xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision 6227f021ad400cc604ca2d15d3639eabfd66a2d9)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/InstrTypes.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/GenericDomTree.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Cloning.h"
52 #include "llvm/Transforms/Utils/LoopUtils.h"
53 #include "llvm/Transforms/Utils/ValueMapper.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <iterator>
57 #include <numeric>
58 #include <utility>
59 
60 #define DEBUG_TYPE "simple-loop-unswitch"
61 
62 using namespace llvm;
63 
64 STATISTIC(NumBranches, "Number of branches unswitched");
65 STATISTIC(NumSwitches, "Number of switches unswitched");
66 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
67 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
68 STATISTIC(
69     NumCostMultiplierSkipped,
70     "Number of unswitch candidates that had their cost multiplier skipped");
71 
72 static cl::opt<bool> EnableNonTrivialUnswitch(
73     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
74     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
75              "following the configuration passed into the pass."));
76 
77 static cl::opt<int>
78     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
79                       cl::desc("The cost threshold for unswitching a loop."));
80 
81 static cl::opt<bool> EnableUnswitchCostMultiplier(
82     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
83     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
84              "explosion in nontrivial unswitch."));
85 static cl::opt<int> UnswitchSiblingsToplevelDiv(
86     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
87     cl::desc("Toplevel siblings divisor for cost multiplier."));
88 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
89     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
90     cl::desc("Number of unswitch candidates that are ignored when calculating "
91              "cost multiplier."));
92 static cl::opt<bool> UnswitchGuards(
93     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
94     cl::desc("If enabled, simple loop unswitching will also consider "
95              "llvm.experimental.guard intrinsics as unswitch candidates."));
96 
97 /// Collect all of the loop invariant input values transitively used by the
98 /// homogeneous instruction graph from a given root.
99 ///
100 /// This essentially walks from a root recursively through loop variant operands
101 /// which have the exact same opcode and finds all inputs which are loop
102 /// invariant. For some operations these can be re-associated and unswitched out
103 /// of the loop entirely.
104 static TinyPtrVector<Value *>
105 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
106                                          LoopInfo &LI) {
107   assert(!L.isLoopInvariant(&Root) &&
108          "Only need to walk the graph if root itself is not invariant.");
109   TinyPtrVector<Value *> Invariants;
110 
111   // Build a worklist and recurse through operators collecting invariants.
112   SmallVector<Instruction *, 4> Worklist;
113   SmallPtrSet<Instruction *, 8> Visited;
114   Worklist.push_back(&Root);
115   Visited.insert(&Root);
116   do {
117     Instruction &I = *Worklist.pop_back_val();
118     for (Value *OpV : I.operand_values()) {
119       // Skip constants as unswitching isn't interesting for them.
120       if (isa<Constant>(OpV))
121         continue;
122 
123       // Add it to our result if loop invariant.
124       if (L.isLoopInvariant(OpV)) {
125         Invariants.push_back(OpV);
126         continue;
127       }
128 
129       // If not an instruction with the same opcode, nothing we can do.
130       Instruction *OpI = dyn_cast<Instruction>(OpV);
131       if (!OpI || OpI->getOpcode() != Root.getOpcode())
132         continue;
133 
134       // Visit this operand.
135       if (Visited.insert(OpI).second)
136         Worklist.push_back(OpI);
137     }
138   } while (!Worklist.empty());
139 
140   return Invariants;
141 }
142 
143 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
144                                      Constant &Replacement) {
145   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
146 
147   // Replace uses of LIC in the loop with the given constant.
148   for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
149     // Grab the use and walk past it so we can clobber it in the use list.
150     Use *U = &*UI++;
151     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
152 
153     // Replace this use within the loop body.
154     if (UserI && L.contains(UserI))
155       U->set(&Replacement);
156   }
157 }
158 
159 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
160 /// incoming values along this edge.
161 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
162                                          BasicBlock &ExitBB) {
163   for (Instruction &I : ExitBB) {
164     auto *PN = dyn_cast<PHINode>(&I);
165     if (!PN)
166       // No more PHIs to check.
167       return true;
168 
169     // If the incoming value for this edge isn't loop invariant the unswitch
170     // won't be trivial.
171     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
172       return false;
173   }
174   llvm_unreachable("Basic blocks should never be empty!");
175 }
176 
177 /// Insert code to test a set of loop invariant values, and conditionally branch
178 /// on them.
179 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
180                                                   ArrayRef<Value *> Invariants,
181                                                   bool Direction,
182                                                   BasicBlock &UnswitchedSucc,
183                                                   BasicBlock &NormalSucc) {
184   IRBuilder<> IRB(&BB);
185 
186   Value *Cond = Direction ? IRB.CreateOr(Invariants) :
187     IRB.CreateAnd(Invariants);
188   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
189                    Direction ? &NormalSucc : &UnswitchedSucc);
190 }
191 
192 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
193 ///
194 /// Requires that the loop exit and unswitched basic block are the same, and
195 /// that the exiting block was a unique predecessor of that block. Rewrites the
196 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
197 /// PHI nodes from the old preheader that now contains the unswitched
198 /// terminator.
199 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
200                                                   BasicBlock &OldExitingBB,
201                                                   BasicBlock &OldPH) {
202   for (PHINode &PN : UnswitchedBB.phis()) {
203     // When the loop exit is directly unswitched we just need to update the
204     // incoming basic block. We loop to handle weird cases with repeated
205     // incoming blocks, but expect to typically only have one operand here.
206     for (auto i : seq<int>(0, PN.getNumOperands())) {
207       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
208              "Found incoming block different from unique predecessor!");
209       PN.setIncomingBlock(i, &OldPH);
210     }
211   }
212 }
213 
214 /// Rewrite the PHI nodes in the loop exit basic block and the split off
215 /// unswitched block.
216 ///
217 /// Because the exit block remains an exit from the loop, this rewrites the
218 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
219 /// nodes into the unswitched basic block to select between the value in the
220 /// old preheader and the loop exit.
221 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
222                                                       BasicBlock &UnswitchedBB,
223                                                       BasicBlock &OldExitingBB,
224                                                       BasicBlock &OldPH,
225                                                       bool FullUnswitch) {
226   assert(&ExitBB != &UnswitchedBB &&
227          "Must have different loop exit and unswitched blocks!");
228   Instruction *InsertPt = &*UnswitchedBB.begin();
229   for (PHINode &PN : ExitBB.phis()) {
230     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
231                                   PN.getName() + ".split", InsertPt);
232 
233     // Walk backwards over the old PHI node's inputs to minimize the cost of
234     // removing each one. We have to do this weird loop manually so that we
235     // create the same number of new incoming edges in the new PHI as we expect
236     // each case-based edge to be included in the unswitched switch in some
237     // cases.
238     // FIXME: This is really, really gross. It would be much cleaner if LLVM
239     // allowed us to create a single entry for a predecessor block without
240     // having separate entries for each "edge" even though these edges are
241     // required to produce identical results.
242     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
243       if (PN.getIncomingBlock(i) != &OldExitingBB)
244         continue;
245 
246       Value *Incoming = PN.getIncomingValue(i);
247       if (FullUnswitch)
248         // No more edge from the old exiting block to the exit block.
249         PN.removeIncomingValue(i);
250 
251       NewPN->addIncoming(Incoming, &OldPH);
252     }
253 
254     // Now replace the old PHI with the new one and wire the old one in as an
255     // input to the new one.
256     PN.replaceAllUsesWith(NewPN);
257     NewPN->addIncoming(&PN, &ExitBB);
258   }
259 }
260 
261 /// Hoist the current loop up to the innermost loop containing a remaining exit.
262 ///
263 /// Because we've removed an exit from the loop, we may have changed the set of
264 /// loops reachable and need to move the current loop up the loop nest or even
265 /// to an entirely separate nest.
266 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
267                                  DominatorTree &DT, LoopInfo &LI,
268                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
269   // If the loop is already at the top level, we can't hoist it anywhere.
270   Loop *OldParentL = L.getParentLoop();
271   if (!OldParentL)
272     return;
273 
274   SmallVector<BasicBlock *, 4> Exits;
275   L.getExitBlocks(Exits);
276   Loop *NewParentL = nullptr;
277   for (auto *ExitBB : Exits)
278     if (Loop *ExitL = LI.getLoopFor(ExitBB))
279       if (!NewParentL || NewParentL->contains(ExitL))
280         NewParentL = ExitL;
281 
282   if (NewParentL == OldParentL)
283     return;
284 
285   // The new parent loop (if different) should always contain the old one.
286   if (NewParentL)
287     assert(NewParentL->contains(OldParentL) &&
288            "Can only hoist this loop up the nest!");
289 
290   // The preheader will need to move with the body of this loop. However,
291   // because it isn't in this loop we also need to update the primary loop map.
292   assert(OldParentL == LI.getLoopFor(&Preheader) &&
293          "Parent loop of this loop should contain this loop's preheader!");
294   LI.changeLoopFor(&Preheader, NewParentL);
295 
296   // Remove this loop from its old parent.
297   OldParentL->removeChildLoop(&L);
298 
299   // Add the loop either to the new parent or as a top-level loop.
300   if (NewParentL)
301     NewParentL->addChildLoop(&L);
302   else
303     LI.addTopLevelLoop(&L);
304 
305   // Remove this loops blocks from the old parent and every other loop up the
306   // nest until reaching the new parent. Also update all of these
307   // no-longer-containing loops to reflect the nesting change.
308   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
309        OldContainingL = OldContainingL->getParentLoop()) {
310     llvm::erase_if(OldContainingL->getBlocksVector(),
311                    [&](const BasicBlock *BB) {
312                      return BB == &Preheader || L.contains(BB);
313                    });
314 
315     OldContainingL->getBlocksSet().erase(&Preheader);
316     for (BasicBlock *BB : L.blocks())
317       OldContainingL->getBlocksSet().erase(BB);
318 
319     // Because we just hoisted a loop out of this one, we have essentially
320     // created new exit paths from it. That means we need to form LCSSA PHI
321     // nodes for values used in the no-longer-nested loop.
322     formLCSSA(*OldContainingL, DT, &LI, SE);
323 
324     // We shouldn't need to form dedicated exits because the exit introduced
325     // here is the (just split by unswitching) preheader. However, after trivial
326     // unswitching it is possible to get new non-dedicated exits out of parent
327     // loop so let's conservatively form dedicated exit blocks and figure out
328     // if we can optimize later.
329     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
330                             /*PreserveLCSSA*/ true);
331   }
332 }
333 
334 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
335 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
336 // as exiting block.
337 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
338   Loop *TopMost = LI.getLoopFor(ExitBB);
339   Loop *Current = TopMost;
340   while (Current) {
341     if (Current->isLoopExiting(ExitBB))
342       TopMost = Current;
343     Current = Current->getParentLoop();
344   }
345   return TopMost;
346 }
347 
348 /// Unswitch a trivial branch if the condition is loop invariant.
349 ///
350 /// This routine should only be called when loop code leading to the branch has
351 /// been validated as trivial (no side effects). This routine checks if the
352 /// condition is invariant and one of the successors is a loop exit. This
353 /// allows us to unswitch without duplicating the loop, making it trivial.
354 ///
355 /// If this routine fails to unswitch the branch it returns false.
356 ///
357 /// If the branch can be unswitched, this routine splits the preheader and
358 /// hoists the branch above that split. Preserves loop simplified form
359 /// (splitting the exit block as necessary). It simplifies the branch within
360 /// the loop to an unconditional branch but doesn't remove it entirely. Further
361 /// cleanup can be done with some simplify-cfg like pass.
362 ///
363 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
364 /// invalidated by this.
365 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
366                                   LoopInfo &LI, ScalarEvolution *SE,
367                                   MemorySSAUpdater *MSSAU) {
368   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
369   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
370 
371   // The loop invariant values that we want to unswitch.
372   TinyPtrVector<Value *> Invariants;
373 
374   // When true, we're fully unswitching the branch rather than just unswitching
375   // some input conditions to the branch.
376   bool FullUnswitch = false;
377 
378   if (L.isLoopInvariant(BI.getCondition())) {
379     Invariants.push_back(BI.getCondition());
380     FullUnswitch = true;
381   } else {
382     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
383       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
384     if (Invariants.empty())
385       // Couldn't find invariant inputs!
386       return false;
387   }
388 
389   // Check that one of the branch's successors exits, and which one.
390   bool ExitDirection = true;
391   int LoopExitSuccIdx = 0;
392   auto *LoopExitBB = BI.getSuccessor(0);
393   if (L.contains(LoopExitBB)) {
394     ExitDirection = false;
395     LoopExitSuccIdx = 1;
396     LoopExitBB = BI.getSuccessor(1);
397     if (L.contains(LoopExitBB))
398       return false;
399   }
400   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
401   auto *ParentBB = BI.getParent();
402   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
403     return false;
404 
405   // When unswitching only part of the branch's condition, we need the exit
406   // block to be reached directly from the partially unswitched input. This can
407   // be done when the exit block is along the true edge and the branch condition
408   // is a graph of `or` operations, or the exit block is along the false edge
409   // and the condition is a graph of `and` operations.
410   if (!FullUnswitch) {
411     if (ExitDirection) {
412       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
413         return false;
414     } else {
415       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
416         return false;
417     }
418   }
419 
420   LLVM_DEBUG({
421     dbgs() << "    unswitching trivial invariant conditions for: " << BI
422            << "\n";
423     for (Value *Invariant : Invariants) {
424       dbgs() << "      " << *Invariant << " == true";
425       if (Invariant != Invariants.back())
426         dbgs() << " ||";
427       dbgs() << "\n";
428     }
429   });
430 
431   // If we have scalar evolutions, we need to invalidate them including this
432   // loop, the loop containing the exit block and the topmost parent loop
433   // exiting via LoopExitBB.
434   if (SE) {
435     if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
436       SE->forgetLoop(ExitL);
437     else
438       // Forget the entire nest as this exits the entire nest.
439       SE->forgetTopmostLoop(&L);
440   }
441 
442   if (MSSAU && VerifyMemorySSA)
443     MSSAU->getMemorySSA()->verifyMemorySSA();
444 
445   // Split the preheader, so that we know that there is a safe place to insert
446   // the conditional branch. We will change the preheader to have a conditional
447   // branch on LoopCond.
448   BasicBlock *OldPH = L.getLoopPreheader();
449   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
450 
451   // Now that we have a place to insert the conditional branch, create a place
452   // to branch to: this is the exit block out of the loop that we are
453   // unswitching. We need to split this if there are other loop predecessors.
454   // Because the loop is in simplified form, *any* other predecessor is enough.
455   BasicBlock *UnswitchedBB;
456   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
457     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
458            "A branch's parent isn't a predecessor!");
459     UnswitchedBB = LoopExitBB;
460   } else {
461     UnswitchedBB =
462         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
463   }
464 
465   if (MSSAU && VerifyMemorySSA)
466     MSSAU->getMemorySSA()->verifyMemorySSA();
467 
468   // Actually move the invariant uses into the unswitched position. If possible,
469   // we do this by moving the instructions, but when doing partial unswitching
470   // we do it by building a new merge of the values in the unswitched position.
471   OldPH->getTerminator()->eraseFromParent();
472   if (FullUnswitch) {
473     // If fully unswitching, we can use the existing branch instruction.
474     // Splice it into the old PH to gate reaching the new preheader and re-point
475     // its successors.
476     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
477                                 BI);
478     if (MSSAU) {
479       // Temporarily clone the terminator, to make MSSA update cheaper by
480       // separating "insert edge" updates from "remove edge" ones.
481       ParentBB->getInstList().push_back(BI.clone());
482     } else {
483       // Create a new unconditional branch that will continue the loop as a new
484       // terminator.
485       BranchInst::Create(ContinueBB, ParentBB);
486     }
487     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
488     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
489   } else {
490     // Only unswitching a subset of inputs to the condition, so we will need to
491     // build a new branch that merges the invariant inputs.
492     if (ExitDirection)
493       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
494                  Instruction::Or &&
495              "Must have an `or` of `i1`s for the condition!");
496     else
497       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
498                  Instruction::And &&
499              "Must have an `and` of `i1`s for the condition!");
500     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
501                                           *UnswitchedBB, *NewPH);
502   }
503 
504   // Update the dominator tree with the added edge.
505   DT.insertEdge(OldPH, UnswitchedBB);
506 
507   // After the dominator tree was updated with the added edge, update MemorySSA
508   // if available.
509   if (MSSAU) {
510     SmallVector<CFGUpdate, 1> Updates;
511     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
512     MSSAU->applyInsertUpdates(Updates, DT);
513   }
514 
515   // Finish updating dominator tree and memory ssa for full unswitch.
516   if (FullUnswitch) {
517     if (MSSAU) {
518       // Remove the cloned branch instruction.
519       ParentBB->getTerminator()->eraseFromParent();
520       // Create unconditional branch now.
521       BranchInst::Create(ContinueBB, ParentBB);
522       MSSAU->removeEdge(ParentBB, LoopExitBB);
523     }
524     DT.deleteEdge(ParentBB, LoopExitBB);
525   }
526 
527   if (MSSAU && VerifyMemorySSA)
528     MSSAU->getMemorySSA()->verifyMemorySSA();
529 
530   // Rewrite the relevant PHI nodes.
531   if (UnswitchedBB == LoopExitBB)
532     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
533   else
534     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
535                                               *ParentBB, *OldPH, FullUnswitch);
536 
537   // The constant we can replace all of our invariants with inside the loop
538   // body. If any of the invariants have a value other than this the loop won't
539   // be entered.
540   ConstantInt *Replacement = ExitDirection
541                                  ? ConstantInt::getFalse(BI.getContext())
542                                  : ConstantInt::getTrue(BI.getContext());
543 
544   // Since this is an i1 condition we can also trivially replace uses of it
545   // within the loop with a constant.
546   for (Value *Invariant : Invariants)
547     replaceLoopInvariantUses(L, Invariant, *Replacement);
548 
549   // If this was full unswitching, we may have changed the nesting relationship
550   // for this loop so hoist it to its correct parent if needed.
551   if (FullUnswitch)
552     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
553 
554   if (MSSAU && VerifyMemorySSA)
555     MSSAU->getMemorySSA()->verifyMemorySSA();
556 
557   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
558   ++NumTrivial;
559   ++NumBranches;
560   return true;
561 }
562 
563 /// Unswitch a trivial switch if the condition is loop invariant.
564 ///
565 /// This routine should only be called when loop code leading to the switch has
566 /// been validated as trivial (no side effects). This routine checks if the
567 /// condition is invariant and that at least one of the successors is a loop
568 /// exit. This allows us to unswitch without duplicating the loop, making it
569 /// trivial.
570 ///
571 /// If this routine fails to unswitch the switch it returns false.
572 ///
573 /// If the switch can be unswitched, this routine splits the preheader and
574 /// copies the switch above that split. If the default case is one of the
575 /// exiting cases, it copies the non-exiting cases and points them at the new
576 /// preheader. If the default case is not exiting, it copies the exiting cases
577 /// and points the default at the preheader. It preserves loop simplified form
578 /// (splitting the exit blocks as necessary). It simplifies the switch within
579 /// the loop by removing now-dead cases. If the default case is one of those
580 /// unswitched, it replaces its destination with a new basic block containing
581 /// only unreachable. Such basic blocks, while technically loop exits, are not
582 /// considered for unswitching so this is a stable transform and the same
583 /// switch will not be revisited. If after unswitching there is only a single
584 /// in-loop successor, the switch is further simplified to an unconditional
585 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
586 ///
587 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
588 /// invalidated by this.
589 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
590                                   LoopInfo &LI, ScalarEvolution *SE,
591                                   MemorySSAUpdater *MSSAU) {
592   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
593   Value *LoopCond = SI.getCondition();
594 
595   // If this isn't switching on an invariant condition, we can't unswitch it.
596   if (!L.isLoopInvariant(LoopCond))
597     return false;
598 
599   auto *ParentBB = SI.getParent();
600 
601   auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
602     // BBToCheck is not an exit block if it is inside loop L.
603     if (L.contains(&BBToCheck))
604       return false;
605     // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
606     if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
607       return false;
608     // We do not unswitch a block that only has an unreachable statement, as
609     // it's possible this is a previously unswitched block. Only unswitch if
610     // either the terminator is not unreachable, or, if it is, it's not the only
611     // instruction in the block.
612     auto *TI = BBToCheck.getTerminator();
613     bool isUnreachable = isa<UnreachableInst>(TI);
614     return !isUnreachable ||
615            (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
616   };
617 
618   SmallVector<int, 4> ExitCaseIndices;
619   for (auto Case : SI.cases()) {
620     auto *SuccBB = Case.getCaseSuccessor();
621     if (!L.contains(SuccBB) &&
622         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
623       ExitCaseIndices.push_back(Case.getCaseIndex());
624   }
625   BasicBlock *DefaultExitBB = nullptr;
626   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
627       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
628   if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
629     DefaultExitBB = SI.getDefaultDest();
630   } else if (ExitCaseIndices.empty())
631     return false;
632 
633   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
634 
635   if (MSSAU && VerifyMemorySSA)
636     MSSAU->getMemorySSA()->verifyMemorySSA();
637 
638   // We may need to invalidate SCEVs for the outermost loop reached by any of
639   // the exits.
640   Loop *OuterL = &L;
641 
642   if (DefaultExitBB) {
643     // Clear out the default destination temporarily to allow accurate
644     // predecessor lists to be examined below.
645     SI.setDefaultDest(nullptr);
646     // Check the loop containing this exit.
647     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
648     if (!ExitL || ExitL->contains(OuterL))
649       OuterL = ExitL;
650   }
651 
652   // Store the exit cases into a separate data structure and remove them from
653   // the switch.
654   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
655                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
656               4> ExitCases;
657   ExitCases.reserve(ExitCaseIndices.size());
658   SwitchInstProfUpdateWrapper SIW(SI);
659   // We walk the case indices backwards so that we remove the last case first
660   // and don't disrupt the earlier indices.
661   for (unsigned Index : reverse(ExitCaseIndices)) {
662     auto CaseI = SI.case_begin() + Index;
663     // Compute the outer loop from this exit.
664     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
665     if (!ExitL || ExitL->contains(OuterL))
666       OuterL = ExitL;
667     // Save the value of this case.
668     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
669     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
670     // Delete the unswitched cases.
671     SIW.removeCase(CaseI);
672   }
673 
674   if (SE) {
675     if (OuterL)
676       SE->forgetLoop(OuterL);
677     else
678       SE->forgetTopmostLoop(&L);
679   }
680 
681   // Check if after this all of the remaining cases point at the same
682   // successor.
683   BasicBlock *CommonSuccBB = nullptr;
684   if (SI.getNumCases() > 0 &&
685       std::all_of(std::next(SI.case_begin()), SI.case_end(),
686                   [&SI](const SwitchInst::CaseHandle &Case) {
687                     return Case.getCaseSuccessor() ==
688                            SI.case_begin()->getCaseSuccessor();
689                   }))
690     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
691   if (!DefaultExitBB) {
692     // If we're not unswitching the default, we need it to match any cases to
693     // have a common successor or if we have no cases it is the common
694     // successor.
695     if (SI.getNumCases() == 0)
696       CommonSuccBB = SI.getDefaultDest();
697     else if (SI.getDefaultDest() != CommonSuccBB)
698       CommonSuccBB = nullptr;
699   }
700 
701   // Split the preheader, so that we know that there is a safe place to insert
702   // the switch.
703   BasicBlock *OldPH = L.getLoopPreheader();
704   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
705   OldPH->getTerminator()->eraseFromParent();
706 
707   // Now add the unswitched switch.
708   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
709   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
710 
711   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
712   // First, we split any exit blocks with remaining in-loop predecessors. Then
713   // we update the PHIs in one of two ways depending on if there was a split.
714   // We walk in reverse so that we split in the same order as the cases
715   // appeared. This is purely for convenience of reading the resulting IR, but
716   // it doesn't cost anything really.
717   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
718   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
719   // Handle the default exit if necessary.
720   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
721   // ranges aren't quite powerful enough yet.
722   if (DefaultExitBB) {
723     if (pred_empty(DefaultExitBB)) {
724       UnswitchedExitBBs.insert(DefaultExitBB);
725       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
726     } else {
727       auto *SplitBB =
728           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
729       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
730                                                 *ParentBB, *OldPH,
731                                                 /*FullUnswitch*/ true);
732       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
733     }
734   }
735   // Note that we must use a reference in the for loop so that we update the
736   // container.
737   for (auto &ExitCase : reverse(ExitCases)) {
738     // Grab a reference to the exit block in the pair so that we can update it.
739     BasicBlock *ExitBB = std::get<1>(ExitCase);
740 
741     // If this case is the last edge into the exit block, we can simply reuse it
742     // as it will no longer be a loop exit. No mapping necessary.
743     if (pred_empty(ExitBB)) {
744       // Only rewrite once.
745       if (UnswitchedExitBBs.insert(ExitBB).second)
746         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
747       continue;
748     }
749 
750     // Otherwise we need to split the exit block so that we retain an exit
751     // block from the loop and a target for the unswitched condition.
752     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
753     if (!SplitExitBB) {
754       // If this is the first time we see this, do the split and remember it.
755       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
756       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
757                                                 *ParentBB, *OldPH,
758                                                 /*FullUnswitch*/ true);
759     }
760     // Update the case pair to point to the split block.
761     std::get<1>(ExitCase) = SplitExitBB;
762   }
763 
764   // Now add the unswitched cases. We do this in reverse order as we built them
765   // in reverse order.
766   for (auto &ExitCase : reverse(ExitCases)) {
767     ConstantInt *CaseVal = std::get<0>(ExitCase);
768     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
769 
770     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
771   }
772 
773   // If the default was unswitched, re-point it and add explicit cases for
774   // entering the loop.
775   if (DefaultExitBB) {
776     NewSIW->setDefaultDest(DefaultExitBB);
777     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
778 
779     // We removed all the exit cases, so we just copy the cases to the
780     // unswitched switch.
781     for (const auto &Case : SI.cases())
782       NewSIW.addCase(Case.getCaseValue(), NewPH,
783                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
784   } else if (DefaultCaseWeight) {
785     // We have to set branch weight of the default case.
786     uint64_t SW = *DefaultCaseWeight;
787     for (const auto &Case : SI.cases()) {
788       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
789       assert(W &&
790              "case weight must be defined as default case weight is defined");
791       SW += *W;
792     }
793     NewSIW.setSuccessorWeight(0, SW);
794   }
795 
796   // If we ended up with a common successor for every path through the switch
797   // after unswitching, rewrite it to an unconditional branch to make it easy
798   // to recognize. Otherwise we potentially have to recognize the default case
799   // pointing at unreachable and other complexity.
800   if (CommonSuccBB) {
801     BasicBlock *BB = SI.getParent();
802     // We may have had multiple edges to this common successor block, so remove
803     // them as predecessors. We skip the first one, either the default or the
804     // actual first case.
805     bool SkippedFirst = DefaultExitBB == nullptr;
806     for (auto Case : SI.cases()) {
807       assert(Case.getCaseSuccessor() == CommonSuccBB &&
808              "Non-common successor!");
809       (void)Case;
810       if (!SkippedFirst) {
811         SkippedFirst = true;
812         continue;
813       }
814       CommonSuccBB->removePredecessor(BB,
815                                       /*KeepOneInputPHIs*/ true);
816     }
817     // Now nuke the switch and replace it with a direct branch.
818     SIW.eraseFromParent();
819     BranchInst::Create(CommonSuccBB, BB);
820   } else if (DefaultExitBB) {
821     assert(SI.getNumCases() > 0 &&
822            "If we had no cases we'd have a common successor!");
823     // Move the last case to the default successor. This is valid as if the
824     // default got unswitched it cannot be reached. This has the advantage of
825     // being simple and keeping the number of edges from this switch to
826     // successors the same, and avoiding any PHI update complexity.
827     auto LastCaseI = std::prev(SI.case_end());
828 
829     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
830     SIW.setSuccessorWeight(
831         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
832     SIW.removeCase(LastCaseI);
833   }
834 
835   // Walk the unswitched exit blocks and the unswitched split blocks and update
836   // the dominator tree based on the CFG edits. While we are walking unordered
837   // containers here, the API for applyUpdates takes an unordered list of
838   // updates and requires them to not contain duplicates.
839   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
840   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
841     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
842     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
843   }
844   for (auto SplitUnswitchedPair : SplitExitBBMap) {
845     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
846     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
847   }
848   DT.applyUpdates(DTUpdates);
849 
850   if (MSSAU) {
851     MSSAU->applyUpdates(DTUpdates, DT);
852     if (VerifyMemorySSA)
853       MSSAU->getMemorySSA()->verifyMemorySSA();
854   }
855 
856   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
857 
858   // We may have changed the nesting relationship for this loop so hoist it to
859   // its correct parent if needed.
860   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
861 
862   if (MSSAU && VerifyMemorySSA)
863     MSSAU->getMemorySSA()->verifyMemorySSA();
864 
865   ++NumTrivial;
866   ++NumSwitches;
867   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
868   return true;
869 }
870 
871 /// This routine scans the loop to find a branch or switch which occurs before
872 /// any side effects occur. These can potentially be unswitched without
873 /// duplicating the loop. If a branch or switch is successfully unswitched the
874 /// scanning continues to see if subsequent branches or switches have become
875 /// trivial. Once all trivial candidates have been unswitched, this routine
876 /// returns.
877 ///
878 /// The return value indicates whether anything was unswitched (and therefore
879 /// changed).
880 ///
881 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
882 /// invalidated by this.
883 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
884                                          LoopInfo &LI, ScalarEvolution *SE,
885                                          MemorySSAUpdater *MSSAU) {
886   bool Changed = false;
887 
888   // If loop header has only one reachable successor we should keep looking for
889   // trivial condition candidates in the successor as well. An alternative is
890   // to constant fold conditions and merge successors into loop header (then we
891   // only need to check header's terminator). The reason for not doing this in
892   // LoopUnswitch pass is that it could potentially break LoopPassManager's
893   // invariants. Folding dead branches could either eliminate the current loop
894   // or make other loops unreachable. LCSSA form might also not be preserved
895   // after deleting branches. The following code keeps traversing loop header's
896   // successors until it finds the trivial condition candidate (condition that
897   // is not a constant). Since unswitching generates branches with constant
898   // conditions, this scenario could be very common in practice.
899   BasicBlock *CurrentBB = L.getHeader();
900   SmallPtrSet<BasicBlock *, 8> Visited;
901   Visited.insert(CurrentBB);
902   do {
903     // Check if there are any side-effecting instructions (e.g. stores, calls,
904     // volatile loads) in the part of the loop that the code *would* execute
905     // without unswitching.
906     if (MSSAU) // Possible early exit with MSSA
907       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
908         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
909           return Changed;
910     if (llvm::any_of(*CurrentBB,
911                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
912       return Changed;
913 
914     Instruction *CurrentTerm = CurrentBB->getTerminator();
915 
916     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
917       // Don't bother trying to unswitch past a switch with a constant
918       // condition. This should be removed prior to running this pass by
919       // simplify-cfg.
920       if (isa<Constant>(SI->getCondition()))
921         return Changed;
922 
923       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
924         // Couldn't unswitch this one so we're done.
925         return Changed;
926 
927       // Mark that we managed to unswitch something.
928       Changed = true;
929 
930       // If unswitching turned the terminator into an unconditional branch then
931       // we can continue. The unswitching logic specifically works to fold any
932       // cases it can into an unconditional branch to make it easier to
933       // recognize here.
934       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
935       if (!BI || BI->isConditional())
936         return Changed;
937 
938       CurrentBB = BI->getSuccessor(0);
939       continue;
940     }
941 
942     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
943     if (!BI)
944       // We do not understand other terminator instructions.
945       return Changed;
946 
947     // Don't bother trying to unswitch past an unconditional branch or a branch
948     // with a constant value. These should be removed by simplify-cfg prior to
949     // running this pass.
950     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
951       return Changed;
952 
953     // Found a trivial condition candidate: non-foldable conditional branch. If
954     // we fail to unswitch this, we can't do anything else that is trivial.
955     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
956       return Changed;
957 
958     // Mark that we managed to unswitch something.
959     Changed = true;
960 
961     // If we only unswitched some of the conditions feeding the branch, we won't
962     // have collapsed it to a single successor.
963     BI = cast<BranchInst>(CurrentBB->getTerminator());
964     if (BI->isConditional())
965       return Changed;
966 
967     // Follow the newly unconditional branch into its successor.
968     CurrentBB = BI->getSuccessor(0);
969 
970     // When continuing, if we exit the loop or reach a previous visited block,
971     // then we can not reach any trivial condition candidates (unfoldable
972     // branch instructions or switch instructions) and no unswitch can happen.
973   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
974 
975   return Changed;
976 }
977 
978 /// Build the cloned blocks for an unswitched copy of the given loop.
979 ///
980 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
981 /// after the split block (`SplitBB`) that will be used to select between the
982 /// cloned and original loop.
983 ///
984 /// This routine handles cloning all of the necessary loop blocks and exit
985 /// blocks including rewriting their instructions and the relevant PHI nodes.
986 /// Any loop blocks or exit blocks which are dominated by a different successor
987 /// than the one for this clone of the loop blocks can be trivially skipped. We
988 /// use the `DominatingSucc` map to determine whether a block satisfies that
989 /// property with a simple map lookup.
990 ///
991 /// It also correctly creates the unconditional branch in the cloned
992 /// unswitched parent block to only point at the unswitched successor.
993 ///
994 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
995 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
996 /// the cloned blocks (and their loops) are left without full `LoopInfo`
997 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
998 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
999 /// instead the caller must recompute an accurate DT. It *does* correctly
1000 /// update the `AssumptionCache` provided in `AC`.
1001 static BasicBlock *buildClonedLoopBlocks(
1002     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1003     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1004     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1005     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1006     ValueToValueMapTy &VMap,
1007     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1008     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1009   SmallVector<BasicBlock *, 4> NewBlocks;
1010   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1011 
1012   // We will need to clone a bunch of blocks, wrap up the clone operation in
1013   // a helper.
1014   auto CloneBlock = [&](BasicBlock *OldBB) {
1015     // Clone the basic block and insert it before the new preheader.
1016     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1017     NewBB->moveBefore(LoopPH);
1018 
1019     // Record this block and the mapping.
1020     NewBlocks.push_back(NewBB);
1021     VMap[OldBB] = NewBB;
1022 
1023     return NewBB;
1024   };
1025 
1026   // We skip cloning blocks when they have a dominating succ that is not the
1027   // succ we are cloning for.
1028   auto SkipBlock = [&](BasicBlock *BB) {
1029     auto It = DominatingSucc.find(BB);
1030     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1031   };
1032 
1033   // First, clone the preheader.
1034   auto *ClonedPH = CloneBlock(LoopPH);
1035 
1036   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1037   for (auto *LoopBB : L.blocks())
1038     if (!SkipBlock(LoopBB))
1039       CloneBlock(LoopBB);
1040 
1041   // Split all the loop exit edges so that when we clone the exit blocks, if
1042   // any of the exit blocks are *also* a preheader for some other loop, we
1043   // don't create multiple predecessors entering the loop header.
1044   for (auto *ExitBB : ExitBlocks) {
1045     if (SkipBlock(ExitBB))
1046       continue;
1047 
1048     // When we are going to clone an exit, we don't need to clone all the
1049     // instructions in the exit block and we want to ensure we have an easy
1050     // place to merge the CFG, so split the exit first. This is always safe to
1051     // do because there cannot be any non-loop predecessors of a loop exit in
1052     // loop simplified form.
1053     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1054 
1055     // Rearrange the names to make it easier to write test cases by having the
1056     // exit block carry the suffix rather than the merge block carrying the
1057     // suffix.
1058     MergeBB->takeName(ExitBB);
1059     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1060 
1061     // Now clone the original exit block.
1062     auto *ClonedExitBB = CloneBlock(ExitBB);
1063     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1064            "Exit block should have been split to have one successor!");
1065     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1066            "Cloned exit block has the wrong successor!");
1067 
1068     // Remap any cloned instructions and create a merge phi node for them.
1069     for (auto ZippedInsts : llvm::zip_first(
1070              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1071              llvm::make_range(ClonedExitBB->begin(),
1072                               std::prev(ClonedExitBB->end())))) {
1073       Instruction &I = std::get<0>(ZippedInsts);
1074       Instruction &ClonedI = std::get<1>(ZippedInsts);
1075 
1076       // The only instructions in the exit block should be PHI nodes and
1077       // potentially a landing pad.
1078       assert(
1079           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1080           "Bad instruction in exit block!");
1081       // We should have a value map between the instruction and its clone.
1082       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1083 
1084       auto *MergePN =
1085           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1086                           &*MergeBB->getFirstInsertionPt());
1087       I.replaceAllUsesWith(MergePN);
1088       MergePN->addIncoming(&I, ExitBB);
1089       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1090     }
1091   }
1092 
1093   // Rewrite the instructions in the cloned blocks to refer to the instructions
1094   // in the cloned blocks. We have to do this as a second pass so that we have
1095   // everything available. Also, we have inserted new instructions which may
1096   // include assume intrinsics, so we update the assumption cache while
1097   // processing this.
1098   for (auto *ClonedBB : NewBlocks)
1099     for (Instruction &I : *ClonedBB) {
1100       RemapInstruction(&I, VMap,
1101                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1102       if (auto *II = dyn_cast<IntrinsicInst>(&I))
1103         if (II->getIntrinsicID() == Intrinsic::assume)
1104           AC.registerAssumption(II);
1105     }
1106 
1107   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1108   // have spurious incoming values.
1109   for (auto *LoopBB : L.blocks())
1110     if (SkipBlock(LoopBB))
1111       for (auto *SuccBB : successors(LoopBB))
1112         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1113           for (PHINode &PN : ClonedSuccBB->phis())
1114             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1115 
1116   // Remove the cloned parent as a predecessor of any successor we ended up
1117   // cloning other than the unswitched one.
1118   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1119   for (auto *SuccBB : successors(ParentBB)) {
1120     if (SuccBB == UnswitchedSuccBB)
1121       continue;
1122 
1123     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1124     if (!ClonedSuccBB)
1125       continue;
1126 
1127     ClonedSuccBB->removePredecessor(ClonedParentBB,
1128                                     /*KeepOneInputPHIs*/ true);
1129   }
1130 
1131   // Replace the cloned branch with an unconditional branch to the cloned
1132   // unswitched successor.
1133   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1134   ClonedParentBB->getTerminator()->eraseFromParent();
1135   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1136 
1137   // If there are duplicate entries in the PHI nodes because of multiple edges
1138   // to the unswitched successor, we need to nuke all but one as we replaced it
1139   // with a direct branch.
1140   for (PHINode &PN : ClonedSuccBB->phis()) {
1141     bool Found = false;
1142     // Loop over the incoming operands backwards so we can easily delete as we
1143     // go without invalidating the index.
1144     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1145       if (PN.getIncomingBlock(i) != ClonedParentBB)
1146         continue;
1147       if (!Found) {
1148         Found = true;
1149         continue;
1150       }
1151       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1152     }
1153   }
1154 
1155   // Record the domtree updates for the new blocks.
1156   SmallPtrSet<BasicBlock *, 4> SuccSet;
1157   for (auto *ClonedBB : NewBlocks) {
1158     for (auto *SuccBB : successors(ClonedBB))
1159       if (SuccSet.insert(SuccBB).second)
1160         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1161     SuccSet.clear();
1162   }
1163 
1164   return ClonedPH;
1165 }
1166 
1167 /// Recursively clone the specified loop and all of its children.
1168 ///
1169 /// The target parent loop for the clone should be provided, or can be null if
1170 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1171 /// with the provided value map. The entire original loop must be present in
1172 /// the value map. The cloned loop is returned.
1173 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1174                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1175   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1176     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1177     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1178     for (auto *BB : OrigL.blocks()) {
1179       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1180       ClonedL.addBlockEntry(ClonedBB);
1181       if (LI.getLoopFor(BB) == &OrigL)
1182         LI.changeLoopFor(ClonedBB, &ClonedL);
1183     }
1184   };
1185 
1186   // We specially handle the first loop because it may get cloned into
1187   // a different parent and because we most commonly are cloning leaf loops.
1188   Loop *ClonedRootL = LI.AllocateLoop();
1189   if (RootParentL)
1190     RootParentL->addChildLoop(ClonedRootL);
1191   else
1192     LI.addTopLevelLoop(ClonedRootL);
1193   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1194 
1195   if (OrigRootL.empty())
1196     return ClonedRootL;
1197 
1198   // If we have a nest, we can quickly clone the entire loop nest using an
1199   // iterative approach because it is a tree. We keep the cloned parent in the
1200   // data structure to avoid repeatedly querying through a map to find it.
1201   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1202   // Build up the loops to clone in reverse order as we'll clone them from the
1203   // back.
1204   for (Loop *ChildL : llvm::reverse(OrigRootL))
1205     LoopsToClone.push_back({ClonedRootL, ChildL});
1206   do {
1207     Loop *ClonedParentL, *L;
1208     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1209     Loop *ClonedL = LI.AllocateLoop();
1210     ClonedParentL->addChildLoop(ClonedL);
1211     AddClonedBlocksToLoop(*L, *ClonedL);
1212     for (Loop *ChildL : llvm::reverse(*L))
1213       LoopsToClone.push_back({ClonedL, ChildL});
1214   } while (!LoopsToClone.empty());
1215 
1216   return ClonedRootL;
1217 }
1218 
1219 /// Build the cloned loops of an original loop from unswitching.
1220 ///
1221 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1222 /// operation. We need to re-verify that there even is a loop (as the backedge
1223 /// may not have been cloned), and even if there are remaining backedges the
1224 /// backedge set may be different. However, we know that each child loop is
1225 /// undisturbed, we only need to find where to place each child loop within
1226 /// either any parent loop or within a cloned version of the original loop.
1227 ///
1228 /// Because child loops may end up cloned outside of any cloned version of the
1229 /// original loop, multiple cloned sibling loops may be created. All of them
1230 /// are returned so that the newly introduced loop nest roots can be
1231 /// identified.
1232 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1233                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1234                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1235   Loop *ClonedL = nullptr;
1236 
1237   auto *OrigPH = OrigL.getLoopPreheader();
1238   auto *OrigHeader = OrigL.getHeader();
1239 
1240   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1241   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1242 
1243   // We need to know the loops of the cloned exit blocks to even compute the
1244   // accurate parent loop. If we only clone exits to some parent of the
1245   // original parent, we want to clone into that outer loop. We also keep track
1246   // of the loops that our cloned exit blocks participate in.
1247   Loop *ParentL = nullptr;
1248   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1249   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1250   ClonedExitsInLoops.reserve(ExitBlocks.size());
1251   for (auto *ExitBB : ExitBlocks)
1252     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1253       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1254         ExitLoopMap[ClonedExitBB] = ExitL;
1255         ClonedExitsInLoops.push_back(ClonedExitBB);
1256         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1257           ParentL = ExitL;
1258       }
1259   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1260           ParentL->contains(OrigL.getParentLoop())) &&
1261          "The computed parent loop should always contain (or be) the parent of "
1262          "the original loop.");
1263 
1264   // We build the set of blocks dominated by the cloned header from the set of
1265   // cloned blocks out of the original loop. While not all of these will
1266   // necessarily be in the cloned loop, it is enough to establish that they
1267   // aren't in unreachable cycles, etc.
1268   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1269   for (auto *BB : OrigL.blocks())
1270     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1271       ClonedLoopBlocks.insert(ClonedBB);
1272 
1273   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1274   // skipped cloning some region of this loop which can in turn skip some of
1275   // the backedges so we have to rebuild the blocks in the loop based on the
1276   // backedges that remain after cloning.
1277   SmallVector<BasicBlock *, 16> Worklist;
1278   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1279   for (auto *Pred : predecessors(ClonedHeader)) {
1280     // The only possible non-loop header predecessor is the preheader because
1281     // we know we cloned the loop in simplified form.
1282     if (Pred == ClonedPH)
1283       continue;
1284 
1285     // Because the loop was in simplified form, the only non-loop predecessor
1286     // should be the preheader.
1287     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1288                                            "header other than the preheader "
1289                                            "that is not part of the loop!");
1290 
1291     // Insert this block into the loop set and on the first visit (and if it
1292     // isn't the header we're currently walking) put it into the worklist to
1293     // recurse through.
1294     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1295       Worklist.push_back(Pred);
1296   }
1297 
1298   // If we had any backedges then there *is* a cloned loop. Put the header into
1299   // the loop set and then walk the worklist backwards to find all the blocks
1300   // that remain within the loop after cloning.
1301   if (!BlocksInClonedLoop.empty()) {
1302     BlocksInClonedLoop.insert(ClonedHeader);
1303 
1304     while (!Worklist.empty()) {
1305       BasicBlock *BB = Worklist.pop_back_val();
1306       assert(BlocksInClonedLoop.count(BB) &&
1307              "Didn't put block into the loop set!");
1308 
1309       // Insert any predecessors that are in the possible set into the cloned
1310       // set, and if the insert is successful, add them to the worklist. Note
1311       // that we filter on the blocks that are definitely reachable via the
1312       // backedge to the loop header so we may prune out dead code within the
1313       // cloned loop.
1314       for (auto *Pred : predecessors(BB))
1315         if (ClonedLoopBlocks.count(Pred) &&
1316             BlocksInClonedLoop.insert(Pred).second)
1317           Worklist.push_back(Pred);
1318     }
1319 
1320     ClonedL = LI.AllocateLoop();
1321     if (ParentL) {
1322       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1323       ParentL->addChildLoop(ClonedL);
1324     } else {
1325       LI.addTopLevelLoop(ClonedL);
1326     }
1327     NonChildClonedLoops.push_back(ClonedL);
1328 
1329     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1330     // We don't want to just add the cloned loop blocks based on how we
1331     // discovered them. The original order of blocks was carefully built in
1332     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1333     // that logic, we just re-walk the original blocks (and those of the child
1334     // loops) and filter them as we add them into the cloned loop.
1335     for (auto *BB : OrigL.blocks()) {
1336       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1337       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1338         continue;
1339 
1340       // Directly add the blocks that are only in this loop.
1341       if (LI.getLoopFor(BB) == &OrigL) {
1342         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1343         continue;
1344       }
1345 
1346       // We want to manually add it to this loop and parents.
1347       // Registering it with LoopInfo will happen when we clone the top
1348       // loop for this block.
1349       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1350         PL->addBlockEntry(ClonedBB);
1351     }
1352 
1353     // Now add each child loop whose header remains within the cloned loop. All
1354     // of the blocks within the loop must satisfy the same constraints as the
1355     // header so once we pass the header checks we can just clone the entire
1356     // child loop nest.
1357     for (Loop *ChildL : OrigL) {
1358       auto *ClonedChildHeader =
1359           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1360       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1361         continue;
1362 
1363 #ifndef NDEBUG
1364       // We should never have a cloned child loop header but fail to have
1365       // all of the blocks for that child loop.
1366       for (auto *ChildLoopBB : ChildL->blocks())
1367         assert(BlocksInClonedLoop.count(
1368                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1369                "Child cloned loop has a header within the cloned outer "
1370                "loop but not all of its blocks!");
1371 #endif
1372 
1373       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1374     }
1375   }
1376 
1377   // Now that we've handled all the components of the original loop that were
1378   // cloned into a new loop, we still need to handle anything from the original
1379   // loop that wasn't in a cloned loop.
1380 
1381   // Figure out what blocks are left to place within any loop nest containing
1382   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1383   // them.
1384   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1385   if (BlocksInClonedLoop.empty())
1386     UnloopedBlockSet.insert(ClonedPH);
1387   for (auto *ClonedBB : ClonedLoopBlocks)
1388     if (!BlocksInClonedLoop.count(ClonedBB))
1389       UnloopedBlockSet.insert(ClonedBB);
1390 
1391   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1392   // backwards across these to process them inside out. The order shouldn't
1393   // matter as we're just trying to build up the map from inside-out; we use
1394   // the map in a more stably ordered way below.
1395   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1396   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1397     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1398            ExitLoopMap.lookup(RHS)->getLoopDepth();
1399   });
1400 
1401   // Populate the existing ExitLoopMap with everything reachable from each
1402   // exit, starting from the inner most exit.
1403   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1404     assert(Worklist.empty() && "Didn't clear worklist!");
1405 
1406     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1407     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1408 
1409     // Walk the CFG back until we hit the cloned PH adding everything reachable
1410     // and in the unlooped set to this exit block's loop.
1411     Worklist.push_back(ExitBB);
1412     do {
1413       BasicBlock *BB = Worklist.pop_back_val();
1414       // We can stop recursing at the cloned preheader (if we get there).
1415       if (BB == ClonedPH)
1416         continue;
1417 
1418       for (BasicBlock *PredBB : predecessors(BB)) {
1419         // If this pred has already been moved to our set or is part of some
1420         // (inner) loop, no update needed.
1421         if (!UnloopedBlockSet.erase(PredBB)) {
1422           assert(
1423               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1424               "Predecessor not mapped to a loop!");
1425           continue;
1426         }
1427 
1428         // We just insert into the loop set here. We'll add these blocks to the
1429         // exit loop after we build up the set in an order that doesn't rely on
1430         // predecessor order (which in turn relies on use list order).
1431         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1432         (void)Inserted;
1433         assert(Inserted && "Should only visit an unlooped block once!");
1434 
1435         // And recurse through to its predecessors.
1436         Worklist.push_back(PredBB);
1437       }
1438     } while (!Worklist.empty());
1439   }
1440 
1441   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1442   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1443   // in their original order adding them to the correct loop.
1444 
1445   // We need a stable insertion order. We use the order of the original loop
1446   // order and map into the correct parent loop.
1447   for (auto *BB : llvm::concat<BasicBlock *const>(
1448            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1449     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1450       OuterL->addBasicBlockToLoop(BB, LI);
1451 
1452 #ifndef NDEBUG
1453   for (auto &BBAndL : ExitLoopMap) {
1454     auto *BB = BBAndL.first;
1455     auto *OuterL = BBAndL.second;
1456     assert(LI.getLoopFor(BB) == OuterL &&
1457            "Failed to put all blocks into outer loops!");
1458   }
1459 #endif
1460 
1461   // Now that all the blocks are placed into the correct containing loop in the
1462   // absence of child loops, find all the potentially cloned child loops and
1463   // clone them into whatever outer loop we placed their header into.
1464   for (Loop *ChildL : OrigL) {
1465     auto *ClonedChildHeader =
1466         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1467     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1468       continue;
1469 
1470 #ifndef NDEBUG
1471     for (auto *ChildLoopBB : ChildL->blocks())
1472       assert(VMap.count(ChildLoopBB) &&
1473              "Cloned a child loop header but not all of that loops blocks!");
1474 #endif
1475 
1476     NonChildClonedLoops.push_back(cloneLoopNest(
1477         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1478   }
1479 }
1480 
1481 static void
1482 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1483                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1484                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1485   // Find all the dead clones, and remove them from their successors.
1486   SmallVector<BasicBlock *, 16> DeadBlocks;
1487   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1488     for (auto &VMap : VMaps)
1489       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1490         if (!DT.isReachableFromEntry(ClonedBB)) {
1491           for (BasicBlock *SuccBB : successors(ClonedBB))
1492             SuccBB->removePredecessor(ClonedBB);
1493           DeadBlocks.push_back(ClonedBB);
1494         }
1495 
1496   // Remove all MemorySSA in the dead blocks
1497   if (MSSAU) {
1498     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1499                                                  DeadBlocks.end());
1500     MSSAU->removeBlocks(DeadBlockSet);
1501   }
1502 
1503   // Drop any remaining references to break cycles.
1504   for (BasicBlock *BB : DeadBlocks)
1505     BB->dropAllReferences();
1506   // Erase them from the IR.
1507   for (BasicBlock *BB : DeadBlocks)
1508     BB->eraseFromParent();
1509 }
1510 
1511 static void deleteDeadBlocksFromLoop(Loop &L,
1512                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1513                                      DominatorTree &DT, LoopInfo &LI,
1514                                      MemorySSAUpdater *MSSAU) {
1515   // Find all the dead blocks tied to this loop, and remove them from their
1516   // successors.
1517   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1518 
1519   // Start with loop/exit blocks and get a transitive closure of reachable dead
1520   // blocks.
1521   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1522                                                 ExitBlocks.end());
1523   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1524   while (!DeathCandidates.empty()) {
1525     auto *BB = DeathCandidates.pop_back_val();
1526     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1527       for (BasicBlock *SuccBB : successors(BB)) {
1528         SuccBB->removePredecessor(BB);
1529         DeathCandidates.push_back(SuccBB);
1530       }
1531       DeadBlockSet.insert(BB);
1532     }
1533   }
1534 
1535   // Remove all MemorySSA in the dead blocks
1536   if (MSSAU)
1537     MSSAU->removeBlocks(DeadBlockSet);
1538 
1539   // Filter out the dead blocks from the exit blocks list so that it can be
1540   // used in the caller.
1541   llvm::erase_if(ExitBlocks,
1542                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1543 
1544   // Walk from this loop up through its parents removing all of the dead blocks.
1545   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1546     for (auto *BB : DeadBlockSet)
1547       ParentL->getBlocksSet().erase(BB);
1548     llvm::erase_if(ParentL->getBlocksVector(),
1549                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1550   }
1551 
1552   // Now delete the dead child loops. This raw delete will clear them
1553   // recursively.
1554   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1555     if (!DeadBlockSet.count(ChildL->getHeader()))
1556       return false;
1557 
1558     assert(llvm::all_of(ChildL->blocks(),
1559                         [&](BasicBlock *ChildBB) {
1560                           return DeadBlockSet.count(ChildBB);
1561                         }) &&
1562            "If the child loop header is dead all blocks in the child loop must "
1563            "be dead as well!");
1564     LI.destroy(ChildL);
1565     return true;
1566   });
1567 
1568   // Remove the loop mappings for the dead blocks and drop all the references
1569   // from these blocks to others to handle cyclic references as we start
1570   // deleting the blocks themselves.
1571   for (auto *BB : DeadBlockSet) {
1572     // Check that the dominator tree has already been updated.
1573     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1574     LI.changeLoopFor(BB, nullptr);
1575     BB->dropAllReferences();
1576   }
1577 
1578   // Actually delete the blocks now that they've been fully unhooked from the
1579   // IR.
1580   for (auto *BB : DeadBlockSet)
1581     BB->eraseFromParent();
1582 }
1583 
1584 /// Recompute the set of blocks in a loop after unswitching.
1585 ///
1586 /// This walks from the original headers predecessors to rebuild the loop. We
1587 /// take advantage of the fact that new blocks can't have been added, and so we
1588 /// filter by the original loop's blocks. This also handles potentially
1589 /// unreachable code that we don't want to explore but might be found examining
1590 /// the predecessors of the header.
1591 ///
1592 /// If the original loop is no longer a loop, this will return an empty set. If
1593 /// it remains a loop, all the blocks within it will be added to the set
1594 /// (including those blocks in inner loops).
1595 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1596                                                                  LoopInfo &LI) {
1597   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1598 
1599   auto *PH = L.getLoopPreheader();
1600   auto *Header = L.getHeader();
1601 
1602   // A worklist to use while walking backwards from the header.
1603   SmallVector<BasicBlock *, 16> Worklist;
1604 
1605   // First walk the predecessors of the header to find the backedges. This will
1606   // form the basis of our walk.
1607   for (auto *Pred : predecessors(Header)) {
1608     // Skip the preheader.
1609     if (Pred == PH)
1610       continue;
1611 
1612     // Because the loop was in simplified form, the only non-loop predecessor
1613     // is the preheader.
1614     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1615                                "than the preheader that is not part of the "
1616                                "loop!");
1617 
1618     // Insert this block into the loop set and on the first visit and, if it
1619     // isn't the header we're currently walking, put it into the worklist to
1620     // recurse through.
1621     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1622       Worklist.push_back(Pred);
1623   }
1624 
1625   // If no backedges were found, we're done.
1626   if (LoopBlockSet.empty())
1627     return LoopBlockSet;
1628 
1629   // We found backedges, recurse through them to identify the loop blocks.
1630   while (!Worklist.empty()) {
1631     BasicBlock *BB = Worklist.pop_back_val();
1632     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1633 
1634     // No need to walk past the header.
1635     if (BB == Header)
1636       continue;
1637 
1638     // Because we know the inner loop structure remains valid we can use the
1639     // loop structure to jump immediately across the entire nested loop.
1640     // Further, because it is in loop simplified form, we can directly jump
1641     // to its preheader afterward.
1642     if (Loop *InnerL = LI.getLoopFor(BB))
1643       if (InnerL != &L) {
1644         assert(L.contains(InnerL) &&
1645                "Should not reach a loop *outside* this loop!");
1646         // The preheader is the only possible predecessor of the loop so
1647         // insert it into the set and check whether it was already handled.
1648         auto *InnerPH = InnerL->getLoopPreheader();
1649         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1650                                       "but not contain the inner loop "
1651                                       "preheader!");
1652         if (!LoopBlockSet.insert(InnerPH).second)
1653           // The only way to reach the preheader is through the loop body
1654           // itself so if it has been visited the loop is already handled.
1655           continue;
1656 
1657         // Insert all of the blocks (other than those already present) into
1658         // the loop set. We expect at least the block that led us to find the
1659         // inner loop to be in the block set, but we may also have other loop
1660         // blocks if they were already enqueued as predecessors of some other
1661         // outer loop block.
1662         for (auto *InnerBB : InnerL->blocks()) {
1663           if (InnerBB == BB) {
1664             assert(LoopBlockSet.count(InnerBB) &&
1665                    "Block should already be in the set!");
1666             continue;
1667           }
1668 
1669           LoopBlockSet.insert(InnerBB);
1670         }
1671 
1672         // Add the preheader to the worklist so we will continue past the
1673         // loop body.
1674         Worklist.push_back(InnerPH);
1675         continue;
1676       }
1677 
1678     // Insert any predecessors that were in the original loop into the new
1679     // set, and if the insert is successful, add them to the worklist.
1680     for (auto *Pred : predecessors(BB))
1681       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1682         Worklist.push_back(Pred);
1683   }
1684 
1685   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1686 
1687   // We've found all the blocks participating in the loop, return our completed
1688   // set.
1689   return LoopBlockSet;
1690 }
1691 
1692 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1693 ///
1694 /// The removal may have removed some child loops entirely but cannot have
1695 /// disturbed any remaining child loops. However, they may need to be hoisted
1696 /// to the parent loop (or to be top-level loops). The original loop may be
1697 /// completely removed.
1698 ///
1699 /// The sibling loops resulting from this update are returned. If the original
1700 /// loop remains a valid loop, it will be the first entry in this list with all
1701 /// of the newly sibling loops following it.
1702 ///
1703 /// Returns true if the loop remains a loop after unswitching, and false if it
1704 /// is no longer a loop after unswitching (and should not continue to be
1705 /// referenced).
1706 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1707                                      LoopInfo &LI,
1708                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1709   auto *PH = L.getLoopPreheader();
1710 
1711   // Compute the actual parent loop from the exit blocks. Because we may have
1712   // pruned some exits the loop may be different from the original parent.
1713   Loop *ParentL = nullptr;
1714   SmallVector<Loop *, 4> ExitLoops;
1715   SmallVector<BasicBlock *, 4> ExitsInLoops;
1716   ExitsInLoops.reserve(ExitBlocks.size());
1717   for (auto *ExitBB : ExitBlocks)
1718     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1719       ExitLoops.push_back(ExitL);
1720       ExitsInLoops.push_back(ExitBB);
1721       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1722         ParentL = ExitL;
1723     }
1724 
1725   // Recompute the blocks participating in this loop. This may be empty if it
1726   // is no longer a loop.
1727   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1728 
1729   // If we still have a loop, we need to re-set the loop's parent as the exit
1730   // block set changing may have moved it within the loop nest. Note that this
1731   // can only happen when this loop has a parent as it can only hoist the loop
1732   // *up* the nest.
1733   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1734     // Remove this loop's (original) blocks from all of the intervening loops.
1735     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1736          IL = IL->getParentLoop()) {
1737       IL->getBlocksSet().erase(PH);
1738       for (auto *BB : L.blocks())
1739         IL->getBlocksSet().erase(BB);
1740       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1741         return BB == PH || L.contains(BB);
1742       });
1743     }
1744 
1745     LI.changeLoopFor(PH, ParentL);
1746     L.getParentLoop()->removeChildLoop(&L);
1747     if (ParentL)
1748       ParentL->addChildLoop(&L);
1749     else
1750       LI.addTopLevelLoop(&L);
1751   }
1752 
1753   // Now we update all the blocks which are no longer within the loop.
1754   auto &Blocks = L.getBlocksVector();
1755   auto BlocksSplitI =
1756       LoopBlockSet.empty()
1757           ? Blocks.begin()
1758           : std::stable_partition(
1759                 Blocks.begin(), Blocks.end(),
1760                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1761 
1762   // Before we erase the list of unlooped blocks, build a set of them.
1763   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1764   if (LoopBlockSet.empty())
1765     UnloopedBlocks.insert(PH);
1766 
1767   // Now erase these blocks from the loop.
1768   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1769     L.getBlocksSet().erase(BB);
1770   Blocks.erase(BlocksSplitI, Blocks.end());
1771 
1772   // Sort the exits in ascending loop depth, we'll work backwards across these
1773   // to process them inside out.
1774   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1775     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1776   });
1777 
1778   // We'll build up a set for each exit loop.
1779   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1780   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1781 
1782   auto RemoveUnloopedBlocksFromLoop =
1783       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1784         for (auto *BB : UnloopedBlocks)
1785           L.getBlocksSet().erase(BB);
1786         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1787           return UnloopedBlocks.count(BB);
1788         });
1789       };
1790 
1791   SmallVector<BasicBlock *, 16> Worklist;
1792   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1793     assert(Worklist.empty() && "Didn't clear worklist!");
1794     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1795 
1796     // Grab the next exit block, in decreasing loop depth order.
1797     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1798     Loop &ExitL = *LI.getLoopFor(ExitBB);
1799     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1800 
1801     // Erase all of the unlooped blocks from the loops between the previous
1802     // exit loop and this exit loop. This works because the ExitInLoops list is
1803     // sorted in increasing order of loop depth and thus we visit loops in
1804     // decreasing order of loop depth.
1805     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1806       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1807 
1808     // Walk the CFG back until we hit the cloned PH adding everything reachable
1809     // and in the unlooped set to this exit block's loop.
1810     Worklist.push_back(ExitBB);
1811     do {
1812       BasicBlock *BB = Worklist.pop_back_val();
1813       // We can stop recursing at the cloned preheader (if we get there).
1814       if (BB == PH)
1815         continue;
1816 
1817       for (BasicBlock *PredBB : predecessors(BB)) {
1818         // If this pred has already been moved to our set or is part of some
1819         // (inner) loop, no update needed.
1820         if (!UnloopedBlocks.erase(PredBB)) {
1821           assert((NewExitLoopBlocks.count(PredBB) ||
1822                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1823                  "Predecessor not in a nested loop (or already visited)!");
1824           continue;
1825         }
1826 
1827         // We just insert into the loop set here. We'll add these blocks to the
1828         // exit loop after we build up the set in a deterministic order rather
1829         // than the predecessor-influenced visit order.
1830         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1831         (void)Inserted;
1832         assert(Inserted && "Should only visit an unlooped block once!");
1833 
1834         // And recurse through to its predecessors.
1835         Worklist.push_back(PredBB);
1836       }
1837     } while (!Worklist.empty());
1838 
1839     // If blocks in this exit loop were directly part of the original loop (as
1840     // opposed to a child loop) update the map to point to this exit loop. This
1841     // just updates a map and so the fact that the order is unstable is fine.
1842     for (auto *BB : NewExitLoopBlocks)
1843       if (Loop *BBL = LI.getLoopFor(BB))
1844         if (BBL == &L || !L.contains(BBL))
1845           LI.changeLoopFor(BB, &ExitL);
1846 
1847     // We will remove the remaining unlooped blocks from this loop in the next
1848     // iteration or below.
1849     NewExitLoopBlocks.clear();
1850   }
1851 
1852   // Any remaining unlooped blocks are no longer part of any loop unless they
1853   // are part of some child loop.
1854   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1855     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1856   for (auto *BB : UnloopedBlocks)
1857     if (Loop *BBL = LI.getLoopFor(BB))
1858       if (BBL == &L || !L.contains(BBL))
1859         LI.changeLoopFor(BB, nullptr);
1860 
1861   // Sink all the child loops whose headers are no longer in the loop set to
1862   // the parent (or to be top level loops). We reach into the loop and directly
1863   // update its subloop vector to make this batch update efficient.
1864   auto &SubLoops = L.getSubLoopsVector();
1865   auto SubLoopsSplitI =
1866       LoopBlockSet.empty()
1867           ? SubLoops.begin()
1868           : std::stable_partition(
1869                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1870                   return LoopBlockSet.count(SubL->getHeader());
1871                 });
1872   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1873     HoistedLoops.push_back(HoistedL);
1874     HoistedL->setParentLoop(nullptr);
1875 
1876     // To compute the new parent of this hoisted loop we look at where we
1877     // placed the preheader above. We can't lookup the header itself because we
1878     // retained the mapping from the header to the hoisted loop. But the
1879     // preheader and header should have the exact same new parent computed
1880     // based on the set of exit blocks from the original loop as the preheader
1881     // is a predecessor of the header and so reached in the reverse walk. And
1882     // because the loops were all in simplified form the preheader of the
1883     // hoisted loop can't be part of some *other* loop.
1884     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1885       NewParentL->addChildLoop(HoistedL);
1886     else
1887       LI.addTopLevelLoop(HoistedL);
1888   }
1889   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1890 
1891   // Actually delete the loop if nothing remained within it.
1892   if (Blocks.empty()) {
1893     assert(SubLoops.empty() &&
1894            "Failed to remove all subloops from the original loop!");
1895     if (Loop *ParentL = L.getParentLoop())
1896       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1897     else
1898       LI.removeLoop(llvm::find(LI, &L));
1899     LI.destroy(&L);
1900     return false;
1901   }
1902 
1903   return true;
1904 }
1905 
1906 /// Helper to visit a dominator subtree, invoking a callable on each node.
1907 ///
1908 /// Returning false at any point will stop walking past that node of the tree.
1909 template <typename CallableT>
1910 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1911   SmallVector<DomTreeNode *, 4> DomWorklist;
1912   DomWorklist.push_back(DT[BB]);
1913 #ifndef NDEBUG
1914   SmallPtrSet<DomTreeNode *, 4> Visited;
1915   Visited.insert(DT[BB]);
1916 #endif
1917   do {
1918     DomTreeNode *N = DomWorklist.pop_back_val();
1919 
1920     // Visit this node.
1921     if (!Callable(N->getBlock()))
1922       continue;
1923 
1924     // Accumulate the child nodes.
1925     for (DomTreeNode *ChildN : *N) {
1926       assert(Visited.insert(ChildN).second &&
1927              "Cannot visit a node twice when walking a tree!");
1928       DomWorklist.push_back(ChildN);
1929     }
1930   } while (!DomWorklist.empty());
1931 }
1932 
1933 static void unswitchNontrivialInvariants(
1934     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1935     SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1936     AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1937     ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
1938   auto *ParentBB = TI.getParent();
1939   BranchInst *BI = dyn_cast<BranchInst>(&TI);
1940   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1941 
1942   // We can only unswitch switches, conditional branches with an invariant
1943   // condition, or combining invariant conditions with an instruction.
1944   assert((SI || (BI && BI->isConditional())) &&
1945          "Can only unswitch switches and conditional branch!");
1946   bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1947   if (FullUnswitch)
1948     assert(Invariants.size() == 1 &&
1949            "Cannot have other invariants with full unswitching!");
1950   else
1951     assert(isa<Instruction>(BI->getCondition()) &&
1952            "Partial unswitching requires an instruction as the condition!");
1953 
1954   if (MSSAU && VerifyMemorySSA)
1955     MSSAU->getMemorySSA()->verifyMemorySSA();
1956 
1957   // Constant and BBs tracking the cloned and continuing successor. When we are
1958   // unswitching the entire condition, this can just be trivially chosen to
1959   // unswitch towards `true`. However, when we are unswitching a set of
1960   // invariants combined with `and` or `or`, the combining operation determines
1961   // the best direction to unswitch: we want to unswitch the direction that will
1962   // collapse the branch.
1963   bool Direction = true;
1964   int ClonedSucc = 0;
1965   if (!FullUnswitch) {
1966     if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1967       assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1968                  Instruction::And &&
1969              "Only `or` and `and` instructions can combine invariants being "
1970              "unswitched.");
1971       Direction = false;
1972       ClonedSucc = 1;
1973     }
1974   }
1975 
1976   BasicBlock *RetainedSuccBB =
1977       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1978   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1979   if (BI)
1980     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1981   else
1982     for (auto Case : SI->cases())
1983       if (Case.getCaseSuccessor() != RetainedSuccBB)
1984         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
1985 
1986   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1987          "Should not unswitch the same successor we are retaining!");
1988 
1989   // The branch should be in this exact loop. Any inner loop's invariant branch
1990   // should be handled by unswitching that inner loop. The caller of this
1991   // routine should filter out any candidates that remain (but were skipped for
1992   // whatever reason).
1993   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1994 
1995   // Compute the parent loop now before we start hacking on things.
1996   Loop *ParentL = L.getParentLoop();
1997   // Get blocks in RPO order for MSSA update, before changing the CFG.
1998   LoopBlocksRPO LBRPO(&L);
1999   if (MSSAU)
2000     LBRPO.perform(&LI);
2001 
2002   // Compute the outer-most loop containing one of our exit blocks. This is the
2003   // furthest up our loopnest which can be mutated, which we will use below to
2004   // update things.
2005   Loop *OuterExitL = &L;
2006   for (auto *ExitBB : ExitBlocks) {
2007     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2008     if (!NewOuterExitL) {
2009       // We exited the entire nest with this block, so we're done.
2010       OuterExitL = nullptr;
2011       break;
2012     }
2013     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2014       OuterExitL = NewOuterExitL;
2015   }
2016 
2017   // At this point, we're definitely going to unswitch something so invalidate
2018   // any cached information in ScalarEvolution for the outer most loop
2019   // containing an exit block and all nested loops.
2020   if (SE) {
2021     if (OuterExitL)
2022       SE->forgetLoop(OuterExitL);
2023     else
2024       SE->forgetTopmostLoop(&L);
2025   }
2026 
2027   // If the edge from this terminator to a successor dominates that successor,
2028   // store a map from each block in its dominator subtree to it. This lets us
2029   // tell when cloning for a particular successor if a block is dominated by
2030   // some *other* successor with a single data structure. We use this to
2031   // significantly reduce cloning.
2032   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2033   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2034            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2035     if (SuccBB->getUniquePredecessor() ||
2036         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2037           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2038         }))
2039       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2040         DominatingSucc[BB] = SuccBB;
2041         return true;
2042       });
2043 
2044   // Split the preheader, so that we know that there is a safe place to insert
2045   // the conditional branch. We will change the preheader to have a conditional
2046   // branch on LoopCond. The original preheader will become the split point
2047   // between the unswitched versions, and we will have a new preheader for the
2048   // original loop.
2049   BasicBlock *SplitBB = L.getLoopPreheader();
2050   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2051 
2052   // Keep track of the dominator tree updates needed.
2053   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2054 
2055   // Clone the loop for each unswitched successor.
2056   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2057   VMaps.reserve(UnswitchedSuccBBs.size());
2058   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2059   for (auto *SuccBB : UnswitchedSuccBBs) {
2060     VMaps.emplace_back(new ValueToValueMapTy());
2061     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2062         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2063         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2064   }
2065 
2066   // The stitching of the branched code back together depends on whether we're
2067   // doing full unswitching or not with the exception that we always want to
2068   // nuke the initial terminator placed in the split block.
2069   SplitBB->getTerminator()->eraseFromParent();
2070   if (FullUnswitch) {
2071     // Splice the terminator from the original loop and rewrite its
2072     // successors.
2073     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2074 
2075     // Keep a clone of the terminator for MSSA updates.
2076     Instruction *NewTI = TI.clone();
2077     ParentBB->getInstList().push_back(NewTI);
2078 
2079     // First wire up the moved terminator to the preheaders.
2080     if (BI) {
2081       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2082       BI->setSuccessor(ClonedSucc, ClonedPH);
2083       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2084       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2085     } else {
2086       assert(SI && "Must either be a branch or switch!");
2087 
2088       // Walk the cases and directly update their successors.
2089       assert(SI->getDefaultDest() == RetainedSuccBB &&
2090              "Not retaining default successor!");
2091       SI->setDefaultDest(LoopPH);
2092       for (auto &Case : SI->cases())
2093         if (Case.getCaseSuccessor() == RetainedSuccBB)
2094           Case.setSuccessor(LoopPH);
2095         else
2096           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2097 
2098       // We need to use the set to populate domtree updates as even when there
2099       // are multiple cases pointing at the same successor we only want to
2100       // remove and insert one edge in the domtree.
2101       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2102         DTUpdates.push_back(
2103             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2104     }
2105 
2106     if (MSSAU) {
2107       DT.applyUpdates(DTUpdates);
2108       DTUpdates.clear();
2109 
2110       // Remove all but one edge to the retained block and all unswitched
2111       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2112       // when we know we only keep a single edge for each case.
2113       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2114       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2115         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2116 
2117       for (auto &VMap : VMaps)
2118         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2119                                    /*IgnoreIncomingWithNoClones=*/true);
2120       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2121 
2122       // Remove all edges to unswitched blocks.
2123       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2124         MSSAU->removeEdge(ParentBB, SuccBB);
2125     }
2126 
2127     // Now unhook the successor relationship as we'll be replacing
2128     // the terminator with a direct branch. This is much simpler for branches
2129     // than switches so we handle those first.
2130     if (BI) {
2131       // Remove the parent as a predecessor of the unswitched successor.
2132       assert(UnswitchedSuccBBs.size() == 1 &&
2133              "Only one possible unswitched block for a branch!");
2134       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2135       UnswitchedSuccBB->removePredecessor(ParentBB,
2136                                           /*KeepOneInputPHIs*/ true);
2137       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2138     } else {
2139       // Note that we actually want to remove the parent block as a predecessor
2140       // of *every* case successor. The case successor is either unswitched,
2141       // completely eliminating an edge from the parent to that successor, or it
2142       // is a duplicate edge to the retained successor as the retained successor
2143       // is always the default successor and as we'll replace this with a direct
2144       // branch we no longer need the duplicate entries in the PHI nodes.
2145       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2146       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2147              "Not retaining default successor!");
2148       for (auto &Case : NewSI->cases())
2149         Case.getCaseSuccessor()->removePredecessor(
2150             ParentBB,
2151             /*KeepOneInputPHIs*/ true);
2152 
2153       // We need to use the set to populate domtree updates as even when there
2154       // are multiple cases pointing at the same successor we only want to
2155       // remove and insert one edge in the domtree.
2156       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2157         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2158     }
2159 
2160     // After MSSAU update, remove the cloned terminator instruction NewTI.
2161     ParentBB->getTerminator()->eraseFromParent();
2162 
2163     // Create a new unconditional branch to the continuing block (as opposed to
2164     // the one cloned).
2165     BranchInst::Create(RetainedSuccBB, ParentBB);
2166   } else {
2167     assert(BI && "Only branches have partial unswitching.");
2168     assert(UnswitchedSuccBBs.size() == 1 &&
2169            "Only one possible unswitched block for a branch!");
2170     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2171     // When doing a partial unswitch, we have to do a bit more work to build up
2172     // the branch in the split block.
2173     buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2174                                           *ClonedPH, *LoopPH);
2175     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2176 
2177     if (MSSAU) {
2178       DT.applyUpdates(DTUpdates);
2179       DTUpdates.clear();
2180 
2181       // Perform MSSA cloning updates.
2182       for (auto &VMap : VMaps)
2183         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2184                                    /*IgnoreIncomingWithNoClones=*/true);
2185       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2186     }
2187   }
2188 
2189   // Apply the updates accumulated above to get an up-to-date dominator tree.
2190   DT.applyUpdates(DTUpdates);
2191 
2192   // Now that we have an accurate dominator tree, first delete the dead cloned
2193   // blocks so that we can accurately build any cloned loops. It is important to
2194   // not delete the blocks from the original loop yet because we still want to
2195   // reference the original loop to understand the cloned loop's structure.
2196   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2197 
2198   // Build the cloned loop structure itself. This may be substantially
2199   // different from the original structure due to the simplified CFG. This also
2200   // handles inserting all the cloned blocks into the correct loops.
2201   SmallVector<Loop *, 4> NonChildClonedLoops;
2202   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2203     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2204 
2205   // Now that our cloned loops have been built, we can update the original loop.
2206   // First we delete the dead blocks from it and then we rebuild the loop
2207   // structure taking these deletions into account.
2208   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2209 
2210   if (MSSAU && VerifyMemorySSA)
2211     MSSAU->getMemorySSA()->verifyMemorySSA();
2212 
2213   SmallVector<Loop *, 4> HoistedLoops;
2214   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2215 
2216   if (MSSAU && VerifyMemorySSA)
2217     MSSAU->getMemorySSA()->verifyMemorySSA();
2218 
2219   // This transformation has a high risk of corrupting the dominator tree, and
2220   // the below steps to rebuild loop structures will result in hard to debug
2221   // errors in that case so verify that the dominator tree is sane first.
2222   // FIXME: Remove this when the bugs stop showing up and rely on existing
2223   // verification steps.
2224   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2225 
2226   if (BI) {
2227     // If we unswitched a branch which collapses the condition to a known
2228     // constant we want to replace all the uses of the invariants within both
2229     // the original and cloned blocks. We do this here so that we can use the
2230     // now updated dominator tree to identify which side the users are on.
2231     assert(UnswitchedSuccBBs.size() == 1 &&
2232            "Only one possible unswitched block for a branch!");
2233     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2234 
2235     // When considering multiple partially-unswitched invariants
2236     // we cant just go replace them with constants in both branches.
2237     //
2238     // For 'AND' we infer that true branch ("continue") means true
2239     // for each invariant operand.
2240     // For 'OR' we can infer that false branch ("continue") means false
2241     // for each invariant operand.
2242     // So it happens that for multiple-partial case we dont replace
2243     // in the unswitched branch.
2244     bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
2245 
2246     ConstantInt *UnswitchedReplacement =
2247         Direction ? ConstantInt::getTrue(BI->getContext())
2248                   : ConstantInt::getFalse(BI->getContext());
2249     ConstantInt *ContinueReplacement =
2250         Direction ? ConstantInt::getFalse(BI->getContext())
2251                   : ConstantInt::getTrue(BI->getContext());
2252     for (Value *Invariant : Invariants)
2253       for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2254            UI != UE;) {
2255         // Grab the use and walk past it so we can clobber it in the use list.
2256         Use *U = &*UI++;
2257         Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2258         if (!UserI)
2259           continue;
2260 
2261         // Replace it with the 'continue' side if in the main loop body, and the
2262         // unswitched if in the cloned blocks.
2263         if (DT.dominates(LoopPH, UserI->getParent()))
2264           U->set(ContinueReplacement);
2265         else if (ReplaceUnswitched &&
2266                  DT.dominates(ClonedPH, UserI->getParent()))
2267           U->set(UnswitchedReplacement);
2268       }
2269   }
2270 
2271   // We can change which blocks are exit blocks of all the cloned sibling
2272   // loops, the current loop, and any parent loops which shared exit blocks
2273   // with the current loop. As a consequence, we need to re-form LCSSA for
2274   // them. But we shouldn't need to re-form LCSSA for any child loops.
2275   // FIXME: This could be made more efficient by tracking which exit blocks are
2276   // new, and focusing on them, but that isn't likely to be necessary.
2277   //
2278   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2279   // loop nest and update every loop that could have had its exits changed. We
2280   // also need to cover any intervening loops. We add all of these loops to
2281   // a list and sort them by loop depth to achieve this without updating
2282   // unnecessary loops.
2283   auto UpdateLoop = [&](Loop &UpdateL) {
2284 #ifndef NDEBUG
2285     UpdateL.verifyLoop();
2286     for (Loop *ChildL : UpdateL) {
2287       ChildL->verifyLoop();
2288       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2289              "Perturbed a child loop's LCSSA form!");
2290     }
2291 #endif
2292     // First build LCSSA for this loop so that we can preserve it when
2293     // forming dedicated exits. We don't want to perturb some other loop's
2294     // LCSSA while doing that CFG edit.
2295     formLCSSA(UpdateL, DT, &LI, SE);
2296 
2297     // For loops reached by this loop's original exit blocks we may
2298     // introduced new, non-dedicated exits. At least try to re-form dedicated
2299     // exits for these loops. This may fail if they couldn't have dedicated
2300     // exits to start with.
2301     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2302   };
2303 
2304   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2305   // and we can do it in any order as they don't nest relative to each other.
2306   //
2307   // Also check if any of the loops we have updated have become top-level loops
2308   // as that will necessitate widening the outer loop scope.
2309   for (Loop *UpdatedL :
2310        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2311     UpdateLoop(*UpdatedL);
2312     if (!UpdatedL->getParentLoop())
2313       OuterExitL = nullptr;
2314   }
2315   if (IsStillLoop) {
2316     UpdateLoop(L);
2317     if (!L.getParentLoop())
2318       OuterExitL = nullptr;
2319   }
2320 
2321   // If the original loop had exit blocks, walk up through the outer most loop
2322   // of those exit blocks to update LCSSA and form updated dedicated exits.
2323   if (OuterExitL != &L)
2324     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2325          OuterL = OuterL->getParentLoop())
2326       UpdateLoop(*OuterL);
2327 
2328 #ifndef NDEBUG
2329   // Verify the entire loop structure to catch any incorrect updates before we
2330   // progress in the pass pipeline.
2331   LI.verify(DT);
2332 #endif
2333 
2334   // Now that we've unswitched something, make callbacks to report the changes.
2335   // For that we need to merge together the updated loops and the cloned loops
2336   // and check whether the original loop survived.
2337   SmallVector<Loop *, 4> SibLoops;
2338   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2339     if (UpdatedL->getParentLoop() == ParentL)
2340       SibLoops.push_back(UpdatedL);
2341   UnswitchCB(IsStillLoop, SibLoops);
2342 
2343   if (MSSAU && VerifyMemorySSA)
2344     MSSAU->getMemorySSA()->verifyMemorySSA();
2345 
2346   if (BI)
2347     ++NumBranches;
2348   else
2349     ++NumSwitches;
2350 }
2351 
2352 /// Recursively compute the cost of a dominator subtree based on the per-block
2353 /// cost map provided.
2354 ///
2355 /// The recursive computation is memozied into the provided DT-indexed cost map
2356 /// to allow querying it for most nodes in the domtree without it becoming
2357 /// quadratic.
2358 static int
2359 computeDomSubtreeCost(DomTreeNode &N,
2360                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2361                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2362   // Don't accumulate cost (or recurse through) blocks not in our block cost
2363   // map and thus not part of the duplication cost being considered.
2364   auto BBCostIt = BBCostMap.find(N.getBlock());
2365   if (BBCostIt == BBCostMap.end())
2366     return 0;
2367 
2368   // Lookup this node to see if we already computed its cost.
2369   auto DTCostIt = DTCostMap.find(&N);
2370   if (DTCostIt != DTCostMap.end())
2371     return DTCostIt->second;
2372 
2373   // If not, we have to compute it. We can't use insert above and update
2374   // because computing the cost may insert more things into the map.
2375   int Cost = std::accumulate(
2376       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2377         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2378       });
2379   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2380   (void)Inserted;
2381   assert(Inserted && "Should not insert a node while visiting children!");
2382   return Cost;
2383 }
2384 
2385 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2386 /// making the following replacement:
2387 ///
2388 ///   --code before guard--
2389 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2390 ///   --code after guard--
2391 ///
2392 /// into
2393 ///
2394 ///   --code before guard--
2395 ///   br i1 %cond, label %guarded, label %deopt
2396 ///
2397 /// guarded:
2398 ///   --code after guard--
2399 ///
2400 /// deopt:
2401 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2402 ///   unreachable
2403 ///
2404 /// It also makes all relevant DT and LI updates, so that all structures are in
2405 /// valid state after this transform.
2406 static BranchInst *
2407 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2408                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2409                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2410   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2411   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2412   BasicBlock *CheckBB = GI->getParent();
2413 
2414   if (MSSAU && VerifyMemorySSA)
2415      MSSAU->getMemorySSA()->verifyMemorySSA();
2416 
2417   // Remove all CheckBB's successors from DomTree. A block can be seen among
2418   // successors more than once, but for DomTree it should be added only once.
2419   SmallPtrSet<BasicBlock *, 4> Successors;
2420   for (auto *Succ : successors(CheckBB))
2421     if (Successors.insert(Succ).second)
2422       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2423 
2424   Instruction *DeoptBlockTerm =
2425       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2426   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2427   // SplitBlockAndInsertIfThen inserts control flow that branches to
2428   // DeoptBlockTerm if the condition is true.  We want the opposite.
2429   CheckBI->swapSuccessors();
2430 
2431   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2432   GuardedBlock->setName("guarded");
2433   CheckBI->getSuccessor(1)->setName("deopt");
2434   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2435 
2436   // We now have a new exit block.
2437   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2438 
2439   if (MSSAU)
2440     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2441 
2442   GI->moveBefore(DeoptBlockTerm);
2443   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2444 
2445   // Add new successors of CheckBB into DomTree.
2446   for (auto *Succ : successors(CheckBB))
2447     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2448 
2449   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2450   // successors.
2451   for (auto *Succ : Successors)
2452     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2453 
2454   // Make proper changes to DT.
2455   DT.applyUpdates(DTUpdates);
2456   // Inform LI of a new loop block.
2457   L.addBasicBlockToLoop(GuardedBlock, LI);
2458 
2459   if (MSSAU) {
2460     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2461     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2462     if (VerifyMemorySSA)
2463       MSSAU->getMemorySSA()->verifyMemorySSA();
2464   }
2465 
2466   ++NumGuards;
2467   return CheckBI;
2468 }
2469 
2470 /// Cost multiplier is a way to limit potentially exponential behavior
2471 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2472 /// candidates available. Also accounting for the number of "sibling" loops with
2473 /// the idea to account for previous unswitches that already happened on this
2474 /// cluster of loops. There was an attempt to keep this formula simple,
2475 /// just enough to limit the worst case behavior. Even if it is not that simple
2476 /// now it is still not an attempt to provide a detailed heuristic size
2477 /// prediction.
2478 ///
2479 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2480 /// unswitch candidates, making adequate predictions instead of wild guesses.
2481 /// That requires knowing not just the number of "remaining" candidates but
2482 /// also costs of unswitching for each of these candidates.
2483 static int CalculateUnswitchCostMultiplier(
2484     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2485     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2486         UnswitchCandidates) {
2487 
2488   // Guards and other exiting conditions do not contribute to exponential
2489   // explosion as soon as they dominate the latch (otherwise there might be
2490   // another path to the latch remaining that does not allow to eliminate the
2491   // loop copy on unswitch).
2492   BasicBlock *Latch = L.getLoopLatch();
2493   BasicBlock *CondBlock = TI.getParent();
2494   if (DT.dominates(CondBlock, Latch) &&
2495       (isGuard(&TI) ||
2496        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2497          return L.contains(SuccBB);
2498        }) <= 1)) {
2499     NumCostMultiplierSkipped++;
2500     return 1;
2501   }
2502 
2503   auto *ParentL = L.getParentLoop();
2504   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2505                                : std::distance(LI.begin(), LI.end()));
2506   // Count amount of clones that all the candidates might cause during
2507   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2508   int UnswitchedClones = 0;
2509   for (auto Candidate : UnswitchCandidates) {
2510     Instruction *CI = Candidate.first;
2511     BasicBlock *CondBlock = CI->getParent();
2512     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2513     if (isGuard(CI)) {
2514       if (!SkipExitingSuccessors)
2515         UnswitchedClones++;
2516       continue;
2517     }
2518     int NonExitingSuccessors = llvm::count_if(
2519         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2520           return !SkipExitingSuccessors || L.contains(SuccBB);
2521         });
2522     UnswitchedClones += Log2_32(NonExitingSuccessors);
2523   }
2524 
2525   // Ignore up to the "unscaled candidates" number of unswitch candidates
2526   // when calculating the power-of-two scaling of the cost. The main idea
2527   // with this control is to allow a small number of unswitches to happen
2528   // and rely more on siblings multiplier (see below) when the number
2529   // of candidates is small.
2530   unsigned ClonesPower =
2531       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2532 
2533   // Allowing top-level loops to spread a bit more than nested ones.
2534   int SiblingsMultiplier =
2535       std::max((ParentL ? SiblingsCount
2536                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2537                1);
2538   // Compute the cost multiplier in a way that won't overflow by saturating
2539   // at an upper bound.
2540   int CostMultiplier;
2541   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2542       SiblingsMultiplier > UnswitchThreshold)
2543     CostMultiplier = UnswitchThreshold;
2544   else
2545     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2546                               (int)UnswitchThreshold);
2547 
2548   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2549                     << " (siblings " << SiblingsMultiplier << " * clones "
2550                     << (1 << ClonesPower) << ")"
2551                     << " for unswitch candidate: " << TI << "\n");
2552   return CostMultiplier;
2553 }
2554 
2555 static bool
2556 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2557                       AssumptionCache &AC, TargetTransformInfo &TTI,
2558                       function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2559                       ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2560   // Collect all invariant conditions within this loop (as opposed to an inner
2561   // loop which would be handled when visiting that inner loop).
2562   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2563       UnswitchCandidates;
2564 
2565   // Whether or not we should also collect guards in the loop.
2566   bool CollectGuards = false;
2567   if (UnswitchGuards) {
2568     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2569         Intrinsic::getName(Intrinsic::experimental_guard));
2570     if (GuardDecl && !GuardDecl->use_empty())
2571       CollectGuards = true;
2572   }
2573 
2574   for (auto *BB : L.blocks()) {
2575     if (LI.getLoopFor(BB) != &L)
2576       continue;
2577 
2578     if (CollectGuards)
2579       for (auto &I : *BB)
2580         if (isGuard(&I)) {
2581           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2582           // TODO: Support AND, OR conditions and partial unswitching.
2583           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2584             UnswitchCandidates.push_back({&I, {Cond}});
2585         }
2586 
2587     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2588       // We can only consider fully loop-invariant switch conditions as we need
2589       // to completely eliminate the switch after unswitching.
2590       if (!isa<Constant>(SI->getCondition()) &&
2591           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2592         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2593       continue;
2594     }
2595 
2596     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2597     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2598         BI->getSuccessor(0) == BI->getSuccessor(1))
2599       continue;
2600 
2601     if (L.isLoopInvariant(BI->getCondition())) {
2602       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2603       continue;
2604     }
2605 
2606     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2607     if (CondI.getOpcode() != Instruction::And &&
2608       CondI.getOpcode() != Instruction::Or)
2609       continue;
2610 
2611     TinyPtrVector<Value *> Invariants =
2612         collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2613     if (Invariants.empty())
2614       continue;
2615 
2616     UnswitchCandidates.push_back({BI, std::move(Invariants)});
2617   }
2618 
2619   // If we didn't find any candidates, we're done.
2620   if (UnswitchCandidates.empty())
2621     return false;
2622 
2623   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2624   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2625   // irreducible control flow into reducible control flow and introduce new
2626   // loops "out of thin air". If we ever discover important use cases for doing
2627   // this, we can add support to loop unswitch, but it is a lot of complexity
2628   // for what seems little or no real world benefit.
2629   LoopBlocksRPO RPOT(&L);
2630   RPOT.perform(&LI);
2631   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2632     return false;
2633 
2634   SmallVector<BasicBlock *, 4> ExitBlocks;
2635   L.getUniqueExitBlocks(ExitBlocks);
2636 
2637   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2638   // don't know how to split those exit blocks.
2639   // FIXME: We should teach SplitBlock to handle this and remove this
2640   // restriction.
2641   for (auto *ExitBB : ExitBlocks)
2642     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2643       dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2644       return false;
2645     }
2646 
2647   LLVM_DEBUG(
2648       dbgs() << "Considering " << UnswitchCandidates.size()
2649              << " non-trivial loop invariant conditions for unswitching.\n");
2650 
2651   // Given that unswitching these terminators will require duplicating parts of
2652   // the loop, so we need to be able to model that cost. Compute the ephemeral
2653   // values and set up a data structure to hold per-BB costs. We cache each
2654   // block's cost so that we don't recompute this when considering different
2655   // subsets of the loop for duplication during unswitching.
2656   SmallPtrSet<const Value *, 4> EphValues;
2657   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2658   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2659 
2660   // Compute the cost of each block, as well as the total loop cost. Also, bail
2661   // out if we see instructions which are incompatible with loop unswitching
2662   // (convergent, noduplicate, or cross-basic-block tokens).
2663   // FIXME: We might be able to safely handle some of these in non-duplicated
2664   // regions.
2665   int LoopCost = 0;
2666   for (auto *BB : L.blocks()) {
2667     int Cost = 0;
2668     for (auto &I : *BB) {
2669       if (EphValues.count(&I))
2670         continue;
2671 
2672       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2673         return false;
2674       if (auto *CB = dyn_cast<CallBase>(&I))
2675         if (CB->isConvergent() || CB->cannotDuplicate())
2676           return false;
2677 
2678       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_CodeSize);
2679     }
2680     assert(Cost >= 0 && "Must not have negative costs!");
2681     LoopCost += Cost;
2682     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2683     BBCostMap[BB] = Cost;
2684   }
2685   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2686 
2687   // Now we find the best candidate by searching for the one with the following
2688   // properties in order:
2689   //
2690   // 1) An unswitching cost below the threshold
2691   // 2) The smallest number of duplicated unswitch candidates (to avoid
2692   //    creating redundant subsequent unswitching)
2693   // 3) The smallest cost after unswitching.
2694   //
2695   // We prioritize reducing fanout of unswitch candidates provided the cost
2696   // remains below the threshold because this has a multiplicative effect.
2697   //
2698   // This requires memoizing each dominator subtree to avoid redundant work.
2699   //
2700   // FIXME: Need to actually do the number of candidates part above.
2701   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2702   // Given a terminator which might be unswitched, computes the non-duplicated
2703   // cost for that terminator.
2704   auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
2705     BasicBlock &BB = *TI.getParent();
2706     SmallPtrSet<BasicBlock *, 4> Visited;
2707 
2708     int Cost = LoopCost;
2709     for (BasicBlock *SuccBB : successors(&BB)) {
2710       // Don't count successors more than once.
2711       if (!Visited.insert(SuccBB).second)
2712         continue;
2713 
2714       // If this is a partial unswitch candidate, then it must be a conditional
2715       // branch with a condition of either `or` or `and`. In that case, one of
2716       // the successors is necessarily duplicated, so don't even try to remove
2717       // its cost.
2718       if (!FullUnswitch) {
2719         auto &BI = cast<BranchInst>(TI);
2720         if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2721             Instruction::And) {
2722           if (SuccBB == BI.getSuccessor(1))
2723             continue;
2724         } else {
2725           assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2726                      Instruction::Or &&
2727                  "Only `and` and `or` conditions can result in a partial "
2728                  "unswitch!");
2729           if (SuccBB == BI.getSuccessor(0))
2730             continue;
2731         }
2732       }
2733 
2734       // This successor's domtree will not need to be duplicated after
2735       // unswitching if the edge to the successor dominates it (and thus the
2736       // entire tree). This essentially means there is no other path into this
2737       // subtree and so it will end up live in only one clone of the loop.
2738       if (SuccBB->getUniquePredecessor() ||
2739           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2740             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2741           })) {
2742         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2743         assert(Cost >= 0 &&
2744                "Non-duplicated cost should never exceed total loop cost!");
2745       }
2746     }
2747 
2748     // Now scale the cost by the number of unique successors minus one. We
2749     // subtract one because there is already at least one copy of the entire
2750     // loop. This is computing the new cost of unswitching a condition.
2751     // Note that guards always have 2 unique successors that are implicit and
2752     // will be materialized if we decide to unswitch it.
2753     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2754     assert(SuccessorsCount > 1 &&
2755            "Cannot unswitch a condition without multiple distinct successors!");
2756     return Cost * (SuccessorsCount - 1);
2757   };
2758   Instruction *BestUnswitchTI = nullptr;
2759   int BestUnswitchCost = 0;
2760   ArrayRef<Value *> BestUnswitchInvariants;
2761   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2762     Instruction &TI = *TerminatorAndInvariants.first;
2763     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2764     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2765     int CandidateCost = ComputeUnswitchedCost(
2766         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2767                                      Invariants[0] == BI->getCondition()));
2768     // Calculate cost multiplier which is a tool to limit potentially
2769     // exponential behavior of loop-unswitch.
2770     if (EnableUnswitchCostMultiplier) {
2771       int CostMultiplier =
2772           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2773       assert(
2774           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2775           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2776       CandidateCost *= CostMultiplier;
2777       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2778                         << " (multiplier: " << CostMultiplier << ")"
2779                         << " for unswitch candidate: " << TI << "\n");
2780     } else {
2781       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2782                         << " for unswitch candidate: " << TI << "\n");
2783     }
2784 
2785     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2786       BestUnswitchTI = &TI;
2787       BestUnswitchCost = CandidateCost;
2788       BestUnswitchInvariants = Invariants;
2789     }
2790   }
2791   assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2792 
2793   if (BestUnswitchCost >= UnswitchThreshold) {
2794     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2795                       << BestUnswitchCost << "\n");
2796     return false;
2797   }
2798 
2799   // If the best candidate is a guard, turn it into a branch.
2800   if (isGuard(BestUnswitchTI))
2801     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2802                                          ExitBlocks, DT, LI, MSSAU);
2803 
2804   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2805                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2806                     << "\n");
2807   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2808                                ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
2809   return true;
2810 }
2811 
2812 /// Unswitch control flow predicated on loop invariant conditions.
2813 ///
2814 /// This first hoists all branches or switches which are trivial (IE, do not
2815 /// require duplicating any part of the loop) out of the loop body. It then
2816 /// looks at other loop invariant control flows and tries to unswitch those as
2817 /// well by cloning the loop if the result is small enough.
2818 ///
2819 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2820 /// updated based on the unswitch.
2821 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
2822 ///
2823 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2824 /// true, we will attempt to do non-trivial unswitching as well as trivial
2825 /// unswitching.
2826 ///
2827 /// The `UnswitchCB` callback provided will be run after unswitching is
2828 /// complete, with the first parameter set to `true` if the provided loop
2829 /// remains a loop, and a list of new sibling loops created.
2830 ///
2831 /// If `SE` is non-null, we will update that analysis based on the unswitching
2832 /// done.
2833 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2834                          AssumptionCache &AC, TargetTransformInfo &TTI,
2835                          bool NonTrivial,
2836                          function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2837                          ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2838   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2839          "Loops must be in LCSSA form before unswitching.");
2840   bool Changed = false;
2841 
2842   // Must be in loop simplified form: we need a preheader and dedicated exits.
2843   if (!L.isLoopSimplifyForm())
2844     return false;
2845 
2846   // Try trivial unswitch first before loop over other basic blocks in the loop.
2847   if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
2848     // If we unswitched successfully we will want to clean up the loop before
2849     // processing it further so just mark it as unswitched and return.
2850     UnswitchCB(/*CurrentLoopValid*/ true, {});
2851     return true;
2852   }
2853 
2854   // If we're not doing non-trivial unswitching, we're done. We both accept
2855   // a parameter but also check a local flag that can be used for testing
2856   // a debugging.
2857   if (!NonTrivial && !EnableNonTrivialUnswitch)
2858     return false;
2859 
2860   // For non-trivial unswitching, because it often creates new loops, we rely on
2861   // the pass manager to iterate on the loops rather than trying to immediately
2862   // reach a fixed point. There is no substantial advantage to iterating
2863   // internally, and if any of the new loops are simplified enough to contain
2864   // trivial unswitching we want to prefer those.
2865 
2866   // Try to unswitch the best invariant condition. We prefer this full unswitch to
2867   // a partial unswitch when possible below the threshold.
2868   if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
2869     return true;
2870 
2871   // No other opportunities to unswitch.
2872   return Changed;
2873 }
2874 
2875 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2876                                               LoopStandardAnalysisResults &AR,
2877                                               LPMUpdater &U) {
2878   Function &F = *L.getHeader()->getParent();
2879   (void)F;
2880 
2881   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2882                     << "\n");
2883 
2884   // Save the current loop name in a variable so that we can report it even
2885   // after it has been deleted.
2886   std::string LoopName = std::string(L.getName());
2887 
2888   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2889                                         ArrayRef<Loop *> NewLoops) {
2890     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2891     if (!NewLoops.empty())
2892       U.addSiblingLoops(NewLoops);
2893 
2894     // If the current loop remains valid, we should revisit it to catch any
2895     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2896     if (CurrentLoopValid)
2897       U.revisitCurrentLoop();
2898     else
2899       U.markLoopAsDeleted(L, LoopName);
2900   };
2901 
2902   Optional<MemorySSAUpdater> MSSAU;
2903   if (AR.MSSA) {
2904     MSSAU = MemorySSAUpdater(AR.MSSA);
2905     if (VerifyMemorySSA)
2906       AR.MSSA->verifyMemorySSA();
2907   }
2908   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2909                     &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
2910     return PreservedAnalyses::all();
2911 
2912   if (AR.MSSA && VerifyMemorySSA)
2913     AR.MSSA->verifyMemorySSA();
2914 
2915   // Historically this pass has had issues with the dominator tree so verify it
2916   // in asserts builds.
2917   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2918 
2919   auto PA = getLoopPassPreservedAnalyses();
2920   if (AR.MSSA)
2921     PA.preserve<MemorySSAAnalysis>();
2922   return PA;
2923 }
2924 
2925 namespace {
2926 
2927 class SimpleLoopUnswitchLegacyPass : public LoopPass {
2928   bool NonTrivial;
2929 
2930 public:
2931   static char ID; // Pass ID, replacement for typeid
2932 
2933   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2934       : LoopPass(ID), NonTrivial(NonTrivial) {
2935     initializeSimpleLoopUnswitchLegacyPassPass(
2936         *PassRegistry::getPassRegistry());
2937   }
2938 
2939   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2940 
2941   void getAnalysisUsage(AnalysisUsage &AU) const override {
2942     AU.addRequired<AssumptionCacheTracker>();
2943     AU.addRequired<TargetTransformInfoWrapperPass>();
2944     if (EnableMSSALoopDependency) {
2945       AU.addRequired<MemorySSAWrapperPass>();
2946       AU.addPreserved<MemorySSAWrapperPass>();
2947     }
2948     getLoopAnalysisUsage(AU);
2949   }
2950 };
2951 
2952 } // end anonymous namespace
2953 
2954 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2955   if (skipLoop(L))
2956     return false;
2957 
2958   Function &F = *L->getHeader()->getParent();
2959 
2960   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2961                     << "\n");
2962 
2963   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2964   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2965   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2966   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2967   MemorySSA *MSSA = nullptr;
2968   Optional<MemorySSAUpdater> MSSAU;
2969   if (EnableMSSALoopDependency) {
2970     MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
2971     MSSAU = MemorySSAUpdater(MSSA);
2972   }
2973 
2974   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2975   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2976 
2977   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2978                                ArrayRef<Loop *> NewLoops) {
2979     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2980     for (auto *NewL : NewLoops)
2981       LPM.addLoop(*NewL);
2982 
2983     // If the current loop remains valid, re-add it to the queue. This is
2984     // a little wasteful as we'll finish processing the current loop as well,
2985     // but it is the best we can do in the old PM.
2986     if (CurrentLoopValid)
2987       LPM.addLoop(*L);
2988     else
2989       LPM.markLoopAsDeleted(*L);
2990   };
2991 
2992   if (MSSA && VerifyMemorySSA)
2993     MSSA->verifyMemorySSA();
2994 
2995   bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
2996                               MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
2997 
2998   if (MSSA && VerifyMemorySSA)
2999     MSSA->verifyMemorySSA();
3000 
3001   // Historically this pass has had issues with the dominator tree so verify it
3002   // in asserts builds.
3003   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3004 
3005   return Changed;
3006 }
3007 
3008 char SimpleLoopUnswitchLegacyPass::ID = 0;
3009 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3010                       "Simple unswitch loops", false, false)
3011 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3012 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3013 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3014 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3015 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3016 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3017 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3018                     "Simple unswitch loops", false, false)
3019 
3020 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3021   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3022 }
3023