevel siblings divisor for cost multiplier."));
86 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
87     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
88     cl::desc("Number of unswitch candidates that are ignored when calculating "
89              "cost multiplier."));
90 static cl::opt<bool> UnswitchGuards(
91     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
92     cl::desc("If enabled, simple loop unswitching will also consider "
93              "llvm.experimental.guard intrinsics as unswitch candidates."));
94 
95 /// Collect all of the loop invariant input values transitively used by the
96 /// homogeneous instruction graph from a given root.
97 ///
98 /// This essentially walks from a root recursively through loop variant operands
99 /// which have the exact same opcode and finds all inputs which are loop
100 /// invariant. For some operations these can be re-associated and unswitched out
101 /// of the loop entirely.
102 static TinyPtrVector<Value *>
103 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
104                                          LoopInfo &LI) {
105   assert(!L.isLoopInvariant(&Root) &&
106          "Only need to walk the graph if root itself is not invariant.");
107   TinyPtrVector<Value *> Invariants;
108 
109   // Build a worklist and recurse through operators collecting invariants.
110   SmallVector<Instruction *, 4> Worklist;
111   SmallPtrSet<Instruction *, 8> Visited;
112   Worklist.push_back(&Root);
113   Visited.insert(&Root);
114   do {
115     Instruction &I = *Worklist.pop_back_val();
116     for (Value *OpV : I.operand_values()) {
117       // Skip constants as unswitching isn't interesting for them.
118       if (isa<Constant>(OpV))
119         continue;
120 
121       // Add it to our result if loop invariant.
122       if (L.isLoopInvariant(OpV)) {
123         Invariants.push_back(OpV);
124         continue;
125       }
126 
127       // If not an instruction with the same opcode, nothing we can do.
128       Instruction *OpI = dyn_cast<Instruction>(OpV);
129       if (!OpI || OpI->getOpcode() != Root.getOpcode())
130         continue;
131 
132       // Visit this operand.
133       if (Visited.insert(OpI).second)
134         Worklist.push_back(OpI);
135     }
136   } while (!Worklist.empty());
137 
138   return Invariants;
139 }
140 
141 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
142                                      Constant &Replacement) {
143   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
144 
145   // Replace uses of LIC in the loop with the given constant.
146   for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
147     // Grab the use and walk past it so we can clobber it in the use list.
148     Use *U = &*UI++;
149     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
150 
151     // Replace this use within the loop body.
152     if (UserI && L.contains(UserI))
153       U->set(&Replacement);
154   }
155 }
156 
157 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
158 /// incoming values along this edge.
159 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
160                                          BasicBlock &ExitBB) {
161   for (Instruction &I : ExitBB) {
162     auto *PN = dyn_cast<PHINode>(&I);
163     if (!PN)
164       // No more PHIs to check.
165       return true;
166 
167     // If the incoming value for this edge isn't loop invariant the unswitch
168     // won't be trivial.
169     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
170       return false;
171   }
172   llvm_unreachable("Basic blocks should never be empty!");
173 }
174 
175 /// Insert code to test a set of loop invariant values, and conditionally branch
176 /// on them.
177 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
178                                                   ArrayRef<Value *> Invariants,
179                                                   bool Direction,
180                                                   BasicBlock &UnswitchedSucc,
181                                                   BasicBlock &NormalSucc) {
182   IRBuilder<> IRB(&BB);
183   Value *Cond = Invariants.front();
184   for (Value *Invariant :
185        make_range(std::next(Invariants.begin()), Invariants.end()))
186     if (Direction)
187       Cond = IRB.CreateOr(Cond, Invariant);
188     else
189       Cond = IRB.CreateAnd(Cond, Invariant);
190 
191   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
192                    Direction ? &NormalSucc : &UnswitchedSucc);
193 }
194 
195 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
196 ///
197 /// Requires that the loop exit and unswitched basic block are the same, and
198 /// that the exiting block was a unique predecessor of that block. Rewrites the
199 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
200 /// PHI nodes from the old preheader that now contains the unswitched
201 /// terminator.
202 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
203                                                   BasicBlock &OldExitingBB,
204                                                   BasicBlock &OldPH) {
205   for (PHINode &PN : UnswitchedBB.phis()) {
206     // When the loop exit is directly unswitched we just need to update the
207     // incoming basic block. We loop to handle weird cases with repeated
208     // incoming blocks, but expect to typically only have one operand here.
209     for (auto i : seq<int>(0, PN.getNumOperands())) {
210       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
211              "Found incoming block different from unique predecessor!");
212       PN.setIncomingBlock(i, &OldPH);
213     }
214   }
215 }
216 
217 /// Rewrite the PHI nodes in the loop exit basic block and the split off
218 /// unswitched block.
219 ///
220 /// Because the exit block remains an exit from the loop, this rewrites the
221 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
222 /// nodes into the unswitched basic block to select between the value in the
223 /// old preheader and the loop exit.
224 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
225                                                       BasicBlock &UnswitchedBB,
226                                                       BasicBlock &OldExitingBB,
227                                                       BasicBlock &OldPH,
228                                                       bool FullUnswitch) {
229   assert(&ExitBB != &UnswitchedBB &&
230          "Must have different loop exit and unswitched blocks!");
231   Instruction *InsertPt = &*UnswitchedBB.begin();
232   for (PHINode &PN : ExitBB.phis()) {
233     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
234                                   PN.getName() + ".split", InsertPt);
235 
236     // Walk backwards over the old PHI node's inputs to minimize the cost of
237     // removing each one. We have to do this weird loop manually so that we
238     // create the same number of new incoming edges in the new PHI as we expect
239     // each case-based edge to be included in the unswitched switch in some
240     // cases.
241     // FIXME: This is really, really gross. It would be much cleaner if LLVM
242     // allowed us to create a single entry for a predecessor block without
243     // having separate entries for each "edge" even though these edges are
244     // required to produce identical results.
245     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
246       if (PN.getIncomingBlock(i) != &OldExitingBB)
247         continue;
248 
249       Value *Incoming = PN.getIncomingValue(i);
250       if (FullUnswitch)
251         // No more edge from the old exiting block to the exit block.
252         PN.removeIncomingValue(i);
253 
254       NewPN->addIncoming(Incoming, &OldPH);
255     }
256 
257     // Now replace the old PHI with the new one and wire the old one in as an
258     // input to the new one.
259     PN.replaceAllUsesWith(NewPN);
260     NewPN->addIncoming(&PN, &ExitBB);
261   }
262 }
263 
264 /// Hoist the current loop up to the innermost loop containing a remaining exit.
265 ///
266 /// Because we've removed an exit from the loop, we may have changed the set of
267 /// loops reachable and need to move the current loop up the loop nest or even
268 /// to an entirely separate nest.
269 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
270                                  DominatorTree &DT, LoopInfo &LI,
271                                  MemorySSAUpdater *MSSAU) {
272   // If the loop is already at the top level, we can't hoist it anywhere.
273   Loop *OldParentL = L.getParentLoop();
274   if (!OldParentL)
275     return;
276 
277   SmallVector<BasicBlock *, 4> Exits;
278   L.getExitBlocks(Exits);
279   Loop *NewParentL = nullptr;
280   for (auto *ExitBB : Exits)
281     if (Loop *ExitL = LI.getLoopFor(ExitBB))
282       if (!NewParentL || NewParentL->contains(ExitL))
283         NewParentL = ExitL;
284 
285   if (NewParentL == OldParentL)
286     return;
287 
288   // The new parent loop (if different) should always contain the old one.
289   if (NewParentL)
290     assert(NewParentL->contains(OldParentL) &&
291            "Can only hoist this loop up the nest!");
292 
293   // The preheader will need to move with the body of this loop. However,
294   // because it isn't in this loop we also need to update the primary loop map.
295   assert(OldParentL == LI.getLoopFor(&Preheader) &&
296          "Parent loop of this loop should contain this loop's preheader!");
297   LI.changeLoopFor(&Preheader, NewParentL);
298 
299   // Remove this loop from its old parent.
300   OldParentL->removeChildLoop(&L);
301 
302   // Add the loop either to the new parent or as a top-level loop.
303   if (NewParentL)
304     NewParentL->addChildLoop(&L);
305   else
306     LI.addTopLevelLoop(&L);
307 
308   // Remove this loops blocks from the old parent and every other loop up the
309   // nest until reaching the new parent. Also update all of these
310   // no-longer-containing loops to reflect the nesting change.
311   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
312        OldContainingL = OldContainingL->getParentLoop()) {
313     llvm::erase_if(OldContainingL->getBlocksVector(),
314                    [&](const BasicBlock *BB) {
315                      return BB == &Preheader || L.contains(BB);
316                    });
317 
318     OldContainingL->getBlocksSet().erase(&Preheader);
319     for (BasicBlock *BB : L.blocks())
320       OldContainingL->getBlocksSet().erase(BB);
321 
322     // Because we just hoisted a loop out of this one, we have essentially
323     // created new exit paths from it. That means we need to form LCSSA PHI
324     // nodes for values used in the no-longer-nested loop.
325     formLCSSA(*OldContainingL, DT, &LI, nullptr);
326 
327     // We shouldn't need to form dedicated exits because the exit introduced
328     // here is the (just split by unswitching) preheader. However, after trivial
329     // unswitching it is possible to get new non-dedicated exits out of parent
330     // loop so let's conservatively form dedicated exit blocks and figure out
331     // if we can optimize later.
332     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
333                             /*PreserveLCSSA*/ true);
334   }
335 }
336 
337 /// Unswitch a trivial branch if the condition is loop invariant.
338 ///
339 /// This routine should only be called when loop code leading to the branch has
340 /// been validated as trivial (no side effects). This routine checks if the
341 /// condition is invariant and one of the successors is a loop exit. This
342 /// allows us to unswitch without duplicating the loop, making it trivial.
343 ///
344 /// If this routine fails to unswitch the branch it returns false.
345 ///
346 /// If the branch can be unswitched, this routine splits the preheader and
347 /// hoists the branch above that split. Preserves loop simplified form
348 /// (splitting the exit block as necessary). It simplifies the branch within
349 /// the loop to an unconditional branch but doesn't remove it entirely. Further
350 /// cleanup can be done with some simplify-cfg like pass.
351 ///
352 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
353 /// invalidated by this.
354 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
355                                   LoopInfo &LI, ScalarEvolution *SE,
356                                   MemorySSAUpdater *MSSAU) {
357   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
358   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
359 
360   // The loop invariant values that we want to unswitch.
361   TinyPtrVector<Value *> Invariants;
362 
363   // When true, we're fully unswitching the branch rather than just unswitching
364   // some input conditions to the branch.
365   bool FullUnswitch = false;
366 
367   if (L.isLoopInvariant(BI.getCondition())) {
368     Invariants.push_back(BI.getCondition());
369     FullUnswitch = true;
370   } else {
371     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
372       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
373     if (Invariants.empty())
374       // Couldn't find invariant inputs!
375       return false;
376   }
377 
378   // Check that one of the branch's successors exits, and which one.
379   bool ExitDirection = true;
380   int LoopExitSuccIdx = 0;
381   auto *LoopExitBB = BI.getSuccessor(0);
382   if (L.contains(LoopExitBB)) {
383     ExitDirection = false;
384     LoopExitSuccIdx = 1;
385     LoopExitBB = BI.getSuccessor(1);
386     if (L.contains(LoopExitBB))
387       return false;
388   }
389   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
390   auto *ParentBB = BI.getParent();
391   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
392     return false;
393 
394   // When unswitching only part of the branch's condition, we need the exit
395   // block to be reached directly from the partially unswitched input. This can
396   // be done when the exit block is along the true edge and the branch condition
397   // is a graph of `or` operations, or the exit block is along the false edge
398   // and the condition is a graph of `and` operations.
399   if (!FullUnswitch) {
400     if (ExitDirection) {
401       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
402         return false;
403     } else {
404       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
405         return false;
406     }
407   }
408 
409   LLVM_DEBUG({
410     dbgs() << "    unswitching trivial invariant conditions for: " << BI
411            << "\n";
412     for (Value *Invariant : Invariants) {
413       dbgs() << "      " << *Invariant << " == true";
414       if (Invariant != Invariants.back())
415         dbgs() << " ||";
416       dbgs() << "\n";
417     }
418   });
419 
420   // If we have scalar evolutions, we need to invalidate them including this
421   // loop and the loop containing the exit block.
422   if (SE) {
423     if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
424       SE->forgetLoop(ExitL);
425     else
426       // Forget the entire nest as this exits the entire nest.
427       SE->forgetTopmostLoop(&L);
428   }
429 
430   if (MSSAU && VerifyMemorySSA)
431     MSSAU->getMemorySSA()->verifyMemorySSA();
432 
433   // Split the preheader, so that we know that there is a safe place to insert
434   // the conditional branch. We will change the preheader to have a conditional
435   // branch on LoopCond.
436   BasicBlock *OldPH = L.getLoopPreheader();
437   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
438 
439   // Now that we have a place to insert the conditional branch, create a place
440   // to branch to: this is the exit block out of the loop that we are
441   // unswitching. We need to split this if there are other loop predecessors.
442   // Because the loop is in simplified form, *any* other predecessor is enough.
443   BasicBlock *UnswitchedBB;
444   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
445     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
446            "A branch's parent isn't a predecessor!");
447     UnswitchedBB = LoopExitBB;
448   } else {
449     UnswitchedBB =
450         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
451   }
452 
453   if (MSSAU && VerifyMemorySSA)
454     MSSAU->getMemorySSA()->verifyMemorySSA();
455 
456   // Actually move the invariant uses into the unswitched position. If possible,
457   // we do this by moving the instructions, but when doing partial unswitching
458   // we do it by building a new merge of the values in the unswitched position.
459   OldPH->getTerminator()->eraseFromParent();
460   if (FullUnswitch) {
461     // If fully unswitching, we can use the existing branch instruction.
462     // Splice it into the old PH to gate reaching the new preheader and re-point
463     // its successors.
464     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
465                                 BI);
466     if (MSSAU) {
467       // Temporarily clone the terminator, to make MSSA update cheaper by
468       // separating "insert edge" updates from "remove edge" ones.
469       ParentBB->getInstList().push_back(BI.clone());
470     } else {
471       // Create a new unconditional branch that will continue the loop as a new
472       // terminator.
473       BranchInst::Create(ContinueBB, ParentBB);
474     }
475     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
476     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
477   } else {
478     // Only unswitching a subset of inputs to the condition, so we will need to
479     // build a new branch that merges the invariant inputs.
480     if (ExitDirection)
481       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
482                  Instruction::Or &&
483              "Must have an `or` of `i1`s for the condition!");
484     else
485       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
486                  Instruction::And &&
487              "Must have an `and` of `i1`s for the condition!");
488     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
489                                           *UnswitchedBB, *NewPH);
490   }
491 
492   // Update the dominator tree with the added edge.
493   DT.insertEdge(OldPH, UnswitchedBB);
494 
495   // After the dominator tree was updated with the added edge, update MemorySSA
496   // if available.
497   if (MSSAU) {
498     SmallVector<CFGUpdate, 1> Updates;
499     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
500     MSSAU->applyInsertUpdates(Updates, DT);
501   }
502 
503   // Finish updating dominator tree and memory ssa for full unswitch.
504   if (FullUnswitch) {
505     if (MSSAU) {
506       // Remove the cloned branch instruction.
507       ParentBB->getTerminator()->eraseFromParent();
508       // Create unconditional branch now.
509       BranchInst::Create(ContinueBB, ParentBB);
510       MSSAU->removeEdge(ParentBB, LoopExitBB);
511     }
512     DT.deleteEdge(ParentBB, LoopExitBB);
513   }
514 
515   if (MSSAU && VerifyMemorySSA)
516     MSSAU->getMemorySSA()->verifyMemorySSA();
517 
518   // Rewrite the relevant PHI nodes.
519   if (UnswitchedBB == LoopExitBB)
520     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
521   else
522     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
523                                               *ParentBB, *OldPH, FullUnswitch);
524 
525   // The constant we can replace all of our invariants with inside the loop
526   // body. If any of the invariants have a value other than this the loop won't
527   // be entered.
528   ConstantInt *Replacement = ExitDirection
529                                  ? ConstantInt::getFalse(BI.getContext())
530                                  : ConstantInt::getTrue(BI.getContext());
531 
532   // Since this is an i1 condition we can also trivially replace uses of it
533   // within the loop with a constant.
534   for (Value *Invariant : Invariants)
535     replaceLoopInvariantUses(L, Invariant, *Replacement);
536 
537   // If this was full unswitching, we may have changed the nesting relationship
538   // for this loop so hoist it to its correct parent if needed.
539   if (FullUnswitch)
540     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU);
541 
542   if (MSSAU && VerifyMemorySSA)
543     MSSAU->getMemorySSA()->verifyMemorySSA();
544 
545   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
546   ++NumTrivial;
547   ++NumBranches;
548   return true;
549 }
550 
551 /// Unswitch a trivial switch if the condition is loop invariant.
552 ///
553 /// This routine should only be called when loop code leading to the switch has
554 /// been validated as trivial (no side effects). This routine checks if the
555 /// condition is invariant and that at least one of the successors is a loop
556 /// exit. This allows us to unswitch without duplicating the loop, making it
557 /// trivial.
558 ///
559 /// If this routine fails to unswitch the switch it returns false.
560 ///
561 /// If the switch can be unswitched, this routine splits the preheader and
562 /// copies the switch above that split. If the default case is one of the
563 /// exiting cases, it copies the non-exiting cases and points them at the new
564 /// preheader. If the default case is not exiting, it copies the exiting cases
565 /// and points the default at the preheader. It preserves loop simplified form
566 /// (splitting the exit blocks as necessary). It simplifies the switch within
567 /// the loop by removing now-dead cases. If the default case is one of those
568 /// unswitched, it replaces its destination with a new basic block containing
569 /// only unreachable. Such basic blocks, while technically loop exits, are not
570 /// considered for unswitching so this is a stable transform and the same
571 /// switch will not be revisited. If after unswitching there is only a single
572 /// in-loop successor, the switch is further simplified to an unconditional
573 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
574 ///
575 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
576 /// invalidated by this.
577 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
578                                   LoopInfo &LI, ScalarEvolution *SE,
579                                   MemorySSAUpdater *MSSAU) {
580   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
581   Value *LoopCond = SI.getCondition();
582 
583   // If this isn't switching on an invariant condition, we can't unswitch it.
584   if (!L.isLoopInvariant(LoopCond))
585     return false;
586 
587   auto *ParentBB = SI.getParent();
588 
589   SmallVector<int, 4> ExitCaseIndices;
590   for (auto Case : SI.cases()) {
591     auto *SuccBB = Case.getCaseSuccessor();
592     if (!L.contains(SuccBB) &&
593         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
594       ExitCaseIndices.push_back(Case.getCaseIndex());
595   }
596   BasicBlock *DefaultExitBB = nullptr;
597   if (!L.contains(SI.getDefaultDest()) &&
598       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
599       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
600     DefaultExitBB = SI.getDefaultDest();
601   else if (ExitCaseIndices.empty())
602     return false;
603 
604   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
605 
606   if (MSSAU && VerifyMemorySSA)
607     MSSAU->getMemorySSA()->verifyMemorySSA();
608 
609   // We may need to invalidate SCEVs for the outermost loop reached by any of
610   // the exits.
611   Loop *OuterL = &L;
612 
613   if (DefaultExitBB) {
614     // Clear out the default destination temporarily to allow accurate
615     // predecessor lists to be examined below.
616     SI.setDefaultDest(nullptr);
617     // Check the loop containing this exit.
618     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
619     if (!ExitL || ExitL->contains(OuterL))
620       OuterL = ExitL;
621   }
622 
623   // Store the exit cases into a separate data structure and remove them from
624   // the switch.
625   SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
626   ExitCases.reserve(ExitCaseIndices.size());
627   // We walk the case indices backwards so that we remove the last case first
628   // and don't disrupt the earlier indices.
629   for (unsigned Index : reverse(ExitCaseIndices)) {
630     auto CaseI = SI.case_begin() + Index;
631     // Compute the outer loop from this exit.
632     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
633     if (!ExitL || ExitL->contains(OuterL))
634       OuterL = ExitL;
635     // Save the value of this case.
636     ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
637     // Delete the unswitched cases.
638     SI.removeCase(CaseI);
639   }
640 
641   if (SE) {
642     if (OuterL)
643       SE->forgetLoop(OuterL);
644     else
645       SE->forgetTopmostLoop(&L);
646   }
647 
648   // Check if after this all of the remaining cases point at the same
649   // successor.
650   BasicBlock *CommonSuccBB = nullptr;
651   if (SI.getNumCases() > 0 &&
652       std::all_of(std::next(SI.case_begin()), SI.case_end(),
653                   [&SI](const SwitchInst::CaseHandle &Case) {
654                     return Case.getCaseSuccessor() ==
655                            SI.case_begin()->getCaseSuccessor();
656                   }))
657     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
658   if (!DefaultExitBB) {
659     // If we're not unswitching the default, we need it to match any cases to
660     // have a common successor or if we have no cases it is the common
661     // successor.
662     if (SI.getNumCases() == 0)
663       CommonSuccBB = SI.getDefaultDest();
664     else if (SI.getDefaultDest() != CommonSuccBB)
665       CommonSuccBB = nullptr;
666   }
667 
668   // Split the preheader, so that we know that there is a safe place to insert
669   // the switch.
670   BasicBlock *OldPH = L.getLoopPreheader();
671   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
672   OldPH->getTerminator()->eraseFromParent();
673 
674   // Now add the unswitched switch.
675   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
676 
677   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
678   // First, we split any exit blocks with remaining in-loop predecessors. Then
679   // we update the PHIs in one of two ways depending on if there was a split.
680   // We walk in reverse so that we split in the same order as the cases
681   // appeared. This is purely for convenience of reading the resulting IR, but
682   // it doesn't cost anything really.
683   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
684   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
685   // Handle the default exit if necessary.
686   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
687   // ranges aren't quite powerful enough yet.
688   if (DefaultExitBB) {
689     if (pred_empty(DefaultExitBB)) {
690       UnswitchedExitBBs.insert(DefaultExitBB);
691       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
692     } else {
693       auto *SplitBB =
694           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
695       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
696                                                 *ParentBB, *OldPH,
697                                                 /*FullUnswitch*/ true);
698       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
699     }
700   }
701   // Note that we must use a reference in the for loop so that we update the
702   // container.
703   for (auto &CasePair : reverse(ExitCases)) {
704     // Grab a reference to the exit block in the pair so that we can update it.
705     BasicBlock *ExitBB = CasePair.second;
706 
707     // If this case is the last edge into the exit block, we can simply reuse it
708     // as it will no longer be a loop exit. No mapping necessary.
709     if (pred_empty(ExitBB)) {
710       // Only rewrite once.
711       if (UnswitchedExitBBs.insert(ExitBB).second)
712         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
713       continue;
714     }
715 
716     // Otherwise we need to split the exit block so that we retain an exit
717     // block from the loop and a target for the unswitched condition.
718     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
719     if (!SplitExitBB) {
720       // If this is the first time we see this, do the split and remember it.
721       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
722       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
723                                                 *ParentBB, *OldPH,
724                                                 /*FullUnswitch*/ true);
725     }
726     // Update the case pair to point to the split block.
727     CasePair.second = SplitExitBB;
728   }
729 
730   // Now add the unswitched cases. We do this in reverse order as we built them
731   // in reverse order.
732   for (auto CasePair : reverse(ExitCases)) {
733     ConstantInt *CaseVal = CasePair.first;
734     BasicBlock *UnswitchedBB = CasePair.second;
735 
736     NewSI->addCase(CaseVal, UnswitchedBB);
737   }
738 
739   // If the default was unswitched, re-point it and add explicit cases for
740   // entering the loop.
741   if (DefaultExitBB) {
742     NewSI->setDefaultDest(DefaultExitBB);
743 
744     // We removed all the exit cases, so we just copy the cases to the
745     // unswitched switch.
746     for (auto Case : SI.cases())
747       NewSI->addCase(Case.getCaseValue(), NewPH);
748   }
749 
750   // If we ended up with a common successor for every path through the switch
751   // after unswitching, rewrite it to an unconditional branch to make it easy
752   // to recognize. Otherwise we potentially have to recognize the default case
753   // pointing at unreachable and other complexity.
754   if (CommonSuccBB) {
755     BasicBlock *BB = SI.getParent();
756     // We may have had multiple edges to this common successor block, so remove
757     // them as predecessors. We skip the first one, either the default or the
758     // actual first case.
759     bool SkippedFirst = DefaultExitBB == nullptr;
760     for (auto Case : SI.cases()) {
761       assert(Case.getCaseSuccessor() == CommonSuccBB &&
762              "Non-common successor!");
763       (void)Case;
764       if (!SkippedFirst) {
765         SkippedFirst = true;
766         continue;
767       }
768       CommonSuccBB->removePredecessor(BB,
769                                       /*KeepOneInputPHIs*/ true);
770     }
771     // Now nuke the switch and replace it with a direct branch.
772     SI.eraseFromParent();
773     BranchInst::Create(CommonSuccBB, BB);
774   } else if (DefaultExitBB) {
775     assert(SI.getNumCases() > 0 &&
776            "If we had no cases we'd have a common successor!");
777     // Move the last case to the default successor. This is valid as if the
778     // default got unswitched it cannot be reached. This has the advantage of
779     // being simple and keeping the number of edges from this switch to
780     // successors the same, and avoiding any PHI update complexity.
781     auto LastCaseI = std::prev(SI.case_end());
782     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
783     SI.removeCase(LastCaseI);
784   }
785 
786   // Walk the unswitched exit blocks and the unswitched split blocks and update
787   // the dominator tree based on the CFG edits. While we are walking unordered
788   // containers here, the API for applyUpdates takes an unordered list of
789   // updates and requires them to not contain duplicates.
790   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
791   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
792     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
793     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
794   }
795   for (auto SplitUnswitchedPair : SplitExitBBMap) {
796     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
797     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
798   }
799   DT.applyUpdates(DTUpdates);
800 
801   if (MSSAU) {
802     MSSAU->applyUpdates(DTUpdates, DT);
803     if (VerifyMemorySSA)
804       MSSAU->getMemorySSA()->verifyMemorySSA();
805   }
806 
807   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
808 
809   // We may have changed the nesting relationship for this loop so hoist it to
810   // its correct parent if needed.
811   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU);
812 
813   if (MSSAU && VerifyMemorySSA)
814     MSSAU->getMemorySSA()->verifyMemorySSA();
815 
816   ++NumTrivial;
817   ++NumSwitches;
818   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
819   return true;
820 }
821 
822 /// This routine scans the loop to find a branch or switch which occurs before
823 /// any side effects occur. These can potentially be unswitched without
824 /// duplicating the loop. If a branch or switch is successfully unswitched the
825 /// scanning continues to see if subsequent branches or switches have become
826 /// trivial. Once all trivial candidates have been unswitched, this routine
827 /// returns.
828 ///
829 /// The return value indicates whether anything was unswitched (and therefore
830 /// changed).
831 ///
832 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
833 /// invalidated by this.
834 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
835                                          LoopInfo &LI, ScalarEvolution *SE,
836                                          MemorySSAUpdater *MSSAU) {
837   bool Changed = false;
838 
839   // If loop header has only one reachable successor we should keep looking for
840   // trivial condition candidates in the successor as well. An alternative is
841   // to constant fold conditions and merge successors into loop header (then we
842   // only need to check header's terminator). The reason for not doing this in
843   // LoopUnswitch pass is that it could potentially break LoopPassManager's
844   // invariants. Folding dead branches could either eliminate the current loop
845   // or make other loops unreachable. LCSSA form might also not be preserved
846   // after deleting branches. The following code keeps traversing loop header's
847   // successors until it finds the trivial condition candidate (condition that
848   // is not a constant). Since unswitching generates branches with constant
849   // conditions, this scenario could be very common in practice.
850   BasicBlock *CurrentBB = L.getHeader();
851   SmallPtrSet<BasicBlock *, 8> Visited;
852   Visited.insert(CurrentBB);
853   do {
854     // Check if there are any side-effecting instructions (e.g. stores, calls,
855     // volatile loads) in the part of the loop that the code *would* execute
856     // without unswitching.
857     if (MSSAU) // Possible early exit with MSSA
858       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
859         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
860           return Changed;
861     if (llvm::any_of(*CurrentBB,
862                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
863       return Changed;
864 
865     Instruction *CurrentTerm = CurrentBB->getTerminator();
866 
867     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
868       // Don't bother trying to unswitch past a switch with a constant
869       // condition. This should be removed prior to running this pass by
870       // simplify-cfg.
871       if (isa<Constant>(SI->getCondition()))
872         return Changed;
873 
874       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
875         // Couldn't unswitch this one so we're done.
876         return Changed;
877 
878       // Mark that we managed to unswitch something.
879       Changed = true;
880 
881       // If unswitching turned the terminator into an unconditional branch then
882       // we can continue. The unswitching logic specifically works to fold any
883       // cases it can into an unconditional branch to make it easier to
884       // recognize here.
885       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
886       if (!BI || BI->isConditional())
887         return Changed;
888 
889       CurrentBB = BI->getSuccessor(0);
890       continue;
891     }
892 
893     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
894     if (!BI)
895       // We do not understand other terminator instructions.
896       return Changed;
897 
898     // Don't bother trying to unswitch past an unconditional branch or a branch
899     // with a constant value. These should be removed by simplify-cfg prior to
900     // running this pass.
901     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
902       return Changed;
903 
904     // Found a trivial condition candidate: non-foldable conditional branch. If
905     // we fail to unswitch this, we can't do anything else that is trivial.
906     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
907       return Changed;
908 
909     // Mark that we managed to unswitch something.
910     Changed = true;
911 
912     // If we only unswitched some of the conditions feeding the branch, we won't
913     // have collapsed it to a single successor.
914     BI = cast<BranchInst>(CurrentBB->getTerminator());
915     if (BI->isConditional())
916       return Changed;
917 
918     // Follow the newly unconditional branch into its successor.
919     CurrentBB = BI->getSuccessor(0);
920 
921     // When continuing, if we exit the loop or reach a previous visited block,
922     // then we can not reach any trivial condition candidates (unfoldable
923     // branch instructions or switch instructions) and no unswitch can happen.
924   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
925 
926   return Changed;
927 }
928 
929 /// Build the cloned blocks for an unswitched copy of the given loop.
930 ///
931 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
932 /// after the split block (`SplitBB`) that will be used to select between the
933 /// cloned and original loop.
934 ///
935 /// This routine handles cloning all of the necessary loop blocks and exit
936 /// blocks including rewriting their instructions and the relevant PHI nodes.
937 /// Any loop blocks or exit blocks which are dominated by a different successor
938 /// than the one for this clone of the loop blocks can be trivially skipped. We
939 /// use the `DominatingSucc` map to determine whether a block satisfies that
940 /// property with a simple map lookup.
941 ///
942 /// It also correctly creates the unconditional branch in the cloned
943 /// unswitched parent block to only point at the unswitched successor.
944 ///
945 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
946 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
947 /// the cloned blocks (and their loops) are left without full `LoopInfo`
948 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
949 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
950 /// instead the caller must recompute an accurate DT. It *does* correctly
951 /// update the `AssumptionCache` provided in `AC`.
952 static BasicBlock *buildClonedLoopBlocks(
953     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
954     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
955     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
956     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
957     ValueToValueMapTy &VMap,
958     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
959     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
960   SmallVector<BasicBlock *, 4> NewBlocks;
961   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
962 
963   // We will need to clone a bunch of blocks, wrap up the clone operation in
964   // a helper.
965   auto CloneBlock = [&](BasicBlock *OldBB) {
966     // Clone the basic block and insert it before the new preheader.
967     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
968     NewBB->moveBefore(LoopPH);
969 
970     // Record this block and the mapping.
971     NewBlocks.push_back(NewBB);
972     VMap[OldBB] = NewBB;
973 
974     return NewBB;
975   };
976 
977   // We skip cloning blocks when they have a dominating succ that is not the
978   // succ we are cloning for.
979   auto SkipBlock = [&](BasicBlock *BB) {
980     auto It = DominatingSucc.find(BB);
981     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
982   };
983 
984   // First, clone the preheader.
985   auto *ClonedPH = CloneBlock(LoopPH);
986 
987   // Then clone all the loop blocks, skipping the ones that aren't necessary.
988   for (auto *LoopBB : L.blocks())
989     if (!SkipBlock(LoopBB))
990       CloneBlock(LoopBB);
991 
992   // Split all the loop exit edges so that when we clone the exit blocks, if
993   // any of the exit blocks are *also* a preheader for some other loop, we
994   // don't create multiple predecessors entering the loop header.
995   for (auto *ExitBB : ExitBlocks) {
996     if (SkipBlock(ExitBB))
997       continue;
998 
999     // When we are going to clone an exit, we don't need to clone all the
1000     // instructions in the exit block and we want to ensure we have an easy
1001     // place to merge the CFG, so split the exit first. This is always safe to
1002     // do because there cannot be any non-loop predecessors of a loop exit in
1003     // loop simplified form.
1004     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1005 
1006     // Rearrange the names to make it easier to write test cases by having the
1007     // exit block carry the suffix rather than the merge block carrying the
1008     // suffix.
1009     MergeBB->takeName(ExitBB);
1010     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1011 
1012     // Now clone the original exit block.
1013     auto *ClonedExitBB = CloneBlock(ExitBB);
1014     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1015            "Exit block should have been split to have one successor!");
1016     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1017            "Cloned exit block has the wrong successor!");
1018 
1019     // Remap any cloned instructions and create a merge phi node for them.
1020     for (auto ZippedInsts : llvm::zip_first(
1021              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1022              llvm::make_range(ClonedExitBB->begin(),
1023                               std::prev(ClonedExitBB->end())))) {
1024       Instruction &I = std::get<0>(ZippedInsts);
1025       Instruction &ClonedI = std::get<1>(ZippedInsts);
1026 
1027       // The only instructions in the exit block should be PHI nodes and
1028       // potentially a landing pad.
1029       assert(
1030           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1031           "Bad instruction in exit block!");
1032       // We should have a value map between the instruction and its clone.
1033       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1034 
1035       auto *MergePN =
1036           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1037                           &*MergeBB->getFirstInsertionPt());
1038       I.replaceAllUsesWith(MergePN);
1039       MergePN->addIncoming(&I, ExitBB);
1040       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1041     }
1042   }
1043 
1044   // Rewrite the instructions in the cloned blocks to refer to the instructions
1045   // in the cloned blocks. We have to do this as a second pass so that we have
1046   // everything available. Also, we have inserted new instructions which may
1047   // include assume intrinsics, so we update the assumption cache while
1048   // processing this.
1049   for (auto *ClonedBB : NewBlocks)
1050     for (Instruction &I : *ClonedBB) {
1051       RemapInstruction(&I, VMap,
1052                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1053       if (auto *II = dyn_cast<IntrinsicInst>(&I))
1054         if (II->getIntrinsicID() == Intrinsic::assume)
1055           AC.registerAssumption(II);
1056     }
1057 
1058   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1059   // have spurious incoming values.
1060   for (auto *LoopBB : L.blocks())
1061     if (SkipBlock(LoopBB))
1062       for (auto *SuccBB : successors(LoopBB))
1063         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1064           for (PHINode &PN : ClonedSuccBB->phis())
1065             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1066 
1067   // Remove the cloned parent as a predecessor of any successor we ended up
1068   // cloning other than the unswitched one.
1069   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1070   for (auto *SuccBB : successors(ParentBB)) {
1071     if (SuccBB == UnswitchedSuccBB)
1072       continue;
1073 
1074     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1075     if (!ClonedSuccBB)
1076       continue;
1077 
1078     ClonedSuccBB->removePredecessor(ClonedParentBB,
1079                                     /*KeepOneInputPHIs*/ true);
1080   }
1081 
1082   // Replace the cloned branch with an unconditional branch to the cloned
1083   // unswitched successor.
1084   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1085   ClonedParentBB->getTerminator()->eraseFromParent();
1086   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1087 
1088   // If there are duplicate entries in the PHI nodes because of multiple edges
1089   // to the unswitched successor, we need to nuke all but one as we replaced it
1090   // with a direct branch.
1091   for (PHINode &PN : ClonedSuccBB->phis()) {
1092     bool Found = false;
1093     // Loop over the incoming operands backwards so we can easily delete as we
1094     // go without invalidating the index.
1095     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1096       if (PN.getIncomingBlock(i) != ClonedParentBB)
1097         continue;
1098       if (!Found) {
1099         Found = true;
1100         continue;
1101       }
1102       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1103     }
1104   }
1105 
1106   // Record the domtree updates for the new blocks.
1107   SmallPtrSet<BasicBlock *, 4> SuccSet;
1108   for (auto *ClonedBB : NewBlocks) {
1109     for (auto *SuccBB : successors(ClonedBB))
1110       if (SuccSet.insert(SuccBB).second)
1111         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1112     SuccSet.clear();
1113   }
1114 
1115   return ClonedPH;
1116 }
1117 
1118 /// Recursively clone the specified loop and all of its children.
1119 ///
1120 /// The target parent loop for the clone should be provided, or can be null if
1121 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1122 /// with the provided value map. The entire original loop must be present in
1123 /// the value map. The cloned loop is returned.
1124 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1125                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1126   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1127     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1128     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1129     for (auto *BB : OrigL.blocks()) {
1130       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1131       ClonedL.addBlockEntry(ClonedBB);
1132       if (LI.getLoopFor(BB) == &OrigL)
1133         LI.changeLoopFor(ClonedBB, &ClonedL);
1134     }
1135   };
1136 
1137   // We specially handle the first loop because it may get cloned into
1138   // a different parent and because we most commonly are cloning leaf loops.
1139   Loop *ClonedRootL = LI.AllocateLoop();
1140   if (RootParentL)
1141     RootParentL->addChildLoop(ClonedRootL);
1142   else
1143     LI.addTopLevelLoop(ClonedRootL);
1144   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1145 
1146   if (OrigRootL.empty())
1147     return ClonedRootL;
1148 
1149   // If we have a nest, we can quickly clone the entire loop nest using an
1150   // iterative approach because it is a tree. We keep the cloned parent in the
1151   // data structure to avoid repeatedly querying through a map to find it.
1152   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1153   // Build up the loops to clone in reverse order as we'll clone them from the
1154   // back.
1155   for (Loop *ChildL : llvm::reverse(OrigRootL))
1156     LoopsToClone.push_back({ClonedRootL, ChildL});
1157   do {
1158     Loop *ClonedParentL, *L;
1159     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1160     Loop *ClonedL = LI.AllocateLoop();
1161     ClonedParentL->addChildLoop(ClonedL);
1162     AddClonedBlocksToLoop(*L, *ClonedL);
1163     for (Loop *ChildL : llvm::reverse(*L))
1164       LoopsToClone.push_back({ClonedL, ChildL});
1165   } while (!LoopsToClone.empty());
1166 
1167   return ClonedRootL;
1168 }
1169 
1170 /// Build the cloned loops of an original loop from unswitching.
1171 ///
1172 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1173 /// operation. We need to re-verify that there even is a loop (as the backedge
1174 /// may not have been cloned), and even if there are remaining backedges the
1175 /// backedge set may be different. However, we know that each child loop is
1176 /// undisturbed, we only need to find where to place each child loop within
1177 /// either any parent loop or within a cloned version of the original loop.
1178 ///
1179 /// Because child loops may end up cloned outside of any cloned version of the
1180 /// original loop, multiple cloned sibling loops may be created. All of them
1181 /// are returned so that the newly introduced loop nest roots can be
1182 /// identified.
1183 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1184                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1185                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1186   Loop *ClonedL = nullptr;
1187 
1188   auto *OrigPH = OrigL.getLoopPreheader();
1189   auto *OrigHeader = OrigL.getHeader();
1190 
1191   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1192   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1193 
1194   // We need to know the loops of the cloned exit blocks to even compute the
1195   // accurate parent loop. If we only clone exits to some parent of the
1196   // original parent, we want to clone into that outer loop. We also keep track
1197   // of the loops that our cloned exit blocks participate in.
1198   Loop *ParentL = nullptr;
1199   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1200   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1201   ClonedExitsInLoops.reserve(ExitBlocks.size());
1202   for (auto *ExitBB : ExitBlocks)
1203     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1204       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1205         ExitLoopMap[ClonedExitBB] = ExitL;
1206         ClonedExitsInLoops.push_back(ClonedExitBB);
1207         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1208           ParentL = ExitL;
1209       }
1210   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1211           ParentL->contains(OrigL.getParentLoop())) &&
1212          "The computed parent loop should always contain (or be) the parent of "
1213          "the original loop.");
1214 
1215   // We build the set of blocks dominated by the cloned header from the set of
1216   // cloned blocks out of the original loop. While not all of these will
1217   // necessarily be in the cloned loop, it is enough to establish that they
1218   // aren't in unreachable cycles, etc.
1219   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1220   for (auto *BB : OrigL.blocks())
1221     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1222       ClonedLoopBlocks.insert(ClonedBB);
1223 
1224   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1225   // skipped cloning some region of this loop which can in turn skip some of
1226   // the backedges so we have to rebuild the blocks in the loop based on the
1227   // backedges that remain after cloning.
1228   SmallVector<BasicBlock *, 16> Worklist;
1229   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1230   for (auto *Pred : predecessors(ClonedHeader)) {
1231     // The only possible non-loop header predecessor is the preheader because
1232     // we know we cloned the loop in simplified form.
1233     if (Pred == ClonedPH)
1234       continue;
1235 
1236     // Because the loop was in simplified form, the only non-loop predecessor
1237     // should be the preheader.
1238     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1239                                            "header other than the preheader "
1240                                            "that is not part of the loop!");
1241 
1242     // Insert this block into the loop set and on the first visit (and if it
1243     // isn't the header we're currently walking) put it into the worklist to
1244     // recurse through.
1245     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1246       Worklist.push_back(Pred);
1247   }
1248 
1249   // If we had any backedges then there *is* a cloned loop. Put the header into
1250   // the loop set and then walk the worklist backwards to find all the blocks
1251   // that remain within the loop after cloning.
1252   if (!BlocksInClonedLoop.empty()) {
1253     BlocksInClonedLoop.insert(ClonedHeader);
1254 
1255     while (!Worklist.empty()) {
1256       BasicBlock *BB = Worklist.pop_back_val();
1257       assert(BlocksInClonedLoop.count(BB) &&
1258              "Didn't put block into the loop set!");
1259 
1260       // Insert any predecessors that are in the possible set into the cloned
1261       // set, and if the insert is successful, add them to the worklist. Note
1262       // that we filter on the blocks that are definitely reachable via the
1263       // backedge to the loop header so we may prune out dead code within the
1264       // cloned loop.
1265       for (auto *Pred : predecessors(BB))
1266         if (ClonedLoopBlocks.count(Pred) &&
1267             BlocksInClonedLoop.insert(Pred).second)
1268           Worklist.push_back(Pred);
1269     }
1270 
1271     ClonedL = LI.AllocateLoop();
1272     if (ParentL) {
1273       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1274       ParentL->addChildLoop(ClonedL);
1275     } else {
1276       LI.addTopLevelLoop(ClonedL);
1277     }
1278     NonChildClonedLoops.push_back(ClonedL);
1279 
1280     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1281     // We don't want to just add the cloned loop blocks based on how we
1282     // discovered them. The original order of blocks was carefully built in
1283     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1284     // that logic, we just re-walk the original blocks (and those of the child
1285     // loops) and filter them as we add them into the cloned loop.
1286     for (auto *BB : OrigL.blocks()) {
1287       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1288       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1289         continue;
1290 
1291       // Directly add the blocks that are only in this loop.
1292       if (LI.getLoopFor(BB) == &OrigL) {
1293         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1294         continue;
1295       }
1296 
1297       // We want to manually add it to this loop and parents.
1298       // Registering it with LoopInfo will happen when we clone the top
1299       // loop for this block.
1300       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1301         PL->addBlockEntry(ClonedBB);
1302     }
1303 
1304     // Now add each child loop whose header remains within the cloned loop. All
1305     // of the blocks within the loop must satisfy the same constraints as the
1306     // header so once we pass the header checks we can just clone the entire
1307     // child loop nest.
1308     for (Loop *ChildL : OrigL) {
1309       auto *ClonedChildHeader =
1310           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1311       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1312         continue;
1313 
1314 #ifndef NDEBUG
1315       // We should never have a cloned child loop header but fail to have
1316       // all of the blocks for that child loop.
1317       for (auto *ChildLoopBB : ChildL->blocks())
1318         assert(BlocksInClonedLoop.count(
1319                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1320                "Child cloned loop has a header within the cloned outer "
1321                "loop but not all of its blocks!");
1322 #endif
1323 
1324       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1325     }
1326   }
1327 
1328   // Now that we've handled all the components of the original loop that were
1329   // cloned into a new loop, we still need to handle anything from the original
1330   // loop that wasn't in a cloned loop.
1331 
1332   // Figure out what blocks are left to place within any loop nest containing
1333   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1334   // them.
1335   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1336   if (BlocksInClonedLoop.empty())
1337     UnloopedBlockSet.insert(ClonedPH);
1338   for (auto *ClonedBB : ClonedLoopBlocks)
1339     if (!BlocksInClonedLoop.count(ClonedBB))
1340       UnloopedBlockSet.insert(ClonedBB);
1341 
1342   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1343   // backwards across these to process them inside out. The order shouldn't
1344   // matter as we're just trying to build up the map from inside-out; we use
1345   // the map in a more stably ordered way below.
1346   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1347   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1348     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1349            ExitLoopMap.lookup(RHS)->getLoopDepth();
1350   });
1351 
1352   // Populate the existing ExitLoopMap with everything reachable from each
1353   // exit, starting from the inner most exit.
1354   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1355     assert(Worklist.empty() && "Didn't clear worklist!");
1356 
1357     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1358     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1359 
1360     // Walk the CFG back until we hit the cloned PH adding everything reachable
1361     // and in the unlooped set to this exit block's loop.
1362     Worklist.push_back(ExitBB);
1363     do {
1364       BasicBlock *BB = Worklist.pop_back_val();
1365       // We can stop recursing at the cloned preheader (if we get there).
1366       if (BB == ClonedPH)
1367         continue;
1368 
1369       for (BasicBlock *PredBB : predecessors(BB)) {
1370         // If this pred has already been moved to our set or is part of some
1371         // (inner) loop, no update needed.
1372         if (!UnloopedBlockSet.erase(PredBB)) {
1373           assert(
1374               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1375               "Predecessor not mapped to a loop!");
1376           continue;
1377         }
1378 
1379         // We just insert into the loop set here. We'll add these blocks to the
1380         // exit loop after we build up the set in an order that doesn't rely on
1381         // predecessor order (which in turn relies on use list order).
1382         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1383         (void)Inserted;
1384         assert(Inserted && "Should only visit an unlooped block once!");
1385 
1386         // And recurse through to its predecessors.
1387         Worklist.push_back(PredBB);
1388       }
1389     } while (!Worklist.empty());
1390   }
1391 
1392   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1393   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1394   // in their original order adding them to the correct loop.
1395 
1396   // We need a stable insertion order. We use the order of the original loop
1397   // order and map into the correct parent loop.
1398   for (auto *BB : llvm::concat<BasicBlock *const>(
1399            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1400     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1401       OuterL->addBasicBlockToLoop(BB, LI);
1402 
1403 #ifndef NDEBUG
1404   for (auto &BBAndL : ExitLoopMap) {
1405     auto *BB = BBAndL.first;
1406     auto *OuterL = BBAndL.second;
1407     assert(LI.getLoopFor(BB) == OuterL &&
1408            "Failed to put all blocks into outer loops!");
1409   }
1410 #endif
1411 
1412   // Now that all the blocks are placed into the correct containing loop in the
1413   // absence of child loops, find all the potentially cloned child loops and
1414   // clone them into whatever outer loop we placed their header into.
1415   for (Loop *ChildL : OrigL) {
1416     auto *ClonedChildHeader =
1417         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1418     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1419       continue;
1420 
1421 #ifndef NDEBUG
1422     for (auto *ChildLoopBB : ChildL->blocks())
1423       assert(VMap.count(ChildLoopBB) &&
1424              "Cloned a child loop header but not all of that loops blocks!");
1425 #endif
1426 
1427     NonChildClonedLoops.push_back(cloneLoopNest(
1428         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1429   }
1430 }
1431 
1432 static void
1433 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1434                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1435                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1436   // Find all the dead clones, and remove them from their successors.
1437   SmallVector<BasicBlock *, 16> DeadBlocks;
1438   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1439     for (auto &VMap : VMaps)
1440       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1441         if (!DT.isReachableFromEntry(ClonedBB)) {
1442           for (BasicBlock *SuccBB : successors(ClonedBB))
1443             SuccBB->removePredecessor(ClonedBB);
1444           DeadBlocks.push_back(ClonedBB);
1445         }
1446 
1447   // Remove all MemorySSA in the dead blocks
1448   if (MSSAU) {
1449     SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(),
1450                                                DeadBlocks.end());
1451     MSSAU->removeBlocks(DeadBlockSet);
1452   }
1453 
1454   // Drop any remaining references to break cycles.
1455   for (BasicBlock *BB : DeadBlocks)
1456     BB->dropAllReferences();
1457   // Erase them from the IR.
1458   for (BasicBlock *BB : DeadBlocks)
1459     BB->eraseFromParent();
1460 }
1461 
1462 static void deleteDeadBlocksFromLoop(Loop &L,
1463                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1464                                      DominatorTree &DT, LoopInfo &LI,
1465                                      MemorySSAUpdater *MSSAU) {
1466   // Find all the dead blocks tied to this loop, and remove them from their
1467   // successors.
1468   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
1469 
1470   // Start with loop/exit blocks and get a transitive closure of reachable dead
1471   // blocks.
1472   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1473                                                 ExitBlocks.end());
1474   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1475   while (!DeathCandidates.empty()) {
1476     auto *BB = DeathCandidates.pop_back_val();
1477     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1478       for (BasicBlock *SuccBB : successors(BB)) {
1479         SuccBB->removePredecessor(BB);
1480         DeathCandidates.push_back(SuccBB);
1481       }
1482       DeadBlockSet.insert(BB);
1483     }
1484   }
1485 
1486   // Remove all MemorySSA in the dead blocks
1487   if (MSSAU)
1488     MSSAU->removeBlocks(DeadBlockSet);
1489 
1490   // Filter out the dead blocks from the exit blocks list so that it can be
1491   // used in the caller.
1492   llvm::erase_if(ExitBlocks,
1493                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1494 
1495   // Walk from this loop up through its parents removing all of the dead blocks.
1496   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1497     for (auto *BB : DeadBlockSet)
1498       ParentL->getBlocksSet().erase(BB);
1499     llvm::erase_if(ParentL->getBlocksVector(),
1500                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1501   }
1502 
1503   // Now delete the dead child loops. This raw delete will clear them
1504   // recursively.
1505   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1506     if (!DeadBlockSet.count(ChildL->getHeader()))
1507       return false;
1508 
1509     assert(llvm::all_of(ChildL->blocks(),
1510                         [&](BasicBlock *ChildBB) {
1511                           return DeadBlockSet.count(ChildBB);
1512                         }) &&
1513            "If the child loop header is dead all blocks in the child loop must "
1514            "be dead as well!");
1515     LI.destroy(ChildL);
1516     return true;
1517   });
1518 
1519   // Remove the loop mappings for the dead blocks and drop all the references
1520   // from these blocks to others to handle cyclic references as we start
1521   // deleting the blocks themselves.
1522   for (auto *BB : DeadBlockSet) {
1523     // Check that the dominator tree has already been updated.
1524     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1525     LI.changeLoopFor(BB, nullptr);
1526     BB->dropAllReferences();
1527   }
1528 
1529   // Actually delete the blocks now that they've been fully unhooked from the
1530   // IR.
1531   for (auto *BB : DeadBlockSet)
1532     BB->eraseFromParent();
1533 }
1534 
1535 /// Recompute the set of blocks in a loop after unswitching.
1536 ///
1537 /// This walks from the original headers predecessors to rebuild the loop. We
1538 /// take advantage of the fact that new blocks can't have been added, and so we
1539 /// filter by the original loop's blocks. This also handles potentially
1540 /// unreachable code that we don't want to explore but might be found examining
1541 /// the predecessors of the header.
1542 ///
1543 /// If the original loop is no longer a loop, this will return an empty set. If
1544 /// it remains a loop, all the blocks within it will be added to the set
1545 /// (including those blocks in inner loops).
1546 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1547                                                                  LoopInfo &LI) {
1548   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1549 
1550   auto *PH = L.getLoopPreheader();
1551   auto *Header = L.getHeader();
1552 
1553   // A worklist to use while walking backwards from the header.
1554   SmallVector<BasicBlock *, 16> Worklist;
1555 
1556   // First walk the predecessors of the header to find the backedges. This will
1557   // form the basis of our walk.
1558   for (auto *Pred : predecessors(Header)) {
1559     // Skip the preheader.
1560     if (Pred == PH)
1561       continue;
1562 
1563     // Because the loop was in simplified form, the only non-loop predecessor
1564     // is the preheader.
1565     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1566                                "than the preheader that is not part of the "
1567                                "loop!");
1568 
1569     // Insert this block into the loop set and on the first visit and, if it
1570     // isn't the header we're currently walking, put it into the worklist to
1571     // recurse through.
1572     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1573       Worklist.push_back(Pred);
1574   }
1575 
1576   // If no backedges were found, we're done.
1577   if (LoopBlockSet.empty())
1578     return LoopBlockSet;
1579 
1580   // We found backedges, recurse through them to identify the loop blocks.
1581   while (!Worklist.empty()) {
1582     BasicBlock *BB = Worklist.pop_back_val();
1583     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1584 
1585     // No need to walk past the header.
1586     if (BB == Header)
1587       continue;
1588 
1589     // Because we know the inner loop structure remains valid we can use the
1590     // loop structure to jump immediately across the entire nested loop.
1591     // Further, because it is in loop simplified form, we can directly jump
1592     // to its preheader afterward.
1593     if (Loop *InnerL = LI.getLoopFor(BB))
1594       if (InnerL != &L) {
1595         assert(L.contains(InnerL) &&
1596                "Should not reach a loop *outside* this loop!");
1597         // The preheader is the only possible predecessor of the loop so
1598         // insert it into the set and check whether it was already handled.
1599         auto *InnerPH = InnerL->getLoopPreheader();
1600         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1601                                       "but not contain the inner loop "
1602                                       "preheader!");
1603         if (!LoopBlockSet.insert(InnerPH).second)
1604           // The only way to reach the preheader is through the loop body
1605           // itself so if it has been visited the loop is already handled.
1606           continue;
1607 
1608         // Insert all of the blocks (other than those already present) into
1609         // the loop set. We expect at least the block that led us to find the
1610         // inner loop to be in the block set, but we may also have other loop
1611         // blocks if they were already enqueued as predecessors of some other
1612         // outer loop block.
1613         for (auto *InnerBB : InnerL->blocks()) {
1614           if (InnerBB == BB) {
1615             assert(LoopBlockSet.count(InnerBB) &&
1616                    "Block should already be in the set!");
1617             continue;
1618           }
1619 
1620           LoopBlockSet.insert(InnerBB);
1621         }
1622 
1623         // Add the preheader to the worklist so we will continue past the
1624         // loop body.
1625         Worklist.push_back(InnerPH);
1626         continue;
1627       }
1628 
1629     // Insert any predecessors that were in the original loop into the new
1630     // set, and if the insert is successful, add them to the worklist.
1631     for (auto *Pred : predecessors(BB))
1632       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1633         Worklist.push_back(Pred);
1634   }
1635 
1636   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1637 
1638   // We've found all the blocks participating in the loop, return our completed
1639   // set.
1640   return LoopBlockSet;
1641 }
1642 
1643 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1644 ///
1645 /// The removal may have removed some child loops entirely but cannot have
1646 /// disturbed any remaining child loops. However, they may need to be hoisted
1647 /// to the parent loop (or to be top-level loops). The original loop may be
1648 /// completely removed.
1649 ///
1650 /// The sibling loops resulting from this update are returned. If the original
1651 /// loop remains a valid loop, it will be the first entry in this list with all
1652 /// of the newly sibling loops following it.
1653 ///
1654 /// Returns true if the loop remains a loop after unswitching, and false if it
1655 /// is no longer a loop after unswitching (and should not continue to be
1656 /// referenced).
1657 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1658                                      LoopInfo &LI,
1659                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1660   auto *PH = L.getLoopPreheader();
1661 
1662   // Compute the actual parent loop from the exit blocks. Because we may have
1663   // pruned some exits the loop may be different from the original parent.
1664   Loop *ParentL = nullptr;
1665   SmallVector<Loop *, 4> ExitLoops;
1666   SmallVector<BasicBlock *, 4> ExitsInLoops;
1667   ExitsInLoops.reserve(ExitBlocks.size());
1668   for (auto *ExitBB : ExitBlocks)
1669     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1670       ExitLoops.push_back(ExitL);
1671       ExitsInLoops.push_back(ExitBB);
1672       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1673         ParentL = ExitL;
1674     }
1675 
1676   // Recompute the blocks participating in this loop. This may be empty if it
1677   // is no longer a loop.
1678   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1679 
1680   // If we still have a loop, we need to re-set the loop's parent as the exit
1681   // block set changing may have moved it within the loop nest. Note that this
1682   // can only happen when this loop has a parent as it can only hoist the loop
1683   // *up* the nest.
1684   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1685     // Remove this loop's (original) blocks from all of the intervening loops.
1686     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1687          IL = IL->getParentLoop()) {
1688       IL->getBlocksSet().erase(PH);
1689       for (auto *BB : L.blocks())
1690         IL->getBlocksSet().erase(BB);
1691       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1692         return BB == PH || L.contains(BB);
1693       });
1694     }
1695 
1696     LI.changeLoopFor(PH, ParentL);
1697     L.getParentLoop()->removeChildLoop(&L);
1698     if (ParentL)
1699       ParentL->addChildLoop(&L);
1700     else
1701       LI.addTopLevelLoop(&L);
1702   }
1703 
1704   // Now we update all the blocks which are no longer within the loop.
1705   auto &Blocks = L.getBlocksVector();
1706   auto BlocksSplitI =
1707       LoopBlockSet.empty()
1708           ? Blocks.begin()
1709           : std::stable_partition(
1710                 Blocks.begin(), Blocks.end(),
1711                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1712 
1713   // Before we erase the list of unlooped blocks, build a set of them.
1714   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1715   if (LoopBlockSet.empty())
1716     UnloopedBlocks.insert(PH);
1717 
1718   // Now erase these blocks from the loop.
1719   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1720     L.getBlocksSet().erase(BB);
1721   Blocks.erase(BlocksSplitI, Blocks.end());
1722 
1723   // Sort the exits in ascending loop depth, we'll work backwards across these
1724   // to process them inside out.
1725   std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1726                    [&](BasicBlock *LHS, BasicBlock *RHS) {
1727                      return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1728                    });
1729 
1730   // We'll build up a set for each exit loop.
1731   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1732   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1733 
1734   auto RemoveUnloopedBlocksFromLoop =
1735       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1736         for (auto *BB : UnloopedBlocks)
1737           L.getBlocksSet().erase(BB);
1738         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1739           return UnloopedBlocks.count(BB);
1740         });
1741       };
1742 
1743   SmallVector<BasicBlock *, 16> Worklist;
1744   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1745     assert(Worklist.empty() && "Didn't clear worklist!");
1746     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1747 
1748     // Grab the next exit block, in decreasing loop depth order.
1749     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1750     Loop &ExitL = *LI.getLoopFor(ExitBB);
1751     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1752 
1753     // Erase all of the unlooped blocks from the loops between the previous
1754     // exit loop and this exit loop. This works because the ExitInLoops list is
1755     // sorted in increasing order of loop depth and thus we visit loops in
1756     // decreasing order of loop depth.
1757     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1758       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1759 
1760     // Walk the CFG back until we hit the cloned PH adding everything reachable
1761     // and in the unlooped set to this exit block's loop.
1762     Worklist.push_back(ExitBB);
1763     do {
1764       BasicBlock *BB = Worklist.pop_back_val();
1765       // We can stop recursing at the cloned preheader (if we get there).
1766       if (BB == PH)
1767         continue;
1768 
1769       for (BasicBlock *PredBB : predecessors(BB)) {
1770         // If this pred has already been moved to our set or is part of some
1771         // (inner) loop, no update needed.
1772         if (!UnloopedBlocks.erase(PredBB)) {
1773           assert((NewExitLoopBlocks.count(PredBB) ||
1774                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1775                  "Predecessor not in a nested loop (or already visited)!");
1776           continue;
1777         }
1778 
1779         // We just insert into the loop set here. We'll add these blocks to the
1780         // exit loop after we build up the set in a deterministic order rather
1781         // than the predecessor-influenced visit order.
1782         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1783         (void)Inserted;
1784         assert(Inserted && "Should only visit an unlooped block once!");
1785 
1786         // And recurse through to its predecessors.
1787         Worklist.push_back(PredBB);
1788       }
1789     } while (!Worklist.empty());
1790 
1791     // If blocks in this exit loop were directly part of the original loop (as
1792     // opposed to a child loop) update the map to point to this exit loop. This
1793     // just updates a map and so the fact that the order is unstable is fine.
1794     for (auto *BB : NewExitLoopBlocks)
1795       if (Loop *BBL = LI.getLoopFor(BB))
1796         if (BBL == &L || !L.contains(BBL))
1797           LI.changeLoopFor(BB, &ExitL);
1798 
1799     // We will remove the remaining unlooped blocks from this loop in the next
1800     // iteration or below.
1801     NewExitLoopBlocks.clear();
1802   }
1803 
1804   // Any remaining unlooped blocks are no longer part of any loop unless they
1805   // are part of some child loop.
1806   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1807     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1808   for (auto *BB : UnloopedBlocks)
1809     if (Loop *BBL = LI.getLoopFor(BB))
1810       if (BBL == &L || !L.contains(BBL))
1811         LI.changeLoopFor(BB, nullptr);
1812 
1813   // Sink all the child loops whose headers are no longer in the loop set to
1814   // the parent (or to be top level loops). We reach into the loop and directly
1815   // update its subloop vector to make this batch update efficient.
1816   auto &SubLoops = L.getSubLoopsVector();
1817   auto SubLoopsSplitI =
1818       LoopBlockSet.empty()
1819           ? SubLoops.begin()
1820           : std::stable_partition(
1821                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1822                   return LoopBlockSet.count(SubL->getHeader());
1823                 });
1824   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1825     HoistedLoops.push_back(HoistedL);
1826     HoistedL->setParentLoop(nullptr);
1827 
1828     // To compute the new parent of this hoisted loop we look at where we
1829     // placed the preheader above. We can't lookup the header itself because we
1830     // retained the mapping from the header to the hoisted loop. But the
1831     // preheader and header should have the exact same new parent computed
1832     // based on the set of exit blocks from the original loop as the preheader
1833     // is a predecessor of the header and so reached in the reverse walk. And
1834     // because the loops were all in simplified form the preheader of the
1835     // hoisted loop can't be part of some *other* loop.
1836     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1837       NewParentL->addChildLoop(HoistedL);
1838     else
1839       LI.addTopLevelLoop(HoistedL);
1840   }
1841   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1842 
1843   // Actually delete the loop if nothing remained within it.
1844   if (Blocks.empty()) {
1845     assert(SubLoops.empty() &&
1846            "Failed to remove all subloops from the original loop!");
1847     if (Loop *ParentL = L.getParentLoop())
1848       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1849     else
1850       LI.removeLoop(llvm::find(LI, &L));
1851     LI.destroy(&L);
1852     return false;
1853   }
1854 
1855   return true;
1856 }
1857 
1858 /// Helper to visit a dominator subtree, invoking a callable on each node.
1859 ///
1860 /// Returning false at any point will stop walking past that node of the tree.
1861 template <typename CallableT>
1862 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1863   SmallVector<DomTreeNode *, 4> DomWorklist;
1864   DomWorklist.push_back(DT[BB]);
1865 #ifndef NDEBUG
1866   SmallPtrSet<DomTreeNode *, 4> Visited;
1867   Visited.insert(DT[BB]);
1868 #endif
1869   do {
1870     DomTreeNode *N = DomWorklist.pop_back_val();
1871 
1872     // Visit this node.
1873     if (!Callable(N->getBlock()))
1874       continue;
1875 
1876     // Accumulate the child nodes.
1877     for (DomTreeNode *ChildN : *N) {
1878       assert(Visited.insert(ChildN).second &&
1879              "Cannot visit a node twice when walking a tree!");
1880       DomWorklist.push_back(ChildN);
1881     }
1882   } while (!DomWorklist.empty());
1883 }
1884 
1885 static void unswitchNontrivialInvariants(
1886     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1887     SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1888     AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1889     ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
1890   auto *ParentBB = TI.getParent();
1891   BranchInst *BI = dyn_cast<BranchInst>(&TI);
1892   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1893 
1894   // We can only unswitch switches, conditional branches with an invariant
1895   // condition, or combining invariant conditions with an instruction.
1896   assert((SI || BI->isConditional()) &&
1897          "Can only unswitch switches and conditional branch!");
1898   bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1899   if (FullUnswitch)
1900     assert(Invariants.size() == 1 &&
1901            "Cannot have other invariants with full unswitching!");
1902   else
1903     assert(isa<Instruction>(BI->getCondition()) &&
1904            "Partial unswitching requires an instruction as the condition!");
1905 
1906   if (MSSAU && VerifyMemorySSA)
1907     MSSAU->getMemorySSA()->verifyMemorySSA();
1908 
1909   // Constant and BBs tracking the cloned and continuing successor. When we are
1910   // unswitching the entire condition, this can just be trivially chosen to
1911   // unswitch towards `true`. However, when we are unswitching a set of
1912   // invariants combined with `and` or `or`, the combining operation determines
1913   // the best direction to unswitch: we want to unswitch the direction that will
1914   // collapse the branch.
1915   bool Direction = true;
1916   int ClonedSucc = 0;
1917   if (!FullUnswitch) {
1918     if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1919       assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1920                  Instruction::And &&
1921              "Only `or` and `and` instructions can combine invariants being "
1922              "unswitched.");
1923       Direction = false;
1924       ClonedSucc = 1;
1925     }
1926   }
1927 
1928   BasicBlock *RetainedSuccBB =
1929       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1930   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1931   if (BI)
1932     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1933   else
1934     for (auto Case : SI->cases())
1935       if (Case.getCaseSuccessor() != RetainedSuccBB)
1936         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
1937 
1938   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1939          "Should not unswitch the same successor we are retaining!");
1940 
1941   // The branch should be in this exact loop. Any inner loop's invariant branch
1942   // should be handled by unswitching that inner loop. The caller of this
1943   // routine should filter out any candidates that remain (but were skipped for
1944   // whatever reason).
1945   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1946 
1947   // Compute the parent loop now before we start hacking on things.
1948   Loop *ParentL = L.getParentLoop();
1949   // Get blocks in RPO order for MSSA update, before changing the CFG.
1950   LoopBlocksRPO LBRPO(&L);
1951   if (MSSAU)
1952     LBRPO.perform(&LI);
1953 
1954   // Compute the outer-most loop containing one of our exit blocks. This is the
1955   // furthest up our loopnest which can be mutated, which we will use below to
1956   // update things.
1957   Loop *OuterExitL = &L;
1958   for (auto *ExitBB : ExitBlocks) {
1959     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1960     if (!NewOuterExitL) {
1961       // We exited the entire nest with this block, so we're done.
1962       OuterExitL = nullptr;
1963       break;
1964     }
1965     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1966       OuterExitL = NewOuterExitL;
1967   }
1968 
1969   // At this point, we're definitely going to unswitch something so invalidate
1970   // any cached information in ScalarEvolution for the outer most loop
1971   // containing an exit block and all nested loops.
1972   if (SE) {
1973     if (OuterExitL)
1974       SE->forgetLoop(OuterExitL);
1975     else
1976       SE->forgetTopmostLoop(&L);
1977   }
1978 
1979   // If the edge from this terminator to a successor dominates that successor,
1980   // store a map from each block in its dominator subtree to it. This lets us
1981   // tell when cloning for a particular successor if a block is dominated by
1982   // some *other* successor with a single data structure. We use this to
1983   // significantly reduce cloning.
1984   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
1985   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
1986            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
1987     if (SuccBB->getUniquePredecessor() ||
1988         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
1989           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
1990         }))
1991       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
1992         DominatingSucc[BB] = SuccBB;
1993         return true;
1994       });
1995 
1996   // Split the preheader, so that we know that there is a safe place to insert
1997   // the conditional branch. We will change the preheader to have a conditional
1998   // branch on LoopCond. The original preheader will become the split point
1999   // between the unswitched versions, and we will have a new preheader for the
2000   // original loop.
2001   BasicBlock *SplitBB = L.getLoopPreheader();
2002   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2003 
2004   // Keep track of the dominator tree updates needed.
2005   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2006 
2007   // Clone the loop for each unswitched successor.
2008   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2009   VMaps.reserve(UnswitchedSuccBBs.size());
2010   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2011   for (auto *SuccBB : UnswitchedSuccBBs) {
2012     VMaps.emplace_back(new ValueToValueMapTy());
2013     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2014         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2015         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2016   }
2017 
2018   // The stitching of the branched code back together depends on whether we're
2019   // doing full unswitching or not with the exception that we always want to
2020   // nuke the initial terminator placed in the split block.
2021   SplitBB->getTerminator()->eraseFromParent();
2022   if (FullUnswitch) {
2023     // Splice the terminator from the original loop and rewrite its
2024     // successors.
2025     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2026 
2027     // Keep a clone of the terminator for MSSA updates.
2028     Instruction *NewTI = TI.clone();
2029     ParentBB->getInstList().push_back(NewTI);
2030 
2031     // First wire up the moved terminator to the preheaders.
2032     if (BI) {
2033       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2034       BI->setSuccessor(ClonedSucc, ClonedPH);
2035       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2036       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2037     } else {
2038       assert(SI && "Must either be a branch or switch!");
2039 
2040       // Walk the cases and directly update their successors.
2041       assert(SI->getDefaultDest() == RetainedSuccBB &&
2042              "Not retaining default successor!");
2043       SI->setDefaultDest(LoopPH);
2044       for (auto &Case : SI->cases())
2045         if (Case.getCaseSuccessor() == RetainedSuccBB)
2046           Case.setSuccessor(LoopPH);
2047         else
2048           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2049 
2050       // We need to use the set to populate domtree updates as even when there
2051       // are multiple cases pointing at the same successor we only want to
2052       // remove and insert one edge in the domtree.
2053       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2054         DTUpdates.push_back(
2055             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2056     }
2057 
2058     if (MSSAU) {
2059       DT.applyUpdates(DTUpdates);
2060       DTUpdates.clear();
2061 
2062       // Remove all but one edge to the retained block and all unswitched
2063       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2064       // when we know we only keep a single edge for each case.
2065       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2066       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2067         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2068 
2069       for (auto &VMap : VMaps)
2070         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2071                                    /*IgnoreIncomingWithNoClones=*/true);
2072       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2073 
2074       // Remove all edges to unswitched blocks.
2075       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2076         MSSAU->removeEdge(ParentBB, SuccBB);
2077     }
2078 
2079     // Now unhook the successor relationship as we'll be replacing
2080     // the terminator with a direct branch. This is much simpler for branches
2081     // than switches so we handle those first.
2082     if (BI) {
2083       // Remove the parent as a predecessor of the unswitched successor.
2084       assert(UnswitchedSuccBBs.size() == 1 &&
2085              "Only one possible unswitched block for a branch!");
2086       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2087       UnswitchedSuccBB->removePredecessor(ParentBB,
2088                                           /*KeepOneInputPHIs*/ true);
2089       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2090     } else {
2091       // Note that we actually want to remove the parent block as a predecessor
2092       // of *every* case successor. The case successor is either unswitched,
2093       // completely eliminating an edge from the parent to that successor, or it
2094       // is a duplicate edge to the retained successor as the retained successor
2095       // is always the default successor and as we'll replace this with a direct
2096       // branch we no longer need the duplicate entries in the PHI nodes.
2097       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2098       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2099              "Not retaining default successor!");
2100       for (auto &Case : NewSI->cases())
2101         Case.getCaseSuccessor()->removePredecessor(
2102             ParentBB,
2103             /*KeepOneInputPHIs*/ true);
2104 
2105       // We need to use the set to populate domtree updates as even when there
2106       // are multiple cases pointing at the same successor we only want to
2107       // remove and insert one edge in the domtree.
2108       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2109         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2110     }
2111 
2112     // After MSSAU update, remove the cloned terminator instruction NewTI.
2113     ParentBB->getTerminator()->eraseFromParent();
2114 
2115     // Create a new unconditional branch to the continuing block (as opposed to
2116     // the one cloned).
2117     BranchInst::Create(RetainedSuccBB, ParentBB);
2118   } else {
2119     assert(BI && "Only branches have partial unswitching.");
2120     assert(UnswitchedSuccBBs.size() == 1 &&
2121            "Only one possible unswitched block for a branch!");
2122     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2123     // When doing a partial unswitch, we have to do a bit more work to build up
2124     // the branch in the split block.
2125     buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2126                                           *ClonedPH, *LoopPH);
2127     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2128   }
2129 
2130   // Apply the updates accumulated above to get an up-to-date dominator tree.
2131   DT.applyUpdates(DTUpdates);
2132   if (!FullUnswitch && MSSAU) {
2133     // Update MSSA for partial unswitch, after DT update.
2134     SmallVector<CFGUpdate, 1> Updates;
2135     Updates.push_back(
2136         {cfg::UpdateKind::Insert, SplitBB, ClonedPHs.begin()->second});
2137     MSSAU->applyInsertUpdates(Updates, DT);
2138   }
2139 
2140   // Now that we have an accurate dominator tree, first delete the dead cloned
2141   // blocks so that we can accurately build any cloned loops. It is important to
2142   // not delete the blocks from the original loop yet because we still want to
2143   // reference the original loop to understand the cloned loop's structure.
2144   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2145 
2146   // Build the cloned loop structure itself. This may be substantially
2147   // different from the original structure due to the simplified CFG. This also
2148   // handles inserting all the cloned blocks into the correct loops.
2149   SmallVector<Loop *, 4> NonChildClonedLoops;
2150   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2151     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2152 
2153   // Now that our cloned loops have been built, we can update the original loop.
2154   // First we delete the dead blocks from it and then we rebuild the loop
2155   // structure taking these deletions into account.
2156   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2157 
2158   if (MSSAU && VerifyMemorySSA)
2159     MSSAU->getMemorySSA()->verifyMemorySSA();
2160 
2161   SmallVector<Loop *, 4> HoistedLoops;
2162   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2163 
2164   if (MSSAU && VerifyMemorySSA)
2165     MSSAU->getMemorySSA()->verifyMemorySSA();
2166 
2167   // This transformation has a high risk of corrupting the dominator tree, and
2168   // the below steps to rebuild loop structures will result in hard to debug
2169   // errors in that case so verify that the dominator tree is sane first.
2170   // FIXME: Remove this when the bugs stop showing up and rely on existing
2171   // verification steps.
2172   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2173 
2174   if (BI) {
2175     // If we unswitched a branch which collapses the condition to a known
2176     // constant we want to replace all the uses of the invariants within both
2177     // the original and cloned blocks. We do this here so that we can use the
2178     // now updated dominator tree to identify which side the users are on.
2179     assert(UnswitchedSuccBBs.size() == 1 &&
2180            "Only one possible unswitched block for a branch!");
2181     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2182 
2183     // When considering multiple partially-unswitched invariants
2184     // we cant just go replace them with constants in both branches.
2185     //
2186     // For 'AND' we infer that true branch ("continue") means true
2187     // for each invariant operand.
2188     // For 'OR' we can infer that false branch ("continue") means false
2189     // for each invariant operand.
2190     // So it happens that for multiple-partial case we dont replace
2191     // in the unswitched branch.
2192     bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
2193 
2194     ConstantInt *UnswitchedReplacement =
2195         Direction ? ConstantInt::getTrue(BI->getContext())
2196                   : ConstantInt::getFalse(BI->getContext());
2197     ConstantInt *ContinueReplacement =
2198         Direction ? ConstantInt::getFalse(BI->getContext())
2199                   : ConstantInt::getTrue(BI->getContext());
2200     for (Value *Invariant : Invariants)
2201       for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2202            UI != UE;) {
2203         // Grab the use and walk past it so we can clobber it in the use list.
2204         Use *U = &*UI++;
2205         Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2206         if (!UserI)
2207           continue;
2208 
2209         // Replace it with the 'continue' side if in the main loop body, and the
2210         // unswitched if in the cloned blocks.
2211         if (DT.dominates(LoopPH, UserI->getParent()))
2212           U->set(ContinueReplacement);
2213         else if (ReplaceUnswitched &&
2214                  DT.dominates(ClonedPH, UserI->getParent()))
2215           U->set(UnswitchedReplacement);
2216       }
2217   }
2218 
2219   // We can change which blocks are exit blocks of all the cloned sibling
2220   // loops, the current loop, and any parent loops which shared exit blocks
2221   // with the current loop. As a consequence, we need to re-form LCSSA for
2222   // them. But we shouldn't need to re-form LCSSA for any child loops.
2223   // FIXME: This could be made more efficient by tracking which exit blocks are
2224   // new, and focusing on them, but that isn't likely to be necessary.
2225   //
2226   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2227   // loop nest and update every loop that could have had its exits changed. We
2228   // also need to cover any intervening loops. We add all of these loops to
2229   // a list and sort them by loop depth to achieve this without updating
2230   // unnecessary loops.
2231   auto UpdateLoop = [&](Loop &UpdateL) {
2232 #ifndef NDEBUG
2233     UpdateL.verifyLoop();
2234     for (Loop *ChildL : UpdateL) {
2235       ChildL->verifyLoop();
2236       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2237              "Perturbed a child loop's LCSSA form!");
2238     }
2239 #endif
2240     // First build LCSSA for this loop so that we can preserve it when
2241     // forming dedicated exits. We don't want to perturb some other loop's
2242     // LCSSA while doing that CFG edit.
2243     formLCSSA(UpdateL, DT, &LI, nullptr);
2244 
2245     // For loops reached by this loop's original exit blocks we may
2246     // introduced new, non-dedicated exits. At least try to re-form dedicated
2247     // exits for these loops. This may fail if they couldn't have dedicated
2248     // exits to start with.
2249     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2250   };
2251 
2252   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2253   // and we can do it in any order as they don't nest relative to each other.
2254   //
2255   // Also check if any of the loops we have updated have become top-level loops
2256   // as that will necessitate widening the outer loop scope.
2257   for (Loop *UpdatedL :
2258        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2259     UpdateLoop(*UpdatedL);
2260     if (!UpdatedL->getParentLoop())
2261       OuterExitL = nullptr;
2262   }
2263   if (IsStillLoop) {
2264     UpdateLoop(L);
2265     if (!L.getParentLoop())
2266       OuterExitL = nullptr;
2267   }
2268 
2269   // If the original loop had exit blocks, walk up through the outer most loop
2270   // of those exit blocks to update LCSSA and form updated dedicated exits.
2271   if (OuterExitL != &L)
2272     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2273          OuterL = OuterL->getParentLoop())
2274       UpdateLoop(*OuterL);
2275 
2276 #ifndef NDEBUG
2277   // Verify the entire loop structure to catch any incorrect updates before we
2278   // progress in the pass pipeline.
2279   LI.verify(DT);
2280 #endif
2281 
2282   // Now that we've unswitched something, make callbacks to report the changes.
2283   // For that we need to merge together the updated loops and the cloned loops
2284   // and check whether the original loop survived.
2285   SmallVector<Loop *, 4> SibLoops;
2286   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2287     if (UpdatedL->getParentLoop() == ParentL)
2288       SibLoops.push_back(UpdatedL);
2289   UnswitchCB(IsStillLoop, SibLoops);
2290 
2291   if (MSSAU && VerifyMemorySSA)
2292     MSSAU->getMemorySSA()->verifyMemorySSA();
2293 
2294   if (BI)
2295     ++NumBranches;
2296   else
2297     ++NumSwitches;
2298 }
2299 
2300 /// Recursively compute the cost of a dominator subtree based on the per-block
2301 /// cost map provided.
2302 ///
2303 /// The recursive computation is memozied into the provided DT-indexed cost map
2304 /// to allow querying it for most nodes in the domtree without it becoming
2305 /// quadratic.
2306 static int
2307 computeDomSubtreeCost(DomTreeNode &N,
2308                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2309                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2310   // Don't accumulate cost (or recurse through) blocks not in our block cost
2311   // map and thus not part of the duplication cost being considered.
2312   auto BBCostIt = BBCostMap.find(N.getBlock());
2313   if (BBCostIt == BBCostMap.end())
2314     return 0;
2315 
2316   // Lookup this node to see if we already computed its cost.
2317   auto DTCostIt = DTCostMap.find(&N);
2318   if (DTCostIt != DTCostMap.end())
2319     return DTCostIt->second;
2320 
2321   // If not, we have to compute it. We can't use insert above and update
2322   // because computing the cost may insert more things into the map.
2323   int Cost = std::accumulate(
2324       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2325         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2326       });
2327   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2328   (void)Inserted;
2329   assert(Inserted && "Should not insert a node while visiting children!");
2330   return Cost;
2331 }
2332 
2333 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2334 /// making the following replacement:
2335 ///
2336 ///   --code before guard--
2337 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2338 ///   --code after guard--
2339 ///
2340 /// into
2341 ///
2342 ///   --code before guard--
2343 ///   br i1 %cond, label %guarded, label %deopt
2344 ///
2345 /// guarded:
2346 ///   --code after guard--
2347 ///
2348 /// deopt:
2349 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2350 ///   unreachable
2351 ///
2352 /// It also makes all relevant DT and LI updates, so that all structures are in
2353 /// valid state after this transform.
2354 static BranchInst *
2355 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2356                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2357                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2358   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2359   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2360   BasicBlock *CheckBB = GI->getParent();
2361 
2362   if (MSSAU && VerifyMemorySSA)
2363      MSSAU->getMemorySSA()->verifyMemorySSA();
2364 
2365   // Remove all CheckBB's successors from DomTree. A block can be seen among
2366   // successors more than once, but for DomTree it should be added only once.
2367   SmallPtrSet<BasicBlock *, 4> Successors;
2368   for (auto *Succ : successors(CheckBB))
2369     if (Successors.insert(Succ).second)
2370       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2371 
2372   Instruction *DeoptBlockTerm =
2373       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2374   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2375   // SplitBlockAndInsertIfThen inserts control flow that branches to
2376   // DeoptBlockTerm if the condition is true.  We want the opposite.
2377   CheckBI->swapSuccessors();
2378 
2379   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2380   GuardedBlock->setName("guarded");
2381   CheckBI->getSuccessor(1)->setName("deopt");
2382   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2383 
2384   // We now have a new exit block.
2385   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2386 
2387   if (MSSAU)
2388     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2389 
2390   GI->moveBefore(DeoptBlockTerm);
2391   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2392 
2393   // Add new successors of CheckBB into DomTree.
2394   for (auto *Succ : successors(CheckBB))
2395     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2396 
2397   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2398   // successors.
2399   for (auto *Succ : Successors)
2400     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2401 
2402   // Make proper changes to DT.
2403   DT.applyUpdates(DTUpdates);
2404   // Inform LI of a new loop block.
2405   L.addBasicBlockToLoop(GuardedBlock, LI);
2406 
2407   if (MSSAU) {
2408     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2409     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End);
2410     if (VerifyMemorySSA)
2411       MSSAU->getMemorySSA()->verifyMemorySSA();
2412   }
2413 
2414   ++NumGuards;
2415   return CheckBI;
2416 }
2417 
2418 /// Cost multiplier is a way to limit potentially exponential behavior
2419 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2420 /// candidates available. Also accounting for the number of "sibling" loops with
2421 /// the idea to account for previous unswitches that already happened on this
2422 /// cluster of loops. There was an attempt to keep this formula simple,
2423 /// just enough to limit the worst case behavior. Even if it is not that simple
2424 /// now it is still not an attempt to provide a detailed heuristic size
2425 /// prediction.
2426 ///
2427 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2428 /// unswitch candidates, making adequate predictions instead of wild guesses.
2429 /// That requires knowing not just the number of "remaining" candidates but
2430 /// also costs of unswitching for each of these candidates.
2431 static int calculateUnswitchCostMultiplier(
2432     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2433     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2434         UnswitchCandidates) {
2435 
2436   // Guards and other exiting conditions do not contribute to exponential
2437   // explosion as soon as they dominate the latch (otherwise there might be
2438   // another path to the latch remaining that does not allow to eliminate the
2439   // loop copy on unswitch).
2440   BasicBlock *Latch = L.getLoopLatch();
2441   BasicBlock *CondBlock = TI.getParent();
2442   if (DT.dominates(CondBlock, Latch) &&
2443       (isGuard(&TI) ||
2444        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2445          return L.contains(SuccBB);
2446        }) <= 1)) {
2447     NumCostMultiplierSkipped++;
2448     return 1;
2449   }
2450 
2451   auto *ParentL = L.getParentLoop();
2452   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2453                                : std::distance(LI.begin(), LI.end()));
2454   // Count amount of clones that all the candidates might cause during
2455   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2456   int UnswitchedClones = 0;
2457   for (auto Candidate : UnswitchCandidates) {
2458     Instruction *CI = Candidate.first;
2459     BasicBlock *CondBlock = CI->getParent();
2460     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2461     if (isGuard(CI)) {
2462       if (!SkipExitingSuccessors)
2463         UnswitchedClones++;
2464       continue;
2465     }
2466     int NonExitingSuccessors = llvm::count_if(
2467         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2468           return !SkipExitingSuccessors || L.contains(SuccBB);
2469         });
2470     UnswitchedClones += Log2_32(NonExitingSuccessors);
2471   }
2472 
2473   // Ignore up to the "unscaled candidates" number of unswitch candidates
2474   // when calculating the power-of-two scaling of the cost. The main idea
2475   // with this control is to allow a small number of unswitches to happen
2476   // and rely more on siblings multiplier (see below) when the number
2477   // of candidates is small.
2478   unsigned ClonesPower =
2479       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2480 
2481   // Allowing top-level loops to spread a bit more than nested ones.
2482   int SiblingsMultiplier =
2483       std::max((ParentL ? SiblingsCount
2484                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2485                1);
2486   // Compute the cost multiplier in a way that won't overflow by saturating
2487   // at an upper bound.
2488   int CostMultiplier;
2489   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2490       SiblingsMultiplier > UnswitchThreshold)
2491     CostMultiplier = UnswitchThreshold;
2492   else
2493     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2494                               (int)UnswitchThreshold);
2495 
2496   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2497                     << " (siblings " << SiblingsMultiplier << " * clones "
2498                     << (1 << ClonesPower) << ")"
2499                     << " for unswitch candidate: " << TI << "\n");
2500   return CostMultiplier;
2501 }
2502 
2503 static bool
2504 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2505                       AssumptionCache &AC, TargetTransformInfo &TTI,
2506                       function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2507                       ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2508   // Collect all invariant conditions within this loop (as opposed to an inner
2509   // loop which would be handled when visiting that inner loop).
2510   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2511       UnswitchCandidates;
2512 
2513   // Whether or not we should also collect guards in the loop.
2514   bool CollectGuards = false;
2515   if (UnswitchGuards) {
2516     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2517         Intrinsic::getName(Intrinsic::experimental_guard));
2518     if (GuardDecl && !GuardDecl->use_empty())
2519       CollectGuards = true;
2520   }
2521 
2522   for (auto *BB : L.blocks()) {
2523     if (LI.getLoopFor(BB) != &L)
2524       continue;
2525 
2526     if (CollectGuards)
2527       for (auto &I : *BB)
2528         if (isGuard(&I)) {
2529           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2530           // TODO: Support AND, OR conditions and partial unswitching.
2531           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2532             UnswitchCandidates.push_back({&I, {Cond}});
2533         }
2534 
2535     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2536       // We can only consider fully loop-invariant switch conditions as we need
2537       // to completely eliminate the switch after unswitching.
2538       if (!isa<Constant>(SI->getCondition()) &&
2539           L.isLoopInvariant(SI->getCondition()))
2540         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2541       continue;
2542     }
2543 
2544     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2545     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2546         BI->getSuccessor(0) == BI->getSuccessor(1))
2547       continue;
2548 
2549     if (L.isLoopInvariant(BI->getCondition())) {
2550       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2551       continue;
2552     }
2553 
2554     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2555     if (CondI.getOpcode() != Instruction::And &&
2556       CondI.getOpcode() != Instruction::Or)
2557       continue;
2558 
2559     TinyPtrVector<Value *> Invariants =
2560         collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2561     if (Invariants.empty())
2562       continue;
2563 
2564     UnswitchCandidates.push_back({BI, std::move(Invariants)});
2565   }
2566 
2567   // If we didn't find any candidates, we're done.
2568   if (UnswitchCandidates.empty())
2569     return false;
2570 
2571   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2572   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2573   // irreducible control flow into reducible control flow and introduce new
2574   // loops "out of thin air". If we ever discover important use cases for doing
2575   // this, we can add support to loop unswitch, but it is a lot of complexity
2576   // for what seems little or no real world benefit.
2577   LoopBlocksRPO RPOT(&L);
2578   RPOT.perform(&LI);
2579   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2580     return false;
2581 
2582   SmallVector<BasicBlock *, 4> ExitBlocks;
2583   L.getUniqueExitBlocks(ExitBlocks);
2584 
2585   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2586   // don't know how to split those exit blocks.
2587   // FIXME: We should teach SplitBlock to handle this and remove this
2588   // restriction.
2589   for (auto *ExitBB : ExitBlocks)
2590     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2591       dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2592       return false;
2593     }
2594 
2595   LLVM_DEBUG(
2596       dbgs() << "Considering " << UnswitchCandidates.size()
2597              << " non-trivial loop invariant conditions for unswitching.\n");
2598 
2599   // Given that unswitching these terminators will require duplicating parts of
2600   // the loop, so we need to be able to model that cost. Compute the ephemeral
2601   // values and set up a data structure to hold per-BB costs. We cache each
2602   // block's cost so that we don't recompute this when considering different
2603   // subsets of the loop for duplication during unswitching.
2604   SmallPtrSet<const Value *, 4> EphValues;
2605   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2606   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2607 
2608   // Compute the cost of each block, as well as the total loop cost. Also, bail
2609   // out if we see instructions which are incompatible with loop unswitching
2610   // (convergent, noduplicate, or cross-basic-block tokens).
2611   // FIXME: We might be able to safely handle some of these in non-duplicated
2612   // regions.
2613   int LoopCost = 0;
2614   for (auto *BB : L.blocks()) {
2615     int Cost = 0;
2616     for (auto &I : *BB) {
2617       if (EphValues.count(&I))
2618         continue;
2619 
2620       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2621         return false;
2622       if (auto CS = CallSite(&I))
2623         if (CS.isConvergent() || CS.cannotDuplicate())
2624           return false;
2625 
2626       Cost += TTI.getUserCost(&I);
2627     }
2628     assert(Cost >= 0 && "Must not have negative costs!");
2629     LoopCost += Cost;
2630     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2631     BBCostMap[BB] = Cost;
2632   }
2633   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2634 
2635   // Now we find the best candidate by searching for the one with the following
2636   // properties in order:
2637   //
2638   // 1) An unswitching cost below the threshold
2639   // 2) The smallest number of duplicated unswitch candidates (to avoid
2640   //    creating redundant subsequent unswitching)
2641   // 3) The smallest cost after unswitching.
2642   //
2643   // We prioritize reducing fanout of unswitch candidates provided the cost
2644   // remains below the threshold because this has a multiplicative effect.
2645   //
2646   // This requires memoizing each dominator subtree to avoid redundant work.
2647   //
2648   // FIXME: Need to actually do the number of candidates part above.
2649   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2650   // Given a terminator which might be unswitched, computes the non-duplicated
2651   // cost for that terminator.
2652   auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
2653     BasicBlock &BB = *TI.getParent();
2654     SmallPtrSet<BasicBlock *, 4> Visited;
2655 
2656     int Cost = LoopCost;
2657     for (BasicBlock *SuccBB : successors(&BB)) {
2658       // Don't count successors more than once.
2659       if (!Visited.insert(SuccBB).second)
2660         continue;
2661 
2662       // If this is a partial unswitch candidate, then it must be a conditional
2663       // branch with a condition of either `or` or `and`. In that case, one of
2664       // the successors is necessarily duplicated, so don't even try to remove
2665       // its cost.
2666       if (!FullUnswitch) {
2667         auto &BI = cast<BranchInst>(TI);
2668         if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2669             Instruction::And) {
2670           if (SuccBB == BI.getSuccessor(1))
2671             continue;
2672         } else {
2673           assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2674                      Instruction::Or &&
2675                  "Only `and` and `or` conditions can result in a partial "
2676                  "unswitch!");
2677           if (SuccBB == BI.getSuccessor(0))
2678             continue;
2679         }
2680       }
2681 
2682       // This successor's domtree will not need to be duplicated after
2683       // unswitching if the edge to the successor dominates it (and thus the
2684       // entire tree). This essentially means there is no other path into this
2685       // subtree and so it will end up live in only one clone of the loop.
2686       if (SuccBB->getUniquePredecessor() ||
2687           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2688             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2689           })) {
2690         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2691         assert(Cost >= 0 &&
2692                "Non-duplicated cost should never exceed total loop cost!");
2693       }
2694     }
2695 
2696     // Now scale the cost by the number of unique successors minus one. We
2697     // subtract one because there is already at least one copy of the entire
2698     // loop. This is computing the new cost of unswitching a condition.
2699     // Note that guards always have 2 unique successors that are implicit and
2700     // will be materialized if we decide to unswitch it.
2701     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2702     assert(SuccessorsCount > 1 &&
2703            "Cannot unswitch a condition without multiple distinct successors!");
2704     return Cost * (SuccessorsCount - 1);
2705   };
2706   Instruction *BestUnswitchTI = nullptr;
2707   int BestUnswitchCost;
2708   ArrayRef<Value *> BestUnswitchInvariants;
2709   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2710     Instruction &TI = *TerminatorAndInvariants.first;
2711     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2712     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2713     int CandidateCost = ComputeUnswitchedCost(
2714         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2715                                      Invariants[0] == BI->getCondition()));
2716     // Calculate cost multiplier which is a tool to limit potentially
2717     // exponential behavior of loop-unswitch.
2718     if (EnableUnswitchCostMultiplier) {
2719       int CostMultiplier =
2720           calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2721       assert(
2722           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2723           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2724       CandidateCost *= CostMultiplier;
2725       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2726                         << " (multiplier: " << CostMultiplier << ")"
2727                         << " for unswitch candidate: " << TI << "\n");
2728     } else {
2729       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2730                         << " for unswitch candidate: " << TI << "\n");
2731     }
2732 
2733     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2734       BestUnswitchTI = &TI;
2735       BestUnswitchCost = CandidateCost;
2736       BestUnswitchInvariants = Invariants;
2737     }
2738   }
2739 
2740   if (BestUnswitchCost >= UnswitchThreshold) {
2741     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2742                       << BestUnswitchCost << "\n");
2743     return false;
2744   }
2745 
2746   // If the best candidate is a guard, turn it into a branch.
2747   if (isGuard(BestUnswitchTI))
2748     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2749                                          ExitBlocks, DT, LI, MSSAU);
2750 
2751   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2752                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2753                     << "\n");
2754   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2755                                ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
2756   return true;
2757 }
2758 
2759 /// Unswitch control flow predicated on loop invariant conditions.
2760 ///
2761 /// This first hoists all branches or switches which are trivial (IE, do not
2762 /// require duplicating any part of the loop) out of the loop body. It then
2763 /// looks at other loop invariant control flows and tries to unswitch those as
2764 /// well by cloning the loop if the result is small enough.
2765 ///
2766 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2767 /// updated based on the unswitch.
2768 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
2769 ///
2770 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2771 /// true, we will attempt to do non-trivial unswitching as well as trivial
2772 /// unswitching.
2773 ///
2774 /// The `UnswitchCB` callback provided will be run after unswitching is
2775 /// complete, with the first parameter set to `true` if the provided loop
2776 /// remains a loop, and a list of new sibling loops created.
2777 ///
2778 /// If `SE` is non-null, we will update that analysis based on the unswitching
2779 /// done.
2780 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2781                          AssumptionCache &AC, TargetTransformInfo &TTI,
2782                          bool NonTrivial,
2783                          function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2784                          ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2785   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2786          "Loops must be in LCSSA form before unswitching.");
2787   bool Changed = false;
2788 
2789   // Must be in loop simplified form: we need a preheader and dedicated exits.
2790   if (!L.isLoopSimplifyForm())
2791     return false;
2792 
2793   // Try trivial unswitch first before loop over other basic blocks in the loop.
2794   if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
2795     // If we unswitched successfully we will want to clean up the loop before
2796     // processing it further so just mark it as unswitched and return.
2797     UnswitchCB(/*CurrentLoopValid*/ true, {});
2798     return true;
2799   }
2800 
2801   // If we're not doing non-trivial unswitching, we're done. We both accept
2802   // a parameter but also check a local flag that can be used for testing
2803   // a debugging.
2804   if (!NonTrivial && !EnableNonTrivialUnswitch)
2805     return false;
2806 
2807   // For non-trivial unswitching, because it often creates new loops, we rely on
2808   // the pass manager to iterate on the loops rather than trying to immediately
2809   // reach a fixed point. There is no substantial advantage to iterating
2810   // internally, and if any of the new loops are simplified enough to contain
2811   // trivial unswitching we want to prefer those.
2812 
2813   // Try to unswitch the best invariant condition. We prefer this full unswitch to
2814   // a partial unswitch when possible below the threshold.
2815   if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
2816     return true;
2817 
2818   // No other opportunities to unswitch.
2819   return Changed;
2820 }
2821 
2822 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2823                                               LoopStandardAnalysisResults &AR,
2824                                               LPMUpdater &U) {
2825   Function &F = *L.getHeader()->getParent();
2826   (void)F;
2827 
2828   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2829                     << "\n");
2830 
2831   // Save the current loop name in a variable so that we can report it even
2832   // after it has been deleted.
2833   std::string LoopName = L.getName();
2834 
2835   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2836                                         ArrayRef<Loop *> NewLoops) {
2837     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2838     if (!NewLoops.empty())
2839       U.addSiblingLoops(NewLoops);
2840 
2841     // If the current loop remains valid, we should revisit it to catch any
2842     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2843     if (CurrentLoopValid)
2844       U.revisitCurrentLoop();
2845     else
2846       U.markLoopAsDeleted(L, LoopName);
2847   };
2848 
2849   Optional<MemorySSAUpdater> MSSAU;
2850   if (AR.MSSA) {
2851     MSSAU = MemorySSAUpdater(AR.MSSA);
2852     if (VerifyMemorySSA)
2853       AR.MSSA->verifyMemorySSA();
2854   }
2855   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2856                     &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
2857     return PreservedAnalyses::all();
2858 
2859   if (AR.MSSA && VerifyMemorySSA)
2860     AR.MSSA->verifyMemorySSA();
2861 
2862   // Historically this pass has had issues with the dominator tree so verify it
2863   // in asserts builds.
2864   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2865   return getLoopPassPreservedAnalyses();
2866 }
2867 
2868 namespace {
2869 
2870 class SimpleLoopUnswitchLegacyPass : public LoopPass {
2871   bool NonTrivial;
2872 
2873 public:
2874   static char ID; // Pass ID, replacement for typeid
2875 
2876   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2877       : LoopPass(ID), NonTrivial(NonTrivial) {
2878     initializeSimpleLoopUnswitchLegacyPassPass(
2879         *PassRegistry::getPassRegistry());
2880   }
2881 
2882   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2883 
2884   void getAnalysisUsage(AnalysisUsage &AU) const override {
2885     AU.addRequired<AssumptionCacheTracker>();
2886     AU.addRequired<TargetTransformInfoWrapperPass>();
2887     if (EnableMSSALoopDependency) {
2888       AU.addRequired<MemorySSAWrapperPass>();
2889       AU.addPreserved<MemorySSAWrapperPass>();
2890     }
2891     getLoopAnalysisUsage(AU);
2892   }
2893 };
2894 
2895 } // end anonymous namespace
2896 
2897 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2898   if (skipLoop(L))
2899     return false;
2900 
2901   Function &F = *L->getHeader()->getParent();
2902 
2903   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2904                     << "\n");
2905 
2906   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2907   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2908   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2909   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2910   MemorySSA *MSSA = nullptr;
2911   Optional<MemorySSAUpdater> MSSAU;
2912   if (EnableMSSALoopDependency) {
2913     MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
2914     MSSAU = MemorySSAUpdater(MSSA);
2915   }
2916 
2917   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2918   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2919 
2920   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2921                                ArrayRef<Loop *> NewLoops) {
2922     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2923     for (auto *NewL : NewLoops)
2924       LPM.addLoop(*NewL);
2925 
2926     // If the current loop remains valid, re-add it to the queue. This is
2927     // a little wasteful as we'll finish processing the current loop as well,
2928     // but it is the best we can do in the old PM.
2929     if (CurrentLoopValid)
2930       LPM.addLoop(*L);
2931     else
2932       LPM.markLoopAsDeleted(*L);
2933   };
2934 
2935   if (MSSA && VerifyMemorySSA)
2936     MSSA->verifyMemorySSA();
2937 
2938   bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
2939                               MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
2940 
2941   if (MSSA && VerifyMemorySSA)
2942     MSSA->verifyMemorySSA();
2943 
2944   // If anything was unswitched, also clear any cached information about this
2945   // loop.
2946   LPM.deleteSimpleAnalysisLoop(L);
2947 
2948   // Historically this pass has had issues with the dominator tree so verify it
2949   // in asserts builds.
2950   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2951 
2952   return Changed;
2953 }
2954 
2955 char SimpleLoopUnswitchLegacyPass::ID = 0;
2956 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2957                       "Simple unswitch loops", false, false)
2958 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2959 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2960 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2961 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2962 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
2963 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2964 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2965                     "Simple unswitch loops", false, false)
2966 
2967 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2968   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
2969 }
2970