1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/MustExecute.h" 30 #include "llvm/Analysis/ScalarEvolution.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Use.h" 43 #include "llvm/IR/Value.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/GenericDomTree.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/Cloning.h" 55 #include "llvm/Transforms/Utils/Local.h" 56 #include "llvm/Transforms/Utils/LoopUtils.h" 57 #include "llvm/Transforms/Utils/ValueMapper.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <numeric> 62 #include <utility> 63 64 #define DEBUG_TYPE "simple-loop-unswitch" 65 66 using namespace llvm; 67 using namespace llvm::PatternMatch; 68 69 STATISTIC(NumBranches, "Number of branches unswitched"); 70 STATISTIC(NumSwitches, "Number of switches unswitched"); 71 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 72 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 73 STATISTIC( 74 NumCostMultiplierSkipped, 75 "Number of unswitch candidates that had their cost multiplier skipped"); 76 77 static cl::opt<bool> EnableNonTrivialUnswitch( 78 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 79 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 80 "following the configuration passed into the pass.")); 81 82 static cl::opt<int> 83 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 84 cl::desc("The cost threshold for unswitching a loop.")); 85 86 static cl::opt<bool> EnableUnswitchCostMultiplier( 87 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 88 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 89 "explosion in nontrivial unswitch.")); 90 static cl::opt<int> UnswitchSiblingsToplevelDiv( 91 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 92 cl::desc("Toplevel siblings divisor for cost multiplier.")); 93 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 94 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 95 cl::desc("Number of unswitch candidates that are ignored when calculating " 96 "cost multiplier.")); 97 static cl::opt<bool> UnswitchGuards( 98 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 99 cl::desc("If enabled, simple loop unswitching will also consider " 100 "llvm.experimental.guard intrinsics as unswitch candidates.")); 101 static cl::opt<bool> DropNonTrivialImplicitNullChecks( 102 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 103 cl::init(false), cl::Hidden, 104 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 105 "null checks to save time analyzing if we can keep it.")); 106 107 /// Collect all of the loop invariant input values transitively used by the 108 /// homogeneous instruction graph from a given root. 109 /// 110 /// This essentially walks from a root recursively through loop variant operands 111 /// which have the exact same opcode and finds all inputs which are loop 112 /// invariant. For some operations these can be re-associated and unswitched out 113 /// of the loop entirely. 114 static TinyPtrVector<Value *> 115 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 116 LoopInfo &LI) { 117 assert(!L.isLoopInvariant(&Root) && 118 "Only need to walk the graph if root itself is not invariant."); 119 TinyPtrVector<Value *> Invariants; 120 121 bool IsRootAnd = match(&Root, m_LogicalAnd()); 122 bool IsRootOr = match(&Root, m_LogicalOr()); 123 124 // Build a worklist and recurse through operators collecting invariants. 125 SmallVector<Instruction *, 4> Worklist; 126 SmallPtrSet<Instruction *, 8> Visited; 127 Worklist.push_back(&Root); 128 Visited.insert(&Root); 129 do { 130 Instruction &I = *Worklist.pop_back_val(); 131 for (Value *OpV : I.operand_values()) { 132 // Skip constants as unswitching isn't interesting for them. 133 if (isa<Constant>(OpV)) 134 continue; 135 136 // Add it to our result if loop invariant. 137 if (L.isLoopInvariant(OpV)) { 138 Invariants.push_back(OpV); 139 continue; 140 } 141 142 // If not an instruction with the same opcode, nothing we can do. 143 Instruction *OpI = dyn_cast<Instruction>(OpV); 144 145 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) || 146 (IsRootOr && match(OpI, m_LogicalOr())))) { 147 // Visit this operand. 148 if (Visited.insert(OpI).second) 149 Worklist.push_back(OpI); 150 } 151 } 152 } while (!Worklist.empty()); 153 154 return Invariants; 155 } 156 157 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 158 Constant &Replacement) { 159 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 160 161 // Replace uses of LIC in the loop with the given constant. 162 // We use make_early_inc_range as set invalidates the iterator. 163 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 164 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 165 166 // Replace this use within the loop body. 167 if (UserI && L.contains(UserI)) 168 U.set(&Replacement); 169 } 170 } 171 172 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 173 /// incoming values along this edge. 174 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 175 BasicBlock &ExitBB) { 176 for (Instruction &I : ExitBB) { 177 auto *PN = dyn_cast<PHINode>(&I); 178 if (!PN) 179 // No more PHIs to check. 180 return true; 181 182 // If the incoming value for this edge isn't loop invariant the unswitch 183 // won't be trivial. 184 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 185 return false; 186 } 187 llvm_unreachable("Basic blocks should never be empty!"); 188 } 189 190 /// Insert code to test a set of loop invariant values, and conditionally branch 191 /// on them. 192 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 193 ArrayRef<Value *> Invariants, 194 bool Direction, 195 BasicBlock &UnswitchedSucc, 196 BasicBlock &NormalSucc) { 197 IRBuilder<> IRB(&BB); 198 199 Value *Cond = Direction ? IRB.CreateOr(Invariants) : 200 IRB.CreateAnd(Invariants); 201 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 202 Direction ? &NormalSucc : &UnswitchedSucc); 203 } 204 205 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 206 /// 207 /// Requires that the loop exit and unswitched basic block are the same, and 208 /// that the exiting block was a unique predecessor of that block. Rewrites the 209 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 210 /// PHI nodes from the old preheader that now contains the unswitched 211 /// terminator. 212 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 213 BasicBlock &OldExitingBB, 214 BasicBlock &OldPH) { 215 for (PHINode &PN : UnswitchedBB.phis()) { 216 // When the loop exit is directly unswitched we just need to update the 217 // incoming basic block. We loop to handle weird cases with repeated 218 // incoming blocks, but expect to typically only have one operand here. 219 for (auto i : seq<int>(0, PN.getNumOperands())) { 220 assert(PN.getIncomingBlock(i) == &OldExitingBB && 221 "Found incoming block different from unique predecessor!"); 222 PN.setIncomingBlock(i, &OldPH); 223 } 224 } 225 } 226 227 /// Rewrite the PHI nodes in the loop exit basic block and the split off 228 /// unswitched block. 229 /// 230 /// Because the exit block remains an exit from the loop, this rewrites the 231 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 232 /// nodes into the unswitched basic block to select between the value in the 233 /// old preheader and the loop exit. 234 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 235 BasicBlock &UnswitchedBB, 236 BasicBlock &OldExitingBB, 237 BasicBlock &OldPH, 238 bool FullUnswitch) { 239 assert(&ExitBB != &UnswitchedBB && 240 "Must have different loop exit and unswitched blocks!"); 241 Instruction *InsertPt = &*UnswitchedBB.begin(); 242 for (PHINode &PN : ExitBB.phis()) { 243 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 244 PN.getName() + ".split", InsertPt); 245 246 // Walk backwards over the old PHI node's inputs to minimize the cost of 247 // removing each one. We have to do this weird loop manually so that we 248 // create the same number of new incoming edges in the new PHI as we expect 249 // each case-based edge to be included in the unswitched switch in some 250 // cases. 251 // FIXME: This is really, really gross. It would be much cleaner if LLVM 252 // allowed us to create a single entry for a predecessor block without 253 // having separate entries for each "edge" even though these edges are 254 // required to produce identical results. 255 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 256 if (PN.getIncomingBlock(i) != &OldExitingBB) 257 continue; 258 259 Value *Incoming = PN.getIncomingValue(i); 260 if (FullUnswitch) 261 // No more edge from the old exiting block to the exit block. 262 PN.removeIncomingValue(i); 263 264 NewPN->addIncoming(Incoming, &OldPH); 265 } 266 267 // Now replace the old PHI with the new one and wire the old one in as an 268 // input to the new one. 269 PN.replaceAllUsesWith(NewPN); 270 NewPN->addIncoming(&PN, &ExitBB); 271 } 272 } 273 274 /// Hoist the current loop up to the innermost loop containing a remaining exit. 275 /// 276 /// Because we've removed an exit from the loop, we may have changed the set of 277 /// loops reachable and need to move the current loop up the loop nest or even 278 /// to an entirely separate nest. 279 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 280 DominatorTree &DT, LoopInfo &LI, 281 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 282 // If the loop is already at the top level, we can't hoist it anywhere. 283 Loop *OldParentL = L.getParentLoop(); 284 if (!OldParentL) 285 return; 286 287 SmallVector<BasicBlock *, 4> Exits; 288 L.getExitBlocks(Exits); 289 Loop *NewParentL = nullptr; 290 for (auto *ExitBB : Exits) 291 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 292 if (!NewParentL || NewParentL->contains(ExitL)) 293 NewParentL = ExitL; 294 295 if (NewParentL == OldParentL) 296 return; 297 298 // The new parent loop (if different) should always contain the old one. 299 if (NewParentL) 300 assert(NewParentL->contains(OldParentL) && 301 "Can only hoist this loop up the nest!"); 302 303 // The preheader will need to move with the body of this loop. However, 304 // because it isn't in this loop we also need to update the primary loop map. 305 assert(OldParentL == LI.getLoopFor(&Preheader) && 306 "Parent loop of this loop should contain this loop's preheader!"); 307 LI.changeLoopFor(&Preheader, NewParentL); 308 309 // Remove this loop from its old parent. 310 OldParentL->removeChildLoop(&L); 311 312 // Add the loop either to the new parent or as a top-level loop. 313 if (NewParentL) 314 NewParentL->addChildLoop(&L); 315 else 316 LI.addTopLevelLoop(&L); 317 318 // Remove this loops blocks from the old parent and every other loop up the 319 // nest until reaching the new parent. Also update all of these 320 // no-longer-containing loops to reflect the nesting change. 321 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 322 OldContainingL = OldContainingL->getParentLoop()) { 323 llvm::erase_if(OldContainingL->getBlocksVector(), 324 [&](const BasicBlock *BB) { 325 return BB == &Preheader || L.contains(BB); 326 }); 327 328 OldContainingL->getBlocksSet().erase(&Preheader); 329 for (BasicBlock *BB : L.blocks()) 330 OldContainingL->getBlocksSet().erase(BB); 331 332 // Because we just hoisted a loop out of this one, we have essentially 333 // created new exit paths from it. That means we need to form LCSSA PHI 334 // nodes for values used in the no-longer-nested loop. 335 formLCSSA(*OldContainingL, DT, &LI, SE); 336 337 // We shouldn't need to form dedicated exits because the exit introduced 338 // here is the (just split by unswitching) preheader. However, after trivial 339 // unswitching it is possible to get new non-dedicated exits out of parent 340 // loop so let's conservatively form dedicated exit blocks and figure out 341 // if we can optimize later. 342 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 343 /*PreserveLCSSA*/ true); 344 } 345 } 346 347 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 348 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 349 // as exiting block. 350 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 351 Loop *TopMost = LI.getLoopFor(ExitBB); 352 Loop *Current = TopMost; 353 while (Current) { 354 if (Current->isLoopExiting(ExitBB)) 355 TopMost = Current; 356 Current = Current->getParentLoop(); 357 } 358 return TopMost; 359 } 360 361 /// Unswitch a trivial branch if the condition is loop invariant. 362 /// 363 /// This routine should only be called when loop code leading to the branch has 364 /// been validated as trivial (no side effects). This routine checks if the 365 /// condition is invariant and one of the successors is a loop exit. This 366 /// allows us to unswitch without duplicating the loop, making it trivial. 367 /// 368 /// If this routine fails to unswitch the branch it returns false. 369 /// 370 /// If the branch can be unswitched, this routine splits the preheader and 371 /// hoists the branch above that split. Preserves loop simplified form 372 /// (splitting the exit block as necessary). It simplifies the branch within 373 /// the loop to an unconditional branch but doesn't remove it entirely. Further 374 /// cleanup can be done with some simplify-cfg like pass. 375 /// 376 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 377 /// invalidated by this. 378 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 379 LoopInfo &LI, ScalarEvolution *SE, 380 MemorySSAUpdater *MSSAU) { 381 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 382 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 383 384 // The loop invariant values that we want to unswitch. 385 TinyPtrVector<Value *> Invariants; 386 387 // When true, we're fully unswitching the branch rather than just unswitching 388 // some input conditions to the branch. 389 bool FullUnswitch = false; 390 391 if (L.isLoopInvariant(BI.getCondition())) { 392 Invariants.push_back(BI.getCondition()); 393 FullUnswitch = true; 394 } else { 395 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 396 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 397 if (Invariants.empty()) 398 // Couldn't find invariant inputs! 399 return false; 400 } 401 402 // Check that one of the branch's successors exits, and which one. 403 bool ExitDirection = true; 404 int LoopExitSuccIdx = 0; 405 auto *LoopExitBB = BI.getSuccessor(0); 406 if (L.contains(LoopExitBB)) { 407 ExitDirection = false; 408 LoopExitSuccIdx = 1; 409 LoopExitBB = BI.getSuccessor(1); 410 if (L.contains(LoopExitBB)) 411 return false; 412 } 413 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 414 auto *ParentBB = BI.getParent(); 415 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 416 return false; 417 418 // When unswitching only part of the branch's condition, we need the exit 419 // block to be reached directly from the partially unswitched input. This can 420 // be done when the exit block is along the true edge and the branch condition 421 // is a graph of `or` operations, or the exit block is along the false edge 422 // and the condition is a graph of `and` operations. 423 if (!FullUnswitch) { 424 if (ExitDirection) { 425 if (!match(BI.getCondition(), m_LogicalOr())) 426 return false; 427 } else { 428 if (!match(BI.getCondition(), m_LogicalAnd())) 429 return false; 430 } 431 } 432 433 LLVM_DEBUG({ 434 dbgs() << " unswitching trivial invariant conditions for: " << BI 435 << "\n"; 436 for (Value *Invariant : Invariants) { 437 dbgs() << " " << *Invariant << " == true"; 438 if (Invariant != Invariants.back()) 439 dbgs() << " ||"; 440 dbgs() << "\n"; 441 } 442 }); 443 444 // If we have scalar evolutions, we need to invalidate them including this 445 // loop, the loop containing the exit block and the topmost parent loop 446 // exiting via LoopExitBB. 447 if (SE) { 448 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 449 SE->forgetLoop(ExitL); 450 else 451 // Forget the entire nest as this exits the entire nest. 452 SE->forgetTopmostLoop(&L); 453 } 454 455 if (MSSAU && VerifyMemorySSA) 456 MSSAU->getMemorySSA()->verifyMemorySSA(); 457 458 // Split the preheader, so that we know that there is a safe place to insert 459 // the conditional branch. We will change the preheader to have a conditional 460 // branch on LoopCond. 461 BasicBlock *OldPH = L.getLoopPreheader(); 462 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 463 464 // Now that we have a place to insert the conditional branch, create a place 465 // to branch to: this is the exit block out of the loop that we are 466 // unswitching. We need to split this if there are other loop predecessors. 467 // Because the loop is in simplified form, *any* other predecessor is enough. 468 BasicBlock *UnswitchedBB; 469 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 470 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 471 "A branch's parent isn't a predecessor!"); 472 UnswitchedBB = LoopExitBB; 473 } else { 474 UnswitchedBB = 475 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 476 } 477 478 if (MSSAU && VerifyMemorySSA) 479 MSSAU->getMemorySSA()->verifyMemorySSA(); 480 481 // Actually move the invariant uses into the unswitched position. If possible, 482 // we do this by moving the instructions, but when doing partial unswitching 483 // we do it by building a new merge of the values in the unswitched position. 484 OldPH->getTerminator()->eraseFromParent(); 485 if (FullUnswitch) { 486 // If fully unswitching, we can use the existing branch instruction. 487 // Splice it into the old PH to gate reaching the new preheader and re-point 488 // its successors. 489 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 490 BI); 491 if (MSSAU) { 492 // Temporarily clone the terminator, to make MSSA update cheaper by 493 // separating "insert edge" updates from "remove edge" ones. 494 ParentBB->getInstList().push_back(BI.clone()); 495 } else { 496 // Create a new unconditional branch that will continue the loop as a new 497 // terminator. 498 BranchInst::Create(ContinueBB, ParentBB); 499 } 500 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 501 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 502 } else { 503 // Only unswitching a subset of inputs to the condition, so we will need to 504 // build a new branch that merges the invariant inputs. 505 if (ExitDirection) 506 assert(match(BI.getCondition(), m_LogicalOr()) && 507 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the " 508 "condition!"); 509 else 510 assert(match(BI.getCondition(), m_LogicalAnd()) && 511 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the" 512 " condition!"); 513 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 514 *UnswitchedBB, *NewPH); 515 } 516 517 // Update the dominator tree with the added edge. 518 DT.insertEdge(OldPH, UnswitchedBB); 519 520 // After the dominator tree was updated with the added edge, update MemorySSA 521 // if available. 522 if (MSSAU) { 523 SmallVector<CFGUpdate, 1> Updates; 524 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 525 MSSAU->applyInsertUpdates(Updates, DT); 526 } 527 528 // Finish updating dominator tree and memory ssa for full unswitch. 529 if (FullUnswitch) { 530 if (MSSAU) { 531 // Remove the cloned branch instruction. 532 ParentBB->getTerminator()->eraseFromParent(); 533 // Create unconditional branch now. 534 BranchInst::Create(ContinueBB, ParentBB); 535 MSSAU->removeEdge(ParentBB, LoopExitBB); 536 } 537 DT.deleteEdge(ParentBB, LoopExitBB); 538 } 539 540 if (MSSAU && VerifyMemorySSA) 541 MSSAU->getMemorySSA()->verifyMemorySSA(); 542 543 // Rewrite the relevant PHI nodes. 544 if (UnswitchedBB == LoopExitBB) 545 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 546 else 547 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 548 *ParentBB, *OldPH, FullUnswitch); 549 550 // The constant we can replace all of our invariants with inside the loop 551 // body. If any of the invariants have a value other than this the loop won't 552 // be entered. 553 ConstantInt *Replacement = ExitDirection 554 ? ConstantInt::getFalse(BI.getContext()) 555 : ConstantInt::getTrue(BI.getContext()); 556 557 // Since this is an i1 condition we can also trivially replace uses of it 558 // within the loop with a constant. 559 for (Value *Invariant : Invariants) 560 replaceLoopInvariantUses(L, Invariant, *Replacement); 561 562 // If this was full unswitching, we may have changed the nesting relationship 563 // for this loop so hoist it to its correct parent if needed. 564 if (FullUnswitch) 565 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 566 567 if (MSSAU && VerifyMemorySSA) 568 MSSAU->getMemorySSA()->verifyMemorySSA(); 569 570 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 571 ++NumTrivial; 572 ++NumBranches; 573 return true; 574 } 575 576 /// Unswitch a trivial switch if the condition is loop invariant. 577 /// 578 /// This routine should only be called when loop code leading to the switch has 579 /// been validated as trivial (no side effects). This routine checks if the 580 /// condition is invariant and that at least one of the successors is a loop 581 /// exit. This allows us to unswitch without duplicating the loop, making it 582 /// trivial. 583 /// 584 /// If this routine fails to unswitch the switch it returns false. 585 /// 586 /// If the switch can be unswitched, this routine splits the preheader and 587 /// copies the switch above that split. If the default case is one of the 588 /// exiting cases, it copies the non-exiting cases and points them at the new 589 /// preheader. If the default case is not exiting, it copies the exiting cases 590 /// and points the default at the preheader. It preserves loop simplified form 591 /// (splitting the exit blocks as necessary). It simplifies the switch within 592 /// the loop by removing now-dead cases. If the default case is one of those 593 /// unswitched, it replaces its destination with a new basic block containing 594 /// only unreachable. Such basic blocks, while technically loop exits, are not 595 /// considered for unswitching so this is a stable transform and the same 596 /// switch will not be revisited. If after unswitching there is only a single 597 /// in-loop successor, the switch is further simplified to an unconditional 598 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 599 /// 600 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 601 /// invalidated by this. 602 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 603 LoopInfo &LI, ScalarEvolution *SE, 604 MemorySSAUpdater *MSSAU) { 605 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 606 Value *LoopCond = SI.getCondition(); 607 608 // If this isn't switching on an invariant condition, we can't unswitch it. 609 if (!L.isLoopInvariant(LoopCond)) 610 return false; 611 612 auto *ParentBB = SI.getParent(); 613 614 // The same check must be used both for the default and the exit cases. We 615 // should never leave edges from the switch instruction to a basic block that 616 // we are unswitching, hence the condition used to determine the default case 617 // needs to also be used to populate ExitCaseIndices, which is then used to 618 // remove cases from the switch. 619 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 620 // BBToCheck is not an exit block if it is inside loop L. 621 if (L.contains(&BBToCheck)) 622 return false; 623 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 624 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 625 return false; 626 // We do not unswitch a block that only has an unreachable statement, as 627 // it's possible this is a previously unswitched block. Only unswitch if 628 // either the terminator is not unreachable, or, if it is, it's not the only 629 // instruction in the block. 630 auto *TI = BBToCheck.getTerminator(); 631 bool isUnreachable = isa<UnreachableInst>(TI); 632 return !isUnreachable || 633 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 634 }; 635 636 SmallVector<int, 4> ExitCaseIndices; 637 for (auto Case : SI.cases()) 638 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 639 ExitCaseIndices.push_back(Case.getCaseIndex()); 640 BasicBlock *DefaultExitBB = nullptr; 641 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 642 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 643 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 644 DefaultExitBB = SI.getDefaultDest(); 645 } else if (ExitCaseIndices.empty()) 646 return false; 647 648 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 649 650 if (MSSAU && VerifyMemorySSA) 651 MSSAU->getMemorySSA()->verifyMemorySSA(); 652 653 // We may need to invalidate SCEVs for the outermost loop reached by any of 654 // the exits. 655 Loop *OuterL = &L; 656 657 if (DefaultExitBB) { 658 // Clear out the default destination temporarily to allow accurate 659 // predecessor lists to be examined below. 660 SI.setDefaultDest(nullptr); 661 // Check the loop containing this exit. 662 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 663 if (!ExitL || ExitL->contains(OuterL)) 664 OuterL = ExitL; 665 } 666 667 // Store the exit cases into a separate data structure and remove them from 668 // the switch. 669 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 670 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 671 4> ExitCases; 672 ExitCases.reserve(ExitCaseIndices.size()); 673 SwitchInstProfUpdateWrapper SIW(SI); 674 // We walk the case indices backwards so that we remove the last case first 675 // and don't disrupt the earlier indices. 676 for (unsigned Index : reverse(ExitCaseIndices)) { 677 auto CaseI = SI.case_begin() + Index; 678 // Compute the outer loop from this exit. 679 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 680 if (!ExitL || ExitL->contains(OuterL)) 681 OuterL = ExitL; 682 // Save the value of this case. 683 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 684 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 685 // Delete the unswitched cases. 686 SIW.removeCase(CaseI); 687 } 688 689 if (SE) { 690 if (OuterL) 691 SE->forgetLoop(OuterL); 692 else 693 SE->forgetTopmostLoop(&L); 694 } 695 696 // Check if after this all of the remaining cases point at the same 697 // successor. 698 BasicBlock *CommonSuccBB = nullptr; 699 if (SI.getNumCases() > 0 && 700 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { 701 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); 702 })) 703 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 704 if (!DefaultExitBB) { 705 // If we're not unswitching the default, we need it to match any cases to 706 // have a common successor or if we have no cases it is the common 707 // successor. 708 if (SI.getNumCases() == 0) 709 CommonSuccBB = SI.getDefaultDest(); 710 else if (SI.getDefaultDest() != CommonSuccBB) 711 CommonSuccBB = nullptr; 712 } 713 714 // Split the preheader, so that we know that there is a safe place to insert 715 // the switch. 716 BasicBlock *OldPH = L.getLoopPreheader(); 717 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 718 OldPH->getTerminator()->eraseFromParent(); 719 720 // Now add the unswitched switch. 721 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 722 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 723 724 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 725 // First, we split any exit blocks with remaining in-loop predecessors. Then 726 // we update the PHIs in one of two ways depending on if there was a split. 727 // We walk in reverse so that we split in the same order as the cases 728 // appeared. This is purely for convenience of reading the resulting IR, but 729 // it doesn't cost anything really. 730 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 731 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 732 // Handle the default exit if necessary. 733 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 734 // ranges aren't quite powerful enough yet. 735 if (DefaultExitBB) { 736 if (pred_empty(DefaultExitBB)) { 737 UnswitchedExitBBs.insert(DefaultExitBB); 738 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 739 } else { 740 auto *SplitBB = 741 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 742 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 743 *ParentBB, *OldPH, 744 /*FullUnswitch*/ true); 745 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 746 } 747 } 748 // Note that we must use a reference in the for loop so that we update the 749 // container. 750 for (auto &ExitCase : reverse(ExitCases)) { 751 // Grab a reference to the exit block in the pair so that we can update it. 752 BasicBlock *ExitBB = std::get<1>(ExitCase); 753 754 // If this case is the last edge into the exit block, we can simply reuse it 755 // as it will no longer be a loop exit. No mapping necessary. 756 if (pred_empty(ExitBB)) { 757 // Only rewrite once. 758 if (UnswitchedExitBBs.insert(ExitBB).second) 759 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 760 continue; 761 } 762 763 // Otherwise we need to split the exit block so that we retain an exit 764 // block from the loop and a target for the unswitched condition. 765 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 766 if (!SplitExitBB) { 767 // If this is the first time we see this, do the split and remember it. 768 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 769 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 770 *ParentBB, *OldPH, 771 /*FullUnswitch*/ true); 772 } 773 // Update the case pair to point to the split block. 774 std::get<1>(ExitCase) = SplitExitBB; 775 } 776 777 // Now add the unswitched cases. We do this in reverse order as we built them 778 // in reverse order. 779 for (auto &ExitCase : reverse(ExitCases)) { 780 ConstantInt *CaseVal = std::get<0>(ExitCase); 781 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 782 783 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 784 } 785 786 // If the default was unswitched, re-point it and add explicit cases for 787 // entering the loop. 788 if (DefaultExitBB) { 789 NewSIW->setDefaultDest(DefaultExitBB); 790 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 791 792 // We removed all the exit cases, so we just copy the cases to the 793 // unswitched switch. 794 for (const auto &Case : SI.cases()) 795 NewSIW.addCase(Case.getCaseValue(), NewPH, 796 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 797 } else if (DefaultCaseWeight) { 798 // We have to set branch weight of the default case. 799 uint64_t SW = *DefaultCaseWeight; 800 for (const auto &Case : SI.cases()) { 801 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 802 assert(W && 803 "case weight must be defined as default case weight is defined"); 804 SW += *W; 805 } 806 NewSIW.setSuccessorWeight(0, SW); 807 } 808 809 // If we ended up with a common successor for every path through the switch 810 // after unswitching, rewrite it to an unconditional branch to make it easy 811 // to recognize. Otherwise we potentially have to recognize the default case 812 // pointing at unreachable and other complexity. 813 if (CommonSuccBB) { 814 BasicBlock *BB = SI.getParent(); 815 // We may have had multiple edges to this common successor block, so remove 816 // them as predecessors. We skip the first one, either the default or the 817 // actual first case. 818 bool SkippedFirst = DefaultExitBB == nullptr; 819 for (auto Case : SI.cases()) { 820 assert(Case.getCaseSuccessor() == CommonSuccBB && 821 "Non-common successor!"); 822 (void)Case; 823 if (!SkippedFirst) { 824 SkippedFirst = true; 825 continue; 826 } 827 CommonSuccBB->removePredecessor(BB, 828 /*KeepOneInputPHIs*/ true); 829 } 830 // Now nuke the switch and replace it with a direct branch. 831 SIW.eraseFromParent(); 832 BranchInst::Create(CommonSuccBB, BB); 833 } else if (DefaultExitBB) { 834 assert(SI.getNumCases() > 0 && 835 "If we had no cases we'd have a common successor!"); 836 // Move the last case to the default successor. This is valid as if the 837 // default got unswitched it cannot be reached. This has the advantage of 838 // being simple and keeping the number of edges from this switch to 839 // successors the same, and avoiding any PHI update complexity. 840 auto LastCaseI = std::prev(SI.case_end()); 841 842 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 843 SIW.setSuccessorWeight( 844 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 845 SIW.removeCase(LastCaseI); 846 } 847 848 // Walk the unswitched exit blocks and the unswitched split blocks and update 849 // the dominator tree based on the CFG edits. While we are walking unordered 850 // containers here, the API for applyUpdates takes an unordered list of 851 // updates and requires them to not contain duplicates. 852 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 853 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 854 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 855 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 856 } 857 for (auto SplitUnswitchedPair : SplitExitBBMap) { 858 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 859 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 860 } 861 862 if (MSSAU) { 863 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 864 if (VerifyMemorySSA) 865 MSSAU->getMemorySSA()->verifyMemorySSA(); 866 } else { 867 DT.applyUpdates(DTUpdates); 868 } 869 870 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 871 872 // We may have changed the nesting relationship for this loop so hoist it to 873 // its correct parent if needed. 874 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 875 876 if (MSSAU && VerifyMemorySSA) 877 MSSAU->getMemorySSA()->verifyMemorySSA(); 878 879 ++NumTrivial; 880 ++NumSwitches; 881 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 882 return true; 883 } 884 885 /// This routine scans the loop to find a branch or switch which occurs before 886 /// any side effects occur. These can potentially be unswitched without 887 /// duplicating the loop. If a branch or switch is successfully unswitched the 888 /// scanning continues to see if subsequent branches or switches have become 889 /// trivial. Once all trivial candidates have been unswitched, this routine 890 /// returns. 891 /// 892 /// The return value indicates whether anything was unswitched (and therefore 893 /// changed). 894 /// 895 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 896 /// invalidated by this. 897 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 898 LoopInfo &LI, ScalarEvolution *SE, 899 MemorySSAUpdater *MSSAU) { 900 bool Changed = false; 901 902 // If loop header has only one reachable successor we should keep looking for 903 // trivial condition candidates in the successor as well. An alternative is 904 // to constant fold conditions and merge successors into loop header (then we 905 // only need to check header's terminator). The reason for not doing this in 906 // LoopUnswitch pass is that it could potentially break LoopPassManager's 907 // invariants. Folding dead branches could either eliminate the current loop 908 // or make other loops unreachable. LCSSA form might also not be preserved 909 // after deleting branches. The following code keeps traversing loop header's 910 // successors until it finds the trivial condition candidate (condition that 911 // is not a constant). Since unswitching generates branches with constant 912 // conditions, this scenario could be very common in practice. 913 BasicBlock *CurrentBB = L.getHeader(); 914 SmallPtrSet<BasicBlock *, 8> Visited; 915 Visited.insert(CurrentBB); 916 do { 917 // Check if there are any side-effecting instructions (e.g. stores, calls, 918 // volatile loads) in the part of the loop that the code *would* execute 919 // without unswitching. 920 if (MSSAU) // Possible early exit with MSSA 921 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 922 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 923 return Changed; 924 if (llvm::any_of(*CurrentBB, 925 [](Instruction &I) { return I.mayHaveSideEffects(); })) 926 return Changed; 927 928 Instruction *CurrentTerm = CurrentBB->getTerminator(); 929 930 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 931 // Don't bother trying to unswitch past a switch with a constant 932 // condition. This should be removed prior to running this pass by 933 // simplify-cfg. 934 if (isa<Constant>(SI->getCondition())) 935 return Changed; 936 937 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 938 // Couldn't unswitch this one so we're done. 939 return Changed; 940 941 // Mark that we managed to unswitch something. 942 Changed = true; 943 944 // If unswitching turned the terminator into an unconditional branch then 945 // we can continue. The unswitching logic specifically works to fold any 946 // cases it can into an unconditional branch to make it easier to 947 // recognize here. 948 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 949 if (!BI || BI->isConditional()) 950 return Changed; 951 952 CurrentBB = BI->getSuccessor(0); 953 continue; 954 } 955 956 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 957 if (!BI) 958 // We do not understand other terminator instructions. 959 return Changed; 960 961 // Don't bother trying to unswitch past an unconditional branch or a branch 962 // with a constant value. These should be removed by simplify-cfg prior to 963 // running this pass. 964 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 965 return Changed; 966 967 // Found a trivial condition candidate: non-foldable conditional branch. If 968 // we fail to unswitch this, we can't do anything else that is trivial. 969 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 970 return Changed; 971 972 // Mark that we managed to unswitch something. 973 Changed = true; 974 975 // If we only unswitched some of the conditions feeding the branch, we won't 976 // have collapsed it to a single successor. 977 BI = cast<BranchInst>(CurrentBB->getTerminator()); 978 if (BI->isConditional()) 979 return Changed; 980 981 // Follow the newly unconditional branch into its successor. 982 CurrentBB = BI->getSuccessor(0); 983 984 // When continuing, if we exit the loop or reach a previous visited block, 985 // then we can not reach any trivial condition candidates (unfoldable 986 // branch instructions or switch instructions) and no unswitch can happen. 987 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 988 989 return Changed; 990 } 991 992 /// Build the cloned blocks for an unswitched copy of the given loop. 993 /// 994 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 995 /// after the split block (`SplitBB`) that will be used to select between the 996 /// cloned and original loop. 997 /// 998 /// This routine handles cloning all of the necessary loop blocks and exit 999 /// blocks including rewriting their instructions and the relevant PHI nodes. 1000 /// Any loop blocks or exit blocks which are dominated by a different successor 1001 /// than the one for this clone of the loop blocks can be trivially skipped. We 1002 /// use the `DominatingSucc` map to determine whether a block satisfies that 1003 /// property with a simple map lookup. 1004 /// 1005 /// It also correctly creates the unconditional branch in the cloned 1006 /// unswitched parent block to only point at the unswitched successor. 1007 /// 1008 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1009 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1010 /// the cloned blocks (and their loops) are left without full `LoopInfo` 1011 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1012 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1013 /// instead the caller must recompute an accurate DT. It *does* correctly 1014 /// update the `AssumptionCache` provided in `AC`. 1015 static BasicBlock *buildClonedLoopBlocks( 1016 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1017 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1018 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1019 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1020 ValueToValueMapTy &VMap, 1021 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1022 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 1023 SmallVector<BasicBlock *, 4> NewBlocks; 1024 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1025 1026 // We will need to clone a bunch of blocks, wrap up the clone operation in 1027 // a helper. 1028 auto CloneBlock = [&](BasicBlock *OldBB) { 1029 // Clone the basic block and insert it before the new preheader. 1030 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1031 NewBB->moveBefore(LoopPH); 1032 1033 // Record this block and the mapping. 1034 NewBlocks.push_back(NewBB); 1035 VMap[OldBB] = NewBB; 1036 1037 return NewBB; 1038 }; 1039 1040 // We skip cloning blocks when they have a dominating succ that is not the 1041 // succ we are cloning for. 1042 auto SkipBlock = [&](BasicBlock *BB) { 1043 auto It = DominatingSucc.find(BB); 1044 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1045 }; 1046 1047 // First, clone the preheader. 1048 auto *ClonedPH = CloneBlock(LoopPH); 1049 1050 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1051 for (auto *LoopBB : L.blocks()) 1052 if (!SkipBlock(LoopBB)) 1053 CloneBlock(LoopBB); 1054 1055 // Split all the loop exit edges so that when we clone the exit blocks, if 1056 // any of the exit blocks are *also* a preheader for some other loop, we 1057 // don't create multiple predecessors entering the loop header. 1058 for (auto *ExitBB : ExitBlocks) { 1059 if (SkipBlock(ExitBB)) 1060 continue; 1061 1062 // When we are going to clone an exit, we don't need to clone all the 1063 // instructions in the exit block and we want to ensure we have an easy 1064 // place to merge the CFG, so split the exit first. This is always safe to 1065 // do because there cannot be any non-loop predecessors of a loop exit in 1066 // loop simplified form. 1067 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1068 1069 // Rearrange the names to make it easier to write test cases by having the 1070 // exit block carry the suffix rather than the merge block carrying the 1071 // suffix. 1072 MergeBB->takeName(ExitBB); 1073 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1074 1075 // Now clone the original exit block. 1076 auto *ClonedExitBB = CloneBlock(ExitBB); 1077 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1078 "Exit block should have been split to have one successor!"); 1079 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1080 "Cloned exit block has the wrong successor!"); 1081 1082 // Remap any cloned instructions and create a merge phi node for them. 1083 for (auto ZippedInsts : llvm::zip_first( 1084 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1085 llvm::make_range(ClonedExitBB->begin(), 1086 std::prev(ClonedExitBB->end())))) { 1087 Instruction &I = std::get<0>(ZippedInsts); 1088 Instruction &ClonedI = std::get<1>(ZippedInsts); 1089 1090 // The only instructions in the exit block should be PHI nodes and 1091 // potentially a landing pad. 1092 assert( 1093 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1094 "Bad instruction in exit block!"); 1095 // We should have a value map between the instruction and its clone. 1096 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1097 1098 auto *MergePN = 1099 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1100 &*MergeBB->getFirstInsertionPt()); 1101 I.replaceAllUsesWith(MergePN); 1102 MergePN->addIncoming(&I, ExitBB); 1103 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1104 } 1105 } 1106 1107 // Rewrite the instructions in the cloned blocks to refer to the instructions 1108 // in the cloned blocks. We have to do this as a second pass so that we have 1109 // everything available. Also, we have inserted new instructions which may 1110 // include assume intrinsics, so we update the assumption cache while 1111 // processing this. 1112 for (auto *ClonedBB : NewBlocks) 1113 for (Instruction &I : *ClonedBB) { 1114 RemapInstruction(&I, VMap, 1115 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1116 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1117 if (II->getIntrinsicID() == Intrinsic::assume) 1118 AC.registerAssumption(II); 1119 } 1120 1121 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1122 // have spurious incoming values. 1123 for (auto *LoopBB : L.blocks()) 1124 if (SkipBlock(LoopBB)) 1125 for (auto *SuccBB : successors(LoopBB)) 1126 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1127 for (PHINode &PN : ClonedSuccBB->phis()) 1128 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1129 1130 // Remove the cloned parent as a predecessor of any successor we ended up 1131 // cloning other than the unswitched one. 1132 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1133 for (auto *SuccBB : successors(ParentBB)) { 1134 if (SuccBB == UnswitchedSuccBB) 1135 continue; 1136 1137 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1138 if (!ClonedSuccBB) 1139 continue; 1140 1141 ClonedSuccBB->removePredecessor(ClonedParentBB, 1142 /*KeepOneInputPHIs*/ true); 1143 } 1144 1145 // Replace the cloned branch with an unconditional branch to the cloned 1146 // unswitched successor. 1147 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1148 Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 1149 // Trivial Simplification. If Terminator is a conditional branch and 1150 // condition becomes dead - erase it. 1151 Value *ClonedConditionToErase = nullptr; 1152 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 1153 ClonedConditionToErase = BI->getCondition(); 1154 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 1155 ClonedConditionToErase = SI->getCondition(); 1156 1157 ClonedTerminator->eraseFromParent(); 1158 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1159 1160 if (ClonedConditionToErase) 1161 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 1162 MSSAU); 1163 1164 // If there are duplicate entries in the PHI nodes because of multiple edges 1165 // to the unswitched successor, we need to nuke all but one as we replaced it 1166 // with a direct branch. 1167 for (PHINode &PN : ClonedSuccBB->phis()) { 1168 bool Found = false; 1169 // Loop over the incoming operands backwards so we can easily delete as we 1170 // go without invalidating the index. 1171 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1172 if (PN.getIncomingBlock(i) != ClonedParentBB) 1173 continue; 1174 if (!Found) { 1175 Found = true; 1176 continue; 1177 } 1178 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1179 } 1180 } 1181 1182 // Record the domtree updates for the new blocks. 1183 SmallPtrSet<BasicBlock *, 4> SuccSet; 1184 for (auto *ClonedBB : NewBlocks) { 1185 for (auto *SuccBB : successors(ClonedBB)) 1186 if (SuccSet.insert(SuccBB).second) 1187 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1188 SuccSet.clear(); 1189 } 1190 1191 return ClonedPH; 1192 } 1193 1194 /// Recursively clone the specified loop and all of its children. 1195 /// 1196 /// The target parent loop for the clone should be provided, or can be null if 1197 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1198 /// with the provided value map. The entire original loop must be present in 1199 /// the value map. The cloned loop is returned. 1200 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1201 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1202 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1203 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1204 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1205 for (auto *BB : OrigL.blocks()) { 1206 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1207 ClonedL.addBlockEntry(ClonedBB); 1208 if (LI.getLoopFor(BB) == &OrigL) 1209 LI.changeLoopFor(ClonedBB, &ClonedL); 1210 } 1211 }; 1212 1213 // We specially handle the first loop because it may get cloned into 1214 // a different parent and because we most commonly are cloning leaf loops. 1215 Loop *ClonedRootL = LI.AllocateLoop(); 1216 if (RootParentL) 1217 RootParentL->addChildLoop(ClonedRootL); 1218 else 1219 LI.addTopLevelLoop(ClonedRootL); 1220 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1221 1222 if (OrigRootL.isInnermost()) 1223 return ClonedRootL; 1224 1225 // If we have a nest, we can quickly clone the entire loop nest using an 1226 // iterative approach because it is a tree. We keep the cloned parent in the 1227 // data structure to avoid repeatedly querying through a map to find it. 1228 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1229 // Build up the loops to clone in reverse order as we'll clone them from the 1230 // back. 1231 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1232 LoopsToClone.push_back({ClonedRootL, ChildL}); 1233 do { 1234 Loop *ClonedParentL, *L; 1235 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1236 Loop *ClonedL = LI.AllocateLoop(); 1237 ClonedParentL->addChildLoop(ClonedL); 1238 AddClonedBlocksToLoop(*L, *ClonedL); 1239 for (Loop *ChildL : llvm::reverse(*L)) 1240 LoopsToClone.push_back({ClonedL, ChildL}); 1241 } while (!LoopsToClone.empty()); 1242 1243 return ClonedRootL; 1244 } 1245 1246 /// Build the cloned loops of an original loop from unswitching. 1247 /// 1248 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1249 /// operation. We need to re-verify that there even is a loop (as the backedge 1250 /// may not have been cloned), and even if there are remaining backedges the 1251 /// backedge set may be different. However, we know that each child loop is 1252 /// undisturbed, we only need to find where to place each child loop within 1253 /// either any parent loop or within a cloned version of the original loop. 1254 /// 1255 /// Because child loops may end up cloned outside of any cloned version of the 1256 /// original loop, multiple cloned sibling loops may be created. All of them 1257 /// are returned so that the newly introduced loop nest roots can be 1258 /// identified. 1259 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1260 const ValueToValueMapTy &VMap, LoopInfo &LI, 1261 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1262 Loop *ClonedL = nullptr; 1263 1264 auto *OrigPH = OrigL.getLoopPreheader(); 1265 auto *OrigHeader = OrigL.getHeader(); 1266 1267 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1268 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1269 1270 // We need to know the loops of the cloned exit blocks to even compute the 1271 // accurate parent loop. If we only clone exits to some parent of the 1272 // original parent, we want to clone into that outer loop. We also keep track 1273 // of the loops that our cloned exit blocks participate in. 1274 Loop *ParentL = nullptr; 1275 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1276 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1277 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1278 for (auto *ExitBB : ExitBlocks) 1279 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1280 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1281 ExitLoopMap[ClonedExitBB] = ExitL; 1282 ClonedExitsInLoops.push_back(ClonedExitBB); 1283 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1284 ParentL = ExitL; 1285 } 1286 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1287 ParentL->contains(OrigL.getParentLoop())) && 1288 "The computed parent loop should always contain (or be) the parent of " 1289 "the original loop."); 1290 1291 // We build the set of blocks dominated by the cloned header from the set of 1292 // cloned blocks out of the original loop. While not all of these will 1293 // necessarily be in the cloned loop, it is enough to establish that they 1294 // aren't in unreachable cycles, etc. 1295 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1296 for (auto *BB : OrigL.blocks()) 1297 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1298 ClonedLoopBlocks.insert(ClonedBB); 1299 1300 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1301 // skipped cloning some region of this loop which can in turn skip some of 1302 // the backedges so we have to rebuild the blocks in the loop based on the 1303 // backedges that remain after cloning. 1304 SmallVector<BasicBlock *, 16> Worklist; 1305 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1306 for (auto *Pred : predecessors(ClonedHeader)) { 1307 // The only possible non-loop header predecessor is the preheader because 1308 // we know we cloned the loop in simplified form. 1309 if (Pred == ClonedPH) 1310 continue; 1311 1312 // Because the loop was in simplified form, the only non-loop predecessor 1313 // should be the preheader. 1314 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1315 "header other than the preheader " 1316 "that is not part of the loop!"); 1317 1318 // Insert this block into the loop set and on the first visit (and if it 1319 // isn't the header we're currently walking) put it into the worklist to 1320 // recurse through. 1321 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1322 Worklist.push_back(Pred); 1323 } 1324 1325 // If we had any backedges then there *is* a cloned loop. Put the header into 1326 // the loop set and then walk the worklist backwards to find all the blocks 1327 // that remain within the loop after cloning. 1328 if (!BlocksInClonedLoop.empty()) { 1329 BlocksInClonedLoop.insert(ClonedHeader); 1330 1331 while (!Worklist.empty()) { 1332 BasicBlock *BB = Worklist.pop_back_val(); 1333 assert(BlocksInClonedLoop.count(BB) && 1334 "Didn't put block into the loop set!"); 1335 1336 // Insert any predecessors that are in the possible set into the cloned 1337 // set, and if the insert is successful, add them to the worklist. Note 1338 // that we filter on the blocks that are definitely reachable via the 1339 // backedge to the loop header so we may prune out dead code within the 1340 // cloned loop. 1341 for (auto *Pred : predecessors(BB)) 1342 if (ClonedLoopBlocks.count(Pred) && 1343 BlocksInClonedLoop.insert(Pred).second) 1344 Worklist.push_back(Pred); 1345 } 1346 1347 ClonedL = LI.AllocateLoop(); 1348 if (ParentL) { 1349 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1350 ParentL->addChildLoop(ClonedL); 1351 } else { 1352 LI.addTopLevelLoop(ClonedL); 1353 } 1354 NonChildClonedLoops.push_back(ClonedL); 1355 1356 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1357 // We don't want to just add the cloned loop blocks based on how we 1358 // discovered them. The original order of blocks was carefully built in 1359 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1360 // that logic, we just re-walk the original blocks (and those of the child 1361 // loops) and filter them as we add them into the cloned loop. 1362 for (auto *BB : OrigL.blocks()) { 1363 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1364 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1365 continue; 1366 1367 // Directly add the blocks that are only in this loop. 1368 if (LI.getLoopFor(BB) == &OrigL) { 1369 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1370 continue; 1371 } 1372 1373 // We want to manually add it to this loop and parents. 1374 // Registering it with LoopInfo will happen when we clone the top 1375 // loop for this block. 1376 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1377 PL->addBlockEntry(ClonedBB); 1378 } 1379 1380 // Now add each child loop whose header remains within the cloned loop. All 1381 // of the blocks within the loop must satisfy the same constraints as the 1382 // header so once we pass the header checks we can just clone the entire 1383 // child loop nest. 1384 for (Loop *ChildL : OrigL) { 1385 auto *ClonedChildHeader = 1386 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1387 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1388 continue; 1389 1390 #ifndef NDEBUG 1391 // We should never have a cloned child loop header but fail to have 1392 // all of the blocks for that child loop. 1393 for (auto *ChildLoopBB : ChildL->blocks()) 1394 assert(BlocksInClonedLoop.count( 1395 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1396 "Child cloned loop has a header within the cloned outer " 1397 "loop but not all of its blocks!"); 1398 #endif 1399 1400 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1401 } 1402 } 1403 1404 // Now that we've handled all the components of the original loop that were 1405 // cloned into a new loop, we still need to handle anything from the original 1406 // loop that wasn't in a cloned loop. 1407 1408 // Figure out what blocks are left to place within any loop nest containing 1409 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1410 // them. 1411 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1412 if (BlocksInClonedLoop.empty()) 1413 UnloopedBlockSet.insert(ClonedPH); 1414 for (auto *ClonedBB : ClonedLoopBlocks) 1415 if (!BlocksInClonedLoop.count(ClonedBB)) 1416 UnloopedBlockSet.insert(ClonedBB); 1417 1418 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1419 // backwards across these to process them inside out. The order shouldn't 1420 // matter as we're just trying to build up the map from inside-out; we use 1421 // the map in a more stably ordered way below. 1422 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1423 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1424 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1425 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1426 }); 1427 1428 // Populate the existing ExitLoopMap with everything reachable from each 1429 // exit, starting from the inner most exit. 1430 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1431 assert(Worklist.empty() && "Didn't clear worklist!"); 1432 1433 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1434 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1435 1436 // Walk the CFG back until we hit the cloned PH adding everything reachable 1437 // and in the unlooped set to this exit block's loop. 1438 Worklist.push_back(ExitBB); 1439 do { 1440 BasicBlock *BB = Worklist.pop_back_val(); 1441 // We can stop recursing at the cloned preheader (if we get there). 1442 if (BB == ClonedPH) 1443 continue; 1444 1445 for (BasicBlock *PredBB : predecessors(BB)) { 1446 // If this pred has already been moved to our set or is part of some 1447 // (inner) loop, no update needed. 1448 if (!UnloopedBlockSet.erase(PredBB)) { 1449 assert( 1450 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1451 "Predecessor not mapped to a loop!"); 1452 continue; 1453 } 1454 1455 // We just insert into the loop set here. We'll add these blocks to the 1456 // exit loop after we build up the set in an order that doesn't rely on 1457 // predecessor order (which in turn relies on use list order). 1458 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1459 (void)Inserted; 1460 assert(Inserted && "Should only visit an unlooped block once!"); 1461 1462 // And recurse through to its predecessors. 1463 Worklist.push_back(PredBB); 1464 } 1465 } while (!Worklist.empty()); 1466 } 1467 1468 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1469 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1470 // in their original order adding them to the correct loop. 1471 1472 // We need a stable insertion order. We use the order of the original loop 1473 // order and map into the correct parent loop. 1474 for (auto *BB : llvm::concat<BasicBlock *const>( 1475 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1476 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1477 OuterL->addBasicBlockToLoop(BB, LI); 1478 1479 #ifndef NDEBUG 1480 for (auto &BBAndL : ExitLoopMap) { 1481 auto *BB = BBAndL.first; 1482 auto *OuterL = BBAndL.second; 1483 assert(LI.getLoopFor(BB) == OuterL && 1484 "Failed to put all blocks into outer loops!"); 1485 } 1486 #endif 1487 1488 // Now that all the blocks are placed into the correct containing loop in the 1489 // absence of child loops, find all the potentially cloned child loops and 1490 // clone them into whatever outer loop we placed their header into. 1491 for (Loop *ChildL : OrigL) { 1492 auto *ClonedChildHeader = 1493 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1494 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1495 continue; 1496 1497 #ifndef NDEBUG 1498 for (auto *ChildLoopBB : ChildL->blocks()) 1499 assert(VMap.count(ChildLoopBB) && 1500 "Cloned a child loop header but not all of that loops blocks!"); 1501 #endif 1502 1503 NonChildClonedLoops.push_back(cloneLoopNest( 1504 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1505 } 1506 } 1507 1508 static void 1509 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1510 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1511 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1512 // Find all the dead clones, and remove them from their successors. 1513 SmallVector<BasicBlock *, 16> DeadBlocks; 1514 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1515 for (auto &VMap : VMaps) 1516 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1517 if (!DT.isReachableFromEntry(ClonedBB)) { 1518 for (BasicBlock *SuccBB : successors(ClonedBB)) 1519 SuccBB->removePredecessor(ClonedBB); 1520 DeadBlocks.push_back(ClonedBB); 1521 } 1522 1523 // Remove all MemorySSA in the dead blocks 1524 if (MSSAU) { 1525 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1526 DeadBlocks.end()); 1527 MSSAU->removeBlocks(DeadBlockSet); 1528 } 1529 1530 // Drop any remaining references to break cycles. 1531 for (BasicBlock *BB : DeadBlocks) 1532 BB->dropAllReferences(); 1533 // Erase them from the IR. 1534 for (BasicBlock *BB : DeadBlocks) 1535 BB->eraseFromParent(); 1536 } 1537 1538 static void deleteDeadBlocksFromLoop(Loop &L, 1539 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1540 DominatorTree &DT, LoopInfo &LI, 1541 MemorySSAUpdater *MSSAU) { 1542 // Find all the dead blocks tied to this loop, and remove them from their 1543 // successors. 1544 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1545 1546 // Start with loop/exit blocks and get a transitive closure of reachable dead 1547 // blocks. 1548 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1549 ExitBlocks.end()); 1550 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1551 while (!DeathCandidates.empty()) { 1552 auto *BB = DeathCandidates.pop_back_val(); 1553 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1554 for (BasicBlock *SuccBB : successors(BB)) { 1555 SuccBB->removePredecessor(BB); 1556 DeathCandidates.push_back(SuccBB); 1557 } 1558 DeadBlockSet.insert(BB); 1559 } 1560 } 1561 1562 // Remove all MemorySSA in the dead blocks 1563 if (MSSAU) 1564 MSSAU->removeBlocks(DeadBlockSet); 1565 1566 // Filter out the dead blocks from the exit blocks list so that it can be 1567 // used in the caller. 1568 llvm::erase_if(ExitBlocks, 1569 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1570 1571 // Walk from this loop up through its parents removing all of the dead blocks. 1572 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1573 for (auto *BB : DeadBlockSet) 1574 ParentL->getBlocksSet().erase(BB); 1575 llvm::erase_if(ParentL->getBlocksVector(), 1576 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1577 } 1578 1579 // Now delete the dead child loops. This raw delete will clear them 1580 // recursively. 1581 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1582 if (!DeadBlockSet.count(ChildL->getHeader())) 1583 return false; 1584 1585 assert(llvm::all_of(ChildL->blocks(), 1586 [&](BasicBlock *ChildBB) { 1587 return DeadBlockSet.count(ChildBB); 1588 }) && 1589 "If the child loop header is dead all blocks in the child loop must " 1590 "be dead as well!"); 1591 LI.destroy(ChildL); 1592 return true; 1593 }); 1594 1595 // Remove the loop mappings for the dead blocks and drop all the references 1596 // from these blocks to others to handle cyclic references as we start 1597 // deleting the blocks themselves. 1598 for (auto *BB : DeadBlockSet) { 1599 // Check that the dominator tree has already been updated. 1600 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1601 LI.changeLoopFor(BB, nullptr); 1602 // Drop all uses of the instructions to make sure we won't have dangling 1603 // uses in other blocks. 1604 for (auto &I : *BB) 1605 if (!I.use_empty()) 1606 I.replaceAllUsesWith(UndefValue::get(I.getType())); 1607 BB->dropAllReferences(); 1608 } 1609 1610 // Actually delete the blocks now that they've been fully unhooked from the 1611 // IR. 1612 for (auto *BB : DeadBlockSet) 1613 BB->eraseFromParent(); 1614 } 1615 1616 /// Recompute the set of blocks in a loop after unswitching. 1617 /// 1618 /// This walks from the original headers predecessors to rebuild the loop. We 1619 /// take advantage of the fact that new blocks can't have been added, and so we 1620 /// filter by the original loop's blocks. This also handles potentially 1621 /// unreachable code that we don't want to explore but might be found examining 1622 /// the predecessors of the header. 1623 /// 1624 /// If the original loop is no longer a loop, this will return an empty set. If 1625 /// it remains a loop, all the blocks within it will be added to the set 1626 /// (including those blocks in inner loops). 1627 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1628 LoopInfo &LI) { 1629 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1630 1631 auto *PH = L.getLoopPreheader(); 1632 auto *Header = L.getHeader(); 1633 1634 // A worklist to use while walking backwards from the header. 1635 SmallVector<BasicBlock *, 16> Worklist; 1636 1637 // First walk the predecessors of the header to find the backedges. This will 1638 // form the basis of our walk. 1639 for (auto *Pred : predecessors(Header)) { 1640 // Skip the preheader. 1641 if (Pred == PH) 1642 continue; 1643 1644 // Because the loop was in simplified form, the only non-loop predecessor 1645 // is the preheader. 1646 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1647 "than the preheader that is not part of the " 1648 "loop!"); 1649 1650 // Insert this block into the loop set and on the first visit and, if it 1651 // isn't the header we're currently walking, put it into the worklist to 1652 // recurse through. 1653 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1654 Worklist.push_back(Pred); 1655 } 1656 1657 // If no backedges were found, we're done. 1658 if (LoopBlockSet.empty()) 1659 return LoopBlockSet; 1660 1661 // We found backedges, recurse through them to identify the loop blocks. 1662 while (!Worklist.empty()) { 1663 BasicBlock *BB = Worklist.pop_back_val(); 1664 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1665 1666 // No need to walk past the header. 1667 if (BB == Header) 1668 continue; 1669 1670 // Because we know the inner loop structure remains valid we can use the 1671 // loop structure to jump immediately across the entire nested loop. 1672 // Further, because it is in loop simplified form, we can directly jump 1673 // to its preheader afterward. 1674 if (Loop *InnerL = LI.getLoopFor(BB)) 1675 if (InnerL != &L) { 1676 assert(L.contains(InnerL) && 1677 "Should not reach a loop *outside* this loop!"); 1678 // The preheader is the only possible predecessor of the loop so 1679 // insert it into the set and check whether it was already handled. 1680 auto *InnerPH = InnerL->getLoopPreheader(); 1681 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1682 "but not contain the inner loop " 1683 "preheader!"); 1684 if (!LoopBlockSet.insert(InnerPH).second) 1685 // The only way to reach the preheader is through the loop body 1686 // itself so if it has been visited the loop is already handled. 1687 continue; 1688 1689 // Insert all of the blocks (other than those already present) into 1690 // the loop set. We expect at least the block that led us to find the 1691 // inner loop to be in the block set, but we may also have other loop 1692 // blocks if they were already enqueued as predecessors of some other 1693 // outer loop block. 1694 for (auto *InnerBB : InnerL->blocks()) { 1695 if (InnerBB == BB) { 1696 assert(LoopBlockSet.count(InnerBB) && 1697 "Block should already be in the set!"); 1698 continue; 1699 } 1700 1701 LoopBlockSet.insert(InnerBB); 1702 } 1703 1704 // Add the preheader to the worklist so we will continue past the 1705 // loop body. 1706 Worklist.push_back(InnerPH); 1707 continue; 1708 } 1709 1710 // Insert any predecessors that were in the original loop into the new 1711 // set, and if the insert is successful, add them to the worklist. 1712 for (auto *Pred : predecessors(BB)) 1713 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1714 Worklist.push_back(Pred); 1715 } 1716 1717 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1718 1719 // We've found all the blocks participating in the loop, return our completed 1720 // set. 1721 return LoopBlockSet; 1722 } 1723 1724 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1725 /// 1726 /// The removal may have removed some child loops entirely but cannot have 1727 /// disturbed any remaining child loops. However, they may need to be hoisted 1728 /// to the parent loop (or to be top-level loops). The original loop may be 1729 /// completely removed. 1730 /// 1731 /// The sibling loops resulting from this update are returned. If the original 1732 /// loop remains a valid loop, it will be the first entry in this list with all 1733 /// of the newly sibling loops following it. 1734 /// 1735 /// Returns true if the loop remains a loop after unswitching, and false if it 1736 /// is no longer a loop after unswitching (and should not continue to be 1737 /// referenced). 1738 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1739 LoopInfo &LI, 1740 SmallVectorImpl<Loop *> &HoistedLoops) { 1741 auto *PH = L.getLoopPreheader(); 1742 1743 // Compute the actual parent loop from the exit blocks. Because we may have 1744 // pruned some exits the loop may be different from the original parent. 1745 Loop *ParentL = nullptr; 1746 SmallVector<Loop *, 4> ExitLoops; 1747 SmallVector<BasicBlock *, 4> ExitsInLoops; 1748 ExitsInLoops.reserve(ExitBlocks.size()); 1749 for (auto *ExitBB : ExitBlocks) 1750 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1751 ExitLoops.push_back(ExitL); 1752 ExitsInLoops.push_back(ExitBB); 1753 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1754 ParentL = ExitL; 1755 } 1756 1757 // Recompute the blocks participating in this loop. This may be empty if it 1758 // is no longer a loop. 1759 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1760 1761 // If we still have a loop, we need to re-set the loop's parent as the exit 1762 // block set changing may have moved it within the loop nest. Note that this 1763 // can only happen when this loop has a parent as it can only hoist the loop 1764 // *up* the nest. 1765 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1766 // Remove this loop's (original) blocks from all of the intervening loops. 1767 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1768 IL = IL->getParentLoop()) { 1769 IL->getBlocksSet().erase(PH); 1770 for (auto *BB : L.blocks()) 1771 IL->getBlocksSet().erase(BB); 1772 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1773 return BB == PH || L.contains(BB); 1774 }); 1775 } 1776 1777 LI.changeLoopFor(PH, ParentL); 1778 L.getParentLoop()->removeChildLoop(&L); 1779 if (ParentL) 1780 ParentL->addChildLoop(&L); 1781 else 1782 LI.addTopLevelLoop(&L); 1783 } 1784 1785 // Now we update all the blocks which are no longer within the loop. 1786 auto &Blocks = L.getBlocksVector(); 1787 auto BlocksSplitI = 1788 LoopBlockSet.empty() 1789 ? Blocks.begin() 1790 : std::stable_partition( 1791 Blocks.begin(), Blocks.end(), 1792 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1793 1794 // Before we erase the list of unlooped blocks, build a set of them. 1795 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1796 if (LoopBlockSet.empty()) 1797 UnloopedBlocks.insert(PH); 1798 1799 // Now erase these blocks from the loop. 1800 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1801 L.getBlocksSet().erase(BB); 1802 Blocks.erase(BlocksSplitI, Blocks.end()); 1803 1804 // Sort the exits in ascending loop depth, we'll work backwards across these 1805 // to process them inside out. 1806 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1807 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1808 }); 1809 1810 // We'll build up a set for each exit loop. 1811 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1812 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1813 1814 auto RemoveUnloopedBlocksFromLoop = 1815 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1816 for (auto *BB : UnloopedBlocks) 1817 L.getBlocksSet().erase(BB); 1818 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1819 return UnloopedBlocks.count(BB); 1820 }); 1821 }; 1822 1823 SmallVector<BasicBlock *, 16> Worklist; 1824 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1825 assert(Worklist.empty() && "Didn't clear worklist!"); 1826 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1827 1828 // Grab the next exit block, in decreasing loop depth order. 1829 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1830 Loop &ExitL = *LI.getLoopFor(ExitBB); 1831 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1832 1833 // Erase all of the unlooped blocks from the loops between the previous 1834 // exit loop and this exit loop. This works because the ExitInLoops list is 1835 // sorted in increasing order of loop depth and thus we visit loops in 1836 // decreasing order of loop depth. 1837 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1838 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1839 1840 // Walk the CFG back until we hit the cloned PH adding everything reachable 1841 // and in the unlooped set to this exit block's loop. 1842 Worklist.push_back(ExitBB); 1843 do { 1844 BasicBlock *BB = Worklist.pop_back_val(); 1845 // We can stop recursing at the cloned preheader (if we get there). 1846 if (BB == PH) 1847 continue; 1848 1849 for (BasicBlock *PredBB : predecessors(BB)) { 1850 // If this pred has already been moved to our set or is part of some 1851 // (inner) loop, no update needed. 1852 if (!UnloopedBlocks.erase(PredBB)) { 1853 assert((NewExitLoopBlocks.count(PredBB) || 1854 ExitL.contains(LI.getLoopFor(PredBB))) && 1855 "Predecessor not in a nested loop (or already visited)!"); 1856 continue; 1857 } 1858 1859 // We just insert into the loop set here. We'll add these blocks to the 1860 // exit loop after we build up the set in a deterministic order rather 1861 // than the predecessor-influenced visit order. 1862 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1863 (void)Inserted; 1864 assert(Inserted && "Should only visit an unlooped block once!"); 1865 1866 // And recurse through to its predecessors. 1867 Worklist.push_back(PredBB); 1868 } 1869 } while (!Worklist.empty()); 1870 1871 // If blocks in this exit loop were directly part of the original loop (as 1872 // opposed to a child loop) update the map to point to this exit loop. This 1873 // just updates a map and so the fact that the order is unstable is fine. 1874 for (auto *BB : NewExitLoopBlocks) 1875 if (Loop *BBL = LI.getLoopFor(BB)) 1876 if (BBL == &L || !L.contains(BBL)) 1877 LI.changeLoopFor(BB, &ExitL); 1878 1879 // We will remove the remaining unlooped blocks from this loop in the next 1880 // iteration or below. 1881 NewExitLoopBlocks.clear(); 1882 } 1883 1884 // Any remaining unlooped blocks are no longer part of any loop unless they 1885 // are part of some child loop. 1886 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1887 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1888 for (auto *BB : UnloopedBlocks) 1889 if (Loop *BBL = LI.getLoopFor(BB)) 1890 if (BBL == &L || !L.contains(BBL)) 1891 LI.changeLoopFor(BB, nullptr); 1892 1893 // Sink all the child loops whose headers are no longer in the loop set to 1894 // the parent (or to be top level loops). We reach into the loop and directly 1895 // update its subloop vector to make this batch update efficient. 1896 auto &SubLoops = L.getSubLoopsVector(); 1897 auto SubLoopsSplitI = 1898 LoopBlockSet.empty() 1899 ? SubLoops.begin() 1900 : std::stable_partition( 1901 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1902 return LoopBlockSet.count(SubL->getHeader()); 1903 }); 1904 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1905 HoistedLoops.push_back(HoistedL); 1906 HoistedL->setParentLoop(nullptr); 1907 1908 // To compute the new parent of this hoisted loop we look at where we 1909 // placed the preheader above. We can't lookup the header itself because we 1910 // retained the mapping from the header to the hoisted loop. But the 1911 // preheader and header should have the exact same new parent computed 1912 // based on the set of exit blocks from the original loop as the preheader 1913 // is a predecessor of the header and so reached in the reverse walk. And 1914 // because the loops were all in simplified form the preheader of the 1915 // hoisted loop can't be part of some *other* loop. 1916 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1917 NewParentL->addChildLoop(HoistedL); 1918 else 1919 LI.addTopLevelLoop(HoistedL); 1920 } 1921 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1922 1923 // Actually delete the loop if nothing remained within it. 1924 if (Blocks.empty()) { 1925 assert(SubLoops.empty() && 1926 "Failed to remove all subloops from the original loop!"); 1927 if (Loop *ParentL = L.getParentLoop()) 1928 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1929 else 1930 LI.removeLoop(llvm::find(LI, &L)); 1931 LI.destroy(&L); 1932 return false; 1933 } 1934 1935 return true; 1936 } 1937 1938 /// Helper to visit a dominator subtree, invoking a callable on each node. 1939 /// 1940 /// Returning false at any point will stop walking past that node of the tree. 1941 template <typename CallableT> 1942 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1943 SmallVector<DomTreeNode *, 4> DomWorklist; 1944 DomWorklist.push_back(DT[BB]); 1945 #ifndef NDEBUG 1946 SmallPtrSet<DomTreeNode *, 4> Visited; 1947 Visited.insert(DT[BB]); 1948 #endif 1949 do { 1950 DomTreeNode *N = DomWorklist.pop_back_val(); 1951 1952 // Visit this node. 1953 if (!Callable(N->getBlock())) 1954 continue; 1955 1956 // Accumulate the child nodes. 1957 for (DomTreeNode *ChildN : *N) { 1958 assert(Visited.insert(ChildN).second && 1959 "Cannot visit a node twice when walking a tree!"); 1960 DomWorklist.push_back(ChildN); 1961 } 1962 } while (!DomWorklist.empty()); 1963 } 1964 1965 static void unswitchNontrivialInvariants( 1966 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1967 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1968 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1969 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 1970 auto *ParentBB = TI.getParent(); 1971 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1972 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1973 1974 // We can only unswitch switches, conditional branches with an invariant 1975 // condition, or combining invariant conditions with an instruction. 1976 assert((SI || (BI && BI->isConditional())) && 1977 "Can only unswitch switches and conditional branch!"); 1978 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1979 if (FullUnswitch) 1980 assert(Invariants.size() == 1 && 1981 "Cannot have other invariants with full unswitching!"); 1982 else 1983 assert(isa<Instruction>(BI->getCondition()) && 1984 "Partial unswitching requires an instruction as the condition!"); 1985 1986 if (MSSAU && VerifyMemorySSA) 1987 MSSAU->getMemorySSA()->verifyMemorySSA(); 1988 1989 // Constant and BBs tracking the cloned and continuing successor. When we are 1990 // unswitching the entire condition, this can just be trivially chosen to 1991 // unswitch towards `true`. However, when we are unswitching a set of 1992 // invariants combined with `and` or `or`, the combining operation determines 1993 // the best direction to unswitch: we want to unswitch the direction that will 1994 // collapse the branch. 1995 bool Direction = true; 1996 int ClonedSucc = 0; 1997 if (!FullUnswitch) { 1998 if (!match(BI->getCondition(), m_LogicalOr())) { 1999 assert(match(BI->getCondition(), m_LogicalAnd()) && 2000 "Only `or`, `and`, an `select` instructions can combine " 2001 "invariants being unswitched."); 2002 Direction = false; 2003 ClonedSucc = 1; 2004 } 2005 } 2006 2007 BasicBlock *RetainedSuccBB = 2008 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 2009 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 2010 if (BI) 2011 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 2012 else 2013 for (auto Case : SI->cases()) 2014 if (Case.getCaseSuccessor() != RetainedSuccBB) 2015 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 2016 2017 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 2018 "Should not unswitch the same successor we are retaining!"); 2019 2020 // The branch should be in this exact loop. Any inner loop's invariant branch 2021 // should be handled by unswitching that inner loop. The caller of this 2022 // routine should filter out any candidates that remain (but were skipped for 2023 // whatever reason). 2024 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2025 2026 // Compute the parent loop now before we start hacking on things. 2027 Loop *ParentL = L.getParentLoop(); 2028 // Get blocks in RPO order for MSSA update, before changing the CFG. 2029 LoopBlocksRPO LBRPO(&L); 2030 if (MSSAU) 2031 LBRPO.perform(&LI); 2032 2033 // Compute the outer-most loop containing one of our exit blocks. This is the 2034 // furthest up our loopnest which can be mutated, which we will use below to 2035 // update things. 2036 Loop *OuterExitL = &L; 2037 for (auto *ExitBB : ExitBlocks) { 2038 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2039 if (!NewOuterExitL) { 2040 // We exited the entire nest with this block, so we're done. 2041 OuterExitL = nullptr; 2042 break; 2043 } 2044 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2045 OuterExitL = NewOuterExitL; 2046 } 2047 2048 // At this point, we're definitely going to unswitch something so invalidate 2049 // any cached information in ScalarEvolution for the outer most loop 2050 // containing an exit block and all nested loops. 2051 if (SE) { 2052 if (OuterExitL) 2053 SE->forgetLoop(OuterExitL); 2054 else 2055 SE->forgetTopmostLoop(&L); 2056 } 2057 2058 // If the edge from this terminator to a successor dominates that successor, 2059 // store a map from each block in its dominator subtree to it. This lets us 2060 // tell when cloning for a particular successor if a block is dominated by 2061 // some *other* successor with a single data structure. We use this to 2062 // significantly reduce cloning. 2063 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2064 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2065 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2066 if (SuccBB->getUniquePredecessor() || 2067 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2068 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2069 })) 2070 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2071 DominatingSucc[BB] = SuccBB; 2072 return true; 2073 }); 2074 2075 // Split the preheader, so that we know that there is a safe place to insert 2076 // the conditional branch. We will change the preheader to have a conditional 2077 // branch on LoopCond. The original preheader will become the split point 2078 // between the unswitched versions, and we will have a new preheader for the 2079 // original loop. 2080 BasicBlock *SplitBB = L.getLoopPreheader(); 2081 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2082 2083 // Keep track of the dominator tree updates needed. 2084 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2085 2086 // Clone the loop for each unswitched successor. 2087 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2088 VMaps.reserve(UnswitchedSuccBBs.size()); 2089 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2090 for (auto *SuccBB : UnswitchedSuccBBs) { 2091 VMaps.emplace_back(new ValueToValueMapTy()); 2092 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2093 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2094 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2095 } 2096 2097 // Drop metadata if we may break its semantics by moving this instr into the 2098 // split block. 2099 if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 2100 if (DropNonTrivialImplicitNullChecks) 2101 // Do not spend time trying to understand if we can keep it, just drop it 2102 // to save compile time. 2103 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2104 else { 2105 // It is only legal to preserve make.implicit metadata if we are 2106 // guaranteed no reach implicit null check after following this branch. 2107 ICFLoopSafetyInfo SafetyInfo; 2108 SafetyInfo.computeLoopSafetyInfo(&L); 2109 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2110 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2111 } 2112 } 2113 2114 // The stitching of the branched code back together depends on whether we're 2115 // doing full unswitching or not with the exception that we always want to 2116 // nuke the initial terminator placed in the split block. 2117 SplitBB->getTerminator()->eraseFromParent(); 2118 if (FullUnswitch) { 2119 // Splice the terminator from the original loop and rewrite its 2120 // successors. 2121 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2122 2123 // Keep a clone of the terminator for MSSA updates. 2124 Instruction *NewTI = TI.clone(); 2125 ParentBB->getInstList().push_back(NewTI); 2126 2127 // First wire up the moved terminator to the preheaders. 2128 if (BI) { 2129 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2130 BI->setSuccessor(ClonedSucc, ClonedPH); 2131 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2132 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2133 } else { 2134 assert(SI && "Must either be a branch or switch!"); 2135 2136 // Walk the cases and directly update their successors. 2137 assert(SI->getDefaultDest() == RetainedSuccBB && 2138 "Not retaining default successor!"); 2139 SI->setDefaultDest(LoopPH); 2140 for (auto &Case : SI->cases()) 2141 if (Case.getCaseSuccessor() == RetainedSuccBB) 2142 Case.setSuccessor(LoopPH); 2143 else 2144 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2145 2146 // We need to use the set to populate domtree updates as even when there 2147 // are multiple cases pointing at the same successor we only want to 2148 // remove and insert one edge in the domtree. 2149 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2150 DTUpdates.push_back( 2151 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2152 } 2153 2154 if (MSSAU) { 2155 DT.applyUpdates(DTUpdates); 2156 DTUpdates.clear(); 2157 2158 // Remove all but one edge to the retained block and all unswitched 2159 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2160 // when we know we only keep a single edge for each case. 2161 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2162 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2163 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2164 2165 for (auto &VMap : VMaps) 2166 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2167 /*IgnoreIncomingWithNoClones=*/true); 2168 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2169 2170 // Remove all edges to unswitched blocks. 2171 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2172 MSSAU->removeEdge(ParentBB, SuccBB); 2173 } 2174 2175 // Now unhook the successor relationship as we'll be replacing 2176 // the terminator with a direct branch. This is much simpler for branches 2177 // than switches so we handle those first. 2178 if (BI) { 2179 // Remove the parent as a predecessor of the unswitched successor. 2180 assert(UnswitchedSuccBBs.size() == 1 && 2181 "Only one possible unswitched block for a branch!"); 2182 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2183 UnswitchedSuccBB->removePredecessor(ParentBB, 2184 /*KeepOneInputPHIs*/ true); 2185 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2186 } else { 2187 // Note that we actually want to remove the parent block as a predecessor 2188 // of *every* case successor. The case successor is either unswitched, 2189 // completely eliminating an edge from the parent to that successor, or it 2190 // is a duplicate edge to the retained successor as the retained successor 2191 // is always the default successor and as we'll replace this with a direct 2192 // branch we no longer need the duplicate entries in the PHI nodes. 2193 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2194 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2195 "Not retaining default successor!"); 2196 for (auto &Case : NewSI->cases()) 2197 Case.getCaseSuccessor()->removePredecessor( 2198 ParentBB, 2199 /*KeepOneInputPHIs*/ true); 2200 2201 // We need to use the set to populate domtree updates as even when there 2202 // are multiple cases pointing at the same successor we only want to 2203 // remove and insert one edge in the domtree. 2204 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2205 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2206 } 2207 2208 // After MSSAU update, remove the cloned terminator instruction NewTI. 2209 ParentBB->getTerminator()->eraseFromParent(); 2210 2211 // Create a new unconditional branch to the continuing block (as opposed to 2212 // the one cloned). 2213 BranchInst::Create(RetainedSuccBB, ParentBB); 2214 } else { 2215 assert(BI && "Only branches have partial unswitching."); 2216 assert(UnswitchedSuccBBs.size() == 1 && 2217 "Only one possible unswitched block for a branch!"); 2218 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2219 // When doing a partial unswitch, we have to do a bit more work to build up 2220 // the branch in the split block. 2221 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2222 *ClonedPH, *LoopPH); 2223 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2224 2225 if (MSSAU) { 2226 DT.applyUpdates(DTUpdates); 2227 DTUpdates.clear(); 2228 2229 // Perform MSSA cloning updates. 2230 for (auto &VMap : VMaps) 2231 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2232 /*IgnoreIncomingWithNoClones=*/true); 2233 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2234 } 2235 } 2236 2237 // Apply the updates accumulated above to get an up-to-date dominator tree. 2238 DT.applyUpdates(DTUpdates); 2239 2240 // Now that we have an accurate dominator tree, first delete the dead cloned 2241 // blocks so that we can accurately build any cloned loops. It is important to 2242 // not delete the blocks from the original loop yet because we still want to 2243 // reference the original loop to understand the cloned loop's structure. 2244 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2245 2246 // Build the cloned loop structure itself. This may be substantially 2247 // different from the original structure due to the simplified CFG. This also 2248 // handles inserting all the cloned blocks into the correct loops. 2249 SmallVector<Loop *, 4> NonChildClonedLoops; 2250 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2251 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2252 2253 // Now that our cloned loops have been built, we can update the original loop. 2254 // First we delete the dead blocks from it and then we rebuild the loop 2255 // structure taking these deletions into account. 2256 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2257 2258 if (MSSAU && VerifyMemorySSA) 2259 MSSAU->getMemorySSA()->verifyMemorySSA(); 2260 2261 SmallVector<Loop *, 4> HoistedLoops; 2262 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2263 2264 if (MSSAU && VerifyMemorySSA) 2265 MSSAU->getMemorySSA()->verifyMemorySSA(); 2266 2267 // This transformation has a high risk of corrupting the dominator tree, and 2268 // the below steps to rebuild loop structures will result in hard to debug 2269 // errors in that case so verify that the dominator tree is sane first. 2270 // FIXME: Remove this when the bugs stop showing up and rely on existing 2271 // verification steps. 2272 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2273 2274 if (BI) { 2275 // If we unswitched a branch which collapses the condition to a known 2276 // constant we want to replace all the uses of the invariants within both 2277 // the original and cloned blocks. We do this here so that we can use the 2278 // now updated dominator tree to identify which side the users are on. 2279 assert(UnswitchedSuccBBs.size() == 1 && 2280 "Only one possible unswitched block for a branch!"); 2281 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2282 2283 // When considering multiple partially-unswitched invariants 2284 // we cant just go replace them with constants in both branches. 2285 // 2286 // For 'AND' we infer that true branch ("continue") means true 2287 // for each invariant operand. 2288 // For 'OR' we can infer that false branch ("continue") means false 2289 // for each invariant operand. 2290 // So it happens that for multiple-partial case we dont replace 2291 // in the unswitched branch. 2292 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2293 2294 ConstantInt *UnswitchedReplacement = 2295 Direction ? ConstantInt::getTrue(BI->getContext()) 2296 : ConstantInt::getFalse(BI->getContext()); 2297 ConstantInt *ContinueReplacement = 2298 Direction ? ConstantInt::getFalse(BI->getContext()) 2299 : ConstantInt::getTrue(BI->getContext()); 2300 for (Value *Invariant : Invariants) 2301 // Use make_early_inc_range here as set invalidates the iterator. 2302 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 2303 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 2304 if (!UserI) 2305 continue; 2306 2307 // Replace it with the 'continue' side if in the main loop body, and the 2308 // unswitched if in the cloned blocks. 2309 if (DT.dominates(LoopPH, UserI->getParent())) 2310 U.set(ContinueReplacement); 2311 else if (ReplaceUnswitched && 2312 DT.dominates(ClonedPH, UserI->getParent())) 2313 U.set(UnswitchedReplacement); 2314 } 2315 } 2316 2317 // We can change which blocks are exit blocks of all the cloned sibling 2318 // loops, the current loop, and any parent loops which shared exit blocks 2319 // with the current loop. As a consequence, we need to re-form LCSSA for 2320 // them. But we shouldn't need to re-form LCSSA for any child loops. 2321 // FIXME: This could be made more efficient by tracking which exit blocks are 2322 // new, and focusing on them, but that isn't likely to be necessary. 2323 // 2324 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2325 // loop nest and update every loop that could have had its exits changed. We 2326 // also need to cover any intervening loops. We add all of these loops to 2327 // a list and sort them by loop depth to achieve this without updating 2328 // unnecessary loops. 2329 auto UpdateLoop = [&](Loop &UpdateL) { 2330 #ifndef NDEBUG 2331 UpdateL.verifyLoop(); 2332 for (Loop *ChildL : UpdateL) { 2333 ChildL->verifyLoop(); 2334 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2335 "Perturbed a child loop's LCSSA form!"); 2336 } 2337 #endif 2338 // First build LCSSA for this loop so that we can preserve it when 2339 // forming dedicated exits. We don't want to perturb some other loop's 2340 // LCSSA while doing that CFG edit. 2341 formLCSSA(UpdateL, DT, &LI, SE); 2342 2343 // For loops reached by this loop's original exit blocks we may 2344 // introduced new, non-dedicated exits. At least try to re-form dedicated 2345 // exits for these loops. This may fail if they couldn't have dedicated 2346 // exits to start with. 2347 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2348 }; 2349 2350 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2351 // and we can do it in any order as they don't nest relative to each other. 2352 // 2353 // Also check if any of the loops we have updated have become top-level loops 2354 // as that will necessitate widening the outer loop scope. 2355 for (Loop *UpdatedL : 2356 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2357 UpdateLoop(*UpdatedL); 2358 if (UpdatedL->isOutermost()) 2359 OuterExitL = nullptr; 2360 } 2361 if (IsStillLoop) { 2362 UpdateLoop(L); 2363 if (L.isOutermost()) 2364 OuterExitL = nullptr; 2365 } 2366 2367 // If the original loop had exit blocks, walk up through the outer most loop 2368 // of those exit blocks to update LCSSA and form updated dedicated exits. 2369 if (OuterExitL != &L) 2370 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2371 OuterL = OuterL->getParentLoop()) 2372 UpdateLoop(*OuterL); 2373 2374 #ifndef NDEBUG 2375 // Verify the entire loop structure to catch any incorrect updates before we 2376 // progress in the pass pipeline. 2377 LI.verify(DT); 2378 #endif 2379 2380 // Now that we've unswitched something, make callbacks to report the changes. 2381 // For that we need to merge together the updated loops and the cloned loops 2382 // and check whether the original loop survived. 2383 SmallVector<Loop *, 4> SibLoops; 2384 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2385 if (UpdatedL->getParentLoop() == ParentL) 2386 SibLoops.push_back(UpdatedL); 2387 UnswitchCB(IsStillLoop, SibLoops); 2388 2389 if (MSSAU && VerifyMemorySSA) 2390 MSSAU->getMemorySSA()->verifyMemorySSA(); 2391 2392 if (BI) 2393 ++NumBranches; 2394 else 2395 ++NumSwitches; 2396 } 2397 2398 /// Recursively compute the cost of a dominator subtree based on the per-block 2399 /// cost map provided. 2400 /// 2401 /// The recursive computation is memozied into the provided DT-indexed cost map 2402 /// to allow querying it for most nodes in the domtree without it becoming 2403 /// quadratic. 2404 static InstructionCost computeDomSubtreeCost( 2405 DomTreeNode &N, 2406 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, 2407 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { 2408 // Don't accumulate cost (or recurse through) blocks not in our block cost 2409 // map and thus not part of the duplication cost being considered. 2410 auto BBCostIt = BBCostMap.find(N.getBlock()); 2411 if (BBCostIt == BBCostMap.end()) 2412 return 0; 2413 2414 // Lookup this node to see if we already computed its cost. 2415 auto DTCostIt = DTCostMap.find(&N); 2416 if (DTCostIt != DTCostMap.end()) 2417 return DTCostIt->second; 2418 2419 // If not, we have to compute it. We can't use insert above and update 2420 // because computing the cost may insert more things into the map. 2421 InstructionCost Cost = std::accumulate( 2422 N.begin(), N.end(), BBCostIt->second, 2423 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { 2424 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2425 }); 2426 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2427 (void)Inserted; 2428 assert(Inserted && "Should not insert a node while visiting children!"); 2429 return Cost; 2430 } 2431 2432 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2433 /// making the following replacement: 2434 /// 2435 /// --code before guard-- 2436 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2437 /// --code after guard-- 2438 /// 2439 /// into 2440 /// 2441 /// --code before guard-- 2442 /// br i1 %cond, label %guarded, label %deopt 2443 /// 2444 /// guarded: 2445 /// --code after guard-- 2446 /// 2447 /// deopt: 2448 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2449 /// unreachable 2450 /// 2451 /// It also makes all relevant DT and LI updates, so that all structures are in 2452 /// valid state after this transform. 2453 static BranchInst * 2454 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2455 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2456 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2457 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2458 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2459 BasicBlock *CheckBB = GI->getParent(); 2460 2461 if (MSSAU && VerifyMemorySSA) 2462 MSSAU->getMemorySSA()->verifyMemorySSA(); 2463 2464 // Remove all CheckBB's successors from DomTree. A block can be seen among 2465 // successors more than once, but for DomTree it should be added only once. 2466 SmallPtrSet<BasicBlock *, 4> Successors; 2467 for (auto *Succ : successors(CheckBB)) 2468 if (Successors.insert(Succ).second) 2469 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2470 2471 Instruction *DeoptBlockTerm = 2472 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2473 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2474 // SplitBlockAndInsertIfThen inserts control flow that branches to 2475 // DeoptBlockTerm if the condition is true. We want the opposite. 2476 CheckBI->swapSuccessors(); 2477 2478 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2479 GuardedBlock->setName("guarded"); 2480 CheckBI->getSuccessor(1)->setName("deopt"); 2481 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2482 2483 // We now have a new exit block. 2484 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2485 2486 if (MSSAU) 2487 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2488 2489 GI->moveBefore(DeoptBlockTerm); 2490 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2491 2492 // Add new successors of CheckBB into DomTree. 2493 for (auto *Succ : successors(CheckBB)) 2494 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2495 2496 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2497 // successors. 2498 for (auto *Succ : Successors) 2499 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2500 2501 // Make proper changes to DT. 2502 DT.applyUpdates(DTUpdates); 2503 // Inform LI of a new loop block. 2504 L.addBasicBlockToLoop(GuardedBlock, LI); 2505 2506 if (MSSAU) { 2507 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2508 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2509 if (VerifyMemorySSA) 2510 MSSAU->getMemorySSA()->verifyMemorySSA(); 2511 } 2512 2513 ++NumGuards; 2514 return CheckBI; 2515 } 2516 2517 /// Cost multiplier is a way to limit potentially exponential behavior 2518 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2519 /// candidates available. Also accounting for the number of "sibling" loops with 2520 /// the idea to account for previous unswitches that already happened on this 2521 /// cluster of loops. There was an attempt to keep this formula simple, 2522 /// just enough to limit the worst case behavior. Even if it is not that simple 2523 /// now it is still not an attempt to provide a detailed heuristic size 2524 /// prediction. 2525 /// 2526 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2527 /// unswitch candidates, making adequate predictions instead of wild guesses. 2528 /// That requires knowing not just the number of "remaining" candidates but 2529 /// also costs of unswitching for each of these candidates. 2530 static int CalculateUnswitchCostMultiplier( 2531 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2532 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2533 UnswitchCandidates) { 2534 2535 // Guards and other exiting conditions do not contribute to exponential 2536 // explosion as soon as they dominate the latch (otherwise there might be 2537 // another path to the latch remaining that does not allow to eliminate the 2538 // loop copy on unswitch). 2539 BasicBlock *Latch = L.getLoopLatch(); 2540 BasicBlock *CondBlock = TI.getParent(); 2541 if (DT.dominates(CondBlock, Latch) && 2542 (isGuard(&TI) || 2543 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2544 return L.contains(SuccBB); 2545 }) <= 1)) { 2546 NumCostMultiplierSkipped++; 2547 return 1; 2548 } 2549 2550 auto *ParentL = L.getParentLoop(); 2551 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2552 : std::distance(LI.begin(), LI.end())); 2553 // Count amount of clones that all the candidates might cause during 2554 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2555 int UnswitchedClones = 0; 2556 for (auto Candidate : UnswitchCandidates) { 2557 Instruction *CI = Candidate.first; 2558 BasicBlock *CondBlock = CI->getParent(); 2559 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2560 if (isGuard(CI)) { 2561 if (!SkipExitingSuccessors) 2562 UnswitchedClones++; 2563 continue; 2564 } 2565 int NonExitingSuccessors = llvm::count_if( 2566 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2567 return !SkipExitingSuccessors || L.contains(SuccBB); 2568 }); 2569 UnswitchedClones += Log2_32(NonExitingSuccessors); 2570 } 2571 2572 // Ignore up to the "unscaled candidates" number of unswitch candidates 2573 // when calculating the power-of-two scaling of the cost. The main idea 2574 // with this control is to allow a small number of unswitches to happen 2575 // and rely more on siblings multiplier (see below) when the number 2576 // of candidates is small. 2577 unsigned ClonesPower = 2578 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2579 2580 // Allowing top-level loops to spread a bit more than nested ones. 2581 int SiblingsMultiplier = 2582 std::max((ParentL ? SiblingsCount 2583 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2584 1); 2585 // Compute the cost multiplier in a way that won't overflow by saturating 2586 // at an upper bound. 2587 int CostMultiplier; 2588 if (ClonesPower > Log2_32(UnswitchThreshold) || 2589 SiblingsMultiplier > UnswitchThreshold) 2590 CostMultiplier = UnswitchThreshold; 2591 else 2592 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2593 (int)UnswitchThreshold); 2594 2595 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2596 << " (siblings " << SiblingsMultiplier << " * clones " 2597 << (1 << ClonesPower) << ")" 2598 << " for unswitch candidate: " << TI << "\n"); 2599 return CostMultiplier; 2600 } 2601 2602 static bool 2603 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2604 AssumptionCache &AC, TargetTransformInfo &TTI, 2605 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2606 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2607 // Collect all invariant conditions within this loop (as opposed to an inner 2608 // loop which would be handled when visiting that inner loop). 2609 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2610 UnswitchCandidates; 2611 2612 // Whether or not we should also collect guards in the loop. 2613 bool CollectGuards = false; 2614 if (UnswitchGuards) { 2615 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2616 Intrinsic::getName(Intrinsic::experimental_guard)); 2617 if (GuardDecl && !GuardDecl->use_empty()) 2618 CollectGuards = true; 2619 } 2620 2621 for (auto *BB : L.blocks()) { 2622 if (LI.getLoopFor(BB) != &L) 2623 continue; 2624 2625 if (CollectGuards) 2626 for (auto &I : *BB) 2627 if (isGuard(&I)) { 2628 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2629 // TODO: Support AND, OR conditions and partial unswitching. 2630 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2631 UnswitchCandidates.push_back({&I, {Cond}}); 2632 } 2633 2634 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2635 // We can only consider fully loop-invariant switch conditions as we need 2636 // to completely eliminate the switch after unswitching. 2637 if (!isa<Constant>(SI->getCondition()) && 2638 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2639 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2640 continue; 2641 } 2642 2643 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2644 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2645 BI->getSuccessor(0) == BI->getSuccessor(1)) 2646 continue; 2647 2648 // If BI's condition is 'select _, true, false', simplify it to confuse 2649 // matchers 2650 Value *Cond = BI->getCondition(), *CondNext; 2651 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero()))) 2652 Cond = CondNext; 2653 BI->setCondition(Cond); 2654 2655 if (L.isLoopInvariant(BI->getCondition())) { 2656 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2657 continue; 2658 } 2659 2660 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2661 if (!match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) 2662 continue; 2663 2664 TinyPtrVector<Value *> Invariants = 2665 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2666 if (Invariants.empty()) 2667 continue; 2668 2669 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2670 } 2671 2672 // If we didn't find any candidates, we're done. 2673 if (UnswitchCandidates.empty()) 2674 return false; 2675 2676 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2677 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2678 // irreducible control flow into reducible control flow and introduce new 2679 // loops "out of thin air". If we ever discover important use cases for doing 2680 // this, we can add support to loop unswitch, but it is a lot of complexity 2681 // for what seems little or no real world benefit. 2682 LoopBlocksRPO RPOT(&L); 2683 RPOT.perform(&LI); 2684 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2685 return false; 2686 2687 SmallVector<BasicBlock *, 4> ExitBlocks; 2688 L.getUniqueExitBlocks(ExitBlocks); 2689 2690 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2691 // don't know how to split those exit blocks. 2692 // FIXME: We should teach SplitBlock to handle this and remove this 2693 // restriction. 2694 for (auto *ExitBB : ExitBlocks) { 2695 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2696 LLVM_DEBUG( 2697 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"); 2698 return false; 2699 } 2700 } 2701 2702 LLVM_DEBUG( 2703 dbgs() << "Considering " << UnswitchCandidates.size() 2704 << " non-trivial loop invariant conditions for unswitching.\n"); 2705 2706 // Given that unswitching these terminators will require duplicating parts of 2707 // the loop, so we need to be able to model that cost. Compute the ephemeral 2708 // values and set up a data structure to hold per-BB costs. We cache each 2709 // block's cost so that we don't recompute this when considering different 2710 // subsets of the loop for duplication during unswitching. 2711 SmallPtrSet<const Value *, 4> EphValues; 2712 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2713 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; 2714 2715 // Compute the cost of each block, as well as the total loop cost. Also, bail 2716 // out if we see instructions which are incompatible with loop unswitching 2717 // (convergent, noduplicate, or cross-basic-block tokens). 2718 // FIXME: We might be able to safely handle some of these in non-duplicated 2719 // regions. 2720 TargetTransformInfo::TargetCostKind CostKind = 2721 L.getHeader()->getParent()->hasMinSize() 2722 ? TargetTransformInfo::TCK_CodeSize 2723 : TargetTransformInfo::TCK_SizeAndLatency; 2724 InstructionCost LoopCost = 0; 2725 for (auto *BB : L.blocks()) { 2726 InstructionCost Cost = 0; 2727 for (auto &I : *BB) { 2728 if (EphValues.count(&I)) 2729 continue; 2730 2731 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2732 return false; 2733 if (auto *CB = dyn_cast<CallBase>(&I)) 2734 if (CB->isConvergent() || CB->cannotDuplicate()) 2735 return false; 2736 2737 Cost += TTI.getUserCost(&I, CostKind); 2738 } 2739 assert(Cost >= 0 && "Must not have negative costs!"); 2740 LoopCost += Cost; 2741 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2742 BBCostMap[BB] = Cost; 2743 } 2744 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2745 2746 // Now we find the best candidate by searching for the one with the following 2747 // properties in order: 2748 // 2749 // 1) An unswitching cost below the threshold 2750 // 2) The smallest number of duplicated unswitch candidates (to avoid 2751 // creating redundant subsequent unswitching) 2752 // 3) The smallest cost after unswitching. 2753 // 2754 // We prioritize reducing fanout of unswitch candidates provided the cost 2755 // remains below the threshold because this has a multiplicative effect. 2756 // 2757 // This requires memoizing each dominator subtree to avoid redundant work. 2758 // 2759 // FIXME: Need to actually do the number of candidates part above. 2760 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; 2761 // Given a terminator which might be unswitched, computes the non-duplicated 2762 // cost for that terminator. 2763 auto ComputeUnswitchedCost = [&](Instruction &TI, 2764 bool FullUnswitch) -> InstructionCost { 2765 BasicBlock &BB = *TI.getParent(); 2766 SmallPtrSet<BasicBlock *, 4> Visited; 2767 2768 InstructionCost Cost = 0; 2769 for (BasicBlock *SuccBB : successors(&BB)) { 2770 // Don't count successors more than once. 2771 if (!Visited.insert(SuccBB).second) 2772 continue; 2773 2774 // If this is a partial unswitch candidate, then it must be a conditional 2775 // branch with a condition of either `or`, `and`, or their corresponding 2776 // select forms. In that case, one of the successors is necessarily 2777 // duplicated, so don't even try to remove its cost. 2778 if (!FullUnswitch) { 2779 auto &BI = cast<BranchInst>(TI); 2780 if (match(BI.getCondition(), m_LogicalAnd())) { 2781 if (SuccBB == BI.getSuccessor(1)) 2782 continue; 2783 } else { 2784 assert(match(BI.getCondition(), m_LogicalOr()) && 2785 "Only `and` and `or` conditions can result in a partial " 2786 "unswitch!"); 2787 if (SuccBB == BI.getSuccessor(0)) 2788 continue; 2789 } 2790 } 2791 2792 // This successor's domtree will not need to be duplicated after 2793 // unswitching if the edge to the successor dominates it (and thus the 2794 // entire tree). This essentially means there is no other path into this 2795 // subtree and so it will end up live in only one clone of the loop. 2796 if (SuccBB->getUniquePredecessor() || 2797 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2798 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2799 })) { 2800 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2801 assert(Cost <= LoopCost && 2802 "Non-duplicated cost should never exceed total loop cost!"); 2803 } 2804 } 2805 2806 // Now scale the cost by the number of unique successors minus one. We 2807 // subtract one because there is already at least one copy of the entire 2808 // loop. This is computing the new cost of unswitching a condition. 2809 // Note that guards always have 2 unique successors that are implicit and 2810 // will be materialized if we decide to unswitch it. 2811 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2812 assert(SuccessorsCount > 1 && 2813 "Cannot unswitch a condition without multiple distinct successors!"); 2814 return (LoopCost - Cost) * (SuccessorsCount - 1); 2815 }; 2816 Instruction *BestUnswitchTI = nullptr; 2817 InstructionCost BestUnswitchCost = 0; 2818 ArrayRef<Value *> BestUnswitchInvariants; 2819 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2820 Instruction &TI = *TerminatorAndInvariants.first; 2821 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2822 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2823 InstructionCost CandidateCost = ComputeUnswitchedCost( 2824 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2825 Invariants[0] == BI->getCondition())); 2826 // Calculate cost multiplier which is a tool to limit potentially 2827 // exponential behavior of loop-unswitch. 2828 if (EnableUnswitchCostMultiplier) { 2829 int CostMultiplier = 2830 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2831 assert( 2832 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2833 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2834 CandidateCost *= CostMultiplier; 2835 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2836 << " (multiplier: " << CostMultiplier << ")" 2837 << " for unswitch candidate: " << TI << "\n"); 2838 } else { 2839 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2840 << " for unswitch candidate: " << TI << "\n"); 2841 } 2842 2843 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2844 BestUnswitchTI = &TI; 2845 BestUnswitchCost = CandidateCost; 2846 BestUnswitchInvariants = Invariants; 2847 } 2848 } 2849 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2850 2851 if (BestUnswitchCost >= UnswitchThreshold) { 2852 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2853 << BestUnswitchCost << "\n"); 2854 return false; 2855 } 2856 2857 // If the best candidate is a guard, turn it into a branch. 2858 if (isGuard(BestUnswitchTI)) 2859 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2860 ExitBlocks, DT, LI, MSSAU); 2861 2862 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2863 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2864 << "\n"); 2865 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2866 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2867 return true; 2868 } 2869 2870 /// Unswitch control flow predicated on loop invariant conditions. 2871 /// 2872 /// This first hoists all branches or switches which are trivial (IE, do not 2873 /// require duplicating any part of the loop) out of the loop body. It then 2874 /// looks at other loop invariant control flows and tries to unswitch those as 2875 /// well by cloning the loop if the result is small enough. 2876 /// 2877 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2878 /// updated based on the unswitch. 2879 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 2880 /// 2881 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2882 /// true, we will attempt to do non-trivial unswitching as well as trivial 2883 /// unswitching. 2884 /// 2885 /// The `UnswitchCB` callback provided will be run after unswitching is 2886 /// complete, with the first parameter set to `true` if the provided loop 2887 /// remains a loop, and a list of new sibling loops created. 2888 /// 2889 /// If `SE` is non-null, we will update that analysis based on the unswitching 2890 /// done. 2891 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2892 AssumptionCache &AC, TargetTransformInfo &TTI, 2893 bool NonTrivial, 2894 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2895 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2896 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2897 "Loops must be in LCSSA form before unswitching."); 2898 2899 // Must be in loop simplified form: we need a preheader and dedicated exits. 2900 if (!L.isLoopSimplifyForm()) 2901 return false; 2902 2903 // Try trivial unswitch first before loop over other basic blocks in the loop. 2904 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2905 // If we unswitched successfully we will want to clean up the loop before 2906 // processing it further so just mark it as unswitched and return. 2907 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2908 return true; 2909 } 2910 2911 // Check whether we should continue with non-trivial conditions. 2912 // EnableNonTrivialUnswitch: Global variable that forces non-trivial 2913 // unswitching for testing and debugging. 2914 // NonTrivial: Parameter that enables non-trivial unswitching for this 2915 // invocation of the transform. But this should be allowed only 2916 // for targets without branch divergence. 2917 // 2918 // FIXME: If divergence analysis becomes available to a loop 2919 // transform, we should allow unswitching for non-trivial uniform 2920 // branches even on targets that have divergence. 2921 // https://bugs.llvm.org/show_bug.cgi?id=48819 2922 bool ContinueWithNonTrivial = 2923 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence()); 2924 if (!ContinueWithNonTrivial) 2925 return false; 2926 2927 // Skip non-trivial unswitching for optsize functions. 2928 if (L.getHeader()->getParent()->hasOptSize()) 2929 return false; 2930 2931 // Skip non-trivial unswitching for loops that cannot be cloned. 2932 if (!L.isSafeToClone()) 2933 return false; 2934 2935 // For non-trivial unswitching, because it often creates new loops, we rely on 2936 // the pass manager to iterate on the loops rather than trying to immediately 2937 // reach a fixed point. There is no substantial advantage to iterating 2938 // internally, and if any of the new loops are simplified enough to contain 2939 // trivial unswitching we want to prefer those. 2940 2941 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2942 // a partial unswitch when possible below the threshold. 2943 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2944 return true; 2945 2946 // No other opportunities to unswitch. 2947 return false; 2948 } 2949 2950 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2951 LoopStandardAnalysisResults &AR, 2952 LPMUpdater &U) { 2953 Function &F = *L.getHeader()->getParent(); 2954 (void)F; 2955 2956 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2957 << "\n"); 2958 2959 // Save the current loop name in a variable so that we can report it even 2960 // after it has been deleted. 2961 std::string LoopName = std::string(L.getName()); 2962 2963 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2964 ArrayRef<Loop *> NewLoops) { 2965 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2966 if (!NewLoops.empty()) 2967 U.addSiblingLoops(NewLoops); 2968 2969 // If the current loop remains valid, we should revisit it to catch any 2970 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2971 if (CurrentLoopValid) 2972 U.revisitCurrentLoop(); 2973 else 2974 U.markLoopAsDeleted(L, LoopName); 2975 }; 2976 2977 Optional<MemorySSAUpdater> MSSAU; 2978 if (AR.MSSA) { 2979 MSSAU = MemorySSAUpdater(AR.MSSA); 2980 if (VerifyMemorySSA) 2981 AR.MSSA->verifyMemorySSA(); 2982 } 2983 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2984 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 2985 return PreservedAnalyses::all(); 2986 2987 if (AR.MSSA && VerifyMemorySSA) 2988 AR.MSSA->verifyMemorySSA(); 2989 2990 // Historically this pass has had issues with the dominator tree so verify it 2991 // in asserts builds. 2992 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2993 2994 auto PA = getLoopPassPreservedAnalyses(); 2995 if (AR.MSSA) 2996 PA.preserve<MemorySSAAnalysis>(); 2997 return PA; 2998 } 2999 3000 namespace { 3001 3002 class SimpleLoopUnswitchLegacyPass : public LoopPass { 3003 bool NonTrivial; 3004 3005 public: 3006 static char ID; // Pass ID, replacement for typeid 3007 3008 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 3009 : LoopPass(ID), NonTrivial(NonTrivial) { 3010 initializeSimpleLoopUnswitchLegacyPassPass( 3011 *PassRegistry::getPassRegistry()); 3012 } 3013 3014 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 3015 3016 void getAnalysisUsage(AnalysisUsage &AU) const override { 3017 AU.addRequired<AssumptionCacheTracker>(); 3018 AU.addRequired<TargetTransformInfoWrapperPass>(); 3019 if (EnableMSSALoopDependency) { 3020 AU.addRequired<MemorySSAWrapperPass>(); 3021 AU.addPreserved<MemorySSAWrapperPass>(); 3022 } 3023 getLoopAnalysisUsage(AU); 3024 } 3025 }; 3026 3027 } // end anonymous namespace 3028 3029 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 3030 if (skipLoop(L)) 3031 return false; 3032 3033 Function &F = *L->getHeader()->getParent(); 3034 3035 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3036 << "\n"); 3037 3038 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3039 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3040 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3041 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3042 MemorySSA *MSSA = nullptr; 3043 Optional<MemorySSAUpdater> MSSAU; 3044 if (EnableMSSALoopDependency) { 3045 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3046 MSSAU = MemorySSAUpdater(MSSA); 3047 } 3048 3049 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 3050 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 3051 3052 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 3053 ArrayRef<Loop *> NewLoops) { 3054 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3055 for (auto *NewL : NewLoops) 3056 LPM.addLoop(*NewL); 3057 3058 // If the current loop remains valid, re-add it to the queue. This is 3059 // a little wasteful as we'll finish processing the current loop as well, 3060 // but it is the best we can do in the old PM. 3061 if (CurrentLoopValid) 3062 LPM.addLoop(*L); 3063 else 3064 LPM.markLoopAsDeleted(*L); 3065 }; 3066 3067 if (MSSA && VerifyMemorySSA) 3068 MSSA->verifyMemorySSA(); 3069 3070 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 3071 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 3072 3073 if (MSSA && VerifyMemorySSA) 3074 MSSA->verifyMemorySSA(); 3075 3076 // Historically this pass has had issues with the dominator tree so verify it 3077 // in asserts builds. 3078 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3079 3080 return Changed; 3081 } 3082 3083 char SimpleLoopUnswitchLegacyPass::ID = 0; 3084 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3085 "Simple unswitch loops", false, false) 3086 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3087 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3088 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3089 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3090 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3091 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3092 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3093 "Simple unswitch loops", false, false) 3094 3095 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3096 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3097 } 3098