1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/GuardUtils.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopAnalysisManager.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/Utils/Local.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/GenericDomTree.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 49 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 50 #include "llvm/Transforms/Utils/Cloning.h" 51 #include "llvm/Transforms/Utils/LoopUtils.h" 52 #include "llvm/Transforms/Utils/ValueMapper.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <numeric> 57 #include <utility> 58 59 #define DEBUG_TYPE "simple-loop-unswitch" 60 61 using namespace llvm; 62 63 STATISTIC(NumBranches, "Number of branches unswitched"); 64 STATISTIC(NumSwitches, "Number of switches unswitched"); 65 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 66 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 67 STATISTIC( 68 NumCostMultiplierSkipped, 69 "Number of unswitch candidates that had their cost multiplier skipped"); 70 71 static cl::opt<bool> EnableNonTrivialUnswitch( 72 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 73 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 74 "following the configuration passed into the pass.")); 75 76 static cl::opt<int> 77 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 78 cl::desc("The cost threshold for unswitching a loop.")); 79 80 static cl::opt<bool> EnableUnswitchCostMultiplier( 81 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 82 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 83 "explosion in nontrivial unswitch.")); 84 static cl::opt<int> UnswitchSiblingsToplevelDiv( 85 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 86 cl::desc("Toplevel siblings divisor for cost multiplier.")); 87 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 88 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 89 cl::desc("Number of unswitch candidates that are ignored when calculating " 90 "cost multiplier.")); 91 static cl::opt<bool> UnswitchGuards( 92 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 93 cl::desc("If enabled, simple loop unswitching will also consider " 94 "llvm.experimental.guard intrinsics as unswitch candidates.")); 95 96 /// Collect all of the loop invariant input values transitively used by the 97 /// homogeneous instruction graph from a given root. 98 /// 99 /// This essentially walks from a root recursively through loop variant operands 100 /// which have the exact same opcode and finds all inputs which are loop 101 /// invariant. For some operations these can be re-associated and unswitched out 102 /// of the loop entirely. 103 static TinyPtrVector<Value *> 104 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 105 LoopInfo &LI) { 106 assert(!L.isLoopInvariant(&Root) && 107 "Only need to walk the graph if root itself is not invariant."); 108 TinyPtrVector<Value *> Invariants; 109 110 // Build a worklist and recurse through operators collecting invariants. 111 SmallVector<Instruction *, 4> Worklist; 112 SmallPtrSet<Instruction *, 8> Visited; 113 Worklist.push_back(&Root); 114 Visited.insert(&Root); 115 do { 116 Instruction &I = *Worklist.pop_back_val(); 117 for (Value *OpV : I.operand_values()) { 118 // Skip constants as unswitching isn't interesting for them. 119 if (isa<Constant>(OpV)) 120 continue; 121 122 // Add it to our result if loop invariant. 123 if (L.isLoopInvariant(OpV)) { 124 Invariants.push_back(OpV); 125 continue; 126 } 127 128 // If not an instruction with the same opcode, nothing we can do. 129 Instruction *OpI = dyn_cast<Instruction>(OpV); 130 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 131 continue; 132 133 // Visit this operand. 134 if (Visited.insert(OpI).second) 135 Worklist.push_back(OpI); 136 } 137 } while (!Worklist.empty()); 138 139 return Invariants; 140 } 141 142 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 143 Constant &Replacement) { 144 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 145 146 // Replace uses of LIC in the loop with the given constant. 147 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 148 // Grab the use and walk past it so we can clobber it in the use list. 149 Use *U = &*UI++; 150 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 151 152 // Replace this use within the loop body. 153 if (UserI && L.contains(UserI)) 154 U->set(&Replacement); 155 } 156 } 157 158 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 159 /// incoming values along this edge. 160 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 161 BasicBlock &ExitBB) { 162 for (Instruction &I : ExitBB) { 163 auto *PN = dyn_cast<PHINode>(&I); 164 if (!PN) 165 // No more PHIs to check. 166 return true; 167 168 // If the incoming value for this edge isn't loop invariant the unswitch 169 // won't be trivial. 170 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 171 return false; 172 } 173 llvm_unreachable("Basic blocks should never be empty!"); 174 } 175 176 /// Insert code to test a set of loop invariant values, and conditionally branch 177 /// on them. 178 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 179 ArrayRef<Value *> Invariants, 180 bool Direction, 181 BasicBlock &UnswitchedSucc, 182 BasicBlock &NormalSucc) { 183 IRBuilder<> IRB(&BB); 184 Value *Cond = Invariants.front(); 185 for (Value *Invariant : 186 make_range(std::next(Invariants.begin()), Invariants.end())) 187 if (Direction) 188 Cond = IRB.CreateOr(Cond, Invariant); 189 else 190 Cond = IRB.CreateAnd(Cond, Invariant); 191 192 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 193 Direction ? &NormalSucc : &UnswitchedSucc); 194 } 195 196 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 197 /// 198 /// Requires that the loop exit and unswitched basic block are the same, and 199 /// that the exiting block was a unique predecessor of that block. Rewrites the 200 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 201 /// PHI nodes from the old preheader that now contains the unswitched 202 /// terminator. 203 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 204 BasicBlock &OldExitingBB, 205 BasicBlock &OldPH) { 206 for (PHINode &PN : UnswitchedBB.phis()) { 207 // When the loop exit is directly unswitched we just need to update the 208 // incoming basic block. We loop to handle weird cases with repeated 209 // incoming blocks, but expect to typically only have one operand here. 210 for (auto i : seq<int>(0, PN.getNumOperands())) { 211 assert(PN.getIncomingBlock(i) == &OldExitingBB && 212 "Found incoming block different from unique predecessor!"); 213 PN.setIncomingBlock(i, &OldPH); 214 } 215 } 216 } 217 218 /// Rewrite the PHI nodes in the loop exit basic block and the split off 219 /// unswitched block. 220 /// 221 /// Because the exit block remains an exit from the loop, this rewrites the 222 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 223 /// nodes into the unswitched basic block to select between the value in the 224 /// old preheader and the loop exit. 225 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 226 BasicBlock &UnswitchedBB, 227 BasicBlock &OldExitingBB, 228 BasicBlock &OldPH, 229 bool FullUnswitch) { 230 assert(&ExitBB != &UnswitchedBB && 231 "Must have different loop exit and unswitched blocks!"); 232 Instruction *InsertPt = &*UnswitchedBB.begin(); 233 for (PHINode &PN : ExitBB.phis()) { 234 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 235 PN.getName() + ".split", InsertPt); 236 237 // Walk backwards over the old PHI node's inputs to minimize the cost of 238 // removing each one. We have to do this weird loop manually so that we 239 // create the same number of new incoming edges in the new PHI as we expect 240 // each case-based edge to be included in the unswitched switch in some 241 // cases. 242 // FIXME: This is really, really gross. It would be much cleaner if LLVM 243 // allowed us to create a single entry for a predecessor block without 244 // having separate entries for each "edge" even though these edges are 245 // required to produce identical results. 246 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 247 if (PN.getIncomingBlock(i) != &OldExitingBB) 248 continue; 249 250 Value *Incoming = PN.getIncomingValue(i); 251 if (FullUnswitch) 252 // No more edge from the old exiting block to the exit block. 253 PN.removeIncomingValue(i); 254 255 NewPN->addIncoming(Incoming, &OldPH); 256 } 257 258 // Now replace the old PHI with the new one and wire the old one in as an 259 // input to the new one. 260 PN.replaceAllUsesWith(NewPN); 261 NewPN->addIncoming(&PN, &ExitBB); 262 } 263 } 264 265 /// Hoist the current loop up to the innermost loop containing a remaining exit. 266 /// 267 /// Because we've removed an exit from the loop, we may have changed the set of 268 /// loops reachable and need to move the current loop up the loop nest or even 269 /// to an entirely separate nest. 270 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 271 DominatorTree &DT, LoopInfo &LI) { 272 // If the loop is already at the top level, we can't hoist it anywhere. 273 Loop *OldParentL = L.getParentLoop(); 274 if (!OldParentL) 275 return; 276 277 SmallVector<BasicBlock *, 4> Exits; 278 L.getExitBlocks(Exits); 279 Loop *NewParentL = nullptr; 280 for (auto *ExitBB : Exits) 281 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 282 if (!NewParentL || NewParentL->contains(ExitL)) 283 NewParentL = ExitL; 284 285 if (NewParentL == OldParentL) 286 return; 287 288 // The new parent loop (if different) should always contain the old one. 289 if (NewParentL) 290 assert(NewParentL->contains(OldParentL) && 291 "Can only hoist this loop up the nest!"); 292 293 // The preheader will need to move with the body of this loop. However, 294 // because it isn't in this loop we also need to update the primary loop map. 295 assert(OldParentL == LI.getLoopFor(&Preheader) && 296 "Parent loop of this loop should contain this loop's preheader!"); 297 LI.changeLoopFor(&Preheader, NewParentL); 298 299 // Remove this loop from its old parent. 300 OldParentL->removeChildLoop(&L); 301 302 // Add the loop either to the new parent or as a top-level loop. 303 if (NewParentL) 304 NewParentL->addChildLoop(&L); 305 else 306 LI.addTopLevelLoop(&L); 307 308 // Remove this loops blocks from the old parent and every other loop up the 309 // nest until reaching the new parent. Also update all of these 310 // no-longer-containing loops to reflect the nesting change. 311 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 312 OldContainingL = OldContainingL->getParentLoop()) { 313 llvm::erase_if(OldContainingL->getBlocksVector(), 314 [&](const BasicBlock *BB) { 315 return BB == &Preheader || L.contains(BB); 316 }); 317 318 OldContainingL->getBlocksSet().erase(&Preheader); 319 for (BasicBlock *BB : L.blocks()) 320 OldContainingL->getBlocksSet().erase(BB); 321 322 // Because we just hoisted a loop out of this one, we have essentially 323 // created new exit paths from it. That means we need to form LCSSA PHI 324 // nodes for values used in the no-longer-nested loop. 325 formLCSSA(*OldContainingL, DT, &LI, nullptr); 326 327 // We shouldn't need to form dedicated exits because the exit introduced 328 // here is the (just split by unswitching) preheader. However, after trivial 329 // unswitching it is possible to get new non-dedicated exits out of parent 330 // loop so let's conservatively form dedicated exit blocks and figure out 331 // if we can optimize later. 332 formDedicatedExitBlocks(OldContainingL, &DT, &LI, /*PreserveLCSSA*/ true); 333 } 334 } 335 336 /// Unswitch a trivial branch if the condition is loop invariant. 337 /// 338 /// This routine should only be called when loop code leading to the branch has 339 /// been validated as trivial (no side effects). This routine checks if the 340 /// condition is invariant and one of the successors is a loop exit. This 341 /// allows us to unswitch without duplicating the loop, making it trivial. 342 /// 343 /// If this routine fails to unswitch the branch it returns false. 344 /// 345 /// If the branch can be unswitched, this routine splits the preheader and 346 /// hoists the branch above that split. Preserves loop simplified form 347 /// (splitting the exit block as necessary). It simplifies the branch within 348 /// the loop to an unconditional branch but doesn't remove it entirely. Further 349 /// cleanup can be done with some simplify-cfg like pass. 350 /// 351 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 352 /// invalidated by this. 353 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 354 LoopInfo &LI, ScalarEvolution *SE, 355 MemorySSAUpdater *MSSAU) { 356 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 357 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 358 359 // The loop invariant values that we want to unswitch. 360 TinyPtrVector<Value *> Invariants; 361 362 // When true, we're fully unswitching the branch rather than just unswitching 363 // some input conditions to the branch. 364 bool FullUnswitch = false; 365 366 if (L.isLoopInvariant(BI.getCondition())) { 367 Invariants.push_back(BI.getCondition()); 368 FullUnswitch = true; 369 } else { 370 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 371 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 372 if (Invariants.empty()) 373 // Couldn't find invariant inputs! 374 return false; 375 } 376 377 // Check that one of the branch's successors exits, and which one. 378 bool ExitDirection = true; 379 int LoopExitSuccIdx = 0; 380 auto *LoopExitBB = BI.getSuccessor(0); 381 if (L.contains(LoopExitBB)) { 382 ExitDirection = false; 383 LoopExitSuccIdx = 1; 384 LoopExitBB = BI.getSuccessor(1); 385 if (L.contains(LoopExitBB)) 386 return false; 387 } 388 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 389 auto *ParentBB = BI.getParent(); 390 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 391 return false; 392 393 // When unswitching only part of the branch's condition, we need the exit 394 // block to be reached directly from the partially unswitched input. This can 395 // be done when the exit block is along the true edge and the branch condition 396 // is a graph of `or` operations, or the exit block is along the false edge 397 // and the condition is a graph of `and` operations. 398 if (!FullUnswitch) { 399 if (ExitDirection) { 400 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 401 return false; 402 } else { 403 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 404 return false; 405 } 406 } 407 408 LLVM_DEBUG({ 409 dbgs() << " unswitching trivial invariant conditions for: " << BI 410 << "\n"; 411 for (Value *Invariant : Invariants) { 412 dbgs() << " " << *Invariant << " == true"; 413 if (Invariant != Invariants.back()) 414 dbgs() << " ||"; 415 dbgs() << "\n"; 416 } 417 }); 418 419 // If we have scalar evolutions, we need to invalidate them including this 420 // loop and the loop containing the exit block. 421 if (SE) { 422 if (Loop *ExitL = LI.getLoopFor(LoopExitBB)) 423 SE->forgetLoop(ExitL); 424 else 425 // Forget the entire nest as this exits the entire nest. 426 SE->forgetTopmostLoop(&L); 427 } 428 429 if (MSSAU && VerifyMemorySSA) 430 MSSAU->getMemorySSA()->verifyMemorySSA(); 431 432 // Split the preheader, so that we know that there is a safe place to insert 433 // the conditional branch. We will change the preheader to have a conditional 434 // branch on LoopCond. 435 BasicBlock *OldPH = L.getLoopPreheader(); 436 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 437 438 // Now that we have a place to insert the conditional branch, create a place 439 // to branch to: this is the exit block out of the loop that we are 440 // unswitching. We need to split this if there are other loop predecessors. 441 // Because the loop is in simplified form, *any* other predecessor is enough. 442 BasicBlock *UnswitchedBB; 443 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 444 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 445 "A branch's parent isn't a predecessor!"); 446 UnswitchedBB = LoopExitBB; 447 } else { 448 UnswitchedBB = 449 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 450 } 451 452 if (MSSAU && VerifyMemorySSA) 453 MSSAU->getMemorySSA()->verifyMemorySSA(); 454 455 // Actually move the invariant uses into the unswitched position. If possible, 456 // we do this by moving the instructions, but when doing partial unswitching 457 // we do it by building a new merge of the values in the unswitched position. 458 OldPH->getTerminator()->eraseFromParent(); 459 if (FullUnswitch) { 460 // If fully unswitching, we can use the existing branch instruction. 461 // Splice it into the old PH to gate reaching the new preheader and re-point 462 // its successors. 463 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 464 BI); 465 if (MSSAU) { 466 // Temporarily clone the terminator, to make MSSA update cheaper by 467 // separating "insert edge" updates from "remove edge" ones. 468 ParentBB->getInstList().push_back(BI.clone()); 469 } else { 470 // Create a new unconditional branch that will continue the loop as a new 471 // terminator. 472 BranchInst::Create(ContinueBB, ParentBB); 473 } 474 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 475 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 476 } else { 477 // Only unswitching a subset of inputs to the condition, so we will need to 478 // build a new branch that merges the invariant inputs. 479 if (ExitDirection) 480 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 481 Instruction::Or && 482 "Must have an `or` of `i1`s for the condition!"); 483 else 484 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 485 Instruction::And && 486 "Must have an `and` of `i1`s for the condition!"); 487 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 488 *UnswitchedBB, *NewPH); 489 } 490 491 // Update the dominator tree with the added edge. 492 DT.insertEdge(OldPH, UnswitchedBB); 493 494 // After the dominator tree was updated with the added edge, update MemorySSA 495 // if available. 496 if (MSSAU) { 497 SmallVector<CFGUpdate, 1> Updates; 498 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 499 MSSAU->applyInsertUpdates(Updates, DT); 500 } 501 502 // Finish updating dominator tree and memory ssa for full unswitch. 503 if (FullUnswitch) { 504 if (MSSAU) { 505 // Remove the cloned branch instruction. 506 ParentBB->getTerminator()->eraseFromParent(); 507 // Create unconditional branch now. 508 BranchInst::Create(ContinueBB, ParentBB); 509 MSSAU->removeEdge(ParentBB, LoopExitBB); 510 } 511 DT.deleteEdge(ParentBB, LoopExitBB); 512 } 513 514 if (MSSAU && VerifyMemorySSA) 515 MSSAU->getMemorySSA()->verifyMemorySSA(); 516 517 // Rewrite the relevant PHI nodes. 518 if (UnswitchedBB == LoopExitBB) 519 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 520 else 521 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 522 *ParentBB, *OldPH, FullUnswitch); 523 524 // The constant we can replace all of our invariants with inside the loop 525 // body. If any of the invariants have a value other than this the loop won't 526 // be entered. 527 ConstantInt *Replacement = ExitDirection 528 ? ConstantInt::getFalse(BI.getContext()) 529 : ConstantInt::getTrue(BI.getContext()); 530 531 // Since this is an i1 condition we can also trivially replace uses of it 532 // within the loop with a constant. 533 for (Value *Invariant : Invariants) 534 replaceLoopInvariantUses(L, Invariant, *Replacement); 535 536 // If this was full unswitching, we may have changed the nesting relationship 537 // for this loop so hoist it to its correct parent if needed. 538 if (FullUnswitch) 539 hoistLoopToNewParent(L, *NewPH, DT, LI); 540 541 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 542 ++NumTrivial; 543 ++NumBranches; 544 return true; 545 } 546 547 /// Unswitch a trivial switch if the condition is loop invariant. 548 /// 549 /// This routine should only be called when loop code leading to the switch has 550 /// been validated as trivial (no side effects). This routine checks if the 551 /// condition is invariant and that at least one of the successors is a loop 552 /// exit. This allows us to unswitch without duplicating the loop, making it 553 /// trivial. 554 /// 555 /// If this routine fails to unswitch the switch it returns false. 556 /// 557 /// If the switch can be unswitched, this routine splits the preheader and 558 /// copies the switch above that split. If the default case is one of the 559 /// exiting cases, it copies the non-exiting cases and points them at the new 560 /// preheader. If the default case is not exiting, it copies the exiting cases 561 /// and points the default at the preheader. It preserves loop simplified form 562 /// (splitting the exit blocks as necessary). It simplifies the switch within 563 /// the loop by removing now-dead cases. If the default case is one of those 564 /// unswitched, it replaces its destination with a new basic block containing 565 /// only unreachable. Such basic blocks, while technically loop exits, are not 566 /// considered for unswitching so this is a stable transform and the same 567 /// switch will not be revisited. If after unswitching there is only a single 568 /// in-loop successor, the switch is further simplified to an unconditional 569 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 570 /// 571 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 572 /// invalidated by this. 573 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 574 LoopInfo &LI, ScalarEvolution *SE, 575 MemorySSAUpdater *MSSAU) { 576 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 577 Value *LoopCond = SI.getCondition(); 578 579 // If this isn't switching on an invariant condition, we can't unswitch it. 580 if (!L.isLoopInvariant(LoopCond)) 581 return false; 582 583 auto *ParentBB = SI.getParent(); 584 585 SmallVector<int, 4> ExitCaseIndices; 586 for (auto Case : SI.cases()) { 587 auto *SuccBB = Case.getCaseSuccessor(); 588 if (!L.contains(SuccBB) && 589 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 590 ExitCaseIndices.push_back(Case.getCaseIndex()); 591 } 592 BasicBlock *DefaultExitBB = nullptr; 593 if (!L.contains(SI.getDefaultDest()) && 594 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 595 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 596 DefaultExitBB = SI.getDefaultDest(); 597 else if (ExitCaseIndices.empty()) 598 return false; 599 600 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 601 602 if (MSSAU && VerifyMemorySSA) 603 MSSAU->getMemorySSA()->verifyMemorySSA(); 604 605 // We may need to invalidate SCEVs for the outermost loop reached by any of 606 // the exits. 607 Loop *OuterL = &L; 608 609 if (DefaultExitBB) { 610 // Clear out the default destination temporarily to allow accurate 611 // predecessor lists to be examined below. 612 SI.setDefaultDest(nullptr); 613 // Check the loop containing this exit. 614 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 615 if (!ExitL || ExitL->contains(OuterL)) 616 OuterL = ExitL; 617 } 618 619 // Store the exit cases into a separate data structure and remove them from 620 // the switch. 621 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 622 ExitCases.reserve(ExitCaseIndices.size()); 623 // We walk the case indices backwards so that we remove the last case first 624 // and don't disrupt the earlier indices. 625 for (unsigned Index : reverse(ExitCaseIndices)) { 626 auto CaseI = SI.case_begin() + Index; 627 // Compute the outer loop from this exit. 628 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 629 if (!ExitL || ExitL->contains(OuterL)) 630 OuterL = ExitL; 631 // Save the value of this case. 632 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 633 // Delete the unswitched cases. 634 SI.removeCase(CaseI); 635 } 636 637 if (SE) { 638 if (OuterL) 639 SE->forgetLoop(OuterL); 640 else 641 SE->forgetTopmostLoop(&L); 642 } 643 644 // Check if after this all of the remaining cases point at the same 645 // successor. 646 BasicBlock *CommonSuccBB = nullptr; 647 if (SI.getNumCases() > 0 && 648 std::all_of(std::next(SI.case_begin()), SI.case_end(), 649 [&SI](const SwitchInst::CaseHandle &Case) { 650 return Case.getCaseSuccessor() == 651 SI.case_begin()->getCaseSuccessor(); 652 })) 653 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 654 if (!DefaultExitBB) { 655 // If we're not unswitching the default, we need it to match any cases to 656 // have a common successor or if we have no cases it is the common 657 // successor. 658 if (SI.getNumCases() == 0) 659 CommonSuccBB = SI.getDefaultDest(); 660 else if (SI.getDefaultDest() != CommonSuccBB) 661 CommonSuccBB = nullptr; 662 } 663 664 // Split the preheader, so that we know that there is a safe place to insert 665 // the switch. 666 BasicBlock *OldPH = L.getLoopPreheader(); 667 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 668 OldPH->getTerminator()->eraseFromParent(); 669 670 // Now add the unswitched switch. 671 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 672 673 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 674 // First, we split any exit blocks with remaining in-loop predecessors. Then 675 // we update the PHIs in one of two ways depending on if there was a split. 676 // We walk in reverse so that we split in the same order as the cases 677 // appeared. This is purely for convenience of reading the resulting IR, but 678 // it doesn't cost anything really. 679 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 680 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 681 // Handle the default exit if necessary. 682 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 683 // ranges aren't quite powerful enough yet. 684 if (DefaultExitBB) { 685 if (pred_empty(DefaultExitBB)) { 686 UnswitchedExitBBs.insert(DefaultExitBB); 687 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 688 } else { 689 auto *SplitBB = 690 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 691 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 692 *ParentBB, *OldPH, 693 /*FullUnswitch*/ true); 694 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 695 } 696 } 697 // Note that we must use a reference in the for loop so that we update the 698 // container. 699 for (auto &CasePair : reverse(ExitCases)) { 700 // Grab a reference to the exit block in the pair so that we can update it. 701 BasicBlock *ExitBB = CasePair.second; 702 703 // If this case is the last edge into the exit block, we can simply reuse it 704 // as it will no longer be a loop exit. No mapping necessary. 705 if (pred_empty(ExitBB)) { 706 // Only rewrite once. 707 if (UnswitchedExitBBs.insert(ExitBB).second) 708 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 709 continue; 710 } 711 712 // Otherwise we need to split the exit block so that we retain an exit 713 // block from the loop and a target for the unswitched condition. 714 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 715 if (!SplitExitBB) { 716 // If this is the first time we see this, do the split and remember it. 717 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 718 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 719 *ParentBB, *OldPH, 720 /*FullUnswitch*/ true); 721 } 722 // Update the case pair to point to the split block. 723 CasePair.second = SplitExitBB; 724 } 725 726 // Now add the unswitched cases. We do this in reverse order as we built them 727 // in reverse order. 728 for (auto CasePair : reverse(ExitCases)) { 729 ConstantInt *CaseVal = CasePair.first; 730 BasicBlock *UnswitchedBB = CasePair.second; 731 732 NewSI->addCase(CaseVal, UnswitchedBB); 733 } 734 735 // If the default was unswitched, re-point it and add explicit cases for 736 // entering the loop. 737 if (DefaultExitBB) { 738 NewSI->setDefaultDest(DefaultExitBB); 739 740 // We removed all the exit cases, so we just copy the cases to the 741 // unswitched switch. 742 for (auto Case : SI.cases()) 743 NewSI->addCase(Case.getCaseValue(), NewPH); 744 } 745 746 // If we ended up with a common successor for every path through the switch 747 // after unswitching, rewrite it to an unconditional branch to make it easy 748 // to recognize. Otherwise we potentially have to recognize the default case 749 // pointing at unreachable and other complexity. 750 if (CommonSuccBB) { 751 BasicBlock *BB = SI.getParent(); 752 // We may have had multiple edges to this common successor block, so remove 753 // them as predecessors. We skip the first one, either the default or the 754 // actual first case. 755 bool SkippedFirst = DefaultExitBB == nullptr; 756 for (auto Case : SI.cases()) { 757 assert(Case.getCaseSuccessor() == CommonSuccBB && 758 "Non-common successor!"); 759 (void)Case; 760 if (!SkippedFirst) { 761 SkippedFirst = true; 762 continue; 763 } 764 CommonSuccBB->removePredecessor(BB, 765 /*DontDeleteUselessPHIs*/ true); 766 } 767 // Now nuke the switch and replace it with a direct branch. 768 SI.eraseFromParent(); 769 BranchInst::Create(CommonSuccBB, BB); 770 } else if (DefaultExitBB) { 771 assert(SI.getNumCases() > 0 && 772 "If we had no cases we'd have a common successor!"); 773 // Move the last case to the default successor. This is valid as if the 774 // default got unswitched it cannot be reached. This has the advantage of 775 // being simple and keeping the number of edges from this switch to 776 // successors the same, and avoiding any PHI update complexity. 777 auto LastCaseI = std::prev(SI.case_end()); 778 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 779 SI.removeCase(LastCaseI); 780 } 781 782 // Walk the unswitched exit blocks and the unswitched split blocks and update 783 // the dominator tree based on the CFG edits. While we are walking unordered 784 // containers here, the API for applyUpdates takes an unordered list of 785 // updates and requires them to not contain duplicates. 786 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 787 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 788 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 789 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 790 } 791 for (auto SplitUnswitchedPair : SplitExitBBMap) { 792 auto *UnswitchedBB = SplitUnswitchedPair.second; 793 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); 794 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 795 } 796 DT.applyUpdates(DTUpdates); 797 798 if (MSSAU) { 799 MSSAU->applyUpdates(DTUpdates, DT); 800 if (VerifyMemorySSA) 801 MSSAU->getMemorySSA()->verifyMemorySSA(); 802 } 803 804 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 805 806 // We may have changed the nesting relationship for this loop so hoist it to 807 // its correct parent if needed. 808 hoistLoopToNewParent(L, *NewPH, DT, LI); 809 810 ++NumTrivial; 811 ++NumSwitches; 812 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 813 return true; 814 } 815 816 /// This routine scans the loop to find a branch or switch which occurs before 817 /// any side effects occur. These can potentially be unswitched without 818 /// duplicating the loop. If a branch or switch is successfully unswitched the 819 /// scanning continues to see if subsequent branches or switches have become 820 /// trivial. Once all trivial candidates have been unswitched, this routine 821 /// returns. 822 /// 823 /// The return value indicates whether anything was unswitched (and therefore 824 /// changed). 825 /// 826 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 827 /// invalidated by this. 828 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 829 LoopInfo &LI, ScalarEvolution *SE, 830 MemorySSAUpdater *MSSAU) { 831 bool Changed = false; 832 833 // If loop header has only one reachable successor we should keep looking for 834 // trivial condition candidates in the successor as well. An alternative is 835 // to constant fold conditions and merge successors into loop header (then we 836 // only need to check header's terminator). The reason for not doing this in 837 // LoopUnswitch pass is that it could potentially break LoopPassManager's 838 // invariants. Folding dead branches could either eliminate the current loop 839 // or make other loops unreachable. LCSSA form might also not be preserved 840 // after deleting branches. The following code keeps traversing loop header's 841 // successors until it finds the trivial condition candidate (condition that 842 // is not a constant). Since unswitching generates branches with constant 843 // conditions, this scenario could be very common in practice. 844 BasicBlock *CurrentBB = L.getHeader(); 845 SmallPtrSet<BasicBlock *, 8> Visited; 846 Visited.insert(CurrentBB); 847 do { 848 // Check if there are any side-effecting instructions (e.g. stores, calls, 849 // volatile loads) in the part of the loop that the code *would* execute 850 // without unswitching. 851 if (llvm::any_of(*CurrentBB, 852 [](Instruction &I) { return I.mayHaveSideEffects(); })) 853 return Changed; 854 855 Instruction *CurrentTerm = CurrentBB->getTerminator(); 856 857 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 858 // Don't bother trying to unswitch past a switch with a constant 859 // condition. This should be removed prior to running this pass by 860 // simplify-cfg. 861 if (isa<Constant>(SI->getCondition())) 862 return Changed; 863 864 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 865 // Couldn't unswitch this one so we're done. 866 return Changed; 867 868 // Mark that we managed to unswitch something. 869 Changed = true; 870 871 // If unswitching turned the terminator into an unconditional branch then 872 // we can continue. The unswitching logic specifically works to fold any 873 // cases it can into an unconditional branch to make it easier to 874 // recognize here. 875 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 876 if (!BI || BI->isConditional()) 877 return Changed; 878 879 CurrentBB = BI->getSuccessor(0); 880 continue; 881 } 882 883 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 884 if (!BI) 885 // We do not understand other terminator instructions. 886 return Changed; 887 888 // Don't bother trying to unswitch past an unconditional branch or a branch 889 // with a constant value. These should be removed by simplify-cfg prior to 890 // running this pass. 891 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 892 return Changed; 893 894 // Found a trivial condition candidate: non-foldable conditional branch. If 895 // we fail to unswitch this, we can't do anything else that is trivial. 896 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 897 return Changed; 898 899 // Mark that we managed to unswitch something. 900 Changed = true; 901 902 // If we only unswitched some of the conditions feeding the branch, we won't 903 // have collapsed it to a single successor. 904 BI = cast<BranchInst>(CurrentBB->getTerminator()); 905 if (BI->isConditional()) 906 return Changed; 907 908 // Follow the newly unconditional branch into its successor. 909 CurrentBB = BI->getSuccessor(0); 910 911 // When continuing, if we exit the loop or reach a previous visited block, 912 // then we can not reach any trivial condition candidates (unfoldable 913 // branch instructions or switch instructions) and no unswitch can happen. 914 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 915 916 return Changed; 917 } 918 919 /// Build the cloned blocks for an unswitched copy of the given loop. 920 /// 921 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 922 /// after the split block (`SplitBB`) that will be used to select between the 923 /// cloned and original loop. 924 /// 925 /// This routine handles cloning all of the necessary loop blocks and exit 926 /// blocks including rewriting their instructions and the relevant PHI nodes. 927 /// Any loop blocks or exit blocks which are dominated by a different successor 928 /// than the one for this clone of the loop blocks can be trivially skipped. We 929 /// use the `DominatingSucc` map to determine whether a block satisfies that 930 /// property with a simple map lookup. 931 /// 932 /// It also correctly creates the unconditional branch in the cloned 933 /// unswitched parent block to only point at the unswitched successor. 934 /// 935 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 936 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 937 /// the cloned blocks (and their loops) are left without full `LoopInfo` 938 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 939 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 940 /// instead the caller must recompute an accurate DT. It *does* correctly 941 /// update the `AssumptionCache` provided in `AC`. 942 static BasicBlock *buildClonedLoopBlocks( 943 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 944 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 945 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 946 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 947 ValueToValueMapTy &VMap, 948 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 949 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 950 SmallVector<BasicBlock *, 4> NewBlocks; 951 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 952 953 // We will need to clone a bunch of blocks, wrap up the clone operation in 954 // a helper. 955 auto CloneBlock = [&](BasicBlock *OldBB) { 956 // Clone the basic block and insert it before the new preheader. 957 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 958 NewBB->moveBefore(LoopPH); 959 960 // Record this block and the mapping. 961 NewBlocks.push_back(NewBB); 962 VMap[OldBB] = NewBB; 963 964 return NewBB; 965 }; 966 967 // We skip cloning blocks when they have a dominating succ that is not the 968 // succ we are cloning for. 969 auto SkipBlock = [&](BasicBlock *BB) { 970 auto It = DominatingSucc.find(BB); 971 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 972 }; 973 974 // First, clone the preheader. 975 auto *ClonedPH = CloneBlock(LoopPH); 976 977 // Then clone all the loop blocks, skipping the ones that aren't necessary. 978 for (auto *LoopBB : L.blocks()) 979 if (!SkipBlock(LoopBB)) 980 CloneBlock(LoopBB); 981 982 // Split all the loop exit edges so that when we clone the exit blocks, if 983 // any of the exit blocks are *also* a preheader for some other loop, we 984 // don't create multiple predecessors entering the loop header. 985 for (auto *ExitBB : ExitBlocks) { 986 if (SkipBlock(ExitBB)) 987 continue; 988 989 // When we are going to clone an exit, we don't need to clone all the 990 // instructions in the exit block and we want to ensure we have an easy 991 // place to merge the CFG, so split the exit first. This is always safe to 992 // do because there cannot be any non-loop predecessors of a loop exit in 993 // loop simplified form. 994 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 995 996 // Rearrange the names to make it easier to write test cases by having the 997 // exit block carry the suffix rather than the merge block carrying the 998 // suffix. 999 MergeBB->takeName(ExitBB); 1000 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1001 1002 // Now clone the original exit block. 1003 auto *ClonedExitBB = CloneBlock(ExitBB); 1004 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1005 "Exit block should have been split to have one successor!"); 1006 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1007 "Cloned exit block has the wrong successor!"); 1008 1009 // Remap any cloned instructions and create a merge phi node for them. 1010 for (auto ZippedInsts : llvm::zip_first( 1011 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1012 llvm::make_range(ClonedExitBB->begin(), 1013 std::prev(ClonedExitBB->end())))) { 1014 Instruction &I = std::get<0>(ZippedInsts); 1015 Instruction &ClonedI = std::get<1>(ZippedInsts); 1016 1017 // The only instructions in the exit block should be PHI nodes and 1018 // potentially a landing pad. 1019 assert( 1020 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1021 "Bad instruction in exit block!"); 1022 // We should have a value map between the instruction and its clone. 1023 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1024 1025 auto *MergePN = 1026 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1027 &*MergeBB->getFirstInsertionPt()); 1028 I.replaceAllUsesWith(MergePN); 1029 MergePN->addIncoming(&I, ExitBB); 1030 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1031 } 1032 } 1033 1034 // Rewrite the instructions in the cloned blocks to refer to the instructions 1035 // in the cloned blocks. We have to do this as a second pass so that we have 1036 // everything available. Also, we have inserted new instructions which may 1037 // include assume intrinsics, so we update the assumption cache while 1038 // processing this. 1039 for (auto *ClonedBB : NewBlocks) 1040 for (Instruction &I : *ClonedBB) { 1041 RemapInstruction(&I, VMap, 1042 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1043 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1044 if (II->getIntrinsicID() == Intrinsic::assume) 1045 AC.registerAssumption(II); 1046 } 1047 1048 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1049 // have spurious incoming values. 1050 for (auto *LoopBB : L.blocks()) 1051 if (SkipBlock(LoopBB)) 1052 for (auto *SuccBB : successors(LoopBB)) 1053 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1054 for (PHINode &PN : ClonedSuccBB->phis()) 1055 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1056 1057 // Remove the cloned parent as a predecessor of any successor we ended up 1058 // cloning other than the unswitched one. 1059 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1060 for (auto *SuccBB : successors(ParentBB)) { 1061 if (SuccBB == UnswitchedSuccBB) 1062 continue; 1063 1064 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1065 if (!ClonedSuccBB) 1066 continue; 1067 1068 ClonedSuccBB->removePredecessor(ClonedParentBB, 1069 /*DontDeleteUselessPHIs*/ true); 1070 } 1071 1072 // Replace the cloned branch with an unconditional branch to the cloned 1073 // unswitched successor. 1074 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1075 ClonedParentBB->getTerminator()->eraseFromParent(); 1076 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1077 1078 // If there are duplicate entries in the PHI nodes because of multiple edges 1079 // to the unswitched successor, we need to nuke all but one as we replaced it 1080 // with a direct branch. 1081 for (PHINode &PN : ClonedSuccBB->phis()) { 1082 bool Found = false; 1083 // Loop over the incoming operands backwards so we can easily delete as we 1084 // go without invalidating the index. 1085 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1086 if (PN.getIncomingBlock(i) != ClonedParentBB) 1087 continue; 1088 if (!Found) { 1089 Found = true; 1090 continue; 1091 } 1092 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1093 } 1094 } 1095 1096 // Record the domtree updates for the new blocks. 1097 SmallPtrSet<BasicBlock *, 4> SuccSet; 1098 for (auto *ClonedBB : NewBlocks) { 1099 for (auto *SuccBB : successors(ClonedBB)) 1100 if (SuccSet.insert(SuccBB).second) 1101 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1102 SuccSet.clear(); 1103 } 1104 1105 return ClonedPH; 1106 } 1107 1108 /// Recursively clone the specified loop and all of its children. 1109 /// 1110 /// The target parent loop for the clone should be provided, or can be null if 1111 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1112 /// with the provided value map. The entire original loop must be present in 1113 /// the value map. The cloned loop is returned. 1114 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1115 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1116 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1117 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1118 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1119 for (auto *BB : OrigL.blocks()) { 1120 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1121 ClonedL.addBlockEntry(ClonedBB); 1122 if (LI.getLoopFor(BB) == &OrigL) 1123 LI.changeLoopFor(ClonedBB, &ClonedL); 1124 } 1125 }; 1126 1127 // We specially handle the first loop because it may get cloned into 1128 // a different parent and because we most commonly are cloning leaf loops. 1129 Loop *ClonedRootL = LI.AllocateLoop(); 1130 if (RootParentL) 1131 RootParentL->addChildLoop(ClonedRootL); 1132 else 1133 LI.addTopLevelLoop(ClonedRootL); 1134 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1135 1136 if (OrigRootL.empty()) 1137 return ClonedRootL; 1138 1139 // If we have a nest, we can quickly clone the entire loop nest using an 1140 // iterative approach because it is a tree. We keep the cloned parent in the 1141 // data structure to avoid repeatedly querying through a map to find it. 1142 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1143 // Build up the loops to clone in reverse order as we'll clone them from the 1144 // back. 1145 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1146 LoopsToClone.push_back({ClonedRootL, ChildL}); 1147 do { 1148 Loop *ClonedParentL, *L; 1149 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1150 Loop *ClonedL = LI.AllocateLoop(); 1151 ClonedParentL->addChildLoop(ClonedL); 1152 AddClonedBlocksToLoop(*L, *ClonedL); 1153 for (Loop *ChildL : llvm::reverse(*L)) 1154 LoopsToClone.push_back({ClonedL, ChildL}); 1155 } while (!LoopsToClone.empty()); 1156 1157 return ClonedRootL; 1158 } 1159 1160 /// Build the cloned loops of an original loop from unswitching. 1161 /// 1162 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1163 /// operation. We need to re-verify that there even is a loop (as the backedge 1164 /// may not have been cloned), and even if there are remaining backedges the 1165 /// backedge set may be different. However, we know that each child loop is 1166 /// undisturbed, we only need to find where to place each child loop within 1167 /// either any parent loop or within a cloned version of the original loop. 1168 /// 1169 /// Because child loops may end up cloned outside of any cloned version of the 1170 /// original loop, multiple cloned sibling loops may be created. All of them 1171 /// are returned so that the newly introduced loop nest roots can be 1172 /// identified. 1173 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1174 const ValueToValueMapTy &VMap, LoopInfo &LI, 1175 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1176 Loop *ClonedL = nullptr; 1177 1178 auto *OrigPH = OrigL.getLoopPreheader(); 1179 auto *OrigHeader = OrigL.getHeader(); 1180 1181 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1182 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1183 1184 // We need to know the loops of the cloned exit blocks to even compute the 1185 // accurate parent loop. If we only clone exits to some parent of the 1186 // original parent, we want to clone into that outer loop. We also keep track 1187 // of the loops that our cloned exit blocks participate in. 1188 Loop *ParentL = nullptr; 1189 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1190 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1191 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1192 for (auto *ExitBB : ExitBlocks) 1193 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1194 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1195 ExitLoopMap[ClonedExitBB] = ExitL; 1196 ClonedExitsInLoops.push_back(ClonedExitBB); 1197 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1198 ParentL = ExitL; 1199 } 1200 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1201 ParentL->contains(OrigL.getParentLoop())) && 1202 "The computed parent loop should always contain (or be) the parent of " 1203 "the original loop."); 1204 1205 // We build the set of blocks dominated by the cloned header from the set of 1206 // cloned blocks out of the original loop. While not all of these will 1207 // necessarily be in the cloned loop, it is enough to establish that they 1208 // aren't in unreachable cycles, etc. 1209 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1210 for (auto *BB : OrigL.blocks()) 1211 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1212 ClonedLoopBlocks.insert(ClonedBB); 1213 1214 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1215 // skipped cloning some region of this loop which can in turn skip some of 1216 // the backedges so we have to rebuild the blocks in the loop based on the 1217 // backedges that remain after cloning. 1218 SmallVector<BasicBlock *, 16> Worklist; 1219 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1220 for (auto *Pred : predecessors(ClonedHeader)) { 1221 // The only possible non-loop header predecessor is the preheader because 1222 // we know we cloned the loop in simplified form. 1223 if (Pred == ClonedPH) 1224 continue; 1225 1226 // Because the loop was in simplified form, the only non-loop predecessor 1227 // should be the preheader. 1228 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1229 "header other than the preheader " 1230 "that is not part of the loop!"); 1231 1232 // Insert this block into the loop set and on the first visit (and if it 1233 // isn't the header we're currently walking) put it into the worklist to 1234 // recurse through. 1235 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1236 Worklist.push_back(Pred); 1237 } 1238 1239 // If we had any backedges then there *is* a cloned loop. Put the header into 1240 // the loop set and then walk the worklist backwards to find all the blocks 1241 // that remain within the loop after cloning. 1242 if (!BlocksInClonedLoop.empty()) { 1243 BlocksInClonedLoop.insert(ClonedHeader); 1244 1245 while (!Worklist.empty()) { 1246 BasicBlock *BB = Worklist.pop_back_val(); 1247 assert(BlocksInClonedLoop.count(BB) && 1248 "Didn't put block into the loop set!"); 1249 1250 // Insert any predecessors that are in the possible set into the cloned 1251 // set, and if the insert is successful, add them to the worklist. Note 1252 // that we filter on the blocks that are definitely reachable via the 1253 // backedge to the loop header so we may prune out dead code within the 1254 // cloned loop. 1255 for (auto *Pred : predecessors(BB)) 1256 if (ClonedLoopBlocks.count(Pred) && 1257 BlocksInClonedLoop.insert(Pred).second) 1258 Worklist.push_back(Pred); 1259 } 1260 1261 ClonedL = LI.AllocateLoop(); 1262 if (ParentL) { 1263 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1264 ParentL->addChildLoop(ClonedL); 1265 } else { 1266 LI.addTopLevelLoop(ClonedL); 1267 } 1268 NonChildClonedLoops.push_back(ClonedL); 1269 1270 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1271 // We don't want to just add the cloned loop blocks based on how we 1272 // discovered them. The original order of blocks was carefully built in 1273 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1274 // that logic, we just re-walk the original blocks (and those of the child 1275 // loops) and filter them as we add them into the cloned loop. 1276 for (auto *BB : OrigL.blocks()) { 1277 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1278 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1279 continue; 1280 1281 // Directly add the blocks that are only in this loop. 1282 if (LI.getLoopFor(BB) == &OrigL) { 1283 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1284 continue; 1285 } 1286 1287 // We want to manually add it to this loop and parents. 1288 // Registering it with LoopInfo will happen when we clone the top 1289 // loop for this block. 1290 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1291 PL->addBlockEntry(ClonedBB); 1292 } 1293 1294 // Now add each child loop whose header remains within the cloned loop. All 1295 // of the blocks within the loop must satisfy the same constraints as the 1296 // header so once we pass the header checks we can just clone the entire 1297 // child loop nest. 1298 for (Loop *ChildL : OrigL) { 1299 auto *ClonedChildHeader = 1300 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1301 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1302 continue; 1303 1304 #ifndef NDEBUG 1305 // We should never have a cloned child loop header but fail to have 1306 // all of the blocks for that child loop. 1307 for (auto *ChildLoopBB : ChildL->blocks()) 1308 assert(BlocksInClonedLoop.count( 1309 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1310 "Child cloned loop has a header within the cloned outer " 1311 "loop but not all of its blocks!"); 1312 #endif 1313 1314 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1315 } 1316 } 1317 1318 // Now that we've handled all the components of the original loop that were 1319 // cloned into a new loop, we still need to handle anything from the original 1320 // loop that wasn't in a cloned loop. 1321 1322 // Figure out what blocks are left to place within any loop nest containing 1323 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1324 // them. 1325 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1326 if (BlocksInClonedLoop.empty()) 1327 UnloopedBlockSet.insert(ClonedPH); 1328 for (auto *ClonedBB : ClonedLoopBlocks) 1329 if (!BlocksInClonedLoop.count(ClonedBB)) 1330 UnloopedBlockSet.insert(ClonedBB); 1331 1332 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1333 // backwards across these to process them inside out. The order shouldn't 1334 // matter as we're just trying to build up the map from inside-out; we use 1335 // the map in a more stably ordered way below. 1336 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1337 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1338 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1339 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1340 }); 1341 1342 // Populate the existing ExitLoopMap with everything reachable from each 1343 // exit, starting from the inner most exit. 1344 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1345 assert(Worklist.empty() && "Didn't clear worklist!"); 1346 1347 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1348 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1349 1350 // Walk the CFG back until we hit the cloned PH adding everything reachable 1351 // and in the unlooped set to this exit block's loop. 1352 Worklist.push_back(ExitBB); 1353 do { 1354 BasicBlock *BB = Worklist.pop_back_val(); 1355 // We can stop recursing at the cloned preheader (if we get there). 1356 if (BB == ClonedPH) 1357 continue; 1358 1359 for (BasicBlock *PredBB : predecessors(BB)) { 1360 // If this pred has already been moved to our set or is part of some 1361 // (inner) loop, no update needed. 1362 if (!UnloopedBlockSet.erase(PredBB)) { 1363 assert( 1364 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1365 "Predecessor not mapped to a loop!"); 1366 continue; 1367 } 1368 1369 // We just insert into the loop set here. We'll add these blocks to the 1370 // exit loop after we build up the set in an order that doesn't rely on 1371 // predecessor order (which in turn relies on use list order). 1372 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1373 (void)Inserted; 1374 assert(Inserted && "Should only visit an unlooped block once!"); 1375 1376 // And recurse through to its predecessors. 1377 Worklist.push_back(PredBB); 1378 } 1379 } while (!Worklist.empty()); 1380 } 1381 1382 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1383 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1384 // in their original order adding them to the correct loop. 1385 1386 // We need a stable insertion order. We use the order of the original loop 1387 // order and map into the correct parent loop. 1388 for (auto *BB : llvm::concat<BasicBlock *const>( 1389 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1390 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1391 OuterL->addBasicBlockToLoop(BB, LI); 1392 1393 #ifndef NDEBUG 1394 for (auto &BBAndL : ExitLoopMap) { 1395 auto *BB = BBAndL.first; 1396 auto *OuterL = BBAndL.second; 1397 assert(LI.getLoopFor(BB) == OuterL && 1398 "Failed to put all blocks into outer loops!"); 1399 } 1400 #endif 1401 1402 // Now that all the blocks are placed into the correct containing loop in the 1403 // absence of child loops, find all the potentially cloned child loops and 1404 // clone them into whatever outer loop we placed their header into. 1405 for (Loop *ChildL : OrigL) { 1406 auto *ClonedChildHeader = 1407 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1408 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1409 continue; 1410 1411 #ifndef NDEBUG 1412 for (auto *ChildLoopBB : ChildL->blocks()) 1413 assert(VMap.count(ChildLoopBB) && 1414 "Cloned a child loop header but not all of that loops blocks!"); 1415 #endif 1416 1417 NonChildClonedLoops.push_back(cloneLoopNest( 1418 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1419 } 1420 } 1421 1422 static void 1423 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1424 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1425 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1426 // Find all the dead clones, and remove them from their successors. 1427 SmallVector<BasicBlock *, 16> DeadBlocks; 1428 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1429 for (auto &VMap : VMaps) 1430 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1431 if (!DT.isReachableFromEntry(ClonedBB)) { 1432 for (BasicBlock *SuccBB : successors(ClonedBB)) 1433 SuccBB->removePredecessor(ClonedBB); 1434 DeadBlocks.push_back(ClonedBB); 1435 } 1436 1437 // Remove all MemorySSA in the dead blocks 1438 if (MSSAU) { 1439 SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(), 1440 DeadBlocks.end()); 1441 MSSAU->removeBlocks(DeadBlockSet); 1442 } 1443 1444 // Drop any remaining references to break cycles. 1445 for (BasicBlock *BB : DeadBlocks) 1446 BB->dropAllReferences(); 1447 // Erase them from the IR. 1448 for (BasicBlock *BB : DeadBlocks) 1449 BB->eraseFromParent(); 1450 } 1451 1452 static void deleteDeadBlocksFromLoop(Loop &L, 1453 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1454 DominatorTree &DT, LoopInfo &LI, 1455 MemorySSAUpdater *MSSAU) { 1456 // Find all the dead blocks tied to this loop, and remove them from their 1457 // successors. 1458 SmallPtrSet<BasicBlock *, 16> DeadBlockSet; 1459 1460 // Start with loop/exit blocks and get a transitive closure of reachable dead 1461 // blocks. 1462 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1463 ExitBlocks.end()); 1464 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1465 while (!DeathCandidates.empty()) { 1466 auto *BB = DeathCandidates.pop_back_val(); 1467 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1468 for (BasicBlock *SuccBB : successors(BB)) { 1469 SuccBB->removePredecessor(BB); 1470 DeathCandidates.push_back(SuccBB); 1471 } 1472 DeadBlockSet.insert(BB); 1473 } 1474 } 1475 1476 // Remove all MemorySSA in the dead blocks 1477 if (MSSAU) 1478 MSSAU->removeBlocks(DeadBlockSet); 1479 1480 // Filter out the dead blocks from the exit blocks list so that it can be 1481 // used in the caller. 1482 llvm::erase_if(ExitBlocks, 1483 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1484 1485 // Walk from this loop up through its parents removing all of the dead blocks. 1486 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1487 for (auto *BB : DeadBlockSet) 1488 ParentL->getBlocksSet().erase(BB); 1489 llvm::erase_if(ParentL->getBlocksVector(), 1490 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1491 } 1492 1493 // Now delete the dead child loops. This raw delete will clear them 1494 // recursively. 1495 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1496 if (!DeadBlockSet.count(ChildL->getHeader())) 1497 return false; 1498 1499 assert(llvm::all_of(ChildL->blocks(), 1500 [&](BasicBlock *ChildBB) { 1501 return DeadBlockSet.count(ChildBB); 1502 }) && 1503 "If the child loop header is dead all blocks in the child loop must " 1504 "be dead as well!"); 1505 LI.destroy(ChildL); 1506 return true; 1507 }); 1508 1509 // Remove the loop mappings for the dead blocks and drop all the references 1510 // from these blocks to others to handle cyclic references as we start 1511 // deleting the blocks themselves. 1512 for (auto *BB : DeadBlockSet) { 1513 // Check that the dominator tree has already been updated. 1514 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1515 LI.changeLoopFor(BB, nullptr); 1516 BB->dropAllReferences(); 1517 } 1518 1519 // Actually delete the blocks now that they've been fully unhooked from the 1520 // IR. 1521 for (auto *BB : DeadBlockSet) 1522 BB->eraseFromParent(); 1523 } 1524 1525 /// Recompute the set of blocks in a loop after unswitching. 1526 /// 1527 /// This walks from the original headers predecessors to rebuild the loop. We 1528 /// take advantage of the fact that new blocks can't have been added, and so we 1529 /// filter by the original loop's blocks. This also handles potentially 1530 /// unreachable code that we don't want to explore but might be found examining 1531 /// the predecessors of the header. 1532 /// 1533 /// If the original loop is no longer a loop, this will return an empty set. If 1534 /// it remains a loop, all the blocks within it will be added to the set 1535 /// (including those blocks in inner loops). 1536 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1537 LoopInfo &LI) { 1538 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1539 1540 auto *PH = L.getLoopPreheader(); 1541 auto *Header = L.getHeader(); 1542 1543 // A worklist to use while walking backwards from the header. 1544 SmallVector<BasicBlock *, 16> Worklist; 1545 1546 // First walk the predecessors of the header to find the backedges. This will 1547 // form the basis of our walk. 1548 for (auto *Pred : predecessors(Header)) { 1549 // Skip the preheader. 1550 if (Pred == PH) 1551 continue; 1552 1553 // Because the loop was in simplified form, the only non-loop predecessor 1554 // is the preheader. 1555 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1556 "than the preheader that is not part of the " 1557 "loop!"); 1558 1559 // Insert this block into the loop set and on the first visit and, if it 1560 // isn't the header we're currently walking, put it into the worklist to 1561 // recurse through. 1562 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1563 Worklist.push_back(Pred); 1564 } 1565 1566 // If no backedges were found, we're done. 1567 if (LoopBlockSet.empty()) 1568 return LoopBlockSet; 1569 1570 // We found backedges, recurse through them to identify the loop blocks. 1571 while (!Worklist.empty()) { 1572 BasicBlock *BB = Worklist.pop_back_val(); 1573 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1574 1575 // No need to walk past the header. 1576 if (BB == Header) 1577 continue; 1578 1579 // Because we know the inner loop structure remains valid we can use the 1580 // loop structure to jump immediately across the entire nested loop. 1581 // Further, because it is in loop simplified form, we can directly jump 1582 // to its preheader afterward. 1583 if (Loop *InnerL = LI.getLoopFor(BB)) 1584 if (InnerL != &L) { 1585 assert(L.contains(InnerL) && 1586 "Should not reach a loop *outside* this loop!"); 1587 // The preheader is the only possible predecessor of the loop so 1588 // insert it into the set and check whether it was already handled. 1589 auto *InnerPH = InnerL->getLoopPreheader(); 1590 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1591 "but not contain the inner loop " 1592 "preheader!"); 1593 if (!LoopBlockSet.insert(InnerPH).second) 1594 // The only way to reach the preheader is through the loop body 1595 // itself so if it has been visited the loop is already handled. 1596 continue; 1597 1598 // Insert all of the blocks (other than those already present) into 1599 // the loop set. We expect at least the block that led us to find the 1600 // inner loop to be in the block set, but we may also have other loop 1601 // blocks if they were already enqueued as predecessors of some other 1602 // outer loop block. 1603 for (auto *InnerBB : InnerL->blocks()) { 1604 if (InnerBB == BB) { 1605 assert(LoopBlockSet.count(InnerBB) && 1606 "Block should already be in the set!"); 1607 continue; 1608 } 1609 1610 LoopBlockSet.insert(InnerBB); 1611 } 1612 1613 // Add the preheader to the worklist so we will continue past the 1614 // loop body. 1615 Worklist.push_back(InnerPH); 1616 continue; 1617 } 1618 1619 // Insert any predecessors that were in the original loop into the new 1620 // set, and if the insert is successful, add them to the worklist. 1621 for (auto *Pred : predecessors(BB)) 1622 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1623 Worklist.push_back(Pred); 1624 } 1625 1626 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1627 1628 // We've found all the blocks participating in the loop, return our completed 1629 // set. 1630 return LoopBlockSet; 1631 } 1632 1633 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1634 /// 1635 /// The removal may have removed some child loops entirely but cannot have 1636 /// disturbed any remaining child loops. However, they may need to be hoisted 1637 /// to the parent loop (or to be top-level loops). The original loop may be 1638 /// completely removed. 1639 /// 1640 /// The sibling loops resulting from this update are returned. If the original 1641 /// loop remains a valid loop, it will be the first entry in this list with all 1642 /// of the newly sibling loops following it. 1643 /// 1644 /// Returns true if the loop remains a loop after unswitching, and false if it 1645 /// is no longer a loop after unswitching (and should not continue to be 1646 /// referenced). 1647 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1648 LoopInfo &LI, 1649 SmallVectorImpl<Loop *> &HoistedLoops) { 1650 auto *PH = L.getLoopPreheader(); 1651 1652 // Compute the actual parent loop from the exit blocks. Because we may have 1653 // pruned some exits the loop may be different from the original parent. 1654 Loop *ParentL = nullptr; 1655 SmallVector<Loop *, 4> ExitLoops; 1656 SmallVector<BasicBlock *, 4> ExitsInLoops; 1657 ExitsInLoops.reserve(ExitBlocks.size()); 1658 for (auto *ExitBB : ExitBlocks) 1659 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1660 ExitLoops.push_back(ExitL); 1661 ExitsInLoops.push_back(ExitBB); 1662 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1663 ParentL = ExitL; 1664 } 1665 1666 // Recompute the blocks participating in this loop. This may be empty if it 1667 // is no longer a loop. 1668 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1669 1670 // If we still have a loop, we need to re-set the loop's parent as the exit 1671 // block set changing may have moved it within the loop nest. Note that this 1672 // can only happen when this loop has a parent as it can only hoist the loop 1673 // *up* the nest. 1674 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1675 // Remove this loop's (original) blocks from all of the intervening loops. 1676 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1677 IL = IL->getParentLoop()) { 1678 IL->getBlocksSet().erase(PH); 1679 for (auto *BB : L.blocks()) 1680 IL->getBlocksSet().erase(BB); 1681 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1682 return BB == PH || L.contains(BB); 1683 }); 1684 } 1685 1686 LI.changeLoopFor(PH, ParentL); 1687 L.getParentLoop()->removeChildLoop(&L); 1688 if (ParentL) 1689 ParentL->addChildLoop(&L); 1690 else 1691 LI.addTopLevelLoop(&L); 1692 } 1693 1694 // Now we update all the blocks which are no longer within the loop. 1695 auto &Blocks = L.getBlocksVector(); 1696 auto BlocksSplitI = 1697 LoopBlockSet.empty() 1698 ? Blocks.begin() 1699 : std::stable_partition( 1700 Blocks.begin(), Blocks.end(), 1701 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1702 1703 // Before we erase the list of unlooped blocks, build a set of them. 1704 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1705 if (LoopBlockSet.empty()) 1706 UnloopedBlocks.insert(PH); 1707 1708 // Now erase these blocks from the loop. 1709 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1710 L.getBlocksSet().erase(BB); 1711 Blocks.erase(BlocksSplitI, Blocks.end()); 1712 1713 // Sort the exits in ascending loop depth, we'll work backwards across these 1714 // to process them inside out. 1715 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1716 [&](BasicBlock *LHS, BasicBlock *RHS) { 1717 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1718 }); 1719 1720 // We'll build up a set for each exit loop. 1721 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1722 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1723 1724 auto RemoveUnloopedBlocksFromLoop = 1725 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1726 for (auto *BB : UnloopedBlocks) 1727 L.getBlocksSet().erase(BB); 1728 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1729 return UnloopedBlocks.count(BB); 1730 }); 1731 }; 1732 1733 SmallVector<BasicBlock *, 16> Worklist; 1734 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1735 assert(Worklist.empty() && "Didn't clear worklist!"); 1736 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1737 1738 // Grab the next exit block, in decreasing loop depth order. 1739 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1740 Loop &ExitL = *LI.getLoopFor(ExitBB); 1741 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1742 1743 // Erase all of the unlooped blocks from the loops between the previous 1744 // exit loop and this exit loop. This works because the ExitInLoops list is 1745 // sorted in increasing order of loop depth and thus we visit loops in 1746 // decreasing order of loop depth. 1747 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1748 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1749 1750 // Walk the CFG back until we hit the cloned PH adding everything reachable 1751 // and in the unlooped set to this exit block's loop. 1752 Worklist.push_back(ExitBB); 1753 do { 1754 BasicBlock *BB = Worklist.pop_back_val(); 1755 // We can stop recursing at the cloned preheader (if we get there). 1756 if (BB == PH) 1757 continue; 1758 1759 for (BasicBlock *PredBB : predecessors(BB)) { 1760 // If this pred has already been moved to our set or is part of some 1761 // (inner) loop, no update needed. 1762 if (!UnloopedBlocks.erase(PredBB)) { 1763 assert((NewExitLoopBlocks.count(PredBB) || 1764 ExitL.contains(LI.getLoopFor(PredBB))) && 1765 "Predecessor not in a nested loop (or already visited)!"); 1766 continue; 1767 } 1768 1769 // We just insert into the loop set here. We'll add these blocks to the 1770 // exit loop after we build up the set in a deterministic order rather 1771 // than the predecessor-influenced visit order. 1772 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1773 (void)Inserted; 1774 assert(Inserted && "Should only visit an unlooped block once!"); 1775 1776 // And recurse through to its predecessors. 1777 Worklist.push_back(PredBB); 1778 } 1779 } while (!Worklist.empty()); 1780 1781 // If blocks in this exit loop were directly part of the original loop (as 1782 // opposed to a child loop) update the map to point to this exit loop. This 1783 // just updates a map and so the fact that the order is unstable is fine. 1784 for (auto *BB : NewExitLoopBlocks) 1785 if (Loop *BBL = LI.getLoopFor(BB)) 1786 if (BBL == &L || !L.contains(BBL)) 1787 LI.changeLoopFor(BB, &ExitL); 1788 1789 // We will remove the remaining unlooped blocks from this loop in the next 1790 // iteration or below. 1791 NewExitLoopBlocks.clear(); 1792 } 1793 1794 // Any remaining unlooped blocks are no longer part of any loop unless they 1795 // are part of some child loop. 1796 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1797 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1798 for (auto *BB : UnloopedBlocks) 1799 if (Loop *BBL = LI.getLoopFor(BB)) 1800 if (BBL == &L || !L.contains(BBL)) 1801 LI.changeLoopFor(BB, nullptr); 1802 1803 // Sink all the child loops whose headers are no longer in the loop set to 1804 // the parent (or to be top level loops). We reach into the loop and directly 1805 // update its subloop vector to make this batch update efficient. 1806 auto &SubLoops = L.getSubLoopsVector(); 1807 auto SubLoopsSplitI = 1808 LoopBlockSet.empty() 1809 ? SubLoops.begin() 1810 : std::stable_partition( 1811 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1812 return LoopBlockSet.count(SubL->getHeader()); 1813 }); 1814 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1815 HoistedLoops.push_back(HoistedL); 1816 HoistedL->setParentLoop(nullptr); 1817 1818 // To compute the new parent of this hoisted loop we look at where we 1819 // placed the preheader above. We can't lookup the header itself because we 1820 // retained the mapping from the header to the hoisted loop. But the 1821 // preheader and header should have the exact same new parent computed 1822 // based on the set of exit blocks from the original loop as the preheader 1823 // is a predecessor of the header and so reached in the reverse walk. And 1824 // because the loops were all in simplified form the preheader of the 1825 // hoisted loop can't be part of some *other* loop. 1826 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1827 NewParentL->addChildLoop(HoistedL); 1828 else 1829 LI.addTopLevelLoop(HoistedL); 1830 } 1831 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1832 1833 // Actually delete the loop if nothing remained within it. 1834 if (Blocks.empty()) { 1835 assert(SubLoops.empty() && 1836 "Failed to remove all subloops from the original loop!"); 1837 if (Loop *ParentL = L.getParentLoop()) 1838 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1839 else 1840 LI.removeLoop(llvm::find(LI, &L)); 1841 LI.destroy(&L); 1842 return false; 1843 } 1844 1845 return true; 1846 } 1847 1848 /// Helper to visit a dominator subtree, invoking a callable on each node. 1849 /// 1850 /// Returning false at any point will stop walking past that node of the tree. 1851 template <typename CallableT> 1852 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1853 SmallVector<DomTreeNode *, 4> DomWorklist; 1854 DomWorklist.push_back(DT[BB]); 1855 #ifndef NDEBUG 1856 SmallPtrSet<DomTreeNode *, 4> Visited; 1857 Visited.insert(DT[BB]); 1858 #endif 1859 do { 1860 DomTreeNode *N = DomWorklist.pop_back_val(); 1861 1862 // Visit this node. 1863 if (!Callable(N->getBlock())) 1864 continue; 1865 1866 // Accumulate the child nodes. 1867 for (DomTreeNode *ChildN : *N) { 1868 assert(Visited.insert(ChildN).second && 1869 "Cannot visit a node twice when walking a tree!"); 1870 DomWorklist.push_back(ChildN); 1871 } 1872 } while (!DomWorklist.empty()); 1873 } 1874 1875 static void unswitchNontrivialInvariants( 1876 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1877 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1878 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1879 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 1880 auto *ParentBB = TI.getParent(); 1881 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1882 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1883 1884 // We can only unswitch switches, conditional branches with an invariant 1885 // condition, or combining invariant conditions with an instruction. 1886 assert((SI || BI->isConditional()) && 1887 "Can only unswitch switches and conditional branch!"); 1888 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1889 if (FullUnswitch) 1890 assert(Invariants.size() == 1 && 1891 "Cannot have other invariants with full unswitching!"); 1892 else 1893 assert(isa<Instruction>(BI->getCondition()) && 1894 "Partial unswitching requires an instruction as the condition!"); 1895 1896 if (MSSAU && VerifyMemorySSA) 1897 MSSAU->getMemorySSA()->verifyMemorySSA(); 1898 1899 // Constant and BBs tracking the cloned and continuing successor. When we are 1900 // unswitching the entire condition, this can just be trivially chosen to 1901 // unswitch towards `true`. However, when we are unswitching a set of 1902 // invariants combined with `and` or `or`, the combining operation determines 1903 // the best direction to unswitch: we want to unswitch the direction that will 1904 // collapse the branch. 1905 bool Direction = true; 1906 int ClonedSucc = 0; 1907 if (!FullUnswitch) { 1908 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1909 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1910 Instruction::And && 1911 "Only `or` and `and` instructions can combine invariants being " 1912 "unswitched."); 1913 Direction = false; 1914 ClonedSucc = 1; 1915 } 1916 } 1917 1918 BasicBlock *RetainedSuccBB = 1919 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1920 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1921 if (BI) 1922 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1923 else 1924 for (auto Case : SI->cases()) 1925 if (Case.getCaseSuccessor() != RetainedSuccBB) 1926 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1927 1928 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 1929 "Should not unswitch the same successor we are retaining!"); 1930 1931 // The branch should be in this exact loop. Any inner loop's invariant branch 1932 // should be handled by unswitching that inner loop. The caller of this 1933 // routine should filter out any candidates that remain (but were skipped for 1934 // whatever reason). 1935 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1936 1937 // Compute the parent loop now before we start hacking on things. 1938 Loop *ParentL = L.getParentLoop(); 1939 // Get blocks in RPO order for MSSA update, before changing the CFG. 1940 LoopBlocksRPO LBRPO(&L); 1941 if (MSSAU) 1942 LBRPO.perform(&LI); 1943 1944 // Compute the outer-most loop containing one of our exit blocks. This is the 1945 // furthest up our loopnest which can be mutated, which we will use below to 1946 // update things. 1947 Loop *OuterExitL = &L; 1948 for (auto *ExitBB : ExitBlocks) { 1949 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1950 if (!NewOuterExitL) { 1951 // We exited the entire nest with this block, so we're done. 1952 OuterExitL = nullptr; 1953 break; 1954 } 1955 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1956 OuterExitL = NewOuterExitL; 1957 } 1958 1959 // At this point, we're definitely going to unswitch something so invalidate 1960 // any cached information in ScalarEvolution for the outer most loop 1961 // containing an exit block and all nested loops. 1962 if (SE) { 1963 if (OuterExitL) 1964 SE->forgetLoop(OuterExitL); 1965 else 1966 SE->forgetTopmostLoop(&L); 1967 } 1968 1969 // If the edge from this terminator to a successor dominates that successor, 1970 // store a map from each block in its dominator subtree to it. This lets us 1971 // tell when cloning for a particular successor if a block is dominated by 1972 // some *other* successor with a single data structure. We use this to 1973 // significantly reduce cloning. 1974 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 1975 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 1976 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 1977 if (SuccBB->getUniquePredecessor() || 1978 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 1979 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 1980 })) 1981 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 1982 DominatingSucc[BB] = SuccBB; 1983 return true; 1984 }); 1985 1986 // Split the preheader, so that we know that there is a safe place to insert 1987 // the conditional branch. We will change the preheader to have a conditional 1988 // branch on LoopCond. The original preheader will become the split point 1989 // between the unswitched versions, and we will have a new preheader for the 1990 // original loop. 1991 BasicBlock *SplitBB = L.getLoopPreheader(); 1992 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 1993 1994 // Keep track of the dominator tree updates needed. 1995 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1996 1997 // Clone the loop for each unswitched successor. 1998 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 1999 VMaps.reserve(UnswitchedSuccBBs.size()); 2000 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2001 for (auto *SuccBB : UnswitchedSuccBBs) { 2002 VMaps.emplace_back(new ValueToValueMapTy()); 2003 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2004 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2005 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2006 } 2007 2008 // The stitching of the branched code back together depends on whether we're 2009 // doing full unswitching or not with the exception that we always want to 2010 // nuke the initial terminator placed in the split block. 2011 SplitBB->getTerminator()->eraseFromParent(); 2012 if (FullUnswitch) { 2013 // Splice the terminator from the original loop and rewrite its 2014 // successors. 2015 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2016 2017 // Keep a clone of the terminator for MSSA updates. 2018 Instruction *NewTI = TI.clone(); 2019 ParentBB->getInstList().push_back(NewTI); 2020 2021 // First wire up the moved terminator to the preheaders. 2022 if (BI) { 2023 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2024 BI->setSuccessor(ClonedSucc, ClonedPH); 2025 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2026 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2027 } else { 2028 assert(SI && "Must either be a branch or switch!"); 2029 2030 // Walk the cases and directly update their successors. 2031 assert(SI->getDefaultDest() == RetainedSuccBB && 2032 "Not retaining default successor!"); 2033 SI->setDefaultDest(LoopPH); 2034 for (auto &Case : SI->cases()) 2035 if (Case.getCaseSuccessor() == RetainedSuccBB) 2036 Case.setSuccessor(LoopPH); 2037 else 2038 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2039 2040 // We need to use the set to populate domtree updates as even when there 2041 // are multiple cases pointing at the same successor we only want to 2042 // remove and insert one edge in the domtree. 2043 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2044 DTUpdates.push_back( 2045 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2046 } 2047 2048 if (MSSAU) { 2049 DT.applyUpdates(DTUpdates); 2050 DTUpdates.clear(); 2051 2052 // Remove all but one edge to the retained block and all unswitched 2053 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2054 // when we know we only keep a single edge for each case. 2055 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2056 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2057 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2058 2059 for (auto &VMap : VMaps) 2060 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2061 /*IgnoreIncomingWithNoClones=*/true); 2062 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2063 2064 // Remove all edges to unswitched blocks. 2065 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2066 MSSAU->removeEdge(ParentBB, SuccBB); 2067 } 2068 2069 // Now unhook the successor relationship as we'll be replacing 2070 // the terminator with a direct branch. This is much simpler for branches 2071 // than switches so we handle those first. 2072 if (BI) { 2073 // Remove the parent as a predecessor of the unswitched successor. 2074 assert(UnswitchedSuccBBs.size() == 1 && 2075 "Only one possible unswitched block for a branch!"); 2076 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2077 UnswitchedSuccBB->removePredecessor(ParentBB, 2078 /*DontDeleteUselessPHIs*/ true); 2079 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2080 } else { 2081 // Note that we actually want to remove the parent block as a predecessor 2082 // of *every* case successor. The case successor is either unswitched, 2083 // completely eliminating an edge from the parent to that successor, or it 2084 // is a duplicate edge to the retained successor as the retained successor 2085 // is always the default successor and as we'll replace this with a direct 2086 // branch we no longer need the duplicate entries in the PHI nodes. 2087 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2088 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2089 "Not retaining default successor!"); 2090 for (auto &Case : NewSI->cases()) 2091 Case.getCaseSuccessor()->removePredecessor( 2092 ParentBB, 2093 /*DontDeleteUselessPHIs*/ true); 2094 2095 // We need to use the set to populate domtree updates as even when there 2096 // are multiple cases pointing at the same successor we only want to 2097 // remove and insert one edge in the domtree. 2098 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2099 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2100 } 2101 2102 // After MSSAU update, remove the cloned terminator instruction NewTI. 2103 ParentBB->getTerminator()->eraseFromParent(); 2104 2105 // Create a new unconditional branch to the continuing block (as opposed to 2106 // the one cloned). 2107 BranchInst::Create(RetainedSuccBB, ParentBB); 2108 } else { 2109 assert(BI && "Only branches have partial unswitching."); 2110 assert(UnswitchedSuccBBs.size() == 1 && 2111 "Only one possible unswitched block for a branch!"); 2112 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2113 // When doing a partial unswitch, we have to do a bit more work to build up 2114 // the branch in the split block. 2115 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2116 *ClonedPH, *LoopPH); 2117 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2118 } 2119 2120 // Apply the updates accumulated above to get an up-to-date dominator tree. 2121 DT.applyUpdates(DTUpdates); 2122 if (!FullUnswitch && MSSAU) { 2123 // Update MSSA for partial unswitch, after DT update. 2124 SmallVector<CFGUpdate, 1> Updates; 2125 Updates.push_back( 2126 {cfg::UpdateKind::Insert, SplitBB, ClonedPHs.begin()->second}); 2127 MSSAU->applyInsertUpdates(Updates, DT); 2128 } 2129 2130 // Now that we have an accurate dominator tree, first delete the dead cloned 2131 // blocks so that we can accurately build any cloned loops. It is important to 2132 // not delete the blocks from the original loop yet because we still want to 2133 // reference the original loop to understand the cloned loop's structure. 2134 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2135 2136 // Build the cloned loop structure itself. This may be substantially 2137 // different from the original structure due to the simplified CFG. This also 2138 // handles inserting all the cloned blocks into the correct loops. 2139 SmallVector<Loop *, 4> NonChildClonedLoops; 2140 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2141 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2142 2143 // Now that our cloned loops have been built, we can update the original loop. 2144 // First we delete the dead blocks from it and then we rebuild the loop 2145 // structure taking these deletions into account. 2146 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2147 2148 if (MSSAU && VerifyMemorySSA) 2149 MSSAU->getMemorySSA()->verifyMemorySSA(); 2150 2151 SmallVector<Loop *, 4> HoistedLoops; 2152 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2153 2154 if (MSSAU && VerifyMemorySSA) 2155 MSSAU->getMemorySSA()->verifyMemorySSA(); 2156 2157 // This transformation has a high risk of corrupting the dominator tree, and 2158 // the below steps to rebuild loop structures will result in hard to debug 2159 // errors in that case so verify that the dominator tree is sane first. 2160 // FIXME: Remove this when the bugs stop showing up and rely on existing 2161 // verification steps. 2162 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2163 2164 if (BI) { 2165 // If we unswitched a branch which collapses the condition to a known 2166 // constant we want to replace all the uses of the invariants within both 2167 // the original and cloned blocks. We do this here so that we can use the 2168 // now updated dominator tree to identify which side the users are on. 2169 assert(UnswitchedSuccBBs.size() == 1 && 2170 "Only one possible unswitched block for a branch!"); 2171 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2172 2173 // When considering multiple partially-unswitched invariants 2174 // we cant just go replace them with constants in both branches. 2175 // 2176 // For 'AND' we infer that true branch ("continue") means true 2177 // for each invariant operand. 2178 // For 'OR' we can infer that false branch ("continue") means false 2179 // for each invariant operand. 2180 // So it happens that for multiple-partial case we dont replace 2181 // in the unswitched branch. 2182 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2183 2184 ConstantInt *UnswitchedReplacement = 2185 Direction ? ConstantInt::getTrue(BI->getContext()) 2186 : ConstantInt::getFalse(BI->getContext()); 2187 ConstantInt *ContinueReplacement = 2188 Direction ? ConstantInt::getFalse(BI->getContext()) 2189 : ConstantInt::getTrue(BI->getContext()); 2190 for (Value *Invariant : Invariants) 2191 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2192 UI != UE;) { 2193 // Grab the use and walk past it so we can clobber it in the use list. 2194 Use *U = &*UI++; 2195 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2196 if (!UserI) 2197 continue; 2198 2199 // Replace it with the 'continue' side if in the main loop body, and the 2200 // unswitched if in the cloned blocks. 2201 if (DT.dominates(LoopPH, UserI->getParent())) 2202 U->set(ContinueReplacement); 2203 else if (ReplaceUnswitched && 2204 DT.dominates(ClonedPH, UserI->getParent())) 2205 U->set(UnswitchedReplacement); 2206 } 2207 } 2208 2209 // We can change which blocks are exit blocks of all the cloned sibling 2210 // loops, the current loop, and any parent loops which shared exit blocks 2211 // with the current loop. As a consequence, we need to re-form LCSSA for 2212 // them. But we shouldn't need to re-form LCSSA for any child loops. 2213 // FIXME: This could be made more efficient by tracking which exit blocks are 2214 // new, and focusing on them, but that isn't likely to be necessary. 2215 // 2216 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2217 // loop nest and update every loop that could have had its exits changed. We 2218 // also need to cover any intervening loops. We add all of these loops to 2219 // a list and sort them by loop depth to achieve this without updating 2220 // unnecessary loops. 2221 auto UpdateLoop = [&](Loop &UpdateL) { 2222 #ifndef NDEBUG 2223 UpdateL.verifyLoop(); 2224 for (Loop *ChildL : UpdateL) { 2225 ChildL->verifyLoop(); 2226 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2227 "Perturbed a child loop's LCSSA form!"); 2228 } 2229 #endif 2230 // First build LCSSA for this loop so that we can preserve it when 2231 // forming dedicated exits. We don't want to perturb some other loop's 2232 // LCSSA while doing that CFG edit. 2233 formLCSSA(UpdateL, DT, &LI, nullptr); 2234 2235 // For loops reached by this loop's original exit blocks we may 2236 // introduced new, non-dedicated exits. At least try to re-form dedicated 2237 // exits for these loops. This may fail if they couldn't have dedicated 2238 // exits to start with. 2239 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); 2240 }; 2241 2242 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2243 // and we can do it in any order as they don't nest relative to each other. 2244 // 2245 // Also check if any of the loops we have updated have become top-level loops 2246 // as that will necessitate widening the outer loop scope. 2247 for (Loop *UpdatedL : 2248 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2249 UpdateLoop(*UpdatedL); 2250 if (!UpdatedL->getParentLoop()) 2251 OuterExitL = nullptr; 2252 } 2253 if (IsStillLoop) { 2254 UpdateLoop(L); 2255 if (!L.getParentLoop()) 2256 OuterExitL = nullptr; 2257 } 2258 2259 // If the original loop had exit blocks, walk up through the outer most loop 2260 // of those exit blocks to update LCSSA and form updated dedicated exits. 2261 if (OuterExitL != &L) 2262 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2263 OuterL = OuterL->getParentLoop()) 2264 UpdateLoop(*OuterL); 2265 2266 #ifndef NDEBUG 2267 // Verify the entire loop structure to catch any incorrect updates before we 2268 // progress in the pass pipeline. 2269 LI.verify(DT); 2270 #endif 2271 2272 // Now that we've unswitched something, make callbacks to report the changes. 2273 // For that we need to merge together the updated loops and the cloned loops 2274 // and check whether the original loop survived. 2275 SmallVector<Loop *, 4> SibLoops; 2276 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2277 if (UpdatedL->getParentLoop() == ParentL) 2278 SibLoops.push_back(UpdatedL); 2279 UnswitchCB(IsStillLoop, SibLoops); 2280 2281 if (MSSAU && VerifyMemorySSA) 2282 MSSAU->getMemorySSA()->verifyMemorySSA(); 2283 2284 ++NumBranches; 2285 } 2286 2287 /// Recursively compute the cost of a dominator subtree based on the per-block 2288 /// cost map provided. 2289 /// 2290 /// The recursive computation is memozied into the provided DT-indexed cost map 2291 /// to allow querying it for most nodes in the domtree without it becoming 2292 /// quadratic. 2293 static int 2294 computeDomSubtreeCost(DomTreeNode &N, 2295 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2296 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2297 // Don't accumulate cost (or recurse through) blocks not in our block cost 2298 // map and thus not part of the duplication cost being considered. 2299 auto BBCostIt = BBCostMap.find(N.getBlock()); 2300 if (BBCostIt == BBCostMap.end()) 2301 return 0; 2302 2303 // Lookup this node to see if we already computed its cost. 2304 auto DTCostIt = DTCostMap.find(&N); 2305 if (DTCostIt != DTCostMap.end()) 2306 return DTCostIt->second; 2307 2308 // If not, we have to compute it. We can't use insert above and update 2309 // because computing the cost may insert more things into the map. 2310 int Cost = std::accumulate( 2311 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2312 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2313 }); 2314 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2315 (void)Inserted; 2316 assert(Inserted && "Should not insert a node while visiting children!"); 2317 return Cost; 2318 } 2319 2320 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2321 /// making the following replacement: 2322 /// 2323 /// --code before guard-- 2324 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2325 /// --code after guard-- 2326 /// 2327 /// into 2328 /// 2329 /// --code before guard-- 2330 /// br i1 %cond, label %guarded, label %deopt 2331 /// 2332 /// guarded: 2333 /// --code after guard-- 2334 /// 2335 /// deopt: 2336 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2337 /// unreachable 2338 /// 2339 /// It also makes all relevant DT and LI updates, so that all structures are in 2340 /// valid state after this transform. 2341 static BranchInst * 2342 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2343 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2344 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2345 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2346 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2347 BasicBlock *CheckBB = GI->getParent(); 2348 2349 if (MSSAU && VerifyMemorySSA) 2350 MSSAU->getMemorySSA()->verifyMemorySSA(); 2351 2352 // Remove all CheckBB's successors from DomTree. A block can be seen among 2353 // successors more than once, but for DomTree it should be added only once. 2354 SmallPtrSet<BasicBlock *, 4> Successors; 2355 for (auto *Succ : successors(CheckBB)) 2356 if (Successors.insert(Succ).second) 2357 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2358 2359 Instruction *DeoptBlockTerm = 2360 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2361 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2362 // SplitBlockAndInsertIfThen inserts control flow that branches to 2363 // DeoptBlockTerm if the condition is true. We want the opposite. 2364 CheckBI->swapSuccessors(); 2365 2366 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2367 GuardedBlock->setName("guarded"); 2368 CheckBI->getSuccessor(1)->setName("deopt"); 2369 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2370 2371 // We now have a new exit block. 2372 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2373 2374 if (MSSAU) 2375 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2376 2377 GI->moveBefore(DeoptBlockTerm); 2378 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2379 2380 // Add new successors of CheckBB into DomTree. 2381 for (auto *Succ : successors(CheckBB)) 2382 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2383 2384 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2385 // successors. 2386 for (auto *Succ : Successors) 2387 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2388 2389 // Make proper changes to DT. 2390 DT.applyUpdates(DTUpdates); 2391 // Inform LI of a new loop block. 2392 L.addBasicBlockToLoop(GuardedBlock, LI); 2393 2394 if (MSSAU) { 2395 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2396 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End); 2397 if (VerifyMemorySSA) 2398 MSSAU->getMemorySSA()->verifyMemorySSA(); 2399 } 2400 2401 ++NumGuards; 2402 return CheckBI; 2403 } 2404 2405 /// Cost multiplier is a way to limit potentially exponential behavior 2406 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2407 /// candidates available. Also accounting for the number of "sibling" loops with 2408 /// the idea to account for previous unswitches that already happened on this 2409 /// cluster of loops. There was an attempt to keep this formula simple, 2410 /// just enough to limit the worst case behavior. Even if it is not that simple 2411 /// now it is still not an attempt to provide a detailed heuristic size 2412 /// prediction. 2413 /// 2414 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2415 /// unswitch candidates, making adequate predictions instead of wild guesses. 2416 /// That requires knowing not just the number of "remaining" candidates but 2417 /// also costs of unswitching for each of these candidates. 2418 static int calculateUnswitchCostMultiplier( 2419 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2420 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2421 UnswitchCandidates) { 2422 2423 // Guards and other exiting conditions do not contribute to exponential 2424 // explosion as soon as they dominate the latch (otherwise there might be 2425 // another path to the latch remaining that does not allow to eliminate the 2426 // loop copy on unswitch). 2427 BasicBlock *Latch = L.getLoopLatch(); 2428 BasicBlock *CondBlock = TI.getParent(); 2429 if (DT.dominates(CondBlock, Latch) && 2430 (isGuard(&TI) || 2431 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2432 return L.contains(SuccBB); 2433 }) <= 1)) { 2434 NumCostMultiplierSkipped++; 2435 return 1; 2436 } 2437 2438 auto *ParentL = L.getParentLoop(); 2439 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2440 : std::distance(LI.begin(), LI.end())); 2441 // Count amount of clones that all the candidates might cause during 2442 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2443 int UnswitchedClones = 0; 2444 for (auto Candidate : UnswitchCandidates) { 2445 Instruction *CI = Candidate.first; 2446 BasicBlock *CondBlock = CI->getParent(); 2447 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2448 if (isGuard(CI)) { 2449 if (!SkipExitingSuccessors) 2450 UnswitchedClones++; 2451 continue; 2452 } 2453 int NonExitingSuccessors = llvm::count_if( 2454 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2455 return !SkipExitingSuccessors || L.contains(SuccBB); 2456 }); 2457 UnswitchedClones += Log2_32(NonExitingSuccessors); 2458 } 2459 2460 // Ignore up to the "unscaled candidates" number of unswitch candidates 2461 // when calculating the power-of-two scaling of the cost. The main idea 2462 // with this control is to allow a small number of unswitches to happen 2463 // and rely more on siblings multiplier (see below) when the number 2464 // of candidates is small. 2465 unsigned ClonesPower = 2466 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2467 2468 // Allowing top-level loops to spread a bit more than nested ones. 2469 int SiblingsMultiplier = 2470 std::max((ParentL ? SiblingsCount 2471 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2472 1); 2473 // Compute the cost multiplier in a way that won't overflow by saturating 2474 // at an upper bound. 2475 int CostMultiplier; 2476 if (ClonesPower > Log2_32(UnswitchThreshold) || 2477 SiblingsMultiplier > UnswitchThreshold) 2478 CostMultiplier = UnswitchThreshold; 2479 else 2480 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2481 (int)UnswitchThreshold); 2482 2483 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2484 << " (siblings " << SiblingsMultiplier << " * clones " 2485 << (1 << ClonesPower) << ")" 2486 << " for unswitch candidate: " << TI << "\n"); 2487 return CostMultiplier; 2488 } 2489 2490 static bool 2491 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2492 AssumptionCache &AC, TargetTransformInfo &TTI, 2493 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2494 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2495 // Collect all invariant conditions within this loop (as opposed to an inner 2496 // loop which would be handled when visiting that inner loop). 2497 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2498 UnswitchCandidates; 2499 2500 // Whether or not we should also collect guards in the loop. 2501 bool CollectGuards = false; 2502 if (UnswitchGuards) { 2503 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2504 Intrinsic::getName(Intrinsic::experimental_guard)); 2505 if (GuardDecl && !GuardDecl->use_empty()) 2506 CollectGuards = true; 2507 } 2508 2509 for (auto *BB : L.blocks()) { 2510 if (LI.getLoopFor(BB) != &L) 2511 continue; 2512 2513 if (CollectGuards) 2514 for (auto &I : *BB) 2515 if (isGuard(&I)) { 2516 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2517 // TODO: Support AND, OR conditions and partial unswitching. 2518 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2519 UnswitchCandidates.push_back({&I, {Cond}}); 2520 } 2521 2522 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2523 // We can only consider fully loop-invariant switch conditions as we need 2524 // to completely eliminate the switch after unswitching. 2525 if (!isa<Constant>(SI->getCondition()) && 2526 L.isLoopInvariant(SI->getCondition())) 2527 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2528 continue; 2529 } 2530 2531 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2532 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2533 BI->getSuccessor(0) == BI->getSuccessor(1)) 2534 continue; 2535 2536 if (L.isLoopInvariant(BI->getCondition())) { 2537 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2538 continue; 2539 } 2540 2541 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2542 if (CondI.getOpcode() != Instruction::And && 2543 CondI.getOpcode() != Instruction::Or) 2544 continue; 2545 2546 TinyPtrVector<Value *> Invariants = 2547 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2548 if (Invariants.empty()) 2549 continue; 2550 2551 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2552 } 2553 2554 // If we didn't find any candidates, we're done. 2555 if (UnswitchCandidates.empty()) 2556 return false; 2557 2558 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2559 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2560 // irreducible control flow into reducible control flow and introduce new 2561 // loops "out of thin air". If we ever discover important use cases for doing 2562 // this, we can add support to loop unswitch, but it is a lot of complexity 2563 // for what seems little or no real world benefit. 2564 LoopBlocksRPO RPOT(&L); 2565 RPOT.perform(&LI); 2566 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2567 return false; 2568 2569 SmallVector<BasicBlock *, 4> ExitBlocks; 2570 L.getUniqueExitBlocks(ExitBlocks); 2571 2572 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2573 // don't know how to split those exit blocks. 2574 // FIXME: We should teach SplitBlock to handle this and remove this 2575 // restriction. 2576 for (auto *ExitBB : ExitBlocks) 2577 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2578 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2579 return false; 2580 } 2581 2582 LLVM_DEBUG( 2583 dbgs() << "Considering " << UnswitchCandidates.size() 2584 << " non-trivial loop invariant conditions for unswitching.\n"); 2585 2586 // Given that unswitching these terminators will require duplicating parts of 2587 // the loop, so we need to be able to model that cost. Compute the ephemeral 2588 // values and set up a data structure to hold per-BB costs. We cache each 2589 // block's cost so that we don't recompute this when considering different 2590 // subsets of the loop for duplication during unswitching. 2591 SmallPtrSet<const Value *, 4> EphValues; 2592 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2593 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2594 2595 // Compute the cost of each block, as well as the total loop cost. Also, bail 2596 // out if we see instructions which are incompatible with loop unswitching 2597 // (convergent, noduplicate, or cross-basic-block tokens). 2598 // FIXME: We might be able to safely handle some of these in non-duplicated 2599 // regions. 2600 int LoopCost = 0; 2601 for (auto *BB : L.blocks()) { 2602 int Cost = 0; 2603 for (auto &I : *BB) { 2604 if (EphValues.count(&I)) 2605 continue; 2606 2607 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2608 return false; 2609 if (auto CS = CallSite(&I)) 2610 if (CS.isConvergent() || CS.cannotDuplicate()) 2611 return false; 2612 2613 Cost += TTI.getUserCost(&I); 2614 } 2615 assert(Cost >= 0 && "Must not have negative costs!"); 2616 LoopCost += Cost; 2617 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2618 BBCostMap[BB] = Cost; 2619 } 2620 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2621 2622 // Now we find the best candidate by searching for the one with the following 2623 // properties in order: 2624 // 2625 // 1) An unswitching cost below the threshold 2626 // 2) The smallest number of duplicated unswitch candidates (to avoid 2627 // creating redundant subsequent unswitching) 2628 // 3) The smallest cost after unswitching. 2629 // 2630 // We prioritize reducing fanout of unswitch candidates provided the cost 2631 // remains below the threshold because this has a multiplicative effect. 2632 // 2633 // This requires memoizing each dominator subtree to avoid redundant work. 2634 // 2635 // FIXME: Need to actually do the number of candidates part above. 2636 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2637 // Given a terminator which might be unswitched, computes the non-duplicated 2638 // cost for that terminator. 2639 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2640 BasicBlock &BB = *TI.getParent(); 2641 SmallPtrSet<BasicBlock *, 4> Visited; 2642 2643 int Cost = LoopCost; 2644 for (BasicBlock *SuccBB : successors(&BB)) { 2645 // Don't count successors more than once. 2646 if (!Visited.insert(SuccBB).second) 2647 continue; 2648 2649 // If this is a partial unswitch candidate, then it must be a conditional 2650 // branch with a condition of either `or` or `and`. In that case, one of 2651 // the successors is necessarily duplicated, so don't even try to remove 2652 // its cost. 2653 if (!FullUnswitch) { 2654 auto &BI = cast<BranchInst>(TI); 2655 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2656 Instruction::And) { 2657 if (SuccBB == BI.getSuccessor(1)) 2658 continue; 2659 } else { 2660 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2661 Instruction::Or && 2662 "Only `and` and `or` conditions can result in a partial " 2663 "unswitch!"); 2664 if (SuccBB == BI.getSuccessor(0)) 2665 continue; 2666 } 2667 } 2668 2669 // This successor's domtree will not need to be duplicated after 2670 // unswitching if the edge to the successor dominates it (and thus the 2671 // entire tree). This essentially means there is no other path into this 2672 // subtree and so it will end up live in only one clone of the loop. 2673 if (SuccBB->getUniquePredecessor() || 2674 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2675 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2676 })) { 2677 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2678 assert(Cost >= 0 && 2679 "Non-duplicated cost should never exceed total loop cost!"); 2680 } 2681 } 2682 2683 // Now scale the cost by the number of unique successors minus one. We 2684 // subtract one because there is already at least one copy of the entire 2685 // loop. This is computing the new cost of unswitching a condition. 2686 // Note that guards always have 2 unique successors that are implicit and 2687 // will be materialized if we decide to unswitch it. 2688 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2689 assert(SuccessorsCount > 1 && 2690 "Cannot unswitch a condition without multiple distinct successors!"); 2691 return Cost * (SuccessorsCount - 1); 2692 }; 2693 Instruction *BestUnswitchTI = nullptr; 2694 int BestUnswitchCost; 2695 ArrayRef<Value *> BestUnswitchInvariants; 2696 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2697 Instruction &TI = *TerminatorAndInvariants.first; 2698 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2699 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2700 int CandidateCost = ComputeUnswitchedCost( 2701 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2702 Invariants[0] == BI->getCondition())); 2703 // Calculate cost multiplier which is a tool to limit potentially 2704 // exponential behavior of loop-unswitch. 2705 if (EnableUnswitchCostMultiplier) { 2706 int CostMultiplier = 2707 calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2708 assert( 2709 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2710 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2711 CandidateCost *= CostMultiplier; 2712 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2713 << " (multiplier: " << CostMultiplier << ")" 2714 << " for unswitch candidate: " << TI << "\n"); 2715 } else { 2716 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2717 << " for unswitch candidate: " << TI << "\n"); 2718 } 2719 2720 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2721 BestUnswitchTI = &TI; 2722 BestUnswitchCost = CandidateCost; 2723 BestUnswitchInvariants = Invariants; 2724 } 2725 } 2726 2727 if (BestUnswitchCost >= UnswitchThreshold) { 2728 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2729 << BestUnswitchCost << "\n"); 2730 return false; 2731 } 2732 2733 // If the best candidate is a guard, turn it into a branch. 2734 if (isGuard(BestUnswitchTI)) 2735 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2736 ExitBlocks, DT, LI, MSSAU); 2737 2738 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2739 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2740 << "\n"); 2741 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2742 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2743 return true; 2744 } 2745 2746 /// Unswitch control flow predicated on loop invariant conditions. 2747 /// 2748 /// This first hoists all branches or switches which are trivial (IE, do not 2749 /// require duplicating any part of the loop) out of the loop body. It then 2750 /// looks at other loop invariant control flows and tries to unswitch those as 2751 /// well by cloning the loop if the result is small enough. 2752 /// 2753 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2754 /// updated based on the unswitch. 2755 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 2756 /// 2757 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2758 /// true, we will attempt to do non-trivial unswitching as well as trivial 2759 /// unswitching. 2760 /// 2761 /// The `UnswitchCB` callback provided will be run after unswitching is 2762 /// complete, with the first parameter set to `true` if the provided loop 2763 /// remains a loop, and a list of new sibling loops created. 2764 /// 2765 /// If `SE` is non-null, we will update that analysis based on the unswitching 2766 /// done. 2767 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2768 AssumptionCache &AC, TargetTransformInfo &TTI, 2769 bool NonTrivial, 2770 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2771 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2772 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2773 "Loops must be in LCSSA form before unswitching."); 2774 bool Changed = false; 2775 2776 // Must be in loop simplified form: we need a preheader and dedicated exits. 2777 if (!L.isLoopSimplifyForm()) 2778 return false; 2779 2780 // Try trivial unswitch first before loop over other basic blocks in the loop. 2781 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2782 // If we unswitched successfully we will want to clean up the loop before 2783 // processing it further so just mark it as unswitched and return. 2784 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2785 return true; 2786 } 2787 2788 // If we're not doing non-trivial unswitching, we're done. We both accept 2789 // a parameter but also check a local flag that can be used for testing 2790 // a debugging. 2791 if (!NonTrivial && !EnableNonTrivialUnswitch) 2792 return false; 2793 2794 // For non-trivial unswitching, because it often creates new loops, we rely on 2795 // the pass manager to iterate on the loops rather than trying to immediately 2796 // reach a fixed point. There is no substantial advantage to iterating 2797 // internally, and if any of the new loops are simplified enough to contain 2798 // trivial unswitching we want to prefer those. 2799 2800 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2801 // a partial unswitch when possible below the threshold. 2802 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2803 return true; 2804 2805 // No other opportunities to unswitch. 2806 return Changed; 2807 } 2808 2809 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2810 LoopStandardAnalysisResults &AR, 2811 LPMUpdater &U) { 2812 Function &F = *L.getHeader()->getParent(); 2813 (void)F; 2814 2815 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2816 << "\n"); 2817 2818 // Save the current loop name in a variable so that we can report it even 2819 // after it has been deleted. 2820 std::string LoopName = L.getName(); 2821 2822 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2823 ArrayRef<Loop *> NewLoops) { 2824 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2825 if (!NewLoops.empty()) 2826 U.addSiblingLoops(NewLoops); 2827 2828 // If the current loop remains valid, we should revisit it to catch any 2829 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2830 if (CurrentLoopValid) 2831 U.revisitCurrentLoop(); 2832 else 2833 U.markLoopAsDeleted(L, LoopName); 2834 }; 2835 2836 Optional<MemorySSAUpdater> MSSAU; 2837 if (AR.MSSA) { 2838 MSSAU = MemorySSAUpdater(AR.MSSA); 2839 if (VerifyMemorySSA) 2840 AR.MSSA->verifyMemorySSA(); 2841 } 2842 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2843 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 2844 return PreservedAnalyses::all(); 2845 2846 if (AR.MSSA && VerifyMemorySSA) 2847 AR.MSSA->verifyMemorySSA(); 2848 2849 // Historically this pass has had issues with the dominator tree so verify it 2850 // in asserts builds. 2851 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2852 return getLoopPassPreservedAnalyses(); 2853 } 2854 2855 namespace { 2856 2857 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2858 bool NonTrivial; 2859 2860 public: 2861 static char ID; // Pass ID, replacement for typeid 2862 2863 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2864 : LoopPass(ID), NonTrivial(NonTrivial) { 2865 initializeSimpleLoopUnswitchLegacyPassPass( 2866 *PassRegistry::getPassRegistry()); 2867 } 2868 2869 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2870 2871 void getAnalysisUsage(AnalysisUsage &AU) const override { 2872 AU.addRequired<AssumptionCacheTracker>(); 2873 AU.addRequired<TargetTransformInfoWrapperPass>(); 2874 if (EnableMSSALoopDependency) { 2875 AU.addRequired<MemorySSAWrapperPass>(); 2876 AU.addPreserved<MemorySSAWrapperPass>(); 2877 } 2878 getLoopAnalysisUsage(AU); 2879 } 2880 }; 2881 2882 } // end anonymous namespace 2883 2884 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2885 if (skipLoop(L)) 2886 return false; 2887 2888 Function &F = *L->getHeader()->getParent(); 2889 2890 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2891 << "\n"); 2892 2893 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2894 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2895 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2896 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2897 MemorySSA *MSSA = nullptr; 2898 Optional<MemorySSAUpdater> MSSAU; 2899 if (EnableMSSALoopDependency) { 2900 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2901 MSSAU = MemorySSAUpdater(MSSA); 2902 } 2903 2904 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 2905 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 2906 2907 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2908 ArrayRef<Loop *> NewLoops) { 2909 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2910 for (auto *NewL : NewLoops) 2911 LPM.addLoop(*NewL); 2912 2913 // If the current loop remains valid, re-add it to the queue. This is 2914 // a little wasteful as we'll finish processing the current loop as well, 2915 // but it is the best we can do in the old PM. 2916 if (CurrentLoopValid) 2917 LPM.addLoop(*L); 2918 else 2919 LPM.markLoopAsDeleted(*L); 2920 }; 2921 2922 if (MSSA && VerifyMemorySSA) 2923 MSSA->verifyMemorySSA(); 2924 2925 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 2926 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 2927 2928 if (MSSA && VerifyMemorySSA) 2929 MSSA->verifyMemorySSA(); 2930 2931 // If anything was unswitched, also clear any cached information about this 2932 // loop. 2933 LPM.deleteSimpleAnalysisLoop(L); 2934 2935 // Historically this pass has had issues with the dominator tree so verify it 2936 // in asserts builds. 2937 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2938 2939 return Changed; 2940 } 2941 2942 char SimpleLoopUnswitchLegacyPass::ID = 0; 2943 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2944 "Simple unswitch loops", false, false) 2945 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2946 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2947 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2948 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2949 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 2950 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2951 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2952 "Simple unswitch loops", false, false) 2953 2954 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2955 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2956 } 2957