1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/MustExecute.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/InstrTypes.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/GenericDomTree.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Cloning.h" 53 #include "llvm/Transforms/Utils/LoopUtils.h" 54 #include "llvm/Transforms/Utils/ValueMapper.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <iterator> 58 #include <numeric> 59 #include <utility> 60 61 #define DEBUG_TYPE "simple-loop-unswitch" 62 63 using namespace llvm; 64 65 STATISTIC(NumBranches, "Number of branches unswitched"); 66 STATISTIC(NumSwitches, "Number of switches unswitched"); 67 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 68 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 69 STATISTIC( 70 NumCostMultiplierSkipped, 71 "Number of unswitch candidates that had their cost multiplier skipped"); 72 73 static cl::opt<bool> EnableNonTrivialUnswitch( 74 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 75 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 76 "following the configuration passed into the pass.")); 77 78 static cl::opt<int> 79 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 80 cl::desc("The cost threshold for unswitching a loop.")); 81 82 static cl::opt<bool> EnableUnswitchCostMultiplier( 83 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 84 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 85 "explosion in nontrivial unswitch.")); 86 static cl::opt<int> UnswitchSiblingsToplevelDiv( 87 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 88 cl::desc("Toplevel siblings divisor for cost multiplier.")); 89 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 90 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 91 cl::desc("Number of unswitch candidates that are ignored when calculating " 92 "cost multiplier.")); 93 static cl::opt<bool> UnswitchGuards( 94 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 95 cl::desc("If enabled, simple loop unswitching will also consider " 96 "llvm.experimental.guard intrinsics as unswitch candidates.")); 97 static cl::opt<bool> DropNonTrivialImplicitNullChecks( 98 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 99 cl::init(false), cl::Hidden, 100 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 101 "null checks to save time analyzing if we can keep it.")); 102 103 /// Collect all of the loop invariant input values transitively used by the 104 /// homogeneous instruction graph from a given root. 105 /// 106 /// This essentially walks from a root recursively through loop variant operands 107 /// which have the exact same opcode and finds all inputs which are loop 108 /// invariant. For some operations these can be re-associated and unswitched out 109 /// of the loop entirely. 110 static TinyPtrVector<Value *> 111 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 112 LoopInfo &LI) { 113 assert(!L.isLoopInvariant(&Root) && 114 "Only need to walk the graph if root itself is not invariant."); 115 TinyPtrVector<Value *> Invariants; 116 117 // Build a worklist and recurse through operators collecting invariants. 118 SmallVector<Instruction *, 4> Worklist; 119 SmallPtrSet<Instruction *, 8> Visited; 120 Worklist.push_back(&Root); 121 Visited.insert(&Root); 122 do { 123 Instruction &I = *Worklist.pop_back_val(); 124 for (Value *OpV : I.operand_values()) { 125 // Skip constants as unswitching isn't interesting for them. 126 if (isa<Constant>(OpV)) 127 continue; 128 129 // Add it to our result if loop invariant. 130 if (L.isLoopInvariant(OpV)) { 131 Invariants.push_back(OpV); 132 continue; 133 } 134 135 // If not an instruction with the same opcode, nothing we can do. 136 Instruction *OpI = dyn_cast<Instruction>(OpV); 137 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 138 continue; 139 140 // Visit this operand. 141 if (Visited.insert(OpI).second) 142 Worklist.push_back(OpI); 143 } 144 } while (!Worklist.empty()); 145 146 return Invariants; 147 } 148 149 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 150 Constant &Replacement) { 151 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 152 153 // Replace uses of LIC in the loop with the given constant. 154 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 155 // Grab the use and walk past it so we can clobber it in the use list. 156 Use *U = &*UI++; 157 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 158 159 // Replace this use within the loop body. 160 if (UserI && L.contains(UserI)) 161 U->set(&Replacement); 162 } 163 } 164 165 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 166 /// incoming values along this edge. 167 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 168 BasicBlock &ExitBB) { 169 for (Instruction &I : ExitBB) { 170 auto *PN = dyn_cast<PHINode>(&I); 171 if (!PN) 172 // No more PHIs to check. 173 return true; 174 175 // If the incoming value for this edge isn't loop invariant the unswitch 176 // won't be trivial. 177 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 178 return false; 179 } 180 llvm_unreachable("Basic blocks should never be empty!"); 181 } 182 183 /// Insert code to test a set of loop invariant values, and conditionally branch 184 /// on them. 185 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 186 ArrayRef<Value *> Invariants, 187 bool Direction, 188 BasicBlock &UnswitchedSucc, 189 BasicBlock &NormalSucc) { 190 IRBuilder<> IRB(&BB); 191 192 Value *Cond = Direction ? IRB.CreateOr(Invariants) : 193 IRB.CreateAnd(Invariants); 194 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 195 Direction ? &NormalSucc : &UnswitchedSucc); 196 } 197 198 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 199 /// 200 /// Requires that the loop exit and unswitched basic block are the same, and 201 /// that the exiting block was a unique predecessor of that block. Rewrites the 202 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 203 /// PHI nodes from the old preheader that now contains the unswitched 204 /// terminator. 205 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 206 BasicBlock &OldExitingBB, 207 BasicBlock &OldPH) { 208 for (PHINode &PN : UnswitchedBB.phis()) { 209 // When the loop exit is directly unswitched we just need to update the 210 // incoming basic block. We loop to handle weird cases with repeated 211 // incoming blocks, but expect to typically only have one operand here. 212 for (auto i : seq<int>(0, PN.getNumOperands())) { 213 assert(PN.getIncomingBlock(i) == &OldExitingBB && 214 "Found incoming block different from unique predecessor!"); 215 PN.setIncomingBlock(i, &OldPH); 216 } 217 } 218 } 219 220 /// Rewrite the PHI nodes in the loop exit basic block and the split off 221 /// unswitched block. 222 /// 223 /// Because the exit block remains an exit from the loop, this rewrites the 224 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 225 /// nodes into the unswitched basic block to select between the value in the 226 /// old preheader and the loop exit. 227 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 228 BasicBlock &UnswitchedBB, 229 BasicBlock &OldExitingBB, 230 BasicBlock &OldPH, 231 bool FullUnswitch) { 232 assert(&ExitBB != &UnswitchedBB && 233 "Must have different loop exit and unswitched blocks!"); 234 Instruction *InsertPt = &*UnswitchedBB.begin(); 235 for (PHINode &PN : ExitBB.phis()) { 236 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 237 PN.getName() + ".split", InsertPt); 238 239 // Walk backwards over the old PHI node's inputs to minimize the cost of 240 // removing each one. We have to do this weird loop manually so that we 241 // create the same number of new incoming edges in the new PHI as we expect 242 // each case-based edge to be included in the unswitched switch in some 243 // cases. 244 // FIXME: This is really, really gross. It would be much cleaner if LLVM 245 // allowed us to create a single entry for a predecessor block without 246 // having separate entries for each "edge" even though these edges are 247 // required to produce identical results. 248 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 249 if (PN.getIncomingBlock(i) != &OldExitingBB) 250 continue; 251 252 Value *Incoming = PN.getIncomingValue(i); 253 if (FullUnswitch) 254 // No more edge from the old exiting block to the exit block. 255 PN.removeIncomingValue(i); 256 257 NewPN->addIncoming(Incoming, &OldPH); 258 } 259 260 // Now replace the old PHI with the new one and wire the old one in as an 261 // input to the new one. 262 PN.replaceAllUsesWith(NewPN); 263 NewPN->addIncoming(&PN, &ExitBB); 264 } 265 } 266 267 /// Hoist the current loop up to the innermost loop containing a remaining exit. 268 /// 269 /// Because we've removed an exit from the loop, we may have changed the set of 270 /// loops reachable and need to move the current loop up the loop nest or even 271 /// to an entirely separate nest. 272 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 273 DominatorTree &DT, LoopInfo &LI, 274 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 275 // If the loop is already at the top level, we can't hoist it anywhere. 276 Loop *OldParentL = L.getParentLoop(); 277 if (!OldParentL) 278 return; 279 280 SmallVector<BasicBlock *, 4> Exits; 281 L.getExitBlocks(Exits); 282 Loop *NewParentL = nullptr; 283 for (auto *ExitBB : Exits) 284 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 285 if (!NewParentL || NewParentL->contains(ExitL)) 286 NewParentL = ExitL; 287 288 if (NewParentL == OldParentL) 289 return; 290 291 // The new parent loop (if different) should always contain the old one. 292 if (NewParentL) 293 assert(NewParentL->contains(OldParentL) && 294 "Can only hoist this loop up the nest!"); 295 296 // The preheader will need to move with the body of this loop. However, 297 // because it isn't in this loop we also need to update the primary loop map. 298 assert(OldParentL == LI.getLoopFor(&Preheader) && 299 "Parent loop of this loop should contain this loop's preheader!"); 300 LI.changeLoopFor(&Preheader, NewParentL); 301 302 // Remove this loop from its old parent. 303 OldParentL->removeChildLoop(&L); 304 305 // Add the loop either to the new parent or as a top-level loop. 306 if (NewParentL) 307 NewParentL->addChildLoop(&L); 308 else 309 LI.addTopLevelLoop(&L); 310 311 // Remove this loops blocks from the old parent and every other loop up the 312 // nest until reaching the new parent. Also update all of these 313 // no-longer-containing loops to reflect the nesting change. 314 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 315 OldContainingL = OldContainingL->getParentLoop()) { 316 llvm::erase_if(OldContainingL->getBlocksVector(), 317 [&](const BasicBlock *BB) { 318 return BB == &Preheader || L.contains(BB); 319 }); 320 321 OldContainingL->getBlocksSet().erase(&Preheader); 322 for (BasicBlock *BB : L.blocks()) 323 OldContainingL->getBlocksSet().erase(BB); 324 325 // Because we just hoisted a loop out of this one, we have essentially 326 // created new exit paths from it. That means we need to form LCSSA PHI 327 // nodes for values used in the no-longer-nested loop. 328 formLCSSA(*OldContainingL, DT, &LI, SE); 329 330 // We shouldn't need to form dedicated exits because the exit introduced 331 // here is the (just split by unswitching) preheader. However, after trivial 332 // unswitching it is possible to get new non-dedicated exits out of parent 333 // loop so let's conservatively form dedicated exit blocks and figure out 334 // if we can optimize later. 335 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 336 /*PreserveLCSSA*/ true); 337 } 338 } 339 340 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 341 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 342 // as exiting block. 343 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 344 Loop *TopMost = LI.getLoopFor(ExitBB); 345 Loop *Current = TopMost; 346 while (Current) { 347 if (Current->isLoopExiting(ExitBB)) 348 TopMost = Current; 349 Current = Current->getParentLoop(); 350 } 351 return TopMost; 352 } 353 354 /// Unswitch a trivial branch if the condition is loop invariant. 355 /// 356 /// This routine should only be called when loop code leading to the branch has 357 /// been validated as trivial (no side effects). This routine checks if the 358 /// condition is invariant and one of the successors is a loop exit. This 359 /// allows us to unswitch without duplicating the loop, making it trivial. 360 /// 361 /// If this routine fails to unswitch the branch it returns false. 362 /// 363 /// If the branch can be unswitched, this routine splits the preheader and 364 /// hoists the branch above that split. Preserves loop simplified form 365 /// (splitting the exit block as necessary). It simplifies the branch within 366 /// the loop to an unconditional branch but doesn't remove it entirely. Further 367 /// cleanup can be done with some simplify-cfg like pass. 368 /// 369 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 370 /// invalidated by this. 371 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 372 LoopInfo &LI, ScalarEvolution *SE, 373 MemorySSAUpdater *MSSAU) { 374 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 375 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 376 377 // The loop invariant values that we want to unswitch. 378 TinyPtrVector<Value *> Invariants; 379 380 // When true, we're fully unswitching the branch rather than just unswitching 381 // some input conditions to the branch. 382 bool FullUnswitch = false; 383 384 if (L.isLoopInvariant(BI.getCondition())) { 385 Invariants.push_back(BI.getCondition()); 386 FullUnswitch = true; 387 } else { 388 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 389 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 390 if (Invariants.empty()) 391 // Couldn't find invariant inputs! 392 return false; 393 } 394 395 // Check that one of the branch's successors exits, and which one. 396 bool ExitDirection = true; 397 int LoopExitSuccIdx = 0; 398 auto *LoopExitBB = BI.getSuccessor(0); 399 if (L.contains(LoopExitBB)) { 400 ExitDirection = false; 401 LoopExitSuccIdx = 1; 402 LoopExitBB = BI.getSuccessor(1); 403 if (L.contains(LoopExitBB)) 404 return false; 405 } 406 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 407 auto *ParentBB = BI.getParent(); 408 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 409 return false; 410 411 // When unswitching only part of the branch's condition, we need the exit 412 // block to be reached directly from the partially unswitched input. This can 413 // be done when the exit block is along the true edge and the branch condition 414 // is a graph of `or` operations, or the exit block is along the false edge 415 // and the condition is a graph of `and` operations. 416 if (!FullUnswitch) { 417 if (ExitDirection) { 418 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 419 return false; 420 } else { 421 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 422 return false; 423 } 424 } 425 426 LLVM_DEBUG({ 427 dbgs() << " unswitching trivial invariant conditions for: " << BI 428 << "\n"; 429 for (Value *Invariant : Invariants) { 430 dbgs() << " " << *Invariant << " == true"; 431 if (Invariant != Invariants.back()) 432 dbgs() << " ||"; 433 dbgs() << "\n"; 434 } 435 }); 436 437 // If we have scalar evolutions, we need to invalidate them including this 438 // loop, the loop containing the exit block and the topmost parent loop 439 // exiting via LoopExitBB. 440 if (SE) { 441 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 442 SE->forgetLoop(ExitL); 443 else 444 // Forget the entire nest as this exits the entire nest. 445 SE->forgetTopmostLoop(&L); 446 } 447 448 if (MSSAU && VerifyMemorySSA) 449 MSSAU->getMemorySSA()->verifyMemorySSA(); 450 451 // Split the preheader, so that we know that there is a safe place to insert 452 // the conditional branch. We will change the preheader to have a conditional 453 // branch on LoopCond. 454 BasicBlock *OldPH = L.getLoopPreheader(); 455 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 456 457 // Now that we have a place to insert the conditional branch, create a place 458 // to branch to: this is the exit block out of the loop that we are 459 // unswitching. We need to split this if there are other loop predecessors. 460 // Because the loop is in simplified form, *any* other predecessor is enough. 461 BasicBlock *UnswitchedBB; 462 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 463 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 464 "A branch's parent isn't a predecessor!"); 465 UnswitchedBB = LoopExitBB; 466 } else { 467 UnswitchedBB = 468 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 469 } 470 471 if (MSSAU && VerifyMemorySSA) 472 MSSAU->getMemorySSA()->verifyMemorySSA(); 473 474 // Actually move the invariant uses into the unswitched position. If possible, 475 // we do this by moving the instructions, but when doing partial unswitching 476 // we do it by building a new merge of the values in the unswitched position. 477 OldPH->getTerminator()->eraseFromParent(); 478 if (FullUnswitch) { 479 // If fully unswitching, we can use the existing branch instruction. 480 // Splice it into the old PH to gate reaching the new preheader and re-point 481 // its successors. 482 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 483 BI); 484 if (MSSAU) { 485 // Temporarily clone the terminator, to make MSSA update cheaper by 486 // separating "insert edge" updates from "remove edge" ones. 487 ParentBB->getInstList().push_back(BI.clone()); 488 } else { 489 // Create a new unconditional branch that will continue the loop as a new 490 // terminator. 491 BranchInst::Create(ContinueBB, ParentBB); 492 } 493 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 494 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 495 } else { 496 // Only unswitching a subset of inputs to the condition, so we will need to 497 // build a new branch that merges the invariant inputs. 498 if (ExitDirection) 499 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 500 Instruction::Or && 501 "Must have an `or` of `i1`s for the condition!"); 502 else 503 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 504 Instruction::And && 505 "Must have an `and` of `i1`s for the condition!"); 506 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 507 *UnswitchedBB, *NewPH); 508 } 509 510 // Update the dominator tree with the added edge. 511 DT.insertEdge(OldPH, UnswitchedBB); 512 513 // After the dominator tree was updated with the added edge, update MemorySSA 514 // if available. 515 if (MSSAU) { 516 SmallVector<CFGUpdate, 1> Updates; 517 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 518 MSSAU->applyInsertUpdates(Updates, DT); 519 } 520 521 // Finish updating dominator tree and memory ssa for full unswitch. 522 if (FullUnswitch) { 523 if (MSSAU) { 524 // Remove the cloned branch instruction. 525 ParentBB->getTerminator()->eraseFromParent(); 526 // Create unconditional branch now. 527 BranchInst::Create(ContinueBB, ParentBB); 528 MSSAU->removeEdge(ParentBB, LoopExitBB); 529 } 530 DT.deleteEdge(ParentBB, LoopExitBB); 531 } 532 533 if (MSSAU && VerifyMemorySSA) 534 MSSAU->getMemorySSA()->verifyMemorySSA(); 535 536 // Rewrite the relevant PHI nodes. 537 if (UnswitchedBB == LoopExitBB) 538 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 539 else 540 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 541 *ParentBB, *OldPH, FullUnswitch); 542 543 // The constant we can replace all of our invariants with inside the loop 544 // body. If any of the invariants have a value other than this the loop won't 545 // be entered. 546 ConstantInt *Replacement = ExitDirection 547 ? ConstantInt::getFalse(BI.getContext()) 548 : ConstantInt::getTrue(BI.getContext()); 549 550 // Since this is an i1 condition we can also trivially replace uses of it 551 // within the loop with a constant. 552 for (Value *Invariant : Invariants) 553 replaceLoopInvariantUses(L, Invariant, *Replacement); 554 555 // If this was full unswitching, we may have changed the nesting relationship 556 // for this loop so hoist it to its correct parent if needed. 557 if (FullUnswitch) 558 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 559 560 if (MSSAU && VerifyMemorySSA) 561 MSSAU->getMemorySSA()->verifyMemorySSA(); 562 563 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 564 ++NumTrivial; 565 ++NumBranches; 566 return true; 567 } 568 569 /// Unswitch a trivial switch if the condition is loop invariant. 570 /// 571 /// This routine should only be called when loop code leading to the switch has 572 /// been validated as trivial (no side effects). This routine checks if the 573 /// condition is invariant and that at least one of the successors is a loop 574 /// exit. This allows us to unswitch without duplicating the loop, making it 575 /// trivial. 576 /// 577 /// If this routine fails to unswitch the switch it returns false. 578 /// 579 /// If the switch can be unswitched, this routine splits the preheader and 580 /// copies the switch above that split. If the default case is one of the 581 /// exiting cases, it copies the non-exiting cases and points them at the new 582 /// preheader. If the default case is not exiting, it copies the exiting cases 583 /// and points the default at the preheader. It preserves loop simplified form 584 /// (splitting the exit blocks as necessary). It simplifies the switch within 585 /// the loop by removing now-dead cases. If the default case is one of those 586 /// unswitched, it replaces its destination with a new basic block containing 587 /// only unreachable. Such basic blocks, while technically loop exits, are not 588 /// considered for unswitching so this is a stable transform and the same 589 /// switch will not be revisited. If after unswitching there is only a single 590 /// in-loop successor, the switch is further simplified to an unconditional 591 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 592 /// 593 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 594 /// invalidated by this. 595 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 596 LoopInfo &LI, ScalarEvolution *SE, 597 MemorySSAUpdater *MSSAU) { 598 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 599 Value *LoopCond = SI.getCondition(); 600 601 // If this isn't switching on an invariant condition, we can't unswitch it. 602 if (!L.isLoopInvariant(LoopCond)) 603 return false; 604 605 auto *ParentBB = SI.getParent(); 606 607 // The same check must be used both for the default and the exit cases. We 608 // should never leave edges from the switch instruction to a basic block that 609 // we are unswitching, hence the condition used to determine the default case 610 // needs to also be used to populate ExitCaseIndices, which is then used to 611 // remove cases from the switch. 612 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 613 // BBToCheck is not an exit block if it is inside loop L. 614 if (L.contains(&BBToCheck)) 615 return false; 616 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 617 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 618 return false; 619 // We do not unswitch a block that only has an unreachable statement, as 620 // it's possible this is a previously unswitched block. Only unswitch if 621 // either the terminator is not unreachable, or, if it is, it's not the only 622 // instruction in the block. 623 auto *TI = BBToCheck.getTerminator(); 624 bool isUnreachable = isa<UnreachableInst>(TI); 625 return !isUnreachable || 626 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 627 }; 628 629 SmallVector<int, 4> ExitCaseIndices; 630 for (auto Case : SI.cases()) 631 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 632 ExitCaseIndices.push_back(Case.getCaseIndex()); 633 BasicBlock *DefaultExitBB = nullptr; 634 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 635 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 636 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 637 DefaultExitBB = SI.getDefaultDest(); 638 } else if (ExitCaseIndices.empty()) 639 return false; 640 641 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 642 643 if (MSSAU && VerifyMemorySSA) 644 MSSAU->getMemorySSA()->verifyMemorySSA(); 645 646 // We may need to invalidate SCEVs for the outermost loop reached by any of 647 // the exits. 648 Loop *OuterL = &L; 649 650 if (DefaultExitBB) { 651 // Clear out the default destination temporarily to allow accurate 652 // predecessor lists to be examined below. 653 SI.setDefaultDest(nullptr); 654 // Check the loop containing this exit. 655 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 656 if (!ExitL || ExitL->contains(OuterL)) 657 OuterL = ExitL; 658 } 659 660 // Store the exit cases into a separate data structure and remove them from 661 // the switch. 662 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 663 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 664 4> ExitCases; 665 ExitCases.reserve(ExitCaseIndices.size()); 666 SwitchInstProfUpdateWrapper SIW(SI); 667 // We walk the case indices backwards so that we remove the last case first 668 // and don't disrupt the earlier indices. 669 for (unsigned Index : reverse(ExitCaseIndices)) { 670 auto CaseI = SI.case_begin() + Index; 671 // Compute the outer loop from this exit. 672 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 673 if (!ExitL || ExitL->contains(OuterL)) 674 OuterL = ExitL; 675 // Save the value of this case. 676 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 677 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 678 // Delete the unswitched cases. 679 SIW.removeCase(CaseI); 680 } 681 682 if (SE) { 683 if (OuterL) 684 SE->forgetLoop(OuterL); 685 else 686 SE->forgetTopmostLoop(&L); 687 } 688 689 // Check if after this all of the remaining cases point at the same 690 // successor. 691 BasicBlock *CommonSuccBB = nullptr; 692 if (SI.getNumCases() > 0 && 693 std::all_of(std::next(SI.case_begin()), SI.case_end(), 694 [&SI](const SwitchInst::CaseHandle &Case) { 695 return Case.getCaseSuccessor() == 696 SI.case_begin()->getCaseSuccessor(); 697 })) 698 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 699 if (!DefaultExitBB) { 700 // If we're not unswitching the default, we need it to match any cases to 701 // have a common successor or if we have no cases it is the common 702 // successor. 703 if (SI.getNumCases() == 0) 704 CommonSuccBB = SI.getDefaultDest(); 705 else if (SI.getDefaultDest() != CommonSuccBB) 706 CommonSuccBB = nullptr; 707 } 708 709 // Split the preheader, so that we know that there is a safe place to insert 710 // the switch. 711 BasicBlock *OldPH = L.getLoopPreheader(); 712 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 713 OldPH->getTerminator()->eraseFromParent(); 714 715 // Now add the unswitched switch. 716 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 717 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 718 719 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 720 // First, we split any exit blocks with remaining in-loop predecessors. Then 721 // we update the PHIs in one of two ways depending on if there was a split. 722 // We walk in reverse so that we split in the same order as the cases 723 // appeared. This is purely for convenience of reading the resulting IR, but 724 // it doesn't cost anything really. 725 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 726 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 727 // Handle the default exit if necessary. 728 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 729 // ranges aren't quite powerful enough yet. 730 if (DefaultExitBB) { 731 if (pred_empty(DefaultExitBB)) { 732 UnswitchedExitBBs.insert(DefaultExitBB); 733 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 734 } else { 735 auto *SplitBB = 736 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 737 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 738 *ParentBB, *OldPH, 739 /*FullUnswitch*/ true); 740 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 741 } 742 } 743 // Note that we must use a reference in the for loop so that we update the 744 // container. 745 for (auto &ExitCase : reverse(ExitCases)) { 746 // Grab a reference to the exit block in the pair so that we can update it. 747 BasicBlock *ExitBB = std::get<1>(ExitCase); 748 749 // If this case is the last edge into the exit block, we can simply reuse it 750 // as it will no longer be a loop exit. No mapping necessary. 751 if (pred_empty(ExitBB)) { 752 // Only rewrite once. 753 if (UnswitchedExitBBs.insert(ExitBB).second) 754 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 755 continue; 756 } 757 758 // Otherwise we need to split the exit block so that we retain an exit 759 // block from the loop and a target for the unswitched condition. 760 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 761 if (!SplitExitBB) { 762 // If this is the first time we see this, do the split and remember it. 763 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 764 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 765 *ParentBB, *OldPH, 766 /*FullUnswitch*/ true); 767 } 768 // Update the case pair to point to the split block. 769 std::get<1>(ExitCase) = SplitExitBB; 770 } 771 772 // Now add the unswitched cases. We do this in reverse order as we built them 773 // in reverse order. 774 for (auto &ExitCase : reverse(ExitCases)) { 775 ConstantInt *CaseVal = std::get<0>(ExitCase); 776 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 777 778 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 779 } 780 781 // If the default was unswitched, re-point it and add explicit cases for 782 // entering the loop. 783 if (DefaultExitBB) { 784 NewSIW->setDefaultDest(DefaultExitBB); 785 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 786 787 // We removed all the exit cases, so we just copy the cases to the 788 // unswitched switch. 789 for (const auto &Case : SI.cases()) 790 NewSIW.addCase(Case.getCaseValue(), NewPH, 791 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 792 } else if (DefaultCaseWeight) { 793 // We have to set branch weight of the default case. 794 uint64_t SW = *DefaultCaseWeight; 795 for (const auto &Case : SI.cases()) { 796 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 797 assert(W && 798 "case weight must be defined as default case weight is defined"); 799 SW += *W; 800 } 801 NewSIW.setSuccessorWeight(0, SW); 802 } 803 804 // If we ended up with a common successor for every path through the switch 805 // after unswitching, rewrite it to an unconditional branch to make it easy 806 // to recognize. Otherwise we potentially have to recognize the default case 807 // pointing at unreachable and other complexity. 808 if (CommonSuccBB) { 809 BasicBlock *BB = SI.getParent(); 810 // We may have had multiple edges to this common successor block, so remove 811 // them as predecessors. We skip the first one, either the default or the 812 // actual first case. 813 bool SkippedFirst = DefaultExitBB == nullptr; 814 for (auto Case : SI.cases()) { 815 assert(Case.getCaseSuccessor() == CommonSuccBB && 816 "Non-common successor!"); 817 (void)Case; 818 if (!SkippedFirst) { 819 SkippedFirst = true; 820 continue; 821 } 822 CommonSuccBB->removePredecessor(BB, 823 /*KeepOneInputPHIs*/ true); 824 } 825 // Now nuke the switch and replace it with a direct branch. 826 SIW.eraseFromParent(); 827 BranchInst::Create(CommonSuccBB, BB); 828 } else if (DefaultExitBB) { 829 assert(SI.getNumCases() > 0 && 830 "If we had no cases we'd have a common successor!"); 831 // Move the last case to the default successor. This is valid as if the 832 // default got unswitched it cannot be reached. This has the advantage of 833 // being simple and keeping the number of edges from this switch to 834 // successors the same, and avoiding any PHI update complexity. 835 auto LastCaseI = std::prev(SI.case_end()); 836 837 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 838 SIW.setSuccessorWeight( 839 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 840 SIW.removeCase(LastCaseI); 841 } 842 843 // Walk the unswitched exit blocks and the unswitched split blocks and update 844 // the dominator tree based on the CFG edits. While we are walking unordered 845 // containers here, the API for applyUpdates takes an unordered list of 846 // updates and requires them to not contain duplicates. 847 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 848 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 849 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 850 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 851 } 852 for (auto SplitUnswitchedPair : SplitExitBBMap) { 853 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 854 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 855 } 856 DT.applyUpdates(DTUpdates); 857 858 if (MSSAU) { 859 MSSAU->applyUpdates(DTUpdates, DT); 860 if (VerifyMemorySSA) 861 MSSAU->getMemorySSA()->verifyMemorySSA(); 862 } 863 864 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 865 866 // We may have changed the nesting relationship for this loop so hoist it to 867 // its correct parent if needed. 868 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 869 870 if (MSSAU && VerifyMemorySSA) 871 MSSAU->getMemorySSA()->verifyMemorySSA(); 872 873 ++NumTrivial; 874 ++NumSwitches; 875 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 876 return true; 877 } 878 879 /// This routine scans the loop to find a branch or switch which occurs before 880 /// any side effects occur. These can potentially be unswitched without 881 /// duplicating the loop. If a branch or switch is successfully unswitched the 882 /// scanning continues to see if subsequent branches or switches have become 883 /// trivial. Once all trivial candidates have been unswitched, this routine 884 /// returns. 885 /// 886 /// The return value indicates whether anything was unswitched (and therefore 887 /// changed). 888 /// 889 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 890 /// invalidated by this. 891 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 892 LoopInfo &LI, ScalarEvolution *SE, 893 MemorySSAUpdater *MSSAU) { 894 bool Changed = false; 895 896 // If loop header has only one reachable successor we should keep looking for 897 // trivial condition candidates in the successor as well. An alternative is 898 // to constant fold conditions and merge successors into loop header (then we 899 // only need to check header's terminator). The reason for not doing this in 900 // LoopUnswitch pass is that it could potentially break LoopPassManager's 901 // invariants. Folding dead branches could either eliminate the current loop 902 // or make other loops unreachable. LCSSA form might also not be preserved 903 // after deleting branches. The following code keeps traversing loop header's 904 // successors until it finds the trivial condition candidate (condition that 905 // is not a constant). Since unswitching generates branches with constant 906 // conditions, this scenario could be very common in practice. 907 BasicBlock *CurrentBB = L.getHeader(); 908 SmallPtrSet<BasicBlock *, 8> Visited; 909 Visited.insert(CurrentBB); 910 do { 911 // Check if there are any side-effecting instructions (e.g. stores, calls, 912 // volatile loads) in the part of the loop that the code *would* execute 913 // without unswitching. 914 if (MSSAU) // Possible early exit with MSSA 915 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 916 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 917 return Changed; 918 if (llvm::any_of(*CurrentBB, 919 [](Instruction &I) { return I.mayHaveSideEffects(); })) 920 return Changed; 921 922 Instruction *CurrentTerm = CurrentBB->getTerminator(); 923 924 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 925 // Don't bother trying to unswitch past a switch with a constant 926 // condition. This should be removed prior to running this pass by 927 // simplify-cfg. 928 if (isa<Constant>(SI->getCondition())) 929 return Changed; 930 931 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 932 // Couldn't unswitch this one so we're done. 933 return Changed; 934 935 // Mark that we managed to unswitch something. 936 Changed = true; 937 938 // If unswitching turned the terminator into an unconditional branch then 939 // we can continue. The unswitching logic specifically works to fold any 940 // cases it can into an unconditional branch to make it easier to 941 // recognize here. 942 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 943 if (!BI || BI->isConditional()) 944 return Changed; 945 946 CurrentBB = BI->getSuccessor(0); 947 continue; 948 } 949 950 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 951 if (!BI) 952 // We do not understand other terminator instructions. 953 return Changed; 954 955 // Don't bother trying to unswitch past an unconditional branch or a branch 956 // with a constant value. These should be removed by simplify-cfg prior to 957 // running this pass. 958 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 959 return Changed; 960 961 // Found a trivial condition candidate: non-foldable conditional branch. If 962 // we fail to unswitch this, we can't do anything else that is trivial. 963 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 964 return Changed; 965 966 // Mark that we managed to unswitch something. 967 Changed = true; 968 969 // If we only unswitched some of the conditions feeding the branch, we won't 970 // have collapsed it to a single successor. 971 BI = cast<BranchInst>(CurrentBB->getTerminator()); 972 if (BI->isConditional()) 973 return Changed; 974 975 // Follow the newly unconditional branch into its successor. 976 CurrentBB = BI->getSuccessor(0); 977 978 // When continuing, if we exit the loop or reach a previous visited block, 979 // then we can not reach any trivial condition candidates (unfoldable 980 // branch instructions or switch instructions) and no unswitch can happen. 981 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 982 983 return Changed; 984 } 985 986 /// Build the cloned blocks for an unswitched copy of the given loop. 987 /// 988 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 989 /// after the split block (`SplitBB`) that will be used to select between the 990 /// cloned and original loop. 991 /// 992 /// This routine handles cloning all of the necessary loop blocks and exit 993 /// blocks including rewriting their instructions and the relevant PHI nodes. 994 /// Any loop blocks or exit blocks which are dominated by a different successor 995 /// than the one for this clone of the loop blocks can be trivially skipped. We 996 /// use the `DominatingSucc` map to determine whether a block satisfies that 997 /// property with a simple map lookup. 998 /// 999 /// It also correctly creates the unconditional branch in the cloned 1000 /// unswitched parent block to only point at the unswitched successor. 1001 /// 1002 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1003 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1004 /// the cloned blocks (and their loops) are left without full `LoopInfo` 1005 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1006 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1007 /// instead the caller must recompute an accurate DT. It *does* correctly 1008 /// update the `AssumptionCache` provided in `AC`. 1009 static BasicBlock *buildClonedLoopBlocks( 1010 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1011 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1012 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1013 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1014 ValueToValueMapTy &VMap, 1015 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1016 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 1017 SmallVector<BasicBlock *, 4> NewBlocks; 1018 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1019 1020 // We will need to clone a bunch of blocks, wrap up the clone operation in 1021 // a helper. 1022 auto CloneBlock = [&](BasicBlock *OldBB) { 1023 // Clone the basic block and insert it before the new preheader. 1024 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1025 NewBB->moveBefore(LoopPH); 1026 1027 // Record this block and the mapping. 1028 NewBlocks.push_back(NewBB); 1029 VMap[OldBB] = NewBB; 1030 1031 return NewBB; 1032 }; 1033 1034 // We skip cloning blocks when they have a dominating succ that is not the 1035 // succ we are cloning for. 1036 auto SkipBlock = [&](BasicBlock *BB) { 1037 auto It = DominatingSucc.find(BB); 1038 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1039 }; 1040 1041 // First, clone the preheader. 1042 auto *ClonedPH = CloneBlock(LoopPH); 1043 1044 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1045 for (auto *LoopBB : L.blocks()) 1046 if (!SkipBlock(LoopBB)) 1047 CloneBlock(LoopBB); 1048 1049 // Split all the loop exit edges so that when we clone the exit blocks, if 1050 // any of the exit blocks are *also* a preheader for some other loop, we 1051 // don't create multiple predecessors entering the loop header. 1052 for (auto *ExitBB : ExitBlocks) { 1053 if (SkipBlock(ExitBB)) 1054 continue; 1055 1056 // When we are going to clone an exit, we don't need to clone all the 1057 // instructions in the exit block and we want to ensure we have an easy 1058 // place to merge the CFG, so split the exit first. This is always safe to 1059 // do because there cannot be any non-loop predecessors of a loop exit in 1060 // loop simplified form. 1061 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1062 1063 // Rearrange the names to make it easier to write test cases by having the 1064 // exit block carry the suffix rather than the merge block carrying the 1065 // suffix. 1066 MergeBB->takeName(ExitBB); 1067 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1068 1069 // Now clone the original exit block. 1070 auto *ClonedExitBB = CloneBlock(ExitBB); 1071 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1072 "Exit block should have been split to have one successor!"); 1073 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1074 "Cloned exit block has the wrong successor!"); 1075 1076 // Remap any cloned instructions and create a merge phi node for them. 1077 for (auto ZippedInsts : llvm::zip_first( 1078 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1079 llvm::make_range(ClonedExitBB->begin(), 1080 std::prev(ClonedExitBB->end())))) { 1081 Instruction &I = std::get<0>(ZippedInsts); 1082 Instruction &ClonedI = std::get<1>(ZippedInsts); 1083 1084 // The only instructions in the exit block should be PHI nodes and 1085 // potentially a landing pad. 1086 assert( 1087 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1088 "Bad instruction in exit block!"); 1089 // We should have a value map between the instruction and its clone. 1090 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1091 1092 auto *MergePN = 1093 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1094 &*MergeBB->getFirstInsertionPt()); 1095 I.replaceAllUsesWith(MergePN); 1096 MergePN->addIncoming(&I, ExitBB); 1097 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1098 } 1099 } 1100 1101 // Rewrite the instructions in the cloned blocks to refer to the instructions 1102 // in the cloned blocks. We have to do this as a second pass so that we have 1103 // everything available. Also, we have inserted new instructions which may 1104 // include assume intrinsics, so we update the assumption cache while 1105 // processing this. 1106 for (auto *ClonedBB : NewBlocks) 1107 for (Instruction &I : *ClonedBB) { 1108 RemapInstruction(&I, VMap, 1109 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1110 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1111 if (II->getIntrinsicID() == Intrinsic::assume) 1112 AC.registerAssumption(II); 1113 } 1114 1115 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1116 // have spurious incoming values. 1117 for (auto *LoopBB : L.blocks()) 1118 if (SkipBlock(LoopBB)) 1119 for (auto *SuccBB : successors(LoopBB)) 1120 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1121 for (PHINode &PN : ClonedSuccBB->phis()) 1122 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1123 1124 // Remove the cloned parent as a predecessor of any successor we ended up 1125 // cloning other than the unswitched one. 1126 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1127 for (auto *SuccBB : successors(ParentBB)) { 1128 if (SuccBB == UnswitchedSuccBB) 1129 continue; 1130 1131 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1132 if (!ClonedSuccBB) 1133 continue; 1134 1135 ClonedSuccBB->removePredecessor(ClonedParentBB, 1136 /*KeepOneInputPHIs*/ true); 1137 } 1138 1139 // Replace the cloned branch with an unconditional branch to the cloned 1140 // unswitched successor. 1141 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1142 ClonedParentBB->getTerminator()->eraseFromParent(); 1143 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1144 1145 // If there are duplicate entries in the PHI nodes because of multiple edges 1146 // to the unswitched successor, we need to nuke all but one as we replaced it 1147 // with a direct branch. 1148 for (PHINode &PN : ClonedSuccBB->phis()) { 1149 bool Found = false; 1150 // Loop over the incoming operands backwards so we can easily delete as we 1151 // go without invalidating the index. 1152 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1153 if (PN.getIncomingBlock(i) != ClonedParentBB) 1154 continue; 1155 if (!Found) { 1156 Found = true; 1157 continue; 1158 } 1159 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1160 } 1161 } 1162 1163 // Record the domtree updates for the new blocks. 1164 SmallPtrSet<BasicBlock *, 4> SuccSet; 1165 for (auto *ClonedBB : NewBlocks) { 1166 for (auto *SuccBB : successors(ClonedBB)) 1167 if (SuccSet.insert(SuccBB).second) 1168 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1169 SuccSet.clear(); 1170 } 1171 1172 return ClonedPH; 1173 } 1174 1175 /// Recursively clone the specified loop and all of its children. 1176 /// 1177 /// The target parent loop for the clone should be provided, or can be null if 1178 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1179 /// with the provided value map. The entire original loop must be present in 1180 /// the value map. The cloned loop is returned. 1181 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1182 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1183 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1184 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1185 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1186 for (auto *BB : OrigL.blocks()) { 1187 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1188 ClonedL.addBlockEntry(ClonedBB); 1189 if (LI.getLoopFor(BB) == &OrigL) 1190 LI.changeLoopFor(ClonedBB, &ClonedL); 1191 } 1192 }; 1193 1194 // We specially handle the first loop because it may get cloned into 1195 // a different parent and because we most commonly are cloning leaf loops. 1196 Loop *ClonedRootL = LI.AllocateLoop(); 1197 if (RootParentL) 1198 RootParentL->addChildLoop(ClonedRootL); 1199 else 1200 LI.addTopLevelLoop(ClonedRootL); 1201 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1202 1203 if (OrigRootL.empty()) 1204 return ClonedRootL; 1205 1206 // If we have a nest, we can quickly clone the entire loop nest using an 1207 // iterative approach because it is a tree. We keep the cloned parent in the 1208 // data structure to avoid repeatedly querying through a map to find it. 1209 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1210 // Build up the loops to clone in reverse order as we'll clone them from the 1211 // back. 1212 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1213 LoopsToClone.push_back({ClonedRootL, ChildL}); 1214 do { 1215 Loop *ClonedParentL, *L; 1216 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1217 Loop *ClonedL = LI.AllocateLoop(); 1218 ClonedParentL->addChildLoop(ClonedL); 1219 AddClonedBlocksToLoop(*L, *ClonedL); 1220 for (Loop *ChildL : llvm::reverse(*L)) 1221 LoopsToClone.push_back({ClonedL, ChildL}); 1222 } while (!LoopsToClone.empty()); 1223 1224 return ClonedRootL; 1225 } 1226 1227 /// Build the cloned loops of an original loop from unswitching. 1228 /// 1229 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1230 /// operation. We need to re-verify that there even is a loop (as the backedge 1231 /// may not have been cloned), and even if there are remaining backedges the 1232 /// backedge set may be different. However, we know that each child loop is 1233 /// undisturbed, we only need to find where to place each child loop within 1234 /// either any parent loop or within a cloned version of the original loop. 1235 /// 1236 /// Because child loops may end up cloned outside of any cloned version of the 1237 /// original loop, multiple cloned sibling loops may be created. All of them 1238 /// are returned so that the newly introduced loop nest roots can be 1239 /// identified. 1240 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1241 const ValueToValueMapTy &VMap, LoopInfo &LI, 1242 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1243 Loop *ClonedL = nullptr; 1244 1245 auto *OrigPH = OrigL.getLoopPreheader(); 1246 auto *OrigHeader = OrigL.getHeader(); 1247 1248 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1249 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1250 1251 // We need to know the loops of the cloned exit blocks to even compute the 1252 // accurate parent loop. If we only clone exits to some parent of the 1253 // original parent, we want to clone into that outer loop. We also keep track 1254 // of the loops that our cloned exit blocks participate in. 1255 Loop *ParentL = nullptr; 1256 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1257 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1258 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1259 for (auto *ExitBB : ExitBlocks) 1260 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1261 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1262 ExitLoopMap[ClonedExitBB] = ExitL; 1263 ClonedExitsInLoops.push_back(ClonedExitBB); 1264 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1265 ParentL = ExitL; 1266 } 1267 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1268 ParentL->contains(OrigL.getParentLoop())) && 1269 "The computed parent loop should always contain (or be) the parent of " 1270 "the original loop."); 1271 1272 // We build the set of blocks dominated by the cloned header from the set of 1273 // cloned blocks out of the original loop. While not all of these will 1274 // necessarily be in the cloned loop, it is enough to establish that they 1275 // aren't in unreachable cycles, etc. 1276 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1277 for (auto *BB : OrigL.blocks()) 1278 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1279 ClonedLoopBlocks.insert(ClonedBB); 1280 1281 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1282 // skipped cloning some region of this loop which can in turn skip some of 1283 // the backedges so we have to rebuild the blocks in the loop based on the 1284 // backedges that remain after cloning. 1285 SmallVector<BasicBlock *, 16> Worklist; 1286 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1287 for (auto *Pred : predecessors(ClonedHeader)) { 1288 // The only possible non-loop header predecessor is the preheader because 1289 // we know we cloned the loop in simplified form. 1290 if (Pred == ClonedPH) 1291 continue; 1292 1293 // Because the loop was in simplified form, the only non-loop predecessor 1294 // should be the preheader. 1295 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1296 "header other than the preheader " 1297 "that is not part of the loop!"); 1298 1299 // Insert this block into the loop set and on the first visit (and if it 1300 // isn't the header we're currently walking) put it into the worklist to 1301 // recurse through. 1302 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1303 Worklist.push_back(Pred); 1304 } 1305 1306 // If we had any backedges then there *is* a cloned loop. Put the header into 1307 // the loop set and then walk the worklist backwards to find all the blocks 1308 // that remain within the loop after cloning. 1309 if (!BlocksInClonedLoop.empty()) { 1310 BlocksInClonedLoop.insert(ClonedHeader); 1311 1312 while (!Worklist.empty()) { 1313 BasicBlock *BB = Worklist.pop_back_val(); 1314 assert(BlocksInClonedLoop.count(BB) && 1315 "Didn't put block into the loop set!"); 1316 1317 // Insert any predecessors that are in the possible set into the cloned 1318 // set, and if the insert is successful, add them to the worklist. Note 1319 // that we filter on the blocks that are definitely reachable via the 1320 // backedge to the loop header so we may prune out dead code within the 1321 // cloned loop. 1322 for (auto *Pred : predecessors(BB)) 1323 if (ClonedLoopBlocks.count(Pred) && 1324 BlocksInClonedLoop.insert(Pred).second) 1325 Worklist.push_back(Pred); 1326 } 1327 1328 ClonedL = LI.AllocateLoop(); 1329 if (ParentL) { 1330 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1331 ParentL->addChildLoop(ClonedL); 1332 } else { 1333 LI.addTopLevelLoop(ClonedL); 1334 } 1335 NonChildClonedLoops.push_back(ClonedL); 1336 1337 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1338 // We don't want to just add the cloned loop blocks based on how we 1339 // discovered them. The original order of blocks was carefully built in 1340 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1341 // that logic, we just re-walk the original blocks (and those of the child 1342 // loops) and filter them as we add them into the cloned loop. 1343 for (auto *BB : OrigL.blocks()) { 1344 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1345 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1346 continue; 1347 1348 // Directly add the blocks that are only in this loop. 1349 if (LI.getLoopFor(BB) == &OrigL) { 1350 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1351 continue; 1352 } 1353 1354 // We want to manually add it to this loop and parents. 1355 // Registering it with LoopInfo will happen when we clone the top 1356 // loop for this block. 1357 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1358 PL->addBlockEntry(ClonedBB); 1359 } 1360 1361 // Now add each child loop whose header remains within the cloned loop. All 1362 // of the blocks within the loop must satisfy the same constraints as the 1363 // header so once we pass the header checks we can just clone the entire 1364 // child loop nest. 1365 for (Loop *ChildL : OrigL) { 1366 auto *ClonedChildHeader = 1367 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1368 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1369 continue; 1370 1371 #ifndef NDEBUG 1372 // We should never have a cloned child loop header but fail to have 1373 // all of the blocks for that child loop. 1374 for (auto *ChildLoopBB : ChildL->blocks()) 1375 assert(BlocksInClonedLoop.count( 1376 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1377 "Child cloned loop has a header within the cloned outer " 1378 "loop but not all of its blocks!"); 1379 #endif 1380 1381 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1382 } 1383 } 1384 1385 // Now that we've handled all the components of the original loop that were 1386 // cloned into a new loop, we still need to handle anything from the original 1387 // loop that wasn't in a cloned loop. 1388 1389 // Figure out what blocks are left to place within any loop nest containing 1390 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1391 // them. 1392 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1393 if (BlocksInClonedLoop.empty()) 1394 UnloopedBlockSet.insert(ClonedPH); 1395 for (auto *ClonedBB : ClonedLoopBlocks) 1396 if (!BlocksInClonedLoop.count(ClonedBB)) 1397 UnloopedBlockSet.insert(ClonedBB); 1398 1399 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1400 // backwards across these to process them inside out. The order shouldn't 1401 // matter as we're just trying to build up the map from inside-out; we use 1402 // the map in a more stably ordered way below. 1403 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1404 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1405 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1406 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1407 }); 1408 1409 // Populate the existing ExitLoopMap with everything reachable from each 1410 // exit, starting from the inner most exit. 1411 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1412 assert(Worklist.empty() && "Didn't clear worklist!"); 1413 1414 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1415 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1416 1417 // Walk the CFG back until we hit the cloned PH adding everything reachable 1418 // and in the unlooped set to this exit block's loop. 1419 Worklist.push_back(ExitBB); 1420 do { 1421 BasicBlock *BB = Worklist.pop_back_val(); 1422 // We can stop recursing at the cloned preheader (if we get there). 1423 if (BB == ClonedPH) 1424 continue; 1425 1426 for (BasicBlock *PredBB : predecessors(BB)) { 1427 // If this pred has already been moved to our set or is part of some 1428 // (inner) loop, no update needed. 1429 if (!UnloopedBlockSet.erase(PredBB)) { 1430 assert( 1431 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1432 "Predecessor not mapped to a loop!"); 1433 continue; 1434 } 1435 1436 // We just insert into the loop set here. We'll add these blocks to the 1437 // exit loop after we build up the set in an order that doesn't rely on 1438 // predecessor order (which in turn relies on use list order). 1439 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1440 (void)Inserted; 1441 assert(Inserted && "Should only visit an unlooped block once!"); 1442 1443 // And recurse through to its predecessors. 1444 Worklist.push_back(PredBB); 1445 } 1446 } while (!Worklist.empty()); 1447 } 1448 1449 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1450 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1451 // in their original order adding them to the correct loop. 1452 1453 // We need a stable insertion order. We use the order of the original loop 1454 // order and map into the correct parent loop. 1455 for (auto *BB : llvm::concat<BasicBlock *const>( 1456 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1457 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1458 OuterL->addBasicBlockToLoop(BB, LI); 1459 1460 #ifndef NDEBUG 1461 for (auto &BBAndL : ExitLoopMap) { 1462 auto *BB = BBAndL.first; 1463 auto *OuterL = BBAndL.second; 1464 assert(LI.getLoopFor(BB) == OuterL && 1465 "Failed to put all blocks into outer loops!"); 1466 } 1467 #endif 1468 1469 // Now that all the blocks are placed into the correct containing loop in the 1470 // absence of child loops, find all the potentially cloned child loops and 1471 // clone them into whatever outer loop we placed their header into. 1472 for (Loop *ChildL : OrigL) { 1473 auto *ClonedChildHeader = 1474 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1475 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1476 continue; 1477 1478 #ifndef NDEBUG 1479 for (auto *ChildLoopBB : ChildL->blocks()) 1480 assert(VMap.count(ChildLoopBB) && 1481 "Cloned a child loop header but not all of that loops blocks!"); 1482 #endif 1483 1484 NonChildClonedLoops.push_back(cloneLoopNest( 1485 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1486 } 1487 } 1488 1489 static void 1490 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1491 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1492 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1493 // Find all the dead clones, and remove them from their successors. 1494 SmallVector<BasicBlock *, 16> DeadBlocks; 1495 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1496 for (auto &VMap : VMaps) 1497 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1498 if (!DT.isReachableFromEntry(ClonedBB)) { 1499 for (BasicBlock *SuccBB : successors(ClonedBB)) 1500 SuccBB->removePredecessor(ClonedBB); 1501 DeadBlocks.push_back(ClonedBB); 1502 } 1503 1504 // Remove all MemorySSA in the dead blocks 1505 if (MSSAU) { 1506 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1507 DeadBlocks.end()); 1508 MSSAU->removeBlocks(DeadBlockSet); 1509 } 1510 1511 // Drop any remaining references to break cycles. 1512 for (BasicBlock *BB : DeadBlocks) 1513 BB->dropAllReferences(); 1514 // Erase them from the IR. 1515 for (BasicBlock *BB : DeadBlocks) 1516 BB->eraseFromParent(); 1517 } 1518 1519 static void deleteDeadBlocksFromLoop(Loop &L, 1520 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1521 DominatorTree &DT, LoopInfo &LI, 1522 MemorySSAUpdater *MSSAU) { 1523 // Find all the dead blocks tied to this loop, and remove them from their 1524 // successors. 1525 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1526 1527 // Start with loop/exit blocks and get a transitive closure of reachable dead 1528 // blocks. 1529 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1530 ExitBlocks.end()); 1531 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1532 while (!DeathCandidates.empty()) { 1533 auto *BB = DeathCandidates.pop_back_val(); 1534 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1535 for (BasicBlock *SuccBB : successors(BB)) { 1536 SuccBB->removePredecessor(BB); 1537 DeathCandidates.push_back(SuccBB); 1538 } 1539 DeadBlockSet.insert(BB); 1540 } 1541 } 1542 1543 // Remove all MemorySSA in the dead blocks 1544 if (MSSAU) 1545 MSSAU->removeBlocks(DeadBlockSet); 1546 1547 // Filter out the dead blocks from the exit blocks list so that it can be 1548 // used in the caller. 1549 llvm::erase_if(ExitBlocks, 1550 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1551 1552 // Walk from this loop up through its parents removing all of the dead blocks. 1553 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1554 for (auto *BB : DeadBlockSet) 1555 ParentL->getBlocksSet().erase(BB); 1556 llvm::erase_if(ParentL->getBlocksVector(), 1557 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1558 } 1559 1560 // Now delete the dead child loops. This raw delete will clear them 1561 // recursively. 1562 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1563 if (!DeadBlockSet.count(ChildL->getHeader())) 1564 return false; 1565 1566 assert(llvm::all_of(ChildL->blocks(), 1567 [&](BasicBlock *ChildBB) { 1568 return DeadBlockSet.count(ChildBB); 1569 }) && 1570 "If the child loop header is dead all blocks in the child loop must " 1571 "be dead as well!"); 1572 LI.destroy(ChildL); 1573 return true; 1574 }); 1575 1576 // Remove the loop mappings for the dead blocks and drop all the references 1577 // from these blocks to others to handle cyclic references as we start 1578 // deleting the blocks themselves. 1579 for (auto *BB : DeadBlockSet) { 1580 // Check that the dominator tree has already been updated. 1581 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1582 LI.changeLoopFor(BB, nullptr); 1583 // Drop all uses of the instructions to make sure we won't have dangling 1584 // uses in other blocks. 1585 for (auto &I : *BB) 1586 if (!I.use_empty()) 1587 I.replaceAllUsesWith(UndefValue::get(I.getType())); 1588 BB->dropAllReferences(); 1589 } 1590 1591 // Actually delete the blocks now that they've been fully unhooked from the 1592 // IR. 1593 for (auto *BB : DeadBlockSet) 1594 BB->eraseFromParent(); 1595 } 1596 1597 /// Recompute the set of blocks in a loop after unswitching. 1598 /// 1599 /// This walks from the original headers predecessors to rebuild the loop. We 1600 /// take advantage of the fact that new blocks can't have been added, and so we 1601 /// filter by the original loop's blocks. This also handles potentially 1602 /// unreachable code that we don't want to explore but might be found examining 1603 /// the predecessors of the header. 1604 /// 1605 /// If the original loop is no longer a loop, this will return an empty set. If 1606 /// it remains a loop, all the blocks within it will be added to the set 1607 /// (including those blocks in inner loops). 1608 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1609 LoopInfo &LI) { 1610 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1611 1612 auto *PH = L.getLoopPreheader(); 1613 auto *Header = L.getHeader(); 1614 1615 // A worklist to use while walking backwards from the header. 1616 SmallVector<BasicBlock *, 16> Worklist; 1617 1618 // First walk the predecessors of the header to find the backedges. This will 1619 // form the basis of our walk. 1620 for (auto *Pred : predecessors(Header)) { 1621 // Skip the preheader. 1622 if (Pred == PH) 1623 continue; 1624 1625 // Because the loop was in simplified form, the only non-loop predecessor 1626 // is the preheader. 1627 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1628 "than the preheader that is not part of the " 1629 "loop!"); 1630 1631 // Insert this block into the loop set and on the first visit and, if it 1632 // isn't the header we're currently walking, put it into the worklist to 1633 // recurse through. 1634 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1635 Worklist.push_back(Pred); 1636 } 1637 1638 // If no backedges were found, we're done. 1639 if (LoopBlockSet.empty()) 1640 return LoopBlockSet; 1641 1642 // We found backedges, recurse through them to identify the loop blocks. 1643 while (!Worklist.empty()) { 1644 BasicBlock *BB = Worklist.pop_back_val(); 1645 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1646 1647 // No need to walk past the header. 1648 if (BB == Header) 1649 continue; 1650 1651 // Because we know the inner loop structure remains valid we can use the 1652 // loop structure to jump immediately across the entire nested loop. 1653 // Further, because it is in loop simplified form, we can directly jump 1654 // to its preheader afterward. 1655 if (Loop *InnerL = LI.getLoopFor(BB)) 1656 if (InnerL != &L) { 1657 assert(L.contains(InnerL) && 1658 "Should not reach a loop *outside* this loop!"); 1659 // The preheader is the only possible predecessor of the loop so 1660 // insert it into the set and check whether it was already handled. 1661 auto *InnerPH = InnerL->getLoopPreheader(); 1662 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1663 "but not contain the inner loop " 1664 "preheader!"); 1665 if (!LoopBlockSet.insert(InnerPH).second) 1666 // The only way to reach the preheader is through the loop body 1667 // itself so if it has been visited the loop is already handled. 1668 continue; 1669 1670 // Insert all of the blocks (other than those already present) into 1671 // the loop set. We expect at least the block that led us to find the 1672 // inner loop to be in the block set, but we may also have other loop 1673 // blocks if they were already enqueued as predecessors of some other 1674 // outer loop block. 1675 for (auto *InnerBB : InnerL->blocks()) { 1676 if (InnerBB == BB) { 1677 assert(LoopBlockSet.count(InnerBB) && 1678 "Block should already be in the set!"); 1679 continue; 1680 } 1681 1682 LoopBlockSet.insert(InnerBB); 1683 } 1684 1685 // Add the preheader to the worklist so we will continue past the 1686 // loop body. 1687 Worklist.push_back(InnerPH); 1688 continue; 1689 } 1690 1691 // Insert any predecessors that were in the original loop into the new 1692 // set, and if the insert is successful, add them to the worklist. 1693 for (auto *Pred : predecessors(BB)) 1694 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1695 Worklist.push_back(Pred); 1696 } 1697 1698 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1699 1700 // We've found all the blocks participating in the loop, return our completed 1701 // set. 1702 return LoopBlockSet; 1703 } 1704 1705 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1706 /// 1707 /// The removal may have removed some child loops entirely but cannot have 1708 /// disturbed any remaining child loops. However, they may need to be hoisted 1709 /// to the parent loop (or to be top-level loops). The original loop may be 1710 /// completely removed. 1711 /// 1712 /// The sibling loops resulting from this update are returned. If the original 1713 /// loop remains a valid loop, it will be the first entry in this list with all 1714 /// of the newly sibling loops following it. 1715 /// 1716 /// Returns true if the loop remains a loop after unswitching, and false if it 1717 /// is no longer a loop after unswitching (and should not continue to be 1718 /// referenced). 1719 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1720 LoopInfo &LI, 1721 SmallVectorImpl<Loop *> &HoistedLoops) { 1722 auto *PH = L.getLoopPreheader(); 1723 1724 // Compute the actual parent loop from the exit blocks. Because we may have 1725 // pruned some exits the loop may be different from the original parent. 1726 Loop *ParentL = nullptr; 1727 SmallVector<Loop *, 4> ExitLoops; 1728 SmallVector<BasicBlock *, 4> ExitsInLoops; 1729 ExitsInLoops.reserve(ExitBlocks.size()); 1730 for (auto *ExitBB : ExitBlocks) 1731 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1732 ExitLoops.push_back(ExitL); 1733 ExitsInLoops.push_back(ExitBB); 1734 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1735 ParentL = ExitL; 1736 } 1737 1738 // Recompute the blocks participating in this loop. This may be empty if it 1739 // is no longer a loop. 1740 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1741 1742 // If we still have a loop, we need to re-set the loop's parent as the exit 1743 // block set changing may have moved it within the loop nest. Note that this 1744 // can only happen when this loop has a parent as it can only hoist the loop 1745 // *up* the nest. 1746 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1747 // Remove this loop's (original) blocks from all of the intervening loops. 1748 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1749 IL = IL->getParentLoop()) { 1750 IL->getBlocksSet().erase(PH); 1751 for (auto *BB : L.blocks()) 1752 IL->getBlocksSet().erase(BB); 1753 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1754 return BB == PH || L.contains(BB); 1755 }); 1756 } 1757 1758 LI.changeLoopFor(PH, ParentL); 1759 L.getParentLoop()->removeChildLoop(&L); 1760 if (ParentL) 1761 ParentL->addChildLoop(&L); 1762 else 1763 LI.addTopLevelLoop(&L); 1764 } 1765 1766 // Now we update all the blocks which are no longer within the loop. 1767 auto &Blocks = L.getBlocksVector(); 1768 auto BlocksSplitI = 1769 LoopBlockSet.empty() 1770 ? Blocks.begin() 1771 : std::stable_partition( 1772 Blocks.begin(), Blocks.end(), 1773 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1774 1775 // Before we erase the list of unlooped blocks, build a set of them. 1776 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1777 if (LoopBlockSet.empty()) 1778 UnloopedBlocks.insert(PH); 1779 1780 // Now erase these blocks from the loop. 1781 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1782 L.getBlocksSet().erase(BB); 1783 Blocks.erase(BlocksSplitI, Blocks.end()); 1784 1785 // Sort the exits in ascending loop depth, we'll work backwards across these 1786 // to process them inside out. 1787 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1788 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1789 }); 1790 1791 // We'll build up a set for each exit loop. 1792 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1793 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1794 1795 auto RemoveUnloopedBlocksFromLoop = 1796 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1797 for (auto *BB : UnloopedBlocks) 1798 L.getBlocksSet().erase(BB); 1799 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1800 return UnloopedBlocks.count(BB); 1801 }); 1802 }; 1803 1804 SmallVector<BasicBlock *, 16> Worklist; 1805 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1806 assert(Worklist.empty() && "Didn't clear worklist!"); 1807 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1808 1809 // Grab the next exit block, in decreasing loop depth order. 1810 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1811 Loop &ExitL = *LI.getLoopFor(ExitBB); 1812 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1813 1814 // Erase all of the unlooped blocks from the loops between the previous 1815 // exit loop and this exit loop. This works because the ExitInLoops list is 1816 // sorted in increasing order of loop depth and thus we visit loops in 1817 // decreasing order of loop depth. 1818 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1819 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1820 1821 // Walk the CFG back until we hit the cloned PH adding everything reachable 1822 // and in the unlooped set to this exit block's loop. 1823 Worklist.push_back(ExitBB); 1824 do { 1825 BasicBlock *BB = Worklist.pop_back_val(); 1826 // We can stop recursing at the cloned preheader (if we get there). 1827 if (BB == PH) 1828 continue; 1829 1830 for (BasicBlock *PredBB : predecessors(BB)) { 1831 // If this pred has already been moved to our set or is part of some 1832 // (inner) loop, no update needed. 1833 if (!UnloopedBlocks.erase(PredBB)) { 1834 assert((NewExitLoopBlocks.count(PredBB) || 1835 ExitL.contains(LI.getLoopFor(PredBB))) && 1836 "Predecessor not in a nested loop (or already visited)!"); 1837 continue; 1838 } 1839 1840 // We just insert into the loop set here. We'll add these blocks to the 1841 // exit loop after we build up the set in a deterministic order rather 1842 // than the predecessor-influenced visit order. 1843 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1844 (void)Inserted; 1845 assert(Inserted && "Should only visit an unlooped block once!"); 1846 1847 // And recurse through to its predecessors. 1848 Worklist.push_back(PredBB); 1849 } 1850 } while (!Worklist.empty()); 1851 1852 // If blocks in this exit loop were directly part of the original loop (as 1853 // opposed to a child loop) update the map to point to this exit loop. This 1854 // just updates a map and so the fact that the order is unstable is fine. 1855 for (auto *BB : NewExitLoopBlocks) 1856 if (Loop *BBL = LI.getLoopFor(BB)) 1857 if (BBL == &L || !L.contains(BBL)) 1858 LI.changeLoopFor(BB, &ExitL); 1859 1860 // We will remove the remaining unlooped blocks from this loop in the next 1861 // iteration or below. 1862 NewExitLoopBlocks.clear(); 1863 } 1864 1865 // Any remaining unlooped blocks are no longer part of any loop unless they 1866 // are part of some child loop. 1867 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1868 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1869 for (auto *BB : UnloopedBlocks) 1870 if (Loop *BBL = LI.getLoopFor(BB)) 1871 if (BBL == &L || !L.contains(BBL)) 1872 LI.changeLoopFor(BB, nullptr); 1873 1874 // Sink all the child loops whose headers are no longer in the loop set to 1875 // the parent (or to be top level loops). We reach into the loop and directly 1876 // update its subloop vector to make this batch update efficient. 1877 auto &SubLoops = L.getSubLoopsVector(); 1878 auto SubLoopsSplitI = 1879 LoopBlockSet.empty() 1880 ? SubLoops.begin() 1881 : std::stable_partition( 1882 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1883 return LoopBlockSet.count(SubL->getHeader()); 1884 }); 1885 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1886 HoistedLoops.push_back(HoistedL); 1887 HoistedL->setParentLoop(nullptr); 1888 1889 // To compute the new parent of this hoisted loop we look at where we 1890 // placed the preheader above. We can't lookup the header itself because we 1891 // retained the mapping from the header to the hoisted loop. But the 1892 // preheader and header should have the exact same new parent computed 1893 // based on the set of exit blocks from the original loop as the preheader 1894 // is a predecessor of the header and so reached in the reverse walk. And 1895 // because the loops were all in simplified form the preheader of the 1896 // hoisted loop can't be part of some *other* loop. 1897 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1898 NewParentL->addChildLoop(HoistedL); 1899 else 1900 LI.addTopLevelLoop(HoistedL); 1901 } 1902 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1903 1904 // Actually delete the loop if nothing remained within it. 1905 if (Blocks.empty()) { 1906 assert(SubLoops.empty() && 1907 "Failed to remove all subloops from the original loop!"); 1908 if (Loop *ParentL = L.getParentLoop()) 1909 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1910 else 1911 LI.removeLoop(llvm::find(LI, &L)); 1912 LI.destroy(&L); 1913 return false; 1914 } 1915 1916 return true; 1917 } 1918 1919 /// Helper to visit a dominator subtree, invoking a callable on each node. 1920 /// 1921 /// Returning false at any point will stop walking past that node of the tree. 1922 template <typename CallableT> 1923 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1924 SmallVector<DomTreeNode *, 4> DomWorklist; 1925 DomWorklist.push_back(DT[BB]); 1926 #ifndef NDEBUG 1927 SmallPtrSet<DomTreeNode *, 4> Visited; 1928 Visited.insert(DT[BB]); 1929 #endif 1930 do { 1931 DomTreeNode *N = DomWorklist.pop_back_val(); 1932 1933 // Visit this node. 1934 if (!Callable(N->getBlock())) 1935 continue; 1936 1937 // Accumulate the child nodes. 1938 for (DomTreeNode *ChildN : *N) { 1939 assert(Visited.insert(ChildN).second && 1940 "Cannot visit a node twice when walking a tree!"); 1941 DomWorklist.push_back(ChildN); 1942 } 1943 } while (!DomWorklist.empty()); 1944 } 1945 1946 static void unswitchNontrivialInvariants( 1947 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1948 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1949 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1950 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 1951 auto *ParentBB = TI.getParent(); 1952 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1953 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1954 1955 // We can only unswitch switches, conditional branches with an invariant 1956 // condition, or combining invariant conditions with an instruction. 1957 assert((SI || (BI && BI->isConditional())) && 1958 "Can only unswitch switches and conditional branch!"); 1959 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1960 if (FullUnswitch) 1961 assert(Invariants.size() == 1 && 1962 "Cannot have other invariants with full unswitching!"); 1963 else 1964 assert(isa<Instruction>(BI->getCondition()) && 1965 "Partial unswitching requires an instruction as the condition!"); 1966 1967 if (MSSAU && VerifyMemorySSA) 1968 MSSAU->getMemorySSA()->verifyMemorySSA(); 1969 1970 // Constant and BBs tracking the cloned and continuing successor. When we are 1971 // unswitching the entire condition, this can just be trivially chosen to 1972 // unswitch towards `true`. However, when we are unswitching a set of 1973 // invariants combined with `and` or `or`, the combining operation determines 1974 // the best direction to unswitch: we want to unswitch the direction that will 1975 // collapse the branch. 1976 bool Direction = true; 1977 int ClonedSucc = 0; 1978 if (!FullUnswitch) { 1979 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1980 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1981 Instruction::And && 1982 "Only `or` and `and` instructions can combine invariants being " 1983 "unswitched."); 1984 Direction = false; 1985 ClonedSucc = 1; 1986 } 1987 } 1988 1989 BasicBlock *RetainedSuccBB = 1990 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1991 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1992 if (BI) 1993 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1994 else 1995 for (auto Case : SI->cases()) 1996 if (Case.getCaseSuccessor() != RetainedSuccBB) 1997 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1998 1999 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 2000 "Should not unswitch the same successor we are retaining!"); 2001 2002 // The branch should be in this exact loop. Any inner loop's invariant branch 2003 // should be handled by unswitching that inner loop. The caller of this 2004 // routine should filter out any candidates that remain (but were skipped for 2005 // whatever reason). 2006 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2007 2008 // Compute the parent loop now before we start hacking on things. 2009 Loop *ParentL = L.getParentLoop(); 2010 // Get blocks in RPO order for MSSA update, before changing the CFG. 2011 LoopBlocksRPO LBRPO(&L); 2012 if (MSSAU) 2013 LBRPO.perform(&LI); 2014 2015 // Compute the outer-most loop containing one of our exit blocks. This is the 2016 // furthest up our loopnest which can be mutated, which we will use below to 2017 // update things. 2018 Loop *OuterExitL = &L; 2019 for (auto *ExitBB : ExitBlocks) { 2020 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2021 if (!NewOuterExitL) { 2022 // We exited the entire nest with this block, so we're done. 2023 OuterExitL = nullptr; 2024 break; 2025 } 2026 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2027 OuterExitL = NewOuterExitL; 2028 } 2029 2030 // At this point, we're definitely going to unswitch something so invalidate 2031 // any cached information in ScalarEvolution for the outer most loop 2032 // containing an exit block and all nested loops. 2033 if (SE) { 2034 if (OuterExitL) 2035 SE->forgetLoop(OuterExitL); 2036 else 2037 SE->forgetTopmostLoop(&L); 2038 } 2039 2040 // If the edge from this terminator to a successor dominates that successor, 2041 // store a map from each block in its dominator subtree to it. This lets us 2042 // tell when cloning for a particular successor if a block is dominated by 2043 // some *other* successor with a single data structure. We use this to 2044 // significantly reduce cloning. 2045 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2046 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2047 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2048 if (SuccBB->getUniquePredecessor() || 2049 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2050 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2051 })) 2052 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2053 DominatingSucc[BB] = SuccBB; 2054 return true; 2055 }); 2056 2057 // Split the preheader, so that we know that there is a safe place to insert 2058 // the conditional branch. We will change the preheader to have a conditional 2059 // branch on LoopCond. The original preheader will become the split point 2060 // between the unswitched versions, and we will have a new preheader for the 2061 // original loop. 2062 BasicBlock *SplitBB = L.getLoopPreheader(); 2063 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2064 2065 // Keep track of the dominator tree updates needed. 2066 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2067 2068 // Clone the loop for each unswitched successor. 2069 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2070 VMaps.reserve(UnswitchedSuccBBs.size()); 2071 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2072 for (auto *SuccBB : UnswitchedSuccBBs) { 2073 VMaps.emplace_back(new ValueToValueMapTy()); 2074 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2075 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2076 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2077 } 2078 2079 // Drop metadata if we may break its semantics by moving this instr into the 2080 // split block. 2081 if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 2082 if (DropNonTrivialImplicitNullChecks) 2083 // Do not spend time trying to understand if we can keep it, just drop it 2084 // to save compile time. 2085 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2086 else { 2087 // It is only legal to preserve make.implicit metadata if we are 2088 // guaranteed no reach implicit null check after following this branch. 2089 ICFLoopSafetyInfo SafetyInfo; 2090 SafetyInfo.computeLoopSafetyInfo(&L); 2091 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2092 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2093 } 2094 } 2095 2096 // The stitching of the branched code back together depends on whether we're 2097 // doing full unswitching or not with the exception that we always want to 2098 // nuke the initial terminator placed in the split block. 2099 SplitBB->getTerminator()->eraseFromParent(); 2100 if (FullUnswitch) { 2101 // Splice the terminator from the original loop and rewrite its 2102 // successors. 2103 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2104 2105 // Keep a clone of the terminator for MSSA updates. 2106 Instruction *NewTI = TI.clone(); 2107 ParentBB->getInstList().push_back(NewTI); 2108 2109 // First wire up the moved terminator to the preheaders. 2110 if (BI) { 2111 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2112 BI->setSuccessor(ClonedSucc, ClonedPH); 2113 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2114 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2115 } else { 2116 assert(SI && "Must either be a branch or switch!"); 2117 2118 // Walk the cases and directly update their successors. 2119 assert(SI->getDefaultDest() == RetainedSuccBB && 2120 "Not retaining default successor!"); 2121 SI->setDefaultDest(LoopPH); 2122 for (auto &Case : SI->cases()) 2123 if (Case.getCaseSuccessor() == RetainedSuccBB) 2124 Case.setSuccessor(LoopPH); 2125 else 2126 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2127 2128 // We need to use the set to populate domtree updates as even when there 2129 // are multiple cases pointing at the same successor we only want to 2130 // remove and insert one edge in the domtree. 2131 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2132 DTUpdates.push_back( 2133 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2134 } 2135 2136 if (MSSAU) { 2137 DT.applyUpdates(DTUpdates); 2138 DTUpdates.clear(); 2139 2140 // Remove all but one edge to the retained block and all unswitched 2141 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2142 // when we know we only keep a single edge for each case. 2143 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2144 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2145 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2146 2147 for (auto &VMap : VMaps) 2148 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2149 /*IgnoreIncomingWithNoClones=*/true); 2150 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2151 2152 // Remove all edges to unswitched blocks. 2153 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2154 MSSAU->removeEdge(ParentBB, SuccBB); 2155 } 2156 2157 // Now unhook the successor relationship as we'll be replacing 2158 // the terminator with a direct branch. This is much simpler for branches 2159 // than switches so we handle those first. 2160 if (BI) { 2161 // Remove the parent as a predecessor of the unswitched successor. 2162 assert(UnswitchedSuccBBs.size() == 1 && 2163 "Only one possible unswitched block for a branch!"); 2164 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2165 UnswitchedSuccBB->removePredecessor(ParentBB, 2166 /*KeepOneInputPHIs*/ true); 2167 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2168 } else { 2169 // Note that we actually want to remove the parent block as a predecessor 2170 // of *every* case successor. The case successor is either unswitched, 2171 // completely eliminating an edge from the parent to that successor, or it 2172 // is a duplicate edge to the retained successor as the retained successor 2173 // is always the default successor and as we'll replace this with a direct 2174 // branch we no longer need the duplicate entries in the PHI nodes. 2175 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2176 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2177 "Not retaining default successor!"); 2178 for (auto &Case : NewSI->cases()) 2179 Case.getCaseSuccessor()->removePredecessor( 2180 ParentBB, 2181 /*KeepOneInputPHIs*/ true); 2182 2183 // We need to use the set to populate domtree updates as even when there 2184 // are multiple cases pointing at the same successor we only want to 2185 // remove and insert one edge in the domtree. 2186 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2187 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2188 } 2189 2190 // After MSSAU update, remove the cloned terminator instruction NewTI. 2191 ParentBB->getTerminator()->eraseFromParent(); 2192 2193 // Create a new unconditional branch to the continuing block (as opposed to 2194 // the one cloned). 2195 BranchInst::Create(RetainedSuccBB, ParentBB); 2196 } else { 2197 assert(BI && "Only branches have partial unswitching."); 2198 assert(UnswitchedSuccBBs.size() == 1 && 2199 "Only one possible unswitched block for a branch!"); 2200 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2201 // When doing a partial unswitch, we have to do a bit more work to build up 2202 // the branch in the split block. 2203 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2204 *ClonedPH, *LoopPH); 2205 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2206 2207 if (MSSAU) { 2208 DT.applyUpdates(DTUpdates); 2209 DTUpdates.clear(); 2210 2211 // Perform MSSA cloning updates. 2212 for (auto &VMap : VMaps) 2213 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2214 /*IgnoreIncomingWithNoClones=*/true); 2215 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2216 } 2217 } 2218 2219 // Apply the updates accumulated above to get an up-to-date dominator tree. 2220 DT.applyUpdates(DTUpdates); 2221 2222 // Now that we have an accurate dominator tree, first delete the dead cloned 2223 // blocks so that we can accurately build any cloned loops. It is important to 2224 // not delete the blocks from the original loop yet because we still want to 2225 // reference the original loop to understand the cloned loop's structure. 2226 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2227 2228 // Build the cloned loop structure itself. This may be substantially 2229 // different from the original structure due to the simplified CFG. This also 2230 // handles inserting all the cloned blocks into the correct loops. 2231 SmallVector<Loop *, 4> NonChildClonedLoops; 2232 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2233 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2234 2235 // Now that our cloned loops have been built, we can update the original loop. 2236 // First we delete the dead blocks from it and then we rebuild the loop 2237 // structure taking these deletions into account. 2238 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2239 2240 if (MSSAU && VerifyMemorySSA) 2241 MSSAU->getMemorySSA()->verifyMemorySSA(); 2242 2243 SmallVector<Loop *, 4> HoistedLoops; 2244 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2245 2246 if (MSSAU && VerifyMemorySSA) 2247 MSSAU->getMemorySSA()->verifyMemorySSA(); 2248 2249 // This transformation has a high risk of corrupting the dominator tree, and 2250 // the below steps to rebuild loop structures will result in hard to debug 2251 // errors in that case so verify that the dominator tree is sane first. 2252 // FIXME: Remove this when the bugs stop showing up and rely on existing 2253 // verification steps. 2254 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2255 2256 if (BI) { 2257 // If we unswitched a branch which collapses the condition to a known 2258 // constant we want to replace all the uses of the invariants within both 2259 // the original and cloned blocks. We do this here so that we can use the 2260 // now updated dominator tree to identify which side the users are on. 2261 assert(UnswitchedSuccBBs.size() == 1 && 2262 "Only one possible unswitched block for a branch!"); 2263 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2264 2265 // When considering multiple partially-unswitched invariants 2266 // we cant just go replace them with constants in both branches. 2267 // 2268 // For 'AND' we infer that true branch ("continue") means true 2269 // for each invariant operand. 2270 // For 'OR' we can infer that false branch ("continue") means false 2271 // for each invariant operand. 2272 // So it happens that for multiple-partial case we dont replace 2273 // in the unswitched branch. 2274 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2275 2276 ConstantInt *UnswitchedReplacement = 2277 Direction ? ConstantInt::getTrue(BI->getContext()) 2278 : ConstantInt::getFalse(BI->getContext()); 2279 ConstantInt *ContinueReplacement = 2280 Direction ? ConstantInt::getFalse(BI->getContext()) 2281 : ConstantInt::getTrue(BI->getContext()); 2282 for (Value *Invariant : Invariants) 2283 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2284 UI != UE;) { 2285 // Grab the use and walk past it so we can clobber it in the use list. 2286 Use *U = &*UI++; 2287 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2288 if (!UserI) 2289 continue; 2290 2291 // Replace it with the 'continue' side if in the main loop body, and the 2292 // unswitched if in the cloned blocks. 2293 if (DT.dominates(LoopPH, UserI->getParent())) 2294 U->set(ContinueReplacement); 2295 else if (ReplaceUnswitched && 2296 DT.dominates(ClonedPH, UserI->getParent())) 2297 U->set(UnswitchedReplacement); 2298 } 2299 } 2300 2301 // We can change which blocks are exit blocks of all the cloned sibling 2302 // loops, the current loop, and any parent loops which shared exit blocks 2303 // with the current loop. As a consequence, we need to re-form LCSSA for 2304 // them. But we shouldn't need to re-form LCSSA for any child loops. 2305 // FIXME: This could be made more efficient by tracking which exit blocks are 2306 // new, and focusing on them, but that isn't likely to be necessary. 2307 // 2308 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2309 // loop nest and update every loop that could have had its exits changed. We 2310 // also need to cover any intervening loops. We add all of these loops to 2311 // a list and sort them by loop depth to achieve this without updating 2312 // unnecessary loops. 2313 auto UpdateLoop = [&](Loop &UpdateL) { 2314 #ifndef NDEBUG 2315 UpdateL.verifyLoop(); 2316 for (Loop *ChildL : UpdateL) { 2317 ChildL->verifyLoop(); 2318 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2319 "Perturbed a child loop's LCSSA form!"); 2320 } 2321 #endif 2322 // First build LCSSA for this loop so that we can preserve it when 2323 // forming dedicated exits. We don't want to perturb some other loop's 2324 // LCSSA while doing that CFG edit. 2325 formLCSSA(UpdateL, DT, &LI, SE); 2326 2327 // For loops reached by this loop's original exit blocks we may 2328 // introduced new, non-dedicated exits. At least try to re-form dedicated 2329 // exits for these loops. This may fail if they couldn't have dedicated 2330 // exits to start with. 2331 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2332 }; 2333 2334 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2335 // and we can do it in any order as they don't nest relative to each other. 2336 // 2337 // Also check if any of the loops we have updated have become top-level loops 2338 // as that will necessitate widening the outer loop scope. 2339 for (Loop *UpdatedL : 2340 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2341 UpdateLoop(*UpdatedL); 2342 if (!UpdatedL->getParentLoop()) 2343 OuterExitL = nullptr; 2344 } 2345 if (IsStillLoop) { 2346 UpdateLoop(L); 2347 if (!L.getParentLoop()) 2348 OuterExitL = nullptr; 2349 } 2350 2351 // If the original loop had exit blocks, walk up through the outer most loop 2352 // of those exit blocks to update LCSSA and form updated dedicated exits. 2353 if (OuterExitL != &L) 2354 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2355 OuterL = OuterL->getParentLoop()) 2356 UpdateLoop(*OuterL); 2357 2358 #ifndef NDEBUG 2359 // Verify the entire loop structure to catch any incorrect updates before we 2360 // progress in the pass pipeline. 2361 LI.verify(DT); 2362 #endif 2363 2364 // Now that we've unswitched something, make callbacks to report the changes. 2365 // For that we need to merge together the updated loops and the cloned loops 2366 // and check whether the original loop survived. 2367 SmallVector<Loop *, 4> SibLoops; 2368 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2369 if (UpdatedL->getParentLoop() == ParentL) 2370 SibLoops.push_back(UpdatedL); 2371 UnswitchCB(IsStillLoop, SibLoops); 2372 2373 if (MSSAU && VerifyMemorySSA) 2374 MSSAU->getMemorySSA()->verifyMemorySSA(); 2375 2376 if (BI) 2377 ++NumBranches; 2378 else 2379 ++NumSwitches; 2380 } 2381 2382 /// Recursively compute the cost of a dominator subtree based on the per-block 2383 /// cost map provided. 2384 /// 2385 /// The recursive computation is memozied into the provided DT-indexed cost map 2386 /// to allow querying it for most nodes in the domtree without it becoming 2387 /// quadratic. 2388 static int 2389 computeDomSubtreeCost(DomTreeNode &N, 2390 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2391 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2392 // Don't accumulate cost (or recurse through) blocks not in our block cost 2393 // map and thus not part of the duplication cost being considered. 2394 auto BBCostIt = BBCostMap.find(N.getBlock()); 2395 if (BBCostIt == BBCostMap.end()) 2396 return 0; 2397 2398 // Lookup this node to see if we already computed its cost. 2399 auto DTCostIt = DTCostMap.find(&N); 2400 if (DTCostIt != DTCostMap.end()) 2401 return DTCostIt->second; 2402 2403 // If not, we have to compute it. We can't use insert above and update 2404 // because computing the cost may insert more things into the map. 2405 int Cost = std::accumulate( 2406 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2407 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2408 }); 2409 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2410 (void)Inserted; 2411 assert(Inserted && "Should not insert a node while visiting children!"); 2412 return Cost; 2413 } 2414 2415 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2416 /// making the following replacement: 2417 /// 2418 /// --code before guard-- 2419 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2420 /// --code after guard-- 2421 /// 2422 /// into 2423 /// 2424 /// --code before guard-- 2425 /// br i1 %cond, label %guarded, label %deopt 2426 /// 2427 /// guarded: 2428 /// --code after guard-- 2429 /// 2430 /// deopt: 2431 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2432 /// unreachable 2433 /// 2434 /// It also makes all relevant DT and LI updates, so that all structures are in 2435 /// valid state after this transform. 2436 static BranchInst * 2437 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2438 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2439 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2440 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2441 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2442 BasicBlock *CheckBB = GI->getParent(); 2443 2444 if (MSSAU && VerifyMemorySSA) 2445 MSSAU->getMemorySSA()->verifyMemorySSA(); 2446 2447 // Remove all CheckBB's successors from DomTree. A block can be seen among 2448 // successors more than once, but for DomTree it should be added only once. 2449 SmallPtrSet<BasicBlock *, 4> Successors; 2450 for (auto *Succ : successors(CheckBB)) 2451 if (Successors.insert(Succ).second) 2452 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2453 2454 Instruction *DeoptBlockTerm = 2455 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2456 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2457 // SplitBlockAndInsertIfThen inserts control flow that branches to 2458 // DeoptBlockTerm if the condition is true. We want the opposite. 2459 CheckBI->swapSuccessors(); 2460 2461 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2462 GuardedBlock->setName("guarded"); 2463 CheckBI->getSuccessor(1)->setName("deopt"); 2464 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2465 2466 // We now have a new exit block. 2467 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2468 2469 if (MSSAU) 2470 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2471 2472 GI->moveBefore(DeoptBlockTerm); 2473 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2474 2475 // Add new successors of CheckBB into DomTree. 2476 for (auto *Succ : successors(CheckBB)) 2477 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2478 2479 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2480 // successors. 2481 for (auto *Succ : Successors) 2482 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2483 2484 // Make proper changes to DT. 2485 DT.applyUpdates(DTUpdates); 2486 // Inform LI of a new loop block. 2487 L.addBasicBlockToLoop(GuardedBlock, LI); 2488 2489 if (MSSAU) { 2490 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2491 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2492 if (VerifyMemorySSA) 2493 MSSAU->getMemorySSA()->verifyMemorySSA(); 2494 } 2495 2496 ++NumGuards; 2497 return CheckBI; 2498 } 2499 2500 /// Cost multiplier is a way to limit potentially exponential behavior 2501 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2502 /// candidates available. Also accounting for the number of "sibling" loops with 2503 /// the idea to account for previous unswitches that already happened on this 2504 /// cluster of loops. There was an attempt to keep this formula simple, 2505 /// just enough to limit the worst case behavior. Even if it is not that simple 2506 /// now it is still not an attempt to provide a detailed heuristic size 2507 /// prediction. 2508 /// 2509 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2510 /// unswitch candidates, making adequate predictions instead of wild guesses. 2511 /// That requires knowing not just the number of "remaining" candidates but 2512 /// also costs of unswitching for each of these candidates. 2513 static int CalculateUnswitchCostMultiplier( 2514 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2515 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2516 UnswitchCandidates) { 2517 2518 // Guards and other exiting conditions do not contribute to exponential 2519 // explosion as soon as they dominate the latch (otherwise there might be 2520 // another path to the latch remaining that does not allow to eliminate the 2521 // loop copy on unswitch). 2522 BasicBlock *Latch = L.getLoopLatch(); 2523 BasicBlock *CondBlock = TI.getParent(); 2524 if (DT.dominates(CondBlock, Latch) && 2525 (isGuard(&TI) || 2526 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2527 return L.contains(SuccBB); 2528 }) <= 1)) { 2529 NumCostMultiplierSkipped++; 2530 return 1; 2531 } 2532 2533 auto *ParentL = L.getParentLoop(); 2534 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2535 : std::distance(LI.begin(), LI.end())); 2536 // Count amount of clones that all the candidates might cause during 2537 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2538 int UnswitchedClones = 0; 2539 for (auto Candidate : UnswitchCandidates) { 2540 Instruction *CI = Candidate.first; 2541 BasicBlock *CondBlock = CI->getParent(); 2542 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2543 if (isGuard(CI)) { 2544 if (!SkipExitingSuccessors) 2545 UnswitchedClones++; 2546 continue; 2547 } 2548 int NonExitingSuccessors = llvm::count_if( 2549 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2550 return !SkipExitingSuccessors || L.contains(SuccBB); 2551 }); 2552 UnswitchedClones += Log2_32(NonExitingSuccessors); 2553 } 2554 2555 // Ignore up to the "unscaled candidates" number of unswitch candidates 2556 // when calculating the power-of-two scaling of the cost. The main idea 2557 // with this control is to allow a small number of unswitches to happen 2558 // and rely more on siblings multiplier (see below) when the number 2559 // of candidates is small. 2560 unsigned ClonesPower = 2561 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2562 2563 // Allowing top-level loops to spread a bit more than nested ones. 2564 int SiblingsMultiplier = 2565 std::max((ParentL ? SiblingsCount 2566 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2567 1); 2568 // Compute the cost multiplier in a way that won't overflow by saturating 2569 // at an upper bound. 2570 int CostMultiplier; 2571 if (ClonesPower > Log2_32(UnswitchThreshold) || 2572 SiblingsMultiplier > UnswitchThreshold) 2573 CostMultiplier = UnswitchThreshold; 2574 else 2575 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2576 (int)UnswitchThreshold); 2577 2578 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2579 << " (siblings " << SiblingsMultiplier << " * clones " 2580 << (1 << ClonesPower) << ")" 2581 << " for unswitch candidate: " << TI << "\n"); 2582 return CostMultiplier; 2583 } 2584 2585 static bool 2586 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2587 AssumptionCache &AC, TargetTransformInfo &TTI, 2588 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2589 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2590 // Collect all invariant conditions within this loop (as opposed to an inner 2591 // loop which would be handled when visiting that inner loop). 2592 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2593 UnswitchCandidates; 2594 2595 // Whether or not we should also collect guards in the loop. 2596 bool CollectGuards = false; 2597 if (UnswitchGuards) { 2598 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2599 Intrinsic::getName(Intrinsic::experimental_guard)); 2600 if (GuardDecl && !GuardDecl->use_empty()) 2601 CollectGuards = true; 2602 } 2603 2604 for (auto *BB : L.blocks()) { 2605 if (LI.getLoopFor(BB) != &L) 2606 continue; 2607 2608 if (CollectGuards) 2609 for (auto &I : *BB) 2610 if (isGuard(&I)) { 2611 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2612 // TODO: Support AND, OR conditions and partial unswitching. 2613 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2614 UnswitchCandidates.push_back({&I, {Cond}}); 2615 } 2616 2617 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2618 // We can only consider fully loop-invariant switch conditions as we need 2619 // to completely eliminate the switch after unswitching. 2620 if (!isa<Constant>(SI->getCondition()) && 2621 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2622 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2623 continue; 2624 } 2625 2626 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2627 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2628 BI->getSuccessor(0) == BI->getSuccessor(1)) 2629 continue; 2630 2631 if (L.isLoopInvariant(BI->getCondition())) { 2632 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2633 continue; 2634 } 2635 2636 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2637 if (CondI.getOpcode() != Instruction::And && 2638 CondI.getOpcode() != Instruction::Or) 2639 continue; 2640 2641 TinyPtrVector<Value *> Invariants = 2642 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2643 if (Invariants.empty()) 2644 continue; 2645 2646 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2647 } 2648 2649 // If we didn't find any candidates, we're done. 2650 if (UnswitchCandidates.empty()) 2651 return false; 2652 2653 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2654 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2655 // irreducible control flow into reducible control flow and introduce new 2656 // loops "out of thin air". If we ever discover important use cases for doing 2657 // this, we can add support to loop unswitch, but it is a lot of complexity 2658 // for what seems little or no real world benefit. 2659 LoopBlocksRPO RPOT(&L); 2660 RPOT.perform(&LI); 2661 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2662 return false; 2663 2664 SmallVector<BasicBlock *, 4> ExitBlocks; 2665 L.getUniqueExitBlocks(ExitBlocks); 2666 2667 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2668 // don't know how to split those exit blocks. 2669 // FIXME: We should teach SplitBlock to handle this and remove this 2670 // restriction. 2671 for (auto *ExitBB : ExitBlocks) 2672 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2673 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2674 return false; 2675 } 2676 2677 LLVM_DEBUG( 2678 dbgs() << "Considering " << UnswitchCandidates.size() 2679 << " non-trivial loop invariant conditions for unswitching.\n"); 2680 2681 // Given that unswitching these terminators will require duplicating parts of 2682 // the loop, so we need to be able to model that cost. Compute the ephemeral 2683 // values and set up a data structure to hold per-BB costs. We cache each 2684 // block's cost so that we don't recompute this when considering different 2685 // subsets of the loop for duplication during unswitching. 2686 SmallPtrSet<const Value *, 4> EphValues; 2687 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2688 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2689 2690 // Compute the cost of each block, as well as the total loop cost. Also, bail 2691 // out if we see instructions which are incompatible with loop unswitching 2692 // (convergent, noduplicate, or cross-basic-block tokens). 2693 // FIXME: We might be able to safely handle some of these in non-duplicated 2694 // regions. 2695 TargetTransformInfo::TargetCostKind CostKind = 2696 L.getHeader()->getParent()->hasMinSize() 2697 ? TargetTransformInfo::TCK_CodeSize 2698 : TargetTransformInfo::TCK_SizeAndLatency; 2699 int LoopCost = 0; 2700 for (auto *BB : L.blocks()) { 2701 int Cost = 0; 2702 for (auto &I : *BB) { 2703 if (EphValues.count(&I)) 2704 continue; 2705 2706 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2707 return false; 2708 if (auto *CB = dyn_cast<CallBase>(&I)) 2709 if (CB->isConvergent() || CB->cannotDuplicate()) 2710 return false; 2711 2712 Cost += TTI.getUserCost(&I, CostKind); 2713 } 2714 assert(Cost >= 0 && "Must not have negative costs!"); 2715 LoopCost += Cost; 2716 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2717 BBCostMap[BB] = Cost; 2718 } 2719 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2720 2721 // Now we find the best candidate by searching for the one with the following 2722 // properties in order: 2723 // 2724 // 1) An unswitching cost below the threshold 2725 // 2) The smallest number of duplicated unswitch candidates (to avoid 2726 // creating redundant subsequent unswitching) 2727 // 3) The smallest cost after unswitching. 2728 // 2729 // We prioritize reducing fanout of unswitch candidates provided the cost 2730 // remains below the threshold because this has a multiplicative effect. 2731 // 2732 // This requires memoizing each dominator subtree to avoid redundant work. 2733 // 2734 // FIXME: Need to actually do the number of candidates part above. 2735 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2736 // Given a terminator which might be unswitched, computes the non-duplicated 2737 // cost for that terminator. 2738 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2739 BasicBlock &BB = *TI.getParent(); 2740 SmallPtrSet<BasicBlock *, 4> Visited; 2741 2742 int Cost = LoopCost; 2743 for (BasicBlock *SuccBB : successors(&BB)) { 2744 // Don't count successors more than once. 2745 if (!Visited.insert(SuccBB).second) 2746 continue; 2747 2748 // If this is a partial unswitch candidate, then it must be a conditional 2749 // branch with a condition of either `or` or `and`. In that case, one of 2750 // the successors is necessarily duplicated, so don't even try to remove 2751 // its cost. 2752 if (!FullUnswitch) { 2753 auto &BI = cast<BranchInst>(TI); 2754 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2755 Instruction::And) { 2756 if (SuccBB == BI.getSuccessor(1)) 2757 continue; 2758 } else { 2759 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2760 Instruction::Or && 2761 "Only `and` and `or` conditions can result in a partial " 2762 "unswitch!"); 2763 if (SuccBB == BI.getSuccessor(0)) 2764 continue; 2765 } 2766 } 2767 2768 // This successor's domtree will not need to be duplicated after 2769 // unswitching if the edge to the successor dominates it (and thus the 2770 // entire tree). This essentially means there is no other path into this 2771 // subtree and so it will end up live in only one clone of the loop. 2772 if (SuccBB->getUniquePredecessor() || 2773 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2774 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2775 })) { 2776 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2777 assert(Cost >= 0 && 2778 "Non-duplicated cost should never exceed total loop cost!"); 2779 } 2780 } 2781 2782 // Now scale the cost by the number of unique successors minus one. We 2783 // subtract one because there is already at least one copy of the entire 2784 // loop. This is computing the new cost of unswitching a condition. 2785 // Note that guards always have 2 unique successors that are implicit and 2786 // will be materialized if we decide to unswitch it. 2787 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2788 assert(SuccessorsCount > 1 && 2789 "Cannot unswitch a condition without multiple distinct successors!"); 2790 return Cost * (SuccessorsCount - 1); 2791 }; 2792 Instruction *BestUnswitchTI = nullptr; 2793 int BestUnswitchCost = 0; 2794 ArrayRef<Value *> BestUnswitchInvariants; 2795 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2796 Instruction &TI = *TerminatorAndInvariants.first; 2797 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2798 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2799 int CandidateCost = ComputeUnswitchedCost( 2800 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2801 Invariants[0] == BI->getCondition())); 2802 // Calculate cost multiplier which is a tool to limit potentially 2803 // exponential behavior of loop-unswitch. 2804 if (EnableUnswitchCostMultiplier) { 2805 int CostMultiplier = 2806 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2807 assert( 2808 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2809 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2810 CandidateCost *= CostMultiplier; 2811 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2812 << " (multiplier: " << CostMultiplier << ")" 2813 << " for unswitch candidate: " << TI << "\n"); 2814 } else { 2815 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2816 << " for unswitch candidate: " << TI << "\n"); 2817 } 2818 2819 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2820 BestUnswitchTI = &TI; 2821 BestUnswitchCost = CandidateCost; 2822 BestUnswitchInvariants = Invariants; 2823 } 2824 } 2825 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2826 2827 if (BestUnswitchCost >= UnswitchThreshold) { 2828 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2829 << BestUnswitchCost << "\n"); 2830 return false; 2831 } 2832 2833 // If the best candidate is a guard, turn it into a branch. 2834 if (isGuard(BestUnswitchTI)) 2835 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2836 ExitBlocks, DT, LI, MSSAU); 2837 2838 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2839 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2840 << "\n"); 2841 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2842 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2843 return true; 2844 } 2845 2846 /// Unswitch control flow predicated on loop invariant conditions. 2847 /// 2848 /// This first hoists all branches or switches which are trivial (IE, do not 2849 /// require duplicating any part of the loop) out of the loop body. It then 2850 /// looks at other loop invariant control flows and tries to unswitch those as 2851 /// well by cloning the loop if the result is small enough. 2852 /// 2853 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2854 /// updated based on the unswitch. 2855 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 2856 /// 2857 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2858 /// true, we will attempt to do non-trivial unswitching as well as trivial 2859 /// unswitching. 2860 /// 2861 /// The `UnswitchCB` callback provided will be run after unswitching is 2862 /// complete, with the first parameter set to `true` if the provided loop 2863 /// remains a loop, and a list of new sibling loops created. 2864 /// 2865 /// If `SE` is non-null, we will update that analysis based on the unswitching 2866 /// done. 2867 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2868 AssumptionCache &AC, TargetTransformInfo &TTI, 2869 bool NonTrivial, 2870 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2871 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2872 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2873 "Loops must be in LCSSA form before unswitching."); 2874 2875 // Must be in loop simplified form: we need a preheader and dedicated exits. 2876 if (!L.isLoopSimplifyForm()) 2877 return false; 2878 2879 // Try trivial unswitch first before loop over other basic blocks in the loop. 2880 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2881 // If we unswitched successfully we will want to clean up the loop before 2882 // processing it further so just mark it as unswitched and return. 2883 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2884 return true; 2885 } 2886 2887 // If we're not doing non-trivial unswitching, we're done. We both accept 2888 // a parameter but also check a local flag that can be used for testing 2889 // a debugging. 2890 if (!NonTrivial && !EnableNonTrivialUnswitch) 2891 return false; 2892 2893 // For non-trivial unswitching, because it often creates new loops, we rely on 2894 // the pass manager to iterate on the loops rather than trying to immediately 2895 // reach a fixed point. There is no substantial advantage to iterating 2896 // internally, and if any of the new loops are simplified enough to contain 2897 // trivial unswitching we want to prefer those. 2898 2899 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2900 // a partial unswitch when possible below the threshold. 2901 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2902 return true; 2903 2904 // No other opportunities to unswitch. 2905 return false; 2906 } 2907 2908 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2909 LoopStandardAnalysisResults &AR, 2910 LPMUpdater &U) { 2911 Function &F = *L.getHeader()->getParent(); 2912 (void)F; 2913 2914 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2915 << "\n"); 2916 2917 // Save the current loop name in a variable so that we can report it even 2918 // after it has been deleted. 2919 std::string LoopName = std::string(L.getName()); 2920 2921 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2922 ArrayRef<Loop *> NewLoops) { 2923 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2924 if (!NewLoops.empty()) 2925 U.addSiblingLoops(NewLoops); 2926 2927 // If the current loop remains valid, we should revisit it to catch any 2928 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2929 if (CurrentLoopValid) 2930 U.revisitCurrentLoop(); 2931 else 2932 U.markLoopAsDeleted(L, LoopName); 2933 }; 2934 2935 Optional<MemorySSAUpdater> MSSAU; 2936 if (AR.MSSA) { 2937 MSSAU = MemorySSAUpdater(AR.MSSA); 2938 if (VerifyMemorySSA) 2939 AR.MSSA->verifyMemorySSA(); 2940 } 2941 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2942 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 2943 return PreservedAnalyses::all(); 2944 2945 if (AR.MSSA && VerifyMemorySSA) 2946 AR.MSSA->verifyMemorySSA(); 2947 2948 // Historically this pass has had issues with the dominator tree so verify it 2949 // in asserts builds. 2950 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2951 2952 auto PA = getLoopPassPreservedAnalyses(); 2953 if (AR.MSSA) 2954 PA.preserve<MemorySSAAnalysis>(); 2955 return PA; 2956 } 2957 2958 namespace { 2959 2960 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2961 bool NonTrivial; 2962 2963 public: 2964 static char ID; // Pass ID, replacement for typeid 2965 2966 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2967 : LoopPass(ID), NonTrivial(NonTrivial) { 2968 initializeSimpleLoopUnswitchLegacyPassPass( 2969 *PassRegistry::getPassRegistry()); 2970 } 2971 2972 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2973 2974 void getAnalysisUsage(AnalysisUsage &AU) const override { 2975 AU.addRequired<AssumptionCacheTracker>(); 2976 AU.addRequired<TargetTransformInfoWrapperPass>(); 2977 if (EnableMSSALoopDependency) { 2978 AU.addRequired<MemorySSAWrapperPass>(); 2979 AU.addPreserved<MemorySSAWrapperPass>(); 2980 } 2981 getLoopAnalysisUsage(AU); 2982 } 2983 }; 2984 2985 } // end anonymous namespace 2986 2987 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2988 if (skipLoop(L)) 2989 return false; 2990 2991 Function &F = *L->getHeader()->getParent(); 2992 2993 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2994 << "\n"); 2995 2996 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2997 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2998 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2999 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3000 MemorySSA *MSSA = nullptr; 3001 Optional<MemorySSAUpdater> MSSAU; 3002 if (EnableMSSALoopDependency) { 3003 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3004 MSSAU = MemorySSAUpdater(MSSA); 3005 } 3006 3007 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 3008 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 3009 3010 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 3011 ArrayRef<Loop *> NewLoops) { 3012 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3013 for (auto *NewL : NewLoops) 3014 LPM.addLoop(*NewL); 3015 3016 // If the current loop remains valid, re-add it to the queue. This is 3017 // a little wasteful as we'll finish processing the current loop as well, 3018 // but it is the best we can do in the old PM. 3019 if (CurrentLoopValid) 3020 LPM.addLoop(*L); 3021 else 3022 LPM.markLoopAsDeleted(*L); 3023 }; 3024 3025 if (MSSA && VerifyMemorySSA) 3026 MSSA->verifyMemorySSA(); 3027 3028 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 3029 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 3030 3031 if (MSSA && VerifyMemorySSA) 3032 MSSA->verifyMemorySSA(); 3033 3034 // Historically this pass has had issues with the dominator tree so verify it 3035 // in asserts builds. 3036 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3037 3038 return Changed; 3039 } 3040 3041 char SimpleLoopUnswitchLegacyPass::ID = 0; 3042 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3043 "Simple unswitch loops", false, false) 3044 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3045 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3046 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3047 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3048 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3049 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3050 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3051 "Simple unswitch loops", false, false) 3052 3053 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3054 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3055 } 3056