xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision 88b259c01463c08ac2575b4432c07ea7751946b5)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/GenericDomTree.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54 #include "llvm/Transforms/Utils/Cloning.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Transforms/Utils/LoopUtils.h"
57 #include "llvm/Transforms/Utils/ValueMapper.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <numeric>
62 #include <utility>
63 
64 #define DEBUG_TYPE "simple-loop-unswitch"
65 
66 using namespace llvm;
67 using namespace llvm::PatternMatch;
68 
69 STATISTIC(NumBranches, "Number of branches unswitched");
70 STATISTIC(NumSwitches, "Number of switches unswitched");
71 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
72 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
73 STATISTIC(
74     NumCostMultiplierSkipped,
75     "Number of unswitch candidates that had their cost multiplier skipped");
76 
77 static cl::opt<bool> EnableNonTrivialUnswitch(
78     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
79     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
80              "following the configuration passed into the pass."));
81 
82 static cl::opt<int>
83     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
84                       cl::desc("The cost threshold for unswitching a loop."));
85 
86 static cl::opt<bool> EnableUnswitchCostMultiplier(
87     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
88     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
89              "explosion in nontrivial unswitch."));
90 static cl::opt<int> UnswitchSiblingsToplevelDiv(
91     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
92     cl::desc("Toplevel siblings divisor for cost multiplier."));
93 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
94     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
95     cl::desc("Number of unswitch candidates that are ignored when calculating "
96              "cost multiplier."));
97 static cl::opt<bool> UnswitchGuards(
98     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
99     cl::desc("If enabled, simple loop unswitching will also consider "
100              "llvm.experimental.guard intrinsics as unswitch candidates."));
101 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
102     "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
103     cl::init(false), cl::Hidden,
104     cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
105              "null checks to save time analyzing if we can keep it."));
106 static cl::opt<unsigned>
107     MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
108                   cl::desc("Max number of memory uses to explore during "
109                            "partial unswitching analysis"),
110                   cl::init(100), cl::Hidden);
111 
112 /// Collect all of the loop invariant input values transitively used by the
113 /// homogeneous instruction graph from a given root.
114 ///
115 /// This essentially walks from a root recursively through loop variant operands
116 /// which have the exact same opcode and finds all inputs which are loop
117 /// invariant. For some operations these can be re-associated and unswitched out
118 /// of the loop entirely.
119 static TinyPtrVector<Value *>
120 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
121                                          LoopInfo &LI) {
122   assert(!L.isLoopInvariant(&Root) &&
123          "Only need to walk the graph if root itself is not invariant.");
124   TinyPtrVector<Value *> Invariants;
125 
126   bool IsRootAnd = match(&Root, m_LogicalAnd());
127   bool IsRootOr  = match(&Root, m_LogicalOr());
128 
129   // Build a worklist and recurse through operators collecting invariants.
130   SmallVector<Instruction *, 4> Worklist;
131   SmallPtrSet<Instruction *, 8> Visited;
132   Worklist.push_back(&Root);
133   Visited.insert(&Root);
134   do {
135     Instruction &I = *Worklist.pop_back_val();
136     for (Value *OpV : I.operand_values()) {
137       // Skip constants as unswitching isn't interesting for them.
138       if (isa<Constant>(OpV))
139         continue;
140 
141       // Add it to our result if loop invariant.
142       if (L.isLoopInvariant(OpV)) {
143         Invariants.push_back(OpV);
144         continue;
145       }
146 
147       // If not an instruction with the same opcode, nothing we can do.
148       Instruction *OpI = dyn_cast<Instruction>(OpV);
149 
150       if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
151                   (IsRootOr  && match(OpI, m_LogicalOr())))) {
152         // Visit this operand.
153         if (Visited.insert(OpI).second)
154           Worklist.push_back(OpI);
155       }
156     }
157   } while (!Worklist.empty());
158 
159   return Invariants;
160 }
161 
162 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
163                                      Constant &Replacement) {
164   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
165 
166   // Replace uses of LIC in the loop with the given constant.
167   // We use make_early_inc_range as set invalidates the iterator.
168   for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
169     Instruction *UserI = dyn_cast<Instruction>(U.getUser());
170 
171     // Replace this use within the loop body.
172     if (UserI && L.contains(UserI))
173       U.set(&Replacement);
174   }
175 }
176 
177 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
178 /// incoming values along this edge.
179 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
180                                          BasicBlock &ExitBB) {
181   for (Instruction &I : ExitBB) {
182     auto *PN = dyn_cast<PHINode>(&I);
183     if (!PN)
184       // No more PHIs to check.
185       return true;
186 
187     // If the incoming value for this edge isn't loop invariant the unswitch
188     // won't be trivial.
189     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
190       return false;
191   }
192   llvm_unreachable("Basic blocks should never be empty!");
193 }
194 
195 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
196 /// end of \p BB and conditionally branch on the copied condition. We only
197 /// branch on a single value.
198 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
199                                                   ArrayRef<Value *> Invariants,
200                                                   bool Direction,
201                                                   BasicBlock &UnswitchedSucc,
202                                                   BasicBlock &NormalSucc) {
203   IRBuilder<> IRB(&BB);
204 
205   Value *Cond = Direction ? IRB.CreateOr(Invariants) :
206     IRB.CreateAnd(Invariants);
207   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
208                    Direction ? &NormalSucc : &UnswitchedSucc);
209 }
210 
211 /// Copy a set of loop invariant values, and conditionally branch on them.
212 static void buildPartialInvariantUnswitchConditionalBranch(
213     BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
214     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
215     MemorySSAUpdater *MSSAU) {
216   ValueToValueMapTy VMap;
217   for (auto *Val : reverse(ToDuplicate)) {
218     Instruction *Inst = cast<Instruction>(Val);
219     Instruction *NewInst = Inst->clone();
220     BB.getInstList().insert(BB.end(), NewInst);
221     RemapInstruction(NewInst, VMap,
222                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
223     VMap[Val] = NewInst;
224 
225     if (!MSSAU)
226       continue;
227 
228     MemorySSA *MSSA = MSSAU->getMemorySSA();
229     if (auto *MemUse =
230             dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
231       auto *DefiningAccess = MemUse->getDefiningAccess();
232       // Get the first defining access before the loop.
233       while (L.contains(DefiningAccess->getBlock())) {
234         // If the defining access is a MemoryPhi, get the incoming
235         // value for the pre-header as defining access.
236         if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
237           DefiningAccess =
238               MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
239         else
240           DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
241       }
242       MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
243                                     NewInst->getParent(),
244                                     MemorySSA::BeforeTerminator);
245     }
246   }
247 
248   IRBuilder<> IRB(&BB);
249   Value *Cond = VMap[ToDuplicate[0]];
250   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
251                    Direction ? &NormalSucc : &UnswitchedSucc);
252 }
253 
254 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
255 ///
256 /// Requires that the loop exit and unswitched basic block are the same, and
257 /// that the exiting block was a unique predecessor of that block. Rewrites the
258 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
259 /// PHI nodes from the old preheader that now contains the unswitched
260 /// terminator.
261 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
262                                                   BasicBlock &OldExitingBB,
263                                                   BasicBlock &OldPH) {
264   for (PHINode &PN : UnswitchedBB.phis()) {
265     // When the loop exit is directly unswitched we just need to update the
266     // incoming basic block. We loop to handle weird cases with repeated
267     // incoming blocks, but expect to typically only have one operand here.
268     for (auto i : seq<int>(0, PN.getNumOperands())) {
269       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
270              "Found incoming block different from unique predecessor!");
271       PN.setIncomingBlock(i, &OldPH);
272     }
273   }
274 }
275 
276 /// Rewrite the PHI nodes in the loop exit basic block and the split off
277 /// unswitched block.
278 ///
279 /// Because the exit block remains an exit from the loop, this rewrites the
280 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
281 /// nodes into the unswitched basic block to select between the value in the
282 /// old preheader and the loop exit.
283 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
284                                                       BasicBlock &UnswitchedBB,
285                                                       BasicBlock &OldExitingBB,
286                                                       BasicBlock &OldPH,
287                                                       bool FullUnswitch) {
288   assert(&ExitBB != &UnswitchedBB &&
289          "Must have different loop exit and unswitched blocks!");
290   Instruction *InsertPt = &*UnswitchedBB.begin();
291   for (PHINode &PN : ExitBB.phis()) {
292     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
293                                   PN.getName() + ".split", InsertPt);
294 
295     // Walk backwards over the old PHI node's inputs to minimize the cost of
296     // removing each one. We have to do this weird loop manually so that we
297     // create the same number of new incoming edges in the new PHI as we expect
298     // each case-based edge to be included in the unswitched switch in some
299     // cases.
300     // FIXME: This is really, really gross. It would be much cleaner if LLVM
301     // allowed us to create a single entry for a predecessor block without
302     // having separate entries for each "edge" even though these edges are
303     // required to produce identical results.
304     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
305       if (PN.getIncomingBlock(i) != &OldExitingBB)
306         continue;
307 
308       Value *Incoming = PN.getIncomingValue(i);
309       if (FullUnswitch)
310         // No more edge from the old exiting block to the exit block.
311         PN.removeIncomingValue(i);
312 
313       NewPN->addIncoming(Incoming, &OldPH);
314     }
315 
316     // Now replace the old PHI with the new one and wire the old one in as an
317     // input to the new one.
318     PN.replaceAllUsesWith(NewPN);
319     NewPN->addIncoming(&PN, &ExitBB);
320   }
321 }
322 
323 /// Hoist the current loop up to the innermost loop containing a remaining exit.
324 ///
325 /// Because we've removed an exit from the loop, we may have changed the set of
326 /// loops reachable and need to move the current loop up the loop nest or even
327 /// to an entirely separate nest.
328 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
329                                  DominatorTree &DT, LoopInfo &LI,
330                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
331   // If the loop is already at the top level, we can't hoist it anywhere.
332   Loop *OldParentL = L.getParentLoop();
333   if (!OldParentL)
334     return;
335 
336   SmallVector<BasicBlock *, 4> Exits;
337   L.getExitBlocks(Exits);
338   Loop *NewParentL = nullptr;
339   for (auto *ExitBB : Exits)
340     if (Loop *ExitL = LI.getLoopFor(ExitBB))
341       if (!NewParentL || NewParentL->contains(ExitL))
342         NewParentL = ExitL;
343 
344   if (NewParentL == OldParentL)
345     return;
346 
347   // The new parent loop (if different) should always contain the old one.
348   if (NewParentL)
349     assert(NewParentL->contains(OldParentL) &&
350            "Can only hoist this loop up the nest!");
351 
352   // The preheader will need to move with the body of this loop. However,
353   // because it isn't in this loop we also need to update the primary loop map.
354   assert(OldParentL == LI.getLoopFor(&Preheader) &&
355          "Parent loop of this loop should contain this loop's preheader!");
356   LI.changeLoopFor(&Preheader, NewParentL);
357 
358   // Remove this loop from its old parent.
359   OldParentL->removeChildLoop(&L);
360 
361   // Add the loop either to the new parent or as a top-level loop.
362   if (NewParentL)
363     NewParentL->addChildLoop(&L);
364   else
365     LI.addTopLevelLoop(&L);
366 
367   // Remove this loops blocks from the old parent and every other loop up the
368   // nest until reaching the new parent. Also update all of these
369   // no-longer-containing loops to reflect the nesting change.
370   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
371        OldContainingL = OldContainingL->getParentLoop()) {
372     llvm::erase_if(OldContainingL->getBlocksVector(),
373                    [&](const BasicBlock *BB) {
374                      return BB == &Preheader || L.contains(BB);
375                    });
376 
377     OldContainingL->getBlocksSet().erase(&Preheader);
378     for (BasicBlock *BB : L.blocks())
379       OldContainingL->getBlocksSet().erase(BB);
380 
381     // Because we just hoisted a loop out of this one, we have essentially
382     // created new exit paths from it. That means we need to form LCSSA PHI
383     // nodes for values used in the no-longer-nested loop.
384     formLCSSA(*OldContainingL, DT, &LI, SE);
385 
386     // We shouldn't need to form dedicated exits because the exit introduced
387     // here is the (just split by unswitching) preheader. However, after trivial
388     // unswitching it is possible to get new non-dedicated exits out of parent
389     // loop so let's conservatively form dedicated exit blocks and figure out
390     // if we can optimize later.
391     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
392                             /*PreserveLCSSA*/ true);
393   }
394 }
395 
396 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
397 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
398 // as exiting block.
399 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
400   Loop *TopMost = LI.getLoopFor(ExitBB);
401   Loop *Current = TopMost;
402   while (Current) {
403     if (Current->isLoopExiting(ExitBB))
404       TopMost = Current;
405     Current = Current->getParentLoop();
406   }
407   return TopMost;
408 }
409 
410 /// Unswitch a trivial branch if the condition is loop invariant.
411 ///
412 /// This routine should only be called when loop code leading to the branch has
413 /// been validated as trivial (no side effects). This routine checks if the
414 /// condition is invariant and one of the successors is a loop exit. This
415 /// allows us to unswitch without duplicating the loop, making it trivial.
416 ///
417 /// If this routine fails to unswitch the branch it returns false.
418 ///
419 /// If the branch can be unswitched, this routine splits the preheader and
420 /// hoists the branch above that split. Preserves loop simplified form
421 /// (splitting the exit block as necessary). It simplifies the branch within
422 /// the loop to an unconditional branch but doesn't remove it entirely. Further
423 /// cleanup can be done with some simplify-cfg like pass.
424 ///
425 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
426 /// invalidated by this.
427 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
428                                   LoopInfo &LI, ScalarEvolution *SE,
429                                   MemorySSAUpdater *MSSAU) {
430   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
431   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
432 
433   // The loop invariant values that we want to unswitch.
434   TinyPtrVector<Value *> Invariants;
435 
436   // When true, we're fully unswitching the branch rather than just unswitching
437   // some input conditions to the branch.
438   bool FullUnswitch = false;
439 
440   if (L.isLoopInvariant(BI.getCondition())) {
441     Invariants.push_back(BI.getCondition());
442     FullUnswitch = true;
443   } else {
444     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
445       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
446     if (Invariants.empty())
447       // Couldn't find invariant inputs!
448       return false;
449   }
450 
451   // Check that one of the branch's successors exits, and which one.
452   bool ExitDirection = true;
453   int LoopExitSuccIdx = 0;
454   auto *LoopExitBB = BI.getSuccessor(0);
455   if (L.contains(LoopExitBB)) {
456     ExitDirection = false;
457     LoopExitSuccIdx = 1;
458     LoopExitBB = BI.getSuccessor(1);
459     if (L.contains(LoopExitBB))
460       return false;
461   }
462   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
463   auto *ParentBB = BI.getParent();
464   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
465     return false;
466 
467   // When unswitching only part of the branch's condition, we need the exit
468   // block to be reached directly from the partially unswitched input. This can
469   // be done when the exit block is along the true edge and the branch condition
470   // is a graph of `or` operations, or the exit block is along the false edge
471   // and the condition is a graph of `and` operations.
472   if (!FullUnswitch) {
473     if (ExitDirection) {
474       if (!match(BI.getCondition(), m_LogicalOr()))
475         return false;
476     } else {
477       if (!match(BI.getCondition(), m_LogicalAnd()))
478         return false;
479     }
480   }
481 
482   LLVM_DEBUG({
483     dbgs() << "    unswitching trivial invariant conditions for: " << BI
484            << "\n";
485     for (Value *Invariant : Invariants) {
486       dbgs() << "      " << *Invariant << " == true";
487       if (Invariant != Invariants.back())
488         dbgs() << " ||";
489       dbgs() << "\n";
490     }
491   });
492 
493   // If we have scalar evolutions, we need to invalidate them including this
494   // loop, the loop containing the exit block and the topmost parent loop
495   // exiting via LoopExitBB.
496   if (SE) {
497     if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
498       SE->forgetLoop(ExitL);
499     else
500       // Forget the entire nest as this exits the entire nest.
501       SE->forgetTopmostLoop(&L);
502   }
503 
504   if (MSSAU && VerifyMemorySSA)
505     MSSAU->getMemorySSA()->verifyMemorySSA();
506 
507   // Split the preheader, so that we know that there is a safe place to insert
508   // the conditional branch. We will change the preheader to have a conditional
509   // branch on LoopCond.
510   BasicBlock *OldPH = L.getLoopPreheader();
511   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
512 
513   // Now that we have a place to insert the conditional branch, create a place
514   // to branch to: this is the exit block out of the loop that we are
515   // unswitching. We need to split this if there are other loop predecessors.
516   // Because the loop is in simplified form, *any* other predecessor is enough.
517   BasicBlock *UnswitchedBB;
518   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
519     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
520            "A branch's parent isn't a predecessor!");
521     UnswitchedBB = LoopExitBB;
522   } else {
523     UnswitchedBB =
524         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
525   }
526 
527   if (MSSAU && VerifyMemorySSA)
528     MSSAU->getMemorySSA()->verifyMemorySSA();
529 
530   // Actually move the invariant uses into the unswitched position. If possible,
531   // we do this by moving the instructions, but when doing partial unswitching
532   // we do it by building a new merge of the values in the unswitched position.
533   OldPH->getTerminator()->eraseFromParent();
534   if (FullUnswitch) {
535     // If fully unswitching, we can use the existing branch instruction.
536     // Splice it into the old PH to gate reaching the new preheader and re-point
537     // its successors.
538     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
539                                 BI);
540     if (MSSAU) {
541       // Temporarily clone the terminator, to make MSSA update cheaper by
542       // separating "insert edge" updates from "remove edge" ones.
543       ParentBB->getInstList().push_back(BI.clone());
544     } else {
545       // Create a new unconditional branch that will continue the loop as a new
546       // terminator.
547       BranchInst::Create(ContinueBB, ParentBB);
548     }
549     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
550     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
551   } else {
552     // Only unswitching a subset of inputs to the condition, so we will need to
553     // build a new branch that merges the invariant inputs.
554     if (ExitDirection)
555       assert(match(BI.getCondition(), m_LogicalOr()) &&
556              "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
557              "condition!");
558     else
559       assert(match(BI.getCondition(), m_LogicalAnd()) &&
560              "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
561              " condition!");
562     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
563                                           *UnswitchedBB, *NewPH);
564   }
565 
566   // Update the dominator tree with the added edge.
567   DT.insertEdge(OldPH, UnswitchedBB);
568 
569   // After the dominator tree was updated with the added edge, update MemorySSA
570   // if available.
571   if (MSSAU) {
572     SmallVector<CFGUpdate, 1> Updates;
573     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
574     MSSAU->applyInsertUpdates(Updates, DT);
575   }
576 
577   // Finish updating dominator tree and memory ssa for full unswitch.
578   if (FullUnswitch) {
579     if (MSSAU) {
580       // Remove the cloned branch instruction.
581       ParentBB->getTerminator()->eraseFromParent();
582       // Create unconditional branch now.
583       BranchInst::Create(ContinueBB, ParentBB);
584       MSSAU->removeEdge(ParentBB, LoopExitBB);
585     }
586     DT.deleteEdge(ParentBB, LoopExitBB);
587   }
588 
589   if (MSSAU && VerifyMemorySSA)
590     MSSAU->getMemorySSA()->verifyMemorySSA();
591 
592   // Rewrite the relevant PHI nodes.
593   if (UnswitchedBB == LoopExitBB)
594     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
595   else
596     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
597                                               *ParentBB, *OldPH, FullUnswitch);
598 
599   // The constant we can replace all of our invariants with inside the loop
600   // body. If any of the invariants have a value other than this the loop won't
601   // be entered.
602   ConstantInt *Replacement = ExitDirection
603                                  ? ConstantInt::getFalse(BI.getContext())
604                                  : ConstantInt::getTrue(BI.getContext());
605 
606   // Since this is an i1 condition we can also trivially replace uses of it
607   // within the loop with a constant.
608   for (Value *Invariant : Invariants)
609     replaceLoopInvariantUses(L, Invariant, *Replacement);
610 
611   // If this was full unswitching, we may have changed the nesting relationship
612   // for this loop so hoist it to its correct parent if needed.
613   if (FullUnswitch)
614     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
615 
616   if (MSSAU && VerifyMemorySSA)
617     MSSAU->getMemorySSA()->verifyMemorySSA();
618 
619   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
620   ++NumTrivial;
621   ++NumBranches;
622   return true;
623 }
624 
625 /// Unswitch a trivial switch if the condition is loop invariant.
626 ///
627 /// This routine should only be called when loop code leading to the switch has
628 /// been validated as trivial (no side effects). This routine checks if the
629 /// condition is invariant and that at least one of the successors is a loop
630 /// exit. This allows us to unswitch without duplicating the loop, making it
631 /// trivial.
632 ///
633 /// If this routine fails to unswitch the switch it returns false.
634 ///
635 /// If the switch can be unswitched, this routine splits the preheader and
636 /// copies the switch above that split. If the default case is one of the
637 /// exiting cases, it copies the non-exiting cases and points them at the new
638 /// preheader. If the default case is not exiting, it copies the exiting cases
639 /// and points the default at the preheader. It preserves loop simplified form
640 /// (splitting the exit blocks as necessary). It simplifies the switch within
641 /// the loop by removing now-dead cases. If the default case is one of those
642 /// unswitched, it replaces its destination with a new basic block containing
643 /// only unreachable. Such basic blocks, while technically loop exits, are not
644 /// considered for unswitching so this is a stable transform and the same
645 /// switch will not be revisited. If after unswitching there is only a single
646 /// in-loop successor, the switch is further simplified to an unconditional
647 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
648 ///
649 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
650 /// invalidated by this.
651 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
652                                   LoopInfo &LI, ScalarEvolution *SE,
653                                   MemorySSAUpdater *MSSAU) {
654   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
655   Value *LoopCond = SI.getCondition();
656 
657   // If this isn't switching on an invariant condition, we can't unswitch it.
658   if (!L.isLoopInvariant(LoopCond))
659     return false;
660 
661   auto *ParentBB = SI.getParent();
662 
663   // The same check must be used both for the default and the exit cases. We
664   // should never leave edges from the switch instruction to a basic block that
665   // we are unswitching, hence the condition used to determine the default case
666   // needs to also be used to populate ExitCaseIndices, which is then used to
667   // remove cases from the switch.
668   auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
669     // BBToCheck is not an exit block if it is inside loop L.
670     if (L.contains(&BBToCheck))
671       return false;
672     // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
673     if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
674       return false;
675     // We do not unswitch a block that only has an unreachable statement, as
676     // it's possible this is a previously unswitched block. Only unswitch if
677     // either the terminator is not unreachable, or, if it is, it's not the only
678     // instruction in the block.
679     auto *TI = BBToCheck.getTerminator();
680     bool isUnreachable = isa<UnreachableInst>(TI);
681     return !isUnreachable ||
682            (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
683   };
684 
685   SmallVector<int, 4> ExitCaseIndices;
686   for (auto Case : SI.cases())
687     if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
688       ExitCaseIndices.push_back(Case.getCaseIndex());
689   BasicBlock *DefaultExitBB = nullptr;
690   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
691       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
692   if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
693     DefaultExitBB = SI.getDefaultDest();
694   } else if (ExitCaseIndices.empty())
695     return false;
696 
697   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
698 
699   if (MSSAU && VerifyMemorySSA)
700     MSSAU->getMemorySSA()->verifyMemorySSA();
701 
702   // We may need to invalidate SCEVs for the outermost loop reached by any of
703   // the exits.
704   Loop *OuterL = &L;
705 
706   if (DefaultExitBB) {
707     // Clear out the default destination temporarily to allow accurate
708     // predecessor lists to be examined below.
709     SI.setDefaultDest(nullptr);
710     // Check the loop containing this exit.
711     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
712     if (!ExitL || ExitL->contains(OuterL))
713       OuterL = ExitL;
714   }
715 
716   // Store the exit cases into a separate data structure and remove them from
717   // the switch.
718   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
719                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
720               4> ExitCases;
721   ExitCases.reserve(ExitCaseIndices.size());
722   SwitchInstProfUpdateWrapper SIW(SI);
723   // We walk the case indices backwards so that we remove the last case first
724   // and don't disrupt the earlier indices.
725   for (unsigned Index : reverse(ExitCaseIndices)) {
726     auto CaseI = SI.case_begin() + Index;
727     // Compute the outer loop from this exit.
728     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
729     if (!ExitL || ExitL->contains(OuterL))
730       OuterL = ExitL;
731     // Save the value of this case.
732     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
733     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
734     // Delete the unswitched cases.
735     SIW.removeCase(CaseI);
736   }
737 
738   if (SE) {
739     if (OuterL)
740       SE->forgetLoop(OuterL);
741     else
742       SE->forgetTopmostLoop(&L);
743   }
744 
745   // Check if after this all of the remaining cases point at the same
746   // successor.
747   BasicBlock *CommonSuccBB = nullptr;
748   if (SI.getNumCases() > 0 &&
749       all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
750         return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
751       }))
752     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
753   if (!DefaultExitBB) {
754     // If we're not unswitching the default, we need it to match any cases to
755     // have a common successor or if we have no cases it is the common
756     // successor.
757     if (SI.getNumCases() == 0)
758       CommonSuccBB = SI.getDefaultDest();
759     else if (SI.getDefaultDest() != CommonSuccBB)
760       CommonSuccBB = nullptr;
761   }
762 
763   // Split the preheader, so that we know that there is a safe place to insert
764   // the switch.
765   BasicBlock *OldPH = L.getLoopPreheader();
766   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
767   OldPH->getTerminator()->eraseFromParent();
768 
769   // Now add the unswitched switch.
770   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
771   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
772 
773   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
774   // First, we split any exit blocks with remaining in-loop predecessors. Then
775   // we update the PHIs in one of two ways depending on if there was a split.
776   // We walk in reverse so that we split in the same order as the cases
777   // appeared. This is purely for convenience of reading the resulting IR, but
778   // it doesn't cost anything really.
779   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
780   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
781   // Handle the default exit if necessary.
782   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
783   // ranges aren't quite powerful enough yet.
784   if (DefaultExitBB) {
785     if (pred_empty(DefaultExitBB)) {
786       UnswitchedExitBBs.insert(DefaultExitBB);
787       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
788     } else {
789       auto *SplitBB =
790           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
791       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
792                                                 *ParentBB, *OldPH,
793                                                 /*FullUnswitch*/ true);
794       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
795     }
796   }
797   // Note that we must use a reference in the for loop so that we update the
798   // container.
799   for (auto &ExitCase : reverse(ExitCases)) {
800     // Grab a reference to the exit block in the pair so that we can update it.
801     BasicBlock *ExitBB = std::get<1>(ExitCase);
802 
803     // If this case is the last edge into the exit block, we can simply reuse it
804     // as it will no longer be a loop exit. No mapping necessary.
805     if (pred_empty(ExitBB)) {
806       // Only rewrite once.
807       if (UnswitchedExitBBs.insert(ExitBB).second)
808         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
809       continue;
810     }
811 
812     // Otherwise we need to split the exit block so that we retain an exit
813     // block from the loop and a target for the unswitched condition.
814     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
815     if (!SplitExitBB) {
816       // If this is the first time we see this, do the split and remember it.
817       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
818       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
819                                                 *ParentBB, *OldPH,
820                                                 /*FullUnswitch*/ true);
821     }
822     // Update the case pair to point to the split block.
823     std::get<1>(ExitCase) = SplitExitBB;
824   }
825 
826   // Now add the unswitched cases. We do this in reverse order as we built them
827   // in reverse order.
828   for (auto &ExitCase : reverse(ExitCases)) {
829     ConstantInt *CaseVal = std::get<0>(ExitCase);
830     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
831 
832     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
833   }
834 
835   // If the default was unswitched, re-point it and add explicit cases for
836   // entering the loop.
837   if (DefaultExitBB) {
838     NewSIW->setDefaultDest(DefaultExitBB);
839     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
840 
841     // We removed all the exit cases, so we just copy the cases to the
842     // unswitched switch.
843     for (const auto &Case : SI.cases())
844       NewSIW.addCase(Case.getCaseValue(), NewPH,
845                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
846   } else if (DefaultCaseWeight) {
847     // We have to set branch weight of the default case.
848     uint64_t SW = *DefaultCaseWeight;
849     for (const auto &Case : SI.cases()) {
850       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
851       assert(W &&
852              "case weight must be defined as default case weight is defined");
853       SW += *W;
854     }
855     NewSIW.setSuccessorWeight(0, SW);
856   }
857 
858   // If we ended up with a common successor for every path through the switch
859   // after unswitching, rewrite it to an unconditional branch to make it easy
860   // to recognize. Otherwise we potentially have to recognize the default case
861   // pointing at unreachable and other complexity.
862   if (CommonSuccBB) {
863     BasicBlock *BB = SI.getParent();
864     // We may have had multiple edges to this common successor block, so remove
865     // them as predecessors. We skip the first one, either the default or the
866     // actual first case.
867     bool SkippedFirst = DefaultExitBB == nullptr;
868     for (auto Case : SI.cases()) {
869       assert(Case.getCaseSuccessor() == CommonSuccBB &&
870              "Non-common successor!");
871       (void)Case;
872       if (!SkippedFirst) {
873         SkippedFirst = true;
874         continue;
875       }
876       CommonSuccBB->removePredecessor(BB,
877                                       /*KeepOneInputPHIs*/ true);
878     }
879     // Now nuke the switch and replace it with a direct branch.
880     SIW.eraseFromParent();
881     BranchInst::Create(CommonSuccBB, BB);
882   } else if (DefaultExitBB) {
883     assert(SI.getNumCases() > 0 &&
884            "If we had no cases we'd have a common successor!");
885     // Move the last case to the default successor. This is valid as if the
886     // default got unswitched it cannot be reached. This has the advantage of
887     // being simple and keeping the number of edges from this switch to
888     // successors the same, and avoiding any PHI update complexity.
889     auto LastCaseI = std::prev(SI.case_end());
890 
891     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
892     SIW.setSuccessorWeight(
893         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
894     SIW.removeCase(LastCaseI);
895   }
896 
897   // Walk the unswitched exit blocks and the unswitched split blocks and update
898   // the dominator tree based on the CFG edits. While we are walking unordered
899   // containers here, the API for applyUpdates takes an unordered list of
900   // updates and requires them to not contain duplicates.
901   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
902   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
903     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
904     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
905   }
906   for (auto SplitUnswitchedPair : SplitExitBBMap) {
907     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
908     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
909   }
910 
911   if (MSSAU) {
912     MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
913     if (VerifyMemorySSA)
914       MSSAU->getMemorySSA()->verifyMemorySSA();
915   } else {
916     DT.applyUpdates(DTUpdates);
917   }
918 
919   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
920 
921   // We may have changed the nesting relationship for this loop so hoist it to
922   // its correct parent if needed.
923   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
924 
925   if (MSSAU && VerifyMemorySSA)
926     MSSAU->getMemorySSA()->verifyMemorySSA();
927 
928   ++NumTrivial;
929   ++NumSwitches;
930   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
931   return true;
932 }
933 
934 /// This routine scans the loop to find a branch or switch which occurs before
935 /// any side effects occur. These can potentially be unswitched without
936 /// duplicating the loop. If a branch or switch is successfully unswitched the
937 /// scanning continues to see if subsequent branches or switches have become
938 /// trivial. Once all trivial candidates have been unswitched, this routine
939 /// returns.
940 ///
941 /// The return value indicates whether anything was unswitched (and therefore
942 /// changed).
943 ///
944 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
945 /// invalidated by this.
946 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
947                                          LoopInfo &LI, ScalarEvolution *SE,
948                                          MemorySSAUpdater *MSSAU) {
949   bool Changed = false;
950 
951   // If loop header has only one reachable successor we should keep looking for
952   // trivial condition candidates in the successor as well. An alternative is
953   // to constant fold conditions and merge successors into loop header (then we
954   // only need to check header's terminator). The reason for not doing this in
955   // LoopUnswitch pass is that it could potentially break LoopPassManager's
956   // invariants. Folding dead branches could either eliminate the current loop
957   // or make other loops unreachable. LCSSA form might also not be preserved
958   // after deleting branches. The following code keeps traversing loop header's
959   // successors until it finds the trivial condition candidate (condition that
960   // is not a constant). Since unswitching generates branches with constant
961   // conditions, this scenario could be very common in practice.
962   BasicBlock *CurrentBB = L.getHeader();
963   SmallPtrSet<BasicBlock *, 8> Visited;
964   Visited.insert(CurrentBB);
965   do {
966     // Check if there are any side-effecting instructions (e.g. stores, calls,
967     // volatile loads) in the part of the loop that the code *would* execute
968     // without unswitching.
969     if (MSSAU) // Possible early exit with MSSA
970       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
971         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
972           return Changed;
973     if (llvm::any_of(*CurrentBB,
974                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
975       return Changed;
976 
977     Instruction *CurrentTerm = CurrentBB->getTerminator();
978 
979     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
980       // Don't bother trying to unswitch past a switch with a constant
981       // condition. This should be removed prior to running this pass by
982       // simplify-cfg.
983       if (isa<Constant>(SI->getCondition()))
984         return Changed;
985 
986       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
987         // Couldn't unswitch this one so we're done.
988         return Changed;
989 
990       // Mark that we managed to unswitch something.
991       Changed = true;
992 
993       // If unswitching turned the terminator into an unconditional branch then
994       // we can continue. The unswitching logic specifically works to fold any
995       // cases it can into an unconditional branch to make it easier to
996       // recognize here.
997       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
998       if (!BI || BI->isConditional())
999         return Changed;
1000 
1001       CurrentBB = BI->getSuccessor(0);
1002       continue;
1003     }
1004 
1005     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1006     if (!BI)
1007       // We do not understand other terminator instructions.
1008       return Changed;
1009 
1010     // Don't bother trying to unswitch past an unconditional branch or a branch
1011     // with a constant value. These should be removed by simplify-cfg prior to
1012     // running this pass.
1013     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1014       return Changed;
1015 
1016     // Found a trivial condition candidate: non-foldable conditional branch. If
1017     // we fail to unswitch this, we can't do anything else that is trivial.
1018     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1019       return Changed;
1020 
1021     // Mark that we managed to unswitch something.
1022     Changed = true;
1023 
1024     // If we only unswitched some of the conditions feeding the branch, we won't
1025     // have collapsed it to a single successor.
1026     BI = cast<BranchInst>(CurrentBB->getTerminator());
1027     if (BI->isConditional())
1028       return Changed;
1029 
1030     // Follow the newly unconditional branch into its successor.
1031     CurrentBB = BI->getSuccessor(0);
1032 
1033     // When continuing, if we exit the loop or reach a previous visited block,
1034     // then we can not reach any trivial condition candidates (unfoldable
1035     // branch instructions or switch instructions) and no unswitch can happen.
1036   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1037 
1038   return Changed;
1039 }
1040 
1041 /// Build the cloned blocks for an unswitched copy of the given loop.
1042 ///
1043 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1044 /// after the split block (`SplitBB`) that will be used to select between the
1045 /// cloned and original loop.
1046 ///
1047 /// This routine handles cloning all of the necessary loop blocks and exit
1048 /// blocks including rewriting their instructions and the relevant PHI nodes.
1049 /// Any loop blocks or exit blocks which are dominated by a different successor
1050 /// than the one for this clone of the loop blocks can be trivially skipped. We
1051 /// use the `DominatingSucc` map to determine whether a block satisfies that
1052 /// property with a simple map lookup.
1053 ///
1054 /// It also correctly creates the unconditional branch in the cloned
1055 /// unswitched parent block to only point at the unswitched successor.
1056 ///
1057 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1058 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1059 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1060 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1061 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1062 /// instead the caller must recompute an accurate DT. It *does* correctly
1063 /// update the `AssumptionCache` provided in `AC`.
1064 static BasicBlock *buildClonedLoopBlocks(
1065     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1066     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1067     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1068     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1069     ValueToValueMapTy &VMap,
1070     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1071     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1072   SmallVector<BasicBlock *, 4> NewBlocks;
1073   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1074 
1075   // We will need to clone a bunch of blocks, wrap up the clone operation in
1076   // a helper.
1077   auto CloneBlock = [&](BasicBlock *OldBB) {
1078     // Clone the basic block and insert it before the new preheader.
1079     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1080     NewBB->moveBefore(LoopPH);
1081 
1082     // Record this block and the mapping.
1083     NewBlocks.push_back(NewBB);
1084     VMap[OldBB] = NewBB;
1085 
1086     return NewBB;
1087   };
1088 
1089   // We skip cloning blocks when they have a dominating succ that is not the
1090   // succ we are cloning for.
1091   auto SkipBlock = [&](BasicBlock *BB) {
1092     auto It = DominatingSucc.find(BB);
1093     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1094   };
1095 
1096   // First, clone the preheader.
1097   auto *ClonedPH = CloneBlock(LoopPH);
1098 
1099   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1100   for (auto *LoopBB : L.blocks())
1101     if (!SkipBlock(LoopBB))
1102       CloneBlock(LoopBB);
1103 
1104   // Split all the loop exit edges so that when we clone the exit blocks, if
1105   // any of the exit blocks are *also* a preheader for some other loop, we
1106   // don't create multiple predecessors entering the loop header.
1107   for (auto *ExitBB : ExitBlocks) {
1108     if (SkipBlock(ExitBB))
1109       continue;
1110 
1111     // When we are going to clone an exit, we don't need to clone all the
1112     // instructions in the exit block and we want to ensure we have an easy
1113     // place to merge the CFG, so split the exit first. This is always safe to
1114     // do because there cannot be any non-loop predecessors of a loop exit in
1115     // loop simplified form.
1116     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1117 
1118     // Rearrange the names to make it easier to write test cases by having the
1119     // exit block carry the suffix rather than the merge block carrying the
1120     // suffix.
1121     MergeBB->takeName(ExitBB);
1122     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1123 
1124     // Now clone the original exit block.
1125     auto *ClonedExitBB = CloneBlock(ExitBB);
1126     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1127            "Exit block should have been split to have one successor!");
1128     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1129            "Cloned exit block has the wrong successor!");
1130 
1131     // Remap any cloned instructions and create a merge phi node for them.
1132     for (auto ZippedInsts : llvm::zip_first(
1133              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1134              llvm::make_range(ClonedExitBB->begin(),
1135                               std::prev(ClonedExitBB->end())))) {
1136       Instruction &I = std::get<0>(ZippedInsts);
1137       Instruction &ClonedI = std::get<1>(ZippedInsts);
1138 
1139       // The only instructions in the exit block should be PHI nodes and
1140       // potentially a landing pad.
1141       assert(
1142           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1143           "Bad instruction in exit block!");
1144       // We should have a value map between the instruction and its clone.
1145       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1146 
1147       auto *MergePN =
1148           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1149                           &*MergeBB->getFirstInsertionPt());
1150       I.replaceAllUsesWith(MergePN);
1151       MergePN->addIncoming(&I, ExitBB);
1152       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1153     }
1154   }
1155 
1156   // Rewrite the instructions in the cloned blocks to refer to the instructions
1157   // in the cloned blocks. We have to do this as a second pass so that we have
1158   // everything available. Also, we have inserted new instructions which may
1159   // include assume intrinsics, so we update the assumption cache while
1160   // processing this.
1161   for (auto *ClonedBB : NewBlocks)
1162     for (Instruction &I : *ClonedBB) {
1163       RemapInstruction(&I, VMap,
1164                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1165       if (auto *II = dyn_cast<AssumeInst>(&I))
1166         AC.registerAssumption(II);
1167     }
1168 
1169   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1170   // have spurious incoming values.
1171   for (auto *LoopBB : L.blocks())
1172     if (SkipBlock(LoopBB))
1173       for (auto *SuccBB : successors(LoopBB))
1174         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1175           for (PHINode &PN : ClonedSuccBB->phis())
1176             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1177 
1178   // Remove the cloned parent as a predecessor of any successor we ended up
1179   // cloning other than the unswitched one.
1180   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1181   for (auto *SuccBB : successors(ParentBB)) {
1182     if (SuccBB == UnswitchedSuccBB)
1183       continue;
1184 
1185     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1186     if (!ClonedSuccBB)
1187       continue;
1188 
1189     ClonedSuccBB->removePredecessor(ClonedParentBB,
1190                                     /*KeepOneInputPHIs*/ true);
1191   }
1192 
1193   // Replace the cloned branch with an unconditional branch to the cloned
1194   // unswitched successor.
1195   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1196   Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1197   // Trivial Simplification. If Terminator is a conditional branch and
1198   // condition becomes dead - erase it.
1199   Value *ClonedConditionToErase = nullptr;
1200   if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1201     ClonedConditionToErase = BI->getCondition();
1202   else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1203     ClonedConditionToErase = SI->getCondition();
1204 
1205   ClonedTerminator->eraseFromParent();
1206   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1207 
1208   if (ClonedConditionToErase)
1209     RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1210                                                MSSAU);
1211 
1212   // If there are duplicate entries in the PHI nodes because of multiple edges
1213   // to the unswitched successor, we need to nuke all but one as we replaced it
1214   // with a direct branch.
1215   for (PHINode &PN : ClonedSuccBB->phis()) {
1216     bool Found = false;
1217     // Loop over the incoming operands backwards so we can easily delete as we
1218     // go without invalidating the index.
1219     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1220       if (PN.getIncomingBlock(i) != ClonedParentBB)
1221         continue;
1222       if (!Found) {
1223         Found = true;
1224         continue;
1225       }
1226       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1227     }
1228   }
1229 
1230   // Record the domtree updates for the new blocks.
1231   SmallPtrSet<BasicBlock *, 4> SuccSet;
1232   for (auto *ClonedBB : NewBlocks) {
1233     for (auto *SuccBB : successors(ClonedBB))
1234       if (SuccSet.insert(SuccBB).second)
1235         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1236     SuccSet.clear();
1237   }
1238 
1239   return ClonedPH;
1240 }
1241 
1242 /// Recursively clone the specified loop and all of its children.
1243 ///
1244 /// The target parent loop for the clone should be provided, or can be null if
1245 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1246 /// with the provided value map. The entire original loop must be present in
1247 /// the value map. The cloned loop is returned.
1248 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1249                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1250   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1251     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1252     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1253     for (auto *BB : OrigL.blocks()) {
1254       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1255       ClonedL.addBlockEntry(ClonedBB);
1256       if (LI.getLoopFor(BB) == &OrigL)
1257         LI.changeLoopFor(ClonedBB, &ClonedL);
1258     }
1259   };
1260 
1261   // We specially handle the first loop because it may get cloned into
1262   // a different parent and because we most commonly are cloning leaf loops.
1263   Loop *ClonedRootL = LI.AllocateLoop();
1264   if (RootParentL)
1265     RootParentL->addChildLoop(ClonedRootL);
1266   else
1267     LI.addTopLevelLoop(ClonedRootL);
1268   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1269 
1270   if (OrigRootL.isInnermost())
1271     return ClonedRootL;
1272 
1273   // If we have a nest, we can quickly clone the entire loop nest using an
1274   // iterative approach because it is a tree. We keep the cloned parent in the
1275   // data structure to avoid repeatedly querying through a map to find it.
1276   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1277   // Build up the loops to clone in reverse order as we'll clone them from the
1278   // back.
1279   for (Loop *ChildL : llvm::reverse(OrigRootL))
1280     LoopsToClone.push_back({ClonedRootL, ChildL});
1281   do {
1282     Loop *ClonedParentL, *L;
1283     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1284     Loop *ClonedL = LI.AllocateLoop();
1285     ClonedParentL->addChildLoop(ClonedL);
1286     AddClonedBlocksToLoop(*L, *ClonedL);
1287     for (Loop *ChildL : llvm::reverse(*L))
1288       LoopsToClone.push_back({ClonedL, ChildL});
1289   } while (!LoopsToClone.empty());
1290 
1291   return ClonedRootL;
1292 }
1293 
1294 /// Build the cloned loops of an original loop from unswitching.
1295 ///
1296 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1297 /// operation. We need to re-verify that there even is a loop (as the backedge
1298 /// may not have been cloned), and even if there are remaining backedges the
1299 /// backedge set may be different. However, we know that each child loop is
1300 /// undisturbed, we only need to find where to place each child loop within
1301 /// either any parent loop or within a cloned version of the original loop.
1302 ///
1303 /// Because child loops may end up cloned outside of any cloned version of the
1304 /// original loop, multiple cloned sibling loops may be created. All of them
1305 /// are returned so that the newly introduced loop nest roots can be
1306 /// identified.
1307 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1308                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1309                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1310   Loop *ClonedL = nullptr;
1311 
1312   auto *OrigPH = OrigL.getLoopPreheader();
1313   auto *OrigHeader = OrigL.getHeader();
1314 
1315   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1316   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1317 
1318   // We need to know the loops of the cloned exit blocks to even compute the
1319   // accurate parent loop. If we only clone exits to some parent of the
1320   // original parent, we want to clone into that outer loop. We also keep track
1321   // of the loops that our cloned exit blocks participate in.
1322   Loop *ParentL = nullptr;
1323   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1324   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1325   ClonedExitsInLoops.reserve(ExitBlocks.size());
1326   for (auto *ExitBB : ExitBlocks)
1327     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1328       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1329         ExitLoopMap[ClonedExitBB] = ExitL;
1330         ClonedExitsInLoops.push_back(ClonedExitBB);
1331         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1332           ParentL = ExitL;
1333       }
1334   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1335           ParentL->contains(OrigL.getParentLoop())) &&
1336          "The computed parent loop should always contain (or be) the parent of "
1337          "the original loop.");
1338 
1339   // We build the set of blocks dominated by the cloned header from the set of
1340   // cloned blocks out of the original loop. While not all of these will
1341   // necessarily be in the cloned loop, it is enough to establish that they
1342   // aren't in unreachable cycles, etc.
1343   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1344   for (auto *BB : OrigL.blocks())
1345     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1346       ClonedLoopBlocks.insert(ClonedBB);
1347 
1348   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1349   // skipped cloning some region of this loop which can in turn skip some of
1350   // the backedges so we have to rebuild the blocks in the loop based on the
1351   // backedges that remain after cloning.
1352   SmallVector<BasicBlock *, 16> Worklist;
1353   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1354   for (auto *Pred : predecessors(ClonedHeader)) {
1355     // The only possible non-loop header predecessor is the preheader because
1356     // we know we cloned the loop in simplified form.
1357     if (Pred == ClonedPH)
1358       continue;
1359 
1360     // Because the loop was in simplified form, the only non-loop predecessor
1361     // should be the preheader.
1362     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1363                                            "header other than the preheader "
1364                                            "that is not part of the loop!");
1365 
1366     // Insert this block into the loop set and on the first visit (and if it
1367     // isn't the header we're currently walking) put it into the worklist to
1368     // recurse through.
1369     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1370       Worklist.push_back(Pred);
1371   }
1372 
1373   // If we had any backedges then there *is* a cloned loop. Put the header into
1374   // the loop set and then walk the worklist backwards to find all the blocks
1375   // that remain within the loop after cloning.
1376   if (!BlocksInClonedLoop.empty()) {
1377     BlocksInClonedLoop.insert(ClonedHeader);
1378 
1379     while (!Worklist.empty()) {
1380       BasicBlock *BB = Worklist.pop_back_val();
1381       assert(BlocksInClonedLoop.count(BB) &&
1382              "Didn't put block into the loop set!");
1383 
1384       // Insert any predecessors that are in the possible set into the cloned
1385       // set, and if the insert is successful, add them to the worklist. Note
1386       // that we filter on the blocks that are definitely reachable via the
1387       // backedge to the loop header so we may prune out dead code within the
1388       // cloned loop.
1389       for (auto *Pred : predecessors(BB))
1390         if (ClonedLoopBlocks.count(Pred) &&
1391             BlocksInClonedLoop.insert(Pred).second)
1392           Worklist.push_back(Pred);
1393     }
1394 
1395     ClonedL = LI.AllocateLoop();
1396     if (ParentL) {
1397       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1398       ParentL->addChildLoop(ClonedL);
1399     } else {
1400       LI.addTopLevelLoop(ClonedL);
1401     }
1402     NonChildClonedLoops.push_back(ClonedL);
1403 
1404     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1405     // We don't want to just add the cloned loop blocks based on how we
1406     // discovered them. The original order of blocks was carefully built in
1407     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1408     // that logic, we just re-walk the original blocks (and those of the child
1409     // loops) and filter them as we add them into the cloned loop.
1410     for (auto *BB : OrigL.blocks()) {
1411       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1412       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1413         continue;
1414 
1415       // Directly add the blocks that are only in this loop.
1416       if (LI.getLoopFor(BB) == &OrigL) {
1417         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1418         continue;
1419       }
1420 
1421       // We want to manually add it to this loop and parents.
1422       // Registering it with LoopInfo will happen when we clone the top
1423       // loop for this block.
1424       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1425         PL->addBlockEntry(ClonedBB);
1426     }
1427 
1428     // Now add each child loop whose header remains within the cloned loop. All
1429     // of the blocks within the loop must satisfy the same constraints as the
1430     // header so once we pass the header checks we can just clone the entire
1431     // child loop nest.
1432     for (Loop *ChildL : OrigL) {
1433       auto *ClonedChildHeader =
1434           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1435       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1436         continue;
1437 
1438 #ifndef NDEBUG
1439       // We should never have a cloned child loop header but fail to have
1440       // all of the blocks for that child loop.
1441       for (auto *ChildLoopBB : ChildL->blocks())
1442         assert(BlocksInClonedLoop.count(
1443                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1444                "Child cloned loop has a header within the cloned outer "
1445                "loop but not all of its blocks!");
1446 #endif
1447 
1448       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1449     }
1450   }
1451 
1452   // Now that we've handled all the components of the original loop that were
1453   // cloned into a new loop, we still need to handle anything from the original
1454   // loop that wasn't in a cloned loop.
1455 
1456   // Figure out what blocks are left to place within any loop nest containing
1457   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1458   // them.
1459   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1460   if (BlocksInClonedLoop.empty())
1461     UnloopedBlockSet.insert(ClonedPH);
1462   for (auto *ClonedBB : ClonedLoopBlocks)
1463     if (!BlocksInClonedLoop.count(ClonedBB))
1464       UnloopedBlockSet.insert(ClonedBB);
1465 
1466   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1467   // backwards across these to process them inside out. The order shouldn't
1468   // matter as we're just trying to build up the map from inside-out; we use
1469   // the map in a more stably ordered way below.
1470   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1471   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1472     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1473            ExitLoopMap.lookup(RHS)->getLoopDepth();
1474   });
1475 
1476   // Populate the existing ExitLoopMap with everything reachable from each
1477   // exit, starting from the inner most exit.
1478   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1479     assert(Worklist.empty() && "Didn't clear worklist!");
1480 
1481     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1482     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1483 
1484     // Walk the CFG back until we hit the cloned PH adding everything reachable
1485     // and in the unlooped set to this exit block's loop.
1486     Worklist.push_back(ExitBB);
1487     do {
1488       BasicBlock *BB = Worklist.pop_back_val();
1489       // We can stop recursing at the cloned preheader (if we get there).
1490       if (BB == ClonedPH)
1491         continue;
1492 
1493       for (BasicBlock *PredBB : predecessors(BB)) {
1494         // If this pred has already been moved to our set or is part of some
1495         // (inner) loop, no update needed.
1496         if (!UnloopedBlockSet.erase(PredBB)) {
1497           assert(
1498               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1499               "Predecessor not mapped to a loop!");
1500           continue;
1501         }
1502 
1503         // We just insert into the loop set here. We'll add these blocks to the
1504         // exit loop after we build up the set in an order that doesn't rely on
1505         // predecessor order (which in turn relies on use list order).
1506         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1507         (void)Inserted;
1508         assert(Inserted && "Should only visit an unlooped block once!");
1509 
1510         // And recurse through to its predecessors.
1511         Worklist.push_back(PredBB);
1512       }
1513     } while (!Worklist.empty());
1514   }
1515 
1516   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1517   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1518   // in their original order adding them to the correct loop.
1519 
1520   // We need a stable insertion order. We use the order of the original loop
1521   // order and map into the correct parent loop.
1522   for (auto *BB : llvm::concat<BasicBlock *const>(
1523            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1524     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1525       OuterL->addBasicBlockToLoop(BB, LI);
1526 
1527 #ifndef NDEBUG
1528   for (auto &BBAndL : ExitLoopMap) {
1529     auto *BB = BBAndL.first;
1530     auto *OuterL = BBAndL.second;
1531     assert(LI.getLoopFor(BB) == OuterL &&
1532            "Failed to put all blocks into outer loops!");
1533   }
1534 #endif
1535 
1536   // Now that all the blocks are placed into the correct containing loop in the
1537   // absence of child loops, find all the potentially cloned child loops and
1538   // clone them into whatever outer loop we placed their header into.
1539   for (Loop *ChildL : OrigL) {
1540     auto *ClonedChildHeader =
1541         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1542     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1543       continue;
1544 
1545 #ifndef NDEBUG
1546     for (auto *ChildLoopBB : ChildL->blocks())
1547       assert(VMap.count(ChildLoopBB) &&
1548              "Cloned a child loop header but not all of that loops blocks!");
1549 #endif
1550 
1551     NonChildClonedLoops.push_back(cloneLoopNest(
1552         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1553   }
1554 }
1555 
1556 static void
1557 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1558                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1559                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1560   // Find all the dead clones, and remove them from their successors.
1561   SmallVector<BasicBlock *, 16> DeadBlocks;
1562   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1563     for (auto &VMap : VMaps)
1564       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1565         if (!DT.isReachableFromEntry(ClonedBB)) {
1566           for (BasicBlock *SuccBB : successors(ClonedBB))
1567             SuccBB->removePredecessor(ClonedBB);
1568           DeadBlocks.push_back(ClonedBB);
1569         }
1570 
1571   // Remove all MemorySSA in the dead blocks
1572   if (MSSAU) {
1573     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1574                                                  DeadBlocks.end());
1575     MSSAU->removeBlocks(DeadBlockSet);
1576   }
1577 
1578   // Drop any remaining references to break cycles.
1579   for (BasicBlock *BB : DeadBlocks)
1580     BB->dropAllReferences();
1581   // Erase them from the IR.
1582   for (BasicBlock *BB : DeadBlocks)
1583     BB->eraseFromParent();
1584 }
1585 
1586 static void deleteDeadBlocksFromLoop(Loop &L,
1587                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1588                                      DominatorTree &DT, LoopInfo &LI,
1589                                      MemorySSAUpdater *MSSAU) {
1590   // Find all the dead blocks tied to this loop, and remove them from their
1591   // successors.
1592   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1593 
1594   // Start with loop/exit blocks and get a transitive closure of reachable dead
1595   // blocks.
1596   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1597                                                 ExitBlocks.end());
1598   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1599   while (!DeathCandidates.empty()) {
1600     auto *BB = DeathCandidates.pop_back_val();
1601     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1602       for (BasicBlock *SuccBB : successors(BB)) {
1603         SuccBB->removePredecessor(BB);
1604         DeathCandidates.push_back(SuccBB);
1605       }
1606       DeadBlockSet.insert(BB);
1607     }
1608   }
1609 
1610   // Remove all MemorySSA in the dead blocks
1611   if (MSSAU)
1612     MSSAU->removeBlocks(DeadBlockSet);
1613 
1614   // Filter out the dead blocks from the exit blocks list so that it can be
1615   // used in the caller.
1616   llvm::erase_if(ExitBlocks,
1617                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1618 
1619   // Walk from this loop up through its parents removing all of the dead blocks.
1620   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1621     for (auto *BB : DeadBlockSet)
1622       ParentL->getBlocksSet().erase(BB);
1623     llvm::erase_if(ParentL->getBlocksVector(),
1624                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1625   }
1626 
1627   // Now delete the dead child loops. This raw delete will clear them
1628   // recursively.
1629   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1630     if (!DeadBlockSet.count(ChildL->getHeader()))
1631       return false;
1632 
1633     assert(llvm::all_of(ChildL->blocks(),
1634                         [&](BasicBlock *ChildBB) {
1635                           return DeadBlockSet.count(ChildBB);
1636                         }) &&
1637            "If the child loop header is dead all blocks in the child loop must "
1638            "be dead as well!");
1639     LI.destroy(ChildL);
1640     return true;
1641   });
1642 
1643   // Remove the loop mappings for the dead blocks and drop all the references
1644   // from these blocks to others to handle cyclic references as we start
1645   // deleting the blocks themselves.
1646   for (auto *BB : DeadBlockSet) {
1647     // Check that the dominator tree has already been updated.
1648     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1649     LI.changeLoopFor(BB, nullptr);
1650     // Drop all uses of the instructions to make sure we won't have dangling
1651     // uses in other blocks.
1652     for (auto &I : *BB)
1653       if (!I.use_empty())
1654         I.replaceAllUsesWith(UndefValue::get(I.getType()));
1655     BB->dropAllReferences();
1656   }
1657 
1658   // Actually delete the blocks now that they've been fully unhooked from the
1659   // IR.
1660   for (auto *BB : DeadBlockSet)
1661     BB->eraseFromParent();
1662 }
1663 
1664 /// Recompute the set of blocks in a loop after unswitching.
1665 ///
1666 /// This walks from the original headers predecessors to rebuild the loop. We
1667 /// take advantage of the fact that new blocks can't have been added, and so we
1668 /// filter by the original loop's blocks. This also handles potentially
1669 /// unreachable code that we don't want to explore but might be found examining
1670 /// the predecessors of the header.
1671 ///
1672 /// If the original loop is no longer a loop, this will return an empty set. If
1673 /// it remains a loop, all the blocks within it will be added to the set
1674 /// (including those blocks in inner loops).
1675 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1676                                                                  LoopInfo &LI) {
1677   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1678 
1679   auto *PH = L.getLoopPreheader();
1680   auto *Header = L.getHeader();
1681 
1682   // A worklist to use while walking backwards from the header.
1683   SmallVector<BasicBlock *, 16> Worklist;
1684 
1685   // First walk the predecessors of the header to find the backedges. This will
1686   // form the basis of our walk.
1687   for (auto *Pred : predecessors(Header)) {
1688     // Skip the preheader.
1689     if (Pred == PH)
1690       continue;
1691 
1692     // Because the loop was in simplified form, the only non-loop predecessor
1693     // is the preheader.
1694     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1695                                "than the preheader that is not part of the "
1696                                "loop!");
1697 
1698     // Insert this block into the loop set and on the first visit and, if it
1699     // isn't the header we're currently walking, put it into the worklist to
1700     // recurse through.
1701     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1702       Worklist.push_back(Pred);
1703   }
1704 
1705   // If no backedges were found, we're done.
1706   if (LoopBlockSet.empty())
1707     return LoopBlockSet;
1708 
1709   // We found backedges, recurse through them to identify the loop blocks.
1710   while (!Worklist.empty()) {
1711     BasicBlock *BB = Worklist.pop_back_val();
1712     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1713 
1714     // No need to walk past the header.
1715     if (BB == Header)
1716       continue;
1717 
1718     // Because we know the inner loop structure remains valid we can use the
1719     // loop structure to jump immediately across the entire nested loop.
1720     // Further, because it is in loop simplified form, we can directly jump
1721     // to its preheader afterward.
1722     if (Loop *InnerL = LI.getLoopFor(BB))
1723       if (InnerL != &L) {
1724         assert(L.contains(InnerL) &&
1725                "Should not reach a loop *outside* this loop!");
1726         // The preheader is the only possible predecessor of the loop so
1727         // insert it into the set and check whether it was already handled.
1728         auto *InnerPH = InnerL->getLoopPreheader();
1729         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1730                                       "but not contain the inner loop "
1731                                       "preheader!");
1732         if (!LoopBlockSet.insert(InnerPH).second)
1733           // The only way to reach the preheader is through the loop body
1734           // itself so if it has been visited the loop is already handled.
1735           continue;
1736 
1737         // Insert all of the blocks (other than those already present) into
1738         // the loop set. We expect at least the block that led us to find the
1739         // inner loop to be in the block set, but we may also have other loop
1740         // blocks if they were already enqueued as predecessors of some other
1741         // outer loop block.
1742         for (auto *InnerBB : InnerL->blocks()) {
1743           if (InnerBB == BB) {
1744             assert(LoopBlockSet.count(InnerBB) &&
1745                    "Block should already be in the set!");
1746             continue;
1747           }
1748 
1749           LoopBlockSet.insert(InnerBB);
1750         }
1751 
1752         // Add the preheader to the worklist so we will continue past the
1753         // loop body.
1754         Worklist.push_back(InnerPH);
1755         continue;
1756       }
1757 
1758     // Insert any predecessors that were in the original loop into the new
1759     // set, and if the insert is successful, add them to the worklist.
1760     for (auto *Pred : predecessors(BB))
1761       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1762         Worklist.push_back(Pred);
1763   }
1764 
1765   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1766 
1767   // We've found all the blocks participating in the loop, return our completed
1768   // set.
1769   return LoopBlockSet;
1770 }
1771 
1772 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1773 ///
1774 /// The removal may have removed some child loops entirely but cannot have
1775 /// disturbed any remaining child loops. However, they may need to be hoisted
1776 /// to the parent loop (or to be top-level loops). The original loop may be
1777 /// completely removed.
1778 ///
1779 /// The sibling loops resulting from this update are returned. If the original
1780 /// loop remains a valid loop, it will be the first entry in this list with all
1781 /// of the newly sibling loops following it.
1782 ///
1783 /// Returns true if the loop remains a loop after unswitching, and false if it
1784 /// is no longer a loop after unswitching (and should not continue to be
1785 /// referenced).
1786 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1787                                      LoopInfo &LI,
1788                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1789   auto *PH = L.getLoopPreheader();
1790 
1791   // Compute the actual parent loop from the exit blocks. Because we may have
1792   // pruned some exits the loop may be different from the original parent.
1793   Loop *ParentL = nullptr;
1794   SmallVector<Loop *, 4> ExitLoops;
1795   SmallVector<BasicBlock *, 4> ExitsInLoops;
1796   ExitsInLoops.reserve(ExitBlocks.size());
1797   for (auto *ExitBB : ExitBlocks)
1798     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1799       ExitLoops.push_back(ExitL);
1800       ExitsInLoops.push_back(ExitBB);
1801       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1802         ParentL = ExitL;
1803     }
1804 
1805   // Recompute the blocks participating in this loop. This may be empty if it
1806   // is no longer a loop.
1807   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1808 
1809   // If we still have a loop, we need to re-set the loop's parent as the exit
1810   // block set changing may have moved it within the loop nest. Note that this
1811   // can only happen when this loop has a parent as it can only hoist the loop
1812   // *up* the nest.
1813   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1814     // Remove this loop's (original) blocks from all of the intervening loops.
1815     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1816          IL = IL->getParentLoop()) {
1817       IL->getBlocksSet().erase(PH);
1818       for (auto *BB : L.blocks())
1819         IL->getBlocksSet().erase(BB);
1820       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1821         return BB == PH || L.contains(BB);
1822       });
1823     }
1824 
1825     LI.changeLoopFor(PH, ParentL);
1826     L.getParentLoop()->removeChildLoop(&L);
1827     if (ParentL)
1828       ParentL->addChildLoop(&L);
1829     else
1830       LI.addTopLevelLoop(&L);
1831   }
1832 
1833   // Now we update all the blocks which are no longer within the loop.
1834   auto &Blocks = L.getBlocksVector();
1835   auto BlocksSplitI =
1836       LoopBlockSet.empty()
1837           ? Blocks.begin()
1838           : std::stable_partition(
1839                 Blocks.begin(), Blocks.end(),
1840                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1841 
1842   // Before we erase the list of unlooped blocks, build a set of them.
1843   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1844   if (LoopBlockSet.empty())
1845     UnloopedBlocks.insert(PH);
1846 
1847   // Now erase these blocks from the loop.
1848   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1849     L.getBlocksSet().erase(BB);
1850   Blocks.erase(BlocksSplitI, Blocks.end());
1851 
1852   // Sort the exits in ascending loop depth, we'll work backwards across these
1853   // to process them inside out.
1854   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1855     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1856   });
1857 
1858   // We'll build up a set for each exit loop.
1859   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1860   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1861 
1862   auto RemoveUnloopedBlocksFromLoop =
1863       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1864         for (auto *BB : UnloopedBlocks)
1865           L.getBlocksSet().erase(BB);
1866         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1867           return UnloopedBlocks.count(BB);
1868         });
1869       };
1870 
1871   SmallVector<BasicBlock *, 16> Worklist;
1872   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1873     assert(Worklist.empty() && "Didn't clear worklist!");
1874     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1875 
1876     // Grab the next exit block, in decreasing loop depth order.
1877     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1878     Loop &ExitL = *LI.getLoopFor(ExitBB);
1879     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1880 
1881     // Erase all of the unlooped blocks from the loops between the previous
1882     // exit loop and this exit loop. This works because the ExitInLoops list is
1883     // sorted in increasing order of loop depth and thus we visit loops in
1884     // decreasing order of loop depth.
1885     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1886       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1887 
1888     // Walk the CFG back until we hit the cloned PH adding everything reachable
1889     // and in the unlooped set to this exit block's loop.
1890     Worklist.push_back(ExitBB);
1891     do {
1892       BasicBlock *BB = Worklist.pop_back_val();
1893       // We can stop recursing at the cloned preheader (if we get there).
1894       if (BB == PH)
1895         continue;
1896 
1897       for (BasicBlock *PredBB : predecessors(BB)) {
1898         // If this pred has already been moved to our set or is part of some
1899         // (inner) loop, no update needed.
1900         if (!UnloopedBlocks.erase(PredBB)) {
1901           assert((NewExitLoopBlocks.count(PredBB) ||
1902                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1903                  "Predecessor not in a nested loop (or already visited)!");
1904           continue;
1905         }
1906 
1907         // We just insert into the loop set here. We'll add these blocks to the
1908         // exit loop after we build up the set in a deterministic order rather
1909         // than the predecessor-influenced visit order.
1910         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1911         (void)Inserted;
1912         assert(Inserted && "Should only visit an unlooped block once!");
1913 
1914         // And recurse through to its predecessors.
1915         Worklist.push_back(PredBB);
1916       }
1917     } while (!Worklist.empty());
1918 
1919     // If blocks in this exit loop were directly part of the original loop (as
1920     // opposed to a child loop) update the map to point to this exit loop. This
1921     // just updates a map and so the fact that the order is unstable is fine.
1922     for (auto *BB : NewExitLoopBlocks)
1923       if (Loop *BBL = LI.getLoopFor(BB))
1924         if (BBL == &L || !L.contains(BBL))
1925           LI.changeLoopFor(BB, &ExitL);
1926 
1927     // We will remove the remaining unlooped blocks from this loop in the next
1928     // iteration or below.
1929     NewExitLoopBlocks.clear();
1930   }
1931 
1932   // Any remaining unlooped blocks are no longer part of any loop unless they
1933   // are part of some child loop.
1934   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1935     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1936   for (auto *BB : UnloopedBlocks)
1937     if (Loop *BBL = LI.getLoopFor(BB))
1938       if (BBL == &L || !L.contains(BBL))
1939         LI.changeLoopFor(BB, nullptr);
1940 
1941   // Sink all the child loops whose headers are no longer in the loop set to
1942   // the parent (or to be top level loops). We reach into the loop and directly
1943   // update its subloop vector to make this batch update efficient.
1944   auto &SubLoops = L.getSubLoopsVector();
1945   auto SubLoopsSplitI =
1946       LoopBlockSet.empty()
1947           ? SubLoops.begin()
1948           : std::stable_partition(
1949                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1950                   return LoopBlockSet.count(SubL->getHeader());
1951                 });
1952   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1953     HoistedLoops.push_back(HoistedL);
1954     HoistedL->setParentLoop(nullptr);
1955 
1956     // To compute the new parent of this hoisted loop we look at where we
1957     // placed the preheader above. We can't lookup the header itself because we
1958     // retained the mapping from the header to the hoisted loop. But the
1959     // preheader and header should have the exact same new parent computed
1960     // based on the set of exit blocks from the original loop as the preheader
1961     // is a predecessor of the header and so reached in the reverse walk. And
1962     // because the loops were all in simplified form the preheader of the
1963     // hoisted loop can't be part of some *other* loop.
1964     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1965       NewParentL->addChildLoop(HoistedL);
1966     else
1967       LI.addTopLevelLoop(HoistedL);
1968   }
1969   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1970 
1971   // Actually delete the loop if nothing remained within it.
1972   if (Blocks.empty()) {
1973     assert(SubLoops.empty() &&
1974            "Failed to remove all subloops from the original loop!");
1975     if (Loop *ParentL = L.getParentLoop())
1976       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1977     else
1978       LI.removeLoop(llvm::find(LI, &L));
1979     LI.destroy(&L);
1980     return false;
1981   }
1982 
1983   return true;
1984 }
1985 
1986 /// Helper to visit a dominator subtree, invoking a callable on each node.
1987 ///
1988 /// Returning false at any point will stop walking past that node of the tree.
1989 template <typename CallableT>
1990 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1991   SmallVector<DomTreeNode *, 4> DomWorklist;
1992   DomWorklist.push_back(DT[BB]);
1993 #ifndef NDEBUG
1994   SmallPtrSet<DomTreeNode *, 4> Visited;
1995   Visited.insert(DT[BB]);
1996 #endif
1997   do {
1998     DomTreeNode *N = DomWorklist.pop_back_val();
1999 
2000     // Visit this node.
2001     if (!Callable(N->getBlock()))
2002       continue;
2003 
2004     // Accumulate the child nodes.
2005     for (DomTreeNode *ChildN : *N) {
2006       assert(Visited.insert(ChildN).second &&
2007              "Cannot visit a node twice when walking a tree!");
2008       DomWorklist.push_back(ChildN);
2009     }
2010   } while (!DomWorklist.empty());
2011 }
2012 
2013 static void unswitchNontrivialInvariants(
2014     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2015     SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo,
2016     DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2017     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2018     ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2019   auto *ParentBB = TI.getParent();
2020   BranchInst *BI = dyn_cast<BranchInst>(&TI);
2021   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2022 
2023   // We can only unswitch switches, conditional branches with an invariant
2024   // condition, or combining invariant conditions with an instruction or
2025   // partially invariant instructions.
2026   assert((SI || (BI && BI->isConditional())) &&
2027          "Can only unswitch switches and conditional branch!");
2028   bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2029   bool FullUnswitch =
2030       SI || (BI->getCondition() == Invariants[0] && !PartiallyInvariant);
2031   if (FullUnswitch)
2032     assert(Invariants.size() == 1 &&
2033            "Cannot have other invariants with full unswitching!");
2034   else
2035     assert(isa<Instruction>(BI->getCondition()) &&
2036            "Partial unswitching requires an instruction as the condition!");
2037 
2038   if (MSSAU && VerifyMemorySSA)
2039     MSSAU->getMemorySSA()->verifyMemorySSA();
2040 
2041   // Constant and BBs tracking the cloned and continuing successor. When we are
2042   // unswitching the entire condition, this can just be trivially chosen to
2043   // unswitch towards `true`. However, when we are unswitching a set of
2044   // invariants combined with `and` or `or` or partially invariant instructions,
2045   // the combining operation determines the best direction to unswitch: we want
2046   // to unswitch the direction that will collapse the branch.
2047   bool Direction = true;
2048   int ClonedSucc = 0;
2049   if (!FullUnswitch) {
2050     Value *Cond = BI->getCondition();
2051     (void)Cond;
2052     assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2053             PartiallyInvariant) &&
2054            "Only `or`, `and`, an `select`, partially invariant instructions "
2055            "can combine invariants being unswitched.");
2056     if (!match(BI->getCondition(), m_LogicalOr())) {
2057       if (match(BI->getCondition(), m_LogicalAnd()) ||
2058           (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2059         Direction = false;
2060         ClonedSucc = 1;
2061       }
2062     }
2063   }
2064 
2065   BasicBlock *RetainedSuccBB =
2066       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2067   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2068   if (BI)
2069     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2070   else
2071     for (auto Case : SI->cases())
2072       if (Case.getCaseSuccessor() != RetainedSuccBB)
2073         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2074 
2075   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2076          "Should not unswitch the same successor we are retaining!");
2077 
2078   // The branch should be in this exact loop. Any inner loop's invariant branch
2079   // should be handled by unswitching that inner loop. The caller of this
2080   // routine should filter out any candidates that remain (but were skipped for
2081   // whatever reason).
2082   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2083 
2084   // Compute the parent loop now before we start hacking on things.
2085   Loop *ParentL = L.getParentLoop();
2086   // Get blocks in RPO order for MSSA update, before changing the CFG.
2087   LoopBlocksRPO LBRPO(&L);
2088   if (MSSAU)
2089     LBRPO.perform(&LI);
2090 
2091   // Compute the outer-most loop containing one of our exit blocks. This is the
2092   // furthest up our loopnest which can be mutated, which we will use below to
2093   // update things.
2094   Loop *OuterExitL = &L;
2095   for (auto *ExitBB : ExitBlocks) {
2096     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2097     if (!NewOuterExitL) {
2098       // We exited the entire nest with this block, so we're done.
2099       OuterExitL = nullptr;
2100       break;
2101     }
2102     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2103       OuterExitL = NewOuterExitL;
2104   }
2105 
2106   // At this point, we're definitely going to unswitch something so invalidate
2107   // any cached information in ScalarEvolution for the outer most loop
2108   // containing an exit block and all nested loops.
2109   if (SE) {
2110     if (OuterExitL)
2111       SE->forgetLoop(OuterExitL);
2112     else
2113       SE->forgetTopmostLoop(&L);
2114   }
2115 
2116   // If the edge from this terminator to a successor dominates that successor,
2117   // store a map from each block in its dominator subtree to it. This lets us
2118   // tell when cloning for a particular successor if a block is dominated by
2119   // some *other* successor with a single data structure. We use this to
2120   // significantly reduce cloning.
2121   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2122   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2123            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2124     if (SuccBB->getUniquePredecessor() ||
2125         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2126           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2127         }))
2128       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2129         DominatingSucc[BB] = SuccBB;
2130         return true;
2131       });
2132 
2133   // Split the preheader, so that we know that there is a safe place to insert
2134   // the conditional branch. We will change the preheader to have a conditional
2135   // branch on LoopCond. The original preheader will become the split point
2136   // between the unswitched versions, and we will have a new preheader for the
2137   // original loop.
2138   BasicBlock *SplitBB = L.getLoopPreheader();
2139   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2140 
2141   // Keep track of the dominator tree updates needed.
2142   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2143 
2144   // Clone the loop for each unswitched successor.
2145   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2146   VMaps.reserve(UnswitchedSuccBBs.size());
2147   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2148   for (auto *SuccBB : UnswitchedSuccBBs) {
2149     VMaps.emplace_back(new ValueToValueMapTy());
2150     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2151         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2152         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2153   }
2154 
2155   // Drop metadata if we may break its semantics by moving this instr into the
2156   // split block.
2157   if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2158     if (DropNonTrivialImplicitNullChecks)
2159       // Do not spend time trying to understand if we can keep it, just drop it
2160       // to save compile time.
2161       TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2162     else {
2163       // It is only legal to preserve make.implicit metadata if we are
2164       // guaranteed no reach implicit null check after following this branch.
2165       ICFLoopSafetyInfo SafetyInfo;
2166       SafetyInfo.computeLoopSafetyInfo(&L);
2167       if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2168         TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2169     }
2170   }
2171 
2172   // The stitching of the branched code back together depends on whether we're
2173   // doing full unswitching or not with the exception that we always want to
2174   // nuke the initial terminator placed in the split block.
2175   SplitBB->getTerminator()->eraseFromParent();
2176   if (FullUnswitch) {
2177     // Splice the terminator from the original loop and rewrite its
2178     // successors.
2179     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2180 
2181     // Keep a clone of the terminator for MSSA updates.
2182     Instruction *NewTI = TI.clone();
2183     ParentBB->getInstList().push_back(NewTI);
2184 
2185     // First wire up the moved terminator to the preheaders.
2186     if (BI) {
2187       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2188       BI->setSuccessor(ClonedSucc, ClonedPH);
2189       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2190       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2191     } else {
2192       assert(SI && "Must either be a branch or switch!");
2193 
2194       // Walk the cases and directly update their successors.
2195       assert(SI->getDefaultDest() == RetainedSuccBB &&
2196              "Not retaining default successor!");
2197       SI->setDefaultDest(LoopPH);
2198       for (auto &Case : SI->cases())
2199         if (Case.getCaseSuccessor() == RetainedSuccBB)
2200           Case.setSuccessor(LoopPH);
2201         else
2202           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2203 
2204       // We need to use the set to populate domtree updates as even when there
2205       // are multiple cases pointing at the same successor we only want to
2206       // remove and insert one edge in the domtree.
2207       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2208         DTUpdates.push_back(
2209             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2210     }
2211 
2212     if (MSSAU) {
2213       DT.applyUpdates(DTUpdates);
2214       DTUpdates.clear();
2215 
2216       // Remove all but one edge to the retained block and all unswitched
2217       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2218       // when we know we only keep a single edge for each case.
2219       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2220       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2221         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2222 
2223       for (auto &VMap : VMaps)
2224         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2225                                    /*IgnoreIncomingWithNoClones=*/true);
2226       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2227 
2228       // Remove all edges to unswitched blocks.
2229       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2230         MSSAU->removeEdge(ParentBB, SuccBB);
2231     }
2232 
2233     // Now unhook the successor relationship as we'll be replacing
2234     // the terminator with a direct branch. This is much simpler for branches
2235     // than switches so we handle those first.
2236     if (BI) {
2237       // Remove the parent as a predecessor of the unswitched successor.
2238       assert(UnswitchedSuccBBs.size() == 1 &&
2239              "Only one possible unswitched block for a branch!");
2240       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2241       UnswitchedSuccBB->removePredecessor(ParentBB,
2242                                           /*KeepOneInputPHIs*/ true);
2243       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2244     } else {
2245       // Note that we actually want to remove the parent block as a predecessor
2246       // of *every* case successor. The case successor is either unswitched,
2247       // completely eliminating an edge from the parent to that successor, or it
2248       // is a duplicate edge to the retained successor as the retained successor
2249       // is always the default successor and as we'll replace this with a direct
2250       // branch we no longer need the duplicate entries in the PHI nodes.
2251       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2252       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2253              "Not retaining default successor!");
2254       for (auto &Case : NewSI->cases())
2255         Case.getCaseSuccessor()->removePredecessor(
2256             ParentBB,
2257             /*KeepOneInputPHIs*/ true);
2258 
2259       // We need to use the set to populate domtree updates as even when there
2260       // are multiple cases pointing at the same successor we only want to
2261       // remove and insert one edge in the domtree.
2262       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2263         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2264     }
2265 
2266     // After MSSAU update, remove the cloned terminator instruction NewTI.
2267     ParentBB->getTerminator()->eraseFromParent();
2268 
2269     // Create a new unconditional branch to the continuing block (as opposed to
2270     // the one cloned).
2271     BranchInst::Create(RetainedSuccBB, ParentBB);
2272   } else {
2273     assert(BI && "Only branches have partial unswitching.");
2274     assert(UnswitchedSuccBBs.size() == 1 &&
2275            "Only one possible unswitched block for a branch!");
2276     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2277     // When doing a partial unswitch, we have to do a bit more work to build up
2278     // the branch in the split block.
2279     if (PartiallyInvariant)
2280       buildPartialInvariantUnswitchConditionalBranch(
2281           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2282     else
2283       buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2284                                             *ClonedPH, *LoopPH);
2285     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2286 
2287     if (MSSAU) {
2288       DT.applyUpdates(DTUpdates);
2289       DTUpdates.clear();
2290 
2291       // Perform MSSA cloning updates.
2292       for (auto &VMap : VMaps)
2293         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2294                                    /*IgnoreIncomingWithNoClones=*/true);
2295       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2296     }
2297   }
2298 
2299   // Apply the updates accumulated above to get an up-to-date dominator tree.
2300   DT.applyUpdates(DTUpdates);
2301 
2302   // Now that we have an accurate dominator tree, first delete the dead cloned
2303   // blocks so that we can accurately build any cloned loops. It is important to
2304   // not delete the blocks from the original loop yet because we still want to
2305   // reference the original loop to understand the cloned loop's structure.
2306   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2307 
2308   // Build the cloned loop structure itself. This may be substantially
2309   // different from the original structure due to the simplified CFG. This also
2310   // handles inserting all the cloned blocks into the correct loops.
2311   SmallVector<Loop *, 4> NonChildClonedLoops;
2312   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2313     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2314 
2315   // Now that our cloned loops have been built, we can update the original loop.
2316   // First we delete the dead blocks from it and then we rebuild the loop
2317   // structure taking these deletions into account.
2318   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2319 
2320   if (MSSAU && VerifyMemorySSA)
2321     MSSAU->getMemorySSA()->verifyMemorySSA();
2322 
2323   SmallVector<Loop *, 4> HoistedLoops;
2324   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2325 
2326   if (MSSAU && VerifyMemorySSA)
2327     MSSAU->getMemorySSA()->verifyMemorySSA();
2328 
2329   // This transformation has a high risk of corrupting the dominator tree, and
2330   // the below steps to rebuild loop structures will result in hard to debug
2331   // errors in that case so verify that the dominator tree is sane first.
2332   // FIXME: Remove this when the bugs stop showing up and rely on existing
2333   // verification steps.
2334   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2335 
2336   if (BI && !PartiallyInvariant) {
2337     // If we unswitched a branch which collapses the condition to a known
2338     // constant we want to replace all the uses of the invariants within both
2339     // the original and cloned blocks. We do this here so that we can use the
2340     // now updated dominator tree to identify which side the users are on.
2341     assert(UnswitchedSuccBBs.size() == 1 &&
2342            "Only one possible unswitched block for a branch!");
2343     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2344 
2345     // When considering multiple partially-unswitched invariants
2346     // we cant just go replace them with constants in both branches.
2347     //
2348     // For 'AND' we infer that true branch ("continue") means true
2349     // for each invariant operand.
2350     // For 'OR' we can infer that false branch ("continue") means false
2351     // for each invariant operand.
2352     // So it happens that for multiple-partial case we dont replace
2353     // in the unswitched branch.
2354     bool ReplaceUnswitched =
2355         FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2356 
2357     ConstantInt *UnswitchedReplacement =
2358         Direction ? ConstantInt::getTrue(BI->getContext())
2359                   : ConstantInt::getFalse(BI->getContext());
2360     ConstantInt *ContinueReplacement =
2361         Direction ? ConstantInt::getFalse(BI->getContext())
2362                   : ConstantInt::getTrue(BI->getContext());
2363     for (Value *Invariant : Invariants)
2364       // Use make_early_inc_range here as set invalidates the iterator.
2365       for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2366         Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2367         if (!UserI)
2368           continue;
2369 
2370         // Replace it with the 'continue' side if in the main loop body, and the
2371         // unswitched if in the cloned blocks.
2372         if (DT.dominates(LoopPH, UserI->getParent()))
2373           U.set(ContinueReplacement);
2374         else if (ReplaceUnswitched &&
2375                  DT.dominates(ClonedPH, UserI->getParent()))
2376           U.set(UnswitchedReplacement);
2377       }
2378   }
2379 
2380   // We can change which blocks are exit blocks of all the cloned sibling
2381   // loops, the current loop, and any parent loops which shared exit blocks
2382   // with the current loop. As a consequence, we need to re-form LCSSA for
2383   // them. But we shouldn't need to re-form LCSSA for any child loops.
2384   // FIXME: This could be made more efficient by tracking which exit blocks are
2385   // new, and focusing on them, but that isn't likely to be necessary.
2386   //
2387   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2388   // loop nest and update every loop that could have had its exits changed. We
2389   // also need to cover any intervening loops. We add all of these loops to
2390   // a list and sort them by loop depth to achieve this without updating
2391   // unnecessary loops.
2392   auto UpdateLoop = [&](Loop &UpdateL) {
2393 #ifndef NDEBUG
2394     UpdateL.verifyLoop();
2395     for (Loop *ChildL : UpdateL) {
2396       ChildL->verifyLoop();
2397       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2398              "Perturbed a child loop's LCSSA form!");
2399     }
2400 #endif
2401     // First build LCSSA for this loop so that we can preserve it when
2402     // forming dedicated exits. We don't want to perturb some other loop's
2403     // LCSSA while doing that CFG edit.
2404     formLCSSA(UpdateL, DT, &LI, SE);
2405 
2406     // For loops reached by this loop's original exit blocks we may
2407     // introduced new, non-dedicated exits. At least try to re-form dedicated
2408     // exits for these loops. This may fail if they couldn't have dedicated
2409     // exits to start with.
2410     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2411   };
2412 
2413   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2414   // and we can do it in any order as they don't nest relative to each other.
2415   //
2416   // Also check if any of the loops we have updated have become top-level loops
2417   // as that will necessitate widening the outer loop scope.
2418   for (Loop *UpdatedL :
2419        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2420     UpdateLoop(*UpdatedL);
2421     if (UpdatedL->isOutermost())
2422       OuterExitL = nullptr;
2423   }
2424   if (IsStillLoop) {
2425     UpdateLoop(L);
2426     if (L.isOutermost())
2427       OuterExitL = nullptr;
2428   }
2429 
2430   // If the original loop had exit blocks, walk up through the outer most loop
2431   // of those exit blocks to update LCSSA and form updated dedicated exits.
2432   if (OuterExitL != &L)
2433     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2434          OuterL = OuterL->getParentLoop())
2435       UpdateLoop(*OuterL);
2436 
2437 #ifndef NDEBUG
2438   // Verify the entire loop structure to catch any incorrect updates before we
2439   // progress in the pass pipeline.
2440   LI.verify(DT);
2441 #endif
2442 
2443   // Now that we've unswitched something, make callbacks to report the changes.
2444   // For that we need to merge together the updated loops and the cloned loops
2445   // and check whether the original loop survived.
2446   SmallVector<Loop *, 4> SibLoops;
2447   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2448     if (UpdatedL->getParentLoop() == ParentL)
2449       SibLoops.push_back(UpdatedL);
2450   UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2451 
2452   if (MSSAU && VerifyMemorySSA)
2453     MSSAU->getMemorySSA()->verifyMemorySSA();
2454 
2455   if (BI)
2456     ++NumBranches;
2457   else
2458     ++NumSwitches;
2459 }
2460 
2461 /// Recursively compute the cost of a dominator subtree based on the per-block
2462 /// cost map provided.
2463 ///
2464 /// The recursive computation is memozied into the provided DT-indexed cost map
2465 /// to allow querying it for most nodes in the domtree without it becoming
2466 /// quadratic.
2467 static InstructionCost computeDomSubtreeCost(
2468     DomTreeNode &N,
2469     const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2470     SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2471   // Don't accumulate cost (or recurse through) blocks not in our block cost
2472   // map and thus not part of the duplication cost being considered.
2473   auto BBCostIt = BBCostMap.find(N.getBlock());
2474   if (BBCostIt == BBCostMap.end())
2475     return 0;
2476 
2477   // Lookup this node to see if we already computed its cost.
2478   auto DTCostIt = DTCostMap.find(&N);
2479   if (DTCostIt != DTCostMap.end())
2480     return DTCostIt->second;
2481 
2482   // If not, we have to compute it. We can't use insert above and update
2483   // because computing the cost may insert more things into the map.
2484   InstructionCost Cost = std::accumulate(
2485       N.begin(), N.end(), BBCostIt->second,
2486       [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2487         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2488       });
2489   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2490   (void)Inserted;
2491   assert(Inserted && "Should not insert a node while visiting children!");
2492   return Cost;
2493 }
2494 
2495 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2496 /// making the following replacement:
2497 ///
2498 ///   --code before guard--
2499 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2500 ///   --code after guard--
2501 ///
2502 /// into
2503 ///
2504 ///   --code before guard--
2505 ///   br i1 %cond, label %guarded, label %deopt
2506 ///
2507 /// guarded:
2508 ///   --code after guard--
2509 ///
2510 /// deopt:
2511 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2512 ///   unreachable
2513 ///
2514 /// It also makes all relevant DT and LI updates, so that all structures are in
2515 /// valid state after this transform.
2516 static BranchInst *
2517 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2518                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2519                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2520   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2521   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2522   BasicBlock *CheckBB = GI->getParent();
2523 
2524   if (MSSAU && VerifyMemorySSA)
2525      MSSAU->getMemorySSA()->verifyMemorySSA();
2526 
2527   // Remove all CheckBB's successors from DomTree. A block can be seen among
2528   // successors more than once, but for DomTree it should be added only once.
2529   SmallPtrSet<BasicBlock *, 4> Successors;
2530   for (auto *Succ : successors(CheckBB))
2531     if (Successors.insert(Succ).second)
2532       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2533 
2534   Instruction *DeoptBlockTerm =
2535       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2536   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2537   // SplitBlockAndInsertIfThen inserts control flow that branches to
2538   // DeoptBlockTerm if the condition is true.  We want the opposite.
2539   CheckBI->swapSuccessors();
2540 
2541   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2542   GuardedBlock->setName("guarded");
2543   CheckBI->getSuccessor(1)->setName("deopt");
2544   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2545 
2546   // We now have a new exit block.
2547   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2548 
2549   if (MSSAU)
2550     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2551 
2552   GI->moveBefore(DeoptBlockTerm);
2553   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2554 
2555   // Add new successors of CheckBB into DomTree.
2556   for (auto *Succ : successors(CheckBB))
2557     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2558 
2559   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2560   // successors.
2561   for (auto *Succ : Successors)
2562     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2563 
2564   // Make proper changes to DT.
2565   DT.applyUpdates(DTUpdates);
2566   // Inform LI of a new loop block.
2567   L.addBasicBlockToLoop(GuardedBlock, LI);
2568 
2569   if (MSSAU) {
2570     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2571     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2572     if (VerifyMemorySSA)
2573       MSSAU->getMemorySSA()->verifyMemorySSA();
2574   }
2575 
2576   ++NumGuards;
2577   return CheckBI;
2578 }
2579 
2580 /// Cost multiplier is a way to limit potentially exponential behavior
2581 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2582 /// candidates available. Also accounting for the number of "sibling" loops with
2583 /// the idea to account for previous unswitches that already happened on this
2584 /// cluster of loops. There was an attempt to keep this formula simple,
2585 /// just enough to limit the worst case behavior. Even if it is not that simple
2586 /// now it is still not an attempt to provide a detailed heuristic size
2587 /// prediction.
2588 ///
2589 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2590 /// unswitch candidates, making adequate predictions instead of wild guesses.
2591 /// That requires knowing not just the number of "remaining" candidates but
2592 /// also costs of unswitching for each of these candidates.
2593 static int CalculateUnswitchCostMultiplier(
2594     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2595     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2596         UnswitchCandidates) {
2597 
2598   // Guards and other exiting conditions do not contribute to exponential
2599   // explosion as soon as they dominate the latch (otherwise there might be
2600   // another path to the latch remaining that does not allow to eliminate the
2601   // loop copy on unswitch).
2602   BasicBlock *Latch = L.getLoopLatch();
2603   BasicBlock *CondBlock = TI.getParent();
2604   if (DT.dominates(CondBlock, Latch) &&
2605       (isGuard(&TI) ||
2606        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2607          return L.contains(SuccBB);
2608        }) <= 1)) {
2609     NumCostMultiplierSkipped++;
2610     return 1;
2611   }
2612 
2613   auto *ParentL = L.getParentLoop();
2614   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2615                                : std::distance(LI.begin(), LI.end()));
2616   // Count amount of clones that all the candidates might cause during
2617   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2618   int UnswitchedClones = 0;
2619   for (auto Candidate : UnswitchCandidates) {
2620     Instruction *CI = Candidate.first;
2621     BasicBlock *CondBlock = CI->getParent();
2622     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2623     if (isGuard(CI)) {
2624       if (!SkipExitingSuccessors)
2625         UnswitchedClones++;
2626       continue;
2627     }
2628     int NonExitingSuccessors = llvm::count_if(
2629         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2630           return !SkipExitingSuccessors || L.contains(SuccBB);
2631         });
2632     UnswitchedClones += Log2_32(NonExitingSuccessors);
2633   }
2634 
2635   // Ignore up to the "unscaled candidates" number of unswitch candidates
2636   // when calculating the power-of-two scaling of the cost. The main idea
2637   // with this control is to allow a small number of unswitches to happen
2638   // and rely more on siblings multiplier (see below) when the number
2639   // of candidates is small.
2640   unsigned ClonesPower =
2641       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2642 
2643   // Allowing top-level loops to spread a bit more than nested ones.
2644   int SiblingsMultiplier =
2645       std::max((ParentL ? SiblingsCount
2646                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2647                1);
2648   // Compute the cost multiplier in a way that won't overflow by saturating
2649   // at an upper bound.
2650   int CostMultiplier;
2651   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2652       SiblingsMultiplier > UnswitchThreshold)
2653     CostMultiplier = UnswitchThreshold;
2654   else
2655     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2656                               (int)UnswitchThreshold);
2657 
2658   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2659                     << " (siblings " << SiblingsMultiplier << " * clones "
2660                     << (1 << ClonesPower) << ")"
2661                     << " for unswitch candidate: " << TI << "\n");
2662   return CostMultiplier;
2663 }
2664 
2665 static bool unswitchBestCondition(
2666     Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2667     AAResults &AA, TargetTransformInfo &TTI,
2668     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2669     ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2670   // Collect all invariant conditions within this loop (as opposed to an inner
2671   // loop which would be handled when visiting that inner loop).
2672   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2673       UnswitchCandidates;
2674 
2675   // Whether or not we should also collect guards in the loop.
2676   bool CollectGuards = false;
2677   if (UnswitchGuards) {
2678     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2679         Intrinsic::getName(Intrinsic::experimental_guard));
2680     if (GuardDecl && !GuardDecl->use_empty())
2681       CollectGuards = true;
2682   }
2683 
2684   IVConditionInfo PartialIVInfo;
2685   for (auto *BB : L.blocks()) {
2686     if (LI.getLoopFor(BB) != &L)
2687       continue;
2688 
2689     if (CollectGuards)
2690       for (auto &I : *BB)
2691         if (isGuard(&I)) {
2692           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2693           // TODO: Support AND, OR conditions and partial unswitching.
2694           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2695             UnswitchCandidates.push_back({&I, {Cond}});
2696         }
2697 
2698     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2699       // We can only consider fully loop-invariant switch conditions as we need
2700       // to completely eliminate the switch after unswitching.
2701       if (!isa<Constant>(SI->getCondition()) &&
2702           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2703         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2704       continue;
2705     }
2706 
2707     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2708     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2709         BI->getSuccessor(0) == BI->getSuccessor(1))
2710       continue;
2711 
2712     // If BI's condition is 'select _, true, false', simplify it to confuse
2713     // matchers
2714     Value *Cond = BI->getCondition(), *CondNext;
2715     while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
2716       Cond = CondNext;
2717     BI->setCondition(Cond);
2718 
2719     if (L.isLoopInvariant(BI->getCondition())) {
2720       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2721       continue;
2722     }
2723 
2724     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2725     if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2726       TinyPtrVector<Value *> Invariants =
2727           collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2728       if (Invariants.empty())
2729         continue;
2730 
2731       UnswitchCandidates.push_back({BI, std::move(Invariants)});
2732       continue;
2733     }
2734   }
2735 
2736   Instruction *PartialIVCondBranch = nullptr;
2737   if (MSSAU && !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2738         return TerminatorAndInvariants.first == L.getHeader()->getTerminator();
2739       })) {
2740     MemorySSA *MSSA = MSSAU->getMemorySSA();
2741     if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2742       LLVM_DEBUG(
2743           dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2744                  << *Info->InstToDuplicate[0] << "\n");
2745       PartialIVInfo = *Info;
2746       PartialIVCondBranch = L.getHeader()->getTerminator();
2747       TinyPtrVector<Value *> ValsToDuplicate;
2748       for (auto *Inst : Info->InstToDuplicate)
2749         ValsToDuplicate.push_back(Inst);
2750       UnswitchCandidates.push_back(
2751           {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2752     }
2753   }
2754 
2755   // If we didn't find any candidates, we're done.
2756   if (UnswitchCandidates.empty())
2757     return false;
2758 
2759   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2760   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2761   // irreducible control flow into reducible control flow and introduce new
2762   // loops "out of thin air". If we ever discover important use cases for doing
2763   // this, we can add support to loop unswitch, but it is a lot of complexity
2764   // for what seems little or no real world benefit.
2765   LoopBlocksRPO RPOT(&L);
2766   RPOT.perform(&LI);
2767   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2768     return false;
2769 
2770   SmallVector<BasicBlock *, 4> ExitBlocks;
2771   L.getUniqueExitBlocks(ExitBlocks);
2772 
2773   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2774   // don't know how to split those exit blocks.
2775   // FIXME: We should teach SplitBlock to handle this and remove this
2776   // restriction.
2777   for (auto *ExitBB : ExitBlocks) {
2778     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2779       LLVM_DEBUG(
2780           dbgs() << "Cannot unswitch because of cleanuppad in exit block\n");
2781       return false;
2782     }
2783   }
2784 
2785   LLVM_DEBUG(
2786       dbgs() << "Considering " << UnswitchCandidates.size()
2787              << " non-trivial loop invariant conditions for unswitching.\n");
2788 
2789   // Given that unswitching these terminators will require duplicating parts of
2790   // the loop, so we need to be able to model that cost. Compute the ephemeral
2791   // values and set up a data structure to hold per-BB costs. We cache each
2792   // block's cost so that we don't recompute this when considering different
2793   // subsets of the loop for duplication during unswitching.
2794   SmallPtrSet<const Value *, 4> EphValues;
2795   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2796   SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2797 
2798   // Compute the cost of each block, as well as the total loop cost. Also, bail
2799   // out if we see instructions which are incompatible with loop unswitching
2800   // (convergent, noduplicate, or cross-basic-block tokens).
2801   // FIXME: We might be able to safely handle some of these in non-duplicated
2802   // regions.
2803   TargetTransformInfo::TargetCostKind CostKind =
2804       L.getHeader()->getParent()->hasMinSize()
2805       ? TargetTransformInfo::TCK_CodeSize
2806       : TargetTransformInfo::TCK_SizeAndLatency;
2807   InstructionCost LoopCost = 0;
2808   for (auto *BB : L.blocks()) {
2809     InstructionCost Cost = 0;
2810     for (auto &I : *BB) {
2811       if (EphValues.count(&I))
2812         continue;
2813 
2814       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2815         return false;
2816       if (auto *CB = dyn_cast<CallBase>(&I))
2817         if (CB->isConvergent() || CB->cannotDuplicate())
2818           return false;
2819 
2820       Cost += TTI.getUserCost(&I, CostKind);
2821     }
2822     assert(Cost >= 0 && "Must not have negative costs!");
2823     LoopCost += Cost;
2824     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2825     BBCostMap[BB] = Cost;
2826   }
2827   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2828 
2829   // Now we find the best candidate by searching for the one with the following
2830   // properties in order:
2831   //
2832   // 1) An unswitching cost below the threshold
2833   // 2) The smallest number of duplicated unswitch candidates (to avoid
2834   //    creating redundant subsequent unswitching)
2835   // 3) The smallest cost after unswitching.
2836   //
2837   // We prioritize reducing fanout of unswitch candidates provided the cost
2838   // remains below the threshold because this has a multiplicative effect.
2839   //
2840   // This requires memoizing each dominator subtree to avoid redundant work.
2841   //
2842   // FIXME: Need to actually do the number of candidates part above.
2843   SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2844   // Given a terminator which might be unswitched, computes the non-duplicated
2845   // cost for that terminator.
2846   auto ComputeUnswitchedCost = [&](Instruction &TI,
2847                                    bool FullUnswitch) -> InstructionCost {
2848     BasicBlock &BB = *TI.getParent();
2849     SmallPtrSet<BasicBlock *, 4> Visited;
2850 
2851     InstructionCost Cost = 0;
2852     for (BasicBlock *SuccBB : successors(&BB)) {
2853       // Don't count successors more than once.
2854       if (!Visited.insert(SuccBB).second)
2855         continue;
2856 
2857       // If this is a partial unswitch candidate, then it must be a conditional
2858       // branch with a condition of either `or`, `and`, their corresponding
2859       // select forms or partially invariant instructions. In that case, one of
2860       // the successors is necessarily duplicated, so don't even try to remove
2861       // its cost.
2862       if (!FullUnswitch) {
2863         auto &BI = cast<BranchInst>(TI);
2864         if (match(BI.getCondition(), m_LogicalAnd())) {
2865           if (SuccBB == BI.getSuccessor(1))
2866             continue;
2867         } else if (match(BI.getCondition(), m_LogicalOr())) {
2868           if (SuccBB == BI.getSuccessor(0))
2869             continue;
2870         } else if (!PartialIVInfo.InstToDuplicate.empty()) {
2871           if (PartialIVInfo.KnownValue->isOneValue() &&
2872               SuccBB == BI.getSuccessor(1))
2873             continue;
2874           else if (!PartialIVInfo.KnownValue->isOneValue() &&
2875                    SuccBB == BI.getSuccessor(0))
2876             continue;
2877         }
2878       }
2879 
2880       // This successor's domtree will not need to be duplicated after
2881       // unswitching if the edge to the successor dominates it (and thus the
2882       // entire tree). This essentially means there is no other path into this
2883       // subtree and so it will end up live in only one clone of the loop.
2884       if (SuccBB->getUniquePredecessor() ||
2885           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2886             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2887           })) {
2888         Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2889         assert(Cost <= LoopCost &&
2890                "Non-duplicated cost should never exceed total loop cost!");
2891       }
2892     }
2893 
2894     // Now scale the cost by the number of unique successors minus one. We
2895     // subtract one because there is already at least one copy of the entire
2896     // loop. This is computing the new cost of unswitching a condition.
2897     // Note that guards always have 2 unique successors that are implicit and
2898     // will be materialized if we decide to unswitch it.
2899     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2900     assert(SuccessorsCount > 1 &&
2901            "Cannot unswitch a condition without multiple distinct successors!");
2902     return (LoopCost - Cost) * (SuccessorsCount - 1);
2903   };
2904   Instruction *BestUnswitchTI = nullptr;
2905   InstructionCost BestUnswitchCost = 0;
2906   ArrayRef<Value *> BestUnswitchInvariants;
2907   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2908     Instruction &TI = *TerminatorAndInvariants.first;
2909     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2910     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2911     InstructionCost CandidateCost = ComputeUnswitchedCost(
2912         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2913                                      Invariants[0] == BI->getCondition()));
2914     // Calculate cost multiplier which is a tool to limit potentially
2915     // exponential behavior of loop-unswitch.
2916     if (EnableUnswitchCostMultiplier) {
2917       int CostMultiplier =
2918           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2919       assert(
2920           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2921           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2922       CandidateCost *= CostMultiplier;
2923       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2924                         << " (multiplier: " << CostMultiplier << ")"
2925                         << " for unswitch candidate: " << TI << "\n");
2926     } else {
2927       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2928                         << " for unswitch candidate: " << TI << "\n");
2929     }
2930 
2931     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2932       BestUnswitchTI = &TI;
2933       BestUnswitchCost = CandidateCost;
2934       BestUnswitchInvariants = Invariants;
2935     }
2936   }
2937   assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2938 
2939   if (BestUnswitchCost >= UnswitchThreshold) {
2940     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2941                       << BestUnswitchCost << "\n");
2942     return false;
2943   }
2944 
2945   if (BestUnswitchTI != PartialIVCondBranch)
2946     PartialIVInfo.InstToDuplicate.clear();
2947 
2948   // If the best candidate is a guard, turn it into a branch.
2949   if (isGuard(BestUnswitchTI))
2950     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2951                                          ExitBlocks, DT, LI, MSSAU);
2952 
2953   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2954                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2955                     << "\n");
2956   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2957                                ExitBlocks, PartialIVInfo, DT, LI, AC,
2958                                UnswitchCB, SE, MSSAU);
2959   return true;
2960 }
2961 
2962 /// Unswitch control flow predicated on loop invariant conditions.
2963 ///
2964 /// This first hoists all branches or switches which are trivial (IE, do not
2965 /// require duplicating any part of the loop) out of the loop body. It then
2966 /// looks at other loop invariant control flows and tries to unswitch those as
2967 /// well by cloning the loop if the result is small enough.
2968 ///
2969 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
2970 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
2971 /// valid (i.e. its use is enabled).
2972 ///
2973 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2974 /// true, we will attempt to do non-trivial unswitching as well as trivial
2975 /// unswitching.
2976 ///
2977 /// The `UnswitchCB` callback provided will be run after unswitching is
2978 /// complete, with the first parameter set to `true` if the provided loop
2979 /// remains a loop, and a list of new sibling loops created.
2980 ///
2981 /// If `SE` is non-null, we will update that analysis based on the unswitching
2982 /// done.
2983 static bool
2984 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2985              AAResults &AA, TargetTransformInfo &TTI, bool NonTrivial,
2986              function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2987              ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2988   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2989          "Loops must be in LCSSA form before unswitching.");
2990 
2991   // Must be in loop simplified form: we need a preheader and dedicated exits.
2992   if (!L.isLoopSimplifyForm())
2993     return false;
2994 
2995   // Try trivial unswitch first before loop over other basic blocks in the loop.
2996   if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
2997     // If we unswitched successfully we will want to clean up the loop before
2998     // processing it further so just mark it as unswitched and return.
2999     UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3000     return true;
3001   }
3002 
3003   // Check whether we should continue with non-trivial conditions.
3004   // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3005   //                           unswitching for testing and debugging.
3006   // NonTrivial: Parameter that enables non-trivial unswitching for this
3007   //             invocation of the transform. But this should be allowed only
3008   //             for targets without branch divergence.
3009   //
3010   // FIXME: If divergence analysis becomes available to a loop
3011   // transform, we should allow unswitching for non-trivial uniform
3012   // branches even on targets that have divergence.
3013   // https://bugs.llvm.org/show_bug.cgi?id=48819
3014   bool ContinueWithNonTrivial =
3015       EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3016   if (!ContinueWithNonTrivial)
3017     return false;
3018 
3019   // Skip non-trivial unswitching for optsize functions.
3020   if (L.getHeader()->getParent()->hasOptSize())
3021     return false;
3022 
3023   // Skip non-trivial unswitching for loops that cannot be cloned.
3024   if (!L.isSafeToClone())
3025     return false;
3026 
3027   // For non-trivial unswitching, because it often creates new loops, we rely on
3028   // the pass manager to iterate on the loops rather than trying to immediately
3029   // reach a fixed point. There is no substantial advantage to iterating
3030   // internally, and if any of the new loops are simplified enough to contain
3031   // trivial unswitching we want to prefer those.
3032 
3033   // Try to unswitch the best invariant condition. We prefer this full unswitch to
3034   // a partial unswitch when possible below the threshold.
3035   if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU))
3036     return true;
3037 
3038   // No other opportunities to unswitch.
3039   return false;
3040 }
3041 
3042 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3043                                               LoopStandardAnalysisResults &AR,
3044                                               LPMUpdater &U) {
3045   Function &F = *L.getHeader()->getParent();
3046   (void)F;
3047 
3048   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3049                     << "\n");
3050 
3051   // Save the current loop name in a variable so that we can report it even
3052   // after it has been deleted.
3053   std::string LoopName = std::string(L.getName());
3054 
3055   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3056                                         bool PartiallyInvariant,
3057                                         ArrayRef<Loop *> NewLoops) {
3058     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3059     if (!NewLoops.empty())
3060       U.addSiblingLoops(NewLoops);
3061 
3062     // If the current loop remains valid, we should revisit it to catch any
3063     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3064     if (CurrentLoopValid) {
3065       if (!PartiallyInvariant)
3066         U.revisitCurrentLoop();
3067     } else
3068       U.markLoopAsDeleted(L, LoopName);
3069   };
3070 
3071   Optional<MemorySSAUpdater> MSSAU;
3072   if (AR.MSSA) {
3073     MSSAU = MemorySSAUpdater(AR.MSSA);
3074     if (VerifyMemorySSA)
3075       AR.MSSA->verifyMemorySSA();
3076   }
3077   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, NonTrivial,
3078                     UnswitchCB, &AR.SE,
3079                     MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
3080     return PreservedAnalyses::all();
3081 
3082   if (AR.MSSA && VerifyMemorySSA)
3083     AR.MSSA->verifyMemorySSA();
3084 
3085   // Historically this pass has had issues with the dominator tree so verify it
3086   // in asserts builds.
3087   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3088 
3089   auto PA = getLoopPassPreservedAnalyses();
3090   if (AR.MSSA)
3091     PA.preserve<MemorySSAAnalysis>();
3092   return PA;
3093 }
3094 
3095 namespace {
3096 
3097 class SimpleLoopUnswitchLegacyPass : public LoopPass {
3098   bool NonTrivial;
3099 
3100 public:
3101   static char ID; // Pass ID, replacement for typeid
3102 
3103   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3104       : LoopPass(ID), NonTrivial(NonTrivial) {
3105     initializeSimpleLoopUnswitchLegacyPassPass(
3106         *PassRegistry::getPassRegistry());
3107   }
3108 
3109   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3110 
3111   void getAnalysisUsage(AnalysisUsage &AU) const override {
3112     AU.addRequired<AssumptionCacheTracker>();
3113     AU.addRequired<TargetTransformInfoWrapperPass>();
3114     if (EnableMSSALoopDependency) {
3115       AU.addRequired<MemorySSAWrapperPass>();
3116       AU.addPreserved<MemorySSAWrapperPass>();
3117     }
3118     getLoopAnalysisUsage(AU);
3119   }
3120 };
3121 
3122 } // end anonymous namespace
3123 
3124 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3125   if (skipLoop(L))
3126     return false;
3127 
3128   Function &F = *L->getHeader()->getParent();
3129 
3130   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3131                     << "\n");
3132 
3133   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3134   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3135   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3136   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3137   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3138   MemorySSA *MSSA = nullptr;
3139   Optional<MemorySSAUpdater> MSSAU;
3140   if (EnableMSSALoopDependency) {
3141     MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3142     MSSAU = MemorySSAUpdater(MSSA);
3143   }
3144 
3145   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3146   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3147 
3148   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3149                                ArrayRef<Loop *> NewLoops) {
3150     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3151     for (auto *NewL : NewLoops)
3152       LPM.addLoop(*NewL);
3153 
3154     // If the current loop remains valid, re-add it to the queue. This is
3155     // a little wasteful as we'll finish processing the current loop as well,
3156     // but it is the best we can do in the old PM.
3157     if (CurrentLoopValid) {
3158       // If the current loop has been unswitched using a partially invariant
3159       // condition, we should not re-add the current loop to avoid unswitching
3160       // on the same condition again.
3161       if (!PartiallyInvariant)
3162         LPM.addLoop(*L);
3163     } else
3164       LPM.markLoopAsDeleted(*L);
3165   };
3166 
3167   if (MSSA && VerifyMemorySSA)
3168     MSSA->verifyMemorySSA();
3169 
3170   bool Changed =
3171       unswitchLoop(*L, DT, LI, AC, AA, TTI, NonTrivial, UnswitchCB, SE,
3172                    MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
3173 
3174   if (MSSA && VerifyMemorySSA)
3175     MSSA->verifyMemorySSA();
3176 
3177   // Historically this pass has had issues with the dominator tree so verify it
3178   // in asserts builds.
3179   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3180 
3181   return Changed;
3182 }
3183 
3184 char SimpleLoopUnswitchLegacyPass::ID = 0;
3185 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3186                       "Simple unswitch loops", false, false)
3187 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3188 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3189 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3190 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3191 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3192 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3193 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3194                     "Simple unswitch loops", false, false)
3195 
3196 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3197   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3198 }
3199