1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/MustExecute.h" 30 #include "llvm/Analysis/ScalarEvolution.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Use.h" 43 #include "llvm/IR/Value.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/GenericDomTree.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/Cloning.h" 55 #include "llvm/Transforms/Utils/Local.h" 56 #include "llvm/Transforms/Utils/LoopUtils.h" 57 #include "llvm/Transforms/Utils/ValueMapper.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <numeric> 62 #include <utility> 63 64 #define DEBUG_TYPE "simple-loop-unswitch" 65 66 using namespace llvm; 67 using namespace llvm::PatternMatch; 68 69 STATISTIC(NumBranches, "Number of branches unswitched"); 70 STATISTIC(NumSwitches, "Number of switches unswitched"); 71 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 72 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 73 STATISTIC( 74 NumCostMultiplierSkipped, 75 "Number of unswitch candidates that had their cost multiplier skipped"); 76 77 static cl::opt<bool> EnableNonTrivialUnswitch( 78 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 79 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 80 "following the configuration passed into the pass.")); 81 82 static cl::opt<int> 83 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 84 cl::desc("The cost threshold for unswitching a loop.")); 85 86 static cl::opt<bool> EnableUnswitchCostMultiplier( 87 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 88 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 89 "explosion in nontrivial unswitch.")); 90 static cl::opt<int> UnswitchSiblingsToplevelDiv( 91 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 92 cl::desc("Toplevel siblings divisor for cost multiplier.")); 93 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 94 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 95 cl::desc("Number of unswitch candidates that are ignored when calculating " 96 "cost multiplier.")); 97 static cl::opt<bool> UnswitchGuards( 98 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 99 cl::desc("If enabled, simple loop unswitching will also consider " 100 "llvm.experimental.guard intrinsics as unswitch candidates.")); 101 static cl::opt<bool> DropNonTrivialImplicitNullChecks( 102 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 103 cl::init(false), cl::Hidden, 104 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 105 "null checks to save time analyzing if we can keep it.")); 106 static cl::opt<unsigned> 107 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", 108 cl::desc("Max number of memory uses to explore during " 109 "partial unswitching analysis"), 110 cl::init(100), cl::Hidden); 111 112 /// Collect all of the loop invariant input values transitively used by the 113 /// homogeneous instruction graph from a given root. 114 /// 115 /// This essentially walks from a root recursively through loop variant operands 116 /// which have the exact same opcode and finds all inputs which are loop 117 /// invariant. For some operations these can be re-associated and unswitched out 118 /// of the loop entirely. 119 static TinyPtrVector<Value *> 120 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 121 LoopInfo &LI) { 122 assert(!L.isLoopInvariant(&Root) && 123 "Only need to walk the graph if root itself is not invariant."); 124 TinyPtrVector<Value *> Invariants; 125 126 bool IsRootAnd = match(&Root, m_LogicalAnd()); 127 bool IsRootOr = match(&Root, m_LogicalOr()); 128 129 // Build a worklist and recurse through operators collecting invariants. 130 SmallVector<Instruction *, 4> Worklist; 131 SmallPtrSet<Instruction *, 8> Visited; 132 Worklist.push_back(&Root); 133 Visited.insert(&Root); 134 do { 135 Instruction &I = *Worklist.pop_back_val(); 136 for (Value *OpV : I.operand_values()) { 137 // Skip constants as unswitching isn't interesting for them. 138 if (isa<Constant>(OpV)) 139 continue; 140 141 // Add it to our result if loop invariant. 142 if (L.isLoopInvariant(OpV)) { 143 Invariants.push_back(OpV); 144 continue; 145 } 146 147 // If not an instruction with the same opcode, nothing we can do. 148 Instruction *OpI = dyn_cast<Instruction>(OpV); 149 150 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) || 151 (IsRootOr && match(OpI, m_LogicalOr())))) { 152 // Visit this operand. 153 if (Visited.insert(OpI).second) 154 Worklist.push_back(OpI); 155 } 156 } 157 } while (!Worklist.empty()); 158 159 return Invariants; 160 } 161 162 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 163 Constant &Replacement) { 164 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 165 166 // Replace uses of LIC in the loop with the given constant. 167 // We use make_early_inc_range as set invalidates the iterator. 168 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 169 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 170 171 // Replace this use within the loop body. 172 if (UserI && L.contains(UserI)) 173 U.set(&Replacement); 174 } 175 } 176 177 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 178 /// incoming values along this edge. 179 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 180 BasicBlock &ExitBB) { 181 for (Instruction &I : ExitBB) { 182 auto *PN = dyn_cast<PHINode>(&I); 183 if (!PN) 184 // No more PHIs to check. 185 return true; 186 187 // If the incoming value for this edge isn't loop invariant the unswitch 188 // won't be trivial. 189 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 190 return false; 191 } 192 llvm_unreachable("Basic blocks should never be empty!"); 193 } 194 195 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the 196 /// end of \p BB and conditionally branch on the copied condition. We only 197 /// branch on a single value. 198 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 199 ArrayRef<Value *> Invariants, 200 bool Direction, 201 BasicBlock &UnswitchedSucc, 202 BasicBlock &NormalSucc) { 203 IRBuilder<> IRB(&BB); 204 205 Value *Cond = Direction ? IRB.CreateOr(Invariants) : 206 IRB.CreateAnd(Invariants); 207 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 208 Direction ? &NormalSucc : &UnswitchedSucc); 209 } 210 211 /// Copy a set of loop invariant values, and conditionally branch on them. 212 static void buildPartialInvariantUnswitchConditionalBranch( 213 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction, 214 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, 215 MemorySSAUpdater *MSSAU) { 216 ValueToValueMapTy VMap; 217 for (auto *Val : reverse(ToDuplicate)) { 218 Instruction *Inst = cast<Instruction>(Val); 219 Instruction *NewInst = Inst->clone(); 220 BB.getInstList().insert(BB.end(), NewInst); 221 RemapInstruction(NewInst, VMap, 222 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 223 VMap[Val] = NewInst; 224 225 if (!MSSAU) 226 continue; 227 228 MemorySSA *MSSA = MSSAU->getMemorySSA(); 229 if (auto *MemUse = 230 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) { 231 auto *DefiningAccess = MemUse->getDefiningAccess(); 232 // Get the first defining access before the loop. 233 while (L.contains(DefiningAccess->getBlock())) { 234 // If the defining access is a MemoryPhi, get the incoming 235 // value for the pre-header as defining access. 236 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess)) 237 DefiningAccess = 238 MemPhi->getIncomingValueForBlock(L.getLoopPreheader()); 239 else 240 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess(); 241 } 242 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess, 243 NewInst->getParent(), 244 MemorySSA::BeforeTerminator); 245 } 246 } 247 248 IRBuilder<> IRB(&BB); 249 Value *Cond = VMap[ToDuplicate[0]]; 250 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 251 Direction ? &NormalSucc : &UnswitchedSucc); 252 } 253 254 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 255 /// 256 /// Requires that the loop exit and unswitched basic block are the same, and 257 /// that the exiting block was a unique predecessor of that block. Rewrites the 258 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 259 /// PHI nodes from the old preheader that now contains the unswitched 260 /// terminator. 261 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 262 BasicBlock &OldExitingBB, 263 BasicBlock &OldPH) { 264 for (PHINode &PN : UnswitchedBB.phis()) { 265 // When the loop exit is directly unswitched we just need to update the 266 // incoming basic block. We loop to handle weird cases with repeated 267 // incoming blocks, but expect to typically only have one operand here. 268 for (auto i : seq<int>(0, PN.getNumOperands())) { 269 assert(PN.getIncomingBlock(i) == &OldExitingBB && 270 "Found incoming block different from unique predecessor!"); 271 PN.setIncomingBlock(i, &OldPH); 272 } 273 } 274 } 275 276 /// Rewrite the PHI nodes in the loop exit basic block and the split off 277 /// unswitched block. 278 /// 279 /// Because the exit block remains an exit from the loop, this rewrites the 280 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 281 /// nodes into the unswitched basic block to select between the value in the 282 /// old preheader and the loop exit. 283 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 284 BasicBlock &UnswitchedBB, 285 BasicBlock &OldExitingBB, 286 BasicBlock &OldPH, 287 bool FullUnswitch) { 288 assert(&ExitBB != &UnswitchedBB && 289 "Must have different loop exit and unswitched blocks!"); 290 Instruction *InsertPt = &*UnswitchedBB.begin(); 291 for (PHINode &PN : ExitBB.phis()) { 292 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 293 PN.getName() + ".split", InsertPt); 294 295 // Walk backwards over the old PHI node's inputs to minimize the cost of 296 // removing each one. We have to do this weird loop manually so that we 297 // create the same number of new incoming edges in the new PHI as we expect 298 // each case-based edge to be included in the unswitched switch in some 299 // cases. 300 // FIXME: This is really, really gross. It would be much cleaner if LLVM 301 // allowed us to create a single entry for a predecessor block without 302 // having separate entries for each "edge" even though these edges are 303 // required to produce identical results. 304 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 305 if (PN.getIncomingBlock(i) != &OldExitingBB) 306 continue; 307 308 Value *Incoming = PN.getIncomingValue(i); 309 if (FullUnswitch) 310 // No more edge from the old exiting block to the exit block. 311 PN.removeIncomingValue(i); 312 313 NewPN->addIncoming(Incoming, &OldPH); 314 } 315 316 // Now replace the old PHI with the new one and wire the old one in as an 317 // input to the new one. 318 PN.replaceAllUsesWith(NewPN); 319 NewPN->addIncoming(&PN, &ExitBB); 320 } 321 } 322 323 /// Hoist the current loop up to the innermost loop containing a remaining exit. 324 /// 325 /// Because we've removed an exit from the loop, we may have changed the set of 326 /// loops reachable and need to move the current loop up the loop nest or even 327 /// to an entirely separate nest. 328 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 329 DominatorTree &DT, LoopInfo &LI, 330 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 331 // If the loop is already at the top level, we can't hoist it anywhere. 332 Loop *OldParentL = L.getParentLoop(); 333 if (!OldParentL) 334 return; 335 336 SmallVector<BasicBlock *, 4> Exits; 337 L.getExitBlocks(Exits); 338 Loop *NewParentL = nullptr; 339 for (auto *ExitBB : Exits) 340 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 341 if (!NewParentL || NewParentL->contains(ExitL)) 342 NewParentL = ExitL; 343 344 if (NewParentL == OldParentL) 345 return; 346 347 // The new parent loop (if different) should always contain the old one. 348 if (NewParentL) 349 assert(NewParentL->contains(OldParentL) && 350 "Can only hoist this loop up the nest!"); 351 352 // The preheader will need to move with the body of this loop. However, 353 // because it isn't in this loop we also need to update the primary loop map. 354 assert(OldParentL == LI.getLoopFor(&Preheader) && 355 "Parent loop of this loop should contain this loop's preheader!"); 356 LI.changeLoopFor(&Preheader, NewParentL); 357 358 // Remove this loop from its old parent. 359 OldParentL->removeChildLoop(&L); 360 361 // Add the loop either to the new parent or as a top-level loop. 362 if (NewParentL) 363 NewParentL->addChildLoop(&L); 364 else 365 LI.addTopLevelLoop(&L); 366 367 // Remove this loops blocks from the old parent and every other loop up the 368 // nest until reaching the new parent. Also update all of these 369 // no-longer-containing loops to reflect the nesting change. 370 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 371 OldContainingL = OldContainingL->getParentLoop()) { 372 llvm::erase_if(OldContainingL->getBlocksVector(), 373 [&](const BasicBlock *BB) { 374 return BB == &Preheader || L.contains(BB); 375 }); 376 377 OldContainingL->getBlocksSet().erase(&Preheader); 378 for (BasicBlock *BB : L.blocks()) 379 OldContainingL->getBlocksSet().erase(BB); 380 381 // Because we just hoisted a loop out of this one, we have essentially 382 // created new exit paths from it. That means we need to form LCSSA PHI 383 // nodes for values used in the no-longer-nested loop. 384 formLCSSA(*OldContainingL, DT, &LI, SE); 385 386 // We shouldn't need to form dedicated exits because the exit introduced 387 // here is the (just split by unswitching) preheader. However, after trivial 388 // unswitching it is possible to get new non-dedicated exits out of parent 389 // loop so let's conservatively form dedicated exit blocks and figure out 390 // if we can optimize later. 391 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 392 /*PreserveLCSSA*/ true); 393 } 394 } 395 396 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 397 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 398 // as exiting block. 399 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 400 Loop *TopMost = LI.getLoopFor(ExitBB); 401 Loop *Current = TopMost; 402 while (Current) { 403 if (Current->isLoopExiting(ExitBB)) 404 TopMost = Current; 405 Current = Current->getParentLoop(); 406 } 407 return TopMost; 408 } 409 410 /// Unswitch a trivial branch if the condition is loop invariant. 411 /// 412 /// This routine should only be called when loop code leading to the branch has 413 /// been validated as trivial (no side effects). This routine checks if the 414 /// condition is invariant and one of the successors is a loop exit. This 415 /// allows us to unswitch without duplicating the loop, making it trivial. 416 /// 417 /// If this routine fails to unswitch the branch it returns false. 418 /// 419 /// If the branch can be unswitched, this routine splits the preheader and 420 /// hoists the branch above that split. Preserves loop simplified form 421 /// (splitting the exit block as necessary). It simplifies the branch within 422 /// the loop to an unconditional branch but doesn't remove it entirely. Further 423 /// cleanup can be done with some simplify-cfg like pass. 424 /// 425 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 426 /// invalidated by this. 427 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 428 LoopInfo &LI, ScalarEvolution *SE, 429 MemorySSAUpdater *MSSAU) { 430 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 431 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 432 433 // The loop invariant values that we want to unswitch. 434 TinyPtrVector<Value *> Invariants; 435 436 // When true, we're fully unswitching the branch rather than just unswitching 437 // some input conditions to the branch. 438 bool FullUnswitch = false; 439 440 if (L.isLoopInvariant(BI.getCondition())) { 441 Invariants.push_back(BI.getCondition()); 442 FullUnswitch = true; 443 } else { 444 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 445 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 446 if (Invariants.empty()) 447 // Couldn't find invariant inputs! 448 return false; 449 } 450 451 // Check that one of the branch's successors exits, and which one. 452 bool ExitDirection = true; 453 int LoopExitSuccIdx = 0; 454 auto *LoopExitBB = BI.getSuccessor(0); 455 if (L.contains(LoopExitBB)) { 456 ExitDirection = false; 457 LoopExitSuccIdx = 1; 458 LoopExitBB = BI.getSuccessor(1); 459 if (L.contains(LoopExitBB)) 460 return false; 461 } 462 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 463 auto *ParentBB = BI.getParent(); 464 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 465 return false; 466 467 // When unswitching only part of the branch's condition, we need the exit 468 // block to be reached directly from the partially unswitched input. This can 469 // be done when the exit block is along the true edge and the branch condition 470 // is a graph of `or` operations, or the exit block is along the false edge 471 // and the condition is a graph of `and` operations. 472 if (!FullUnswitch) { 473 if (ExitDirection) { 474 if (!match(BI.getCondition(), m_LogicalOr())) 475 return false; 476 } else { 477 if (!match(BI.getCondition(), m_LogicalAnd())) 478 return false; 479 } 480 } 481 482 LLVM_DEBUG({ 483 dbgs() << " unswitching trivial invariant conditions for: " << BI 484 << "\n"; 485 for (Value *Invariant : Invariants) { 486 dbgs() << " " << *Invariant << " == true"; 487 if (Invariant != Invariants.back()) 488 dbgs() << " ||"; 489 dbgs() << "\n"; 490 } 491 }); 492 493 // If we have scalar evolutions, we need to invalidate them including this 494 // loop, the loop containing the exit block and the topmost parent loop 495 // exiting via LoopExitBB. 496 if (SE) { 497 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 498 SE->forgetLoop(ExitL); 499 else 500 // Forget the entire nest as this exits the entire nest. 501 SE->forgetTopmostLoop(&L); 502 } 503 504 if (MSSAU && VerifyMemorySSA) 505 MSSAU->getMemorySSA()->verifyMemorySSA(); 506 507 // Split the preheader, so that we know that there is a safe place to insert 508 // the conditional branch. We will change the preheader to have a conditional 509 // branch on LoopCond. 510 BasicBlock *OldPH = L.getLoopPreheader(); 511 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 512 513 // Now that we have a place to insert the conditional branch, create a place 514 // to branch to: this is the exit block out of the loop that we are 515 // unswitching. We need to split this if there are other loop predecessors. 516 // Because the loop is in simplified form, *any* other predecessor is enough. 517 BasicBlock *UnswitchedBB; 518 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 519 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 520 "A branch's parent isn't a predecessor!"); 521 UnswitchedBB = LoopExitBB; 522 } else { 523 UnswitchedBB = 524 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 525 } 526 527 if (MSSAU && VerifyMemorySSA) 528 MSSAU->getMemorySSA()->verifyMemorySSA(); 529 530 // Actually move the invariant uses into the unswitched position. If possible, 531 // we do this by moving the instructions, but when doing partial unswitching 532 // we do it by building a new merge of the values in the unswitched position. 533 OldPH->getTerminator()->eraseFromParent(); 534 if (FullUnswitch) { 535 // If fully unswitching, we can use the existing branch instruction. 536 // Splice it into the old PH to gate reaching the new preheader and re-point 537 // its successors. 538 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 539 BI); 540 if (MSSAU) { 541 // Temporarily clone the terminator, to make MSSA update cheaper by 542 // separating "insert edge" updates from "remove edge" ones. 543 ParentBB->getInstList().push_back(BI.clone()); 544 } else { 545 // Create a new unconditional branch that will continue the loop as a new 546 // terminator. 547 BranchInst::Create(ContinueBB, ParentBB); 548 } 549 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 550 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 551 } else { 552 // Only unswitching a subset of inputs to the condition, so we will need to 553 // build a new branch that merges the invariant inputs. 554 if (ExitDirection) 555 assert(match(BI.getCondition(), m_LogicalOr()) && 556 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the " 557 "condition!"); 558 else 559 assert(match(BI.getCondition(), m_LogicalAnd()) && 560 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the" 561 " condition!"); 562 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 563 *UnswitchedBB, *NewPH); 564 } 565 566 // Update the dominator tree with the added edge. 567 DT.insertEdge(OldPH, UnswitchedBB); 568 569 // After the dominator tree was updated with the added edge, update MemorySSA 570 // if available. 571 if (MSSAU) { 572 SmallVector<CFGUpdate, 1> Updates; 573 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 574 MSSAU->applyInsertUpdates(Updates, DT); 575 } 576 577 // Finish updating dominator tree and memory ssa for full unswitch. 578 if (FullUnswitch) { 579 if (MSSAU) { 580 // Remove the cloned branch instruction. 581 ParentBB->getTerminator()->eraseFromParent(); 582 // Create unconditional branch now. 583 BranchInst::Create(ContinueBB, ParentBB); 584 MSSAU->removeEdge(ParentBB, LoopExitBB); 585 } 586 DT.deleteEdge(ParentBB, LoopExitBB); 587 } 588 589 if (MSSAU && VerifyMemorySSA) 590 MSSAU->getMemorySSA()->verifyMemorySSA(); 591 592 // Rewrite the relevant PHI nodes. 593 if (UnswitchedBB == LoopExitBB) 594 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 595 else 596 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 597 *ParentBB, *OldPH, FullUnswitch); 598 599 // The constant we can replace all of our invariants with inside the loop 600 // body. If any of the invariants have a value other than this the loop won't 601 // be entered. 602 ConstantInt *Replacement = ExitDirection 603 ? ConstantInt::getFalse(BI.getContext()) 604 : ConstantInt::getTrue(BI.getContext()); 605 606 // Since this is an i1 condition we can also trivially replace uses of it 607 // within the loop with a constant. 608 for (Value *Invariant : Invariants) 609 replaceLoopInvariantUses(L, Invariant, *Replacement); 610 611 // If this was full unswitching, we may have changed the nesting relationship 612 // for this loop so hoist it to its correct parent if needed. 613 if (FullUnswitch) 614 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 615 616 if (MSSAU && VerifyMemorySSA) 617 MSSAU->getMemorySSA()->verifyMemorySSA(); 618 619 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 620 ++NumTrivial; 621 ++NumBranches; 622 return true; 623 } 624 625 /// Unswitch a trivial switch if the condition is loop invariant. 626 /// 627 /// This routine should only be called when loop code leading to the switch has 628 /// been validated as trivial (no side effects). This routine checks if the 629 /// condition is invariant and that at least one of the successors is a loop 630 /// exit. This allows us to unswitch without duplicating the loop, making it 631 /// trivial. 632 /// 633 /// If this routine fails to unswitch the switch it returns false. 634 /// 635 /// If the switch can be unswitched, this routine splits the preheader and 636 /// copies the switch above that split. If the default case is one of the 637 /// exiting cases, it copies the non-exiting cases and points them at the new 638 /// preheader. If the default case is not exiting, it copies the exiting cases 639 /// and points the default at the preheader. It preserves loop simplified form 640 /// (splitting the exit blocks as necessary). It simplifies the switch within 641 /// the loop by removing now-dead cases. If the default case is one of those 642 /// unswitched, it replaces its destination with a new basic block containing 643 /// only unreachable. Such basic blocks, while technically loop exits, are not 644 /// considered for unswitching so this is a stable transform and the same 645 /// switch will not be revisited. If after unswitching there is only a single 646 /// in-loop successor, the switch is further simplified to an unconditional 647 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 648 /// 649 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 650 /// invalidated by this. 651 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 652 LoopInfo &LI, ScalarEvolution *SE, 653 MemorySSAUpdater *MSSAU) { 654 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 655 Value *LoopCond = SI.getCondition(); 656 657 // If this isn't switching on an invariant condition, we can't unswitch it. 658 if (!L.isLoopInvariant(LoopCond)) 659 return false; 660 661 auto *ParentBB = SI.getParent(); 662 663 // The same check must be used both for the default and the exit cases. We 664 // should never leave edges from the switch instruction to a basic block that 665 // we are unswitching, hence the condition used to determine the default case 666 // needs to also be used to populate ExitCaseIndices, which is then used to 667 // remove cases from the switch. 668 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 669 // BBToCheck is not an exit block if it is inside loop L. 670 if (L.contains(&BBToCheck)) 671 return false; 672 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 673 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 674 return false; 675 // We do not unswitch a block that only has an unreachable statement, as 676 // it's possible this is a previously unswitched block. Only unswitch if 677 // either the terminator is not unreachable, or, if it is, it's not the only 678 // instruction in the block. 679 auto *TI = BBToCheck.getTerminator(); 680 bool isUnreachable = isa<UnreachableInst>(TI); 681 return !isUnreachable || 682 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 683 }; 684 685 SmallVector<int, 4> ExitCaseIndices; 686 for (auto Case : SI.cases()) 687 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 688 ExitCaseIndices.push_back(Case.getCaseIndex()); 689 BasicBlock *DefaultExitBB = nullptr; 690 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 691 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 692 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 693 DefaultExitBB = SI.getDefaultDest(); 694 } else if (ExitCaseIndices.empty()) 695 return false; 696 697 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 698 699 if (MSSAU && VerifyMemorySSA) 700 MSSAU->getMemorySSA()->verifyMemorySSA(); 701 702 // We may need to invalidate SCEVs for the outermost loop reached by any of 703 // the exits. 704 Loop *OuterL = &L; 705 706 if (DefaultExitBB) { 707 // Clear out the default destination temporarily to allow accurate 708 // predecessor lists to be examined below. 709 SI.setDefaultDest(nullptr); 710 // Check the loop containing this exit. 711 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 712 if (!ExitL || ExitL->contains(OuterL)) 713 OuterL = ExitL; 714 } 715 716 // Store the exit cases into a separate data structure and remove them from 717 // the switch. 718 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 719 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 720 4> ExitCases; 721 ExitCases.reserve(ExitCaseIndices.size()); 722 SwitchInstProfUpdateWrapper SIW(SI); 723 // We walk the case indices backwards so that we remove the last case first 724 // and don't disrupt the earlier indices. 725 for (unsigned Index : reverse(ExitCaseIndices)) { 726 auto CaseI = SI.case_begin() + Index; 727 // Compute the outer loop from this exit. 728 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 729 if (!ExitL || ExitL->contains(OuterL)) 730 OuterL = ExitL; 731 // Save the value of this case. 732 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 733 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 734 // Delete the unswitched cases. 735 SIW.removeCase(CaseI); 736 } 737 738 if (SE) { 739 if (OuterL) 740 SE->forgetLoop(OuterL); 741 else 742 SE->forgetTopmostLoop(&L); 743 } 744 745 // Check if after this all of the remaining cases point at the same 746 // successor. 747 BasicBlock *CommonSuccBB = nullptr; 748 if (SI.getNumCases() > 0 && 749 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { 750 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); 751 })) 752 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 753 if (!DefaultExitBB) { 754 // If we're not unswitching the default, we need it to match any cases to 755 // have a common successor or if we have no cases it is the common 756 // successor. 757 if (SI.getNumCases() == 0) 758 CommonSuccBB = SI.getDefaultDest(); 759 else if (SI.getDefaultDest() != CommonSuccBB) 760 CommonSuccBB = nullptr; 761 } 762 763 // Split the preheader, so that we know that there is a safe place to insert 764 // the switch. 765 BasicBlock *OldPH = L.getLoopPreheader(); 766 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 767 OldPH->getTerminator()->eraseFromParent(); 768 769 // Now add the unswitched switch. 770 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 771 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 772 773 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 774 // First, we split any exit blocks with remaining in-loop predecessors. Then 775 // we update the PHIs in one of two ways depending on if there was a split. 776 // We walk in reverse so that we split in the same order as the cases 777 // appeared. This is purely for convenience of reading the resulting IR, but 778 // it doesn't cost anything really. 779 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 780 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 781 // Handle the default exit if necessary. 782 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 783 // ranges aren't quite powerful enough yet. 784 if (DefaultExitBB) { 785 if (pred_empty(DefaultExitBB)) { 786 UnswitchedExitBBs.insert(DefaultExitBB); 787 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 788 } else { 789 auto *SplitBB = 790 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 791 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 792 *ParentBB, *OldPH, 793 /*FullUnswitch*/ true); 794 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 795 } 796 } 797 // Note that we must use a reference in the for loop so that we update the 798 // container. 799 for (auto &ExitCase : reverse(ExitCases)) { 800 // Grab a reference to the exit block in the pair so that we can update it. 801 BasicBlock *ExitBB = std::get<1>(ExitCase); 802 803 // If this case is the last edge into the exit block, we can simply reuse it 804 // as it will no longer be a loop exit. No mapping necessary. 805 if (pred_empty(ExitBB)) { 806 // Only rewrite once. 807 if (UnswitchedExitBBs.insert(ExitBB).second) 808 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 809 continue; 810 } 811 812 // Otherwise we need to split the exit block so that we retain an exit 813 // block from the loop and a target for the unswitched condition. 814 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 815 if (!SplitExitBB) { 816 // If this is the first time we see this, do the split and remember it. 817 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 818 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 819 *ParentBB, *OldPH, 820 /*FullUnswitch*/ true); 821 } 822 // Update the case pair to point to the split block. 823 std::get<1>(ExitCase) = SplitExitBB; 824 } 825 826 // Now add the unswitched cases. We do this in reverse order as we built them 827 // in reverse order. 828 for (auto &ExitCase : reverse(ExitCases)) { 829 ConstantInt *CaseVal = std::get<0>(ExitCase); 830 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 831 832 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 833 } 834 835 // If the default was unswitched, re-point it and add explicit cases for 836 // entering the loop. 837 if (DefaultExitBB) { 838 NewSIW->setDefaultDest(DefaultExitBB); 839 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 840 841 // We removed all the exit cases, so we just copy the cases to the 842 // unswitched switch. 843 for (const auto &Case : SI.cases()) 844 NewSIW.addCase(Case.getCaseValue(), NewPH, 845 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 846 } else if (DefaultCaseWeight) { 847 // We have to set branch weight of the default case. 848 uint64_t SW = *DefaultCaseWeight; 849 for (const auto &Case : SI.cases()) { 850 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 851 assert(W && 852 "case weight must be defined as default case weight is defined"); 853 SW += *W; 854 } 855 NewSIW.setSuccessorWeight(0, SW); 856 } 857 858 // If we ended up with a common successor for every path through the switch 859 // after unswitching, rewrite it to an unconditional branch to make it easy 860 // to recognize. Otherwise we potentially have to recognize the default case 861 // pointing at unreachable and other complexity. 862 if (CommonSuccBB) { 863 BasicBlock *BB = SI.getParent(); 864 // We may have had multiple edges to this common successor block, so remove 865 // them as predecessors. We skip the first one, either the default or the 866 // actual first case. 867 bool SkippedFirst = DefaultExitBB == nullptr; 868 for (auto Case : SI.cases()) { 869 assert(Case.getCaseSuccessor() == CommonSuccBB && 870 "Non-common successor!"); 871 (void)Case; 872 if (!SkippedFirst) { 873 SkippedFirst = true; 874 continue; 875 } 876 CommonSuccBB->removePredecessor(BB, 877 /*KeepOneInputPHIs*/ true); 878 } 879 // Now nuke the switch and replace it with a direct branch. 880 SIW.eraseFromParent(); 881 BranchInst::Create(CommonSuccBB, BB); 882 } else if (DefaultExitBB) { 883 assert(SI.getNumCases() > 0 && 884 "If we had no cases we'd have a common successor!"); 885 // Move the last case to the default successor. This is valid as if the 886 // default got unswitched it cannot be reached. This has the advantage of 887 // being simple and keeping the number of edges from this switch to 888 // successors the same, and avoiding any PHI update complexity. 889 auto LastCaseI = std::prev(SI.case_end()); 890 891 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 892 SIW.setSuccessorWeight( 893 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 894 SIW.removeCase(LastCaseI); 895 } 896 897 // Walk the unswitched exit blocks and the unswitched split blocks and update 898 // the dominator tree based on the CFG edits. While we are walking unordered 899 // containers here, the API for applyUpdates takes an unordered list of 900 // updates and requires them to not contain duplicates. 901 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 902 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 903 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 904 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 905 } 906 for (auto SplitUnswitchedPair : SplitExitBBMap) { 907 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 908 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 909 } 910 911 if (MSSAU) { 912 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 913 if (VerifyMemorySSA) 914 MSSAU->getMemorySSA()->verifyMemorySSA(); 915 } else { 916 DT.applyUpdates(DTUpdates); 917 } 918 919 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 920 921 // We may have changed the nesting relationship for this loop so hoist it to 922 // its correct parent if needed. 923 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 924 925 if (MSSAU && VerifyMemorySSA) 926 MSSAU->getMemorySSA()->verifyMemorySSA(); 927 928 ++NumTrivial; 929 ++NumSwitches; 930 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 931 return true; 932 } 933 934 /// This routine scans the loop to find a branch or switch which occurs before 935 /// any side effects occur. These can potentially be unswitched without 936 /// duplicating the loop. If a branch or switch is successfully unswitched the 937 /// scanning continues to see if subsequent branches or switches have become 938 /// trivial. Once all trivial candidates have been unswitched, this routine 939 /// returns. 940 /// 941 /// The return value indicates whether anything was unswitched (and therefore 942 /// changed). 943 /// 944 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 945 /// invalidated by this. 946 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 947 LoopInfo &LI, ScalarEvolution *SE, 948 MemorySSAUpdater *MSSAU) { 949 bool Changed = false; 950 951 // If loop header has only one reachable successor we should keep looking for 952 // trivial condition candidates in the successor as well. An alternative is 953 // to constant fold conditions and merge successors into loop header (then we 954 // only need to check header's terminator). The reason for not doing this in 955 // LoopUnswitch pass is that it could potentially break LoopPassManager's 956 // invariants. Folding dead branches could either eliminate the current loop 957 // or make other loops unreachable. LCSSA form might also not be preserved 958 // after deleting branches. The following code keeps traversing loop header's 959 // successors until it finds the trivial condition candidate (condition that 960 // is not a constant). Since unswitching generates branches with constant 961 // conditions, this scenario could be very common in practice. 962 BasicBlock *CurrentBB = L.getHeader(); 963 SmallPtrSet<BasicBlock *, 8> Visited; 964 Visited.insert(CurrentBB); 965 do { 966 // Check if there are any side-effecting instructions (e.g. stores, calls, 967 // volatile loads) in the part of the loop that the code *would* execute 968 // without unswitching. 969 if (MSSAU) // Possible early exit with MSSA 970 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 971 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 972 return Changed; 973 if (llvm::any_of(*CurrentBB, 974 [](Instruction &I) { return I.mayHaveSideEffects(); })) 975 return Changed; 976 977 Instruction *CurrentTerm = CurrentBB->getTerminator(); 978 979 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 980 // Don't bother trying to unswitch past a switch with a constant 981 // condition. This should be removed prior to running this pass by 982 // simplify-cfg. 983 if (isa<Constant>(SI->getCondition())) 984 return Changed; 985 986 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 987 // Couldn't unswitch this one so we're done. 988 return Changed; 989 990 // Mark that we managed to unswitch something. 991 Changed = true; 992 993 // If unswitching turned the terminator into an unconditional branch then 994 // we can continue. The unswitching logic specifically works to fold any 995 // cases it can into an unconditional branch to make it easier to 996 // recognize here. 997 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 998 if (!BI || BI->isConditional()) 999 return Changed; 1000 1001 CurrentBB = BI->getSuccessor(0); 1002 continue; 1003 } 1004 1005 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 1006 if (!BI) 1007 // We do not understand other terminator instructions. 1008 return Changed; 1009 1010 // Don't bother trying to unswitch past an unconditional branch or a branch 1011 // with a constant value. These should be removed by simplify-cfg prior to 1012 // running this pass. 1013 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 1014 return Changed; 1015 1016 // Found a trivial condition candidate: non-foldable conditional branch. If 1017 // we fail to unswitch this, we can't do anything else that is trivial. 1018 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 1019 return Changed; 1020 1021 // Mark that we managed to unswitch something. 1022 Changed = true; 1023 1024 // If we only unswitched some of the conditions feeding the branch, we won't 1025 // have collapsed it to a single successor. 1026 BI = cast<BranchInst>(CurrentBB->getTerminator()); 1027 if (BI->isConditional()) 1028 return Changed; 1029 1030 // Follow the newly unconditional branch into its successor. 1031 CurrentBB = BI->getSuccessor(0); 1032 1033 // When continuing, if we exit the loop or reach a previous visited block, 1034 // then we can not reach any trivial condition candidates (unfoldable 1035 // branch instructions or switch instructions) and no unswitch can happen. 1036 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 1037 1038 return Changed; 1039 } 1040 1041 /// Build the cloned blocks for an unswitched copy of the given loop. 1042 /// 1043 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 1044 /// after the split block (`SplitBB`) that will be used to select between the 1045 /// cloned and original loop. 1046 /// 1047 /// This routine handles cloning all of the necessary loop blocks and exit 1048 /// blocks including rewriting their instructions and the relevant PHI nodes. 1049 /// Any loop blocks or exit blocks which are dominated by a different successor 1050 /// than the one for this clone of the loop blocks can be trivially skipped. We 1051 /// use the `DominatingSucc` map to determine whether a block satisfies that 1052 /// property with a simple map lookup. 1053 /// 1054 /// It also correctly creates the unconditional branch in the cloned 1055 /// unswitched parent block to only point at the unswitched successor. 1056 /// 1057 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1058 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1059 /// the cloned blocks (and their loops) are left without full `LoopInfo` 1060 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1061 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1062 /// instead the caller must recompute an accurate DT. It *does* correctly 1063 /// update the `AssumptionCache` provided in `AC`. 1064 static BasicBlock *buildClonedLoopBlocks( 1065 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1066 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1067 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1068 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1069 ValueToValueMapTy &VMap, 1070 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1071 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 1072 SmallVector<BasicBlock *, 4> NewBlocks; 1073 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1074 1075 // We will need to clone a bunch of blocks, wrap up the clone operation in 1076 // a helper. 1077 auto CloneBlock = [&](BasicBlock *OldBB) { 1078 // Clone the basic block and insert it before the new preheader. 1079 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1080 NewBB->moveBefore(LoopPH); 1081 1082 // Record this block and the mapping. 1083 NewBlocks.push_back(NewBB); 1084 VMap[OldBB] = NewBB; 1085 1086 return NewBB; 1087 }; 1088 1089 // We skip cloning blocks when they have a dominating succ that is not the 1090 // succ we are cloning for. 1091 auto SkipBlock = [&](BasicBlock *BB) { 1092 auto It = DominatingSucc.find(BB); 1093 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1094 }; 1095 1096 // First, clone the preheader. 1097 auto *ClonedPH = CloneBlock(LoopPH); 1098 1099 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1100 for (auto *LoopBB : L.blocks()) 1101 if (!SkipBlock(LoopBB)) 1102 CloneBlock(LoopBB); 1103 1104 // Split all the loop exit edges so that when we clone the exit blocks, if 1105 // any of the exit blocks are *also* a preheader for some other loop, we 1106 // don't create multiple predecessors entering the loop header. 1107 for (auto *ExitBB : ExitBlocks) { 1108 if (SkipBlock(ExitBB)) 1109 continue; 1110 1111 // When we are going to clone an exit, we don't need to clone all the 1112 // instructions in the exit block and we want to ensure we have an easy 1113 // place to merge the CFG, so split the exit first. This is always safe to 1114 // do because there cannot be any non-loop predecessors of a loop exit in 1115 // loop simplified form. 1116 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1117 1118 // Rearrange the names to make it easier to write test cases by having the 1119 // exit block carry the suffix rather than the merge block carrying the 1120 // suffix. 1121 MergeBB->takeName(ExitBB); 1122 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1123 1124 // Now clone the original exit block. 1125 auto *ClonedExitBB = CloneBlock(ExitBB); 1126 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1127 "Exit block should have been split to have one successor!"); 1128 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1129 "Cloned exit block has the wrong successor!"); 1130 1131 // Remap any cloned instructions and create a merge phi node for them. 1132 for (auto ZippedInsts : llvm::zip_first( 1133 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1134 llvm::make_range(ClonedExitBB->begin(), 1135 std::prev(ClonedExitBB->end())))) { 1136 Instruction &I = std::get<0>(ZippedInsts); 1137 Instruction &ClonedI = std::get<1>(ZippedInsts); 1138 1139 // The only instructions in the exit block should be PHI nodes and 1140 // potentially a landing pad. 1141 assert( 1142 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1143 "Bad instruction in exit block!"); 1144 // We should have a value map between the instruction and its clone. 1145 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1146 1147 auto *MergePN = 1148 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1149 &*MergeBB->getFirstInsertionPt()); 1150 I.replaceAllUsesWith(MergePN); 1151 MergePN->addIncoming(&I, ExitBB); 1152 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1153 } 1154 } 1155 1156 // Rewrite the instructions in the cloned blocks to refer to the instructions 1157 // in the cloned blocks. We have to do this as a second pass so that we have 1158 // everything available. Also, we have inserted new instructions which may 1159 // include assume intrinsics, so we update the assumption cache while 1160 // processing this. 1161 for (auto *ClonedBB : NewBlocks) 1162 for (Instruction &I : *ClonedBB) { 1163 RemapInstruction(&I, VMap, 1164 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1165 if (auto *II = dyn_cast<AssumeInst>(&I)) 1166 AC.registerAssumption(II); 1167 } 1168 1169 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1170 // have spurious incoming values. 1171 for (auto *LoopBB : L.blocks()) 1172 if (SkipBlock(LoopBB)) 1173 for (auto *SuccBB : successors(LoopBB)) 1174 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1175 for (PHINode &PN : ClonedSuccBB->phis()) 1176 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1177 1178 // Remove the cloned parent as a predecessor of any successor we ended up 1179 // cloning other than the unswitched one. 1180 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1181 for (auto *SuccBB : successors(ParentBB)) { 1182 if (SuccBB == UnswitchedSuccBB) 1183 continue; 1184 1185 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1186 if (!ClonedSuccBB) 1187 continue; 1188 1189 ClonedSuccBB->removePredecessor(ClonedParentBB, 1190 /*KeepOneInputPHIs*/ true); 1191 } 1192 1193 // Replace the cloned branch with an unconditional branch to the cloned 1194 // unswitched successor. 1195 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1196 Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 1197 // Trivial Simplification. If Terminator is a conditional branch and 1198 // condition becomes dead - erase it. 1199 Value *ClonedConditionToErase = nullptr; 1200 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 1201 ClonedConditionToErase = BI->getCondition(); 1202 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 1203 ClonedConditionToErase = SI->getCondition(); 1204 1205 ClonedTerminator->eraseFromParent(); 1206 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1207 1208 if (ClonedConditionToErase) 1209 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 1210 MSSAU); 1211 1212 // If there are duplicate entries in the PHI nodes because of multiple edges 1213 // to the unswitched successor, we need to nuke all but one as we replaced it 1214 // with a direct branch. 1215 for (PHINode &PN : ClonedSuccBB->phis()) { 1216 bool Found = false; 1217 // Loop over the incoming operands backwards so we can easily delete as we 1218 // go without invalidating the index. 1219 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1220 if (PN.getIncomingBlock(i) != ClonedParentBB) 1221 continue; 1222 if (!Found) { 1223 Found = true; 1224 continue; 1225 } 1226 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1227 } 1228 } 1229 1230 // Record the domtree updates for the new blocks. 1231 SmallPtrSet<BasicBlock *, 4> SuccSet; 1232 for (auto *ClonedBB : NewBlocks) { 1233 for (auto *SuccBB : successors(ClonedBB)) 1234 if (SuccSet.insert(SuccBB).second) 1235 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1236 SuccSet.clear(); 1237 } 1238 1239 return ClonedPH; 1240 } 1241 1242 /// Recursively clone the specified loop and all of its children. 1243 /// 1244 /// The target parent loop for the clone should be provided, or can be null if 1245 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1246 /// with the provided value map. The entire original loop must be present in 1247 /// the value map. The cloned loop is returned. 1248 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1249 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1250 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1251 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1252 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1253 for (auto *BB : OrigL.blocks()) { 1254 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1255 ClonedL.addBlockEntry(ClonedBB); 1256 if (LI.getLoopFor(BB) == &OrigL) 1257 LI.changeLoopFor(ClonedBB, &ClonedL); 1258 } 1259 }; 1260 1261 // We specially handle the first loop because it may get cloned into 1262 // a different parent and because we most commonly are cloning leaf loops. 1263 Loop *ClonedRootL = LI.AllocateLoop(); 1264 if (RootParentL) 1265 RootParentL->addChildLoop(ClonedRootL); 1266 else 1267 LI.addTopLevelLoop(ClonedRootL); 1268 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1269 1270 if (OrigRootL.isInnermost()) 1271 return ClonedRootL; 1272 1273 // If we have a nest, we can quickly clone the entire loop nest using an 1274 // iterative approach because it is a tree. We keep the cloned parent in the 1275 // data structure to avoid repeatedly querying through a map to find it. 1276 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1277 // Build up the loops to clone in reverse order as we'll clone them from the 1278 // back. 1279 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1280 LoopsToClone.push_back({ClonedRootL, ChildL}); 1281 do { 1282 Loop *ClonedParentL, *L; 1283 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1284 Loop *ClonedL = LI.AllocateLoop(); 1285 ClonedParentL->addChildLoop(ClonedL); 1286 AddClonedBlocksToLoop(*L, *ClonedL); 1287 for (Loop *ChildL : llvm::reverse(*L)) 1288 LoopsToClone.push_back({ClonedL, ChildL}); 1289 } while (!LoopsToClone.empty()); 1290 1291 return ClonedRootL; 1292 } 1293 1294 /// Build the cloned loops of an original loop from unswitching. 1295 /// 1296 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1297 /// operation. We need to re-verify that there even is a loop (as the backedge 1298 /// may not have been cloned), and even if there are remaining backedges the 1299 /// backedge set may be different. However, we know that each child loop is 1300 /// undisturbed, we only need to find where to place each child loop within 1301 /// either any parent loop or within a cloned version of the original loop. 1302 /// 1303 /// Because child loops may end up cloned outside of any cloned version of the 1304 /// original loop, multiple cloned sibling loops may be created. All of them 1305 /// are returned so that the newly introduced loop nest roots can be 1306 /// identified. 1307 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1308 const ValueToValueMapTy &VMap, LoopInfo &LI, 1309 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1310 Loop *ClonedL = nullptr; 1311 1312 auto *OrigPH = OrigL.getLoopPreheader(); 1313 auto *OrigHeader = OrigL.getHeader(); 1314 1315 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1316 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1317 1318 // We need to know the loops of the cloned exit blocks to even compute the 1319 // accurate parent loop. If we only clone exits to some parent of the 1320 // original parent, we want to clone into that outer loop. We also keep track 1321 // of the loops that our cloned exit blocks participate in. 1322 Loop *ParentL = nullptr; 1323 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1324 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1325 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1326 for (auto *ExitBB : ExitBlocks) 1327 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1328 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1329 ExitLoopMap[ClonedExitBB] = ExitL; 1330 ClonedExitsInLoops.push_back(ClonedExitBB); 1331 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1332 ParentL = ExitL; 1333 } 1334 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1335 ParentL->contains(OrigL.getParentLoop())) && 1336 "The computed parent loop should always contain (or be) the parent of " 1337 "the original loop."); 1338 1339 // We build the set of blocks dominated by the cloned header from the set of 1340 // cloned blocks out of the original loop. While not all of these will 1341 // necessarily be in the cloned loop, it is enough to establish that they 1342 // aren't in unreachable cycles, etc. 1343 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1344 for (auto *BB : OrigL.blocks()) 1345 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1346 ClonedLoopBlocks.insert(ClonedBB); 1347 1348 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1349 // skipped cloning some region of this loop which can in turn skip some of 1350 // the backedges so we have to rebuild the blocks in the loop based on the 1351 // backedges that remain after cloning. 1352 SmallVector<BasicBlock *, 16> Worklist; 1353 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1354 for (auto *Pred : predecessors(ClonedHeader)) { 1355 // The only possible non-loop header predecessor is the preheader because 1356 // we know we cloned the loop in simplified form. 1357 if (Pred == ClonedPH) 1358 continue; 1359 1360 // Because the loop was in simplified form, the only non-loop predecessor 1361 // should be the preheader. 1362 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1363 "header other than the preheader " 1364 "that is not part of the loop!"); 1365 1366 // Insert this block into the loop set and on the first visit (and if it 1367 // isn't the header we're currently walking) put it into the worklist to 1368 // recurse through. 1369 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1370 Worklist.push_back(Pred); 1371 } 1372 1373 // If we had any backedges then there *is* a cloned loop. Put the header into 1374 // the loop set and then walk the worklist backwards to find all the blocks 1375 // that remain within the loop after cloning. 1376 if (!BlocksInClonedLoop.empty()) { 1377 BlocksInClonedLoop.insert(ClonedHeader); 1378 1379 while (!Worklist.empty()) { 1380 BasicBlock *BB = Worklist.pop_back_val(); 1381 assert(BlocksInClonedLoop.count(BB) && 1382 "Didn't put block into the loop set!"); 1383 1384 // Insert any predecessors that are in the possible set into the cloned 1385 // set, and if the insert is successful, add them to the worklist. Note 1386 // that we filter on the blocks that are definitely reachable via the 1387 // backedge to the loop header so we may prune out dead code within the 1388 // cloned loop. 1389 for (auto *Pred : predecessors(BB)) 1390 if (ClonedLoopBlocks.count(Pred) && 1391 BlocksInClonedLoop.insert(Pred).second) 1392 Worklist.push_back(Pred); 1393 } 1394 1395 ClonedL = LI.AllocateLoop(); 1396 if (ParentL) { 1397 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1398 ParentL->addChildLoop(ClonedL); 1399 } else { 1400 LI.addTopLevelLoop(ClonedL); 1401 } 1402 NonChildClonedLoops.push_back(ClonedL); 1403 1404 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1405 // We don't want to just add the cloned loop blocks based on how we 1406 // discovered them. The original order of blocks was carefully built in 1407 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1408 // that logic, we just re-walk the original blocks (and those of the child 1409 // loops) and filter them as we add them into the cloned loop. 1410 for (auto *BB : OrigL.blocks()) { 1411 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1412 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1413 continue; 1414 1415 // Directly add the blocks that are only in this loop. 1416 if (LI.getLoopFor(BB) == &OrigL) { 1417 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1418 continue; 1419 } 1420 1421 // We want to manually add it to this loop and parents. 1422 // Registering it with LoopInfo will happen when we clone the top 1423 // loop for this block. 1424 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1425 PL->addBlockEntry(ClonedBB); 1426 } 1427 1428 // Now add each child loop whose header remains within the cloned loop. All 1429 // of the blocks within the loop must satisfy the same constraints as the 1430 // header so once we pass the header checks we can just clone the entire 1431 // child loop nest. 1432 for (Loop *ChildL : OrigL) { 1433 auto *ClonedChildHeader = 1434 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1435 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1436 continue; 1437 1438 #ifndef NDEBUG 1439 // We should never have a cloned child loop header but fail to have 1440 // all of the blocks for that child loop. 1441 for (auto *ChildLoopBB : ChildL->blocks()) 1442 assert(BlocksInClonedLoop.count( 1443 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1444 "Child cloned loop has a header within the cloned outer " 1445 "loop but not all of its blocks!"); 1446 #endif 1447 1448 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1449 } 1450 } 1451 1452 // Now that we've handled all the components of the original loop that were 1453 // cloned into a new loop, we still need to handle anything from the original 1454 // loop that wasn't in a cloned loop. 1455 1456 // Figure out what blocks are left to place within any loop nest containing 1457 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1458 // them. 1459 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1460 if (BlocksInClonedLoop.empty()) 1461 UnloopedBlockSet.insert(ClonedPH); 1462 for (auto *ClonedBB : ClonedLoopBlocks) 1463 if (!BlocksInClonedLoop.count(ClonedBB)) 1464 UnloopedBlockSet.insert(ClonedBB); 1465 1466 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1467 // backwards across these to process them inside out. The order shouldn't 1468 // matter as we're just trying to build up the map from inside-out; we use 1469 // the map in a more stably ordered way below. 1470 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1471 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1472 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1473 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1474 }); 1475 1476 // Populate the existing ExitLoopMap with everything reachable from each 1477 // exit, starting from the inner most exit. 1478 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1479 assert(Worklist.empty() && "Didn't clear worklist!"); 1480 1481 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1482 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1483 1484 // Walk the CFG back until we hit the cloned PH adding everything reachable 1485 // and in the unlooped set to this exit block's loop. 1486 Worklist.push_back(ExitBB); 1487 do { 1488 BasicBlock *BB = Worklist.pop_back_val(); 1489 // We can stop recursing at the cloned preheader (if we get there). 1490 if (BB == ClonedPH) 1491 continue; 1492 1493 for (BasicBlock *PredBB : predecessors(BB)) { 1494 // If this pred has already been moved to our set or is part of some 1495 // (inner) loop, no update needed. 1496 if (!UnloopedBlockSet.erase(PredBB)) { 1497 assert( 1498 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1499 "Predecessor not mapped to a loop!"); 1500 continue; 1501 } 1502 1503 // We just insert into the loop set here. We'll add these blocks to the 1504 // exit loop after we build up the set in an order that doesn't rely on 1505 // predecessor order (which in turn relies on use list order). 1506 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1507 (void)Inserted; 1508 assert(Inserted && "Should only visit an unlooped block once!"); 1509 1510 // And recurse through to its predecessors. 1511 Worklist.push_back(PredBB); 1512 } 1513 } while (!Worklist.empty()); 1514 } 1515 1516 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1517 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1518 // in their original order adding them to the correct loop. 1519 1520 // We need a stable insertion order. We use the order of the original loop 1521 // order and map into the correct parent loop. 1522 for (auto *BB : llvm::concat<BasicBlock *const>( 1523 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1524 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1525 OuterL->addBasicBlockToLoop(BB, LI); 1526 1527 #ifndef NDEBUG 1528 for (auto &BBAndL : ExitLoopMap) { 1529 auto *BB = BBAndL.first; 1530 auto *OuterL = BBAndL.second; 1531 assert(LI.getLoopFor(BB) == OuterL && 1532 "Failed to put all blocks into outer loops!"); 1533 } 1534 #endif 1535 1536 // Now that all the blocks are placed into the correct containing loop in the 1537 // absence of child loops, find all the potentially cloned child loops and 1538 // clone them into whatever outer loop we placed their header into. 1539 for (Loop *ChildL : OrigL) { 1540 auto *ClonedChildHeader = 1541 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1542 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1543 continue; 1544 1545 #ifndef NDEBUG 1546 for (auto *ChildLoopBB : ChildL->blocks()) 1547 assert(VMap.count(ChildLoopBB) && 1548 "Cloned a child loop header but not all of that loops blocks!"); 1549 #endif 1550 1551 NonChildClonedLoops.push_back(cloneLoopNest( 1552 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1553 } 1554 } 1555 1556 static void 1557 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1558 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1559 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1560 // Find all the dead clones, and remove them from their successors. 1561 SmallVector<BasicBlock *, 16> DeadBlocks; 1562 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1563 for (auto &VMap : VMaps) 1564 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1565 if (!DT.isReachableFromEntry(ClonedBB)) { 1566 for (BasicBlock *SuccBB : successors(ClonedBB)) 1567 SuccBB->removePredecessor(ClonedBB); 1568 DeadBlocks.push_back(ClonedBB); 1569 } 1570 1571 // Remove all MemorySSA in the dead blocks 1572 if (MSSAU) { 1573 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1574 DeadBlocks.end()); 1575 MSSAU->removeBlocks(DeadBlockSet); 1576 } 1577 1578 // Drop any remaining references to break cycles. 1579 for (BasicBlock *BB : DeadBlocks) 1580 BB->dropAllReferences(); 1581 // Erase them from the IR. 1582 for (BasicBlock *BB : DeadBlocks) 1583 BB->eraseFromParent(); 1584 } 1585 1586 static void deleteDeadBlocksFromLoop(Loop &L, 1587 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1588 DominatorTree &DT, LoopInfo &LI, 1589 MemorySSAUpdater *MSSAU) { 1590 // Find all the dead blocks tied to this loop, and remove them from their 1591 // successors. 1592 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1593 1594 // Start with loop/exit blocks and get a transitive closure of reachable dead 1595 // blocks. 1596 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1597 ExitBlocks.end()); 1598 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1599 while (!DeathCandidates.empty()) { 1600 auto *BB = DeathCandidates.pop_back_val(); 1601 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1602 for (BasicBlock *SuccBB : successors(BB)) { 1603 SuccBB->removePredecessor(BB); 1604 DeathCandidates.push_back(SuccBB); 1605 } 1606 DeadBlockSet.insert(BB); 1607 } 1608 } 1609 1610 // Remove all MemorySSA in the dead blocks 1611 if (MSSAU) 1612 MSSAU->removeBlocks(DeadBlockSet); 1613 1614 // Filter out the dead blocks from the exit blocks list so that it can be 1615 // used in the caller. 1616 llvm::erase_if(ExitBlocks, 1617 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1618 1619 // Walk from this loop up through its parents removing all of the dead blocks. 1620 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1621 for (auto *BB : DeadBlockSet) 1622 ParentL->getBlocksSet().erase(BB); 1623 llvm::erase_if(ParentL->getBlocksVector(), 1624 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1625 } 1626 1627 // Now delete the dead child loops. This raw delete will clear them 1628 // recursively. 1629 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1630 if (!DeadBlockSet.count(ChildL->getHeader())) 1631 return false; 1632 1633 assert(llvm::all_of(ChildL->blocks(), 1634 [&](BasicBlock *ChildBB) { 1635 return DeadBlockSet.count(ChildBB); 1636 }) && 1637 "If the child loop header is dead all blocks in the child loop must " 1638 "be dead as well!"); 1639 LI.destroy(ChildL); 1640 return true; 1641 }); 1642 1643 // Remove the loop mappings for the dead blocks and drop all the references 1644 // from these blocks to others to handle cyclic references as we start 1645 // deleting the blocks themselves. 1646 for (auto *BB : DeadBlockSet) { 1647 // Check that the dominator tree has already been updated. 1648 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1649 LI.changeLoopFor(BB, nullptr); 1650 // Drop all uses of the instructions to make sure we won't have dangling 1651 // uses in other blocks. 1652 for (auto &I : *BB) 1653 if (!I.use_empty()) 1654 I.replaceAllUsesWith(UndefValue::get(I.getType())); 1655 BB->dropAllReferences(); 1656 } 1657 1658 // Actually delete the blocks now that they've been fully unhooked from the 1659 // IR. 1660 for (auto *BB : DeadBlockSet) 1661 BB->eraseFromParent(); 1662 } 1663 1664 /// Recompute the set of blocks in a loop after unswitching. 1665 /// 1666 /// This walks from the original headers predecessors to rebuild the loop. We 1667 /// take advantage of the fact that new blocks can't have been added, and so we 1668 /// filter by the original loop's blocks. This also handles potentially 1669 /// unreachable code that we don't want to explore but might be found examining 1670 /// the predecessors of the header. 1671 /// 1672 /// If the original loop is no longer a loop, this will return an empty set. If 1673 /// it remains a loop, all the blocks within it will be added to the set 1674 /// (including those blocks in inner loops). 1675 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1676 LoopInfo &LI) { 1677 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1678 1679 auto *PH = L.getLoopPreheader(); 1680 auto *Header = L.getHeader(); 1681 1682 // A worklist to use while walking backwards from the header. 1683 SmallVector<BasicBlock *, 16> Worklist; 1684 1685 // First walk the predecessors of the header to find the backedges. This will 1686 // form the basis of our walk. 1687 for (auto *Pred : predecessors(Header)) { 1688 // Skip the preheader. 1689 if (Pred == PH) 1690 continue; 1691 1692 // Because the loop was in simplified form, the only non-loop predecessor 1693 // is the preheader. 1694 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1695 "than the preheader that is not part of the " 1696 "loop!"); 1697 1698 // Insert this block into the loop set and on the first visit and, if it 1699 // isn't the header we're currently walking, put it into the worklist to 1700 // recurse through. 1701 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1702 Worklist.push_back(Pred); 1703 } 1704 1705 // If no backedges were found, we're done. 1706 if (LoopBlockSet.empty()) 1707 return LoopBlockSet; 1708 1709 // We found backedges, recurse through them to identify the loop blocks. 1710 while (!Worklist.empty()) { 1711 BasicBlock *BB = Worklist.pop_back_val(); 1712 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1713 1714 // No need to walk past the header. 1715 if (BB == Header) 1716 continue; 1717 1718 // Because we know the inner loop structure remains valid we can use the 1719 // loop structure to jump immediately across the entire nested loop. 1720 // Further, because it is in loop simplified form, we can directly jump 1721 // to its preheader afterward. 1722 if (Loop *InnerL = LI.getLoopFor(BB)) 1723 if (InnerL != &L) { 1724 assert(L.contains(InnerL) && 1725 "Should not reach a loop *outside* this loop!"); 1726 // The preheader is the only possible predecessor of the loop so 1727 // insert it into the set and check whether it was already handled. 1728 auto *InnerPH = InnerL->getLoopPreheader(); 1729 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1730 "but not contain the inner loop " 1731 "preheader!"); 1732 if (!LoopBlockSet.insert(InnerPH).second) 1733 // The only way to reach the preheader is through the loop body 1734 // itself so if it has been visited the loop is already handled. 1735 continue; 1736 1737 // Insert all of the blocks (other than those already present) into 1738 // the loop set. We expect at least the block that led us to find the 1739 // inner loop to be in the block set, but we may also have other loop 1740 // blocks if they were already enqueued as predecessors of some other 1741 // outer loop block. 1742 for (auto *InnerBB : InnerL->blocks()) { 1743 if (InnerBB == BB) { 1744 assert(LoopBlockSet.count(InnerBB) && 1745 "Block should already be in the set!"); 1746 continue; 1747 } 1748 1749 LoopBlockSet.insert(InnerBB); 1750 } 1751 1752 // Add the preheader to the worklist so we will continue past the 1753 // loop body. 1754 Worklist.push_back(InnerPH); 1755 continue; 1756 } 1757 1758 // Insert any predecessors that were in the original loop into the new 1759 // set, and if the insert is successful, add them to the worklist. 1760 for (auto *Pred : predecessors(BB)) 1761 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1762 Worklist.push_back(Pred); 1763 } 1764 1765 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1766 1767 // We've found all the blocks participating in the loop, return our completed 1768 // set. 1769 return LoopBlockSet; 1770 } 1771 1772 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1773 /// 1774 /// The removal may have removed some child loops entirely but cannot have 1775 /// disturbed any remaining child loops. However, they may need to be hoisted 1776 /// to the parent loop (or to be top-level loops). The original loop may be 1777 /// completely removed. 1778 /// 1779 /// The sibling loops resulting from this update are returned. If the original 1780 /// loop remains a valid loop, it will be the first entry in this list with all 1781 /// of the newly sibling loops following it. 1782 /// 1783 /// Returns true if the loop remains a loop after unswitching, and false if it 1784 /// is no longer a loop after unswitching (and should not continue to be 1785 /// referenced). 1786 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1787 LoopInfo &LI, 1788 SmallVectorImpl<Loop *> &HoistedLoops) { 1789 auto *PH = L.getLoopPreheader(); 1790 1791 // Compute the actual parent loop from the exit blocks. Because we may have 1792 // pruned some exits the loop may be different from the original parent. 1793 Loop *ParentL = nullptr; 1794 SmallVector<Loop *, 4> ExitLoops; 1795 SmallVector<BasicBlock *, 4> ExitsInLoops; 1796 ExitsInLoops.reserve(ExitBlocks.size()); 1797 for (auto *ExitBB : ExitBlocks) 1798 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1799 ExitLoops.push_back(ExitL); 1800 ExitsInLoops.push_back(ExitBB); 1801 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1802 ParentL = ExitL; 1803 } 1804 1805 // Recompute the blocks participating in this loop. This may be empty if it 1806 // is no longer a loop. 1807 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1808 1809 // If we still have a loop, we need to re-set the loop's parent as the exit 1810 // block set changing may have moved it within the loop nest. Note that this 1811 // can only happen when this loop has a parent as it can only hoist the loop 1812 // *up* the nest. 1813 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1814 // Remove this loop's (original) blocks from all of the intervening loops. 1815 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1816 IL = IL->getParentLoop()) { 1817 IL->getBlocksSet().erase(PH); 1818 for (auto *BB : L.blocks()) 1819 IL->getBlocksSet().erase(BB); 1820 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1821 return BB == PH || L.contains(BB); 1822 }); 1823 } 1824 1825 LI.changeLoopFor(PH, ParentL); 1826 L.getParentLoop()->removeChildLoop(&L); 1827 if (ParentL) 1828 ParentL->addChildLoop(&L); 1829 else 1830 LI.addTopLevelLoop(&L); 1831 } 1832 1833 // Now we update all the blocks which are no longer within the loop. 1834 auto &Blocks = L.getBlocksVector(); 1835 auto BlocksSplitI = 1836 LoopBlockSet.empty() 1837 ? Blocks.begin() 1838 : std::stable_partition( 1839 Blocks.begin(), Blocks.end(), 1840 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1841 1842 // Before we erase the list of unlooped blocks, build a set of them. 1843 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1844 if (LoopBlockSet.empty()) 1845 UnloopedBlocks.insert(PH); 1846 1847 // Now erase these blocks from the loop. 1848 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1849 L.getBlocksSet().erase(BB); 1850 Blocks.erase(BlocksSplitI, Blocks.end()); 1851 1852 // Sort the exits in ascending loop depth, we'll work backwards across these 1853 // to process them inside out. 1854 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1855 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1856 }); 1857 1858 // We'll build up a set for each exit loop. 1859 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1860 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1861 1862 auto RemoveUnloopedBlocksFromLoop = 1863 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1864 for (auto *BB : UnloopedBlocks) 1865 L.getBlocksSet().erase(BB); 1866 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1867 return UnloopedBlocks.count(BB); 1868 }); 1869 }; 1870 1871 SmallVector<BasicBlock *, 16> Worklist; 1872 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1873 assert(Worklist.empty() && "Didn't clear worklist!"); 1874 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1875 1876 // Grab the next exit block, in decreasing loop depth order. 1877 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1878 Loop &ExitL = *LI.getLoopFor(ExitBB); 1879 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1880 1881 // Erase all of the unlooped blocks from the loops between the previous 1882 // exit loop and this exit loop. This works because the ExitInLoops list is 1883 // sorted in increasing order of loop depth and thus we visit loops in 1884 // decreasing order of loop depth. 1885 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1886 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1887 1888 // Walk the CFG back until we hit the cloned PH adding everything reachable 1889 // and in the unlooped set to this exit block's loop. 1890 Worklist.push_back(ExitBB); 1891 do { 1892 BasicBlock *BB = Worklist.pop_back_val(); 1893 // We can stop recursing at the cloned preheader (if we get there). 1894 if (BB == PH) 1895 continue; 1896 1897 for (BasicBlock *PredBB : predecessors(BB)) { 1898 // If this pred has already been moved to our set or is part of some 1899 // (inner) loop, no update needed. 1900 if (!UnloopedBlocks.erase(PredBB)) { 1901 assert((NewExitLoopBlocks.count(PredBB) || 1902 ExitL.contains(LI.getLoopFor(PredBB))) && 1903 "Predecessor not in a nested loop (or already visited)!"); 1904 continue; 1905 } 1906 1907 // We just insert into the loop set here. We'll add these blocks to the 1908 // exit loop after we build up the set in a deterministic order rather 1909 // than the predecessor-influenced visit order. 1910 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1911 (void)Inserted; 1912 assert(Inserted && "Should only visit an unlooped block once!"); 1913 1914 // And recurse through to its predecessors. 1915 Worklist.push_back(PredBB); 1916 } 1917 } while (!Worklist.empty()); 1918 1919 // If blocks in this exit loop were directly part of the original loop (as 1920 // opposed to a child loop) update the map to point to this exit loop. This 1921 // just updates a map and so the fact that the order is unstable is fine. 1922 for (auto *BB : NewExitLoopBlocks) 1923 if (Loop *BBL = LI.getLoopFor(BB)) 1924 if (BBL == &L || !L.contains(BBL)) 1925 LI.changeLoopFor(BB, &ExitL); 1926 1927 // We will remove the remaining unlooped blocks from this loop in the next 1928 // iteration or below. 1929 NewExitLoopBlocks.clear(); 1930 } 1931 1932 // Any remaining unlooped blocks are no longer part of any loop unless they 1933 // are part of some child loop. 1934 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1935 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1936 for (auto *BB : UnloopedBlocks) 1937 if (Loop *BBL = LI.getLoopFor(BB)) 1938 if (BBL == &L || !L.contains(BBL)) 1939 LI.changeLoopFor(BB, nullptr); 1940 1941 // Sink all the child loops whose headers are no longer in the loop set to 1942 // the parent (or to be top level loops). We reach into the loop and directly 1943 // update its subloop vector to make this batch update efficient. 1944 auto &SubLoops = L.getSubLoopsVector(); 1945 auto SubLoopsSplitI = 1946 LoopBlockSet.empty() 1947 ? SubLoops.begin() 1948 : std::stable_partition( 1949 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1950 return LoopBlockSet.count(SubL->getHeader()); 1951 }); 1952 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1953 HoistedLoops.push_back(HoistedL); 1954 HoistedL->setParentLoop(nullptr); 1955 1956 // To compute the new parent of this hoisted loop we look at where we 1957 // placed the preheader above. We can't lookup the header itself because we 1958 // retained the mapping from the header to the hoisted loop. But the 1959 // preheader and header should have the exact same new parent computed 1960 // based on the set of exit blocks from the original loop as the preheader 1961 // is a predecessor of the header and so reached in the reverse walk. And 1962 // because the loops were all in simplified form the preheader of the 1963 // hoisted loop can't be part of some *other* loop. 1964 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1965 NewParentL->addChildLoop(HoistedL); 1966 else 1967 LI.addTopLevelLoop(HoistedL); 1968 } 1969 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1970 1971 // Actually delete the loop if nothing remained within it. 1972 if (Blocks.empty()) { 1973 assert(SubLoops.empty() && 1974 "Failed to remove all subloops from the original loop!"); 1975 if (Loop *ParentL = L.getParentLoop()) 1976 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1977 else 1978 LI.removeLoop(llvm::find(LI, &L)); 1979 LI.destroy(&L); 1980 return false; 1981 } 1982 1983 return true; 1984 } 1985 1986 /// Helper to visit a dominator subtree, invoking a callable on each node. 1987 /// 1988 /// Returning false at any point will stop walking past that node of the tree. 1989 template <typename CallableT> 1990 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1991 SmallVector<DomTreeNode *, 4> DomWorklist; 1992 DomWorklist.push_back(DT[BB]); 1993 #ifndef NDEBUG 1994 SmallPtrSet<DomTreeNode *, 4> Visited; 1995 Visited.insert(DT[BB]); 1996 #endif 1997 do { 1998 DomTreeNode *N = DomWorklist.pop_back_val(); 1999 2000 // Visit this node. 2001 if (!Callable(N->getBlock())) 2002 continue; 2003 2004 // Accumulate the child nodes. 2005 for (DomTreeNode *ChildN : *N) { 2006 assert(Visited.insert(ChildN).second && 2007 "Cannot visit a node twice when walking a tree!"); 2008 DomWorklist.push_back(ChildN); 2009 } 2010 } while (!DomWorklist.empty()); 2011 } 2012 2013 static void unswitchNontrivialInvariants( 2014 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 2015 SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo, 2016 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2017 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 2018 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2019 auto *ParentBB = TI.getParent(); 2020 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2021 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 2022 2023 // We can only unswitch switches, conditional branches with an invariant 2024 // condition, or combining invariant conditions with an instruction or 2025 // partially invariant instructions. 2026 assert((SI || (BI && BI->isConditional())) && 2027 "Can only unswitch switches and conditional branch!"); 2028 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty(); 2029 bool FullUnswitch = 2030 SI || (BI->getCondition() == Invariants[0] && !PartiallyInvariant); 2031 if (FullUnswitch) 2032 assert(Invariants.size() == 1 && 2033 "Cannot have other invariants with full unswitching!"); 2034 else 2035 assert(isa<Instruction>(BI->getCondition()) && 2036 "Partial unswitching requires an instruction as the condition!"); 2037 2038 if (MSSAU && VerifyMemorySSA) 2039 MSSAU->getMemorySSA()->verifyMemorySSA(); 2040 2041 // Constant and BBs tracking the cloned and continuing successor. When we are 2042 // unswitching the entire condition, this can just be trivially chosen to 2043 // unswitch towards `true`. However, when we are unswitching a set of 2044 // invariants combined with `and` or `or` or partially invariant instructions, 2045 // the combining operation determines the best direction to unswitch: we want 2046 // to unswitch the direction that will collapse the branch. 2047 bool Direction = true; 2048 int ClonedSucc = 0; 2049 if (!FullUnswitch) { 2050 Value *Cond = BI->getCondition(); 2051 (void)Cond; 2052 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || 2053 PartiallyInvariant) && 2054 "Only `or`, `and`, an `select`, partially invariant instructions " 2055 "can combine invariants being unswitched."); 2056 if (!match(BI->getCondition(), m_LogicalOr())) { 2057 if (match(BI->getCondition(), m_LogicalAnd()) || 2058 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) { 2059 Direction = false; 2060 ClonedSucc = 1; 2061 } 2062 } 2063 } 2064 2065 BasicBlock *RetainedSuccBB = 2066 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 2067 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 2068 if (BI) 2069 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 2070 else 2071 for (auto Case : SI->cases()) 2072 if (Case.getCaseSuccessor() != RetainedSuccBB) 2073 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 2074 2075 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 2076 "Should not unswitch the same successor we are retaining!"); 2077 2078 // The branch should be in this exact loop. Any inner loop's invariant branch 2079 // should be handled by unswitching that inner loop. The caller of this 2080 // routine should filter out any candidates that remain (but were skipped for 2081 // whatever reason). 2082 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2083 2084 // Compute the parent loop now before we start hacking on things. 2085 Loop *ParentL = L.getParentLoop(); 2086 // Get blocks in RPO order for MSSA update, before changing the CFG. 2087 LoopBlocksRPO LBRPO(&L); 2088 if (MSSAU) 2089 LBRPO.perform(&LI); 2090 2091 // Compute the outer-most loop containing one of our exit blocks. This is the 2092 // furthest up our loopnest which can be mutated, which we will use below to 2093 // update things. 2094 Loop *OuterExitL = &L; 2095 for (auto *ExitBB : ExitBlocks) { 2096 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2097 if (!NewOuterExitL) { 2098 // We exited the entire nest with this block, so we're done. 2099 OuterExitL = nullptr; 2100 break; 2101 } 2102 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2103 OuterExitL = NewOuterExitL; 2104 } 2105 2106 // At this point, we're definitely going to unswitch something so invalidate 2107 // any cached information in ScalarEvolution for the outer most loop 2108 // containing an exit block and all nested loops. 2109 if (SE) { 2110 if (OuterExitL) 2111 SE->forgetLoop(OuterExitL); 2112 else 2113 SE->forgetTopmostLoop(&L); 2114 } 2115 2116 // If the edge from this terminator to a successor dominates that successor, 2117 // store a map from each block in its dominator subtree to it. This lets us 2118 // tell when cloning for a particular successor if a block is dominated by 2119 // some *other* successor with a single data structure. We use this to 2120 // significantly reduce cloning. 2121 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2122 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2123 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2124 if (SuccBB->getUniquePredecessor() || 2125 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2126 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2127 })) 2128 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2129 DominatingSucc[BB] = SuccBB; 2130 return true; 2131 }); 2132 2133 // Split the preheader, so that we know that there is a safe place to insert 2134 // the conditional branch. We will change the preheader to have a conditional 2135 // branch on LoopCond. The original preheader will become the split point 2136 // between the unswitched versions, and we will have a new preheader for the 2137 // original loop. 2138 BasicBlock *SplitBB = L.getLoopPreheader(); 2139 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2140 2141 // Keep track of the dominator tree updates needed. 2142 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2143 2144 // Clone the loop for each unswitched successor. 2145 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2146 VMaps.reserve(UnswitchedSuccBBs.size()); 2147 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2148 for (auto *SuccBB : UnswitchedSuccBBs) { 2149 VMaps.emplace_back(new ValueToValueMapTy()); 2150 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2151 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2152 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2153 } 2154 2155 // Drop metadata if we may break its semantics by moving this instr into the 2156 // split block. 2157 if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 2158 if (DropNonTrivialImplicitNullChecks) 2159 // Do not spend time trying to understand if we can keep it, just drop it 2160 // to save compile time. 2161 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2162 else { 2163 // It is only legal to preserve make.implicit metadata if we are 2164 // guaranteed no reach implicit null check after following this branch. 2165 ICFLoopSafetyInfo SafetyInfo; 2166 SafetyInfo.computeLoopSafetyInfo(&L); 2167 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2168 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2169 } 2170 } 2171 2172 // The stitching of the branched code back together depends on whether we're 2173 // doing full unswitching or not with the exception that we always want to 2174 // nuke the initial terminator placed in the split block. 2175 SplitBB->getTerminator()->eraseFromParent(); 2176 if (FullUnswitch) { 2177 // Splice the terminator from the original loop and rewrite its 2178 // successors. 2179 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2180 2181 // Keep a clone of the terminator for MSSA updates. 2182 Instruction *NewTI = TI.clone(); 2183 ParentBB->getInstList().push_back(NewTI); 2184 2185 // First wire up the moved terminator to the preheaders. 2186 if (BI) { 2187 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2188 BI->setSuccessor(ClonedSucc, ClonedPH); 2189 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2190 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2191 } else { 2192 assert(SI && "Must either be a branch or switch!"); 2193 2194 // Walk the cases and directly update their successors. 2195 assert(SI->getDefaultDest() == RetainedSuccBB && 2196 "Not retaining default successor!"); 2197 SI->setDefaultDest(LoopPH); 2198 for (auto &Case : SI->cases()) 2199 if (Case.getCaseSuccessor() == RetainedSuccBB) 2200 Case.setSuccessor(LoopPH); 2201 else 2202 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2203 2204 // We need to use the set to populate domtree updates as even when there 2205 // are multiple cases pointing at the same successor we only want to 2206 // remove and insert one edge in the domtree. 2207 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2208 DTUpdates.push_back( 2209 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2210 } 2211 2212 if (MSSAU) { 2213 DT.applyUpdates(DTUpdates); 2214 DTUpdates.clear(); 2215 2216 // Remove all but one edge to the retained block and all unswitched 2217 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2218 // when we know we only keep a single edge for each case. 2219 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2220 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2221 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2222 2223 for (auto &VMap : VMaps) 2224 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2225 /*IgnoreIncomingWithNoClones=*/true); 2226 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2227 2228 // Remove all edges to unswitched blocks. 2229 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2230 MSSAU->removeEdge(ParentBB, SuccBB); 2231 } 2232 2233 // Now unhook the successor relationship as we'll be replacing 2234 // the terminator with a direct branch. This is much simpler for branches 2235 // than switches so we handle those first. 2236 if (BI) { 2237 // Remove the parent as a predecessor of the unswitched successor. 2238 assert(UnswitchedSuccBBs.size() == 1 && 2239 "Only one possible unswitched block for a branch!"); 2240 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2241 UnswitchedSuccBB->removePredecessor(ParentBB, 2242 /*KeepOneInputPHIs*/ true); 2243 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2244 } else { 2245 // Note that we actually want to remove the parent block as a predecessor 2246 // of *every* case successor. The case successor is either unswitched, 2247 // completely eliminating an edge from the parent to that successor, or it 2248 // is a duplicate edge to the retained successor as the retained successor 2249 // is always the default successor and as we'll replace this with a direct 2250 // branch we no longer need the duplicate entries in the PHI nodes. 2251 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2252 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2253 "Not retaining default successor!"); 2254 for (auto &Case : NewSI->cases()) 2255 Case.getCaseSuccessor()->removePredecessor( 2256 ParentBB, 2257 /*KeepOneInputPHIs*/ true); 2258 2259 // We need to use the set to populate domtree updates as even when there 2260 // are multiple cases pointing at the same successor we only want to 2261 // remove and insert one edge in the domtree. 2262 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2263 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2264 } 2265 2266 // After MSSAU update, remove the cloned terminator instruction NewTI. 2267 ParentBB->getTerminator()->eraseFromParent(); 2268 2269 // Create a new unconditional branch to the continuing block (as opposed to 2270 // the one cloned). 2271 BranchInst::Create(RetainedSuccBB, ParentBB); 2272 } else { 2273 assert(BI && "Only branches have partial unswitching."); 2274 assert(UnswitchedSuccBBs.size() == 1 && 2275 "Only one possible unswitched block for a branch!"); 2276 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2277 // When doing a partial unswitch, we have to do a bit more work to build up 2278 // the branch in the split block. 2279 if (PartiallyInvariant) 2280 buildPartialInvariantUnswitchConditionalBranch( 2281 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU); 2282 else 2283 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2284 *ClonedPH, *LoopPH); 2285 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2286 2287 if (MSSAU) { 2288 DT.applyUpdates(DTUpdates); 2289 DTUpdates.clear(); 2290 2291 // Perform MSSA cloning updates. 2292 for (auto &VMap : VMaps) 2293 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2294 /*IgnoreIncomingWithNoClones=*/true); 2295 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2296 } 2297 } 2298 2299 // Apply the updates accumulated above to get an up-to-date dominator tree. 2300 DT.applyUpdates(DTUpdates); 2301 2302 // Now that we have an accurate dominator tree, first delete the dead cloned 2303 // blocks so that we can accurately build any cloned loops. It is important to 2304 // not delete the blocks from the original loop yet because we still want to 2305 // reference the original loop to understand the cloned loop's structure. 2306 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2307 2308 // Build the cloned loop structure itself. This may be substantially 2309 // different from the original structure due to the simplified CFG. This also 2310 // handles inserting all the cloned blocks into the correct loops. 2311 SmallVector<Loop *, 4> NonChildClonedLoops; 2312 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2313 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2314 2315 // Now that our cloned loops have been built, we can update the original loop. 2316 // First we delete the dead blocks from it and then we rebuild the loop 2317 // structure taking these deletions into account. 2318 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2319 2320 if (MSSAU && VerifyMemorySSA) 2321 MSSAU->getMemorySSA()->verifyMemorySSA(); 2322 2323 SmallVector<Loop *, 4> HoistedLoops; 2324 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2325 2326 if (MSSAU && VerifyMemorySSA) 2327 MSSAU->getMemorySSA()->verifyMemorySSA(); 2328 2329 // This transformation has a high risk of corrupting the dominator tree, and 2330 // the below steps to rebuild loop structures will result in hard to debug 2331 // errors in that case so verify that the dominator tree is sane first. 2332 // FIXME: Remove this when the bugs stop showing up and rely on existing 2333 // verification steps. 2334 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2335 2336 if (BI && !PartiallyInvariant) { 2337 // If we unswitched a branch which collapses the condition to a known 2338 // constant we want to replace all the uses of the invariants within both 2339 // the original and cloned blocks. We do this here so that we can use the 2340 // now updated dominator tree to identify which side the users are on. 2341 assert(UnswitchedSuccBBs.size() == 1 && 2342 "Only one possible unswitched block for a branch!"); 2343 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2344 2345 // When considering multiple partially-unswitched invariants 2346 // we cant just go replace them with constants in both branches. 2347 // 2348 // For 'AND' we infer that true branch ("continue") means true 2349 // for each invariant operand. 2350 // For 'OR' we can infer that false branch ("continue") means false 2351 // for each invariant operand. 2352 // So it happens that for multiple-partial case we dont replace 2353 // in the unswitched branch. 2354 bool ReplaceUnswitched = 2355 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant; 2356 2357 ConstantInt *UnswitchedReplacement = 2358 Direction ? ConstantInt::getTrue(BI->getContext()) 2359 : ConstantInt::getFalse(BI->getContext()); 2360 ConstantInt *ContinueReplacement = 2361 Direction ? ConstantInt::getFalse(BI->getContext()) 2362 : ConstantInt::getTrue(BI->getContext()); 2363 for (Value *Invariant : Invariants) 2364 // Use make_early_inc_range here as set invalidates the iterator. 2365 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 2366 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 2367 if (!UserI) 2368 continue; 2369 2370 // Replace it with the 'continue' side if in the main loop body, and the 2371 // unswitched if in the cloned blocks. 2372 if (DT.dominates(LoopPH, UserI->getParent())) 2373 U.set(ContinueReplacement); 2374 else if (ReplaceUnswitched && 2375 DT.dominates(ClonedPH, UserI->getParent())) 2376 U.set(UnswitchedReplacement); 2377 } 2378 } 2379 2380 // We can change which blocks are exit blocks of all the cloned sibling 2381 // loops, the current loop, and any parent loops which shared exit blocks 2382 // with the current loop. As a consequence, we need to re-form LCSSA for 2383 // them. But we shouldn't need to re-form LCSSA for any child loops. 2384 // FIXME: This could be made more efficient by tracking which exit blocks are 2385 // new, and focusing on them, but that isn't likely to be necessary. 2386 // 2387 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2388 // loop nest and update every loop that could have had its exits changed. We 2389 // also need to cover any intervening loops. We add all of these loops to 2390 // a list and sort them by loop depth to achieve this without updating 2391 // unnecessary loops. 2392 auto UpdateLoop = [&](Loop &UpdateL) { 2393 #ifndef NDEBUG 2394 UpdateL.verifyLoop(); 2395 for (Loop *ChildL : UpdateL) { 2396 ChildL->verifyLoop(); 2397 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2398 "Perturbed a child loop's LCSSA form!"); 2399 } 2400 #endif 2401 // First build LCSSA for this loop so that we can preserve it when 2402 // forming dedicated exits. We don't want to perturb some other loop's 2403 // LCSSA while doing that CFG edit. 2404 formLCSSA(UpdateL, DT, &LI, SE); 2405 2406 // For loops reached by this loop's original exit blocks we may 2407 // introduced new, non-dedicated exits. At least try to re-form dedicated 2408 // exits for these loops. This may fail if they couldn't have dedicated 2409 // exits to start with. 2410 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2411 }; 2412 2413 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2414 // and we can do it in any order as they don't nest relative to each other. 2415 // 2416 // Also check if any of the loops we have updated have become top-level loops 2417 // as that will necessitate widening the outer loop scope. 2418 for (Loop *UpdatedL : 2419 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2420 UpdateLoop(*UpdatedL); 2421 if (UpdatedL->isOutermost()) 2422 OuterExitL = nullptr; 2423 } 2424 if (IsStillLoop) { 2425 UpdateLoop(L); 2426 if (L.isOutermost()) 2427 OuterExitL = nullptr; 2428 } 2429 2430 // If the original loop had exit blocks, walk up through the outer most loop 2431 // of those exit blocks to update LCSSA and form updated dedicated exits. 2432 if (OuterExitL != &L) 2433 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2434 OuterL = OuterL->getParentLoop()) 2435 UpdateLoop(*OuterL); 2436 2437 #ifndef NDEBUG 2438 // Verify the entire loop structure to catch any incorrect updates before we 2439 // progress in the pass pipeline. 2440 LI.verify(DT); 2441 #endif 2442 2443 // Now that we've unswitched something, make callbacks to report the changes. 2444 // For that we need to merge together the updated loops and the cloned loops 2445 // and check whether the original loop survived. 2446 SmallVector<Loop *, 4> SibLoops; 2447 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2448 if (UpdatedL->getParentLoop() == ParentL) 2449 SibLoops.push_back(UpdatedL); 2450 UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops); 2451 2452 if (MSSAU && VerifyMemorySSA) 2453 MSSAU->getMemorySSA()->verifyMemorySSA(); 2454 2455 if (BI) 2456 ++NumBranches; 2457 else 2458 ++NumSwitches; 2459 } 2460 2461 /// Recursively compute the cost of a dominator subtree based on the per-block 2462 /// cost map provided. 2463 /// 2464 /// The recursive computation is memozied into the provided DT-indexed cost map 2465 /// to allow querying it for most nodes in the domtree without it becoming 2466 /// quadratic. 2467 static InstructionCost computeDomSubtreeCost( 2468 DomTreeNode &N, 2469 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, 2470 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { 2471 // Don't accumulate cost (or recurse through) blocks not in our block cost 2472 // map and thus not part of the duplication cost being considered. 2473 auto BBCostIt = BBCostMap.find(N.getBlock()); 2474 if (BBCostIt == BBCostMap.end()) 2475 return 0; 2476 2477 // Lookup this node to see if we already computed its cost. 2478 auto DTCostIt = DTCostMap.find(&N); 2479 if (DTCostIt != DTCostMap.end()) 2480 return DTCostIt->second; 2481 2482 // If not, we have to compute it. We can't use insert above and update 2483 // because computing the cost may insert more things into the map. 2484 InstructionCost Cost = std::accumulate( 2485 N.begin(), N.end(), BBCostIt->second, 2486 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { 2487 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2488 }); 2489 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2490 (void)Inserted; 2491 assert(Inserted && "Should not insert a node while visiting children!"); 2492 return Cost; 2493 } 2494 2495 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2496 /// making the following replacement: 2497 /// 2498 /// --code before guard-- 2499 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2500 /// --code after guard-- 2501 /// 2502 /// into 2503 /// 2504 /// --code before guard-- 2505 /// br i1 %cond, label %guarded, label %deopt 2506 /// 2507 /// guarded: 2508 /// --code after guard-- 2509 /// 2510 /// deopt: 2511 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2512 /// unreachable 2513 /// 2514 /// It also makes all relevant DT and LI updates, so that all structures are in 2515 /// valid state after this transform. 2516 static BranchInst * 2517 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2518 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2519 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2520 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2521 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2522 BasicBlock *CheckBB = GI->getParent(); 2523 2524 if (MSSAU && VerifyMemorySSA) 2525 MSSAU->getMemorySSA()->verifyMemorySSA(); 2526 2527 // Remove all CheckBB's successors from DomTree. A block can be seen among 2528 // successors more than once, but for DomTree it should be added only once. 2529 SmallPtrSet<BasicBlock *, 4> Successors; 2530 for (auto *Succ : successors(CheckBB)) 2531 if (Successors.insert(Succ).second) 2532 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2533 2534 Instruction *DeoptBlockTerm = 2535 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2536 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2537 // SplitBlockAndInsertIfThen inserts control flow that branches to 2538 // DeoptBlockTerm if the condition is true. We want the opposite. 2539 CheckBI->swapSuccessors(); 2540 2541 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2542 GuardedBlock->setName("guarded"); 2543 CheckBI->getSuccessor(1)->setName("deopt"); 2544 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2545 2546 // We now have a new exit block. 2547 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2548 2549 if (MSSAU) 2550 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2551 2552 GI->moveBefore(DeoptBlockTerm); 2553 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2554 2555 // Add new successors of CheckBB into DomTree. 2556 for (auto *Succ : successors(CheckBB)) 2557 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2558 2559 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2560 // successors. 2561 for (auto *Succ : Successors) 2562 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2563 2564 // Make proper changes to DT. 2565 DT.applyUpdates(DTUpdates); 2566 // Inform LI of a new loop block. 2567 L.addBasicBlockToLoop(GuardedBlock, LI); 2568 2569 if (MSSAU) { 2570 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2571 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2572 if (VerifyMemorySSA) 2573 MSSAU->getMemorySSA()->verifyMemorySSA(); 2574 } 2575 2576 ++NumGuards; 2577 return CheckBI; 2578 } 2579 2580 /// Cost multiplier is a way to limit potentially exponential behavior 2581 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2582 /// candidates available. Also accounting for the number of "sibling" loops with 2583 /// the idea to account for previous unswitches that already happened on this 2584 /// cluster of loops. There was an attempt to keep this formula simple, 2585 /// just enough to limit the worst case behavior. Even if it is not that simple 2586 /// now it is still not an attempt to provide a detailed heuristic size 2587 /// prediction. 2588 /// 2589 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2590 /// unswitch candidates, making adequate predictions instead of wild guesses. 2591 /// That requires knowing not just the number of "remaining" candidates but 2592 /// also costs of unswitching for each of these candidates. 2593 static int CalculateUnswitchCostMultiplier( 2594 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2595 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2596 UnswitchCandidates) { 2597 2598 // Guards and other exiting conditions do not contribute to exponential 2599 // explosion as soon as they dominate the latch (otherwise there might be 2600 // another path to the latch remaining that does not allow to eliminate the 2601 // loop copy on unswitch). 2602 BasicBlock *Latch = L.getLoopLatch(); 2603 BasicBlock *CondBlock = TI.getParent(); 2604 if (DT.dominates(CondBlock, Latch) && 2605 (isGuard(&TI) || 2606 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2607 return L.contains(SuccBB); 2608 }) <= 1)) { 2609 NumCostMultiplierSkipped++; 2610 return 1; 2611 } 2612 2613 auto *ParentL = L.getParentLoop(); 2614 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2615 : std::distance(LI.begin(), LI.end())); 2616 // Count amount of clones that all the candidates might cause during 2617 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2618 int UnswitchedClones = 0; 2619 for (auto Candidate : UnswitchCandidates) { 2620 Instruction *CI = Candidate.first; 2621 BasicBlock *CondBlock = CI->getParent(); 2622 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2623 if (isGuard(CI)) { 2624 if (!SkipExitingSuccessors) 2625 UnswitchedClones++; 2626 continue; 2627 } 2628 int NonExitingSuccessors = llvm::count_if( 2629 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2630 return !SkipExitingSuccessors || L.contains(SuccBB); 2631 }); 2632 UnswitchedClones += Log2_32(NonExitingSuccessors); 2633 } 2634 2635 // Ignore up to the "unscaled candidates" number of unswitch candidates 2636 // when calculating the power-of-two scaling of the cost. The main idea 2637 // with this control is to allow a small number of unswitches to happen 2638 // and rely more on siblings multiplier (see below) when the number 2639 // of candidates is small. 2640 unsigned ClonesPower = 2641 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2642 2643 // Allowing top-level loops to spread a bit more than nested ones. 2644 int SiblingsMultiplier = 2645 std::max((ParentL ? SiblingsCount 2646 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2647 1); 2648 // Compute the cost multiplier in a way that won't overflow by saturating 2649 // at an upper bound. 2650 int CostMultiplier; 2651 if (ClonesPower > Log2_32(UnswitchThreshold) || 2652 SiblingsMultiplier > UnswitchThreshold) 2653 CostMultiplier = UnswitchThreshold; 2654 else 2655 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2656 (int)UnswitchThreshold); 2657 2658 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2659 << " (siblings " << SiblingsMultiplier << " * clones " 2660 << (1 << ClonesPower) << ")" 2661 << " for unswitch candidate: " << TI << "\n"); 2662 return CostMultiplier; 2663 } 2664 2665 static bool unswitchBestCondition( 2666 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2667 AAResults &AA, TargetTransformInfo &TTI, 2668 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 2669 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2670 // Collect all invariant conditions within this loop (as opposed to an inner 2671 // loop which would be handled when visiting that inner loop). 2672 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2673 UnswitchCandidates; 2674 2675 // Whether or not we should also collect guards in the loop. 2676 bool CollectGuards = false; 2677 if (UnswitchGuards) { 2678 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2679 Intrinsic::getName(Intrinsic::experimental_guard)); 2680 if (GuardDecl && !GuardDecl->use_empty()) 2681 CollectGuards = true; 2682 } 2683 2684 IVConditionInfo PartialIVInfo; 2685 for (auto *BB : L.blocks()) { 2686 if (LI.getLoopFor(BB) != &L) 2687 continue; 2688 2689 if (CollectGuards) 2690 for (auto &I : *BB) 2691 if (isGuard(&I)) { 2692 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2693 // TODO: Support AND, OR conditions and partial unswitching. 2694 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2695 UnswitchCandidates.push_back({&I, {Cond}}); 2696 } 2697 2698 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2699 // We can only consider fully loop-invariant switch conditions as we need 2700 // to completely eliminate the switch after unswitching. 2701 if (!isa<Constant>(SI->getCondition()) && 2702 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2703 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2704 continue; 2705 } 2706 2707 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2708 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2709 BI->getSuccessor(0) == BI->getSuccessor(1)) 2710 continue; 2711 2712 // If BI's condition is 'select _, true, false', simplify it to confuse 2713 // matchers 2714 Value *Cond = BI->getCondition(), *CondNext; 2715 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero()))) 2716 Cond = CondNext; 2717 BI->setCondition(Cond); 2718 2719 if (L.isLoopInvariant(BI->getCondition())) { 2720 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2721 continue; 2722 } 2723 2724 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2725 if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) { 2726 TinyPtrVector<Value *> Invariants = 2727 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2728 if (Invariants.empty()) 2729 continue; 2730 2731 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2732 continue; 2733 } 2734 } 2735 2736 Instruction *PartialIVCondBranch = nullptr; 2737 if (MSSAU && !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) { 2738 return TerminatorAndInvariants.first == L.getHeader()->getTerminator(); 2739 })) { 2740 MemorySSA *MSSA = MSSAU->getMemorySSA(); 2741 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) { 2742 LLVM_DEBUG( 2743 dbgs() << "simple-loop-unswitch: Found partially invariant condition " 2744 << *Info->InstToDuplicate[0] << "\n"); 2745 PartialIVInfo = *Info; 2746 PartialIVCondBranch = L.getHeader()->getTerminator(); 2747 TinyPtrVector<Value *> ValsToDuplicate; 2748 for (auto *Inst : Info->InstToDuplicate) 2749 ValsToDuplicate.push_back(Inst); 2750 UnswitchCandidates.push_back( 2751 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)}); 2752 } 2753 } 2754 2755 // If we didn't find any candidates, we're done. 2756 if (UnswitchCandidates.empty()) 2757 return false; 2758 2759 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2760 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2761 // irreducible control flow into reducible control flow and introduce new 2762 // loops "out of thin air". If we ever discover important use cases for doing 2763 // this, we can add support to loop unswitch, but it is a lot of complexity 2764 // for what seems little or no real world benefit. 2765 LoopBlocksRPO RPOT(&L); 2766 RPOT.perform(&LI); 2767 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2768 return false; 2769 2770 SmallVector<BasicBlock *, 4> ExitBlocks; 2771 L.getUniqueExitBlocks(ExitBlocks); 2772 2773 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2774 // don't know how to split those exit blocks. 2775 // FIXME: We should teach SplitBlock to handle this and remove this 2776 // restriction. 2777 for (auto *ExitBB : ExitBlocks) { 2778 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2779 LLVM_DEBUG( 2780 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"); 2781 return false; 2782 } 2783 } 2784 2785 LLVM_DEBUG( 2786 dbgs() << "Considering " << UnswitchCandidates.size() 2787 << " non-trivial loop invariant conditions for unswitching.\n"); 2788 2789 // Given that unswitching these terminators will require duplicating parts of 2790 // the loop, so we need to be able to model that cost. Compute the ephemeral 2791 // values and set up a data structure to hold per-BB costs. We cache each 2792 // block's cost so that we don't recompute this when considering different 2793 // subsets of the loop for duplication during unswitching. 2794 SmallPtrSet<const Value *, 4> EphValues; 2795 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2796 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; 2797 2798 // Compute the cost of each block, as well as the total loop cost. Also, bail 2799 // out if we see instructions which are incompatible with loop unswitching 2800 // (convergent, noduplicate, or cross-basic-block tokens). 2801 // FIXME: We might be able to safely handle some of these in non-duplicated 2802 // regions. 2803 TargetTransformInfo::TargetCostKind CostKind = 2804 L.getHeader()->getParent()->hasMinSize() 2805 ? TargetTransformInfo::TCK_CodeSize 2806 : TargetTransformInfo::TCK_SizeAndLatency; 2807 InstructionCost LoopCost = 0; 2808 for (auto *BB : L.blocks()) { 2809 InstructionCost Cost = 0; 2810 for (auto &I : *BB) { 2811 if (EphValues.count(&I)) 2812 continue; 2813 2814 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2815 return false; 2816 if (auto *CB = dyn_cast<CallBase>(&I)) 2817 if (CB->isConvergent() || CB->cannotDuplicate()) 2818 return false; 2819 2820 Cost += TTI.getUserCost(&I, CostKind); 2821 } 2822 assert(Cost >= 0 && "Must not have negative costs!"); 2823 LoopCost += Cost; 2824 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2825 BBCostMap[BB] = Cost; 2826 } 2827 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2828 2829 // Now we find the best candidate by searching for the one with the following 2830 // properties in order: 2831 // 2832 // 1) An unswitching cost below the threshold 2833 // 2) The smallest number of duplicated unswitch candidates (to avoid 2834 // creating redundant subsequent unswitching) 2835 // 3) The smallest cost after unswitching. 2836 // 2837 // We prioritize reducing fanout of unswitch candidates provided the cost 2838 // remains below the threshold because this has a multiplicative effect. 2839 // 2840 // This requires memoizing each dominator subtree to avoid redundant work. 2841 // 2842 // FIXME: Need to actually do the number of candidates part above. 2843 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; 2844 // Given a terminator which might be unswitched, computes the non-duplicated 2845 // cost for that terminator. 2846 auto ComputeUnswitchedCost = [&](Instruction &TI, 2847 bool FullUnswitch) -> InstructionCost { 2848 BasicBlock &BB = *TI.getParent(); 2849 SmallPtrSet<BasicBlock *, 4> Visited; 2850 2851 InstructionCost Cost = 0; 2852 for (BasicBlock *SuccBB : successors(&BB)) { 2853 // Don't count successors more than once. 2854 if (!Visited.insert(SuccBB).second) 2855 continue; 2856 2857 // If this is a partial unswitch candidate, then it must be a conditional 2858 // branch with a condition of either `or`, `and`, their corresponding 2859 // select forms or partially invariant instructions. In that case, one of 2860 // the successors is necessarily duplicated, so don't even try to remove 2861 // its cost. 2862 if (!FullUnswitch) { 2863 auto &BI = cast<BranchInst>(TI); 2864 if (match(BI.getCondition(), m_LogicalAnd())) { 2865 if (SuccBB == BI.getSuccessor(1)) 2866 continue; 2867 } else if (match(BI.getCondition(), m_LogicalOr())) { 2868 if (SuccBB == BI.getSuccessor(0)) 2869 continue; 2870 } else if (!PartialIVInfo.InstToDuplicate.empty()) { 2871 if (PartialIVInfo.KnownValue->isOneValue() && 2872 SuccBB == BI.getSuccessor(1)) 2873 continue; 2874 else if (!PartialIVInfo.KnownValue->isOneValue() && 2875 SuccBB == BI.getSuccessor(0)) 2876 continue; 2877 } 2878 } 2879 2880 // This successor's domtree will not need to be duplicated after 2881 // unswitching if the edge to the successor dominates it (and thus the 2882 // entire tree). This essentially means there is no other path into this 2883 // subtree and so it will end up live in only one clone of the loop. 2884 if (SuccBB->getUniquePredecessor() || 2885 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2886 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2887 })) { 2888 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2889 assert(Cost <= LoopCost && 2890 "Non-duplicated cost should never exceed total loop cost!"); 2891 } 2892 } 2893 2894 // Now scale the cost by the number of unique successors minus one. We 2895 // subtract one because there is already at least one copy of the entire 2896 // loop. This is computing the new cost of unswitching a condition. 2897 // Note that guards always have 2 unique successors that are implicit and 2898 // will be materialized if we decide to unswitch it. 2899 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2900 assert(SuccessorsCount > 1 && 2901 "Cannot unswitch a condition without multiple distinct successors!"); 2902 return (LoopCost - Cost) * (SuccessorsCount - 1); 2903 }; 2904 Instruction *BestUnswitchTI = nullptr; 2905 InstructionCost BestUnswitchCost = 0; 2906 ArrayRef<Value *> BestUnswitchInvariants; 2907 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2908 Instruction &TI = *TerminatorAndInvariants.first; 2909 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2910 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2911 InstructionCost CandidateCost = ComputeUnswitchedCost( 2912 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2913 Invariants[0] == BI->getCondition())); 2914 // Calculate cost multiplier which is a tool to limit potentially 2915 // exponential behavior of loop-unswitch. 2916 if (EnableUnswitchCostMultiplier) { 2917 int CostMultiplier = 2918 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2919 assert( 2920 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2921 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2922 CandidateCost *= CostMultiplier; 2923 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2924 << " (multiplier: " << CostMultiplier << ")" 2925 << " for unswitch candidate: " << TI << "\n"); 2926 } else { 2927 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2928 << " for unswitch candidate: " << TI << "\n"); 2929 } 2930 2931 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2932 BestUnswitchTI = &TI; 2933 BestUnswitchCost = CandidateCost; 2934 BestUnswitchInvariants = Invariants; 2935 } 2936 } 2937 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2938 2939 if (BestUnswitchCost >= UnswitchThreshold) { 2940 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2941 << BestUnswitchCost << "\n"); 2942 return false; 2943 } 2944 2945 if (BestUnswitchTI != PartialIVCondBranch) 2946 PartialIVInfo.InstToDuplicate.clear(); 2947 2948 // If the best candidate is a guard, turn it into a branch. 2949 if (isGuard(BestUnswitchTI)) 2950 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2951 ExitBlocks, DT, LI, MSSAU); 2952 2953 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2954 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2955 << "\n"); 2956 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2957 ExitBlocks, PartialIVInfo, DT, LI, AC, 2958 UnswitchCB, SE, MSSAU); 2959 return true; 2960 } 2961 2962 /// Unswitch control flow predicated on loop invariant conditions. 2963 /// 2964 /// This first hoists all branches or switches which are trivial (IE, do not 2965 /// require duplicating any part of the loop) out of the loop body. It then 2966 /// looks at other loop invariant control flows and tries to unswitch those as 2967 /// well by cloning the loop if the result is small enough. 2968 /// 2969 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are 2970 /// also updated based on the unswitch. The `MSSA` analysis is also updated if 2971 /// valid (i.e. its use is enabled). 2972 /// 2973 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2974 /// true, we will attempt to do non-trivial unswitching as well as trivial 2975 /// unswitching. 2976 /// 2977 /// The `UnswitchCB` callback provided will be run after unswitching is 2978 /// complete, with the first parameter set to `true` if the provided loop 2979 /// remains a loop, and a list of new sibling loops created. 2980 /// 2981 /// If `SE` is non-null, we will update that analysis based on the unswitching 2982 /// done. 2983 static bool 2984 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2985 AAResults &AA, TargetTransformInfo &TTI, bool NonTrivial, 2986 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 2987 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2988 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2989 "Loops must be in LCSSA form before unswitching."); 2990 2991 // Must be in loop simplified form: we need a preheader and dedicated exits. 2992 if (!L.isLoopSimplifyForm()) 2993 return false; 2994 2995 // Try trivial unswitch first before loop over other basic blocks in the loop. 2996 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2997 // If we unswitched successfully we will want to clean up the loop before 2998 // processing it further so just mark it as unswitched and return. 2999 UnswitchCB(/*CurrentLoopValid*/ true, false, {}); 3000 return true; 3001 } 3002 3003 // Check whether we should continue with non-trivial conditions. 3004 // EnableNonTrivialUnswitch: Global variable that forces non-trivial 3005 // unswitching for testing and debugging. 3006 // NonTrivial: Parameter that enables non-trivial unswitching for this 3007 // invocation of the transform. But this should be allowed only 3008 // for targets without branch divergence. 3009 // 3010 // FIXME: If divergence analysis becomes available to a loop 3011 // transform, we should allow unswitching for non-trivial uniform 3012 // branches even on targets that have divergence. 3013 // https://bugs.llvm.org/show_bug.cgi?id=48819 3014 bool ContinueWithNonTrivial = 3015 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence()); 3016 if (!ContinueWithNonTrivial) 3017 return false; 3018 3019 // Skip non-trivial unswitching for optsize functions. 3020 if (L.getHeader()->getParent()->hasOptSize()) 3021 return false; 3022 3023 // Skip non-trivial unswitching for loops that cannot be cloned. 3024 if (!L.isSafeToClone()) 3025 return false; 3026 3027 // For non-trivial unswitching, because it often creates new loops, we rely on 3028 // the pass manager to iterate on the loops rather than trying to immediately 3029 // reach a fixed point. There is no substantial advantage to iterating 3030 // internally, and if any of the new loops are simplified enough to contain 3031 // trivial unswitching we want to prefer those. 3032 3033 // Try to unswitch the best invariant condition. We prefer this full unswitch to 3034 // a partial unswitch when possible below the threshold. 3035 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU)) 3036 return true; 3037 3038 // No other opportunities to unswitch. 3039 return false; 3040 } 3041 3042 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 3043 LoopStandardAnalysisResults &AR, 3044 LPMUpdater &U) { 3045 Function &F = *L.getHeader()->getParent(); 3046 (void)F; 3047 3048 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 3049 << "\n"); 3050 3051 // Save the current loop name in a variable so that we can report it even 3052 // after it has been deleted. 3053 std::string LoopName = std::string(L.getName()); 3054 3055 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 3056 bool PartiallyInvariant, 3057 ArrayRef<Loop *> NewLoops) { 3058 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3059 if (!NewLoops.empty()) 3060 U.addSiblingLoops(NewLoops); 3061 3062 // If the current loop remains valid, we should revisit it to catch any 3063 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 3064 if (CurrentLoopValid) { 3065 if (!PartiallyInvariant) 3066 U.revisitCurrentLoop(); 3067 } else 3068 U.markLoopAsDeleted(L, LoopName); 3069 }; 3070 3071 Optional<MemorySSAUpdater> MSSAU; 3072 if (AR.MSSA) { 3073 MSSAU = MemorySSAUpdater(AR.MSSA); 3074 if (VerifyMemorySSA) 3075 AR.MSSA->verifyMemorySSA(); 3076 } 3077 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, NonTrivial, 3078 UnswitchCB, &AR.SE, 3079 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 3080 return PreservedAnalyses::all(); 3081 3082 if (AR.MSSA && VerifyMemorySSA) 3083 AR.MSSA->verifyMemorySSA(); 3084 3085 // Historically this pass has had issues with the dominator tree so verify it 3086 // in asserts builds. 3087 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 3088 3089 auto PA = getLoopPassPreservedAnalyses(); 3090 if (AR.MSSA) 3091 PA.preserve<MemorySSAAnalysis>(); 3092 return PA; 3093 } 3094 3095 namespace { 3096 3097 class SimpleLoopUnswitchLegacyPass : public LoopPass { 3098 bool NonTrivial; 3099 3100 public: 3101 static char ID; // Pass ID, replacement for typeid 3102 3103 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 3104 : LoopPass(ID), NonTrivial(NonTrivial) { 3105 initializeSimpleLoopUnswitchLegacyPassPass( 3106 *PassRegistry::getPassRegistry()); 3107 } 3108 3109 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 3110 3111 void getAnalysisUsage(AnalysisUsage &AU) const override { 3112 AU.addRequired<AssumptionCacheTracker>(); 3113 AU.addRequired<TargetTransformInfoWrapperPass>(); 3114 if (EnableMSSALoopDependency) { 3115 AU.addRequired<MemorySSAWrapperPass>(); 3116 AU.addPreserved<MemorySSAWrapperPass>(); 3117 } 3118 getLoopAnalysisUsage(AU); 3119 } 3120 }; 3121 3122 } // end anonymous namespace 3123 3124 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 3125 if (skipLoop(L)) 3126 return false; 3127 3128 Function &F = *L->getHeader()->getParent(); 3129 3130 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3131 << "\n"); 3132 3133 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3134 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3135 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3136 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 3137 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3138 MemorySSA *MSSA = nullptr; 3139 Optional<MemorySSAUpdater> MSSAU; 3140 if (EnableMSSALoopDependency) { 3141 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3142 MSSAU = MemorySSAUpdater(MSSA); 3143 } 3144 3145 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 3146 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 3147 3148 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant, 3149 ArrayRef<Loop *> NewLoops) { 3150 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3151 for (auto *NewL : NewLoops) 3152 LPM.addLoop(*NewL); 3153 3154 // If the current loop remains valid, re-add it to the queue. This is 3155 // a little wasteful as we'll finish processing the current loop as well, 3156 // but it is the best we can do in the old PM. 3157 if (CurrentLoopValid) { 3158 // If the current loop has been unswitched using a partially invariant 3159 // condition, we should not re-add the current loop to avoid unswitching 3160 // on the same condition again. 3161 if (!PartiallyInvariant) 3162 LPM.addLoop(*L); 3163 } else 3164 LPM.markLoopAsDeleted(*L); 3165 }; 3166 3167 if (MSSA && VerifyMemorySSA) 3168 MSSA->verifyMemorySSA(); 3169 3170 bool Changed = 3171 unswitchLoop(*L, DT, LI, AC, AA, TTI, NonTrivial, UnswitchCB, SE, 3172 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 3173 3174 if (MSSA && VerifyMemorySSA) 3175 MSSA->verifyMemorySSA(); 3176 3177 // Historically this pass has had issues with the dominator tree so verify it 3178 // in asserts builds. 3179 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3180 3181 return Changed; 3182 } 3183 3184 char SimpleLoopUnswitchLegacyPass::ID = 0; 3185 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3186 "Simple unswitch loops", false, false) 3187 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3188 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3189 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3190 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3191 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3192 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3193 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3194 "Simple unswitch loops", false, false) 3195 3196 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3197 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3198 } 3199