1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/MustExecute.h" 30 #include "llvm/Analysis/ScalarEvolution.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/GenericDomTree.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 52 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 53 #include "llvm/Transforms/Utils/Cloning.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include "llvm/Transforms/Utils/LoopUtils.h" 56 #include "llvm/Transforms/Utils/ValueMapper.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <iterator> 60 #include <numeric> 61 #include <utility> 62 63 #define DEBUG_TYPE "simple-loop-unswitch" 64 65 using namespace llvm; 66 67 STATISTIC(NumBranches, "Number of branches unswitched"); 68 STATISTIC(NumSwitches, "Number of switches unswitched"); 69 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 70 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 71 STATISTIC( 72 NumCostMultiplierSkipped, 73 "Number of unswitch candidates that had their cost multiplier skipped"); 74 75 static cl::opt<bool> EnableNonTrivialUnswitch( 76 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 77 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 78 "following the configuration passed into the pass.")); 79 80 static cl::opt<int> 81 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 82 cl::desc("The cost threshold for unswitching a loop.")); 83 84 static cl::opt<bool> EnableUnswitchCostMultiplier( 85 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 86 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 87 "explosion in nontrivial unswitch.")); 88 static cl::opt<int> UnswitchSiblingsToplevelDiv( 89 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 90 cl::desc("Toplevel siblings divisor for cost multiplier.")); 91 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 92 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 93 cl::desc("Number of unswitch candidates that are ignored when calculating " 94 "cost multiplier.")); 95 static cl::opt<bool> UnswitchGuards( 96 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 97 cl::desc("If enabled, simple loop unswitching will also consider " 98 "llvm.experimental.guard intrinsics as unswitch candidates.")); 99 static cl::opt<bool> DropNonTrivialImplicitNullChecks( 100 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 101 cl::init(false), cl::Hidden, 102 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 103 "null checks to save time analyzing if we can keep it.")); 104 105 /// Collect all of the loop invariant input values transitively used by the 106 /// homogeneous instruction graph from a given root. 107 /// 108 /// This essentially walks from a root recursively through loop variant operands 109 /// which have the exact same opcode and finds all inputs which are loop 110 /// invariant. For some operations these can be re-associated and unswitched out 111 /// of the loop entirely. 112 static TinyPtrVector<Value *> 113 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 114 LoopInfo &LI) { 115 assert(!L.isLoopInvariant(&Root) && 116 "Only need to walk the graph if root itself is not invariant."); 117 TinyPtrVector<Value *> Invariants; 118 119 // Build a worklist and recurse through operators collecting invariants. 120 SmallVector<Instruction *, 4> Worklist; 121 SmallPtrSet<Instruction *, 8> Visited; 122 Worklist.push_back(&Root); 123 Visited.insert(&Root); 124 do { 125 Instruction &I = *Worklist.pop_back_val(); 126 for (Value *OpV : I.operand_values()) { 127 // Skip constants as unswitching isn't interesting for them. 128 if (isa<Constant>(OpV)) 129 continue; 130 131 // Add it to our result if loop invariant. 132 if (L.isLoopInvariant(OpV)) { 133 Invariants.push_back(OpV); 134 continue; 135 } 136 137 // If not an instruction with the same opcode, nothing we can do. 138 Instruction *OpI = dyn_cast<Instruction>(OpV); 139 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 140 continue; 141 142 // Visit this operand. 143 if (Visited.insert(OpI).second) 144 Worklist.push_back(OpI); 145 } 146 } while (!Worklist.empty()); 147 148 return Invariants; 149 } 150 151 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 152 Constant &Replacement) { 153 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 154 155 // Replace uses of LIC in the loop with the given constant. 156 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 157 // Grab the use and walk past it so we can clobber it in the use list. 158 Use *U = &*UI++; 159 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 160 161 // Replace this use within the loop body. 162 if (UserI && L.contains(UserI)) 163 U->set(&Replacement); 164 } 165 } 166 167 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 168 /// incoming values along this edge. 169 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 170 BasicBlock &ExitBB) { 171 for (Instruction &I : ExitBB) { 172 auto *PN = dyn_cast<PHINode>(&I); 173 if (!PN) 174 // No more PHIs to check. 175 return true; 176 177 // If the incoming value for this edge isn't loop invariant the unswitch 178 // won't be trivial. 179 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 180 return false; 181 } 182 llvm_unreachable("Basic blocks should never be empty!"); 183 } 184 185 /// Insert code to test a set of loop invariant values, and conditionally branch 186 /// on them. 187 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 188 ArrayRef<Value *> Invariants, 189 bool Direction, 190 BasicBlock &UnswitchedSucc, 191 BasicBlock &NormalSucc) { 192 IRBuilder<> IRB(&BB); 193 194 Value *Cond = Direction ? IRB.CreateOr(Invariants) : 195 IRB.CreateAnd(Invariants); 196 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 197 Direction ? &NormalSucc : &UnswitchedSucc); 198 } 199 200 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 201 /// 202 /// Requires that the loop exit and unswitched basic block are the same, and 203 /// that the exiting block was a unique predecessor of that block. Rewrites the 204 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 205 /// PHI nodes from the old preheader that now contains the unswitched 206 /// terminator. 207 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 208 BasicBlock &OldExitingBB, 209 BasicBlock &OldPH) { 210 for (PHINode &PN : UnswitchedBB.phis()) { 211 // When the loop exit is directly unswitched we just need to update the 212 // incoming basic block. We loop to handle weird cases with repeated 213 // incoming blocks, but expect to typically only have one operand here. 214 for (auto i : seq<int>(0, PN.getNumOperands())) { 215 assert(PN.getIncomingBlock(i) == &OldExitingBB && 216 "Found incoming block different from unique predecessor!"); 217 PN.setIncomingBlock(i, &OldPH); 218 } 219 } 220 } 221 222 /// Rewrite the PHI nodes in the loop exit basic block and the split off 223 /// unswitched block. 224 /// 225 /// Because the exit block remains an exit from the loop, this rewrites the 226 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 227 /// nodes into the unswitched basic block to select between the value in the 228 /// old preheader and the loop exit. 229 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 230 BasicBlock &UnswitchedBB, 231 BasicBlock &OldExitingBB, 232 BasicBlock &OldPH, 233 bool FullUnswitch) { 234 assert(&ExitBB != &UnswitchedBB && 235 "Must have different loop exit and unswitched blocks!"); 236 Instruction *InsertPt = &*UnswitchedBB.begin(); 237 for (PHINode &PN : ExitBB.phis()) { 238 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 239 PN.getName() + ".split", InsertPt); 240 241 // Walk backwards over the old PHI node's inputs to minimize the cost of 242 // removing each one. We have to do this weird loop manually so that we 243 // create the same number of new incoming edges in the new PHI as we expect 244 // each case-based edge to be included in the unswitched switch in some 245 // cases. 246 // FIXME: This is really, really gross. It would be much cleaner if LLVM 247 // allowed us to create a single entry for a predecessor block without 248 // having separate entries for each "edge" even though these edges are 249 // required to produce identical results. 250 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 251 if (PN.getIncomingBlock(i) != &OldExitingBB) 252 continue; 253 254 Value *Incoming = PN.getIncomingValue(i); 255 if (FullUnswitch) 256 // No more edge from the old exiting block to the exit block. 257 PN.removeIncomingValue(i); 258 259 NewPN->addIncoming(Incoming, &OldPH); 260 } 261 262 // Now replace the old PHI with the new one and wire the old one in as an 263 // input to the new one. 264 PN.replaceAllUsesWith(NewPN); 265 NewPN->addIncoming(&PN, &ExitBB); 266 } 267 } 268 269 /// Hoist the current loop up to the innermost loop containing a remaining exit. 270 /// 271 /// Because we've removed an exit from the loop, we may have changed the set of 272 /// loops reachable and need to move the current loop up the loop nest or even 273 /// to an entirely separate nest. 274 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 275 DominatorTree &DT, LoopInfo &LI, 276 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 277 // If the loop is already at the top level, we can't hoist it anywhere. 278 Loop *OldParentL = L.getParentLoop(); 279 if (!OldParentL) 280 return; 281 282 SmallVector<BasicBlock *, 4> Exits; 283 L.getExitBlocks(Exits); 284 Loop *NewParentL = nullptr; 285 for (auto *ExitBB : Exits) 286 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 287 if (!NewParentL || NewParentL->contains(ExitL)) 288 NewParentL = ExitL; 289 290 if (NewParentL == OldParentL) 291 return; 292 293 // The new parent loop (if different) should always contain the old one. 294 if (NewParentL) 295 assert(NewParentL->contains(OldParentL) && 296 "Can only hoist this loop up the nest!"); 297 298 // The preheader will need to move with the body of this loop. However, 299 // because it isn't in this loop we also need to update the primary loop map. 300 assert(OldParentL == LI.getLoopFor(&Preheader) && 301 "Parent loop of this loop should contain this loop's preheader!"); 302 LI.changeLoopFor(&Preheader, NewParentL); 303 304 // Remove this loop from its old parent. 305 OldParentL->removeChildLoop(&L); 306 307 // Add the loop either to the new parent or as a top-level loop. 308 if (NewParentL) 309 NewParentL->addChildLoop(&L); 310 else 311 LI.addTopLevelLoop(&L); 312 313 // Remove this loops blocks from the old parent and every other loop up the 314 // nest until reaching the new parent. Also update all of these 315 // no-longer-containing loops to reflect the nesting change. 316 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 317 OldContainingL = OldContainingL->getParentLoop()) { 318 llvm::erase_if(OldContainingL->getBlocksVector(), 319 [&](const BasicBlock *BB) { 320 return BB == &Preheader || L.contains(BB); 321 }); 322 323 OldContainingL->getBlocksSet().erase(&Preheader); 324 for (BasicBlock *BB : L.blocks()) 325 OldContainingL->getBlocksSet().erase(BB); 326 327 // Because we just hoisted a loop out of this one, we have essentially 328 // created new exit paths from it. That means we need to form LCSSA PHI 329 // nodes for values used in the no-longer-nested loop. 330 formLCSSA(*OldContainingL, DT, &LI, SE); 331 332 // We shouldn't need to form dedicated exits because the exit introduced 333 // here is the (just split by unswitching) preheader. However, after trivial 334 // unswitching it is possible to get new non-dedicated exits out of parent 335 // loop so let's conservatively form dedicated exit blocks and figure out 336 // if we can optimize later. 337 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 338 /*PreserveLCSSA*/ true); 339 } 340 } 341 342 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 343 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 344 // as exiting block. 345 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 346 Loop *TopMost = LI.getLoopFor(ExitBB); 347 Loop *Current = TopMost; 348 while (Current) { 349 if (Current->isLoopExiting(ExitBB)) 350 TopMost = Current; 351 Current = Current->getParentLoop(); 352 } 353 return TopMost; 354 } 355 356 /// Unswitch a trivial branch if the condition is loop invariant. 357 /// 358 /// This routine should only be called when loop code leading to the branch has 359 /// been validated as trivial (no side effects). This routine checks if the 360 /// condition is invariant and one of the successors is a loop exit. This 361 /// allows us to unswitch without duplicating the loop, making it trivial. 362 /// 363 /// If this routine fails to unswitch the branch it returns false. 364 /// 365 /// If the branch can be unswitched, this routine splits the preheader and 366 /// hoists the branch above that split. Preserves loop simplified form 367 /// (splitting the exit block as necessary). It simplifies the branch within 368 /// the loop to an unconditional branch but doesn't remove it entirely. Further 369 /// cleanup can be done with some simplify-cfg like pass. 370 /// 371 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 372 /// invalidated by this. 373 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 374 LoopInfo &LI, ScalarEvolution *SE, 375 MemorySSAUpdater *MSSAU) { 376 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 377 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 378 379 // The loop invariant values that we want to unswitch. 380 TinyPtrVector<Value *> Invariants; 381 382 // When true, we're fully unswitching the branch rather than just unswitching 383 // some input conditions to the branch. 384 bool FullUnswitch = false; 385 386 if (L.isLoopInvariant(BI.getCondition())) { 387 Invariants.push_back(BI.getCondition()); 388 FullUnswitch = true; 389 } else { 390 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 391 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 392 if (Invariants.empty()) 393 // Couldn't find invariant inputs! 394 return false; 395 } 396 397 // Check that one of the branch's successors exits, and which one. 398 bool ExitDirection = true; 399 int LoopExitSuccIdx = 0; 400 auto *LoopExitBB = BI.getSuccessor(0); 401 if (L.contains(LoopExitBB)) { 402 ExitDirection = false; 403 LoopExitSuccIdx = 1; 404 LoopExitBB = BI.getSuccessor(1); 405 if (L.contains(LoopExitBB)) 406 return false; 407 } 408 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 409 auto *ParentBB = BI.getParent(); 410 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 411 return false; 412 413 // When unswitching only part of the branch's condition, we need the exit 414 // block to be reached directly from the partially unswitched input. This can 415 // be done when the exit block is along the true edge and the branch condition 416 // is a graph of `or` operations, or the exit block is along the false edge 417 // and the condition is a graph of `and` operations. 418 if (!FullUnswitch) { 419 if (ExitDirection) { 420 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 421 return false; 422 } else { 423 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 424 return false; 425 } 426 } 427 428 LLVM_DEBUG({ 429 dbgs() << " unswitching trivial invariant conditions for: " << BI 430 << "\n"; 431 for (Value *Invariant : Invariants) { 432 dbgs() << " " << *Invariant << " == true"; 433 if (Invariant != Invariants.back()) 434 dbgs() << " ||"; 435 dbgs() << "\n"; 436 } 437 }); 438 439 // If we have scalar evolutions, we need to invalidate them including this 440 // loop, the loop containing the exit block and the topmost parent loop 441 // exiting via LoopExitBB. 442 if (SE) { 443 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 444 SE->forgetLoop(ExitL); 445 else 446 // Forget the entire nest as this exits the entire nest. 447 SE->forgetTopmostLoop(&L); 448 } 449 450 if (MSSAU && VerifyMemorySSA) 451 MSSAU->getMemorySSA()->verifyMemorySSA(); 452 453 // Split the preheader, so that we know that there is a safe place to insert 454 // the conditional branch. We will change the preheader to have a conditional 455 // branch on LoopCond. 456 BasicBlock *OldPH = L.getLoopPreheader(); 457 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 458 459 // Now that we have a place to insert the conditional branch, create a place 460 // to branch to: this is the exit block out of the loop that we are 461 // unswitching. We need to split this if there are other loop predecessors. 462 // Because the loop is in simplified form, *any* other predecessor is enough. 463 BasicBlock *UnswitchedBB; 464 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 465 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 466 "A branch's parent isn't a predecessor!"); 467 UnswitchedBB = LoopExitBB; 468 } else { 469 UnswitchedBB = 470 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 471 } 472 473 if (MSSAU && VerifyMemorySSA) 474 MSSAU->getMemorySSA()->verifyMemorySSA(); 475 476 // Actually move the invariant uses into the unswitched position. If possible, 477 // we do this by moving the instructions, but when doing partial unswitching 478 // we do it by building a new merge of the values in the unswitched position. 479 OldPH->getTerminator()->eraseFromParent(); 480 if (FullUnswitch) { 481 // If fully unswitching, we can use the existing branch instruction. 482 // Splice it into the old PH to gate reaching the new preheader and re-point 483 // its successors. 484 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 485 BI); 486 if (MSSAU) { 487 // Temporarily clone the terminator, to make MSSA update cheaper by 488 // separating "insert edge" updates from "remove edge" ones. 489 ParentBB->getInstList().push_back(BI.clone()); 490 } else { 491 // Create a new unconditional branch that will continue the loop as a new 492 // terminator. 493 BranchInst::Create(ContinueBB, ParentBB); 494 } 495 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 496 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 497 } else { 498 // Only unswitching a subset of inputs to the condition, so we will need to 499 // build a new branch that merges the invariant inputs. 500 if (ExitDirection) 501 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 502 Instruction::Or && 503 "Must have an `or` of `i1`s for the condition!"); 504 else 505 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 506 Instruction::And && 507 "Must have an `and` of `i1`s for the condition!"); 508 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 509 *UnswitchedBB, *NewPH); 510 } 511 512 // Update the dominator tree with the added edge. 513 DT.insertEdge(OldPH, UnswitchedBB); 514 515 // After the dominator tree was updated with the added edge, update MemorySSA 516 // if available. 517 if (MSSAU) { 518 SmallVector<CFGUpdate, 1> Updates; 519 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 520 MSSAU->applyInsertUpdates(Updates, DT); 521 } 522 523 // Finish updating dominator tree and memory ssa for full unswitch. 524 if (FullUnswitch) { 525 if (MSSAU) { 526 // Remove the cloned branch instruction. 527 ParentBB->getTerminator()->eraseFromParent(); 528 // Create unconditional branch now. 529 BranchInst::Create(ContinueBB, ParentBB); 530 MSSAU->removeEdge(ParentBB, LoopExitBB); 531 } 532 DT.deleteEdge(ParentBB, LoopExitBB); 533 } 534 535 if (MSSAU && VerifyMemorySSA) 536 MSSAU->getMemorySSA()->verifyMemorySSA(); 537 538 // Rewrite the relevant PHI nodes. 539 if (UnswitchedBB == LoopExitBB) 540 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 541 else 542 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 543 *ParentBB, *OldPH, FullUnswitch); 544 545 // The constant we can replace all of our invariants with inside the loop 546 // body. If any of the invariants have a value other than this the loop won't 547 // be entered. 548 ConstantInt *Replacement = ExitDirection 549 ? ConstantInt::getFalse(BI.getContext()) 550 : ConstantInt::getTrue(BI.getContext()); 551 552 // Since this is an i1 condition we can also trivially replace uses of it 553 // within the loop with a constant. 554 for (Value *Invariant : Invariants) 555 replaceLoopInvariantUses(L, Invariant, *Replacement); 556 557 // If this was full unswitching, we may have changed the nesting relationship 558 // for this loop so hoist it to its correct parent if needed. 559 if (FullUnswitch) 560 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 561 562 if (MSSAU && VerifyMemorySSA) 563 MSSAU->getMemorySSA()->verifyMemorySSA(); 564 565 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 566 ++NumTrivial; 567 ++NumBranches; 568 return true; 569 } 570 571 /// Unswitch a trivial switch if the condition is loop invariant. 572 /// 573 /// This routine should only be called when loop code leading to the switch has 574 /// been validated as trivial (no side effects). This routine checks if the 575 /// condition is invariant and that at least one of the successors is a loop 576 /// exit. This allows us to unswitch without duplicating the loop, making it 577 /// trivial. 578 /// 579 /// If this routine fails to unswitch the switch it returns false. 580 /// 581 /// If the switch can be unswitched, this routine splits the preheader and 582 /// copies the switch above that split. If the default case is one of the 583 /// exiting cases, it copies the non-exiting cases and points them at the new 584 /// preheader. If the default case is not exiting, it copies the exiting cases 585 /// and points the default at the preheader. It preserves loop simplified form 586 /// (splitting the exit blocks as necessary). It simplifies the switch within 587 /// the loop by removing now-dead cases. If the default case is one of those 588 /// unswitched, it replaces its destination with a new basic block containing 589 /// only unreachable. Such basic blocks, while technically loop exits, are not 590 /// considered for unswitching so this is a stable transform and the same 591 /// switch will not be revisited. If after unswitching there is only a single 592 /// in-loop successor, the switch is further simplified to an unconditional 593 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 594 /// 595 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 596 /// invalidated by this. 597 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 598 LoopInfo &LI, ScalarEvolution *SE, 599 MemorySSAUpdater *MSSAU) { 600 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 601 Value *LoopCond = SI.getCondition(); 602 603 // If this isn't switching on an invariant condition, we can't unswitch it. 604 if (!L.isLoopInvariant(LoopCond)) 605 return false; 606 607 auto *ParentBB = SI.getParent(); 608 609 // The same check must be used both for the default and the exit cases. We 610 // should never leave edges from the switch instruction to a basic block that 611 // we are unswitching, hence the condition used to determine the default case 612 // needs to also be used to populate ExitCaseIndices, which is then used to 613 // remove cases from the switch. 614 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 615 // BBToCheck is not an exit block if it is inside loop L. 616 if (L.contains(&BBToCheck)) 617 return false; 618 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 619 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 620 return false; 621 // We do not unswitch a block that only has an unreachable statement, as 622 // it's possible this is a previously unswitched block. Only unswitch if 623 // either the terminator is not unreachable, or, if it is, it's not the only 624 // instruction in the block. 625 auto *TI = BBToCheck.getTerminator(); 626 bool isUnreachable = isa<UnreachableInst>(TI); 627 return !isUnreachable || 628 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 629 }; 630 631 SmallVector<int, 4> ExitCaseIndices; 632 for (auto Case : SI.cases()) 633 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 634 ExitCaseIndices.push_back(Case.getCaseIndex()); 635 BasicBlock *DefaultExitBB = nullptr; 636 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 637 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 638 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 639 DefaultExitBB = SI.getDefaultDest(); 640 } else if (ExitCaseIndices.empty()) 641 return false; 642 643 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 644 645 if (MSSAU && VerifyMemorySSA) 646 MSSAU->getMemorySSA()->verifyMemorySSA(); 647 648 // We may need to invalidate SCEVs for the outermost loop reached by any of 649 // the exits. 650 Loop *OuterL = &L; 651 652 if (DefaultExitBB) { 653 // Clear out the default destination temporarily to allow accurate 654 // predecessor lists to be examined below. 655 SI.setDefaultDest(nullptr); 656 // Check the loop containing this exit. 657 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 658 if (!ExitL || ExitL->contains(OuterL)) 659 OuterL = ExitL; 660 } 661 662 // Store the exit cases into a separate data structure and remove them from 663 // the switch. 664 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 665 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 666 4> ExitCases; 667 ExitCases.reserve(ExitCaseIndices.size()); 668 SwitchInstProfUpdateWrapper SIW(SI); 669 // We walk the case indices backwards so that we remove the last case first 670 // and don't disrupt the earlier indices. 671 for (unsigned Index : reverse(ExitCaseIndices)) { 672 auto CaseI = SI.case_begin() + Index; 673 // Compute the outer loop from this exit. 674 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 675 if (!ExitL || ExitL->contains(OuterL)) 676 OuterL = ExitL; 677 // Save the value of this case. 678 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 679 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 680 // Delete the unswitched cases. 681 SIW.removeCase(CaseI); 682 } 683 684 if (SE) { 685 if (OuterL) 686 SE->forgetLoop(OuterL); 687 else 688 SE->forgetTopmostLoop(&L); 689 } 690 691 // Check if after this all of the remaining cases point at the same 692 // successor. 693 BasicBlock *CommonSuccBB = nullptr; 694 if (SI.getNumCases() > 0 && 695 std::all_of(std::next(SI.case_begin()), SI.case_end(), 696 [&SI](const SwitchInst::CaseHandle &Case) { 697 return Case.getCaseSuccessor() == 698 SI.case_begin()->getCaseSuccessor(); 699 })) 700 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 701 if (!DefaultExitBB) { 702 // If we're not unswitching the default, we need it to match any cases to 703 // have a common successor or if we have no cases it is the common 704 // successor. 705 if (SI.getNumCases() == 0) 706 CommonSuccBB = SI.getDefaultDest(); 707 else if (SI.getDefaultDest() != CommonSuccBB) 708 CommonSuccBB = nullptr; 709 } 710 711 // Split the preheader, so that we know that there is a safe place to insert 712 // the switch. 713 BasicBlock *OldPH = L.getLoopPreheader(); 714 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 715 OldPH->getTerminator()->eraseFromParent(); 716 717 // Now add the unswitched switch. 718 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 719 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 720 721 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 722 // First, we split any exit blocks with remaining in-loop predecessors. Then 723 // we update the PHIs in one of two ways depending on if there was a split. 724 // We walk in reverse so that we split in the same order as the cases 725 // appeared. This is purely for convenience of reading the resulting IR, but 726 // it doesn't cost anything really. 727 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 728 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 729 // Handle the default exit if necessary. 730 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 731 // ranges aren't quite powerful enough yet. 732 if (DefaultExitBB) { 733 if (pred_empty(DefaultExitBB)) { 734 UnswitchedExitBBs.insert(DefaultExitBB); 735 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 736 } else { 737 auto *SplitBB = 738 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 739 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 740 *ParentBB, *OldPH, 741 /*FullUnswitch*/ true); 742 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 743 } 744 } 745 // Note that we must use a reference in the for loop so that we update the 746 // container. 747 for (auto &ExitCase : reverse(ExitCases)) { 748 // Grab a reference to the exit block in the pair so that we can update it. 749 BasicBlock *ExitBB = std::get<1>(ExitCase); 750 751 // If this case is the last edge into the exit block, we can simply reuse it 752 // as it will no longer be a loop exit. No mapping necessary. 753 if (pred_empty(ExitBB)) { 754 // Only rewrite once. 755 if (UnswitchedExitBBs.insert(ExitBB).second) 756 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 757 continue; 758 } 759 760 // Otherwise we need to split the exit block so that we retain an exit 761 // block from the loop and a target for the unswitched condition. 762 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 763 if (!SplitExitBB) { 764 // If this is the first time we see this, do the split and remember it. 765 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 766 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 767 *ParentBB, *OldPH, 768 /*FullUnswitch*/ true); 769 } 770 // Update the case pair to point to the split block. 771 std::get<1>(ExitCase) = SplitExitBB; 772 } 773 774 // Now add the unswitched cases. We do this in reverse order as we built them 775 // in reverse order. 776 for (auto &ExitCase : reverse(ExitCases)) { 777 ConstantInt *CaseVal = std::get<0>(ExitCase); 778 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 779 780 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 781 } 782 783 // If the default was unswitched, re-point it and add explicit cases for 784 // entering the loop. 785 if (DefaultExitBB) { 786 NewSIW->setDefaultDest(DefaultExitBB); 787 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 788 789 // We removed all the exit cases, so we just copy the cases to the 790 // unswitched switch. 791 for (const auto &Case : SI.cases()) 792 NewSIW.addCase(Case.getCaseValue(), NewPH, 793 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 794 } else if (DefaultCaseWeight) { 795 // We have to set branch weight of the default case. 796 uint64_t SW = *DefaultCaseWeight; 797 for (const auto &Case : SI.cases()) { 798 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 799 assert(W && 800 "case weight must be defined as default case weight is defined"); 801 SW += *W; 802 } 803 NewSIW.setSuccessorWeight(0, SW); 804 } 805 806 // If we ended up with a common successor for every path through the switch 807 // after unswitching, rewrite it to an unconditional branch to make it easy 808 // to recognize. Otherwise we potentially have to recognize the default case 809 // pointing at unreachable and other complexity. 810 if (CommonSuccBB) { 811 BasicBlock *BB = SI.getParent(); 812 // We may have had multiple edges to this common successor block, so remove 813 // them as predecessors. We skip the first one, either the default or the 814 // actual first case. 815 bool SkippedFirst = DefaultExitBB == nullptr; 816 for (auto Case : SI.cases()) { 817 assert(Case.getCaseSuccessor() == CommonSuccBB && 818 "Non-common successor!"); 819 (void)Case; 820 if (!SkippedFirst) { 821 SkippedFirst = true; 822 continue; 823 } 824 CommonSuccBB->removePredecessor(BB, 825 /*KeepOneInputPHIs*/ true); 826 } 827 // Now nuke the switch and replace it with a direct branch. 828 SIW.eraseFromParent(); 829 BranchInst::Create(CommonSuccBB, BB); 830 } else if (DefaultExitBB) { 831 assert(SI.getNumCases() > 0 && 832 "If we had no cases we'd have a common successor!"); 833 // Move the last case to the default successor. This is valid as if the 834 // default got unswitched it cannot be reached. This has the advantage of 835 // being simple and keeping the number of edges from this switch to 836 // successors the same, and avoiding any PHI update complexity. 837 auto LastCaseI = std::prev(SI.case_end()); 838 839 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 840 SIW.setSuccessorWeight( 841 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 842 SIW.removeCase(LastCaseI); 843 } 844 845 // Walk the unswitched exit blocks and the unswitched split blocks and update 846 // the dominator tree based on the CFG edits. While we are walking unordered 847 // containers here, the API for applyUpdates takes an unordered list of 848 // updates and requires them to not contain duplicates. 849 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 850 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 851 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 852 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 853 } 854 for (auto SplitUnswitchedPair : SplitExitBBMap) { 855 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 856 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 857 } 858 859 if (MSSAU) { 860 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 861 if (VerifyMemorySSA) 862 MSSAU->getMemorySSA()->verifyMemorySSA(); 863 } else { 864 DT.applyUpdates(DTUpdates); 865 } 866 867 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 868 869 // We may have changed the nesting relationship for this loop so hoist it to 870 // its correct parent if needed. 871 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 872 873 if (MSSAU && VerifyMemorySSA) 874 MSSAU->getMemorySSA()->verifyMemorySSA(); 875 876 ++NumTrivial; 877 ++NumSwitches; 878 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 879 return true; 880 } 881 882 /// This routine scans the loop to find a branch or switch which occurs before 883 /// any side effects occur. These can potentially be unswitched without 884 /// duplicating the loop. If a branch or switch is successfully unswitched the 885 /// scanning continues to see if subsequent branches or switches have become 886 /// trivial. Once all trivial candidates have been unswitched, this routine 887 /// returns. 888 /// 889 /// The return value indicates whether anything was unswitched (and therefore 890 /// changed). 891 /// 892 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 893 /// invalidated by this. 894 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 895 LoopInfo &LI, ScalarEvolution *SE, 896 MemorySSAUpdater *MSSAU) { 897 bool Changed = false; 898 899 // If loop header has only one reachable successor we should keep looking for 900 // trivial condition candidates in the successor as well. An alternative is 901 // to constant fold conditions and merge successors into loop header (then we 902 // only need to check header's terminator). The reason for not doing this in 903 // LoopUnswitch pass is that it could potentially break LoopPassManager's 904 // invariants. Folding dead branches could either eliminate the current loop 905 // or make other loops unreachable. LCSSA form might also not be preserved 906 // after deleting branches. The following code keeps traversing loop header's 907 // successors until it finds the trivial condition candidate (condition that 908 // is not a constant). Since unswitching generates branches with constant 909 // conditions, this scenario could be very common in practice. 910 BasicBlock *CurrentBB = L.getHeader(); 911 SmallPtrSet<BasicBlock *, 8> Visited; 912 Visited.insert(CurrentBB); 913 do { 914 // Check if there are any side-effecting instructions (e.g. stores, calls, 915 // volatile loads) in the part of the loop that the code *would* execute 916 // without unswitching. 917 if (MSSAU) // Possible early exit with MSSA 918 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 919 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 920 return Changed; 921 if (llvm::any_of(*CurrentBB, 922 [](Instruction &I) { return I.mayHaveSideEffects(); })) 923 return Changed; 924 925 Instruction *CurrentTerm = CurrentBB->getTerminator(); 926 927 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 928 // Don't bother trying to unswitch past a switch with a constant 929 // condition. This should be removed prior to running this pass by 930 // simplify-cfg. 931 if (isa<Constant>(SI->getCondition())) 932 return Changed; 933 934 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 935 // Couldn't unswitch this one so we're done. 936 return Changed; 937 938 // Mark that we managed to unswitch something. 939 Changed = true; 940 941 // If unswitching turned the terminator into an unconditional branch then 942 // we can continue. The unswitching logic specifically works to fold any 943 // cases it can into an unconditional branch to make it easier to 944 // recognize here. 945 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 946 if (!BI || BI->isConditional()) 947 return Changed; 948 949 CurrentBB = BI->getSuccessor(0); 950 continue; 951 } 952 953 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 954 if (!BI) 955 // We do not understand other terminator instructions. 956 return Changed; 957 958 // Don't bother trying to unswitch past an unconditional branch or a branch 959 // with a constant value. These should be removed by simplify-cfg prior to 960 // running this pass. 961 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 962 return Changed; 963 964 // Found a trivial condition candidate: non-foldable conditional branch. If 965 // we fail to unswitch this, we can't do anything else that is trivial. 966 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 967 return Changed; 968 969 // Mark that we managed to unswitch something. 970 Changed = true; 971 972 // If we only unswitched some of the conditions feeding the branch, we won't 973 // have collapsed it to a single successor. 974 BI = cast<BranchInst>(CurrentBB->getTerminator()); 975 if (BI->isConditional()) 976 return Changed; 977 978 // Follow the newly unconditional branch into its successor. 979 CurrentBB = BI->getSuccessor(0); 980 981 // When continuing, if we exit the loop or reach a previous visited block, 982 // then we can not reach any trivial condition candidates (unfoldable 983 // branch instructions or switch instructions) and no unswitch can happen. 984 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 985 986 return Changed; 987 } 988 989 /// Build the cloned blocks for an unswitched copy of the given loop. 990 /// 991 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 992 /// after the split block (`SplitBB`) that will be used to select between the 993 /// cloned and original loop. 994 /// 995 /// This routine handles cloning all of the necessary loop blocks and exit 996 /// blocks including rewriting their instructions and the relevant PHI nodes. 997 /// Any loop blocks or exit blocks which are dominated by a different successor 998 /// than the one for this clone of the loop blocks can be trivially skipped. We 999 /// use the `DominatingSucc` map to determine whether a block satisfies that 1000 /// property with a simple map lookup. 1001 /// 1002 /// It also correctly creates the unconditional branch in the cloned 1003 /// unswitched parent block to only point at the unswitched successor. 1004 /// 1005 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1006 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1007 /// the cloned blocks (and their loops) are left without full `LoopInfo` 1008 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1009 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1010 /// instead the caller must recompute an accurate DT. It *does* correctly 1011 /// update the `AssumptionCache` provided in `AC`. 1012 static BasicBlock *buildClonedLoopBlocks( 1013 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1014 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1015 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1016 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1017 ValueToValueMapTy &VMap, 1018 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1019 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 1020 SmallVector<BasicBlock *, 4> NewBlocks; 1021 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1022 1023 // We will need to clone a bunch of blocks, wrap up the clone operation in 1024 // a helper. 1025 auto CloneBlock = [&](BasicBlock *OldBB) { 1026 // Clone the basic block and insert it before the new preheader. 1027 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1028 NewBB->moveBefore(LoopPH); 1029 1030 // Record this block and the mapping. 1031 NewBlocks.push_back(NewBB); 1032 VMap[OldBB] = NewBB; 1033 1034 return NewBB; 1035 }; 1036 1037 // We skip cloning blocks when they have a dominating succ that is not the 1038 // succ we are cloning for. 1039 auto SkipBlock = [&](BasicBlock *BB) { 1040 auto It = DominatingSucc.find(BB); 1041 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1042 }; 1043 1044 // First, clone the preheader. 1045 auto *ClonedPH = CloneBlock(LoopPH); 1046 1047 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1048 for (auto *LoopBB : L.blocks()) 1049 if (!SkipBlock(LoopBB)) 1050 CloneBlock(LoopBB); 1051 1052 // Split all the loop exit edges so that when we clone the exit blocks, if 1053 // any of the exit blocks are *also* a preheader for some other loop, we 1054 // don't create multiple predecessors entering the loop header. 1055 for (auto *ExitBB : ExitBlocks) { 1056 if (SkipBlock(ExitBB)) 1057 continue; 1058 1059 // When we are going to clone an exit, we don't need to clone all the 1060 // instructions in the exit block and we want to ensure we have an easy 1061 // place to merge the CFG, so split the exit first. This is always safe to 1062 // do because there cannot be any non-loop predecessors of a loop exit in 1063 // loop simplified form. 1064 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1065 1066 // Rearrange the names to make it easier to write test cases by having the 1067 // exit block carry the suffix rather than the merge block carrying the 1068 // suffix. 1069 MergeBB->takeName(ExitBB); 1070 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1071 1072 // Now clone the original exit block. 1073 auto *ClonedExitBB = CloneBlock(ExitBB); 1074 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1075 "Exit block should have been split to have one successor!"); 1076 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1077 "Cloned exit block has the wrong successor!"); 1078 1079 // Remap any cloned instructions and create a merge phi node for them. 1080 for (auto ZippedInsts : llvm::zip_first( 1081 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1082 llvm::make_range(ClonedExitBB->begin(), 1083 std::prev(ClonedExitBB->end())))) { 1084 Instruction &I = std::get<0>(ZippedInsts); 1085 Instruction &ClonedI = std::get<1>(ZippedInsts); 1086 1087 // The only instructions in the exit block should be PHI nodes and 1088 // potentially a landing pad. 1089 assert( 1090 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1091 "Bad instruction in exit block!"); 1092 // We should have a value map between the instruction and its clone. 1093 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1094 1095 auto *MergePN = 1096 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1097 &*MergeBB->getFirstInsertionPt()); 1098 I.replaceAllUsesWith(MergePN); 1099 MergePN->addIncoming(&I, ExitBB); 1100 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1101 } 1102 } 1103 1104 // Rewrite the instructions in the cloned blocks to refer to the instructions 1105 // in the cloned blocks. We have to do this as a second pass so that we have 1106 // everything available. Also, we have inserted new instructions which may 1107 // include assume intrinsics, so we update the assumption cache while 1108 // processing this. 1109 for (auto *ClonedBB : NewBlocks) 1110 for (Instruction &I : *ClonedBB) { 1111 RemapInstruction(&I, VMap, 1112 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1113 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1114 if (II->getIntrinsicID() == Intrinsic::assume) 1115 AC.registerAssumption(II); 1116 } 1117 1118 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1119 // have spurious incoming values. 1120 for (auto *LoopBB : L.blocks()) 1121 if (SkipBlock(LoopBB)) 1122 for (auto *SuccBB : successors(LoopBB)) 1123 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1124 for (PHINode &PN : ClonedSuccBB->phis()) 1125 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1126 1127 // Remove the cloned parent as a predecessor of any successor we ended up 1128 // cloning other than the unswitched one. 1129 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1130 for (auto *SuccBB : successors(ParentBB)) { 1131 if (SuccBB == UnswitchedSuccBB) 1132 continue; 1133 1134 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1135 if (!ClonedSuccBB) 1136 continue; 1137 1138 ClonedSuccBB->removePredecessor(ClonedParentBB, 1139 /*KeepOneInputPHIs*/ true); 1140 } 1141 1142 // Replace the cloned branch with an unconditional branch to the cloned 1143 // unswitched successor. 1144 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1145 Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 1146 // Trivial Simplification. If Terminator is a conditional branch and 1147 // condition becomes dead - erase it. 1148 Value *ClonedConditionToErase = nullptr; 1149 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 1150 ClonedConditionToErase = BI->getCondition(); 1151 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 1152 ClonedConditionToErase = SI->getCondition(); 1153 1154 ClonedTerminator->eraseFromParent(); 1155 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1156 1157 if (ClonedConditionToErase) 1158 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 1159 MSSAU); 1160 1161 // If there are duplicate entries in the PHI nodes because of multiple edges 1162 // to the unswitched successor, we need to nuke all but one as we replaced it 1163 // with a direct branch. 1164 for (PHINode &PN : ClonedSuccBB->phis()) { 1165 bool Found = false; 1166 // Loop over the incoming operands backwards so we can easily delete as we 1167 // go without invalidating the index. 1168 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1169 if (PN.getIncomingBlock(i) != ClonedParentBB) 1170 continue; 1171 if (!Found) { 1172 Found = true; 1173 continue; 1174 } 1175 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1176 } 1177 } 1178 1179 // Record the domtree updates for the new blocks. 1180 SmallPtrSet<BasicBlock *, 4> SuccSet; 1181 for (auto *ClonedBB : NewBlocks) { 1182 for (auto *SuccBB : successors(ClonedBB)) 1183 if (SuccSet.insert(SuccBB).second) 1184 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1185 SuccSet.clear(); 1186 } 1187 1188 return ClonedPH; 1189 } 1190 1191 /// Recursively clone the specified loop and all of its children. 1192 /// 1193 /// The target parent loop for the clone should be provided, or can be null if 1194 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1195 /// with the provided value map. The entire original loop must be present in 1196 /// the value map. The cloned loop is returned. 1197 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1198 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1199 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1200 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1201 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1202 for (auto *BB : OrigL.blocks()) { 1203 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1204 ClonedL.addBlockEntry(ClonedBB); 1205 if (LI.getLoopFor(BB) == &OrigL) 1206 LI.changeLoopFor(ClonedBB, &ClonedL); 1207 } 1208 }; 1209 1210 // We specially handle the first loop because it may get cloned into 1211 // a different parent and because we most commonly are cloning leaf loops. 1212 Loop *ClonedRootL = LI.AllocateLoop(); 1213 if (RootParentL) 1214 RootParentL->addChildLoop(ClonedRootL); 1215 else 1216 LI.addTopLevelLoop(ClonedRootL); 1217 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1218 1219 if (OrigRootL.isInnermost()) 1220 return ClonedRootL; 1221 1222 // If we have a nest, we can quickly clone the entire loop nest using an 1223 // iterative approach because it is a tree. We keep the cloned parent in the 1224 // data structure to avoid repeatedly querying through a map to find it. 1225 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1226 // Build up the loops to clone in reverse order as we'll clone them from the 1227 // back. 1228 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1229 LoopsToClone.push_back({ClonedRootL, ChildL}); 1230 do { 1231 Loop *ClonedParentL, *L; 1232 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1233 Loop *ClonedL = LI.AllocateLoop(); 1234 ClonedParentL->addChildLoop(ClonedL); 1235 AddClonedBlocksToLoop(*L, *ClonedL); 1236 for (Loop *ChildL : llvm::reverse(*L)) 1237 LoopsToClone.push_back({ClonedL, ChildL}); 1238 } while (!LoopsToClone.empty()); 1239 1240 return ClonedRootL; 1241 } 1242 1243 /// Build the cloned loops of an original loop from unswitching. 1244 /// 1245 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1246 /// operation. We need to re-verify that there even is a loop (as the backedge 1247 /// may not have been cloned), and even if there are remaining backedges the 1248 /// backedge set may be different. However, we know that each child loop is 1249 /// undisturbed, we only need to find where to place each child loop within 1250 /// either any parent loop or within a cloned version of the original loop. 1251 /// 1252 /// Because child loops may end up cloned outside of any cloned version of the 1253 /// original loop, multiple cloned sibling loops may be created. All of them 1254 /// are returned so that the newly introduced loop nest roots can be 1255 /// identified. 1256 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1257 const ValueToValueMapTy &VMap, LoopInfo &LI, 1258 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1259 Loop *ClonedL = nullptr; 1260 1261 auto *OrigPH = OrigL.getLoopPreheader(); 1262 auto *OrigHeader = OrigL.getHeader(); 1263 1264 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1265 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1266 1267 // We need to know the loops of the cloned exit blocks to even compute the 1268 // accurate parent loop. If we only clone exits to some parent of the 1269 // original parent, we want to clone into that outer loop. We also keep track 1270 // of the loops that our cloned exit blocks participate in. 1271 Loop *ParentL = nullptr; 1272 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1273 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1274 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1275 for (auto *ExitBB : ExitBlocks) 1276 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1277 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1278 ExitLoopMap[ClonedExitBB] = ExitL; 1279 ClonedExitsInLoops.push_back(ClonedExitBB); 1280 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1281 ParentL = ExitL; 1282 } 1283 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1284 ParentL->contains(OrigL.getParentLoop())) && 1285 "The computed parent loop should always contain (or be) the parent of " 1286 "the original loop."); 1287 1288 // We build the set of blocks dominated by the cloned header from the set of 1289 // cloned blocks out of the original loop. While not all of these will 1290 // necessarily be in the cloned loop, it is enough to establish that they 1291 // aren't in unreachable cycles, etc. 1292 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1293 for (auto *BB : OrigL.blocks()) 1294 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1295 ClonedLoopBlocks.insert(ClonedBB); 1296 1297 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1298 // skipped cloning some region of this loop which can in turn skip some of 1299 // the backedges so we have to rebuild the blocks in the loop based on the 1300 // backedges that remain after cloning. 1301 SmallVector<BasicBlock *, 16> Worklist; 1302 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1303 for (auto *Pred : predecessors(ClonedHeader)) { 1304 // The only possible non-loop header predecessor is the preheader because 1305 // we know we cloned the loop in simplified form. 1306 if (Pred == ClonedPH) 1307 continue; 1308 1309 // Because the loop was in simplified form, the only non-loop predecessor 1310 // should be the preheader. 1311 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1312 "header other than the preheader " 1313 "that is not part of the loop!"); 1314 1315 // Insert this block into the loop set and on the first visit (and if it 1316 // isn't the header we're currently walking) put it into the worklist to 1317 // recurse through. 1318 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1319 Worklist.push_back(Pred); 1320 } 1321 1322 // If we had any backedges then there *is* a cloned loop. Put the header into 1323 // the loop set and then walk the worklist backwards to find all the blocks 1324 // that remain within the loop after cloning. 1325 if (!BlocksInClonedLoop.empty()) { 1326 BlocksInClonedLoop.insert(ClonedHeader); 1327 1328 while (!Worklist.empty()) { 1329 BasicBlock *BB = Worklist.pop_back_val(); 1330 assert(BlocksInClonedLoop.count(BB) && 1331 "Didn't put block into the loop set!"); 1332 1333 // Insert any predecessors that are in the possible set into the cloned 1334 // set, and if the insert is successful, add them to the worklist. Note 1335 // that we filter on the blocks that are definitely reachable via the 1336 // backedge to the loop header so we may prune out dead code within the 1337 // cloned loop. 1338 for (auto *Pred : predecessors(BB)) 1339 if (ClonedLoopBlocks.count(Pred) && 1340 BlocksInClonedLoop.insert(Pred).second) 1341 Worklist.push_back(Pred); 1342 } 1343 1344 ClonedL = LI.AllocateLoop(); 1345 if (ParentL) { 1346 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1347 ParentL->addChildLoop(ClonedL); 1348 } else { 1349 LI.addTopLevelLoop(ClonedL); 1350 } 1351 NonChildClonedLoops.push_back(ClonedL); 1352 1353 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1354 // We don't want to just add the cloned loop blocks based on how we 1355 // discovered them. The original order of blocks was carefully built in 1356 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1357 // that logic, we just re-walk the original blocks (and those of the child 1358 // loops) and filter them as we add them into the cloned loop. 1359 for (auto *BB : OrigL.blocks()) { 1360 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1361 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1362 continue; 1363 1364 // Directly add the blocks that are only in this loop. 1365 if (LI.getLoopFor(BB) == &OrigL) { 1366 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1367 continue; 1368 } 1369 1370 // We want to manually add it to this loop and parents. 1371 // Registering it with LoopInfo will happen when we clone the top 1372 // loop for this block. 1373 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1374 PL->addBlockEntry(ClonedBB); 1375 } 1376 1377 // Now add each child loop whose header remains within the cloned loop. All 1378 // of the blocks within the loop must satisfy the same constraints as the 1379 // header so once we pass the header checks we can just clone the entire 1380 // child loop nest. 1381 for (Loop *ChildL : OrigL) { 1382 auto *ClonedChildHeader = 1383 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1384 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1385 continue; 1386 1387 #ifndef NDEBUG 1388 // We should never have a cloned child loop header but fail to have 1389 // all of the blocks for that child loop. 1390 for (auto *ChildLoopBB : ChildL->blocks()) 1391 assert(BlocksInClonedLoop.count( 1392 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1393 "Child cloned loop has a header within the cloned outer " 1394 "loop but not all of its blocks!"); 1395 #endif 1396 1397 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1398 } 1399 } 1400 1401 // Now that we've handled all the components of the original loop that were 1402 // cloned into a new loop, we still need to handle anything from the original 1403 // loop that wasn't in a cloned loop. 1404 1405 // Figure out what blocks are left to place within any loop nest containing 1406 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1407 // them. 1408 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1409 if (BlocksInClonedLoop.empty()) 1410 UnloopedBlockSet.insert(ClonedPH); 1411 for (auto *ClonedBB : ClonedLoopBlocks) 1412 if (!BlocksInClonedLoop.count(ClonedBB)) 1413 UnloopedBlockSet.insert(ClonedBB); 1414 1415 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1416 // backwards across these to process them inside out. The order shouldn't 1417 // matter as we're just trying to build up the map from inside-out; we use 1418 // the map in a more stably ordered way below. 1419 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1420 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1421 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1422 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1423 }); 1424 1425 // Populate the existing ExitLoopMap with everything reachable from each 1426 // exit, starting from the inner most exit. 1427 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1428 assert(Worklist.empty() && "Didn't clear worklist!"); 1429 1430 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1431 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1432 1433 // Walk the CFG back until we hit the cloned PH adding everything reachable 1434 // and in the unlooped set to this exit block's loop. 1435 Worklist.push_back(ExitBB); 1436 do { 1437 BasicBlock *BB = Worklist.pop_back_val(); 1438 // We can stop recursing at the cloned preheader (if we get there). 1439 if (BB == ClonedPH) 1440 continue; 1441 1442 for (BasicBlock *PredBB : predecessors(BB)) { 1443 // If this pred has already been moved to our set or is part of some 1444 // (inner) loop, no update needed. 1445 if (!UnloopedBlockSet.erase(PredBB)) { 1446 assert( 1447 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1448 "Predecessor not mapped to a loop!"); 1449 continue; 1450 } 1451 1452 // We just insert into the loop set here. We'll add these blocks to the 1453 // exit loop after we build up the set in an order that doesn't rely on 1454 // predecessor order (which in turn relies on use list order). 1455 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1456 (void)Inserted; 1457 assert(Inserted && "Should only visit an unlooped block once!"); 1458 1459 // And recurse through to its predecessors. 1460 Worklist.push_back(PredBB); 1461 } 1462 } while (!Worklist.empty()); 1463 } 1464 1465 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1466 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1467 // in their original order adding them to the correct loop. 1468 1469 // We need a stable insertion order. We use the order of the original loop 1470 // order and map into the correct parent loop. 1471 for (auto *BB : llvm::concat<BasicBlock *const>( 1472 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1473 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1474 OuterL->addBasicBlockToLoop(BB, LI); 1475 1476 #ifndef NDEBUG 1477 for (auto &BBAndL : ExitLoopMap) { 1478 auto *BB = BBAndL.first; 1479 auto *OuterL = BBAndL.second; 1480 assert(LI.getLoopFor(BB) == OuterL && 1481 "Failed to put all blocks into outer loops!"); 1482 } 1483 #endif 1484 1485 // Now that all the blocks are placed into the correct containing loop in the 1486 // absence of child loops, find all the potentially cloned child loops and 1487 // clone them into whatever outer loop we placed their header into. 1488 for (Loop *ChildL : OrigL) { 1489 auto *ClonedChildHeader = 1490 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1491 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1492 continue; 1493 1494 #ifndef NDEBUG 1495 for (auto *ChildLoopBB : ChildL->blocks()) 1496 assert(VMap.count(ChildLoopBB) && 1497 "Cloned a child loop header but not all of that loops blocks!"); 1498 #endif 1499 1500 NonChildClonedLoops.push_back(cloneLoopNest( 1501 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1502 } 1503 } 1504 1505 static void 1506 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1507 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1508 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1509 // Find all the dead clones, and remove them from their successors. 1510 SmallVector<BasicBlock *, 16> DeadBlocks; 1511 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1512 for (auto &VMap : VMaps) 1513 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1514 if (!DT.isReachableFromEntry(ClonedBB)) { 1515 for (BasicBlock *SuccBB : successors(ClonedBB)) 1516 SuccBB->removePredecessor(ClonedBB); 1517 DeadBlocks.push_back(ClonedBB); 1518 } 1519 1520 // Remove all MemorySSA in the dead blocks 1521 if (MSSAU) { 1522 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1523 DeadBlocks.end()); 1524 MSSAU->removeBlocks(DeadBlockSet); 1525 } 1526 1527 // Drop any remaining references to break cycles. 1528 for (BasicBlock *BB : DeadBlocks) 1529 BB->dropAllReferences(); 1530 // Erase them from the IR. 1531 for (BasicBlock *BB : DeadBlocks) 1532 BB->eraseFromParent(); 1533 } 1534 1535 static void deleteDeadBlocksFromLoop(Loop &L, 1536 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1537 DominatorTree &DT, LoopInfo &LI, 1538 MemorySSAUpdater *MSSAU) { 1539 // Find all the dead blocks tied to this loop, and remove them from their 1540 // successors. 1541 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1542 1543 // Start with loop/exit blocks and get a transitive closure of reachable dead 1544 // blocks. 1545 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1546 ExitBlocks.end()); 1547 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1548 while (!DeathCandidates.empty()) { 1549 auto *BB = DeathCandidates.pop_back_val(); 1550 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1551 for (BasicBlock *SuccBB : successors(BB)) { 1552 SuccBB->removePredecessor(BB); 1553 DeathCandidates.push_back(SuccBB); 1554 } 1555 DeadBlockSet.insert(BB); 1556 } 1557 } 1558 1559 // Remove all MemorySSA in the dead blocks 1560 if (MSSAU) 1561 MSSAU->removeBlocks(DeadBlockSet); 1562 1563 // Filter out the dead blocks from the exit blocks list so that it can be 1564 // used in the caller. 1565 llvm::erase_if(ExitBlocks, 1566 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1567 1568 // Walk from this loop up through its parents removing all of the dead blocks. 1569 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1570 for (auto *BB : DeadBlockSet) 1571 ParentL->getBlocksSet().erase(BB); 1572 llvm::erase_if(ParentL->getBlocksVector(), 1573 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1574 } 1575 1576 // Now delete the dead child loops. This raw delete will clear them 1577 // recursively. 1578 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1579 if (!DeadBlockSet.count(ChildL->getHeader())) 1580 return false; 1581 1582 assert(llvm::all_of(ChildL->blocks(), 1583 [&](BasicBlock *ChildBB) { 1584 return DeadBlockSet.count(ChildBB); 1585 }) && 1586 "If the child loop header is dead all blocks in the child loop must " 1587 "be dead as well!"); 1588 LI.destroy(ChildL); 1589 return true; 1590 }); 1591 1592 // Remove the loop mappings for the dead blocks and drop all the references 1593 // from these blocks to others to handle cyclic references as we start 1594 // deleting the blocks themselves. 1595 for (auto *BB : DeadBlockSet) { 1596 // Check that the dominator tree has already been updated. 1597 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1598 LI.changeLoopFor(BB, nullptr); 1599 // Drop all uses of the instructions to make sure we won't have dangling 1600 // uses in other blocks. 1601 for (auto &I : *BB) 1602 if (!I.use_empty()) 1603 I.replaceAllUsesWith(UndefValue::get(I.getType())); 1604 BB->dropAllReferences(); 1605 } 1606 1607 // Actually delete the blocks now that they've been fully unhooked from the 1608 // IR. 1609 for (auto *BB : DeadBlockSet) 1610 BB->eraseFromParent(); 1611 } 1612 1613 /// Recompute the set of blocks in a loop after unswitching. 1614 /// 1615 /// This walks from the original headers predecessors to rebuild the loop. We 1616 /// take advantage of the fact that new blocks can't have been added, and so we 1617 /// filter by the original loop's blocks. This also handles potentially 1618 /// unreachable code that we don't want to explore but might be found examining 1619 /// the predecessors of the header. 1620 /// 1621 /// If the original loop is no longer a loop, this will return an empty set. If 1622 /// it remains a loop, all the blocks within it will be added to the set 1623 /// (including those blocks in inner loops). 1624 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1625 LoopInfo &LI) { 1626 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1627 1628 auto *PH = L.getLoopPreheader(); 1629 auto *Header = L.getHeader(); 1630 1631 // A worklist to use while walking backwards from the header. 1632 SmallVector<BasicBlock *, 16> Worklist; 1633 1634 // First walk the predecessors of the header to find the backedges. This will 1635 // form the basis of our walk. 1636 for (auto *Pred : predecessors(Header)) { 1637 // Skip the preheader. 1638 if (Pred == PH) 1639 continue; 1640 1641 // Because the loop was in simplified form, the only non-loop predecessor 1642 // is the preheader. 1643 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1644 "than the preheader that is not part of the " 1645 "loop!"); 1646 1647 // Insert this block into the loop set and on the first visit and, if it 1648 // isn't the header we're currently walking, put it into the worklist to 1649 // recurse through. 1650 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1651 Worklist.push_back(Pred); 1652 } 1653 1654 // If no backedges were found, we're done. 1655 if (LoopBlockSet.empty()) 1656 return LoopBlockSet; 1657 1658 // We found backedges, recurse through them to identify the loop blocks. 1659 while (!Worklist.empty()) { 1660 BasicBlock *BB = Worklist.pop_back_val(); 1661 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1662 1663 // No need to walk past the header. 1664 if (BB == Header) 1665 continue; 1666 1667 // Because we know the inner loop structure remains valid we can use the 1668 // loop structure to jump immediately across the entire nested loop. 1669 // Further, because it is in loop simplified form, we can directly jump 1670 // to its preheader afterward. 1671 if (Loop *InnerL = LI.getLoopFor(BB)) 1672 if (InnerL != &L) { 1673 assert(L.contains(InnerL) && 1674 "Should not reach a loop *outside* this loop!"); 1675 // The preheader is the only possible predecessor of the loop so 1676 // insert it into the set and check whether it was already handled. 1677 auto *InnerPH = InnerL->getLoopPreheader(); 1678 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1679 "but not contain the inner loop " 1680 "preheader!"); 1681 if (!LoopBlockSet.insert(InnerPH).second) 1682 // The only way to reach the preheader is through the loop body 1683 // itself so if it has been visited the loop is already handled. 1684 continue; 1685 1686 // Insert all of the blocks (other than those already present) into 1687 // the loop set. We expect at least the block that led us to find the 1688 // inner loop to be in the block set, but we may also have other loop 1689 // blocks if they were already enqueued as predecessors of some other 1690 // outer loop block. 1691 for (auto *InnerBB : InnerL->blocks()) { 1692 if (InnerBB == BB) { 1693 assert(LoopBlockSet.count(InnerBB) && 1694 "Block should already be in the set!"); 1695 continue; 1696 } 1697 1698 LoopBlockSet.insert(InnerBB); 1699 } 1700 1701 // Add the preheader to the worklist so we will continue past the 1702 // loop body. 1703 Worklist.push_back(InnerPH); 1704 continue; 1705 } 1706 1707 // Insert any predecessors that were in the original loop into the new 1708 // set, and if the insert is successful, add them to the worklist. 1709 for (auto *Pred : predecessors(BB)) 1710 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1711 Worklist.push_back(Pred); 1712 } 1713 1714 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1715 1716 // We've found all the blocks participating in the loop, return our completed 1717 // set. 1718 return LoopBlockSet; 1719 } 1720 1721 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1722 /// 1723 /// The removal may have removed some child loops entirely but cannot have 1724 /// disturbed any remaining child loops. However, they may need to be hoisted 1725 /// to the parent loop (or to be top-level loops). The original loop may be 1726 /// completely removed. 1727 /// 1728 /// The sibling loops resulting from this update are returned. If the original 1729 /// loop remains a valid loop, it will be the first entry in this list with all 1730 /// of the newly sibling loops following it. 1731 /// 1732 /// Returns true if the loop remains a loop after unswitching, and false if it 1733 /// is no longer a loop after unswitching (and should not continue to be 1734 /// referenced). 1735 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1736 LoopInfo &LI, 1737 SmallVectorImpl<Loop *> &HoistedLoops) { 1738 auto *PH = L.getLoopPreheader(); 1739 1740 // Compute the actual parent loop from the exit blocks. Because we may have 1741 // pruned some exits the loop may be different from the original parent. 1742 Loop *ParentL = nullptr; 1743 SmallVector<Loop *, 4> ExitLoops; 1744 SmallVector<BasicBlock *, 4> ExitsInLoops; 1745 ExitsInLoops.reserve(ExitBlocks.size()); 1746 for (auto *ExitBB : ExitBlocks) 1747 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1748 ExitLoops.push_back(ExitL); 1749 ExitsInLoops.push_back(ExitBB); 1750 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1751 ParentL = ExitL; 1752 } 1753 1754 // Recompute the blocks participating in this loop. This may be empty if it 1755 // is no longer a loop. 1756 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1757 1758 // If we still have a loop, we need to re-set the loop's parent as the exit 1759 // block set changing may have moved it within the loop nest. Note that this 1760 // can only happen when this loop has a parent as it can only hoist the loop 1761 // *up* the nest. 1762 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1763 // Remove this loop's (original) blocks from all of the intervening loops. 1764 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1765 IL = IL->getParentLoop()) { 1766 IL->getBlocksSet().erase(PH); 1767 for (auto *BB : L.blocks()) 1768 IL->getBlocksSet().erase(BB); 1769 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1770 return BB == PH || L.contains(BB); 1771 }); 1772 } 1773 1774 LI.changeLoopFor(PH, ParentL); 1775 L.getParentLoop()->removeChildLoop(&L); 1776 if (ParentL) 1777 ParentL->addChildLoop(&L); 1778 else 1779 LI.addTopLevelLoop(&L); 1780 } 1781 1782 // Now we update all the blocks which are no longer within the loop. 1783 auto &Blocks = L.getBlocksVector(); 1784 auto BlocksSplitI = 1785 LoopBlockSet.empty() 1786 ? Blocks.begin() 1787 : std::stable_partition( 1788 Blocks.begin(), Blocks.end(), 1789 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1790 1791 // Before we erase the list of unlooped blocks, build a set of them. 1792 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1793 if (LoopBlockSet.empty()) 1794 UnloopedBlocks.insert(PH); 1795 1796 // Now erase these blocks from the loop. 1797 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1798 L.getBlocksSet().erase(BB); 1799 Blocks.erase(BlocksSplitI, Blocks.end()); 1800 1801 // Sort the exits in ascending loop depth, we'll work backwards across these 1802 // to process them inside out. 1803 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1804 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1805 }); 1806 1807 // We'll build up a set for each exit loop. 1808 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1809 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1810 1811 auto RemoveUnloopedBlocksFromLoop = 1812 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1813 for (auto *BB : UnloopedBlocks) 1814 L.getBlocksSet().erase(BB); 1815 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1816 return UnloopedBlocks.count(BB); 1817 }); 1818 }; 1819 1820 SmallVector<BasicBlock *, 16> Worklist; 1821 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1822 assert(Worklist.empty() && "Didn't clear worklist!"); 1823 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1824 1825 // Grab the next exit block, in decreasing loop depth order. 1826 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1827 Loop &ExitL = *LI.getLoopFor(ExitBB); 1828 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1829 1830 // Erase all of the unlooped blocks from the loops between the previous 1831 // exit loop and this exit loop. This works because the ExitInLoops list is 1832 // sorted in increasing order of loop depth and thus we visit loops in 1833 // decreasing order of loop depth. 1834 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1835 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1836 1837 // Walk the CFG back until we hit the cloned PH adding everything reachable 1838 // and in the unlooped set to this exit block's loop. 1839 Worklist.push_back(ExitBB); 1840 do { 1841 BasicBlock *BB = Worklist.pop_back_val(); 1842 // We can stop recursing at the cloned preheader (if we get there). 1843 if (BB == PH) 1844 continue; 1845 1846 for (BasicBlock *PredBB : predecessors(BB)) { 1847 // If this pred has already been moved to our set or is part of some 1848 // (inner) loop, no update needed. 1849 if (!UnloopedBlocks.erase(PredBB)) { 1850 assert((NewExitLoopBlocks.count(PredBB) || 1851 ExitL.contains(LI.getLoopFor(PredBB))) && 1852 "Predecessor not in a nested loop (or already visited)!"); 1853 continue; 1854 } 1855 1856 // We just insert into the loop set here. We'll add these blocks to the 1857 // exit loop after we build up the set in a deterministic order rather 1858 // than the predecessor-influenced visit order. 1859 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1860 (void)Inserted; 1861 assert(Inserted && "Should only visit an unlooped block once!"); 1862 1863 // And recurse through to its predecessors. 1864 Worklist.push_back(PredBB); 1865 } 1866 } while (!Worklist.empty()); 1867 1868 // If blocks in this exit loop were directly part of the original loop (as 1869 // opposed to a child loop) update the map to point to this exit loop. This 1870 // just updates a map and so the fact that the order is unstable is fine. 1871 for (auto *BB : NewExitLoopBlocks) 1872 if (Loop *BBL = LI.getLoopFor(BB)) 1873 if (BBL == &L || !L.contains(BBL)) 1874 LI.changeLoopFor(BB, &ExitL); 1875 1876 // We will remove the remaining unlooped blocks from this loop in the next 1877 // iteration or below. 1878 NewExitLoopBlocks.clear(); 1879 } 1880 1881 // Any remaining unlooped blocks are no longer part of any loop unless they 1882 // are part of some child loop. 1883 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1884 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1885 for (auto *BB : UnloopedBlocks) 1886 if (Loop *BBL = LI.getLoopFor(BB)) 1887 if (BBL == &L || !L.contains(BBL)) 1888 LI.changeLoopFor(BB, nullptr); 1889 1890 // Sink all the child loops whose headers are no longer in the loop set to 1891 // the parent (or to be top level loops). We reach into the loop and directly 1892 // update its subloop vector to make this batch update efficient. 1893 auto &SubLoops = L.getSubLoopsVector(); 1894 auto SubLoopsSplitI = 1895 LoopBlockSet.empty() 1896 ? SubLoops.begin() 1897 : std::stable_partition( 1898 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1899 return LoopBlockSet.count(SubL->getHeader()); 1900 }); 1901 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1902 HoistedLoops.push_back(HoistedL); 1903 HoistedL->setParentLoop(nullptr); 1904 1905 // To compute the new parent of this hoisted loop we look at where we 1906 // placed the preheader above. We can't lookup the header itself because we 1907 // retained the mapping from the header to the hoisted loop. But the 1908 // preheader and header should have the exact same new parent computed 1909 // based on the set of exit blocks from the original loop as the preheader 1910 // is a predecessor of the header and so reached in the reverse walk. And 1911 // because the loops were all in simplified form the preheader of the 1912 // hoisted loop can't be part of some *other* loop. 1913 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1914 NewParentL->addChildLoop(HoistedL); 1915 else 1916 LI.addTopLevelLoop(HoistedL); 1917 } 1918 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1919 1920 // Actually delete the loop if nothing remained within it. 1921 if (Blocks.empty()) { 1922 assert(SubLoops.empty() && 1923 "Failed to remove all subloops from the original loop!"); 1924 if (Loop *ParentL = L.getParentLoop()) 1925 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1926 else 1927 LI.removeLoop(llvm::find(LI, &L)); 1928 LI.destroy(&L); 1929 return false; 1930 } 1931 1932 return true; 1933 } 1934 1935 /// Helper to visit a dominator subtree, invoking a callable on each node. 1936 /// 1937 /// Returning false at any point will stop walking past that node of the tree. 1938 template <typename CallableT> 1939 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1940 SmallVector<DomTreeNode *, 4> DomWorklist; 1941 DomWorklist.push_back(DT[BB]); 1942 #ifndef NDEBUG 1943 SmallPtrSet<DomTreeNode *, 4> Visited; 1944 Visited.insert(DT[BB]); 1945 #endif 1946 do { 1947 DomTreeNode *N = DomWorklist.pop_back_val(); 1948 1949 // Visit this node. 1950 if (!Callable(N->getBlock())) 1951 continue; 1952 1953 // Accumulate the child nodes. 1954 for (DomTreeNode *ChildN : *N) { 1955 assert(Visited.insert(ChildN).second && 1956 "Cannot visit a node twice when walking a tree!"); 1957 DomWorklist.push_back(ChildN); 1958 } 1959 } while (!DomWorklist.empty()); 1960 } 1961 1962 static void unswitchNontrivialInvariants( 1963 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1964 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1965 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1966 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 1967 auto *ParentBB = TI.getParent(); 1968 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1969 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1970 1971 // We can only unswitch switches, conditional branches with an invariant 1972 // condition, or combining invariant conditions with an instruction. 1973 assert((SI || (BI && BI->isConditional())) && 1974 "Can only unswitch switches and conditional branch!"); 1975 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1976 if (FullUnswitch) 1977 assert(Invariants.size() == 1 && 1978 "Cannot have other invariants with full unswitching!"); 1979 else 1980 assert(isa<Instruction>(BI->getCondition()) && 1981 "Partial unswitching requires an instruction as the condition!"); 1982 1983 if (MSSAU && VerifyMemorySSA) 1984 MSSAU->getMemorySSA()->verifyMemorySSA(); 1985 1986 // Constant and BBs tracking the cloned and continuing successor. When we are 1987 // unswitching the entire condition, this can just be trivially chosen to 1988 // unswitch towards `true`. However, when we are unswitching a set of 1989 // invariants combined with `and` or `or`, the combining operation determines 1990 // the best direction to unswitch: we want to unswitch the direction that will 1991 // collapse the branch. 1992 bool Direction = true; 1993 int ClonedSucc = 0; 1994 if (!FullUnswitch) { 1995 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1996 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1997 Instruction::And && 1998 "Only `or` and `and` instructions can combine invariants being " 1999 "unswitched."); 2000 Direction = false; 2001 ClonedSucc = 1; 2002 } 2003 } 2004 2005 BasicBlock *RetainedSuccBB = 2006 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 2007 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 2008 if (BI) 2009 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 2010 else 2011 for (auto Case : SI->cases()) 2012 if (Case.getCaseSuccessor() != RetainedSuccBB) 2013 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 2014 2015 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 2016 "Should not unswitch the same successor we are retaining!"); 2017 2018 // The branch should be in this exact loop. Any inner loop's invariant branch 2019 // should be handled by unswitching that inner loop. The caller of this 2020 // routine should filter out any candidates that remain (but were skipped for 2021 // whatever reason). 2022 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2023 2024 // Compute the parent loop now before we start hacking on things. 2025 Loop *ParentL = L.getParentLoop(); 2026 // Get blocks in RPO order for MSSA update, before changing the CFG. 2027 LoopBlocksRPO LBRPO(&L); 2028 if (MSSAU) 2029 LBRPO.perform(&LI); 2030 2031 // Compute the outer-most loop containing one of our exit blocks. This is the 2032 // furthest up our loopnest which can be mutated, which we will use below to 2033 // update things. 2034 Loop *OuterExitL = &L; 2035 for (auto *ExitBB : ExitBlocks) { 2036 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2037 if (!NewOuterExitL) { 2038 // We exited the entire nest with this block, so we're done. 2039 OuterExitL = nullptr; 2040 break; 2041 } 2042 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2043 OuterExitL = NewOuterExitL; 2044 } 2045 2046 // At this point, we're definitely going to unswitch something so invalidate 2047 // any cached information in ScalarEvolution for the outer most loop 2048 // containing an exit block and all nested loops. 2049 if (SE) { 2050 if (OuterExitL) 2051 SE->forgetLoop(OuterExitL); 2052 else 2053 SE->forgetTopmostLoop(&L); 2054 } 2055 2056 // If the edge from this terminator to a successor dominates that successor, 2057 // store a map from each block in its dominator subtree to it. This lets us 2058 // tell when cloning for a particular successor if a block is dominated by 2059 // some *other* successor with a single data structure. We use this to 2060 // significantly reduce cloning. 2061 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2062 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2063 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2064 if (SuccBB->getUniquePredecessor() || 2065 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2066 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2067 })) 2068 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2069 DominatingSucc[BB] = SuccBB; 2070 return true; 2071 }); 2072 2073 // Split the preheader, so that we know that there is a safe place to insert 2074 // the conditional branch. We will change the preheader to have a conditional 2075 // branch on LoopCond. The original preheader will become the split point 2076 // between the unswitched versions, and we will have a new preheader for the 2077 // original loop. 2078 BasicBlock *SplitBB = L.getLoopPreheader(); 2079 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2080 2081 // Keep track of the dominator tree updates needed. 2082 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2083 2084 // Clone the loop for each unswitched successor. 2085 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2086 VMaps.reserve(UnswitchedSuccBBs.size()); 2087 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2088 for (auto *SuccBB : UnswitchedSuccBBs) { 2089 VMaps.emplace_back(new ValueToValueMapTy()); 2090 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2091 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2092 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2093 } 2094 2095 // Drop metadata if we may break its semantics by moving this instr into the 2096 // split block. 2097 if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 2098 if (DropNonTrivialImplicitNullChecks) 2099 // Do not spend time trying to understand if we can keep it, just drop it 2100 // to save compile time. 2101 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2102 else { 2103 // It is only legal to preserve make.implicit metadata if we are 2104 // guaranteed no reach implicit null check after following this branch. 2105 ICFLoopSafetyInfo SafetyInfo; 2106 SafetyInfo.computeLoopSafetyInfo(&L); 2107 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2108 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2109 } 2110 } 2111 2112 // The stitching of the branched code back together depends on whether we're 2113 // doing full unswitching or not with the exception that we always want to 2114 // nuke the initial terminator placed in the split block. 2115 SplitBB->getTerminator()->eraseFromParent(); 2116 if (FullUnswitch) { 2117 // Splice the terminator from the original loop and rewrite its 2118 // successors. 2119 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2120 2121 // Keep a clone of the terminator for MSSA updates. 2122 Instruction *NewTI = TI.clone(); 2123 ParentBB->getInstList().push_back(NewTI); 2124 2125 // First wire up the moved terminator to the preheaders. 2126 if (BI) { 2127 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2128 BI->setSuccessor(ClonedSucc, ClonedPH); 2129 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2130 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2131 } else { 2132 assert(SI && "Must either be a branch or switch!"); 2133 2134 // Walk the cases and directly update their successors. 2135 assert(SI->getDefaultDest() == RetainedSuccBB && 2136 "Not retaining default successor!"); 2137 SI->setDefaultDest(LoopPH); 2138 for (auto &Case : SI->cases()) 2139 if (Case.getCaseSuccessor() == RetainedSuccBB) 2140 Case.setSuccessor(LoopPH); 2141 else 2142 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2143 2144 // We need to use the set to populate domtree updates as even when there 2145 // are multiple cases pointing at the same successor we only want to 2146 // remove and insert one edge in the domtree. 2147 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2148 DTUpdates.push_back( 2149 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2150 } 2151 2152 if (MSSAU) { 2153 DT.applyUpdates(DTUpdates); 2154 DTUpdates.clear(); 2155 2156 // Remove all but one edge to the retained block and all unswitched 2157 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2158 // when we know we only keep a single edge for each case. 2159 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2160 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2161 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2162 2163 for (auto &VMap : VMaps) 2164 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2165 /*IgnoreIncomingWithNoClones=*/true); 2166 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2167 2168 // Remove all edges to unswitched blocks. 2169 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2170 MSSAU->removeEdge(ParentBB, SuccBB); 2171 } 2172 2173 // Now unhook the successor relationship as we'll be replacing 2174 // the terminator with a direct branch. This is much simpler for branches 2175 // than switches so we handle those first. 2176 if (BI) { 2177 // Remove the parent as a predecessor of the unswitched successor. 2178 assert(UnswitchedSuccBBs.size() == 1 && 2179 "Only one possible unswitched block for a branch!"); 2180 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2181 UnswitchedSuccBB->removePredecessor(ParentBB, 2182 /*KeepOneInputPHIs*/ true); 2183 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2184 } else { 2185 // Note that we actually want to remove the parent block as a predecessor 2186 // of *every* case successor. The case successor is either unswitched, 2187 // completely eliminating an edge from the parent to that successor, or it 2188 // is a duplicate edge to the retained successor as the retained successor 2189 // is always the default successor and as we'll replace this with a direct 2190 // branch we no longer need the duplicate entries in the PHI nodes. 2191 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2192 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2193 "Not retaining default successor!"); 2194 for (auto &Case : NewSI->cases()) 2195 Case.getCaseSuccessor()->removePredecessor( 2196 ParentBB, 2197 /*KeepOneInputPHIs*/ true); 2198 2199 // We need to use the set to populate domtree updates as even when there 2200 // are multiple cases pointing at the same successor we only want to 2201 // remove and insert one edge in the domtree. 2202 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2203 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2204 } 2205 2206 // After MSSAU update, remove the cloned terminator instruction NewTI. 2207 ParentBB->getTerminator()->eraseFromParent(); 2208 2209 // Create a new unconditional branch to the continuing block (as opposed to 2210 // the one cloned). 2211 BranchInst::Create(RetainedSuccBB, ParentBB); 2212 } else { 2213 assert(BI && "Only branches have partial unswitching."); 2214 assert(UnswitchedSuccBBs.size() == 1 && 2215 "Only one possible unswitched block for a branch!"); 2216 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2217 // When doing a partial unswitch, we have to do a bit more work to build up 2218 // the branch in the split block. 2219 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2220 *ClonedPH, *LoopPH); 2221 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2222 2223 if (MSSAU) { 2224 DT.applyUpdates(DTUpdates); 2225 DTUpdates.clear(); 2226 2227 // Perform MSSA cloning updates. 2228 for (auto &VMap : VMaps) 2229 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2230 /*IgnoreIncomingWithNoClones=*/true); 2231 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2232 } 2233 } 2234 2235 // Apply the updates accumulated above to get an up-to-date dominator tree. 2236 DT.applyUpdates(DTUpdates); 2237 2238 // Now that we have an accurate dominator tree, first delete the dead cloned 2239 // blocks so that we can accurately build any cloned loops. It is important to 2240 // not delete the blocks from the original loop yet because we still want to 2241 // reference the original loop to understand the cloned loop's structure. 2242 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2243 2244 // Build the cloned loop structure itself. This may be substantially 2245 // different from the original structure due to the simplified CFG. This also 2246 // handles inserting all the cloned blocks into the correct loops. 2247 SmallVector<Loop *, 4> NonChildClonedLoops; 2248 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2249 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2250 2251 // Now that our cloned loops have been built, we can update the original loop. 2252 // First we delete the dead blocks from it and then we rebuild the loop 2253 // structure taking these deletions into account. 2254 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2255 2256 if (MSSAU && VerifyMemorySSA) 2257 MSSAU->getMemorySSA()->verifyMemorySSA(); 2258 2259 SmallVector<Loop *, 4> HoistedLoops; 2260 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2261 2262 if (MSSAU && VerifyMemorySSA) 2263 MSSAU->getMemorySSA()->verifyMemorySSA(); 2264 2265 // This transformation has a high risk of corrupting the dominator tree, and 2266 // the below steps to rebuild loop structures will result in hard to debug 2267 // errors in that case so verify that the dominator tree is sane first. 2268 // FIXME: Remove this when the bugs stop showing up and rely on existing 2269 // verification steps. 2270 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2271 2272 if (BI) { 2273 // If we unswitched a branch which collapses the condition to a known 2274 // constant we want to replace all the uses of the invariants within both 2275 // the original and cloned blocks. We do this here so that we can use the 2276 // now updated dominator tree to identify which side the users are on. 2277 assert(UnswitchedSuccBBs.size() == 1 && 2278 "Only one possible unswitched block for a branch!"); 2279 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2280 2281 // When considering multiple partially-unswitched invariants 2282 // we cant just go replace them with constants in both branches. 2283 // 2284 // For 'AND' we infer that true branch ("continue") means true 2285 // for each invariant operand. 2286 // For 'OR' we can infer that false branch ("continue") means false 2287 // for each invariant operand. 2288 // So it happens that for multiple-partial case we dont replace 2289 // in the unswitched branch. 2290 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2291 2292 ConstantInt *UnswitchedReplacement = 2293 Direction ? ConstantInt::getTrue(BI->getContext()) 2294 : ConstantInt::getFalse(BI->getContext()); 2295 ConstantInt *ContinueReplacement = 2296 Direction ? ConstantInt::getFalse(BI->getContext()) 2297 : ConstantInt::getTrue(BI->getContext()); 2298 for (Value *Invariant : Invariants) 2299 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2300 UI != UE;) { 2301 // Grab the use and walk past it so we can clobber it in the use list. 2302 Use *U = &*UI++; 2303 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2304 if (!UserI) 2305 continue; 2306 2307 // Replace it with the 'continue' side if in the main loop body, and the 2308 // unswitched if in the cloned blocks. 2309 if (DT.dominates(LoopPH, UserI->getParent())) 2310 U->set(ContinueReplacement); 2311 else if (ReplaceUnswitched && 2312 DT.dominates(ClonedPH, UserI->getParent())) 2313 U->set(UnswitchedReplacement); 2314 } 2315 } 2316 2317 // We can change which blocks are exit blocks of all the cloned sibling 2318 // loops, the current loop, and any parent loops which shared exit blocks 2319 // with the current loop. As a consequence, we need to re-form LCSSA for 2320 // them. But we shouldn't need to re-form LCSSA for any child loops. 2321 // FIXME: This could be made more efficient by tracking which exit blocks are 2322 // new, and focusing on them, but that isn't likely to be necessary. 2323 // 2324 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2325 // loop nest and update every loop that could have had its exits changed. We 2326 // also need to cover any intervening loops. We add all of these loops to 2327 // a list and sort them by loop depth to achieve this without updating 2328 // unnecessary loops. 2329 auto UpdateLoop = [&](Loop &UpdateL) { 2330 #ifndef NDEBUG 2331 UpdateL.verifyLoop(); 2332 for (Loop *ChildL : UpdateL) { 2333 ChildL->verifyLoop(); 2334 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2335 "Perturbed a child loop's LCSSA form!"); 2336 } 2337 #endif 2338 // First build LCSSA for this loop so that we can preserve it when 2339 // forming dedicated exits. We don't want to perturb some other loop's 2340 // LCSSA while doing that CFG edit. 2341 formLCSSA(UpdateL, DT, &LI, SE); 2342 2343 // For loops reached by this loop's original exit blocks we may 2344 // introduced new, non-dedicated exits. At least try to re-form dedicated 2345 // exits for these loops. This may fail if they couldn't have dedicated 2346 // exits to start with. 2347 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2348 }; 2349 2350 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2351 // and we can do it in any order as they don't nest relative to each other. 2352 // 2353 // Also check if any of the loops we have updated have become top-level loops 2354 // as that will necessitate widening the outer loop scope. 2355 for (Loop *UpdatedL : 2356 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2357 UpdateLoop(*UpdatedL); 2358 if (UpdatedL->isOutermost()) 2359 OuterExitL = nullptr; 2360 } 2361 if (IsStillLoop) { 2362 UpdateLoop(L); 2363 if (L.isOutermost()) 2364 OuterExitL = nullptr; 2365 } 2366 2367 // If the original loop had exit blocks, walk up through the outer most loop 2368 // of those exit blocks to update LCSSA and form updated dedicated exits. 2369 if (OuterExitL != &L) 2370 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2371 OuterL = OuterL->getParentLoop()) 2372 UpdateLoop(*OuterL); 2373 2374 #ifndef NDEBUG 2375 // Verify the entire loop structure to catch any incorrect updates before we 2376 // progress in the pass pipeline. 2377 LI.verify(DT); 2378 #endif 2379 2380 // Now that we've unswitched something, make callbacks to report the changes. 2381 // For that we need to merge together the updated loops and the cloned loops 2382 // and check whether the original loop survived. 2383 SmallVector<Loop *, 4> SibLoops; 2384 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2385 if (UpdatedL->getParentLoop() == ParentL) 2386 SibLoops.push_back(UpdatedL); 2387 UnswitchCB(IsStillLoop, SibLoops); 2388 2389 if (MSSAU && VerifyMemorySSA) 2390 MSSAU->getMemorySSA()->verifyMemorySSA(); 2391 2392 if (BI) 2393 ++NumBranches; 2394 else 2395 ++NumSwitches; 2396 } 2397 2398 /// Recursively compute the cost of a dominator subtree based on the per-block 2399 /// cost map provided. 2400 /// 2401 /// The recursive computation is memozied into the provided DT-indexed cost map 2402 /// to allow querying it for most nodes in the domtree without it becoming 2403 /// quadratic. 2404 static int 2405 computeDomSubtreeCost(DomTreeNode &N, 2406 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2407 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2408 // Don't accumulate cost (or recurse through) blocks not in our block cost 2409 // map and thus not part of the duplication cost being considered. 2410 auto BBCostIt = BBCostMap.find(N.getBlock()); 2411 if (BBCostIt == BBCostMap.end()) 2412 return 0; 2413 2414 // Lookup this node to see if we already computed its cost. 2415 auto DTCostIt = DTCostMap.find(&N); 2416 if (DTCostIt != DTCostMap.end()) 2417 return DTCostIt->second; 2418 2419 // If not, we have to compute it. We can't use insert above and update 2420 // because computing the cost may insert more things into the map. 2421 int Cost = std::accumulate( 2422 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2423 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2424 }); 2425 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2426 (void)Inserted; 2427 assert(Inserted && "Should not insert a node while visiting children!"); 2428 return Cost; 2429 } 2430 2431 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2432 /// making the following replacement: 2433 /// 2434 /// --code before guard-- 2435 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2436 /// --code after guard-- 2437 /// 2438 /// into 2439 /// 2440 /// --code before guard-- 2441 /// br i1 %cond, label %guarded, label %deopt 2442 /// 2443 /// guarded: 2444 /// --code after guard-- 2445 /// 2446 /// deopt: 2447 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2448 /// unreachable 2449 /// 2450 /// It also makes all relevant DT and LI updates, so that all structures are in 2451 /// valid state after this transform. 2452 static BranchInst * 2453 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2454 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2455 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2456 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2457 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2458 BasicBlock *CheckBB = GI->getParent(); 2459 2460 if (MSSAU && VerifyMemorySSA) 2461 MSSAU->getMemorySSA()->verifyMemorySSA(); 2462 2463 // Remove all CheckBB's successors from DomTree. A block can be seen among 2464 // successors more than once, but for DomTree it should be added only once. 2465 SmallPtrSet<BasicBlock *, 4> Successors; 2466 for (auto *Succ : successors(CheckBB)) 2467 if (Successors.insert(Succ).second) 2468 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2469 2470 Instruction *DeoptBlockTerm = 2471 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2472 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2473 // SplitBlockAndInsertIfThen inserts control flow that branches to 2474 // DeoptBlockTerm if the condition is true. We want the opposite. 2475 CheckBI->swapSuccessors(); 2476 2477 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2478 GuardedBlock->setName("guarded"); 2479 CheckBI->getSuccessor(1)->setName("deopt"); 2480 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2481 2482 // We now have a new exit block. 2483 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2484 2485 if (MSSAU) 2486 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2487 2488 GI->moveBefore(DeoptBlockTerm); 2489 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2490 2491 // Add new successors of CheckBB into DomTree. 2492 for (auto *Succ : successors(CheckBB)) 2493 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2494 2495 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2496 // successors. 2497 for (auto *Succ : Successors) 2498 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2499 2500 // Make proper changes to DT. 2501 DT.applyUpdates(DTUpdates); 2502 // Inform LI of a new loop block. 2503 L.addBasicBlockToLoop(GuardedBlock, LI); 2504 2505 if (MSSAU) { 2506 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2507 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2508 if (VerifyMemorySSA) 2509 MSSAU->getMemorySSA()->verifyMemorySSA(); 2510 } 2511 2512 ++NumGuards; 2513 return CheckBI; 2514 } 2515 2516 /// Cost multiplier is a way to limit potentially exponential behavior 2517 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2518 /// candidates available. Also accounting for the number of "sibling" loops with 2519 /// the idea to account for previous unswitches that already happened on this 2520 /// cluster of loops. There was an attempt to keep this formula simple, 2521 /// just enough to limit the worst case behavior. Even if it is not that simple 2522 /// now it is still not an attempt to provide a detailed heuristic size 2523 /// prediction. 2524 /// 2525 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2526 /// unswitch candidates, making adequate predictions instead of wild guesses. 2527 /// That requires knowing not just the number of "remaining" candidates but 2528 /// also costs of unswitching for each of these candidates. 2529 static int CalculateUnswitchCostMultiplier( 2530 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2531 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2532 UnswitchCandidates) { 2533 2534 // Guards and other exiting conditions do not contribute to exponential 2535 // explosion as soon as they dominate the latch (otherwise there might be 2536 // another path to the latch remaining that does not allow to eliminate the 2537 // loop copy on unswitch). 2538 BasicBlock *Latch = L.getLoopLatch(); 2539 BasicBlock *CondBlock = TI.getParent(); 2540 if (DT.dominates(CondBlock, Latch) && 2541 (isGuard(&TI) || 2542 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2543 return L.contains(SuccBB); 2544 }) <= 1)) { 2545 NumCostMultiplierSkipped++; 2546 return 1; 2547 } 2548 2549 auto *ParentL = L.getParentLoop(); 2550 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2551 : std::distance(LI.begin(), LI.end())); 2552 // Count amount of clones that all the candidates might cause during 2553 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2554 int UnswitchedClones = 0; 2555 for (auto Candidate : UnswitchCandidates) { 2556 Instruction *CI = Candidate.first; 2557 BasicBlock *CondBlock = CI->getParent(); 2558 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2559 if (isGuard(CI)) { 2560 if (!SkipExitingSuccessors) 2561 UnswitchedClones++; 2562 continue; 2563 } 2564 int NonExitingSuccessors = llvm::count_if( 2565 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2566 return !SkipExitingSuccessors || L.contains(SuccBB); 2567 }); 2568 UnswitchedClones += Log2_32(NonExitingSuccessors); 2569 } 2570 2571 // Ignore up to the "unscaled candidates" number of unswitch candidates 2572 // when calculating the power-of-two scaling of the cost. The main idea 2573 // with this control is to allow a small number of unswitches to happen 2574 // and rely more on siblings multiplier (see below) when the number 2575 // of candidates is small. 2576 unsigned ClonesPower = 2577 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2578 2579 // Allowing top-level loops to spread a bit more than nested ones. 2580 int SiblingsMultiplier = 2581 std::max((ParentL ? SiblingsCount 2582 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2583 1); 2584 // Compute the cost multiplier in a way that won't overflow by saturating 2585 // at an upper bound. 2586 int CostMultiplier; 2587 if (ClonesPower > Log2_32(UnswitchThreshold) || 2588 SiblingsMultiplier > UnswitchThreshold) 2589 CostMultiplier = UnswitchThreshold; 2590 else 2591 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2592 (int)UnswitchThreshold); 2593 2594 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2595 << " (siblings " << SiblingsMultiplier << " * clones " 2596 << (1 << ClonesPower) << ")" 2597 << " for unswitch candidate: " << TI << "\n"); 2598 return CostMultiplier; 2599 } 2600 2601 static bool 2602 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2603 AssumptionCache &AC, TargetTransformInfo &TTI, 2604 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2605 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2606 // Collect all invariant conditions within this loop (as opposed to an inner 2607 // loop which would be handled when visiting that inner loop). 2608 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2609 UnswitchCandidates; 2610 2611 // Whether or not we should also collect guards in the loop. 2612 bool CollectGuards = false; 2613 if (UnswitchGuards) { 2614 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2615 Intrinsic::getName(Intrinsic::experimental_guard)); 2616 if (GuardDecl && !GuardDecl->use_empty()) 2617 CollectGuards = true; 2618 } 2619 2620 for (auto *BB : L.blocks()) { 2621 if (LI.getLoopFor(BB) != &L) 2622 continue; 2623 2624 if (CollectGuards) 2625 for (auto &I : *BB) 2626 if (isGuard(&I)) { 2627 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2628 // TODO: Support AND, OR conditions and partial unswitching. 2629 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2630 UnswitchCandidates.push_back({&I, {Cond}}); 2631 } 2632 2633 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2634 // We can only consider fully loop-invariant switch conditions as we need 2635 // to completely eliminate the switch after unswitching. 2636 if (!isa<Constant>(SI->getCondition()) && 2637 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2638 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2639 continue; 2640 } 2641 2642 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2643 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2644 BI->getSuccessor(0) == BI->getSuccessor(1)) 2645 continue; 2646 2647 if (L.isLoopInvariant(BI->getCondition())) { 2648 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2649 continue; 2650 } 2651 2652 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2653 if (CondI.getOpcode() != Instruction::And && 2654 CondI.getOpcode() != Instruction::Or) 2655 continue; 2656 2657 TinyPtrVector<Value *> Invariants = 2658 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2659 if (Invariants.empty()) 2660 continue; 2661 2662 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2663 } 2664 2665 // If we didn't find any candidates, we're done. 2666 if (UnswitchCandidates.empty()) 2667 return false; 2668 2669 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2670 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2671 // irreducible control flow into reducible control flow and introduce new 2672 // loops "out of thin air". If we ever discover important use cases for doing 2673 // this, we can add support to loop unswitch, but it is a lot of complexity 2674 // for what seems little or no real world benefit. 2675 LoopBlocksRPO RPOT(&L); 2676 RPOT.perform(&LI); 2677 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2678 return false; 2679 2680 SmallVector<BasicBlock *, 4> ExitBlocks; 2681 L.getUniqueExitBlocks(ExitBlocks); 2682 2683 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2684 // don't know how to split those exit blocks. 2685 // FIXME: We should teach SplitBlock to handle this and remove this 2686 // restriction. 2687 for (auto *ExitBB : ExitBlocks) 2688 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2689 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2690 return false; 2691 } 2692 2693 LLVM_DEBUG( 2694 dbgs() << "Considering " << UnswitchCandidates.size() 2695 << " non-trivial loop invariant conditions for unswitching.\n"); 2696 2697 // Given that unswitching these terminators will require duplicating parts of 2698 // the loop, so we need to be able to model that cost. Compute the ephemeral 2699 // values and set up a data structure to hold per-BB costs. We cache each 2700 // block's cost so that we don't recompute this when considering different 2701 // subsets of the loop for duplication during unswitching. 2702 SmallPtrSet<const Value *, 4> EphValues; 2703 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2704 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2705 2706 // Compute the cost of each block, as well as the total loop cost. Also, bail 2707 // out if we see instructions which are incompatible with loop unswitching 2708 // (convergent, noduplicate, or cross-basic-block tokens). 2709 // FIXME: We might be able to safely handle some of these in non-duplicated 2710 // regions. 2711 TargetTransformInfo::TargetCostKind CostKind = 2712 L.getHeader()->getParent()->hasMinSize() 2713 ? TargetTransformInfo::TCK_CodeSize 2714 : TargetTransformInfo::TCK_SizeAndLatency; 2715 int LoopCost = 0; 2716 for (auto *BB : L.blocks()) { 2717 int Cost = 0; 2718 for (auto &I : *BB) { 2719 if (EphValues.count(&I)) 2720 continue; 2721 2722 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2723 return false; 2724 if (auto *CB = dyn_cast<CallBase>(&I)) 2725 if (CB->isConvergent() || CB->cannotDuplicate()) 2726 return false; 2727 2728 Cost += TTI.getUserCost(&I, CostKind); 2729 } 2730 assert(Cost >= 0 && "Must not have negative costs!"); 2731 LoopCost += Cost; 2732 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2733 BBCostMap[BB] = Cost; 2734 } 2735 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2736 2737 // Now we find the best candidate by searching for the one with the following 2738 // properties in order: 2739 // 2740 // 1) An unswitching cost below the threshold 2741 // 2) The smallest number of duplicated unswitch candidates (to avoid 2742 // creating redundant subsequent unswitching) 2743 // 3) The smallest cost after unswitching. 2744 // 2745 // We prioritize reducing fanout of unswitch candidates provided the cost 2746 // remains below the threshold because this has a multiplicative effect. 2747 // 2748 // This requires memoizing each dominator subtree to avoid redundant work. 2749 // 2750 // FIXME: Need to actually do the number of candidates part above. 2751 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2752 // Given a terminator which might be unswitched, computes the non-duplicated 2753 // cost for that terminator. 2754 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2755 BasicBlock &BB = *TI.getParent(); 2756 SmallPtrSet<BasicBlock *, 4> Visited; 2757 2758 int Cost = LoopCost; 2759 for (BasicBlock *SuccBB : successors(&BB)) { 2760 // Don't count successors more than once. 2761 if (!Visited.insert(SuccBB).second) 2762 continue; 2763 2764 // If this is a partial unswitch candidate, then it must be a conditional 2765 // branch with a condition of either `or` or `and`. In that case, one of 2766 // the successors is necessarily duplicated, so don't even try to remove 2767 // its cost. 2768 if (!FullUnswitch) { 2769 auto &BI = cast<BranchInst>(TI); 2770 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2771 Instruction::And) { 2772 if (SuccBB == BI.getSuccessor(1)) 2773 continue; 2774 } else { 2775 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2776 Instruction::Or && 2777 "Only `and` and `or` conditions can result in a partial " 2778 "unswitch!"); 2779 if (SuccBB == BI.getSuccessor(0)) 2780 continue; 2781 } 2782 } 2783 2784 // This successor's domtree will not need to be duplicated after 2785 // unswitching if the edge to the successor dominates it (and thus the 2786 // entire tree). This essentially means there is no other path into this 2787 // subtree and so it will end up live in only one clone of the loop. 2788 if (SuccBB->getUniquePredecessor() || 2789 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2790 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2791 })) { 2792 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2793 assert(Cost >= 0 && 2794 "Non-duplicated cost should never exceed total loop cost!"); 2795 } 2796 } 2797 2798 // Now scale the cost by the number of unique successors minus one. We 2799 // subtract one because there is already at least one copy of the entire 2800 // loop. This is computing the new cost of unswitching a condition. 2801 // Note that guards always have 2 unique successors that are implicit and 2802 // will be materialized if we decide to unswitch it. 2803 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2804 assert(SuccessorsCount > 1 && 2805 "Cannot unswitch a condition without multiple distinct successors!"); 2806 return Cost * (SuccessorsCount - 1); 2807 }; 2808 Instruction *BestUnswitchTI = nullptr; 2809 int BestUnswitchCost = 0; 2810 ArrayRef<Value *> BestUnswitchInvariants; 2811 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2812 Instruction &TI = *TerminatorAndInvariants.first; 2813 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2814 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2815 int CandidateCost = ComputeUnswitchedCost( 2816 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2817 Invariants[0] == BI->getCondition())); 2818 // Calculate cost multiplier which is a tool to limit potentially 2819 // exponential behavior of loop-unswitch. 2820 if (EnableUnswitchCostMultiplier) { 2821 int CostMultiplier = 2822 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2823 assert( 2824 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2825 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2826 CandidateCost *= CostMultiplier; 2827 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2828 << " (multiplier: " << CostMultiplier << ")" 2829 << " for unswitch candidate: " << TI << "\n"); 2830 } else { 2831 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2832 << " for unswitch candidate: " << TI << "\n"); 2833 } 2834 2835 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2836 BestUnswitchTI = &TI; 2837 BestUnswitchCost = CandidateCost; 2838 BestUnswitchInvariants = Invariants; 2839 } 2840 } 2841 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2842 2843 if (BestUnswitchCost >= UnswitchThreshold) { 2844 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2845 << BestUnswitchCost << "\n"); 2846 return false; 2847 } 2848 2849 // If the best candidate is a guard, turn it into a branch. 2850 if (isGuard(BestUnswitchTI)) 2851 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2852 ExitBlocks, DT, LI, MSSAU); 2853 2854 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2855 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2856 << "\n"); 2857 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2858 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2859 return true; 2860 } 2861 2862 /// Unswitch control flow predicated on loop invariant conditions. 2863 /// 2864 /// This first hoists all branches or switches which are trivial (IE, do not 2865 /// require duplicating any part of the loop) out of the loop body. It then 2866 /// looks at other loop invariant control flows and tries to unswitch those as 2867 /// well by cloning the loop if the result is small enough. 2868 /// 2869 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2870 /// updated based on the unswitch. 2871 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 2872 /// 2873 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2874 /// true, we will attempt to do non-trivial unswitching as well as trivial 2875 /// unswitching. 2876 /// 2877 /// The `UnswitchCB` callback provided will be run after unswitching is 2878 /// complete, with the first parameter set to `true` if the provided loop 2879 /// remains a loop, and a list of new sibling loops created. 2880 /// 2881 /// If `SE` is non-null, we will update that analysis based on the unswitching 2882 /// done. 2883 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2884 AssumptionCache &AC, TargetTransformInfo &TTI, 2885 bool NonTrivial, 2886 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2887 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2888 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2889 "Loops must be in LCSSA form before unswitching."); 2890 2891 // Must be in loop simplified form: we need a preheader and dedicated exits. 2892 if (!L.isLoopSimplifyForm()) 2893 return false; 2894 2895 // Try trivial unswitch first before loop over other basic blocks in the loop. 2896 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2897 // If we unswitched successfully we will want to clean up the loop before 2898 // processing it further so just mark it as unswitched and return. 2899 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2900 return true; 2901 } 2902 2903 // If we're not doing non-trivial unswitching, we're done. We both accept 2904 // a parameter but also check a local flag that can be used for testing 2905 // a debugging. 2906 if (!NonTrivial && !EnableNonTrivialUnswitch) 2907 return false; 2908 2909 // For non-trivial unswitching, because it often creates new loops, we rely on 2910 // the pass manager to iterate on the loops rather than trying to immediately 2911 // reach a fixed point. There is no substantial advantage to iterating 2912 // internally, and if any of the new loops are simplified enough to contain 2913 // trivial unswitching we want to prefer those. 2914 2915 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2916 // a partial unswitch when possible below the threshold. 2917 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2918 return true; 2919 2920 // No other opportunities to unswitch. 2921 return false; 2922 } 2923 2924 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2925 LoopStandardAnalysisResults &AR, 2926 LPMUpdater &U) { 2927 Function &F = *L.getHeader()->getParent(); 2928 (void)F; 2929 2930 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2931 << "\n"); 2932 2933 // Save the current loop name in a variable so that we can report it even 2934 // after it has been deleted. 2935 std::string LoopName = std::string(L.getName()); 2936 2937 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2938 ArrayRef<Loop *> NewLoops) { 2939 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2940 if (!NewLoops.empty()) 2941 U.addSiblingLoops(NewLoops); 2942 2943 // If the current loop remains valid, we should revisit it to catch any 2944 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2945 if (CurrentLoopValid) 2946 U.revisitCurrentLoop(); 2947 else 2948 U.markLoopAsDeleted(L, LoopName); 2949 }; 2950 2951 Optional<MemorySSAUpdater> MSSAU; 2952 if (AR.MSSA) { 2953 MSSAU = MemorySSAUpdater(AR.MSSA); 2954 if (VerifyMemorySSA) 2955 AR.MSSA->verifyMemorySSA(); 2956 } 2957 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2958 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 2959 return PreservedAnalyses::all(); 2960 2961 if (AR.MSSA && VerifyMemorySSA) 2962 AR.MSSA->verifyMemorySSA(); 2963 2964 // Historically this pass has had issues with the dominator tree so verify it 2965 // in asserts builds. 2966 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2967 2968 auto PA = getLoopPassPreservedAnalyses(); 2969 if (AR.MSSA) 2970 PA.preserve<MemorySSAAnalysis>(); 2971 return PA; 2972 } 2973 2974 namespace { 2975 2976 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2977 bool NonTrivial; 2978 2979 public: 2980 static char ID; // Pass ID, replacement for typeid 2981 2982 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2983 : LoopPass(ID), NonTrivial(NonTrivial) { 2984 initializeSimpleLoopUnswitchLegacyPassPass( 2985 *PassRegistry::getPassRegistry()); 2986 } 2987 2988 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2989 2990 void getAnalysisUsage(AnalysisUsage &AU) const override { 2991 AU.addRequired<AssumptionCacheTracker>(); 2992 AU.addRequired<TargetTransformInfoWrapperPass>(); 2993 if (EnableMSSALoopDependency) { 2994 AU.addRequired<MemorySSAWrapperPass>(); 2995 AU.addPreserved<MemorySSAWrapperPass>(); 2996 } 2997 getLoopAnalysisUsage(AU); 2998 } 2999 }; 3000 3001 } // end anonymous namespace 3002 3003 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 3004 if (skipLoop(L)) 3005 return false; 3006 3007 Function &F = *L->getHeader()->getParent(); 3008 3009 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3010 << "\n"); 3011 3012 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3013 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3014 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3015 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3016 MemorySSA *MSSA = nullptr; 3017 Optional<MemorySSAUpdater> MSSAU; 3018 if (EnableMSSALoopDependency) { 3019 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3020 MSSAU = MemorySSAUpdater(MSSA); 3021 } 3022 3023 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 3024 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 3025 3026 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 3027 ArrayRef<Loop *> NewLoops) { 3028 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3029 for (auto *NewL : NewLoops) 3030 LPM.addLoop(*NewL); 3031 3032 // If the current loop remains valid, re-add it to the queue. This is 3033 // a little wasteful as we'll finish processing the current loop as well, 3034 // but it is the best we can do in the old PM. 3035 if (CurrentLoopValid) 3036 LPM.addLoop(*L); 3037 else 3038 LPM.markLoopAsDeleted(*L); 3039 }; 3040 3041 if (MSSA && VerifyMemorySSA) 3042 MSSA->verifyMemorySSA(); 3043 3044 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 3045 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 3046 3047 if (MSSA && VerifyMemorySSA) 3048 MSSA->verifyMemorySSA(); 3049 3050 // Historically this pass has had issues with the dominator tree so verify it 3051 // in asserts builds. 3052 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3053 3054 return Changed; 3055 } 3056 3057 char SimpleLoopUnswitchLegacyPass::ID = 0; 3058 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3059 "Simple unswitch loops", false, false) 3060 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3061 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3062 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3063 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3064 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3065 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3066 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3067 "Simple unswitch loops", false, false) 3068 3069 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3070 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3071 } 3072