xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision 636d94db3b52c9284fa7d50979306da49f1ba703)
1 //===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/LoopAnalysisManager.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Use.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTree.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/Cloning.h"
44 #include "llvm/Transforms/Utils/LoopUtils.h"
45 #include "llvm/Transforms/Utils/ValueMapper.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <iterator>
49 #include <numeric>
50 #include <utility>
51 
52 #define DEBUG_TYPE "simple-loop-unswitch"
53 
54 using namespace llvm;
55 
56 STATISTIC(NumBranches, "Number of branches unswitched");
57 STATISTIC(NumSwitches, "Number of switches unswitched");
58 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
59 
60 static cl::opt<bool> EnableNonTrivialUnswitch(
61     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
62     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
63              "following the configuration passed into the pass."));
64 
65 static cl::opt<int>
66     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
67                       cl::desc("The cost threshold for unswitching a loop."));
68 
69 static void replaceLoopUsesWithConstant(Loop &L, Value &LIC,
70                                         Constant &Replacement) {
71   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
72 
73   // Replace uses of LIC in the loop with the given constant.
74   for (auto UI = LIC.use_begin(), UE = LIC.use_end(); UI != UE;) {
75     // Grab the use and walk past it so we can clobber it in the use list.
76     Use *U = &*UI++;
77     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
78     if (!UserI || !L.contains(UserI))
79       continue;
80 
81     // Replace this use within the loop body.
82     *U = &Replacement;
83   }
84 }
85 
86 /// Update the IDom for a basic block whose predecessor set has changed.
87 ///
88 /// This routine is designed to work when the domtree update is relatively
89 /// localized by leveraging a known common dominator, often a loop header.
90 ///
91 /// FIXME: Should consider hand-rolling a slightly more efficient non-DFS
92 /// approach here as we can do that easily by persisting the candidate IDom's
93 /// dominating set between each predecessor.
94 ///
95 /// FIXME: Longer term, many uses of this can be replaced by an incremental
96 /// domtree update strategy that starts from a known dominating block and
97 /// rebuilds that subtree.
98 static bool updateIDomWithKnownCommonDominator(BasicBlock *BB,
99                                                BasicBlock *KnownDominatingBB,
100                                                DominatorTree &DT) {
101   assert(pred_begin(BB) != pred_end(BB) &&
102          "This routine does not handle unreachable blocks!");
103 
104   BasicBlock *OrigIDom = DT[BB]->getIDom()->getBlock();
105 
106   BasicBlock *IDom = *pred_begin(BB);
107   assert(DT.dominates(KnownDominatingBB, IDom) &&
108          "Bad known dominating block!");
109 
110   // Walk all of the other predecessors finding the nearest common dominator
111   // until all predecessors are covered or we reach the loop header. The loop
112   // header necessarily dominates all loop exit blocks in loop simplified form
113   // so we can early-exit the moment we hit that block.
114   for (auto PI = std::next(pred_begin(BB)), PE = pred_end(BB);
115        PI != PE && IDom != KnownDominatingBB; ++PI) {
116     assert(DT.dominates(KnownDominatingBB, *PI) &&
117            "Bad known dominating block!");
118     IDom = DT.findNearestCommonDominator(IDom, *PI);
119   }
120 
121   if (IDom == OrigIDom)
122     return false;
123 
124   DT.changeImmediateDominator(BB, IDom);
125   return true;
126 }
127 
128 // Note that we don't currently use the IDFCalculator here for two reasons:
129 // 1) It computes dominator tree levels for the entire function on each run
130 //    of 'compute'. While this isn't terrible, given that we expect to update
131 //    relatively small subtrees of the domtree, it isn't necessarily the right
132 //    tradeoff.
133 // 2) The interface doesn't fit this usage well. It doesn't operate in
134 //    append-only, and builds several sets that we don't need.
135 //
136 // FIXME: Neither of these issues are a big deal and could be addressed with
137 // some amount of refactoring of IDFCalculator. That would allow us to share
138 // the core logic here (which is solving the same core problem).
139 static void appendDomFrontier(DomTreeNode *Node,
140                               SmallSetVector<BasicBlock *, 4> &Worklist,
141                               SmallVectorImpl<DomTreeNode *> &DomNodes,
142                               SmallPtrSetImpl<BasicBlock *> &DomSet) {
143   assert(DomNodes.empty() && "Must start with no dominator nodes.");
144   assert(DomSet.empty() && "Must start with an empty dominator set.");
145 
146   // First flatten this subtree into sequence of nodes by doing a pre-order
147   // walk.
148   DomNodes.push_back(Node);
149   // We intentionally re-evaluate the size as each node can add new children.
150   // Because this is a tree walk, this cannot add any duplicates.
151   for (int i = 0; i < (int)DomNodes.size(); ++i)
152     DomNodes.insert(DomNodes.end(), DomNodes[i]->begin(), DomNodes[i]->end());
153 
154   // Now create a set of the basic blocks so we can quickly test for
155   // dominated successors. We could in theory use the DFS numbers of the
156   // dominator tree for this, but we want this to remain predictably fast
157   // even while we mutate the dominator tree in ways that would invalidate
158   // the DFS numbering.
159   for (DomTreeNode *InnerN : DomNodes)
160     DomSet.insert(InnerN->getBlock());
161 
162   // Now re-walk the nodes, appending every successor of every node that isn't
163   // in the set. Note that we don't append the node itself, even though if it
164   // is a successor it does not strictly dominate itself and thus it would be
165   // part of the dominance frontier. The reason we don't append it is that
166   // the node passed in came *from* the worklist and so it has already been
167   // processed.
168   for (DomTreeNode *InnerN : DomNodes)
169     for (BasicBlock *SuccBB : successors(InnerN->getBlock()))
170       if (!DomSet.count(SuccBB))
171         Worklist.insert(SuccBB);
172 
173   DomNodes.clear();
174   DomSet.clear();
175 }
176 
177 /// Update the dominator tree after unswitching a particular former exit block.
178 ///
179 /// This handles the full update of the dominator tree after hoisting a block
180 /// that previously was an exit block (or split off of an exit block) up to be
181 /// reached from the new immediate dominator of the preheader.
182 ///
183 /// The common case is simple -- we just move the unswitched block to have an
184 /// immediate dominator of the old preheader. But in complex cases, there may
185 /// be other blocks reachable from the unswitched block that are immediately
186 /// dominated by some node between the unswitched one and the old preheader.
187 /// All of these also need to be hoisted in the dominator tree. We also want to
188 /// minimize queries to the dominator tree because each step of this
189 /// invalidates any DFS numbers that would make queries fast.
190 static void updateDTAfterUnswitch(BasicBlock *UnswitchedBB, BasicBlock *OldPH,
191                                   DominatorTree &DT) {
192   DomTreeNode *OldPHNode = DT[OldPH];
193   DomTreeNode *UnswitchedNode = DT[UnswitchedBB];
194   // If the dominator tree has already been updated for this unswitched node,
195   // we're done. This makes it easier to use this routine if there are multiple
196   // paths to the same unswitched destination.
197   if (UnswitchedNode->getIDom() == OldPHNode)
198     return;
199 
200   // First collect the domtree nodes that we are hoisting over. These are the
201   // set of nodes which may have children that need to be hoisted as well.
202   SmallPtrSet<DomTreeNode *, 4> DomChain;
203   for (auto *IDom = UnswitchedNode->getIDom(); IDom != OldPHNode;
204        IDom = IDom->getIDom())
205     DomChain.insert(IDom);
206 
207   // The unswitched block ends up immediately dominated by the old preheader --
208   // regardless of whether it is the loop exit block or split off of the loop
209   // exit block.
210   DT.changeImmediateDominator(UnswitchedNode, OldPHNode);
211 
212   // For everything that moves up the dominator tree, we need to examine the
213   // dominator frontier to see if it additionally should move up the dominator
214   // tree. This lambda appends the dominator frontier for a node on the
215   // worklist.
216   SmallSetVector<BasicBlock *, 4> Worklist;
217 
218   // Scratch data structures reused by domfrontier finding.
219   SmallVector<DomTreeNode *, 4> DomNodes;
220   SmallPtrSet<BasicBlock *, 4> DomSet;
221 
222   // Append the initial dom frontier nodes.
223   appendDomFrontier(UnswitchedNode, Worklist, DomNodes, DomSet);
224 
225   // Walk the worklist. We grow the list in the loop and so must recompute size.
226   for (int i = 0; i < (int)Worklist.size(); ++i) {
227     auto *BB = Worklist[i];
228 
229     DomTreeNode *Node = DT[BB];
230     assert(!DomChain.count(Node) &&
231            "Cannot be dominated by a block you can reach!");
232 
233     // If this block had an immediate dominator somewhere in the chain
234     // we hoisted over, then its position in the domtree needs to move as it is
235     // reachable from a node hoisted over this chain.
236     if (!DomChain.count(Node->getIDom()))
237       continue;
238 
239     DT.changeImmediateDominator(Node, OldPHNode);
240 
241     // Now add this node's dominator frontier to the worklist as well.
242     appendDomFrontier(Node, Worklist, DomNodes, DomSet);
243   }
244 }
245 
246 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
247 /// incoming values along this edge.
248 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
249                                          BasicBlock &ExitBB) {
250   for (Instruction &I : ExitBB) {
251     auto *PN = dyn_cast<PHINode>(&I);
252     if (!PN)
253       // No more PHIs to check.
254       return true;
255 
256     // If the incoming value for this edge isn't loop invariant the unswitch
257     // won't be trivial.
258     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
259       return false;
260   }
261   llvm_unreachable("Basic blocks should never be empty!");
262 }
263 
264 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
265 ///
266 /// Requires that the loop exit and unswitched basic block are the same, and
267 /// that the exiting block was a unique predecessor of that block. Rewrites the
268 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
269 /// PHI nodes from the old preheader that now contains the unswitched
270 /// terminator.
271 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
272                                                   BasicBlock &OldExitingBB,
273                                                   BasicBlock &OldPH) {
274   for (PHINode &PN : UnswitchedBB.phis()) {
275     // When the loop exit is directly unswitched we just need to update the
276     // incoming basic block. We loop to handle weird cases with repeated
277     // incoming blocks, but expect to typically only have one operand here.
278     for (auto i : seq<int>(0, PN.getNumOperands())) {
279       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
280              "Found incoming block different from unique predecessor!");
281       PN.setIncomingBlock(i, &OldPH);
282     }
283   }
284 }
285 
286 /// Rewrite the PHI nodes in the loop exit basic block and the split off
287 /// unswitched block.
288 ///
289 /// Because the exit block remains an exit from the loop, this rewrites the
290 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
291 /// nodes into the unswitched basic block to select between the value in the
292 /// old preheader and the loop exit.
293 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
294                                                       BasicBlock &UnswitchedBB,
295                                                       BasicBlock &OldExitingBB,
296                                                       BasicBlock &OldPH) {
297   assert(&ExitBB != &UnswitchedBB &&
298          "Must have different loop exit and unswitched blocks!");
299   Instruction *InsertPt = &*UnswitchedBB.begin();
300   for (PHINode &PN : ExitBB.phis()) {
301     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
302                                   PN.getName() + ".split", InsertPt);
303 
304     // Walk backwards over the old PHI node's inputs to minimize the cost of
305     // removing each one. We have to do this weird loop manually so that we
306     // create the same number of new incoming edges in the new PHI as we expect
307     // each case-based edge to be included in the unswitched switch in some
308     // cases.
309     // FIXME: This is really, really gross. It would be much cleaner if LLVM
310     // allowed us to create a single entry for a predecessor block without
311     // having separate entries for each "edge" even though these edges are
312     // required to produce identical results.
313     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
314       if (PN.getIncomingBlock(i) != &OldExitingBB)
315         continue;
316 
317       Value *Incoming = PN.removeIncomingValue(i);
318       NewPN->addIncoming(Incoming, &OldPH);
319     }
320 
321     // Now replace the old PHI with the new one and wire the old one in as an
322     // input to the new one.
323     PN.replaceAllUsesWith(NewPN);
324     NewPN->addIncoming(&PN, &ExitBB);
325   }
326 }
327 
328 /// Unswitch a trivial branch if the condition is loop invariant.
329 ///
330 /// This routine should only be called when loop code leading to the branch has
331 /// been validated as trivial (no side effects). This routine checks if the
332 /// condition is invariant and one of the successors is a loop exit. This
333 /// allows us to unswitch without duplicating the loop, making it trivial.
334 ///
335 /// If this routine fails to unswitch the branch it returns false.
336 ///
337 /// If the branch can be unswitched, this routine splits the preheader and
338 /// hoists the branch above that split. Preserves loop simplified form
339 /// (splitting the exit block as necessary). It simplifies the branch within
340 /// the loop to an unconditional branch but doesn't remove it entirely. Further
341 /// cleanup can be done with some simplify-cfg like pass.
342 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
343                                   LoopInfo &LI) {
344   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
345   DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
346 
347   Value *LoopCond = BI.getCondition();
348 
349   // Need a trivial loop condition to unswitch.
350   if (!L.isLoopInvariant(LoopCond))
351     return false;
352 
353   // FIXME: We should compute this once at the start and update it!
354   SmallVector<BasicBlock *, 16> ExitBlocks;
355   L.getExitBlocks(ExitBlocks);
356   SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
357                                              ExitBlocks.end());
358 
359   // Check to see if a successor of the branch is guaranteed to
360   // exit through a unique exit block without having any
361   // side-effects.  If so, determine the value of Cond that causes
362   // it to do this.
363   ConstantInt *CondVal = ConstantInt::getTrue(BI.getContext());
364   ConstantInt *Replacement = ConstantInt::getFalse(BI.getContext());
365   int LoopExitSuccIdx = 0;
366   auto *LoopExitBB = BI.getSuccessor(0);
367   if (!ExitBlockSet.count(LoopExitBB)) {
368     std::swap(CondVal, Replacement);
369     LoopExitSuccIdx = 1;
370     LoopExitBB = BI.getSuccessor(1);
371     if (!ExitBlockSet.count(LoopExitBB))
372       return false;
373   }
374   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
375   assert(L.contains(ContinueBB) &&
376          "Cannot have both successors exit and still be in the loop!");
377 
378   auto *ParentBB = BI.getParent();
379   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
380     return false;
381 
382   DEBUG(dbgs() << "    unswitching trivial branch when: " << CondVal
383                << " == " << LoopCond << "\n");
384 
385   // Split the preheader, so that we know that there is a safe place to insert
386   // the conditional branch. We will change the preheader to have a conditional
387   // branch on LoopCond.
388   BasicBlock *OldPH = L.getLoopPreheader();
389   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
390 
391   // Now that we have a place to insert the conditional branch, create a place
392   // to branch to: this is the exit block out of the loop that we are
393   // unswitching. We need to split this if there are other loop predecessors.
394   // Because the loop is in simplified form, *any* other predecessor is enough.
395   BasicBlock *UnswitchedBB;
396   if (BasicBlock *PredBB = LoopExitBB->getUniquePredecessor()) {
397     (void)PredBB;
398     assert(PredBB == BI.getParent() &&
399            "A branch's parent isn't a predecessor!");
400     UnswitchedBB = LoopExitBB;
401   } else {
402     UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
403   }
404 
405   // Now splice the branch to gate reaching the new preheader and re-point its
406   // successors.
407   OldPH->getInstList().splice(std::prev(OldPH->end()),
408                               BI.getParent()->getInstList(), BI);
409   OldPH->getTerminator()->eraseFromParent();
410   BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
411   BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
412 
413   // Create a new unconditional branch that will continue the loop as a new
414   // terminator.
415   BranchInst::Create(ContinueBB, ParentBB);
416 
417   // Rewrite the relevant PHI nodes.
418   if (UnswitchedBB == LoopExitBB)
419     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
420   else
421     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
422                                               *ParentBB, *OldPH);
423 
424   // Now we need to update the dominator tree.
425   updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
426   // But if we split something off of the loop exit block then we also removed
427   // one of the predecessors for the loop exit block and may need to update its
428   // idom.
429   if (UnswitchedBB != LoopExitBB)
430     updateIDomWithKnownCommonDominator(LoopExitBB, L.getHeader(), DT);
431 
432   // Since this is an i1 condition we can also trivially replace uses of it
433   // within the loop with a constant.
434   replaceLoopUsesWithConstant(L, *LoopCond, *Replacement);
435 
436   ++NumTrivial;
437   ++NumBranches;
438   return true;
439 }
440 
441 /// Unswitch a trivial switch if the condition is loop invariant.
442 ///
443 /// This routine should only be called when loop code leading to the switch has
444 /// been validated as trivial (no side effects). This routine checks if the
445 /// condition is invariant and that at least one of the successors is a loop
446 /// exit. This allows us to unswitch without duplicating the loop, making it
447 /// trivial.
448 ///
449 /// If this routine fails to unswitch the switch it returns false.
450 ///
451 /// If the switch can be unswitched, this routine splits the preheader and
452 /// copies the switch above that split. If the default case is one of the
453 /// exiting cases, it copies the non-exiting cases and points them at the new
454 /// preheader. If the default case is not exiting, it copies the exiting cases
455 /// and points the default at the preheader. It preserves loop simplified form
456 /// (splitting the exit blocks as necessary). It simplifies the switch within
457 /// the loop by removing now-dead cases. If the default case is one of those
458 /// unswitched, it replaces its destination with a new basic block containing
459 /// only unreachable. Such basic blocks, while technically loop exits, are not
460 /// considered for unswitching so this is a stable transform and the same
461 /// switch will not be revisited. If after unswitching there is only a single
462 /// in-loop successor, the switch is further simplified to an unconditional
463 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
464 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
465                                   LoopInfo &LI) {
466   DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
467   Value *LoopCond = SI.getCondition();
468 
469   // If this isn't switching on an invariant condition, we can't unswitch it.
470   if (!L.isLoopInvariant(LoopCond))
471     return false;
472 
473   auto *ParentBB = SI.getParent();
474 
475   // FIXME: We should compute this once at the start and update it!
476   SmallVector<BasicBlock *, 16> ExitBlocks;
477   L.getExitBlocks(ExitBlocks);
478   SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
479                                              ExitBlocks.end());
480 
481   SmallVector<int, 4> ExitCaseIndices;
482   for (auto Case : SI.cases()) {
483     auto *SuccBB = Case.getCaseSuccessor();
484     if (ExitBlockSet.count(SuccBB) &&
485         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
486       ExitCaseIndices.push_back(Case.getCaseIndex());
487   }
488   BasicBlock *DefaultExitBB = nullptr;
489   if (ExitBlockSet.count(SI.getDefaultDest()) &&
490       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
491       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
492     DefaultExitBB = SI.getDefaultDest();
493   else if (ExitCaseIndices.empty())
494     return false;
495 
496   DEBUG(dbgs() << "    unswitching trivial cases...\n");
497 
498   SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
499   ExitCases.reserve(ExitCaseIndices.size());
500   // We walk the case indices backwards so that we remove the last case first
501   // and don't disrupt the earlier indices.
502   for (unsigned Index : reverse(ExitCaseIndices)) {
503     auto CaseI = SI.case_begin() + Index;
504     // Save the value of this case.
505     ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
506     // Delete the unswitched cases.
507     SI.removeCase(CaseI);
508   }
509 
510   // Check if after this all of the remaining cases point at the same
511   // successor.
512   BasicBlock *CommonSuccBB = nullptr;
513   if (SI.getNumCases() > 0 &&
514       std::all_of(std::next(SI.case_begin()), SI.case_end(),
515                   [&SI](const SwitchInst::CaseHandle &Case) {
516                     return Case.getCaseSuccessor() ==
517                            SI.case_begin()->getCaseSuccessor();
518                   }))
519     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
520 
521   if (DefaultExitBB) {
522     // We can't remove the default edge so replace it with an edge to either
523     // the single common remaining successor (if we have one) or an unreachable
524     // block.
525     if (CommonSuccBB) {
526       SI.setDefaultDest(CommonSuccBB);
527     } else {
528       BasicBlock *UnreachableBB = BasicBlock::Create(
529           ParentBB->getContext(),
530           Twine(ParentBB->getName()) + ".unreachable_default",
531           ParentBB->getParent());
532       new UnreachableInst(ParentBB->getContext(), UnreachableBB);
533       SI.setDefaultDest(UnreachableBB);
534       DT.addNewBlock(UnreachableBB, ParentBB);
535     }
536   } else {
537     // If we're not unswitching the default, we need it to match any cases to
538     // have a common successor or if we have no cases it is the common
539     // successor.
540     if (SI.getNumCases() == 0)
541       CommonSuccBB = SI.getDefaultDest();
542     else if (SI.getDefaultDest() != CommonSuccBB)
543       CommonSuccBB = nullptr;
544   }
545 
546   // Split the preheader, so that we know that there is a safe place to insert
547   // the switch.
548   BasicBlock *OldPH = L.getLoopPreheader();
549   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
550   OldPH->getTerminator()->eraseFromParent();
551 
552   // Now add the unswitched switch.
553   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
554 
555   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
556   // First, we split any exit blocks with remaining in-loop predecessors. Then
557   // we update the PHIs in one of two ways depending on if there was a split.
558   // We walk in reverse so that we split in the same order as the cases
559   // appeared. This is purely for convenience of reading the resulting IR, but
560   // it doesn't cost anything really.
561   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
562   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
563   // Handle the default exit if necessary.
564   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
565   // ranges aren't quite powerful enough yet.
566   if (DefaultExitBB) {
567     if (pred_empty(DefaultExitBB)) {
568       UnswitchedExitBBs.insert(DefaultExitBB);
569       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
570     } else {
571       auto *SplitBB =
572           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
573       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
574                                                 *ParentBB, *OldPH);
575       updateIDomWithKnownCommonDominator(DefaultExitBB, L.getHeader(), DT);
576       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
577     }
578   }
579   // Note that we must use a reference in the for loop so that we update the
580   // container.
581   for (auto &CasePair : reverse(ExitCases)) {
582     // Grab a reference to the exit block in the pair so that we can update it.
583     BasicBlock *ExitBB = CasePair.second;
584 
585     // If this case is the last edge into the exit block, we can simply reuse it
586     // as it will no longer be a loop exit. No mapping necessary.
587     if (pred_empty(ExitBB)) {
588       // Only rewrite once.
589       if (UnswitchedExitBBs.insert(ExitBB).second)
590         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
591       continue;
592     }
593 
594     // Otherwise we need to split the exit block so that we retain an exit
595     // block from the loop and a target for the unswitched condition.
596     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
597     if (!SplitExitBB) {
598       // If this is the first time we see this, do the split and remember it.
599       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
600       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
601                                                 *ParentBB, *OldPH);
602       updateIDomWithKnownCommonDominator(ExitBB, L.getHeader(), DT);
603     }
604     // Update the case pair to point to the split block.
605     CasePair.second = SplitExitBB;
606   }
607 
608   // Now add the unswitched cases. We do this in reverse order as we built them
609   // in reverse order.
610   for (auto CasePair : reverse(ExitCases)) {
611     ConstantInt *CaseVal = CasePair.first;
612     BasicBlock *UnswitchedBB = CasePair.second;
613 
614     NewSI->addCase(CaseVal, UnswitchedBB);
615     updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
616   }
617 
618   // If the default was unswitched, re-point it and add explicit cases for
619   // entering the loop.
620   if (DefaultExitBB) {
621     NewSI->setDefaultDest(DefaultExitBB);
622     updateDTAfterUnswitch(DefaultExitBB, OldPH, DT);
623 
624     // We removed all the exit cases, so we just copy the cases to the
625     // unswitched switch.
626     for (auto Case : SI.cases())
627       NewSI->addCase(Case.getCaseValue(), NewPH);
628   }
629 
630   // If we ended up with a common successor for every path through the switch
631   // after unswitching, rewrite it to an unconditional branch to make it easy
632   // to recognize. Otherwise we potentially have to recognize the default case
633   // pointing at unreachable and other complexity.
634   if (CommonSuccBB) {
635     BasicBlock *BB = SI.getParent();
636     SI.eraseFromParent();
637     BranchInst::Create(CommonSuccBB, BB);
638   }
639 
640   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
641   ++NumTrivial;
642   ++NumSwitches;
643   return true;
644 }
645 
646 /// This routine scans the loop to find a branch or switch which occurs before
647 /// any side effects occur. These can potentially be unswitched without
648 /// duplicating the loop. If a branch or switch is successfully unswitched the
649 /// scanning continues to see if subsequent branches or switches have become
650 /// trivial. Once all trivial candidates have been unswitched, this routine
651 /// returns.
652 ///
653 /// The return value indicates whether anything was unswitched (and therefore
654 /// changed).
655 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
656                                          LoopInfo &LI) {
657   bool Changed = false;
658 
659   // If loop header has only one reachable successor we should keep looking for
660   // trivial condition candidates in the successor as well. An alternative is
661   // to constant fold conditions and merge successors into loop header (then we
662   // only need to check header's terminator). The reason for not doing this in
663   // LoopUnswitch pass is that it could potentially break LoopPassManager's
664   // invariants. Folding dead branches could either eliminate the current loop
665   // or make other loops unreachable. LCSSA form might also not be preserved
666   // after deleting branches. The following code keeps traversing loop header's
667   // successors until it finds the trivial condition candidate (condition that
668   // is not a constant). Since unswitching generates branches with constant
669   // conditions, this scenario could be very common in practice.
670   BasicBlock *CurrentBB = L.getHeader();
671   SmallPtrSet<BasicBlock *, 8> Visited;
672   Visited.insert(CurrentBB);
673   do {
674     // Check if there are any side-effecting instructions (e.g. stores, calls,
675     // volatile loads) in the part of the loop that the code *would* execute
676     // without unswitching.
677     if (llvm::any_of(*CurrentBB,
678                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
679       return Changed;
680 
681     TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
682 
683     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
684       // Don't bother trying to unswitch past a switch with a constant
685       // condition. This should be removed prior to running this pass by
686       // simplify-cfg.
687       if (isa<Constant>(SI->getCondition()))
688         return Changed;
689 
690       if (!unswitchTrivialSwitch(L, *SI, DT, LI))
691         // Coludn't unswitch this one so we're done.
692         return Changed;
693 
694       // Mark that we managed to unswitch something.
695       Changed = true;
696 
697       // If unswitching turned the terminator into an unconditional branch then
698       // we can continue. The unswitching logic specifically works to fold any
699       // cases it can into an unconditional branch to make it easier to
700       // recognize here.
701       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
702       if (!BI || BI->isConditional())
703         return Changed;
704 
705       CurrentBB = BI->getSuccessor(0);
706       continue;
707     }
708 
709     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
710     if (!BI)
711       // We do not understand other terminator instructions.
712       return Changed;
713 
714     // Don't bother trying to unswitch past an unconditional branch or a branch
715     // with a constant value. These should be removed by simplify-cfg prior to
716     // running this pass.
717     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
718       return Changed;
719 
720     // Found a trivial condition candidate: non-foldable conditional branch. If
721     // we fail to unswitch this, we can't do anything else that is trivial.
722     if (!unswitchTrivialBranch(L, *BI, DT, LI))
723       return Changed;
724 
725     // Mark that we managed to unswitch something.
726     Changed = true;
727 
728     // We unswitched the branch. This should always leave us with an
729     // unconditional branch that we can follow now.
730     BI = cast<BranchInst>(CurrentBB->getTerminator());
731     assert(!BI->isConditional() &&
732            "Cannot form a conditional branch by unswitching1");
733     CurrentBB = BI->getSuccessor(0);
734 
735     // When continuing, if we exit the loop or reach a previous visited block,
736     // then we can not reach any trivial condition candidates (unfoldable
737     // branch instructions or switch instructions) and no unswitch can happen.
738   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
739 
740   return Changed;
741 }
742 
743 /// Build the cloned blocks for an unswitched copy of the given loop.
744 ///
745 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
746 /// after the split block (`SplitBB`) that will be used to select between the
747 /// cloned and original loop.
748 ///
749 /// This routine handles cloning all of the necessary loop blocks and exit
750 /// blocks including rewriting their instructions and the relevant PHI nodes.
751 /// It skips loop and exit blocks that are not necessary based on the provided
752 /// set. It also correctly creates the unconditional branch in the cloned
753 /// unswitched parent block to only point at the unswitched successor.
754 ///
755 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
756 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
757 /// the cloned blocks (and their loops) are left without full `LoopInfo`
758 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
759 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
760 /// instead the caller must recompute an accurate DT. It *does* correctly
761 /// update the `AssumptionCache` provided in `AC`.
762 static BasicBlock *buildClonedLoopBlocks(
763     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
764     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
765     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
766     const SmallPtrSetImpl<BasicBlock *> &SkippedLoopAndExitBlocks,
767     ValueToValueMapTy &VMap, AssumptionCache &AC, DominatorTree &DT,
768     LoopInfo &LI) {
769   SmallVector<BasicBlock *, 4> NewBlocks;
770   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
771 
772   // We will need to clone a bunch of blocks, wrap up the clone operation in
773   // a helper.
774   auto CloneBlock = [&](BasicBlock *OldBB) {
775     // Clone the basic block and insert it before the new preheader.
776     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
777     NewBB->moveBefore(LoopPH);
778 
779     // Record this block and the mapping.
780     NewBlocks.push_back(NewBB);
781     VMap[OldBB] = NewBB;
782 
783     // Add the block to the domtree. We'll move it to the correct position
784     // below.
785     DT.addNewBlock(NewBB, SplitBB);
786 
787     return NewBB;
788   };
789 
790   // First, clone the preheader.
791   auto *ClonedPH = CloneBlock(LoopPH);
792 
793   // Then clone all the loop blocks, skipping the ones that aren't necessary.
794   for (auto *LoopBB : L.blocks())
795     if (!SkippedLoopAndExitBlocks.count(LoopBB))
796       CloneBlock(LoopBB);
797 
798   // Split all the loop exit edges so that when we clone the exit blocks, if
799   // any of the exit blocks are *also* a preheader for some other loop, we
800   // don't create multiple predecessors entering the loop header.
801   for (auto *ExitBB : ExitBlocks) {
802     if (SkippedLoopAndExitBlocks.count(ExitBB))
803       continue;
804 
805     // When we are going to clone an exit, we don't need to clone all the
806     // instructions in the exit block and we want to ensure we have an easy
807     // place to merge the CFG, so split the exit first. This is always safe to
808     // do because there cannot be any non-loop predecessors of a loop exit in
809     // loop simplified form.
810     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
811 
812     // Rearrange the names to make it easier to write test cases by having the
813     // exit block carry the suffix rather than the merge block carrying the
814     // suffix.
815     MergeBB->takeName(ExitBB);
816     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
817 
818     // Now clone the original exit block.
819     auto *ClonedExitBB = CloneBlock(ExitBB);
820     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
821            "Exit block should have been split to have one successor!");
822     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
823            "Cloned exit block has the wrong successor!");
824 
825     // Move the merge block's idom to be the split point as one exit is
826     // dominated by one header, and the other by another, so we know the split
827     // point dominates both. While the dominator tree isn't fully accurate, we
828     // want sub-trees within the original loop to be correctly reflect
829     // dominance within that original loop (at least) and that requires moving
830     // the merge block out of that subtree.
831     // FIXME: This is very brittle as we essentially have a partial contract on
832     // the dominator tree. We really need to instead update it and keep it
833     // valid or stop relying on it.
834     DT.changeImmediateDominator(MergeBB, SplitBB);
835 
836     // Remap any cloned instructions and create a merge phi node for them.
837     for (auto ZippedInsts : llvm::zip_first(
838              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
839              llvm::make_range(ClonedExitBB->begin(),
840                               std::prev(ClonedExitBB->end())))) {
841       Instruction &I = std::get<0>(ZippedInsts);
842       Instruction &ClonedI = std::get<1>(ZippedInsts);
843 
844       // The only instructions in the exit block should be PHI nodes and
845       // potentially a landing pad.
846       assert(
847           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
848           "Bad instruction in exit block!");
849       // We should have a value map between the instruction and its clone.
850       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
851 
852       auto *MergePN =
853           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
854                           &*MergeBB->getFirstInsertionPt());
855       I.replaceAllUsesWith(MergePN);
856       MergePN->addIncoming(&I, ExitBB);
857       MergePN->addIncoming(&ClonedI, ClonedExitBB);
858     }
859   }
860 
861   // Rewrite the instructions in the cloned blocks to refer to the instructions
862   // in the cloned blocks. We have to do this as a second pass so that we have
863   // everything available. Also, we have inserted new instructions which may
864   // include assume intrinsics, so we update the assumption cache while
865   // processing this.
866   for (auto *ClonedBB : NewBlocks)
867     for (Instruction &I : *ClonedBB) {
868       RemapInstruction(&I, VMap,
869                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
870       if (auto *II = dyn_cast<IntrinsicInst>(&I))
871         if (II->getIntrinsicID() == Intrinsic::assume)
872           AC.registerAssumption(II);
873     }
874 
875   // Remove the cloned parent as a predecessor of the cloned continue successor
876   // if we did in fact clone it.
877   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
878   if (auto *ClonedContinueSuccBB =
879           cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB)))
880     ClonedContinueSuccBB->removePredecessor(ClonedParentBB,
881                                             /*DontDeleteUselessPHIs*/ true);
882   // Replace the cloned branch with an unconditional branch to the cloneed
883   // unswitched successor.
884   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
885   ClonedParentBB->getTerminator()->eraseFromParent();
886   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
887 
888   // Update any PHI nodes in the cloned successors of the skipped blocks to not
889   // have spurious incoming values.
890   for (auto *LoopBB : L.blocks())
891     if (SkippedLoopAndExitBlocks.count(LoopBB))
892       for (auto *SuccBB : successors(LoopBB))
893         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
894           for (PHINode &PN : ClonedSuccBB->phis())
895             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
896 
897   return ClonedPH;
898 }
899 
900 /// Recursively clone the specified loop and all of its children.
901 ///
902 /// The target parent loop for the clone should be provided, or can be null if
903 /// the clone is a top-level loop. While cloning, all the blocks are mapped
904 /// with the provided value map. The entire original loop must be present in
905 /// the value map. The cloned loop is returned.
906 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
907                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
908   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
909     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
910     ClonedL.reserveBlocks(OrigL.getNumBlocks());
911     for (auto *BB : OrigL.blocks()) {
912       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
913       ClonedL.addBlockEntry(ClonedBB);
914       if (LI.getLoopFor(BB) == &OrigL) {
915         assert(!LI.getLoopFor(ClonedBB) &&
916                "Should not have an existing loop for this block!");
917         LI.changeLoopFor(ClonedBB, &ClonedL);
918       }
919     }
920   };
921 
922   // We specially handle the first loop because it may get cloned into
923   // a different parent and because we most commonly are cloning leaf loops.
924   Loop *ClonedRootL = LI.AllocateLoop();
925   if (RootParentL)
926     RootParentL->addChildLoop(ClonedRootL);
927   else
928     LI.addTopLevelLoop(ClonedRootL);
929   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
930 
931   if (OrigRootL.empty())
932     return ClonedRootL;
933 
934   // If we have a nest, we can quickly clone the entire loop nest using an
935   // iterative approach because it is a tree. We keep the cloned parent in the
936   // data structure to avoid repeatedly querying through a map to find it.
937   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
938   // Build up the loops to clone in reverse order as we'll clone them from the
939   // back.
940   for (Loop *ChildL : llvm::reverse(OrigRootL))
941     LoopsToClone.push_back({ClonedRootL, ChildL});
942   do {
943     Loop *ClonedParentL, *L;
944     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
945     Loop *ClonedL = LI.AllocateLoop();
946     ClonedParentL->addChildLoop(ClonedL);
947     AddClonedBlocksToLoop(*L, *ClonedL);
948     for (Loop *ChildL : llvm::reverse(*L))
949       LoopsToClone.push_back({ClonedL, ChildL});
950   } while (!LoopsToClone.empty());
951 
952   return ClonedRootL;
953 }
954 
955 /// Build the cloned loops of an original loop from unswitching.
956 ///
957 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
958 /// operation. We need to re-verify that there even is a loop (as the backedge
959 /// may not have been cloned), and even if there are remaining backedges the
960 /// backedge set may be different. However, we know that each child loop is
961 /// undisturbed, we only need to find where to place each child loop within
962 /// either any parent loop or within a cloned version of the original loop.
963 ///
964 /// Because child loops may end up cloned outside of any cloned version of the
965 /// original loop, multiple cloned sibling loops may be created. All of them
966 /// are returned so that the newly introduced loop nest roots can be
967 /// identified.
968 static Loop *buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
969                               const ValueToValueMapTy &VMap, LoopInfo &LI,
970                               SmallVectorImpl<Loop *> &NonChildClonedLoops) {
971   Loop *ClonedL = nullptr;
972 
973   auto *OrigPH = OrigL.getLoopPreheader();
974   auto *OrigHeader = OrigL.getHeader();
975 
976   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
977   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
978 
979   // We need to know the loops of the cloned exit blocks to even compute the
980   // accurate parent loop. If we only clone exits to some parent of the
981   // original parent, we want to clone into that outer loop. We also keep track
982   // of the loops that our cloned exit blocks participate in.
983   Loop *ParentL = nullptr;
984   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
985   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
986   ClonedExitsInLoops.reserve(ExitBlocks.size());
987   for (auto *ExitBB : ExitBlocks)
988     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
989       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
990         ExitLoopMap[ClonedExitBB] = ExitL;
991         ClonedExitsInLoops.push_back(ClonedExitBB);
992         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
993           ParentL = ExitL;
994       }
995   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
996           ParentL->contains(OrigL.getParentLoop())) &&
997          "The computed parent loop should always contain (or be) the parent of "
998          "the original loop.");
999 
1000   // We build the set of blocks dominated by the cloned header from the set of
1001   // cloned blocks out of the original loop. While not all of these will
1002   // necessarily be in the cloned loop, it is enough to establish that they
1003   // aren't in unreachable cycles, etc.
1004   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1005   for (auto *BB : OrigL.blocks())
1006     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1007       ClonedLoopBlocks.insert(ClonedBB);
1008 
1009   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1010   // skipped cloning some region of this loop which can in turn skip some of
1011   // the backedges so we have to rebuild the blocks in the loop based on the
1012   // backedges that remain after cloning.
1013   SmallVector<BasicBlock *, 16> Worklist;
1014   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1015   for (auto *Pred : predecessors(ClonedHeader)) {
1016     // The only possible non-loop header predecessor is the preheader because
1017     // we know we cloned the loop in simplified form.
1018     if (Pred == ClonedPH)
1019       continue;
1020 
1021     // Because the loop was in simplified form, the only non-loop predecessor
1022     // should be the preheader.
1023     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1024                                            "header other than the preheader "
1025                                            "that is not part of the loop!");
1026 
1027     // Insert this block into the loop set and on the first visit (and if it
1028     // isn't the header we're currently walking) put it into the worklist to
1029     // recurse through.
1030     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1031       Worklist.push_back(Pred);
1032   }
1033 
1034   // If we had any backedges then there *is* a cloned loop. Put the header into
1035   // the loop set and then walk the worklist backwards to find all the blocks
1036   // that remain within the loop after cloning.
1037   if (!BlocksInClonedLoop.empty()) {
1038     BlocksInClonedLoop.insert(ClonedHeader);
1039 
1040     while (!Worklist.empty()) {
1041       BasicBlock *BB = Worklist.pop_back_val();
1042       assert(BlocksInClonedLoop.count(BB) &&
1043              "Didn't put block into the loop set!");
1044 
1045       // Insert any predecessors that are in the possible set into the cloned
1046       // set, and if the insert is successful, add them to the worklist. Note
1047       // that we filter on the blocks that are definitely reachable via the
1048       // backedge to the loop header so we may prune out dead code within the
1049       // cloned loop.
1050       for (auto *Pred : predecessors(BB))
1051         if (ClonedLoopBlocks.count(Pred) &&
1052             BlocksInClonedLoop.insert(Pred).second)
1053           Worklist.push_back(Pred);
1054     }
1055 
1056     ClonedL = LI.AllocateLoop();
1057     if (ParentL) {
1058       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1059       ParentL->addChildLoop(ClonedL);
1060     } else {
1061       LI.addTopLevelLoop(ClonedL);
1062     }
1063 
1064     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1065     // We don't want to just add the cloned loop blocks based on how we
1066     // discovered them. The original order of blocks was carefully built in
1067     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1068     // that logic, we just re-walk the original blocks (and those of the child
1069     // loops) and filter them as we add them into the cloned loop.
1070     for (auto *BB : OrigL.blocks()) {
1071       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1072       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1073         continue;
1074 
1075       // Directly add the blocks that are only in this loop.
1076       if (LI.getLoopFor(BB) == &OrigL) {
1077         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1078         continue;
1079       }
1080 
1081       // We want to manually add it to this loop and parents.
1082       // Registering it with LoopInfo will happen when we clone the top
1083       // loop for this block.
1084       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1085         PL->addBlockEntry(ClonedBB);
1086     }
1087 
1088     // Now add each child loop whose header remains within the cloned loop. All
1089     // of the blocks within the loop must satisfy the same constraints as the
1090     // header so once we pass the header checks we can just clone the entire
1091     // child loop nest.
1092     for (Loop *ChildL : OrigL) {
1093       auto *ClonedChildHeader =
1094           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1095       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1096         continue;
1097 
1098 #ifndef NDEBUG
1099       // We should never have a cloned child loop header but fail to have
1100       // all of the blocks for that child loop.
1101       for (auto *ChildLoopBB : ChildL->blocks())
1102         assert(BlocksInClonedLoop.count(
1103                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1104                "Child cloned loop has a header within the cloned outer "
1105                "loop but not all of its blocks!");
1106 #endif
1107 
1108       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1109     }
1110   }
1111 
1112   // Now that we've handled all the components of the original loop that were
1113   // cloned into a new loop, we still need to handle anything from the original
1114   // loop that wasn't in a cloned loop.
1115 
1116   // Figure out what blocks are left to place within any loop nest containing
1117   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1118   // them.
1119   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1120   if (BlocksInClonedLoop.empty())
1121     UnloopedBlockSet.insert(ClonedPH);
1122   for (auto *ClonedBB : ClonedLoopBlocks)
1123     if (!BlocksInClonedLoop.count(ClonedBB))
1124       UnloopedBlockSet.insert(ClonedBB);
1125 
1126   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1127   // backwards across these to process them inside out. The order shouldn't
1128   // matter as we're just trying to build up the map from inside-out; we use
1129   // the map in a more stably ordered way below.
1130   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1131   llvm::sort(OrderedClonedExitsInLoops.begin(),
1132              OrderedClonedExitsInLoops.end(),
1133              [&](BasicBlock *LHS, BasicBlock *RHS) {
1134                return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1135                       ExitLoopMap.lookup(RHS)->getLoopDepth();
1136              });
1137 
1138   // Populate the existing ExitLoopMap with everything reachable from each
1139   // exit, starting from the inner most exit.
1140   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1141     assert(Worklist.empty() && "Didn't clear worklist!");
1142 
1143     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1144     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1145 
1146     // Walk the CFG back until we hit the cloned PH adding everything reachable
1147     // and in the unlooped set to this exit block's loop.
1148     Worklist.push_back(ExitBB);
1149     do {
1150       BasicBlock *BB = Worklist.pop_back_val();
1151       // We can stop recursing at the cloned preheader (if we get there).
1152       if (BB == ClonedPH)
1153         continue;
1154 
1155       for (BasicBlock *PredBB : predecessors(BB)) {
1156         // If this pred has already been moved to our set or is part of some
1157         // (inner) loop, no update needed.
1158         if (!UnloopedBlockSet.erase(PredBB)) {
1159           assert(
1160               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1161               "Predecessor not mapped to a loop!");
1162           continue;
1163         }
1164 
1165         // We just insert into the loop set here. We'll add these blocks to the
1166         // exit loop after we build up the set in an order that doesn't rely on
1167         // predecessor order (which in turn relies on use list order).
1168         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1169         (void)Inserted;
1170         assert(Inserted && "Should only visit an unlooped block once!");
1171 
1172         // And recurse through to its predecessors.
1173         Worklist.push_back(PredBB);
1174       }
1175     } while (!Worklist.empty());
1176   }
1177 
1178   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1179   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1180   // in their original order adding them to the correct loop.
1181 
1182   // We need a stable insertion order. We use the order of the original loop
1183   // order and map into the correct parent loop.
1184   for (auto *BB : llvm::concat<BasicBlock *const>(
1185            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1186     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1187       OuterL->addBasicBlockToLoop(BB, LI);
1188 
1189 #ifndef NDEBUG
1190   for (auto &BBAndL : ExitLoopMap) {
1191     auto *BB = BBAndL.first;
1192     auto *OuterL = BBAndL.second;
1193     assert(LI.getLoopFor(BB) == OuterL &&
1194            "Failed to put all blocks into outer loops!");
1195   }
1196 #endif
1197 
1198   // Now that all the blocks are placed into the correct containing loop in the
1199   // absence of child loops, find all the potentially cloned child loops and
1200   // clone them into whatever outer loop we placed their header into.
1201   for (Loop *ChildL : OrigL) {
1202     auto *ClonedChildHeader =
1203         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1204     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1205       continue;
1206 
1207 #ifndef NDEBUG
1208     for (auto *ChildLoopBB : ChildL->blocks())
1209       assert(VMap.count(ChildLoopBB) &&
1210              "Cloned a child loop header but not all of that loops blocks!");
1211 #endif
1212 
1213     NonChildClonedLoops.push_back(cloneLoopNest(
1214         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1215   }
1216 
1217   // Return the main cloned loop if any.
1218   return ClonedL;
1219 }
1220 
1221 static void deleteDeadBlocksFromLoop(Loop &L, BasicBlock *DeadSubtreeRoot,
1222                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1223                                      DominatorTree &DT, LoopInfo &LI) {
1224   // Walk the dominator tree to build up the set of blocks we will delete here.
1225   // The order is designed to allow us to always delete bottom-up and avoid any
1226   // dangling uses.
1227   SmallSetVector<BasicBlock *, 16> DeadBlocks;
1228   DeadBlocks.insert(DeadSubtreeRoot);
1229   for (int i = 0; i < (int)DeadBlocks.size(); ++i)
1230     for (DomTreeNode *ChildN : *DT[DeadBlocks[i]]) {
1231       // FIXME: This assert should pass and that means we don't change nearly
1232       // as much below! Consider rewriting all of this to avoid deleting
1233       // blocks. They are always cloned before being deleted, and so instead
1234       // could just be moved.
1235       // FIXME: This in turn means that we might actually be more able to
1236       // update the domtree.
1237       assert((L.contains(ChildN->getBlock()) ||
1238               llvm::find(ExitBlocks, ChildN->getBlock()) != ExitBlocks.end()) &&
1239              "Should never reach beyond the loop and exits when deleting!");
1240       DeadBlocks.insert(ChildN->getBlock());
1241     }
1242 
1243   // Filter out the dead blocks from the exit blocks list so that it can be
1244   // used in the caller.
1245   llvm::erase_if(ExitBlocks,
1246                  [&](BasicBlock *BB) { return DeadBlocks.count(BB); });
1247 
1248   // Remove these blocks from their successors.
1249   for (auto *BB : DeadBlocks)
1250     for (BasicBlock *SuccBB : successors(BB))
1251       SuccBB->removePredecessor(BB, /*DontDeleteUselessPHIs*/ true);
1252 
1253   // Walk from this loop up through its parents removing all of the dead blocks.
1254   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1255     for (auto *BB : DeadBlocks)
1256       ParentL->getBlocksSet().erase(BB);
1257     llvm::erase_if(ParentL->getBlocksVector(),
1258                    [&](BasicBlock *BB) { return DeadBlocks.count(BB); });
1259   }
1260 
1261   // Now delete the dead child loops. This raw delete will clear them
1262   // recursively.
1263   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1264     if (!DeadBlocks.count(ChildL->getHeader()))
1265       return false;
1266 
1267     assert(llvm::all_of(ChildL->blocks(),
1268                         [&](BasicBlock *ChildBB) {
1269                           return DeadBlocks.count(ChildBB);
1270                         }) &&
1271            "If the child loop header is dead all blocks in the child loop must "
1272            "be dead as well!");
1273     LI.destroy(ChildL);
1274     return true;
1275   });
1276 
1277   // Remove the mappings for the dead blocks.
1278   for (auto *BB : DeadBlocks)
1279     LI.changeLoopFor(BB, nullptr);
1280 
1281   // Drop all the references from these blocks to others to handle cyclic
1282   // references as we start deleting the blocks themselves.
1283   for (auto *BB : DeadBlocks)
1284     BB->dropAllReferences();
1285 
1286   for (auto *BB : llvm::reverse(DeadBlocks)) {
1287     DT.eraseNode(BB);
1288     BB->eraseFromParent();
1289   }
1290 }
1291 
1292 /// Recompute the set of blocks in a loop after unswitching.
1293 ///
1294 /// This walks from the original headers predecessors to rebuild the loop. We
1295 /// take advantage of the fact that new blocks can't have been added, and so we
1296 /// filter by the original loop's blocks. This also handles potentially
1297 /// unreachable code that we don't want to explore but might be found examining
1298 /// the predecessors of the header.
1299 ///
1300 /// If the original loop is no longer a loop, this will return an empty set. If
1301 /// it remains a loop, all the blocks within it will be added to the set
1302 /// (including those blocks in inner loops).
1303 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1304                                                                  LoopInfo &LI) {
1305   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1306 
1307   auto *PH = L.getLoopPreheader();
1308   auto *Header = L.getHeader();
1309 
1310   // A worklist to use while walking backwards from the header.
1311   SmallVector<BasicBlock *, 16> Worklist;
1312 
1313   // First walk the predecessors of the header to find the backedges. This will
1314   // form the basis of our walk.
1315   for (auto *Pred : predecessors(Header)) {
1316     // Skip the preheader.
1317     if (Pred == PH)
1318       continue;
1319 
1320     // Because the loop was in simplified form, the only non-loop predecessor
1321     // is the preheader.
1322     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1323                                "than the preheader that is not part of the "
1324                                "loop!");
1325 
1326     // Insert this block into the loop set and on the first visit and, if it
1327     // isn't the header we're currently walking, put it into the worklist to
1328     // recurse through.
1329     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1330       Worklist.push_back(Pred);
1331   }
1332 
1333   // If no backedges were found, we're done.
1334   if (LoopBlockSet.empty())
1335     return LoopBlockSet;
1336 
1337   // Add the loop header to the set.
1338   LoopBlockSet.insert(Header);
1339 
1340   // We found backedges, recurse through them to identify the loop blocks.
1341   while (!Worklist.empty()) {
1342     BasicBlock *BB = Worklist.pop_back_val();
1343     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1344 
1345     // Because we know the inner loop structure remains valid we can use the
1346     // loop structure to jump immediately across the entire nested loop.
1347     // Further, because it is in loop simplified form, we can directly jump
1348     // to its preheader afterward.
1349     if (Loop *InnerL = LI.getLoopFor(BB))
1350       if (InnerL != &L) {
1351         assert(L.contains(InnerL) &&
1352                "Should not reach a loop *outside* this loop!");
1353         // The preheader is the only possible predecessor of the loop so
1354         // insert it into the set and check whether it was already handled.
1355         auto *InnerPH = InnerL->getLoopPreheader();
1356         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1357                                       "but not contain the inner loop "
1358                                       "preheader!");
1359         if (!LoopBlockSet.insert(InnerPH).second)
1360           // The only way to reach the preheader is through the loop body
1361           // itself so if it has been visited the loop is already handled.
1362           continue;
1363 
1364         // Insert all of the blocks (other than those already present) into
1365         // the loop set. The only block we expect to already be in the set is
1366         // the one we used to find this loop as we immediately handle the
1367         // others the first time we encounter the loop.
1368         for (auto *InnerBB : InnerL->blocks()) {
1369           if (InnerBB == BB) {
1370             assert(LoopBlockSet.count(InnerBB) &&
1371                    "Block should already be in the set!");
1372             continue;
1373           }
1374 
1375           bool Inserted = LoopBlockSet.insert(InnerBB).second;
1376           (void)Inserted;
1377           assert(Inserted && "Should only insert an inner loop once!");
1378         }
1379 
1380         // Add the preheader to the worklist so we will continue past the
1381         // loop body.
1382         Worklist.push_back(InnerPH);
1383         continue;
1384       }
1385 
1386     // Insert any predecessors that were in the original loop into the new
1387     // set, and if the insert is successful, add them to the worklist.
1388     for (auto *Pred : predecessors(BB))
1389       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1390         Worklist.push_back(Pred);
1391   }
1392 
1393   // We've found all the blocks participating in the loop, return our completed
1394   // set.
1395   return LoopBlockSet;
1396 }
1397 
1398 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1399 ///
1400 /// The removal may have removed some child loops entirely but cannot have
1401 /// disturbed any remaining child loops. However, they may need to be hoisted
1402 /// to the parent loop (or to be top-level loops). The original loop may be
1403 /// completely removed.
1404 ///
1405 /// The sibling loops resulting from this update are returned. If the original
1406 /// loop remains a valid loop, it will be the first entry in this list with all
1407 /// of the newly sibling loops following it.
1408 ///
1409 /// Returns true if the loop remains a loop after unswitching, and false if it
1410 /// is no longer a loop after unswitching (and should not continue to be
1411 /// referenced).
1412 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1413                                      LoopInfo &LI,
1414                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1415   auto *PH = L.getLoopPreheader();
1416 
1417   // Compute the actual parent loop from the exit blocks. Because we may have
1418   // pruned some exits the loop may be different from the original parent.
1419   Loop *ParentL = nullptr;
1420   SmallVector<Loop *, 4> ExitLoops;
1421   SmallVector<BasicBlock *, 4> ExitsInLoops;
1422   ExitsInLoops.reserve(ExitBlocks.size());
1423   for (auto *ExitBB : ExitBlocks)
1424     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1425       ExitLoops.push_back(ExitL);
1426       ExitsInLoops.push_back(ExitBB);
1427       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1428         ParentL = ExitL;
1429     }
1430 
1431   // Recompute the blocks participating in this loop. This may be empty if it
1432   // is no longer a loop.
1433   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1434 
1435   // If we still have a loop, we need to re-set the loop's parent as the exit
1436   // block set changing may have moved it within the loop nest. Note that this
1437   // can only happen when this loop has a parent as it can only hoist the loop
1438   // *up* the nest.
1439   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1440     // Remove this loop's (original) blocks from all of the intervening loops.
1441     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1442          IL = IL->getParentLoop()) {
1443       IL->getBlocksSet().erase(PH);
1444       for (auto *BB : L.blocks())
1445         IL->getBlocksSet().erase(BB);
1446       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1447         return BB == PH || L.contains(BB);
1448       });
1449     }
1450 
1451     LI.changeLoopFor(PH, ParentL);
1452     L.getParentLoop()->removeChildLoop(&L);
1453     if (ParentL)
1454       ParentL->addChildLoop(&L);
1455     else
1456       LI.addTopLevelLoop(&L);
1457   }
1458 
1459   // Now we update all the blocks which are no longer within the loop.
1460   auto &Blocks = L.getBlocksVector();
1461   auto BlocksSplitI =
1462       LoopBlockSet.empty()
1463           ? Blocks.begin()
1464           : std::stable_partition(
1465                 Blocks.begin(), Blocks.end(),
1466                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1467 
1468   // Before we erase the list of unlooped blocks, build a set of them.
1469   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1470   if (LoopBlockSet.empty())
1471     UnloopedBlocks.insert(PH);
1472 
1473   // Now erase these blocks from the loop.
1474   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1475     L.getBlocksSet().erase(BB);
1476   Blocks.erase(BlocksSplitI, Blocks.end());
1477 
1478   // Sort the exits in ascending loop depth, we'll work backwards across these
1479   // to process them inside out.
1480   std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1481                    [&](BasicBlock *LHS, BasicBlock *RHS) {
1482                      return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1483                    });
1484 
1485   // We'll build up a set for each exit loop.
1486   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1487   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1488 
1489   auto RemoveUnloopedBlocksFromLoop =
1490       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1491         for (auto *BB : UnloopedBlocks)
1492           L.getBlocksSet().erase(BB);
1493         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1494           return UnloopedBlocks.count(BB);
1495         });
1496       };
1497 
1498   SmallVector<BasicBlock *, 16> Worklist;
1499   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1500     assert(Worklist.empty() && "Didn't clear worklist!");
1501     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1502 
1503     // Grab the next exit block, in decreasing loop depth order.
1504     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1505     Loop &ExitL = *LI.getLoopFor(ExitBB);
1506     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1507 
1508     // Erase all of the unlooped blocks from the loops between the previous
1509     // exit loop and this exit loop. This works because the ExitInLoops list is
1510     // sorted in increasing order of loop depth and thus we visit loops in
1511     // decreasing order of loop depth.
1512     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1513       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1514 
1515     // Walk the CFG back until we hit the cloned PH adding everything reachable
1516     // and in the unlooped set to this exit block's loop.
1517     Worklist.push_back(ExitBB);
1518     do {
1519       BasicBlock *BB = Worklist.pop_back_val();
1520       // We can stop recursing at the cloned preheader (if we get there).
1521       if (BB == PH)
1522         continue;
1523 
1524       for (BasicBlock *PredBB : predecessors(BB)) {
1525         // If this pred has already been moved to our set or is part of some
1526         // (inner) loop, no update needed.
1527         if (!UnloopedBlocks.erase(PredBB)) {
1528           assert((NewExitLoopBlocks.count(PredBB) ||
1529                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1530                  "Predecessor not in a nested loop (or already visited)!");
1531           continue;
1532         }
1533 
1534         // We just insert into the loop set here. We'll add these blocks to the
1535         // exit loop after we build up the set in a deterministic order rather
1536         // than the predecessor-influenced visit order.
1537         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1538         (void)Inserted;
1539         assert(Inserted && "Should only visit an unlooped block once!");
1540 
1541         // And recurse through to its predecessors.
1542         Worklist.push_back(PredBB);
1543       }
1544     } while (!Worklist.empty());
1545 
1546     // If blocks in this exit loop were directly part of the original loop (as
1547     // opposed to a child loop) update the map to point to this exit loop. This
1548     // just updates a map and so the fact that the order is unstable is fine.
1549     for (auto *BB : NewExitLoopBlocks)
1550       if (Loop *BBL = LI.getLoopFor(BB))
1551         if (BBL == &L || !L.contains(BBL))
1552           LI.changeLoopFor(BB, &ExitL);
1553 
1554     // We will remove the remaining unlooped blocks from this loop in the next
1555     // iteration or below.
1556     NewExitLoopBlocks.clear();
1557   }
1558 
1559   // Any remaining unlooped blocks are no longer part of any loop unless they
1560   // are part of some child loop.
1561   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1562     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1563   for (auto *BB : UnloopedBlocks)
1564     if (Loop *BBL = LI.getLoopFor(BB))
1565       if (BBL == &L || !L.contains(BBL))
1566         LI.changeLoopFor(BB, nullptr);
1567 
1568   // Sink all the child loops whose headers are no longer in the loop set to
1569   // the parent (or to be top level loops). We reach into the loop and directly
1570   // update its subloop vector to make this batch update efficient.
1571   auto &SubLoops = L.getSubLoopsVector();
1572   auto SubLoopsSplitI =
1573       LoopBlockSet.empty()
1574           ? SubLoops.begin()
1575           : std::stable_partition(
1576                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1577                   return LoopBlockSet.count(SubL->getHeader());
1578                 });
1579   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1580     HoistedLoops.push_back(HoistedL);
1581     HoistedL->setParentLoop(nullptr);
1582 
1583     // To compute the new parent of this hoisted loop we look at where we
1584     // placed the preheader above. We can't lookup the header itself because we
1585     // retained the mapping from the header to the hoisted loop. But the
1586     // preheader and header should have the exact same new parent computed
1587     // based on the set of exit blocks from the original loop as the preheader
1588     // is a predecessor of the header and so reached in the reverse walk. And
1589     // because the loops were all in simplified form the preheader of the
1590     // hoisted loop can't be part of some *other* loop.
1591     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1592       NewParentL->addChildLoop(HoistedL);
1593     else
1594       LI.addTopLevelLoop(HoistedL);
1595   }
1596   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1597 
1598   // Actually delete the loop if nothing remained within it.
1599   if (Blocks.empty()) {
1600     assert(SubLoops.empty() &&
1601            "Failed to remove all subloops from the original loop!");
1602     if (Loop *ParentL = L.getParentLoop())
1603       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1604     else
1605       LI.removeLoop(llvm::find(LI, &L));
1606     LI.destroy(&L);
1607     return false;
1608   }
1609 
1610   return true;
1611 }
1612 
1613 /// Helper to visit a dominator subtree, invoking a callable on each node.
1614 ///
1615 /// Returning false at any point will stop walking past that node of the tree.
1616 template <typename CallableT>
1617 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1618   SmallVector<DomTreeNode *, 4> DomWorklist;
1619   DomWorklist.push_back(DT[BB]);
1620 #ifndef NDEBUG
1621   SmallPtrSet<DomTreeNode *, 4> Visited;
1622   Visited.insert(DT[BB]);
1623 #endif
1624   do {
1625     DomTreeNode *N = DomWorklist.pop_back_val();
1626 
1627     // Visit this node.
1628     if (!Callable(N->getBlock()))
1629       continue;
1630 
1631     // Accumulate the child nodes.
1632     for (DomTreeNode *ChildN : *N) {
1633       assert(Visited.insert(ChildN).second &&
1634              "Cannot visit a node twice when walking a tree!");
1635       DomWorklist.push_back(ChildN);
1636     }
1637   } while (!DomWorklist.empty());
1638 }
1639 
1640 /// Take an invariant branch that has been determined to be safe and worthwhile
1641 /// to unswitch despite being non-trivial to do so and perform the unswitch.
1642 ///
1643 /// This directly updates the CFG to hoist the predicate out of the loop, and
1644 /// clone the necessary parts of the loop to maintain behavior.
1645 ///
1646 /// It also updates both dominator tree and loopinfo based on the unswitching.
1647 ///
1648 /// Once unswitching has been performed it runs the provided callback to report
1649 /// the new loops and no-longer valid loops to the caller.
1650 static bool unswitchInvariantBranch(
1651     Loop &L, BranchInst &BI, DominatorTree &DT, LoopInfo &LI,
1652     AssumptionCache &AC,
1653     function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
1654   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
1655   assert(L.isLoopInvariant(BI.getCondition()) &&
1656          "Can only unswitch an invariant branch condition!");
1657 
1658   // Constant and BBs tracking the cloned and continuing successor.
1659   const int ClonedSucc = 0;
1660   auto *ParentBB = BI.getParent();
1661   auto *UnswitchedSuccBB = BI.getSuccessor(ClonedSucc);
1662   auto *ContinueSuccBB = BI.getSuccessor(1 - ClonedSucc);
1663 
1664   assert(UnswitchedSuccBB != ContinueSuccBB &&
1665          "Should not unswitch a branch that always goes to the same place!");
1666 
1667   // The branch should be in this exact loop. Any inner loop's invariant branch
1668   // should be handled by unswitching that inner loop. The caller of this
1669   // routine should filter out any candidates that remain (but were skipped for
1670   // whatever reason).
1671   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1672 
1673   SmallVector<BasicBlock *, 4> ExitBlocks;
1674   L.getUniqueExitBlocks(ExitBlocks);
1675 
1676   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
1677   // don't know how to split those exit blocks.
1678   // FIXME: We should teach SplitBlock to handle this and remove this
1679   // restriction.
1680   for (auto *ExitBB : ExitBlocks)
1681     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI()))
1682       return false;
1683 
1684   SmallPtrSet<BasicBlock *, 4> ExitBlockSet(ExitBlocks.begin(),
1685                                             ExitBlocks.end());
1686 
1687   // Compute the parent loop now before we start hacking on things.
1688   Loop *ParentL = L.getParentLoop();
1689 
1690   // Compute the outer-most loop containing one of our exit blocks. This is the
1691   // furthest up our loopnest which can be mutated, which we will use below to
1692   // update things.
1693   Loop *OuterExitL = &L;
1694   for (auto *ExitBB : ExitBlocks) {
1695     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1696     if (!NewOuterExitL) {
1697       // We exited the entire nest with this block, so we're done.
1698       OuterExitL = nullptr;
1699       break;
1700     }
1701     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1702       OuterExitL = NewOuterExitL;
1703   }
1704 
1705   // If the edge we *aren't* cloning in the unswitch (the continuing edge)
1706   // dominates its target, we can skip cloning the dominated region of the loop
1707   // and its exits. We compute this as a set of nodes to be skipped.
1708   SmallPtrSet<BasicBlock *, 4> SkippedLoopAndExitBlocks;
1709   if (ContinueSuccBB->getUniquePredecessor() ||
1710       llvm::all_of(predecessors(ContinueSuccBB), [&](BasicBlock *PredBB) {
1711         return PredBB == ParentBB || DT.dominates(ContinueSuccBB, PredBB);
1712       })) {
1713     visitDomSubTree(DT, ContinueSuccBB, [&](BasicBlock *BB) {
1714       SkippedLoopAndExitBlocks.insert(BB);
1715       return true;
1716     });
1717   }
1718   // Similarly, if the edge we *are* cloning in the unswitch (the unswitched
1719   // edge) dominates its target, we will end up with dead nodes in the original
1720   // loop and its exits that will need to be deleted. Here, we just retain that
1721   // the property holds and will compute the deleted set later.
1722   bool DeleteUnswitchedSucc =
1723       UnswitchedSuccBB->getUniquePredecessor() ||
1724       llvm::all_of(predecessors(UnswitchedSuccBB), [&](BasicBlock *PredBB) {
1725         return PredBB == ParentBB || DT.dominates(UnswitchedSuccBB, PredBB);
1726       });
1727 
1728   // Split the preheader, so that we know that there is a safe place to insert
1729   // the conditional branch. We will change the preheader to have a conditional
1730   // branch on LoopCond. The original preheader will become the split point
1731   // between the unswitched versions, and we will have a new preheader for the
1732   // original loop.
1733   BasicBlock *SplitBB = L.getLoopPreheader();
1734   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
1735 
1736   // Keep a mapping for the cloned values.
1737   ValueToValueMapTy VMap;
1738 
1739   // Build the cloned blocks from the loop.
1740   auto *ClonedPH = buildClonedLoopBlocks(
1741       L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB,
1742       ContinueSuccBB, SkippedLoopAndExitBlocks, VMap, AC, DT, LI);
1743 
1744   // Build the cloned loop structure itself. This may be substantially
1745   // different from the original structure due to the simplified CFG. This also
1746   // handles inserting all the cloned blocks into the correct loops.
1747   SmallVector<Loop *, 4> NonChildClonedLoops;
1748   Loop *ClonedL =
1749       buildClonedLoops(L, ExitBlocks, VMap, LI, NonChildClonedLoops);
1750 
1751   // Remove the parent as a predecessor of the unswitched successor.
1752   UnswitchedSuccBB->removePredecessor(ParentBB, /*DontDeleteUselessPHIs*/ true);
1753 
1754   // Now splice the branch from the original loop and use it to select between
1755   // the two loops.
1756   SplitBB->getTerminator()->eraseFromParent();
1757   SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), BI);
1758   BI.setSuccessor(ClonedSucc, ClonedPH);
1759   BI.setSuccessor(1 - ClonedSucc, LoopPH);
1760 
1761   // Create a new unconditional branch to the continuing block (as opposed to
1762   // the one cloned).
1763   BranchInst::Create(ContinueSuccBB, ParentBB);
1764 
1765   // Delete anything that was made dead in the original loop due to
1766   // unswitching.
1767   if (DeleteUnswitchedSucc)
1768     deleteDeadBlocksFromLoop(L, UnswitchedSuccBB, ExitBlocks, DT, LI);
1769 
1770   SmallVector<Loop *, 4> HoistedLoops;
1771   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
1772 
1773   // This will have completely invalidated the dominator tree. We can't easily
1774   // bound how much is invalid because in some cases we will refine the
1775   // predecessor set of exit blocks of the loop which can move large unrelated
1776   // regions of code into a new subtree.
1777   //
1778   // FIXME: Eventually, we should use an incremental update utility that
1779   // leverages the existing information in the dominator tree (and potentially
1780   // the nature of the change) to more efficiently update things.
1781   DT.recalculate(*SplitBB->getParent());
1782 
1783   // We can change which blocks are exit blocks of all the cloned sibling
1784   // loops, the current loop, and any parent loops which shared exit blocks
1785   // with the current loop. As a consequence, we need to re-form LCSSA for
1786   // them. But we shouldn't need to re-form LCSSA for any child loops.
1787   // FIXME: This could be made more efficient by tracking which exit blocks are
1788   // new, and focusing on them, but that isn't likely to be necessary.
1789   //
1790   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
1791   // loop nest and update every loop that could have had its exits changed. We
1792   // also need to cover any intervening loops. We add all of these loops to
1793   // a list and sort them by loop depth to achieve this without updating
1794   // unnecessary loops.
1795   auto UpdateLCSSA = [&](Loop &UpdateL) {
1796 #ifndef NDEBUG
1797     for (Loop *ChildL : UpdateL)
1798       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
1799              "Perturbed a child loop's LCSSA form!");
1800 #endif
1801     formLCSSA(UpdateL, DT, &LI, nullptr);
1802   };
1803 
1804   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
1805   // and we can do it in any order as they don't nest relative to each other.
1806   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
1807     UpdateLCSSA(*UpdatedL);
1808 
1809   // If the original loop had exit blocks, walk up through the outer most loop
1810   // of those exit blocks to update LCSSA and form updated dedicated exits.
1811   if (OuterExitL != &L) {
1812     SmallVector<Loop *, 4> OuterLoops;
1813     // We start with the cloned loop and the current loop if they are loops and
1814     // move toward OuterExitL. Also, if either the cloned loop or the current
1815     // loop have become top level loops we need to walk all the way out.
1816     if (ClonedL) {
1817       OuterLoops.push_back(ClonedL);
1818       if (!ClonedL->getParentLoop())
1819         OuterExitL = nullptr;
1820     }
1821     if (IsStillLoop) {
1822       OuterLoops.push_back(&L);
1823       if (!L.getParentLoop())
1824         OuterExitL = nullptr;
1825     }
1826     // Grab all of the enclosing loops now.
1827     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
1828          OuterL = OuterL->getParentLoop())
1829       OuterLoops.push_back(OuterL);
1830 
1831     // Finally, update our list of outer loops. This is nicely ordered to work
1832     // inside-out.
1833     for (Loop *OuterL : OuterLoops) {
1834       // First build LCSSA for this loop so that we can preserve it when
1835       // forming dedicated exits. We don't want to perturb some other loop's
1836       // LCSSA while doing that CFG edit.
1837       UpdateLCSSA(*OuterL);
1838 
1839       // For loops reached by this loop's original exit blocks we may
1840       // introduced new, non-dedicated exits. At least try to re-form dedicated
1841       // exits for these loops. This may fail if they couldn't have dedicated
1842       // exits to start with.
1843       formDedicatedExitBlocks(OuterL, &DT, &LI, /*PreserveLCSSA*/ true);
1844     }
1845   }
1846 
1847 #ifndef NDEBUG
1848   // Verify the entire loop structure to catch any incorrect updates before we
1849   // progress in the pass pipeline.
1850   LI.verify(DT);
1851 #endif
1852 
1853   // Now that we've unswitched something, make callbacks to report the changes.
1854   // For that we need to merge together the updated loops and the cloned loops
1855   // and check whether the original loop survived.
1856   SmallVector<Loop *, 4> SibLoops;
1857   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
1858     if (UpdatedL->getParentLoop() == ParentL)
1859       SibLoops.push_back(UpdatedL);
1860   NonTrivialUnswitchCB(IsStillLoop, SibLoops);
1861 
1862   ++NumBranches;
1863   return true;
1864 }
1865 
1866 /// Recursively compute the cost of a dominator subtree based on the per-block
1867 /// cost map provided.
1868 ///
1869 /// The recursive computation is memozied into the provided DT-indexed cost map
1870 /// to allow querying it for most nodes in the domtree without it becoming
1871 /// quadratic.
1872 static int
1873 computeDomSubtreeCost(DomTreeNode &N,
1874                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
1875                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
1876   // Don't accumulate cost (or recurse through) blocks not in our block cost
1877   // map and thus not part of the duplication cost being considered.
1878   auto BBCostIt = BBCostMap.find(N.getBlock());
1879   if (BBCostIt == BBCostMap.end())
1880     return 0;
1881 
1882   // Lookup this node to see if we already computed its cost.
1883   auto DTCostIt = DTCostMap.find(&N);
1884   if (DTCostIt != DTCostMap.end())
1885     return DTCostIt->second;
1886 
1887   // If not, we have to compute it. We can't use insert above and update
1888   // because computing the cost may insert more things into the map.
1889   int Cost = std::accumulate(
1890       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
1891         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
1892       });
1893   bool Inserted = DTCostMap.insert({&N, Cost}).second;
1894   (void)Inserted;
1895   assert(Inserted && "Should not insert a node while visiting children!");
1896   return Cost;
1897 }
1898 
1899 /// Unswitch control flow predicated on loop invariant conditions.
1900 ///
1901 /// This first hoists all branches or switches which are trivial (IE, do not
1902 /// require duplicating any part of the loop) out of the loop body. It then
1903 /// looks at other loop invariant control flows and tries to unswitch those as
1904 /// well by cloning the loop if the result is small enough.
1905 static bool
1906 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
1907              TargetTransformInfo &TTI, bool NonTrivial,
1908              function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
1909   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
1910          "Loops must be in LCSSA form before unswitching.");
1911   bool Changed = false;
1912 
1913   // Must be in loop simplified form: we need a preheader and dedicated exits.
1914   if (!L.isLoopSimplifyForm())
1915     return false;
1916 
1917   // Try trivial unswitch first before loop over other basic blocks in the loop.
1918   Changed |= unswitchAllTrivialConditions(L, DT, LI);
1919 
1920   // If we're not doing non-trivial unswitching, we're done. We both accept
1921   // a parameter but also check a local flag that can be used for testing
1922   // a debugging.
1923   if (!NonTrivial && !EnableNonTrivialUnswitch)
1924     return Changed;
1925 
1926   // Collect all remaining invariant branch conditions within this loop (as
1927   // opposed to an inner loop which would be handled when visiting that inner
1928   // loop).
1929   SmallVector<TerminatorInst *, 4> UnswitchCandidates;
1930   for (auto *BB : L.blocks())
1931     if (LI.getLoopFor(BB) == &L)
1932       if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1933         if (BI->isConditional() && L.isLoopInvariant(BI->getCondition()) &&
1934             BI->getSuccessor(0) != BI->getSuccessor(1))
1935           UnswitchCandidates.push_back(BI);
1936 
1937   // If we didn't find any candidates, we're done.
1938   if (UnswitchCandidates.empty())
1939     return Changed;
1940 
1941   DEBUG(dbgs() << "Considering " << UnswitchCandidates.size()
1942                << " non-trivial loop invariant conditions for unswitching.\n");
1943 
1944   // Given that unswitching these terminators will require duplicating parts of
1945   // the loop, so we need to be able to model that cost. Compute the ephemeral
1946   // values and set up a data structure to hold per-BB costs. We cache each
1947   // block's cost so that we don't recompute this when considering different
1948   // subsets of the loop for duplication during unswitching.
1949   SmallPtrSet<const Value *, 4> EphValues;
1950   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
1951   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
1952 
1953   // Compute the cost of each block, as well as the total loop cost. Also, bail
1954   // out if we see instructions which are incompatible with loop unswitching
1955   // (convergent, noduplicate, or cross-basic-block tokens).
1956   // FIXME: We might be able to safely handle some of these in non-duplicated
1957   // regions.
1958   int LoopCost = 0;
1959   for (auto *BB : L.blocks()) {
1960     int Cost = 0;
1961     for (auto &I : *BB) {
1962       if (EphValues.count(&I))
1963         continue;
1964 
1965       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
1966         return Changed;
1967       if (auto CS = CallSite(&I))
1968         if (CS.isConvergent() || CS.cannotDuplicate())
1969           return Changed;
1970 
1971       Cost += TTI.getUserCost(&I);
1972     }
1973     assert(Cost >= 0 && "Must not have negative costs!");
1974     LoopCost += Cost;
1975     assert(LoopCost >= 0 && "Must not have negative loop costs!");
1976     BBCostMap[BB] = Cost;
1977   }
1978   DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
1979 
1980   // Now we find the best candidate by searching for the one with the following
1981   // properties in order:
1982   //
1983   // 1) An unswitching cost below the threshold
1984   // 2) The smallest number of duplicated unswitch candidates (to avoid
1985   //    creating redundant subsequent unswitching)
1986   // 3) The smallest cost after unswitching.
1987   //
1988   // We prioritize reducing fanout of unswitch candidates provided the cost
1989   // remains below the threshold because this has a multiplicative effect.
1990   //
1991   // This requires memoizing each dominator subtree to avoid redundant work.
1992   //
1993   // FIXME: Need to actually do the number of candidates part above.
1994   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
1995   // Given a terminator which might be unswitched, computes the non-duplicated
1996   // cost for that terminator.
1997   auto ComputeUnswitchedCost = [&](TerminatorInst *TI) {
1998     BasicBlock &BB = *TI->getParent();
1999     SmallPtrSet<BasicBlock *, 4> Visited;
2000 
2001     int Cost = LoopCost;
2002     for (BasicBlock *SuccBB : successors(&BB)) {
2003       // Don't count successors more than once.
2004       if (!Visited.insert(SuccBB).second)
2005         continue;
2006 
2007       // This successor's domtree will not need to be duplicated after
2008       // unswitching if the edge to the successor dominates it (and thus the
2009       // entire tree). This essentially means there is no other path into this
2010       // subtree and so it will end up live in only one clone of the loop.
2011       if (SuccBB->getUniquePredecessor() ||
2012           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2013             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2014           })) {
2015         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2016         assert(Cost >= 0 &&
2017                "Non-duplicated cost should never exceed total loop cost!");
2018       }
2019     }
2020 
2021     // Now scale the cost by the number of unique successors minus one. We
2022     // subtract one because there is already at least one copy of the entire
2023     // loop. This is computing the new cost of unswitching a condition.
2024     assert(Visited.size() > 1 &&
2025            "Cannot unswitch a condition without multiple distinct successors!");
2026     return Cost * (Visited.size() - 1);
2027   };
2028   TerminatorInst *BestUnswitchTI = nullptr;
2029   int BestUnswitchCost;
2030   for (TerminatorInst *CandidateTI : UnswitchCandidates) {
2031     int CandidateCost = ComputeUnswitchedCost(CandidateTI);
2032     DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2033                  << " for unswitch candidate: " << *CandidateTI << "\n");
2034     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2035       BestUnswitchTI = CandidateTI;
2036       BestUnswitchCost = CandidateCost;
2037     }
2038   }
2039 
2040   if (BestUnswitchCost < UnswitchThreshold) {
2041     DEBUG(dbgs() << "  Trying to unswitch non-trivial (cost = "
2042                  << BestUnswitchCost << ") branch: " << *BestUnswitchTI
2043                  << "\n");
2044     Changed |= unswitchInvariantBranch(L, cast<BranchInst>(*BestUnswitchTI), DT,
2045                                        LI, AC, NonTrivialUnswitchCB);
2046   } else {
2047     DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << BestUnswitchCost
2048                  << "\n");
2049   }
2050 
2051   return Changed;
2052 }
2053 
2054 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2055                                               LoopStandardAnalysisResults &AR,
2056                                               LPMUpdater &U) {
2057   Function &F = *L.getHeader()->getParent();
2058   (void)F;
2059 
2060   DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L << "\n");
2061 
2062   // Save the current loop name in a variable so that we can report it even
2063   // after it has been deleted.
2064   std::string LoopName = L.getName();
2065 
2066   auto NonTrivialUnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2067                                                   ArrayRef<Loop *> NewLoops) {
2068     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2069     U.addSiblingLoops(NewLoops);
2070 
2071     // If the current loop remains valid, we should revisit it to catch any
2072     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2073     if (CurrentLoopValid)
2074       U.revisitCurrentLoop();
2075     else
2076       U.markLoopAsDeleted(L, LoopName);
2077   };
2078 
2079   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial,
2080                     NonTrivialUnswitchCB))
2081     return PreservedAnalyses::all();
2082 
2083   // Historically this pass has had issues with the dominator tree so verify it
2084   // in asserts builds.
2085   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2086   return getLoopPassPreservedAnalyses();
2087 }
2088 
2089 namespace {
2090 
2091 class SimpleLoopUnswitchLegacyPass : public LoopPass {
2092   bool NonTrivial;
2093 
2094 public:
2095   static char ID; // Pass ID, replacement for typeid
2096 
2097   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2098       : LoopPass(ID), NonTrivial(NonTrivial) {
2099     initializeSimpleLoopUnswitchLegacyPassPass(
2100         *PassRegistry::getPassRegistry());
2101   }
2102 
2103   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2104 
2105   void getAnalysisUsage(AnalysisUsage &AU) const override {
2106     AU.addRequired<AssumptionCacheTracker>();
2107     AU.addRequired<TargetTransformInfoWrapperPass>();
2108     getLoopAnalysisUsage(AU);
2109   }
2110 };
2111 
2112 } // end anonymous namespace
2113 
2114 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2115   if (skipLoop(L))
2116     return false;
2117 
2118   Function &F = *L->getHeader()->getParent();
2119 
2120   DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L << "\n");
2121 
2122   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2123   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2124   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2125   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2126 
2127   auto NonTrivialUnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2128                                          ArrayRef<Loop *> NewLoops) {
2129     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2130     for (auto *NewL : NewLoops)
2131       LPM.addLoop(*NewL);
2132 
2133     // If the current loop remains valid, re-add it to the queue. This is
2134     // a little wasteful as we'll finish processing the current loop as well,
2135     // but it is the best we can do in the old PM.
2136     if (CurrentLoopValid)
2137       LPM.addLoop(*L);
2138     else
2139       LPM.markLoopAsDeleted(*L);
2140   };
2141 
2142   bool Changed =
2143       unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, NonTrivialUnswitchCB);
2144 
2145   // If anything was unswitched, also clear any cached information about this
2146   // loop.
2147   LPM.deleteSimpleAnalysisLoop(L);
2148 
2149   // Historically this pass has had issues with the dominator tree so verify it
2150   // in asserts builds.
2151   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2152 
2153   return Changed;
2154 }
2155 
2156 char SimpleLoopUnswitchLegacyPass::ID = 0;
2157 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2158                       "Simple unswitch loops", false, false)
2159 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2160 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2161 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2162 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2163 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2164 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2165                     "Simple unswitch loops", false, false)
2166 
2167 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2168   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
2169 }
2170