xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision 84eeb82888a033bd02b53023f9408760fc86bd81)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/GenericDomTree.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54 #include "llvm/Transforms/Utils/Cloning.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Transforms/Utils/LoopUtils.h"
57 #include "llvm/Transforms/Utils/ValueMapper.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <numeric>
62 #include <utility>
63 
64 #define DEBUG_TYPE "simple-loop-unswitch"
65 
66 using namespace llvm;
67 using namespace llvm::PatternMatch;
68 
69 STATISTIC(NumBranches, "Number of branches unswitched");
70 STATISTIC(NumSwitches, "Number of switches unswitched");
71 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
72 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
73 STATISTIC(
74     NumCostMultiplierSkipped,
75     "Number of unswitch candidates that had their cost multiplier skipped");
76 
77 static cl::opt<bool> EnableNonTrivialUnswitch(
78     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
79     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
80              "following the configuration passed into the pass."));
81 
82 static cl::opt<int>
83     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
84                       cl::desc("The cost threshold for unswitching a loop."));
85 
86 static cl::opt<bool> EnableUnswitchCostMultiplier(
87     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
88     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
89              "explosion in nontrivial unswitch."));
90 static cl::opt<int> UnswitchSiblingsToplevelDiv(
91     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
92     cl::desc("Toplevel siblings divisor for cost multiplier."));
93 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
94     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
95     cl::desc("Number of unswitch candidates that are ignored when calculating "
96              "cost multiplier."));
97 static cl::opt<bool> UnswitchGuards(
98     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
99     cl::desc("If enabled, simple loop unswitching will also consider "
100              "llvm.experimental.guard intrinsics as unswitch candidates."));
101 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
102     "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
103     cl::init(false), cl::Hidden,
104     cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
105              "null checks to save time analyzing if we can keep it."));
106 static cl::opt<unsigned>
107     MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
108                   cl::desc("Max number of memory uses to explore during "
109                            "partial unswitching analysis"),
110                   cl::init(100), cl::Hidden);
111 
112 /// Collect all of the loop invariant input values transitively used by the
113 /// homogeneous instruction graph from a given root.
114 ///
115 /// This essentially walks from a root recursively through loop variant operands
116 /// which have the exact same opcode and finds all inputs which are loop
117 /// invariant. For some operations these can be re-associated and unswitched out
118 /// of the loop entirely.
119 static TinyPtrVector<Value *>
120 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
121                                          LoopInfo &LI) {
122   assert(!L.isLoopInvariant(&Root) &&
123          "Only need to walk the graph if root itself is not invariant.");
124   TinyPtrVector<Value *> Invariants;
125 
126   bool IsRootAnd = match(&Root, m_LogicalAnd());
127   bool IsRootOr  = match(&Root, m_LogicalOr());
128 
129   // Build a worklist and recurse through operators collecting invariants.
130   SmallVector<Instruction *, 4> Worklist;
131   SmallPtrSet<Instruction *, 8> Visited;
132   Worklist.push_back(&Root);
133   Visited.insert(&Root);
134   do {
135     Instruction &I = *Worklist.pop_back_val();
136     for (Value *OpV : I.operand_values()) {
137       // Skip constants as unswitching isn't interesting for them.
138       if (isa<Constant>(OpV))
139         continue;
140 
141       // Add it to our result if loop invariant.
142       if (L.isLoopInvariant(OpV)) {
143         Invariants.push_back(OpV);
144         continue;
145       }
146 
147       // If not an instruction with the same opcode, nothing we can do.
148       Instruction *OpI = dyn_cast<Instruction>(OpV);
149 
150       if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
151                   (IsRootOr  && match(OpI, m_LogicalOr())))) {
152         // Visit this operand.
153         if (Visited.insert(OpI).second)
154           Worklist.push_back(OpI);
155       }
156     }
157   } while (!Worklist.empty());
158 
159   return Invariants;
160 }
161 
162 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
163                                      Constant &Replacement) {
164   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
165 
166   // Replace uses of LIC in the loop with the given constant.
167   // We use make_early_inc_range as set invalidates the iterator.
168   for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
169     Instruction *UserI = dyn_cast<Instruction>(U.getUser());
170 
171     // Replace this use within the loop body.
172     if (UserI && L.contains(UserI))
173       U.set(&Replacement);
174   }
175 }
176 
177 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
178 /// incoming values along this edge.
179 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
180                                          BasicBlock &ExitBB) {
181   for (Instruction &I : ExitBB) {
182     auto *PN = dyn_cast<PHINode>(&I);
183     if (!PN)
184       // No more PHIs to check.
185       return true;
186 
187     // If the incoming value for this edge isn't loop invariant the unswitch
188     // won't be trivial.
189     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
190       return false;
191   }
192   llvm_unreachable("Basic blocks should never be empty!");
193 }
194 
195 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
196 /// end of \p BB and conditionally branch on the copied condition. We only
197 /// branch on a single value.
198 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
199                                                   ArrayRef<Value *> Invariants,
200                                                   bool Direction,
201                                                   BasicBlock &UnswitchedSucc,
202                                                   BasicBlock &NormalSucc) {
203   IRBuilder<> IRB(&BB);
204 
205   Value *Cond = Direction ? IRB.CreateOr(Invariants) :
206     IRB.CreateAnd(Invariants);
207   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
208                    Direction ? &NormalSucc : &UnswitchedSucc);
209 }
210 
211 /// Copy a set of loop invariant values, and conditionally branch on them.
212 static void buildPartialInvariantUnswitchConditionalBranch(
213     BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
214     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
215     MemorySSAUpdater *MSSAU) {
216   ValueToValueMapTy VMap;
217   for (auto *Val : reverse(ToDuplicate)) {
218     Instruction *Inst = cast<Instruction>(Val);
219     Instruction *NewInst = Inst->clone();
220     BB.getInstList().insert(BB.end(), NewInst);
221     RemapInstruction(NewInst, VMap,
222                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
223     VMap[Val] = NewInst;
224 
225     if (!MSSAU)
226       continue;
227 
228     MemorySSA *MSSA = MSSAU->getMemorySSA();
229     if (auto *MemUse =
230             dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
231       auto *DefiningAccess = MemUse->getDefiningAccess();
232       // Get the first defining access before the loop.
233       while (L.contains(DefiningAccess->getBlock())) {
234         // If the defining access is a MemoryPhi, get the incoming
235         // value for the pre-header as defining access.
236         if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
237           DefiningAccess =
238               MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
239         else
240           DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
241       }
242       MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
243                                     NewInst->getParent(),
244                                     MemorySSA::BeforeTerminator);
245     }
246   }
247 
248   IRBuilder<> IRB(&BB);
249   Value *Cond = VMap[ToDuplicate[0]];
250   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
251                    Direction ? &NormalSucc : &UnswitchedSucc);
252 }
253 
254 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
255 ///
256 /// Requires that the loop exit and unswitched basic block are the same, and
257 /// that the exiting block was a unique predecessor of that block. Rewrites the
258 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
259 /// PHI nodes from the old preheader that now contains the unswitched
260 /// terminator.
261 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
262                                                   BasicBlock &OldExitingBB,
263                                                   BasicBlock &OldPH) {
264   for (PHINode &PN : UnswitchedBB.phis()) {
265     // When the loop exit is directly unswitched we just need to update the
266     // incoming basic block. We loop to handle weird cases with repeated
267     // incoming blocks, but expect to typically only have one operand here.
268     for (auto i : seq<int>(0, PN.getNumOperands())) {
269       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
270              "Found incoming block different from unique predecessor!");
271       PN.setIncomingBlock(i, &OldPH);
272     }
273   }
274 }
275 
276 /// Rewrite the PHI nodes in the loop exit basic block and the split off
277 /// unswitched block.
278 ///
279 /// Because the exit block remains an exit from the loop, this rewrites the
280 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
281 /// nodes into the unswitched basic block to select between the value in the
282 /// old preheader and the loop exit.
283 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
284                                                       BasicBlock &UnswitchedBB,
285                                                       BasicBlock &OldExitingBB,
286                                                       BasicBlock &OldPH,
287                                                       bool FullUnswitch) {
288   assert(&ExitBB != &UnswitchedBB &&
289          "Must have different loop exit and unswitched blocks!");
290   Instruction *InsertPt = &*UnswitchedBB.begin();
291   for (PHINode &PN : ExitBB.phis()) {
292     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
293                                   PN.getName() + ".split", InsertPt);
294 
295     // Walk backwards over the old PHI node's inputs to minimize the cost of
296     // removing each one. We have to do this weird loop manually so that we
297     // create the same number of new incoming edges in the new PHI as we expect
298     // each case-based edge to be included in the unswitched switch in some
299     // cases.
300     // FIXME: This is really, really gross. It would be much cleaner if LLVM
301     // allowed us to create a single entry for a predecessor block without
302     // having separate entries for each "edge" even though these edges are
303     // required to produce identical results.
304     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
305       if (PN.getIncomingBlock(i) != &OldExitingBB)
306         continue;
307 
308       Value *Incoming = PN.getIncomingValue(i);
309       if (FullUnswitch)
310         // No more edge from the old exiting block to the exit block.
311         PN.removeIncomingValue(i);
312 
313       NewPN->addIncoming(Incoming, &OldPH);
314     }
315 
316     // Now replace the old PHI with the new one and wire the old one in as an
317     // input to the new one.
318     PN.replaceAllUsesWith(NewPN);
319     NewPN->addIncoming(&PN, &ExitBB);
320   }
321 }
322 
323 /// Hoist the current loop up to the innermost loop containing a remaining exit.
324 ///
325 /// Because we've removed an exit from the loop, we may have changed the set of
326 /// loops reachable and need to move the current loop up the loop nest or even
327 /// to an entirely separate nest.
328 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
329                                  DominatorTree &DT, LoopInfo &LI,
330                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
331   // If the loop is already at the top level, we can't hoist it anywhere.
332   Loop *OldParentL = L.getParentLoop();
333   if (!OldParentL)
334     return;
335 
336   SmallVector<BasicBlock *, 4> Exits;
337   L.getExitBlocks(Exits);
338   Loop *NewParentL = nullptr;
339   for (auto *ExitBB : Exits)
340     if (Loop *ExitL = LI.getLoopFor(ExitBB))
341       if (!NewParentL || NewParentL->contains(ExitL))
342         NewParentL = ExitL;
343 
344   if (NewParentL == OldParentL)
345     return;
346 
347   // The new parent loop (if different) should always contain the old one.
348   if (NewParentL)
349     assert(NewParentL->contains(OldParentL) &&
350            "Can only hoist this loop up the nest!");
351 
352   // The preheader will need to move with the body of this loop. However,
353   // because it isn't in this loop we also need to update the primary loop map.
354   assert(OldParentL == LI.getLoopFor(&Preheader) &&
355          "Parent loop of this loop should contain this loop's preheader!");
356   LI.changeLoopFor(&Preheader, NewParentL);
357 
358   // Remove this loop from its old parent.
359   OldParentL->removeChildLoop(&L);
360 
361   // Add the loop either to the new parent or as a top-level loop.
362   if (NewParentL)
363     NewParentL->addChildLoop(&L);
364   else
365     LI.addTopLevelLoop(&L);
366 
367   // Remove this loops blocks from the old parent and every other loop up the
368   // nest until reaching the new parent. Also update all of these
369   // no-longer-containing loops to reflect the nesting change.
370   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
371        OldContainingL = OldContainingL->getParentLoop()) {
372     llvm::erase_if(OldContainingL->getBlocksVector(),
373                    [&](const BasicBlock *BB) {
374                      return BB == &Preheader || L.contains(BB);
375                    });
376 
377     OldContainingL->getBlocksSet().erase(&Preheader);
378     for (BasicBlock *BB : L.blocks())
379       OldContainingL->getBlocksSet().erase(BB);
380 
381     // Because we just hoisted a loop out of this one, we have essentially
382     // created new exit paths from it. That means we need to form LCSSA PHI
383     // nodes for values used in the no-longer-nested loop.
384     formLCSSA(*OldContainingL, DT, &LI, SE);
385 
386     // We shouldn't need to form dedicated exits because the exit introduced
387     // here is the (just split by unswitching) preheader. However, after trivial
388     // unswitching it is possible to get new non-dedicated exits out of parent
389     // loop so let's conservatively form dedicated exit blocks and figure out
390     // if we can optimize later.
391     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
392                             /*PreserveLCSSA*/ true);
393   }
394 }
395 
396 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
397 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
398 // as exiting block.
399 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
400   Loop *TopMost = LI.getLoopFor(ExitBB);
401   Loop *Current = TopMost;
402   while (Current) {
403     if (Current->isLoopExiting(ExitBB))
404       TopMost = Current;
405     Current = Current->getParentLoop();
406   }
407   return TopMost;
408 }
409 
410 /// Unswitch a trivial branch if the condition is loop invariant.
411 ///
412 /// This routine should only be called when loop code leading to the branch has
413 /// been validated as trivial (no side effects). This routine checks if the
414 /// condition is invariant and one of the successors is a loop exit. This
415 /// allows us to unswitch without duplicating the loop, making it trivial.
416 ///
417 /// If this routine fails to unswitch the branch it returns false.
418 ///
419 /// If the branch can be unswitched, this routine splits the preheader and
420 /// hoists the branch above that split. Preserves loop simplified form
421 /// (splitting the exit block as necessary). It simplifies the branch within
422 /// the loop to an unconditional branch but doesn't remove it entirely. Further
423 /// cleanup can be done with some simplify-cfg like pass.
424 ///
425 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
426 /// invalidated by this.
427 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
428                                   LoopInfo &LI, ScalarEvolution *SE,
429                                   MemorySSAUpdater *MSSAU) {
430   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
431   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
432 
433   // The loop invariant values that we want to unswitch.
434   TinyPtrVector<Value *> Invariants;
435 
436   // When true, we're fully unswitching the branch rather than just unswitching
437   // some input conditions to the branch.
438   bool FullUnswitch = false;
439 
440   if (L.isLoopInvariant(BI.getCondition())) {
441     Invariants.push_back(BI.getCondition());
442     FullUnswitch = true;
443   } else {
444     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
445       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
446     if (Invariants.empty()) {
447       LLVM_DEBUG(dbgs() << "   Couldn't find invariant inputs!\n");
448       return false;
449     }
450   }
451 
452   // Check that one of the branch's successors exits, and which one.
453   bool ExitDirection = true;
454   int LoopExitSuccIdx = 0;
455   auto *LoopExitBB = BI.getSuccessor(0);
456   if (L.contains(LoopExitBB)) {
457     ExitDirection = false;
458     LoopExitSuccIdx = 1;
459     LoopExitBB = BI.getSuccessor(1);
460     if (L.contains(LoopExitBB)) {
461       LLVM_DEBUG(dbgs() << "   Branch doesn't exit the loop!\n");
462       return false;
463     }
464   }
465   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
466   auto *ParentBB = BI.getParent();
467   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
468     LLVM_DEBUG(dbgs() << "   Loop exit PHI's aren't loop-invariant!\n");
469     return false;
470   }
471 
472   // When unswitching only part of the branch's condition, we need the exit
473   // block to be reached directly from the partially unswitched input. This can
474   // be done when the exit block is along the true edge and the branch condition
475   // is a graph of `or` operations, or the exit block is along the false edge
476   // and the condition is a graph of `and` operations.
477   if (!FullUnswitch) {
478     if (ExitDirection ? !match(BI.getCondition(), m_LogicalOr())
479                       : !match(BI.getCondition(), m_LogicalAnd())) {
480       LLVM_DEBUG(dbgs() << "   Branch condition is in improper form for "
481                            "non-full unswitch!\n");
482       return false;
483     }
484   }
485 
486   LLVM_DEBUG({
487     dbgs() << "    unswitching trivial invariant conditions for: " << BI
488            << "\n";
489     for (Value *Invariant : Invariants) {
490       dbgs() << "      " << *Invariant << " == true";
491       if (Invariant != Invariants.back())
492         dbgs() << " ||";
493       dbgs() << "\n";
494     }
495   });
496 
497   // If we have scalar evolutions, we need to invalidate them including this
498   // loop, the loop containing the exit block and the topmost parent loop
499   // exiting via LoopExitBB.
500   if (SE) {
501     if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
502       SE->forgetLoop(ExitL);
503     else
504       // Forget the entire nest as this exits the entire nest.
505       SE->forgetTopmostLoop(&L);
506   }
507 
508   if (MSSAU && VerifyMemorySSA)
509     MSSAU->getMemorySSA()->verifyMemorySSA();
510 
511   // Split the preheader, so that we know that there is a safe place to insert
512   // the conditional branch. We will change the preheader to have a conditional
513   // branch on LoopCond.
514   BasicBlock *OldPH = L.getLoopPreheader();
515   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
516 
517   // Now that we have a place to insert the conditional branch, create a place
518   // to branch to: this is the exit block out of the loop that we are
519   // unswitching. We need to split this if there are other loop predecessors.
520   // Because the loop is in simplified form, *any* other predecessor is enough.
521   BasicBlock *UnswitchedBB;
522   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
523     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
524            "A branch's parent isn't a predecessor!");
525     UnswitchedBB = LoopExitBB;
526   } else {
527     UnswitchedBB =
528         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
529   }
530 
531   if (MSSAU && VerifyMemorySSA)
532     MSSAU->getMemorySSA()->verifyMemorySSA();
533 
534   // Actually move the invariant uses into the unswitched position. If possible,
535   // we do this by moving the instructions, but when doing partial unswitching
536   // we do it by building a new merge of the values in the unswitched position.
537   OldPH->getTerminator()->eraseFromParent();
538   if (FullUnswitch) {
539     // If fully unswitching, we can use the existing branch instruction.
540     // Splice it into the old PH to gate reaching the new preheader and re-point
541     // its successors.
542     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
543                                 BI);
544     if (MSSAU) {
545       // Temporarily clone the terminator, to make MSSA update cheaper by
546       // separating "insert edge" updates from "remove edge" ones.
547       ParentBB->getInstList().push_back(BI.clone());
548     } else {
549       // Create a new unconditional branch that will continue the loop as a new
550       // terminator.
551       BranchInst::Create(ContinueBB, ParentBB);
552     }
553     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
554     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
555   } else {
556     // Only unswitching a subset of inputs to the condition, so we will need to
557     // build a new branch that merges the invariant inputs.
558     if (ExitDirection)
559       assert(match(BI.getCondition(), m_LogicalOr()) &&
560              "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
561              "condition!");
562     else
563       assert(match(BI.getCondition(), m_LogicalAnd()) &&
564              "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
565              " condition!");
566     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
567                                           *UnswitchedBB, *NewPH);
568   }
569 
570   // Update the dominator tree with the added edge.
571   DT.insertEdge(OldPH, UnswitchedBB);
572 
573   // After the dominator tree was updated with the added edge, update MemorySSA
574   // if available.
575   if (MSSAU) {
576     SmallVector<CFGUpdate, 1> Updates;
577     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
578     MSSAU->applyInsertUpdates(Updates, DT);
579   }
580 
581   // Finish updating dominator tree and memory ssa for full unswitch.
582   if (FullUnswitch) {
583     if (MSSAU) {
584       // Remove the cloned branch instruction.
585       ParentBB->getTerminator()->eraseFromParent();
586       // Create unconditional branch now.
587       BranchInst::Create(ContinueBB, ParentBB);
588       MSSAU->removeEdge(ParentBB, LoopExitBB);
589     }
590     DT.deleteEdge(ParentBB, LoopExitBB);
591   }
592 
593   if (MSSAU && VerifyMemorySSA)
594     MSSAU->getMemorySSA()->verifyMemorySSA();
595 
596   // Rewrite the relevant PHI nodes.
597   if (UnswitchedBB == LoopExitBB)
598     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
599   else
600     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
601                                               *ParentBB, *OldPH, FullUnswitch);
602 
603   // The constant we can replace all of our invariants with inside the loop
604   // body. If any of the invariants have a value other than this the loop won't
605   // be entered.
606   ConstantInt *Replacement = ExitDirection
607                                  ? ConstantInt::getFalse(BI.getContext())
608                                  : ConstantInt::getTrue(BI.getContext());
609 
610   // Since this is an i1 condition we can also trivially replace uses of it
611   // within the loop with a constant.
612   for (Value *Invariant : Invariants)
613     replaceLoopInvariantUses(L, Invariant, *Replacement);
614 
615   // If this was full unswitching, we may have changed the nesting relationship
616   // for this loop so hoist it to its correct parent if needed.
617   if (FullUnswitch)
618     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
619 
620   if (MSSAU && VerifyMemorySSA)
621     MSSAU->getMemorySSA()->verifyMemorySSA();
622 
623   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
624   ++NumTrivial;
625   ++NumBranches;
626   return true;
627 }
628 
629 /// Unswitch a trivial switch if the condition is loop invariant.
630 ///
631 /// This routine should only be called when loop code leading to the switch has
632 /// been validated as trivial (no side effects). This routine checks if the
633 /// condition is invariant and that at least one of the successors is a loop
634 /// exit. This allows us to unswitch without duplicating the loop, making it
635 /// trivial.
636 ///
637 /// If this routine fails to unswitch the switch it returns false.
638 ///
639 /// If the switch can be unswitched, this routine splits the preheader and
640 /// copies the switch above that split. If the default case is one of the
641 /// exiting cases, it copies the non-exiting cases and points them at the new
642 /// preheader. If the default case is not exiting, it copies the exiting cases
643 /// and points the default at the preheader. It preserves loop simplified form
644 /// (splitting the exit blocks as necessary). It simplifies the switch within
645 /// the loop by removing now-dead cases. If the default case is one of those
646 /// unswitched, it replaces its destination with a new basic block containing
647 /// only unreachable. Such basic blocks, while technically loop exits, are not
648 /// considered for unswitching so this is a stable transform and the same
649 /// switch will not be revisited. If after unswitching there is only a single
650 /// in-loop successor, the switch is further simplified to an unconditional
651 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
652 ///
653 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
654 /// invalidated by this.
655 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
656                                   LoopInfo &LI, ScalarEvolution *SE,
657                                   MemorySSAUpdater *MSSAU) {
658   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
659   Value *LoopCond = SI.getCondition();
660 
661   // If this isn't switching on an invariant condition, we can't unswitch it.
662   if (!L.isLoopInvariant(LoopCond))
663     return false;
664 
665   auto *ParentBB = SI.getParent();
666 
667   // The same check must be used both for the default and the exit cases. We
668   // should never leave edges from the switch instruction to a basic block that
669   // we are unswitching, hence the condition used to determine the default case
670   // needs to also be used to populate ExitCaseIndices, which is then used to
671   // remove cases from the switch.
672   auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
673     // BBToCheck is not an exit block if it is inside loop L.
674     if (L.contains(&BBToCheck))
675       return false;
676     // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
677     if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
678       return false;
679     // We do not unswitch a block that only has an unreachable statement, as
680     // it's possible this is a previously unswitched block. Only unswitch if
681     // either the terminator is not unreachable, or, if it is, it's not the only
682     // instruction in the block.
683     auto *TI = BBToCheck.getTerminator();
684     bool isUnreachable = isa<UnreachableInst>(TI);
685     return !isUnreachable ||
686            (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
687   };
688 
689   SmallVector<int, 4> ExitCaseIndices;
690   for (auto Case : SI.cases())
691     if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
692       ExitCaseIndices.push_back(Case.getCaseIndex());
693   BasicBlock *DefaultExitBB = nullptr;
694   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
695       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
696   if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
697     DefaultExitBB = SI.getDefaultDest();
698   } else if (ExitCaseIndices.empty())
699     return false;
700 
701   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
702 
703   if (MSSAU && VerifyMemorySSA)
704     MSSAU->getMemorySSA()->verifyMemorySSA();
705 
706   // We may need to invalidate SCEVs for the outermost loop reached by any of
707   // the exits.
708   Loop *OuterL = &L;
709 
710   if (DefaultExitBB) {
711     // Clear out the default destination temporarily to allow accurate
712     // predecessor lists to be examined below.
713     SI.setDefaultDest(nullptr);
714     // Check the loop containing this exit.
715     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
716     if (!ExitL || ExitL->contains(OuterL))
717       OuterL = ExitL;
718   }
719 
720   // Store the exit cases into a separate data structure and remove them from
721   // the switch.
722   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
723                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
724               4> ExitCases;
725   ExitCases.reserve(ExitCaseIndices.size());
726   SwitchInstProfUpdateWrapper SIW(SI);
727   // We walk the case indices backwards so that we remove the last case first
728   // and don't disrupt the earlier indices.
729   for (unsigned Index : reverse(ExitCaseIndices)) {
730     auto CaseI = SI.case_begin() + Index;
731     // Compute the outer loop from this exit.
732     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
733     if (!ExitL || ExitL->contains(OuterL))
734       OuterL = ExitL;
735     // Save the value of this case.
736     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
737     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
738     // Delete the unswitched cases.
739     SIW.removeCase(CaseI);
740   }
741 
742   if (SE) {
743     if (OuterL)
744       SE->forgetLoop(OuterL);
745     else
746       SE->forgetTopmostLoop(&L);
747   }
748 
749   // Check if after this all of the remaining cases point at the same
750   // successor.
751   BasicBlock *CommonSuccBB = nullptr;
752   if (SI.getNumCases() > 0 &&
753       all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
754         return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
755       }))
756     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
757   if (!DefaultExitBB) {
758     // If we're not unswitching the default, we need it to match any cases to
759     // have a common successor or if we have no cases it is the common
760     // successor.
761     if (SI.getNumCases() == 0)
762       CommonSuccBB = SI.getDefaultDest();
763     else if (SI.getDefaultDest() != CommonSuccBB)
764       CommonSuccBB = nullptr;
765   }
766 
767   // Split the preheader, so that we know that there is a safe place to insert
768   // the switch.
769   BasicBlock *OldPH = L.getLoopPreheader();
770   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
771   OldPH->getTerminator()->eraseFromParent();
772 
773   // Now add the unswitched switch.
774   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
775   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
776 
777   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
778   // First, we split any exit blocks with remaining in-loop predecessors. Then
779   // we update the PHIs in one of two ways depending on if there was a split.
780   // We walk in reverse so that we split in the same order as the cases
781   // appeared. This is purely for convenience of reading the resulting IR, but
782   // it doesn't cost anything really.
783   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
784   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
785   // Handle the default exit if necessary.
786   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
787   // ranges aren't quite powerful enough yet.
788   if (DefaultExitBB) {
789     if (pred_empty(DefaultExitBB)) {
790       UnswitchedExitBBs.insert(DefaultExitBB);
791       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
792     } else {
793       auto *SplitBB =
794           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
795       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
796                                                 *ParentBB, *OldPH,
797                                                 /*FullUnswitch*/ true);
798       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
799     }
800   }
801   // Note that we must use a reference in the for loop so that we update the
802   // container.
803   for (auto &ExitCase : reverse(ExitCases)) {
804     // Grab a reference to the exit block in the pair so that we can update it.
805     BasicBlock *ExitBB = std::get<1>(ExitCase);
806 
807     // If this case is the last edge into the exit block, we can simply reuse it
808     // as it will no longer be a loop exit. No mapping necessary.
809     if (pred_empty(ExitBB)) {
810       // Only rewrite once.
811       if (UnswitchedExitBBs.insert(ExitBB).second)
812         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
813       continue;
814     }
815 
816     // Otherwise we need to split the exit block so that we retain an exit
817     // block from the loop and a target for the unswitched condition.
818     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
819     if (!SplitExitBB) {
820       // If this is the first time we see this, do the split and remember it.
821       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
822       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
823                                                 *ParentBB, *OldPH,
824                                                 /*FullUnswitch*/ true);
825     }
826     // Update the case pair to point to the split block.
827     std::get<1>(ExitCase) = SplitExitBB;
828   }
829 
830   // Now add the unswitched cases. We do this in reverse order as we built them
831   // in reverse order.
832   for (auto &ExitCase : reverse(ExitCases)) {
833     ConstantInt *CaseVal = std::get<0>(ExitCase);
834     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
835 
836     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
837   }
838 
839   // If the default was unswitched, re-point it and add explicit cases for
840   // entering the loop.
841   if (DefaultExitBB) {
842     NewSIW->setDefaultDest(DefaultExitBB);
843     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
844 
845     // We removed all the exit cases, so we just copy the cases to the
846     // unswitched switch.
847     for (const auto &Case : SI.cases())
848       NewSIW.addCase(Case.getCaseValue(), NewPH,
849                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
850   } else if (DefaultCaseWeight) {
851     // We have to set branch weight of the default case.
852     uint64_t SW = *DefaultCaseWeight;
853     for (const auto &Case : SI.cases()) {
854       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
855       assert(W &&
856              "case weight must be defined as default case weight is defined");
857       SW += *W;
858     }
859     NewSIW.setSuccessorWeight(0, SW);
860   }
861 
862   // If we ended up with a common successor for every path through the switch
863   // after unswitching, rewrite it to an unconditional branch to make it easy
864   // to recognize. Otherwise we potentially have to recognize the default case
865   // pointing at unreachable and other complexity.
866   if (CommonSuccBB) {
867     BasicBlock *BB = SI.getParent();
868     // We may have had multiple edges to this common successor block, so remove
869     // them as predecessors. We skip the first one, either the default or the
870     // actual first case.
871     bool SkippedFirst = DefaultExitBB == nullptr;
872     for (auto Case : SI.cases()) {
873       assert(Case.getCaseSuccessor() == CommonSuccBB &&
874              "Non-common successor!");
875       (void)Case;
876       if (!SkippedFirst) {
877         SkippedFirst = true;
878         continue;
879       }
880       CommonSuccBB->removePredecessor(BB,
881                                       /*KeepOneInputPHIs*/ true);
882     }
883     // Now nuke the switch and replace it with a direct branch.
884     SIW.eraseFromParent();
885     BranchInst::Create(CommonSuccBB, BB);
886   } else if (DefaultExitBB) {
887     assert(SI.getNumCases() > 0 &&
888            "If we had no cases we'd have a common successor!");
889     // Move the last case to the default successor. This is valid as if the
890     // default got unswitched it cannot be reached. This has the advantage of
891     // being simple and keeping the number of edges from this switch to
892     // successors the same, and avoiding any PHI update complexity.
893     auto LastCaseI = std::prev(SI.case_end());
894 
895     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
896     SIW.setSuccessorWeight(
897         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
898     SIW.removeCase(LastCaseI);
899   }
900 
901   // Walk the unswitched exit blocks and the unswitched split blocks and update
902   // the dominator tree based on the CFG edits. While we are walking unordered
903   // containers here, the API for applyUpdates takes an unordered list of
904   // updates and requires them to not contain duplicates.
905   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
906   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
907     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
908     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
909   }
910   for (auto SplitUnswitchedPair : SplitExitBBMap) {
911     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
912     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
913   }
914 
915   if (MSSAU) {
916     MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
917     if (VerifyMemorySSA)
918       MSSAU->getMemorySSA()->verifyMemorySSA();
919   } else {
920     DT.applyUpdates(DTUpdates);
921   }
922 
923   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
924 
925   // We may have changed the nesting relationship for this loop so hoist it to
926   // its correct parent if needed.
927   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
928 
929   if (MSSAU && VerifyMemorySSA)
930     MSSAU->getMemorySSA()->verifyMemorySSA();
931 
932   ++NumTrivial;
933   ++NumSwitches;
934   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
935   return true;
936 }
937 
938 /// This routine scans the loop to find a branch or switch which occurs before
939 /// any side effects occur. These can potentially be unswitched without
940 /// duplicating the loop. If a branch or switch is successfully unswitched the
941 /// scanning continues to see if subsequent branches or switches have become
942 /// trivial. Once all trivial candidates have been unswitched, this routine
943 /// returns.
944 ///
945 /// The return value indicates whether anything was unswitched (and therefore
946 /// changed).
947 ///
948 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
949 /// invalidated by this.
950 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
951                                          LoopInfo &LI, ScalarEvolution *SE,
952                                          MemorySSAUpdater *MSSAU) {
953   bool Changed = false;
954 
955   // If loop header has only one reachable successor we should keep looking for
956   // trivial condition candidates in the successor as well. An alternative is
957   // to constant fold conditions and merge successors into loop header (then we
958   // only need to check header's terminator). The reason for not doing this in
959   // LoopUnswitch pass is that it could potentially break LoopPassManager's
960   // invariants. Folding dead branches could either eliminate the current loop
961   // or make other loops unreachable. LCSSA form might also not be preserved
962   // after deleting branches. The following code keeps traversing loop header's
963   // successors until it finds the trivial condition candidate (condition that
964   // is not a constant). Since unswitching generates branches with constant
965   // conditions, this scenario could be very common in practice.
966   BasicBlock *CurrentBB = L.getHeader();
967   SmallPtrSet<BasicBlock *, 8> Visited;
968   Visited.insert(CurrentBB);
969   do {
970     // Check if there are any side-effecting instructions (e.g. stores, calls,
971     // volatile loads) in the part of the loop that the code *would* execute
972     // without unswitching.
973     if (MSSAU) // Possible early exit with MSSA
974       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
975         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
976           return Changed;
977     if (llvm::any_of(*CurrentBB,
978                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
979       return Changed;
980 
981     Instruction *CurrentTerm = CurrentBB->getTerminator();
982 
983     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
984       // Don't bother trying to unswitch past a switch with a constant
985       // condition. This should be removed prior to running this pass by
986       // simplify-cfg.
987       if (isa<Constant>(SI->getCondition()))
988         return Changed;
989 
990       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
991         // Couldn't unswitch this one so we're done.
992         return Changed;
993 
994       // Mark that we managed to unswitch something.
995       Changed = true;
996 
997       // If unswitching turned the terminator into an unconditional branch then
998       // we can continue. The unswitching logic specifically works to fold any
999       // cases it can into an unconditional branch to make it easier to
1000       // recognize here.
1001       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1002       if (!BI || BI->isConditional())
1003         return Changed;
1004 
1005       CurrentBB = BI->getSuccessor(0);
1006       continue;
1007     }
1008 
1009     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1010     if (!BI)
1011       // We do not understand other terminator instructions.
1012       return Changed;
1013 
1014     // Don't bother trying to unswitch past an unconditional branch or a branch
1015     // with a constant value. These should be removed by simplify-cfg prior to
1016     // running this pass.
1017     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1018       return Changed;
1019 
1020     // Found a trivial condition candidate: non-foldable conditional branch. If
1021     // we fail to unswitch this, we can't do anything else that is trivial.
1022     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1023       return Changed;
1024 
1025     // Mark that we managed to unswitch something.
1026     Changed = true;
1027 
1028     // If we only unswitched some of the conditions feeding the branch, we won't
1029     // have collapsed it to a single successor.
1030     BI = cast<BranchInst>(CurrentBB->getTerminator());
1031     if (BI->isConditional())
1032       return Changed;
1033 
1034     // Follow the newly unconditional branch into its successor.
1035     CurrentBB = BI->getSuccessor(0);
1036 
1037     // When continuing, if we exit the loop or reach a previous visited block,
1038     // then we can not reach any trivial condition candidates (unfoldable
1039     // branch instructions or switch instructions) and no unswitch can happen.
1040   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1041 
1042   return Changed;
1043 }
1044 
1045 /// Build the cloned blocks for an unswitched copy of the given loop.
1046 ///
1047 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1048 /// after the split block (`SplitBB`) that will be used to select between the
1049 /// cloned and original loop.
1050 ///
1051 /// This routine handles cloning all of the necessary loop blocks and exit
1052 /// blocks including rewriting their instructions and the relevant PHI nodes.
1053 /// Any loop blocks or exit blocks which are dominated by a different successor
1054 /// than the one for this clone of the loop blocks can be trivially skipped. We
1055 /// use the `DominatingSucc` map to determine whether a block satisfies that
1056 /// property with a simple map lookup.
1057 ///
1058 /// It also correctly creates the unconditional branch in the cloned
1059 /// unswitched parent block to only point at the unswitched successor.
1060 ///
1061 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1062 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1063 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1064 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1065 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1066 /// instead the caller must recompute an accurate DT. It *does* correctly
1067 /// update the `AssumptionCache` provided in `AC`.
1068 static BasicBlock *buildClonedLoopBlocks(
1069     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1070     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1071     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1072     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1073     ValueToValueMapTy &VMap,
1074     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1075     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1076   SmallVector<BasicBlock *, 4> NewBlocks;
1077   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1078 
1079   // We will need to clone a bunch of blocks, wrap up the clone operation in
1080   // a helper.
1081   auto CloneBlock = [&](BasicBlock *OldBB) {
1082     // Clone the basic block and insert it before the new preheader.
1083     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1084     NewBB->moveBefore(LoopPH);
1085 
1086     // Record this block and the mapping.
1087     NewBlocks.push_back(NewBB);
1088     VMap[OldBB] = NewBB;
1089 
1090     return NewBB;
1091   };
1092 
1093   // We skip cloning blocks when they have a dominating succ that is not the
1094   // succ we are cloning for.
1095   auto SkipBlock = [&](BasicBlock *BB) {
1096     auto It = DominatingSucc.find(BB);
1097     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1098   };
1099 
1100   // First, clone the preheader.
1101   auto *ClonedPH = CloneBlock(LoopPH);
1102 
1103   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1104   for (auto *LoopBB : L.blocks())
1105     if (!SkipBlock(LoopBB))
1106       CloneBlock(LoopBB);
1107 
1108   // Split all the loop exit edges so that when we clone the exit blocks, if
1109   // any of the exit blocks are *also* a preheader for some other loop, we
1110   // don't create multiple predecessors entering the loop header.
1111   for (auto *ExitBB : ExitBlocks) {
1112     if (SkipBlock(ExitBB))
1113       continue;
1114 
1115     // When we are going to clone an exit, we don't need to clone all the
1116     // instructions in the exit block and we want to ensure we have an easy
1117     // place to merge the CFG, so split the exit first. This is always safe to
1118     // do because there cannot be any non-loop predecessors of a loop exit in
1119     // loop simplified form.
1120     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1121 
1122     // Rearrange the names to make it easier to write test cases by having the
1123     // exit block carry the suffix rather than the merge block carrying the
1124     // suffix.
1125     MergeBB->takeName(ExitBB);
1126     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1127 
1128     // Now clone the original exit block.
1129     auto *ClonedExitBB = CloneBlock(ExitBB);
1130     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1131            "Exit block should have been split to have one successor!");
1132     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1133            "Cloned exit block has the wrong successor!");
1134 
1135     // Remap any cloned instructions and create a merge phi node for them.
1136     for (auto ZippedInsts : llvm::zip_first(
1137              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1138              llvm::make_range(ClonedExitBB->begin(),
1139                               std::prev(ClonedExitBB->end())))) {
1140       Instruction &I = std::get<0>(ZippedInsts);
1141       Instruction &ClonedI = std::get<1>(ZippedInsts);
1142 
1143       // The only instructions in the exit block should be PHI nodes and
1144       // potentially a landing pad.
1145       assert(
1146           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1147           "Bad instruction in exit block!");
1148       // We should have a value map between the instruction and its clone.
1149       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1150 
1151       auto *MergePN =
1152           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1153                           &*MergeBB->getFirstInsertionPt());
1154       I.replaceAllUsesWith(MergePN);
1155       MergePN->addIncoming(&I, ExitBB);
1156       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1157     }
1158   }
1159 
1160   // Rewrite the instructions in the cloned blocks to refer to the instructions
1161   // in the cloned blocks. We have to do this as a second pass so that we have
1162   // everything available. Also, we have inserted new instructions which may
1163   // include assume intrinsics, so we update the assumption cache while
1164   // processing this.
1165   for (auto *ClonedBB : NewBlocks)
1166     for (Instruction &I : *ClonedBB) {
1167       RemapInstruction(&I, VMap,
1168                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1169       if (auto *II = dyn_cast<AssumeInst>(&I))
1170         AC.registerAssumption(II);
1171     }
1172 
1173   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1174   // have spurious incoming values.
1175   for (auto *LoopBB : L.blocks())
1176     if (SkipBlock(LoopBB))
1177       for (auto *SuccBB : successors(LoopBB))
1178         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1179           for (PHINode &PN : ClonedSuccBB->phis())
1180             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1181 
1182   // Remove the cloned parent as a predecessor of any successor we ended up
1183   // cloning other than the unswitched one.
1184   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1185   for (auto *SuccBB : successors(ParentBB)) {
1186     if (SuccBB == UnswitchedSuccBB)
1187       continue;
1188 
1189     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1190     if (!ClonedSuccBB)
1191       continue;
1192 
1193     ClonedSuccBB->removePredecessor(ClonedParentBB,
1194                                     /*KeepOneInputPHIs*/ true);
1195   }
1196 
1197   // Replace the cloned branch with an unconditional branch to the cloned
1198   // unswitched successor.
1199   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1200   Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1201   // Trivial Simplification. If Terminator is a conditional branch and
1202   // condition becomes dead - erase it.
1203   Value *ClonedConditionToErase = nullptr;
1204   if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1205     ClonedConditionToErase = BI->getCondition();
1206   else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1207     ClonedConditionToErase = SI->getCondition();
1208 
1209   ClonedTerminator->eraseFromParent();
1210   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1211 
1212   if (ClonedConditionToErase)
1213     RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1214                                                MSSAU);
1215 
1216   // If there are duplicate entries in the PHI nodes because of multiple edges
1217   // to the unswitched successor, we need to nuke all but one as we replaced it
1218   // with a direct branch.
1219   for (PHINode &PN : ClonedSuccBB->phis()) {
1220     bool Found = false;
1221     // Loop over the incoming operands backwards so we can easily delete as we
1222     // go without invalidating the index.
1223     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1224       if (PN.getIncomingBlock(i) != ClonedParentBB)
1225         continue;
1226       if (!Found) {
1227         Found = true;
1228         continue;
1229       }
1230       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1231     }
1232   }
1233 
1234   // Record the domtree updates for the new blocks.
1235   SmallPtrSet<BasicBlock *, 4> SuccSet;
1236   for (auto *ClonedBB : NewBlocks) {
1237     for (auto *SuccBB : successors(ClonedBB))
1238       if (SuccSet.insert(SuccBB).second)
1239         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1240     SuccSet.clear();
1241   }
1242 
1243   return ClonedPH;
1244 }
1245 
1246 /// Recursively clone the specified loop and all of its children.
1247 ///
1248 /// The target parent loop for the clone should be provided, or can be null if
1249 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1250 /// with the provided value map. The entire original loop must be present in
1251 /// the value map. The cloned loop is returned.
1252 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1253                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1254   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1255     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1256     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1257     for (auto *BB : OrigL.blocks()) {
1258       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1259       ClonedL.addBlockEntry(ClonedBB);
1260       if (LI.getLoopFor(BB) == &OrigL)
1261         LI.changeLoopFor(ClonedBB, &ClonedL);
1262     }
1263   };
1264 
1265   // We specially handle the first loop because it may get cloned into
1266   // a different parent and because we most commonly are cloning leaf loops.
1267   Loop *ClonedRootL = LI.AllocateLoop();
1268   if (RootParentL)
1269     RootParentL->addChildLoop(ClonedRootL);
1270   else
1271     LI.addTopLevelLoop(ClonedRootL);
1272   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1273 
1274   if (OrigRootL.isInnermost())
1275     return ClonedRootL;
1276 
1277   // If we have a nest, we can quickly clone the entire loop nest using an
1278   // iterative approach because it is a tree. We keep the cloned parent in the
1279   // data structure to avoid repeatedly querying through a map to find it.
1280   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1281   // Build up the loops to clone in reverse order as we'll clone them from the
1282   // back.
1283   for (Loop *ChildL : llvm::reverse(OrigRootL))
1284     LoopsToClone.push_back({ClonedRootL, ChildL});
1285   do {
1286     Loop *ClonedParentL, *L;
1287     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1288     Loop *ClonedL = LI.AllocateLoop();
1289     ClonedParentL->addChildLoop(ClonedL);
1290     AddClonedBlocksToLoop(*L, *ClonedL);
1291     for (Loop *ChildL : llvm::reverse(*L))
1292       LoopsToClone.push_back({ClonedL, ChildL});
1293   } while (!LoopsToClone.empty());
1294 
1295   return ClonedRootL;
1296 }
1297 
1298 /// Build the cloned loops of an original loop from unswitching.
1299 ///
1300 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1301 /// operation. We need to re-verify that there even is a loop (as the backedge
1302 /// may not have been cloned), and even if there are remaining backedges the
1303 /// backedge set may be different. However, we know that each child loop is
1304 /// undisturbed, we only need to find where to place each child loop within
1305 /// either any parent loop or within a cloned version of the original loop.
1306 ///
1307 /// Because child loops may end up cloned outside of any cloned version of the
1308 /// original loop, multiple cloned sibling loops may be created. All of them
1309 /// are returned so that the newly introduced loop nest roots can be
1310 /// identified.
1311 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1312                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1313                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1314   Loop *ClonedL = nullptr;
1315 
1316   auto *OrigPH = OrigL.getLoopPreheader();
1317   auto *OrigHeader = OrigL.getHeader();
1318 
1319   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1320   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1321 
1322   // We need to know the loops of the cloned exit blocks to even compute the
1323   // accurate parent loop. If we only clone exits to some parent of the
1324   // original parent, we want to clone into that outer loop. We also keep track
1325   // of the loops that our cloned exit blocks participate in.
1326   Loop *ParentL = nullptr;
1327   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1328   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1329   ClonedExitsInLoops.reserve(ExitBlocks.size());
1330   for (auto *ExitBB : ExitBlocks)
1331     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1332       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1333         ExitLoopMap[ClonedExitBB] = ExitL;
1334         ClonedExitsInLoops.push_back(ClonedExitBB);
1335         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1336           ParentL = ExitL;
1337       }
1338   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1339           ParentL->contains(OrigL.getParentLoop())) &&
1340          "The computed parent loop should always contain (or be) the parent of "
1341          "the original loop.");
1342 
1343   // We build the set of blocks dominated by the cloned header from the set of
1344   // cloned blocks out of the original loop. While not all of these will
1345   // necessarily be in the cloned loop, it is enough to establish that they
1346   // aren't in unreachable cycles, etc.
1347   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1348   for (auto *BB : OrigL.blocks())
1349     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1350       ClonedLoopBlocks.insert(ClonedBB);
1351 
1352   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1353   // skipped cloning some region of this loop which can in turn skip some of
1354   // the backedges so we have to rebuild the blocks in the loop based on the
1355   // backedges that remain after cloning.
1356   SmallVector<BasicBlock *, 16> Worklist;
1357   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1358   for (auto *Pred : predecessors(ClonedHeader)) {
1359     // The only possible non-loop header predecessor is the preheader because
1360     // we know we cloned the loop in simplified form.
1361     if (Pred == ClonedPH)
1362       continue;
1363 
1364     // Because the loop was in simplified form, the only non-loop predecessor
1365     // should be the preheader.
1366     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1367                                            "header other than the preheader "
1368                                            "that is not part of the loop!");
1369 
1370     // Insert this block into the loop set and on the first visit (and if it
1371     // isn't the header we're currently walking) put it into the worklist to
1372     // recurse through.
1373     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1374       Worklist.push_back(Pred);
1375   }
1376 
1377   // If we had any backedges then there *is* a cloned loop. Put the header into
1378   // the loop set and then walk the worklist backwards to find all the blocks
1379   // that remain within the loop after cloning.
1380   if (!BlocksInClonedLoop.empty()) {
1381     BlocksInClonedLoop.insert(ClonedHeader);
1382 
1383     while (!Worklist.empty()) {
1384       BasicBlock *BB = Worklist.pop_back_val();
1385       assert(BlocksInClonedLoop.count(BB) &&
1386              "Didn't put block into the loop set!");
1387 
1388       // Insert any predecessors that are in the possible set into the cloned
1389       // set, and if the insert is successful, add them to the worklist. Note
1390       // that we filter on the blocks that are definitely reachable via the
1391       // backedge to the loop header so we may prune out dead code within the
1392       // cloned loop.
1393       for (auto *Pred : predecessors(BB))
1394         if (ClonedLoopBlocks.count(Pred) &&
1395             BlocksInClonedLoop.insert(Pred).second)
1396           Worklist.push_back(Pred);
1397     }
1398 
1399     ClonedL = LI.AllocateLoop();
1400     if (ParentL) {
1401       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1402       ParentL->addChildLoop(ClonedL);
1403     } else {
1404       LI.addTopLevelLoop(ClonedL);
1405     }
1406     NonChildClonedLoops.push_back(ClonedL);
1407 
1408     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1409     // We don't want to just add the cloned loop blocks based on how we
1410     // discovered them. The original order of blocks was carefully built in
1411     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1412     // that logic, we just re-walk the original blocks (and those of the child
1413     // loops) and filter them as we add them into the cloned loop.
1414     for (auto *BB : OrigL.blocks()) {
1415       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1416       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1417         continue;
1418 
1419       // Directly add the blocks that are only in this loop.
1420       if (LI.getLoopFor(BB) == &OrigL) {
1421         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1422         continue;
1423       }
1424 
1425       // We want to manually add it to this loop and parents.
1426       // Registering it with LoopInfo will happen when we clone the top
1427       // loop for this block.
1428       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1429         PL->addBlockEntry(ClonedBB);
1430     }
1431 
1432     // Now add each child loop whose header remains within the cloned loop. All
1433     // of the blocks within the loop must satisfy the same constraints as the
1434     // header so once we pass the header checks we can just clone the entire
1435     // child loop nest.
1436     for (Loop *ChildL : OrigL) {
1437       auto *ClonedChildHeader =
1438           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1439       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1440         continue;
1441 
1442 #ifndef NDEBUG
1443       // We should never have a cloned child loop header but fail to have
1444       // all of the blocks for that child loop.
1445       for (auto *ChildLoopBB : ChildL->blocks())
1446         assert(BlocksInClonedLoop.count(
1447                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1448                "Child cloned loop has a header within the cloned outer "
1449                "loop but not all of its blocks!");
1450 #endif
1451 
1452       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1453     }
1454   }
1455 
1456   // Now that we've handled all the components of the original loop that were
1457   // cloned into a new loop, we still need to handle anything from the original
1458   // loop that wasn't in a cloned loop.
1459 
1460   // Figure out what blocks are left to place within any loop nest containing
1461   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1462   // them.
1463   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1464   if (BlocksInClonedLoop.empty())
1465     UnloopedBlockSet.insert(ClonedPH);
1466   for (auto *ClonedBB : ClonedLoopBlocks)
1467     if (!BlocksInClonedLoop.count(ClonedBB))
1468       UnloopedBlockSet.insert(ClonedBB);
1469 
1470   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1471   // backwards across these to process them inside out. The order shouldn't
1472   // matter as we're just trying to build up the map from inside-out; we use
1473   // the map in a more stably ordered way below.
1474   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1475   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1476     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1477            ExitLoopMap.lookup(RHS)->getLoopDepth();
1478   });
1479 
1480   // Populate the existing ExitLoopMap with everything reachable from each
1481   // exit, starting from the inner most exit.
1482   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1483     assert(Worklist.empty() && "Didn't clear worklist!");
1484 
1485     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1486     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1487 
1488     // Walk the CFG back until we hit the cloned PH adding everything reachable
1489     // and in the unlooped set to this exit block's loop.
1490     Worklist.push_back(ExitBB);
1491     do {
1492       BasicBlock *BB = Worklist.pop_back_val();
1493       // We can stop recursing at the cloned preheader (if we get there).
1494       if (BB == ClonedPH)
1495         continue;
1496 
1497       for (BasicBlock *PredBB : predecessors(BB)) {
1498         // If this pred has already been moved to our set or is part of some
1499         // (inner) loop, no update needed.
1500         if (!UnloopedBlockSet.erase(PredBB)) {
1501           assert(
1502               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1503               "Predecessor not mapped to a loop!");
1504           continue;
1505         }
1506 
1507         // We just insert into the loop set here. We'll add these blocks to the
1508         // exit loop after we build up the set in an order that doesn't rely on
1509         // predecessor order (which in turn relies on use list order).
1510         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1511         (void)Inserted;
1512         assert(Inserted && "Should only visit an unlooped block once!");
1513 
1514         // And recurse through to its predecessors.
1515         Worklist.push_back(PredBB);
1516       }
1517     } while (!Worklist.empty());
1518   }
1519 
1520   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1521   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1522   // in their original order adding them to the correct loop.
1523 
1524   // We need a stable insertion order. We use the order of the original loop
1525   // order and map into the correct parent loop.
1526   for (auto *BB : llvm::concat<BasicBlock *const>(
1527            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1528     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1529       OuterL->addBasicBlockToLoop(BB, LI);
1530 
1531 #ifndef NDEBUG
1532   for (auto &BBAndL : ExitLoopMap) {
1533     auto *BB = BBAndL.first;
1534     auto *OuterL = BBAndL.second;
1535     assert(LI.getLoopFor(BB) == OuterL &&
1536            "Failed to put all blocks into outer loops!");
1537   }
1538 #endif
1539 
1540   // Now that all the blocks are placed into the correct containing loop in the
1541   // absence of child loops, find all the potentially cloned child loops and
1542   // clone them into whatever outer loop we placed their header into.
1543   for (Loop *ChildL : OrigL) {
1544     auto *ClonedChildHeader =
1545         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1546     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1547       continue;
1548 
1549 #ifndef NDEBUG
1550     for (auto *ChildLoopBB : ChildL->blocks())
1551       assert(VMap.count(ChildLoopBB) &&
1552              "Cloned a child loop header but not all of that loops blocks!");
1553 #endif
1554 
1555     NonChildClonedLoops.push_back(cloneLoopNest(
1556         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1557   }
1558 }
1559 
1560 static void
1561 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1562                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1563                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1564   // Find all the dead clones, and remove them from their successors.
1565   SmallVector<BasicBlock *, 16> DeadBlocks;
1566   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1567     for (auto &VMap : VMaps)
1568       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1569         if (!DT.isReachableFromEntry(ClonedBB)) {
1570           for (BasicBlock *SuccBB : successors(ClonedBB))
1571             SuccBB->removePredecessor(ClonedBB);
1572           DeadBlocks.push_back(ClonedBB);
1573         }
1574 
1575   // Remove all MemorySSA in the dead blocks
1576   if (MSSAU) {
1577     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1578                                                  DeadBlocks.end());
1579     MSSAU->removeBlocks(DeadBlockSet);
1580   }
1581 
1582   // Drop any remaining references to break cycles.
1583   for (BasicBlock *BB : DeadBlocks)
1584     BB->dropAllReferences();
1585   // Erase them from the IR.
1586   for (BasicBlock *BB : DeadBlocks)
1587     BB->eraseFromParent();
1588 }
1589 
1590 static void deleteDeadBlocksFromLoop(Loop &L,
1591                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1592                                      DominatorTree &DT, LoopInfo &LI,
1593                                      MemorySSAUpdater *MSSAU) {
1594   // Find all the dead blocks tied to this loop, and remove them from their
1595   // successors.
1596   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1597 
1598   // Start with loop/exit blocks and get a transitive closure of reachable dead
1599   // blocks.
1600   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1601                                                 ExitBlocks.end());
1602   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1603   while (!DeathCandidates.empty()) {
1604     auto *BB = DeathCandidates.pop_back_val();
1605     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1606       for (BasicBlock *SuccBB : successors(BB)) {
1607         SuccBB->removePredecessor(BB);
1608         DeathCandidates.push_back(SuccBB);
1609       }
1610       DeadBlockSet.insert(BB);
1611     }
1612   }
1613 
1614   // Remove all MemorySSA in the dead blocks
1615   if (MSSAU)
1616     MSSAU->removeBlocks(DeadBlockSet);
1617 
1618   // Filter out the dead blocks from the exit blocks list so that it can be
1619   // used in the caller.
1620   llvm::erase_if(ExitBlocks,
1621                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1622 
1623   // Walk from this loop up through its parents removing all of the dead blocks.
1624   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1625     for (auto *BB : DeadBlockSet)
1626       ParentL->getBlocksSet().erase(BB);
1627     llvm::erase_if(ParentL->getBlocksVector(),
1628                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1629   }
1630 
1631   // Now delete the dead child loops. This raw delete will clear them
1632   // recursively.
1633   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1634     if (!DeadBlockSet.count(ChildL->getHeader()))
1635       return false;
1636 
1637     assert(llvm::all_of(ChildL->blocks(),
1638                         [&](BasicBlock *ChildBB) {
1639                           return DeadBlockSet.count(ChildBB);
1640                         }) &&
1641            "If the child loop header is dead all blocks in the child loop must "
1642            "be dead as well!");
1643     LI.destroy(ChildL);
1644     return true;
1645   });
1646 
1647   // Remove the loop mappings for the dead blocks and drop all the references
1648   // from these blocks to others to handle cyclic references as we start
1649   // deleting the blocks themselves.
1650   for (auto *BB : DeadBlockSet) {
1651     // Check that the dominator tree has already been updated.
1652     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1653     LI.changeLoopFor(BB, nullptr);
1654     // Drop all uses of the instructions to make sure we won't have dangling
1655     // uses in other blocks.
1656     for (auto &I : *BB)
1657       if (!I.use_empty())
1658         I.replaceAllUsesWith(UndefValue::get(I.getType()));
1659     BB->dropAllReferences();
1660   }
1661 
1662   // Actually delete the blocks now that they've been fully unhooked from the
1663   // IR.
1664   for (auto *BB : DeadBlockSet)
1665     BB->eraseFromParent();
1666 }
1667 
1668 /// Recompute the set of blocks in a loop after unswitching.
1669 ///
1670 /// This walks from the original headers predecessors to rebuild the loop. We
1671 /// take advantage of the fact that new blocks can't have been added, and so we
1672 /// filter by the original loop's blocks. This also handles potentially
1673 /// unreachable code that we don't want to explore but might be found examining
1674 /// the predecessors of the header.
1675 ///
1676 /// If the original loop is no longer a loop, this will return an empty set. If
1677 /// it remains a loop, all the blocks within it will be added to the set
1678 /// (including those blocks in inner loops).
1679 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1680                                                                  LoopInfo &LI) {
1681   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1682 
1683   auto *PH = L.getLoopPreheader();
1684   auto *Header = L.getHeader();
1685 
1686   // A worklist to use while walking backwards from the header.
1687   SmallVector<BasicBlock *, 16> Worklist;
1688 
1689   // First walk the predecessors of the header to find the backedges. This will
1690   // form the basis of our walk.
1691   for (auto *Pred : predecessors(Header)) {
1692     // Skip the preheader.
1693     if (Pred == PH)
1694       continue;
1695 
1696     // Because the loop was in simplified form, the only non-loop predecessor
1697     // is the preheader.
1698     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1699                                "than the preheader that is not part of the "
1700                                "loop!");
1701 
1702     // Insert this block into the loop set and on the first visit and, if it
1703     // isn't the header we're currently walking, put it into the worklist to
1704     // recurse through.
1705     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1706       Worklist.push_back(Pred);
1707   }
1708 
1709   // If no backedges were found, we're done.
1710   if (LoopBlockSet.empty())
1711     return LoopBlockSet;
1712 
1713   // We found backedges, recurse through them to identify the loop blocks.
1714   while (!Worklist.empty()) {
1715     BasicBlock *BB = Worklist.pop_back_val();
1716     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1717 
1718     // No need to walk past the header.
1719     if (BB == Header)
1720       continue;
1721 
1722     // Because we know the inner loop structure remains valid we can use the
1723     // loop structure to jump immediately across the entire nested loop.
1724     // Further, because it is in loop simplified form, we can directly jump
1725     // to its preheader afterward.
1726     if (Loop *InnerL = LI.getLoopFor(BB))
1727       if (InnerL != &L) {
1728         assert(L.contains(InnerL) &&
1729                "Should not reach a loop *outside* this loop!");
1730         // The preheader is the only possible predecessor of the loop so
1731         // insert it into the set and check whether it was already handled.
1732         auto *InnerPH = InnerL->getLoopPreheader();
1733         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1734                                       "but not contain the inner loop "
1735                                       "preheader!");
1736         if (!LoopBlockSet.insert(InnerPH).second)
1737           // The only way to reach the preheader is through the loop body
1738           // itself so if it has been visited the loop is already handled.
1739           continue;
1740 
1741         // Insert all of the blocks (other than those already present) into
1742         // the loop set. We expect at least the block that led us to find the
1743         // inner loop to be in the block set, but we may also have other loop
1744         // blocks if they were already enqueued as predecessors of some other
1745         // outer loop block.
1746         for (auto *InnerBB : InnerL->blocks()) {
1747           if (InnerBB == BB) {
1748             assert(LoopBlockSet.count(InnerBB) &&
1749                    "Block should already be in the set!");
1750             continue;
1751           }
1752 
1753           LoopBlockSet.insert(InnerBB);
1754         }
1755 
1756         // Add the preheader to the worklist so we will continue past the
1757         // loop body.
1758         Worklist.push_back(InnerPH);
1759         continue;
1760       }
1761 
1762     // Insert any predecessors that were in the original loop into the new
1763     // set, and if the insert is successful, add them to the worklist.
1764     for (auto *Pred : predecessors(BB))
1765       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1766         Worklist.push_back(Pred);
1767   }
1768 
1769   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1770 
1771   // We've found all the blocks participating in the loop, return our completed
1772   // set.
1773   return LoopBlockSet;
1774 }
1775 
1776 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1777 ///
1778 /// The removal may have removed some child loops entirely but cannot have
1779 /// disturbed any remaining child loops. However, they may need to be hoisted
1780 /// to the parent loop (or to be top-level loops). The original loop may be
1781 /// completely removed.
1782 ///
1783 /// The sibling loops resulting from this update are returned. If the original
1784 /// loop remains a valid loop, it will be the first entry in this list with all
1785 /// of the newly sibling loops following it.
1786 ///
1787 /// Returns true if the loop remains a loop after unswitching, and false if it
1788 /// is no longer a loop after unswitching (and should not continue to be
1789 /// referenced).
1790 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1791                                      LoopInfo &LI,
1792                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1793   auto *PH = L.getLoopPreheader();
1794 
1795   // Compute the actual parent loop from the exit blocks. Because we may have
1796   // pruned some exits the loop may be different from the original parent.
1797   Loop *ParentL = nullptr;
1798   SmallVector<Loop *, 4> ExitLoops;
1799   SmallVector<BasicBlock *, 4> ExitsInLoops;
1800   ExitsInLoops.reserve(ExitBlocks.size());
1801   for (auto *ExitBB : ExitBlocks)
1802     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1803       ExitLoops.push_back(ExitL);
1804       ExitsInLoops.push_back(ExitBB);
1805       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1806         ParentL = ExitL;
1807     }
1808 
1809   // Recompute the blocks participating in this loop. This may be empty if it
1810   // is no longer a loop.
1811   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1812 
1813   // If we still have a loop, we need to re-set the loop's parent as the exit
1814   // block set changing may have moved it within the loop nest. Note that this
1815   // can only happen when this loop has a parent as it can only hoist the loop
1816   // *up* the nest.
1817   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1818     // Remove this loop's (original) blocks from all of the intervening loops.
1819     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1820          IL = IL->getParentLoop()) {
1821       IL->getBlocksSet().erase(PH);
1822       for (auto *BB : L.blocks())
1823         IL->getBlocksSet().erase(BB);
1824       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1825         return BB == PH || L.contains(BB);
1826       });
1827     }
1828 
1829     LI.changeLoopFor(PH, ParentL);
1830     L.getParentLoop()->removeChildLoop(&L);
1831     if (ParentL)
1832       ParentL->addChildLoop(&L);
1833     else
1834       LI.addTopLevelLoop(&L);
1835   }
1836 
1837   // Now we update all the blocks which are no longer within the loop.
1838   auto &Blocks = L.getBlocksVector();
1839   auto BlocksSplitI =
1840       LoopBlockSet.empty()
1841           ? Blocks.begin()
1842           : std::stable_partition(
1843                 Blocks.begin(), Blocks.end(),
1844                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1845 
1846   // Before we erase the list of unlooped blocks, build a set of them.
1847   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1848   if (LoopBlockSet.empty())
1849     UnloopedBlocks.insert(PH);
1850 
1851   // Now erase these blocks from the loop.
1852   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1853     L.getBlocksSet().erase(BB);
1854   Blocks.erase(BlocksSplitI, Blocks.end());
1855 
1856   // Sort the exits in ascending loop depth, we'll work backwards across these
1857   // to process them inside out.
1858   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1859     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1860   });
1861 
1862   // We'll build up a set for each exit loop.
1863   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1864   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1865 
1866   auto RemoveUnloopedBlocksFromLoop =
1867       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1868         for (auto *BB : UnloopedBlocks)
1869           L.getBlocksSet().erase(BB);
1870         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1871           return UnloopedBlocks.count(BB);
1872         });
1873       };
1874 
1875   SmallVector<BasicBlock *, 16> Worklist;
1876   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1877     assert(Worklist.empty() && "Didn't clear worklist!");
1878     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1879 
1880     // Grab the next exit block, in decreasing loop depth order.
1881     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1882     Loop &ExitL = *LI.getLoopFor(ExitBB);
1883     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1884 
1885     // Erase all of the unlooped blocks from the loops between the previous
1886     // exit loop and this exit loop. This works because the ExitInLoops list is
1887     // sorted in increasing order of loop depth and thus we visit loops in
1888     // decreasing order of loop depth.
1889     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1890       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1891 
1892     // Walk the CFG back until we hit the cloned PH adding everything reachable
1893     // and in the unlooped set to this exit block's loop.
1894     Worklist.push_back(ExitBB);
1895     do {
1896       BasicBlock *BB = Worklist.pop_back_val();
1897       // We can stop recursing at the cloned preheader (if we get there).
1898       if (BB == PH)
1899         continue;
1900 
1901       for (BasicBlock *PredBB : predecessors(BB)) {
1902         // If this pred has already been moved to our set or is part of some
1903         // (inner) loop, no update needed.
1904         if (!UnloopedBlocks.erase(PredBB)) {
1905           assert((NewExitLoopBlocks.count(PredBB) ||
1906                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1907                  "Predecessor not in a nested loop (or already visited)!");
1908           continue;
1909         }
1910 
1911         // We just insert into the loop set here. We'll add these blocks to the
1912         // exit loop after we build up the set in a deterministic order rather
1913         // than the predecessor-influenced visit order.
1914         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1915         (void)Inserted;
1916         assert(Inserted && "Should only visit an unlooped block once!");
1917 
1918         // And recurse through to its predecessors.
1919         Worklist.push_back(PredBB);
1920       }
1921     } while (!Worklist.empty());
1922 
1923     // If blocks in this exit loop were directly part of the original loop (as
1924     // opposed to a child loop) update the map to point to this exit loop. This
1925     // just updates a map and so the fact that the order is unstable is fine.
1926     for (auto *BB : NewExitLoopBlocks)
1927       if (Loop *BBL = LI.getLoopFor(BB))
1928         if (BBL == &L || !L.contains(BBL))
1929           LI.changeLoopFor(BB, &ExitL);
1930 
1931     // We will remove the remaining unlooped blocks from this loop in the next
1932     // iteration or below.
1933     NewExitLoopBlocks.clear();
1934   }
1935 
1936   // Any remaining unlooped blocks are no longer part of any loop unless they
1937   // are part of some child loop.
1938   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1939     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1940   for (auto *BB : UnloopedBlocks)
1941     if (Loop *BBL = LI.getLoopFor(BB))
1942       if (BBL == &L || !L.contains(BBL))
1943         LI.changeLoopFor(BB, nullptr);
1944 
1945   // Sink all the child loops whose headers are no longer in the loop set to
1946   // the parent (or to be top level loops). We reach into the loop and directly
1947   // update its subloop vector to make this batch update efficient.
1948   auto &SubLoops = L.getSubLoopsVector();
1949   auto SubLoopsSplitI =
1950       LoopBlockSet.empty()
1951           ? SubLoops.begin()
1952           : std::stable_partition(
1953                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1954                   return LoopBlockSet.count(SubL->getHeader());
1955                 });
1956   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1957     HoistedLoops.push_back(HoistedL);
1958     HoistedL->setParentLoop(nullptr);
1959 
1960     // To compute the new parent of this hoisted loop we look at where we
1961     // placed the preheader above. We can't lookup the header itself because we
1962     // retained the mapping from the header to the hoisted loop. But the
1963     // preheader and header should have the exact same new parent computed
1964     // based on the set of exit blocks from the original loop as the preheader
1965     // is a predecessor of the header and so reached in the reverse walk. And
1966     // because the loops were all in simplified form the preheader of the
1967     // hoisted loop can't be part of some *other* loop.
1968     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1969       NewParentL->addChildLoop(HoistedL);
1970     else
1971       LI.addTopLevelLoop(HoistedL);
1972   }
1973   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1974 
1975   // Actually delete the loop if nothing remained within it.
1976   if (Blocks.empty()) {
1977     assert(SubLoops.empty() &&
1978            "Failed to remove all subloops from the original loop!");
1979     if (Loop *ParentL = L.getParentLoop())
1980       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1981     else
1982       LI.removeLoop(llvm::find(LI, &L));
1983     LI.destroy(&L);
1984     return false;
1985   }
1986 
1987   return true;
1988 }
1989 
1990 /// Helper to visit a dominator subtree, invoking a callable on each node.
1991 ///
1992 /// Returning false at any point will stop walking past that node of the tree.
1993 template <typename CallableT>
1994 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1995   SmallVector<DomTreeNode *, 4> DomWorklist;
1996   DomWorklist.push_back(DT[BB]);
1997 #ifndef NDEBUG
1998   SmallPtrSet<DomTreeNode *, 4> Visited;
1999   Visited.insert(DT[BB]);
2000 #endif
2001   do {
2002     DomTreeNode *N = DomWorklist.pop_back_val();
2003 
2004     // Visit this node.
2005     if (!Callable(N->getBlock()))
2006       continue;
2007 
2008     // Accumulate the child nodes.
2009     for (DomTreeNode *ChildN : *N) {
2010       assert(Visited.insert(ChildN).second &&
2011              "Cannot visit a node twice when walking a tree!");
2012       DomWorklist.push_back(ChildN);
2013     }
2014   } while (!DomWorklist.empty());
2015 }
2016 
2017 static void unswitchNontrivialInvariants(
2018     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2019     SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo,
2020     DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2021     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2022     ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2023   auto *ParentBB = TI.getParent();
2024   BranchInst *BI = dyn_cast<BranchInst>(&TI);
2025   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2026 
2027   // We can only unswitch switches, conditional branches with an invariant
2028   // condition, or combining invariant conditions with an instruction or
2029   // partially invariant instructions.
2030   assert((SI || (BI && BI->isConditional())) &&
2031          "Can only unswitch switches and conditional branch!");
2032   bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2033   bool FullUnswitch =
2034       SI || (BI->getCondition() == Invariants[0] && !PartiallyInvariant);
2035   if (FullUnswitch)
2036     assert(Invariants.size() == 1 &&
2037            "Cannot have other invariants with full unswitching!");
2038   else
2039     assert(isa<Instruction>(BI->getCondition()) &&
2040            "Partial unswitching requires an instruction as the condition!");
2041 
2042   if (MSSAU && VerifyMemorySSA)
2043     MSSAU->getMemorySSA()->verifyMemorySSA();
2044 
2045   // Constant and BBs tracking the cloned and continuing successor. When we are
2046   // unswitching the entire condition, this can just be trivially chosen to
2047   // unswitch towards `true`. However, when we are unswitching a set of
2048   // invariants combined with `and` or `or` or partially invariant instructions,
2049   // the combining operation determines the best direction to unswitch: we want
2050   // to unswitch the direction that will collapse the branch.
2051   bool Direction = true;
2052   int ClonedSucc = 0;
2053   if (!FullUnswitch) {
2054     Value *Cond = BI->getCondition();
2055     (void)Cond;
2056     assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2057             PartiallyInvariant) &&
2058            "Only `or`, `and`, an `select`, partially invariant instructions "
2059            "can combine invariants being unswitched.");
2060     if (!match(BI->getCondition(), m_LogicalOr())) {
2061       if (match(BI->getCondition(), m_LogicalAnd()) ||
2062           (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2063         Direction = false;
2064         ClonedSucc = 1;
2065       }
2066     }
2067   }
2068 
2069   BasicBlock *RetainedSuccBB =
2070       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2071   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2072   if (BI)
2073     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2074   else
2075     for (auto Case : SI->cases())
2076       if (Case.getCaseSuccessor() != RetainedSuccBB)
2077         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2078 
2079   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2080          "Should not unswitch the same successor we are retaining!");
2081 
2082   // The branch should be in this exact loop. Any inner loop's invariant branch
2083   // should be handled by unswitching that inner loop. The caller of this
2084   // routine should filter out any candidates that remain (but were skipped for
2085   // whatever reason).
2086   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2087 
2088   // Compute the parent loop now before we start hacking on things.
2089   Loop *ParentL = L.getParentLoop();
2090   // Get blocks in RPO order for MSSA update, before changing the CFG.
2091   LoopBlocksRPO LBRPO(&L);
2092   if (MSSAU)
2093     LBRPO.perform(&LI);
2094 
2095   // Compute the outer-most loop containing one of our exit blocks. This is the
2096   // furthest up our loopnest which can be mutated, which we will use below to
2097   // update things.
2098   Loop *OuterExitL = &L;
2099   for (auto *ExitBB : ExitBlocks) {
2100     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2101     if (!NewOuterExitL) {
2102       // We exited the entire nest with this block, so we're done.
2103       OuterExitL = nullptr;
2104       break;
2105     }
2106     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2107       OuterExitL = NewOuterExitL;
2108   }
2109 
2110   // At this point, we're definitely going to unswitch something so invalidate
2111   // any cached information in ScalarEvolution for the outer most loop
2112   // containing an exit block and all nested loops.
2113   if (SE) {
2114     if (OuterExitL)
2115       SE->forgetLoop(OuterExitL);
2116     else
2117       SE->forgetTopmostLoop(&L);
2118   }
2119 
2120   // If the edge from this terminator to a successor dominates that successor,
2121   // store a map from each block in its dominator subtree to it. This lets us
2122   // tell when cloning for a particular successor if a block is dominated by
2123   // some *other* successor with a single data structure. We use this to
2124   // significantly reduce cloning.
2125   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2126   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2127            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2128     if (SuccBB->getUniquePredecessor() ||
2129         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2130           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2131         }))
2132       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2133         DominatingSucc[BB] = SuccBB;
2134         return true;
2135       });
2136 
2137   // Split the preheader, so that we know that there is a safe place to insert
2138   // the conditional branch. We will change the preheader to have a conditional
2139   // branch on LoopCond. The original preheader will become the split point
2140   // between the unswitched versions, and we will have a new preheader for the
2141   // original loop.
2142   BasicBlock *SplitBB = L.getLoopPreheader();
2143   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2144 
2145   // Keep track of the dominator tree updates needed.
2146   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2147 
2148   // Clone the loop for each unswitched successor.
2149   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2150   VMaps.reserve(UnswitchedSuccBBs.size());
2151   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2152   for (auto *SuccBB : UnswitchedSuccBBs) {
2153     VMaps.emplace_back(new ValueToValueMapTy());
2154     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2155         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2156         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2157   }
2158 
2159   // Drop metadata if we may break its semantics by moving this instr into the
2160   // split block.
2161   if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2162     if (DropNonTrivialImplicitNullChecks)
2163       // Do not spend time trying to understand if we can keep it, just drop it
2164       // to save compile time.
2165       TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2166     else {
2167       // It is only legal to preserve make.implicit metadata if we are
2168       // guaranteed no reach implicit null check after following this branch.
2169       ICFLoopSafetyInfo SafetyInfo;
2170       SafetyInfo.computeLoopSafetyInfo(&L);
2171       if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2172         TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2173     }
2174   }
2175 
2176   // The stitching of the branched code back together depends on whether we're
2177   // doing full unswitching or not with the exception that we always want to
2178   // nuke the initial terminator placed in the split block.
2179   SplitBB->getTerminator()->eraseFromParent();
2180   if (FullUnswitch) {
2181     // Splice the terminator from the original loop and rewrite its
2182     // successors.
2183     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2184 
2185     // Keep a clone of the terminator for MSSA updates.
2186     Instruction *NewTI = TI.clone();
2187     ParentBB->getInstList().push_back(NewTI);
2188 
2189     // First wire up the moved terminator to the preheaders.
2190     if (BI) {
2191       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2192       BI->setSuccessor(ClonedSucc, ClonedPH);
2193       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2194       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2195     } else {
2196       assert(SI && "Must either be a branch or switch!");
2197 
2198       // Walk the cases and directly update their successors.
2199       assert(SI->getDefaultDest() == RetainedSuccBB &&
2200              "Not retaining default successor!");
2201       SI->setDefaultDest(LoopPH);
2202       for (auto &Case : SI->cases())
2203         if (Case.getCaseSuccessor() == RetainedSuccBB)
2204           Case.setSuccessor(LoopPH);
2205         else
2206           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2207 
2208       // We need to use the set to populate domtree updates as even when there
2209       // are multiple cases pointing at the same successor we only want to
2210       // remove and insert one edge in the domtree.
2211       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2212         DTUpdates.push_back(
2213             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2214     }
2215 
2216     if (MSSAU) {
2217       DT.applyUpdates(DTUpdates);
2218       DTUpdates.clear();
2219 
2220       // Remove all but one edge to the retained block and all unswitched
2221       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2222       // when we know we only keep a single edge for each case.
2223       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2224       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2225         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2226 
2227       for (auto &VMap : VMaps)
2228         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2229                                    /*IgnoreIncomingWithNoClones=*/true);
2230       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2231 
2232       // Remove all edges to unswitched blocks.
2233       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2234         MSSAU->removeEdge(ParentBB, SuccBB);
2235     }
2236 
2237     // Now unhook the successor relationship as we'll be replacing
2238     // the terminator with a direct branch. This is much simpler for branches
2239     // than switches so we handle those first.
2240     if (BI) {
2241       // Remove the parent as a predecessor of the unswitched successor.
2242       assert(UnswitchedSuccBBs.size() == 1 &&
2243              "Only one possible unswitched block for a branch!");
2244       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2245       UnswitchedSuccBB->removePredecessor(ParentBB,
2246                                           /*KeepOneInputPHIs*/ true);
2247       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2248     } else {
2249       // Note that we actually want to remove the parent block as a predecessor
2250       // of *every* case successor. The case successor is either unswitched,
2251       // completely eliminating an edge from the parent to that successor, or it
2252       // is a duplicate edge to the retained successor as the retained successor
2253       // is always the default successor and as we'll replace this with a direct
2254       // branch we no longer need the duplicate entries in the PHI nodes.
2255       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2256       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2257              "Not retaining default successor!");
2258       for (auto &Case : NewSI->cases())
2259         Case.getCaseSuccessor()->removePredecessor(
2260             ParentBB,
2261             /*KeepOneInputPHIs*/ true);
2262 
2263       // We need to use the set to populate domtree updates as even when there
2264       // are multiple cases pointing at the same successor we only want to
2265       // remove and insert one edge in the domtree.
2266       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2267         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2268     }
2269 
2270     // After MSSAU update, remove the cloned terminator instruction NewTI.
2271     ParentBB->getTerminator()->eraseFromParent();
2272 
2273     // Create a new unconditional branch to the continuing block (as opposed to
2274     // the one cloned).
2275     BranchInst::Create(RetainedSuccBB, ParentBB);
2276   } else {
2277     assert(BI && "Only branches have partial unswitching.");
2278     assert(UnswitchedSuccBBs.size() == 1 &&
2279            "Only one possible unswitched block for a branch!");
2280     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2281     // When doing a partial unswitch, we have to do a bit more work to build up
2282     // the branch in the split block.
2283     if (PartiallyInvariant)
2284       buildPartialInvariantUnswitchConditionalBranch(
2285           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2286     else
2287       buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2288                                             *ClonedPH, *LoopPH);
2289     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2290 
2291     if (MSSAU) {
2292       DT.applyUpdates(DTUpdates);
2293       DTUpdates.clear();
2294 
2295       // Perform MSSA cloning updates.
2296       for (auto &VMap : VMaps)
2297         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2298                                    /*IgnoreIncomingWithNoClones=*/true);
2299       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2300     }
2301   }
2302 
2303   // Apply the updates accumulated above to get an up-to-date dominator tree.
2304   DT.applyUpdates(DTUpdates);
2305 
2306   // Now that we have an accurate dominator tree, first delete the dead cloned
2307   // blocks so that we can accurately build any cloned loops. It is important to
2308   // not delete the blocks from the original loop yet because we still want to
2309   // reference the original loop to understand the cloned loop's structure.
2310   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2311 
2312   // Build the cloned loop structure itself. This may be substantially
2313   // different from the original structure due to the simplified CFG. This also
2314   // handles inserting all the cloned blocks into the correct loops.
2315   SmallVector<Loop *, 4> NonChildClonedLoops;
2316   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2317     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2318 
2319   // Now that our cloned loops have been built, we can update the original loop.
2320   // First we delete the dead blocks from it and then we rebuild the loop
2321   // structure taking these deletions into account.
2322   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2323 
2324   if (MSSAU && VerifyMemorySSA)
2325     MSSAU->getMemorySSA()->verifyMemorySSA();
2326 
2327   SmallVector<Loop *, 4> HoistedLoops;
2328   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2329 
2330   if (MSSAU && VerifyMemorySSA)
2331     MSSAU->getMemorySSA()->verifyMemorySSA();
2332 
2333   // This transformation has a high risk of corrupting the dominator tree, and
2334   // the below steps to rebuild loop structures will result in hard to debug
2335   // errors in that case so verify that the dominator tree is sane first.
2336   // FIXME: Remove this when the bugs stop showing up and rely on existing
2337   // verification steps.
2338   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2339 
2340   if (BI && !PartiallyInvariant) {
2341     // If we unswitched a branch which collapses the condition to a known
2342     // constant we want to replace all the uses of the invariants within both
2343     // the original and cloned blocks. We do this here so that we can use the
2344     // now updated dominator tree to identify which side the users are on.
2345     assert(UnswitchedSuccBBs.size() == 1 &&
2346            "Only one possible unswitched block for a branch!");
2347     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2348 
2349     // When considering multiple partially-unswitched invariants
2350     // we cant just go replace them with constants in both branches.
2351     //
2352     // For 'AND' we infer that true branch ("continue") means true
2353     // for each invariant operand.
2354     // For 'OR' we can infer that false branch ("continue") means false
2355     // for each invariant operand.
2356     // So it happens that for multiple-partial case we dont replace
2357     // in the unswitched branch.
2358     bool ReplaceUnswitched =
2359         FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2360 
2361     ConstantInt *UnswitchedReplacement =
2362         Direction ? ConstantInt::getTrue(BI->getContext())
2363                   : ConstantInt::getFalse(BI->getContext());
2364     ConstantInt *ContinueReplacement =
2365         Direction ? ConstantInt::getFalse(BI->getContext())
2366                   : ConstantInt::getTrue(BI->getContext());
2367     for (Value *Invariant : Invariants)
2368       // Use make_early_inc_range here as set invalidates the iterator.
2369       for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2370         Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2371         if (!UserI)
2372           continue;
2373 
2374         // Replace it with the 'continue' side if in the main loop body, and the
2375         // unswitched if in the cloned blocks.
2376         if (DT.dominates(LoopPH, UserI->getParent()))
2377           U.set(ContinueReplacement);
2378         else if (ReplaceUnswitched &&
2379                  DT.dominates(ClonedPH, UserI->getParent()))
2380           U.set(UnswitchedReplacement);
2381       }
2382   }
2383 
2384   // We can change which blocks are exit blocks of all the cloned sibling
2385   // loops, the current loop, and any parent loops which shared exit blocks
2386   // with the current loop. As a consequence, we need to re-form LCSSA for
2387   // them. But we shouldn't need to re-form LCSSA for any child loops.
2388   // FIXME: This could be made more efficient by tracking which exit blocks are
2389   // new, and focusing on them, but that isn't likely to be necessary.
2390   //
2391   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2392   // loop nest and update every loop that could have had its exits changed. We
2393   // also need to cover any intervening loops. We add all of these loops to
2394   // a list and sort them by loop depth to achieve this without updating
2395   // unnecessary loops.
2396   auto UpdateLoop = [&](Loop &UpdateL) {
2397 #ifndef NDEBUG
2398     UpdateL.verifyLoop();
2399     for (Loop *ChildL : UpdateL) {
2400       ChildL->verifyLoop();
2401       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2402              "Perturbed a child loop's LCSSA form!");
2403     }
2404 #endif
2405     // First build LCSSA for this loop so that we can preserve it when
2406     // forming dedicated exits. We don't want to perturb some other loop's
2407     // LCSSA while doing that CFG edit.
2408     formLCSSA(UpdateL, DT, &LI, SE);
2409 
2410     // For loops reached by this loop's original exit blocks we may
2411     // introduced new, non-dedicated exits. At least try to re-form dedicated
2412     // exits for these loops. This may fail if they couldn't have dedicated
2413     // exits to start with.
2414     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2415   };
2416 
2417   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2418   // and we can do it in any order as they don't nest relative to each other.
2419   //
2420   // Also check if any of the loops we have updated have become top-level loops
2421   // as that will necessitate widening the outer loop scope.
2422   for (Loop *UpdatedL :
2423        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2424     UpdateLoop(*UpdatedL);
2425     if (UpdatedL->isOutermost())
2426       OuterExitL = nullptr;
2427   }
2428   if (IsStillLoop) {
2429     UpdateLoop(L);
2430     if (L.isOutermost())
2431       OuterExitL = nullptr;
2432   }
2433 
2434   // If the original loop had exit blocks, walk up through the outer most loop
2435   // of those exit blocks to update LCSSA and form updated dedicated exits.
2436   if (OuterExitL != &L)
2437     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2438          OuterL = OuterL->getParentLoop())
2439       UpdateLoop(*OuterL);
2440 
2441 #ifndef NDEBUG
2442   // Verify the entire loop structure to catch any incorrect updates before we
2443   // progress in the pass pipeline.
2444   LI.verify(DT);
2445 #endif
2446 
2447   // Now that we've unswitched something, make callbacks to report the changes.
2448   // For that we need to merge together the updated loops and the cloned loops
2449   // and check whether the original loop survived.
2450   SmallVector<Loop *, 4> SibLoops;
2451   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2452     if (UpdatedL->getParentLoop() == ParentL)
2453       SibLoops.push_back(UpdatedL);
2454   UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2455 
2456   if (MSSAU && VerifyMemorySSA)
2457     MSSAU->getMemorySSA()->verifyMemorySSA();
2458 
2459   if (BI)
2460     ++NumBranches;
2461   else
2462     ++NumSwitches;
2463 }
2464 
2465 /// Recursively compute the cost of a dominator subtree based on the per-block
2466 /// cost map provided.
2467 ///
2468 /// The recursive computation is memozied into the provided DT-indexed cost map
2469 /// to allow querying it for most nodes in the domtree without it becoming
2470 /// quadratic.
2471 static InstructionCost computeDomSubtreeCost(
2472     DomTreeNode &N,
2473     const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2474     SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2475   // Don't accumulate cost (or recurse through) blocks not in our block cost
2476   // map and thus not part of the duplication cost being considered.
2477   auto BBCostIt = BBCostMap.find(N.getBlock());
2478   if (BBCostIt == BBCostMap.end())
2479     return 0;
2480 
2481   // Lookup this node to see if we already computed its cost.
2482   auto DTCostIt = DTCostMap.find(&N);
2483   if (DTCostIt != DTCostMap.end())
2484     return DTCostIt->second;
2485 
2486   // If not, we have to compute it. We can't use insert above and update
2487   // because computing the cost may insert more things into the map.
2488   InstructionCost Cost = std::accumulate(
2489       N.begin(), N.end(), BBCostIt->second,
2490       [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2491         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2492       });
2493   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2494   (void)Inserted;
2495   assert(Inserted && "Should not insert a node while visiting children!");
2496   return Cost;
2497 }
2498 
2499 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2500 /// making the following replacement:
2501 ///
2502 ///   --code before guard--
2503 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2504 ///   --code after guard--
2505 ///
2506 /// into
2507 ///
2508 ///   --code before guard--
2509 ///   br i1 %cond, label %guarded, label %deopt
2510 ///
2511 /// guarded:
2512 ///   --code after guard--
2513 ///
2514 /// deopt:
2515 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2516 ///   unreachable
2517 ///
2518 /// It also makes all relevant DT and LI updates, so that all structures are in
2519 /// valid state after this transform.
2520 static BranchInst *
2521 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2522                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2523                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2524   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2525   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2526   BasicBlock *CheckBB = GI->getParent();
2527 
2528   if (MSSAU && VerifyMemorySSA)
2529      MSSAU->getMemorySSA()->verifyMemorySSA();
2530 
2531   // Remove all CheckBB's successors from DomTree. A block can be seen among
2532   // successors more than once, but for DomTree it should be added only once.
2533   SmallPtrSet<BasicBlock *, 4> Successors;
2534   for (auto *Succ : successors(CheckBB))
2535     if (Successors.insert(Succ).second)
2536       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2537 
2538   Instruction *DeoptBlockTerm =
2539       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2540   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2541   // SplitBlockAndInsertIfThen inserts control flow that branches to
2542   // DeoptBlockTerm if the condition is true.  We want the opposite.
2543   CheckBI->swapSuccessors();
2544 
2545   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2546   GuardedBlock->setName("guarded");
2547   CheckBI->getSuccessor(1)->setName("deopt");
2548   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2549 
2550   // We now have a new exit block.
2551   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2552 
2553   if (MSSAU)
2554     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2555 
2556   GI->moveBefore(DeoptBlockTerm);
2557   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2558 
2559   // Add new successors of CheckBB into DomTree.
2560   for (auto *Succ : successors(CheckBB))
2561     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2562 
2563   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2564   // successors.
2565   for (auto *Succ : Successors)
2566     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2567 
2568   // Make proper changes to DT.
2569   DT.applyUpdates(DTUpdates);
2570   // Inform LI of a new loop block.
2571   L.addBasicBlockToLoop(GuardedBlock, LI);
2572 
2573   if (MSSAU) {
2574     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2575     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2576     if (VerifyMemorySSA)
2577       MSSAU->getMemorySSA()->verifyMemorySSA();
2578   }
2579 
2580   ++NumGuards;
2581   return CheckBI;
2582 }
2583 
2584 /// Cost multiplier is a way to limit potentially exponential behavior
2585 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2586 /// candidates available. Also accounting for the number of "sibling" loops with
2587 /// the idea to account for previous unswitches that already happened on this
2588 /// cluster of loops. There was an attempt to keep this formula simple,
2589 /// just enough to limit the worst case behavior. Even if it is not that simple
2590 /// now it is still not an attempt to provide a detailed heuristic size
2591 /// prediction.
2592 ///
2593 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2594 /// unswitch candidates, making adequate predictions instead of wild guesses.
2595 /// That requires knowing not just the number of "remaining" candidates but
2596 /// also costs of unswitching for each of these candidates.
2597 static int CalculateUnswitchCostMultiplier(
2598     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2599     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2600         UnswitchCandidates) {
2601 
2602   // Guards and other exiting conditions do not contribute to exponential
2603   // explosion as soon as they dominate the latch (otherwise there might be
2604   // another path to the latch remaining that does not allow to eliminate the
2605   // loop copy on unswitch).
2606   BasicBlock *Latch = L.getLoopLatch();
2607   BasicBlock *CondBlock = TI.getParent();
2608   if (DT.dominates(CondBlock, Latch) &&
2609       (isGuard(&TI) ||
2610        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2611          return L.contains(SuccBB);
2612        }) <= 1)) {
2613     NumCostMultiplierSkipped++;
2614     return 1;
2615   }
2616 
2617   auto *ParentL = L.getParentLoop();
2618   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2619                                : std::distance(LI.begin(), LI.end()));
2620   // Count amount of clones that all the candidates might cause during
2621   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2622   int UnswitchedClones = 0;
2623   for (auto Candidate : UnswitchCandidates) {
2624     Instruction *CI = Candidate.first;
2625     BasicBlock *CondBlock = CI->getParent();
2626     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2627     if (isGuard(CI)) {
2628       if (!SkipExitingSuccessors)
2629         UnswitchedClones++;
2630       continue;
2631     }
2632     int NonExitingSuccessors = llvm::count_if(
2633         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2634           return !SkipExitingSuccessors || L.contains(SuccBB);
2635         });
2636     UnswitchedClones += Log2_32(NonExitingSuccessors);
2637   }
2638 
2639   // Ignore up to the "unscaled candidates" number of unswitch candidates
2640   // when calculating the power-of-two scaling of the cost. The main idea
2641   // with this control is to allow a small number of unswitches to happen
2642   // and rely more on siblings multiplier (see below) when the number
2643   // of candidates is small.
2644   unsigned ClonesPower =
2645       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2646 
2647   // Allowing top-level loops to spread a bit more than nested ones.
2648   int SiblingsMultiplier =
2649       std::max((ParentL ? SiblingsCount
2650                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2651                1);
2652   // Compute the cost multiplier in a way that won't overflow by saturating
2653   // at an upper bound.
2654   int CostMultiplier;
2655   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2656       SiblingsMultiplier > UnswitchThreshold)
2657     CostMultiplier = UnswitchThreshold;
2658   else
2659     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2660                               (int)UnswitchThreshold);
2661 
2662   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2663                     << " (siblings " << SiblingsMultiplier << " * clones "
2664                     << (1 << ClonesPower) << ")"
2665                     << " for unswitch candidate: " << TI << "\n");
2666   return CostMultiplier;
2667 }
2668 
2669 static bool unswitchBestCondition(
2670     Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2671     AAResults &AA, TargetTransformInfo &TTI,
2672     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2673     ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2674   // Collect all invariant conditions within this loop (as opposed to an inner
2675   // loop which would be handled when visiting that inner loop).
2676   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2677       UnswitchCandidates;
2678 
2679   // Whether or not we should also collect guards in the loop.
2680   bool CollectGuards = false;
2681   if (UnswitchGuards) {
2682     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2683         Intrinsic::getName(Intrinsic::experimental_guard));
2684     if (GuardDecl && !GuardDecl->use_empty())
2685       CollectGuards = true;
2686   }
2687 
2688   IVConditionInfo PartialIVInfo;
2689   for (auto *BB : L.blocks()) {
2690     if (LI.getLoopFor(BB) != &L)
2691       continue;
2692 
2693     if (CollectGuards)
2694       for (auto &I : *BB)
2695         if (isGuard(&I)) {
2696           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2697           // TODO: Support AND, OR conditions and partial unswitching.
2698           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2699             UnswitchCandidates.push_back({&I, {Cond}});
2700         }
2701 
2702     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2703       // We can only consider fully loop-invariant switch conditions as we need
2704       // to completely eliminate the switch after unswitching.
2705       if (!isa<Constant>(SI->getCondition()) &&
2706           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2707         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2708       continue;
2709     }
2710 
2711     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2712     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2713         BI->getSuccessor(0) == BI->getSuccessor(1))
2714       continue;
2715 
2716     // If BI's condition is 'select _, true, false', simplify it to confuse
2717     // matchers
2718     Value *Cond = BI->getCondition(), *CondNext;
2719     while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
2720       Cond = CondNext;
2721     BI->setCondition(Cond);
2722 
2723     if (L.isLoopInvariant(BI->getCondition())) {
2724       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2725       continue;
2726     }
2727 
2728     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2729     if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2730       TinyPtrVector<Value *> Invariants =
2731           collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2732       if (Invariants.empty())
2733         continue;
2734 
2735       UnswitchCandidates.push_back({BI, std::move(Invariants)});
2736       continue;
2737     }
2738   }
2739 
2740   Instruction *PartialIVCondBranch = nullptr;
2741   if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2742       !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2743         return TerminatorAndInvariants.first == L.getHeader()->getTerminator();
2744       })) {
2745     MemorySSA *MSSA = MSSAU->getMemorySSA();
2746     if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2747       LLVM_DEBUG(
2748           dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2749                  << *Info->InstToDuplicate[0] << "\n");
2750       PartialIVInfo = *Info;
2751       PartialIVCondBranch = L.getHeader()->getTerminator();
2752       TinyPtrVector<Value *> ValsToDuplicate;
2753       for (auto *Inst : Info->InstToDuplicate)
2754         ValsToDuplicate.push_back(Inst);
2755       UnswitchCandidates.push_back(
2756           {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2757     }
2758   }
2759 
2760   // If we didn't find any candidates, we're done.
2761   if (UnswitchCandidates.empty())
2762     return false;
2763 
2764   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2765   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2766   // irreducible control flow into reducible control flow and introduce new
2767   // loops "out of thin air". If we ever discover important use cases for doing
2768   // this, we can add support to loop unswitch, but it is a lot of complexity
2769   // for what seems little or no real world benefit.
2770   LoopBlocksRPO RPOT(&L);
2771   RPOT.perform(&LI);
2772   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2773     return false;
2774 
2775   SmallVector<BasicBlock *, 4> ExitBlocks;
2776   L.getUniqueExitBlocks(ExitBlocks);
2777 
2778   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2779   // don't know how to split those exit blocks.
2780   // FIXME: We should teach SplitBlock to handle this and remove this
2781   // restriction.
2782   for (auto *ExitBB : ExitBlocks) {
2783     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2784       LLVM_DEBUG(
2785           dbgs() << "Cannot unswitch because of cleanuppad in exit block\n");
2786       return false;
2787     }
2788   }
2789 
2790   LLVM_DEBUG(
2791       dbgs() << "Considering " << UnswitchCandidates.size()
2792              << " non-trivial loop invariant conditions for unswitching.\n");
2793 
2794   // Given that unswitching these terminators will require duplicating parts of
2795   // the loop, so we need to be able to model that cost. Compute the ephemeral
2796   // values and set up a data structure to hold per-BB costs. We cache each
2797   // block's cost so that we don't recompute this when considering different
2798   // subsets of the loop for duplication during unswitching.
2799   SmallPtrSet<const Value *, 4> EphValues;
2800   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2801   SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2802 
2803   // Compute the cost of each block, as well as the total loop cost. Also, bail
2804   // out if we see instructions which are incompatible with loop unswitching
2805   // (convergent, noduplicate, or cross-basic-block tokens).
2806   // FIXME: We might be able to safely handle some of these in non-duplicated
2807   // regions.
2808   TargetTransformInfo::TargetCostKind CostKind =
2809       L.getHeader()->getParent()->hasMinSize()
2810       ? TargetTransformInfo::TCK_CodeSize
2811       : TargetTransformInfo::TCK_SizeAndLatency;
2812   InstructionCost LoopCost = 0;
2813   for (auto *BB : L.blocks()) {
2814     InstructionCost Cost = 0;
2815     for (auto &I : *BB) {
2816       if (EphValues.count(&I))
2817         continue;
2818 
2819       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2820         return false;
2821       if (auto *CB = dyn_cast<CallBase>(&I))
2822         if (CB->isConvergent() || CB->cannotDuplicate())
2823           return false;
2824 
2825       Cost += TTI.getUserCost(&I, CostKind);
2826     }
2827     assert(Cost >= 0 && "Must not have negative costs!");
2828     LoopCost += Cost;
2829     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2830     BBCostMap[BB] = Cost;
2831   }
2832   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2833 
2834   // Now we find the best candidate by searching for the one with the following
2835   // properties in order:
2836   //
2837   // 1) An unswitching cost below the threshold
2838   // 2) The smallest number of duplicated unswitch candidates (to avoid
2839   //    creating redundant subsequent unswitching)
2840   // 3) The smallest cost after unswitching.
2841   //
2842   // We prioritize reducing fanout of unswitch candidates provided the cost
2843   // remains below the threshold because this has a multiplicative effect.
2844   //
2845   // This requires memoizing each dominator subtree to avoid redundant work.
2846   //
2847   // FIXME: Need to actually do the number of candidates part above.
2848   SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2849   // Given a terminator which might be unswitched, computes the non-duplicated
2850   // cost for that terminator.
2851   auto ComputeUnswitchedCost = [&](Instruction &TI,
2852                                    bool FullUnswitch) -> InstructionCost {
2853     BasicBlock &BB = *TI.getParent();
2854     SmallPtrSet<BasicBlock *, 4> Visited;
2855 
2856     InstructionCost Cost = 0;
2857     for (BasicBlock *SuccBB : successors(&BB)) {
2858       // Don't count successors more than once.
2859       if (!Visited.insert(SuccBB).second)
2860         continue;
2861 
2862       // If this is a partial unswitch candidate, then it must be a conditional
2863       // branch with a condition of either `or`, `and`, their corresponding
2864       // select forms or partially invariant instructions. In that case, one of
2865       // the successors is necessarily duplicated, so don't even try to remove
2866       // its cost.
2867       if (!FullUnswitch) {
2868         auto &BI = cast<BranchInst>(TI);
2869         if (match(BI.getCondition(), m_LogicalAnd())) {
2870           if (SuccBB == BI.getSuccessor(1))
2871             continue;
2872         } else if (match(BI.getCondition(), m_LogicalOr())) {
2873           if (SuccBB == BI.getSuccessor(0))
2874             continue;
2875         } else if (!PartialIVInfo.InstToDuplicate.empty()) {
2876           if (PartialIVInfo.KnownValue->isOneValue() &&
2877               SuccBB == BI.getSuccessor(1))
2878             continue;
2879           else if (!PartialIVInfo.KnownValue->isOneValue() &&
2880                    SuccBB == BI.getSuccessor(0))
2881             continue;
2882         }
2883       }
2884 
2885       // This successor's domtree will not need to be duplicated after
2886       // unswitching if the edge to the successor dominates it (and thus the
2887       // entire tree). This essentially means there is no other path into this
2888       // subtree and so it will end up live in only one clone of the loop.
2889       if (SuccBB->getUniquePredecessor() ||
2890           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2891             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2892           })) {
2893         Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2894         assert(Cost <= LoopCost &&
2895                "Non-duplicated cost should never exceed total loop cost!");
2896       }
2897     }
2898 
2899     // Now scale the cost by the number of unique successors minus one. We
2900     // subtract one because there is already at least one copy of the entire
2901     // loop. This is computing the new cost of unswitching a condition.
2902     // Note that guards always have 2 unique successors that are implicit and
2903     // will be materialized if we decide to unswitch it.
2904     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2905     assert(SuccessorsCount > 1 &&
2906            "Cannot unswitch a condition without multiple distinct successors!");
2907     return (LoopCost - Cost) * (SuccessorsCount - 1);
2908   };
2909   Instruction *BestUnswitchTI = nullptr;
2910   InstructionCost BestUnswitchCost = 0;
2911   ArrayRef<Value *> BestUnswitchInvariants;
2912   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2913     Instruction &TI = *TerminatorAndInvariants.first;
2914     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2915     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2916     InstructionCost CandidateCost = ComputeUnswitchedCost(
2917         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2918                                      Invariants[0] == BI->getCondition()));
2919     // Calculate cost multiplier which is a tool to limit potentially
2920     // exponential behavior of loop-unswitch.
2921     if (EnableUnswitchCostMultiplier) {
2922       int CostMultiplier =
2923           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2924       assert(
2925           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2926           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2927       CandidateCost *= CostMultiplier;
2928       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2929                         << " (multiplier: " << CostMultiplier << ")"
2930                         << " for unswitch candidate: " << TI << "\n");
2931     } else {
2932       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2933                         << " for unswitch candidate: " << TI << "\n");
2934     }
2935 
2936     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2937       BestUnswitchTI = &TI;
2938       BestUnswitchCost = CandidateCost;
2939       BestUnswitchInvariants = Invariants;
2940     }
2941   }
2942   assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2943 
2944   if (BestUnswitchCost >= UnswitchThreshold) {
2945     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2946                       << BestUnswitchCost << "\n");
2947     return false;
2948   }
2949 
2950   if (BestUnswitchTI != PartialIVCondBranch)
2951     PartialIVInfo.InstToDuplicate.clear();
2952 
2953   // If the best candidate is a guard, turn it into a branch.
2954   if (isGuard(BestUnswitchTI))
2955     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2956                                          ExitBlocks, DT, LI, MSSAU);
2957 
2958   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2959                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2960                     << "\n");
2961   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2962                                ExitBlocks, PartialIVInfo, DT, LI, AC,
2963                                UnswitchCB, SE, MSSAU);
2964   return true;
2965 }
2966 
2967 /// Unswitch control flow predicated on loop invariant conditions.
2968 ///
2969 /// This first hoists all branches or switches which are trivial (IE, do not
2970 /// require duplicating any part of the loop) out of the loop body. It then
2971 /// looks at other loop invariant control flows and tries to unswitch those as
2972 /// well by cloning the loop if the result is small enough.
2973 ///
2974 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
2975 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
2976 /// valid (i.e. its use is enabled).
2977 ///
2978 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2979 /// true, we will attempt to do non-trivial unswitching as well as trivial
2980 /// unswitching.
2981 ///
2982 /// The `UnswitchCB` callback provided will be run after unswitching is
2983 /// complete, with the first parameter set to `true` if the provided loop
2984 /// remains a loop, and a list of new sibling loops created.
2985 ///
2986 /// If `SE` is non-null, we will update that analysis based on the unswitching
2987 /// done.
2988 static bool
2989 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2990              AAResults &AA, TargetTransformInfo &TTI, bool NonTrivial,
2991              function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2992              ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2993   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2994          "Loops must be in LCSSA form before unswitching.");
2995 
2996   // Must be in loop simplified form: we need a preheader and dedicated exits.
2997   if (!L.isLoopSimplifyForm())
2998     return false;
2999 
3000   // Try trivial unswitch first before loop over other basic blocks in the loop.
3001   if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3002     // If we unswitched successfully we will want to clean up the loop before
3003     // processing it further so just mark it as unswitched and return.
3004     UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3005     return true;
3006   }
3007 
3008   // Check whether we should continue with non-trivial conditions.
3009   // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3010   //                           unswitching for testing and debugging.
3011   // NonTrivial: Parameter that enables non-trivial unswitching for this
3012   //             invocation of the transform. But this should be allowed only
3013   //             for targets without branch divergence.
3014   //
3015   // FIXME: If divergence analysis becomes available to a loop
3016   // transform, we should allow unswitching for non-trivial uniform
3017   // branches even on targets that have divergence.
3018   // https://bugs.llvm.org/show_bug.cgi?id=48819
3019   bool ContinueWithNonTrivial =
3020       EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3021   if (!ContinueWithNonTrivial)
3022     return false;
3023 
3024   // Skip non-trivial unswitching for optsize functions.
3025   if (L.getHeader()->getParent()->hasOptSize())
3026     return false;
3027 
3028   // Skip non-trivial unswitching for loops that cannot be cloned.
3029   if (!L.isSafeToClone())
3030     return false;
3031 
3032   // For non-trivial unswitching, because it often creates new loops, we rely on
3033   // the pass manager to iterate on the loops rather than trying to immediately
3034   // reach a fixed point. There is no substantial advantage to iterating
3035   // internally, and if any of the new loops are simplified enough to contain
3036   // trivial unswitching we want to prefer those.
3037 
3038   // Try to unswitch the best invariant condition. We prefer this full unswitch to
3039   // a partial unswitch when possible below the threshold.
3040   if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU))
3041     return true;
3042 
3043   // No other opportunities to unswitch.
3044   return false;
3045 }
3046 
3047 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3048                                               LoopStandardAnalysisResults &AR,
3049                                               LPMUpdater &U) {
3050   Function &F = *L.getHeader()->getParent();
3051   (void)F;
3052 
3053   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3054                     << "\n");
3055 
3056   // Save the current loop name in a variable so that we can report it even
3057   // after it has been deleted.
3058   std::string LoopName = std::string(L.getName());
3059 
3060   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3061                                         bool PartiallyInvariant,
3062                                         ArrayRef<Loop *> NewLoops) {
3063     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3064     if (!NewLoops.empty())
3065       U.addSiblingLoops(NewLoops);
3066 
3067     // If the current loop remains valid, we should revisit it to catch any
3068     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3069     if (CurrentLoopValid) {
3070       if (PartiallyInvariant) {
3071         // Mark the new loop as partially unswitched, to avoid unswitching on
3072         // the same condition again.
3073         auto &Context = L.getHeader()->getContext();
3074         MDNode *DisableUnswitchMD = MDNode::get(
3075             Context,
3076             MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
3077         MDNode *NewLoopID = makePostTransformationMetadata(
3078             Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
3079             {DisableUnswitchMD});
3080         L.setLoopID(NewLoopID);
3081       } else
3082         U.revisitCurrentLoop();
3083     } else
3084       U.markLoopAsDeleted(L, LoopName);
3085   };
3086 
3087   Optional<MemorySSAUpdater> MSSAU;
3088   if (AR.MSSA) {
3089     MSSAU = MemorySSAUpdater(AR.MSSA);
3090     if (VerifyMemorySSA)
3091       AR.MSSA->verifyMemorySSA();
3092   }
3093   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, NonTrivial,
3094                     UnswitchCB, &AR.SE,
3095                     MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
3096     return PreservedAnalyses::all();
3097 
3098   if (AR.MSSA && VerifyMemorySSA)
3099     AR.MSSA->verifyMemorySSA();
3100 
3101   // Historically this pass has had issues with the dominator tree so verify it
3102   // in asserts builds.
3103   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3104 
3105   auto PA = getLoopPassPreservedAnalyses();
3106   if (AR.MSSA)
3107     PA.preserve<MemorySSAAnalysis>();
3108   return PA;
3109 }
3110 
3111 namespace {
3112 
3113 class SimpleLoopUnswitchLegacyPass : public LoopPass {
3114   bool NonTrivial;
3115 
3116 public:
3117   static char ID; // Pass ID, replacement for typeid
3118 
3119   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3120       : LoopPass(ID), NonTrivial(NonTrivial) {
3121     initializeSimpleLoopUnswitchLegacyPassPass(
3122         *PassRegistry::getPassRegistry());
3123   }
3124 
3125   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3126 
3127   void getAnalysisUsage(AnalysisUsage &AU) const override {
3128     AU.addRequired<AssumptionCacheTracker>();
3129     AU.addRequired<TargetTransformInfoWrapperPass>();
3130     if (EnableMSSALoopDependency) {
3131       AU.addRequired<MemorySSAWrapperPass>();
3132       AU.addPreserved<MemorySSAWrapperPass>();
3133     }
3134     getLoopAnalysisUsage(AU);
3135   }
3136 };
3137 
3138 } // end anonymous namespace
3139 
3140 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3141   if (skipLoop(L))
3142     return false;
3143 
3144   Function &F = *L->getHeader()->getParent();
3145 
3146   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3147                     << "\n");
3148 
3149   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3150   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3151   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3152   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3153   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3154   MemorySSA *MSSA = nullptr;
3155   Optional<MemorySSAUpdater> MSSAU;
3156   if (EnableMSSALoopDependency) {
3157     MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3158     MSSAU = MemorySSAUpdater(MSSA);
3159   }
3160 
3161   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3162   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3163 
3164   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3165                                ArrayRef<Loop *> NewLoops) {
3166     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3167     for (auto *NewL : NewLoops)
3168       LPM.addLoop(*NewL);
3169 
3170     // If the current loop remains valid, re-add it to the queue. This is
3171     // a little wasteful as we'll finish processing the current loop as well,
3172     // but it is the best we can do in the old PM.
3173     if (CurrentLoopValid) {
3174       // If the current loop has been unswitched using a partially invariant
3175       // condition, we should not re-add the current loop to avoid unswitching
3176       // on the same condition again.
3177       if (!PartiallyInvariant)
3178         LPM.addLoop(*L);
3179     } else
3180       LPM.markLoopAsDeleted(*L);
3181   };
3182 
3183   if (MSSA && VerifyMemorySSA)
3184     MSSA->verifyMemorySSA();
3185 
3186   bool Changed =
3187       unswitchLoop(*L, DT, LI, AC, AA, TTI, NonTrivial, UnswitchCB, SE,
3188                    MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
3189 
3190   if (MSSA && VerifyMemorySSA)
3191     MSSA->verifyMemorySSA();
3192 
3193   // Historically this pass has had issues with the dominator tree so verify it
3194   // in asserts builds.
3195   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3196 
3197   return Changed;
3198 }
3199 
3200 char SimpleLoopUnswitchLegacyPass::ID = 0;
3201 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3202                       "Simple unswitch loops", false, false)
3203 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3204 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3205 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3206 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3207 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3208 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3209 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3210                     "Simple unswitch loops", false, false)
3211 
3212 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3213   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3214 }
3215