1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/MustExecute.h" 30 #include "llvm/Analysis/ScalarEvolution.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/GenericDomTree.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 52 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 53 #include "llvm/Transforms/Utils/Cloning.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include "llvm/Transforms/Utils/LoopUtils.h" 56 #include "llvm/Transforms/Utils/ValueMapper.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <iterator> 60 #include <numeric> 61 #include <utility> 62 63 #define DEBUG_TYPE "simple-loop-unswitch" 64 65 using namespace llvm; 66 67 STATISTIC(NumBranches, "Number of branches unswitched"); 68 STATISTIC(NumSwitches, "Number of switches unswitched"); 69 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 70 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 71 STATISTIC( 72 NumCostMultiplierSkipped, 73 "Number of unswitch candidates that had their cost multiplier skipped"); 74 75 static cl::opt<bool> EnableNonTrivialUnswitch( 76 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 77 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 78 "following the configuration passed into the pass.")); 79 80 static cl::opt<int> 81 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 82 cl::desc("The cost threshold for unswitching a loop.")); 83 84 static cl::opt<bool> EnableUnswitchCostMultiplier( 85 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 86 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 87 "explosion in nontrivial unswitch.")); 88 static cl::opt<int> UnswitchSiblingsToplevelDiv( 89 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 90 cl::desc("Toplevel siblings divisor for cost multiplier.")); 91 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 92 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 93 cl::desc("Number of unswitch candidates that are ignored when calculating " 94 "cost multiplier.")); 95 static cl::opt<bool> UnswitchGuards( 96 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 97 cl::desc("If enabled, simple loop unswitching will also consider " 98 "llvm.experimental.guard intrinsics as unswitch candidates.")); 99 static cl::opt<bool> DropNonTrivialImplicitNullChecks( 100 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 101 cl::init(false), cl::Hidden, 102 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 103 "null checks to save time analyzing if we can keep it.")); 104 105 /// Collect all of the loop invariant input values transitively used by the 106 /// homogeneous instruction graph from a given root. 107 /// 108 /// This essentially walks from a root recursively through loop variant operands 109 /// which have the exact same opcode and finds all inputs which are loop 110 /// invariant. For some operations these can be re-associated and unswitched out 111 /// of the loop entirely. 112 static TinyPtrVector<Value *> 113 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 114 LoopInfo &LI) { 115 assert(!L.isLoopInvariant(&Root) && 116 "Only need to walk the graph if root itself is not invariant."); 117 TinyPtrVector<Value *> Invariants; 118 119 // Build a worklist and recurse through operators collecting invariants. 120 SmallVector<Instruction *, 4> Worklist; 121 SmallPtrSet<Instruction *, 8> Visited; 122 Worklist.push_back(&Root); 123 Visited.insert(&Root); 124 do { 125 Instruction &I = *Worklist.pop_back_val(); 126 for (Value *OpV : I.operand_values()) { 127 // Skip constants as unswitching isn't interesting for them. 128 if (isa<Constant>(OpV)) 129 continue; 130 131 // Add it to our result if loop invariant. 132 if (L.isLoopInvariant(OpV)) { 133 Invariants.push_back(OpV); 134 continue; 135 } 136 137 // If not an instruction with the same opcode, nothing we can do. 138 Instruction *OpI = dyn_cast<Instruction>(OpV); 139 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 140 continue; 141 142 // Visit this operand. 143 if (Visited.insert(OpI).second) 144 Worklist.push_back(OpI); 145 } 146 } while (!Worklist.empty()); 147 148 return Invariants; 149 } 150 151 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 152 Constant &Replacement) { 153 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 154 155 // Replace uses of LIC in the loop with the given constant. 156 // We use make_early_inc_range as set invalidates the iterator. 157 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 158 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 159 160 // Replace this use within the loop body. 161 if (UserI && L.contains(UserI)) 162 U.set(&Replacement); 163 } 164 } 165 166 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 167 /// incoming values along this edge. 168 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 169 BasicBlock &ExitBB) { 170 for (Instruction &I : ExitBB) { 171 auto *PN = dyn_cast<PHINode>(&I); 172 if (!PN) 173 // No more PHIs to check. 174 return true; 175 176 // If the incoming value for this edge isn't loop invariant the unswitch 177 // won't be trivial. 178 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 179 return false; 180 } 181 llvm_unreachable("Basic blocks should never be empty!"); 182 } 183 184 /// Insert code to test a set of loop invariant values, and conditionally branch 185 /// on them. 186 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 187 ArrayRef<Value *> Invariants, 188 bool Direction, 189 BasicBlock &UnswitchedSucc, 190 BasicBlock &NormalSucc) { 191 IRBuilder<> IRB(&BB); 192 193 Value *Cond = Direction ? IRB.CreateOr(Invariants) : 194 IRB.CreateAnd(Invariants); 195 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 196 Direction ? &NormalSucc : &UnswitchedSucc); 197 } 198 199 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 200 /// 201 /// Requires that the loop exit and unswitched basic block are the same, and 202 /// that the exiting block was a unique predecessor of that block. Rewrites the 203 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 204 /// PHI nodes from the old preheader that now contains the unswitched 205 /// terminator. 206 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 207 BasicBlock &OldExitingBB, 208 BasicBlock &OldPH) { 209 for (PHINode &PN : UnswitchedBB.phis()) { 210 // When the loop exit is directly unswitched we just need to update the 211 // incoming basic block. We loop to handle weird cases with repeated 212 // incoming blocks, but expect to typically only have one operand here. 213 for (auto i : seq<int>(0, PN.getNumOperands())) { 214 assert(PN.getIncomingBlock(i) == &OldExitingBB && 215 "Found incoming block different from unique predecessor!"); 216 PN.setIncomingBlock(i, &OldPH); 217 } 218 } 219 } 220 221 /// Rewrite the PHI nodes in the loop exit basic block and the split off 222 /// unswitched block. 223 /// 224 /// Because the exit block remains an exit from the loop, this rewrites the 225 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 226 /// nodes into the unswitched basic block to select between the value in the 227 /// old preheader and the loop exit. 228 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 229 BasicBlock &UnswitchedBB, 230 BasicBlock &OldExitingBB, 231 BasicBlock &OldPH, 232 bool FullUnswitch) { 233 assert(&ExitBB != &UnswitchedBB && 234 "Must have different loop exit and unswitched blocks!"); 235 Instruction *InsertPt = &*UnswitchedBB.begin(); 236 for (PHINode &PN : ExitBB.phis()) { 237 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 238 PN.getName() + ".split", InsertPt); 239 240 // Walk backwards over the old PHI node's inputs to minimize the cost of 241 // removing each one. We have to do this weird loop manually so that we 242 // create the same number of new incoming edges in the new PHI as we expect 243 // each case-based edge to be included in the unswitched switch in some 244 // cases. 245 // FIXME: This is really, really gross. It would be much cleaner if LLVM 246 // allowed us to create a single entry for a predecessor block without 247 // having separate entries for each "edge" even though these edges are 248 // required to produce identical results. 249 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 250 if (PN.getIncomingBlock(i) != &OldExitingBB) 251 continue; 252 253 Value *Incoming = PN.getIncomingValue(i); 254 if (FullUnswitch) 255 // No more edge from the old exiting block to the exit block. 256 PN.removeIncomingValue(i); 257 258 NewPN->addIncoming(Incoming, &OldPH); 259 } 260 261 // Now replace the old PHI with the new one and wire the old one in as an 262 // input to the new one. 263 PN.replaceAllUsesWith(NewPN); 264 NewPN->addIncoming(&PN, &ExitBB); 265 } 266 } 267 268 /// Hoist the current loop up to the innermost loop containing a remaining exit. 269 /// 270 /// Because we've removed an exit from the loop, we may have changed the set of 271 /// loops reachable and need to move the current loop up the loop nest or even 272 /// to an entirely separate nest. 273 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 274 DominatorTree &DT, LoopInfo &LI, 275 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 276 // If the loop is already at the top level, we can't hoist it anywhere. 277 Loop *OldParentL = L.getParentLoop(); 278 if (!OldParentL) 279 return; 280 281 SmallVector<BasicBlock *, 4> Exits; 282 L.getExitBlocks(Exits); 283 Loop *NewParentL = nullptr; 284 for (auto *ExitBB : Exits) 285 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 286 if (!NewParentL || NewParentL->contains(ExitL)) 287 NewParentL = ExitL; 288 289 if (NewParentL == OldParentL) 290 return; 291 292 // The new parent loop (if different) should always contain the old one. 293 if (NewParentL) 294 assert(NewParentL->contains(OldParentL) && 295 "Can only hoist this loop up the nest!"); 296 297 // The preheader will need to move with the body of this loop. However, 298 // because it isn't in this loop we also need to update the primary loop map. 299 assert(OldParentL == LI.getLoopFor(&Preheader) && 300 "Parent loop of this loop should contain this loop's preheader!"); 301 LI.changeLoopFor(&Preheader, NewParentL); 302 303 // Remove this loop from its old parent. 304 OldParentL->removeChildLoop(&L); 305 306 // Add the loop either to the new parent or as a top-level loop. 307 if (NewParentL) 308 NewParentL->addChildLoop(&L); 309 else 310 LI.addTopLevelLoop(&L); 311 312 // Remove this loops blocks from the old parent and every other loop up the 313 // nest until reaching the new parent. Also update all of these 314 // no-longer-containing loops to reflect the nesting change. 315 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 316 OldContainingL = OldContainingL->getParentLoop()) { 317 llvm::erase_if(OldContainingL->getBlocksVector(), 318 [&](const BasicBlock *BB) { 319 return BB == &Preheader || L.contains(BB); 320 }); 321 322 OldContainingL->getBlocksSet().erase(&Preheader); 323 for (BasicBlock *BB : L.blocks()) 324 OldContainingL->getBlocksSet().erase(BB); 325 326 // Because we just hoisted a loop out of this one, we have essentially 327 // created new exit paths from it. That means we need to form LCSSA PHI 328 // nodes for values used in the no-longer-nested loop. 329 formLCSSA(*OldContainingL, DT, &LI, SE); 330 331 // We shouldn't need to form dedicated exits because the exit introduced 332 // here is the (just split by unswitching) preheader. However, after trivial 333 // unswitching it is possible to get new non-dedicated exits out of parent 334 // loop so let's conservatively form dedicated exit blocks and figure out 335 // if we can optimize later. 336 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 337 /*PreserveLCSSA*/ true); 338 } 339 } 340 341 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 342 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 343 // as exiting block. 344 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 345 Loop *TopMost = LI.getLoopFor(ExitBB); 346 Loop *Current = TopMost; 347 while (Current) { 348 if (Current->isLoopExiting(ExitBB)) 349 TopMost = Current; 350 Current = Current->getParentLoop(); 351 } 352 return TopMost; 353 } 354 355 /// Unswitch a trivial branch if the condition is loop invariant. 356 /// 357 /// This routine should only be called when loop code leading to the branch has 358 /// been validated as trivial (no side effects). This routine checks if the 359 /// condition is invariant and one of the successors is a loop exit. This 360 /// allows us to unswitch without duplicating the loop, making it trivial. 361 /// 362 /// If this routine fails to unswitch the branch it returns false. 363 /// 364 /// If the branch can be unswitched, this routine splits the preheader and 365 /// hoists the branch above that split. Preserves loop simplified form 366 /// (splitting the exit block as necessary). It simplifies the branch within 367 /// the loop to an unconditional branch but doesn't remove it entirely. Further 368 /// cleanup can be done with some simplify-cfg like pass. 369 /// 370 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 371 /// invalidated by this. 372 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 373 LoopInfo &LI, ScalarEvolution *SE, 374 MemorySSAUpdater *MSSAU) { 375 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 376 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 377 378 // The loop invariant values that we want to unswitch. 379 TinyPtrVector<Value *> Invariants; 380 381 // When true, we're fully unswitching the branch rather than just unswitching 382 // some input conditions to the branch. 383 bool FullUnswitch = false; 384 385 if (L.isLoopInvariant(BI.getCondition())) { 386 Invariants.push_back(BI.getCondition()); 387 FullUnswitch = true; 388 } else { 389 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 390 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 391 if (Invariants.empty()) 392 // Couldn't find invariant inputs! 393 return false; 394 } 395 396 // Check that one of the branch's successors exits, and which one. 397 bool ExitDirection = true; 398 int LoopExitSuccIdx = 0; 399 auto *LoopExitBB = BI.getSuccessor(0); 400 if (L.contains(LoopExitBB)) { 401 ExitDirection = false; 402 LoopExitSuccIdx = 1; 403 LoopExitBB = BI.getSuccessor(1); 404 if (L.contains(LoopExitBB)) 405 return false; 406 } 407 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 408 auto *ParentBB = BI.getParent(); 409 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 410 return false; 411 412 // When unswitching only part of the branch's condition, we need the exit 413 // block to be reached directly from the partially unswitched input. This can 414 // be done when the exit block is along the true edge and the branch condition 415 // is a graph of `or` operations, or the exit block is along the false edge 416 // and the condition is a graph of `and` operations. 417 if (!FullUnswitch) { 418 if (ExitDirection) { 419 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 420 return false; 421 } else { 422 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 423 return false; 424 } 425 } 426 427 LLVM_DEBUG({ 428 dbgs() << " unswitching trivial invariant conditions for: " << BI 429 << "\n"; 430 for (Value *Invariant : Invariants) { 431 dbgs() << " " << *Invariant << " == true"; 432 if (Invariant != Invariants.back()) 433 dbgs() << " ||"; 434 dbgs() << "\n"; 435 } 436 }); 437 438 // If we have scalar evolutions, we need to invalidate them including this 439 // loop, the loop containing the exit block and the topmost parent loop 440 // exiting via LoopExitBB. 441 if (SE) { 442 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 443 SE->forgetLoop(ExitL); 444 else 445 // Forget the entire nest as this exits the entire nest. 446 SE->forgetTopmostLoop(&L); 447 } 448 449 if (MSSAU && VerifyMemorySSA) 450 MSSAU->getMemorySSA()->verifyMemorySSA(); 451 452 // Split the preheader, so that we know that there is a safe place to insert 453 // the conditional branch. We will change the preheader to have a conditional 454 // branch on LoopCond. 455 BasicBlock *OldPH = L.getLoopPreheader(); 456 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 457 458 // Now that we have a place to insert the conditional branch, create a place 459 // to branch to: this is the exit block out of the loop that we are 460 // unswitching. We need to split this if there are other loop predecessors. 461 // Because the loop is in simplified form, *any* other predecessor is enough. 462 BasicBlock *UnswitchedBB; 463 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 464 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 465 "A branch's parent isn't a predecessor!"); 466 UnswitchedBB = LoopExitBB; 467 } else { 468 UnswitchedBB = 469 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 470 } 471 472 if (MSSAU && VerifyMemorySSA) 473 MSSAU->getMemorySSA()->verifyMemorySSA(); 474 475 // Actually move the invariant uses into the unswitched position. If possible, 476 // we do this by moving the instructions, but when doing partial unswitching 477 // we do it by building a new merge of the values in the unswitched position. 478 OldPH->getTerminator()->eraseFromParent(); 479 if (FullUnswitch) { 480 // If fully unswitching, we can use the existing branch instruction. 481 // Splice it into the old PH to gate reaching the new preheader and re-point 482 // its successors. 483 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 484 BI); 485 if (MSSAU) { 486 // Temporarily clone the terminator, to make MSSA update cheaper by 487 // separating "insert edge" updates from "remove edge" ones. 488 ParentBB->getInstList().push_back(BI.clone()); 489 } else { 490 // Create a new unconditional branch that will continue the loop as a new 491 // terminator. 492 BranchInst::Create(ContinueBB, ParentBB); 493 } 494 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 495 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 496 } else { 497 // Only unswitching a subset of inputs to the condition, so we will need to 498 // build a new branch that merges the invariant inputs. 499 if (ExitDirection) 500 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 501 Instruction::Or && 502 "Must have an `or` of `i1`s for the condition!"); 503 else 504 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 505 Instruction::And && 506 "Must have an `and` of `i1`s for the condition!"); 507 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 508 *UnswitchedBB, *NewPH); 509 } 510 511 // Update the dominator tree with the added edge. 512 DT.insertEdge(OldPH, UnswitchedBB); 513 514 // After the dominator tree was updated with the added edge, update MemorySSA 515 // if available. 516 if (MSSAU) { 517 SmallVector<CFGUpdate, 1> Updates; 518 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 519 MSSAU->applyInsertUpdates(Updates, DT); 520 } 521 522 // Finish updating dominator tree and memory ssa for full unswitch. 523 if (FullUnswitch) { 524 if (MSSAU) { 525 // Remove the cloned branch instruction. 526 ParentBB->getTerminator()->eraseFromParent(); 527 // Create unconditional branch now. 528 BranchInst::Create(ContinueBB, ParentBB); 529 MSSAU->removeEdge(ParentBB, LoopExitBB); 530 } 531 DT.deleteEdge(ParentBB, LoopExitBB); 532 } 533 534 if (MSSAU && VerifyMemorySSA) 535 MSSAU->getMemorySSA()->verifyMemorySSA(); 536 537 // Rewrite the relevant PHI nodes. 538 if (UnswitchedBB == LoopExitBB) 539 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 540 else 541 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 542 *ParentBB, *OldPH, FullUnswitch); 543 544 // The constant we can replace all of our invariants with inside the loop 545 // body. If any of the invariants have a value other than this the loop won't 546 // be entered. 547 ConstantInt *Replacement = ExitDirection 548 ? ConstantInt::getFalse(BI.getContext()) 549 : ConstantInt::getTrue(BI.getContext()); 550 551 // Since this is an i1 condition we can also trivially replace uses of it 552 // within the loop with a constant. 553 for (Value *Invariant : Invariants) 554 replaceLoopInvariantUses(L, Invariant, *Replacement); 555 556 // If this was full unswitching, we may have changed the nesting relationship 557 // for this loop so hoist it to its correct parent if needed. 558 if (FullUnswitch) 559 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 560 561 if (MSSAU && VerifyMemorySSA) 562 MSSAU->getMemorySSA()->verifyMemorySSA(); 563 564 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 565 ++NumTrivial; 566 ++NumBranches; 567 return true; 568 } 569 570 /// Unswitch a trivial switch if the condition is loop invariant. 571 /// 572 /// This routine should only be called when loop code leading to the switch has 573 /// been validated as trivial (no side effects). This routine checks if the 574 /// condition is invariant and that at least one of the successors is a loop 575 /// exit. This allows us to unswitch without duplicating the loop, making it 576 /// trivial. 577 /// 578 /// If this routine fails to unswitch the switch it returns false. 579 /// 580 /// If the switch can be unswitched, this routine splits the preheader and 581 /// copies the switch above that split. If the default case is one of the 582 /// exiting cases, it copies the non-exiting cases and points them at the new 583 /// preheader. If the default case is not exiting, it copies the exiting cases 584 /// and points the default at the preheader. It preserves loop simplified form 585 /// (splitting the exit blocks as necessary). It simplifies the switch within 586 /// the loop by removing now-dead cases. If the default case is one of those 587 /// unswitched, it replaces its destination with a new basic block containing 588 /// only unreachable. Such basic blocks, while technically loop exits, are not 589 /// considered for unswitching so this is a stable transform and the same 590 /// switch will not be revisited. If after unswitching there is only a single 591 /// in-loop successor, the switch is further simplified to an unconditional 592 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 593 /// 594 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 595 /// invalidated by this. 596 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 597 LoopInfo &LI, ScalarEvolution *SE, 598 MemorySSAUpdater *MSSAU) { 599 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 600 Value *LoopCond = SI.getCondition(); 601 602 // If this isn't switching on an invariant condition, we can't unswitch it. 603 if (!L.isLoopInvariant(LoopCond)) 604 return false; 605 606 auto *ParentBB = SI.getParent(); 607 608 // The same check must be used both for the default and the exit cases. We 609 // should never leave edges from the switch instruction to a basic block that 610 // we are unswitching, hence the condition used to determine the default case 611 // needs to also be used to populate ExitCaseIndices, which is then used to 612 // remove cases from the switch. 613 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 614 // BBToCheck is not an exit block if it is inside loop L. 615 if (L.contains(&BBToCheck)) 616 return false; 617 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 618 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 619 return false; 620 // We do not unswitch a block that only has an unreachable statement, as 621 // it's possible this is a previously unswitched block. Only unswitch if 622 // either the terminator is not unreachable, or, if it is, it's not the only 623 // instruction in the block. 624 auto *TI = BBToCheck.getTerminator(); 625 bool isUnreachable = isa<UnreachableInst>(TI); 626 return !isUnreachable || 627 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 628 }; 629 630 SmallVector<int, 4> ExitCaseIndices; 631 for (auto Case : SI.cases()) 632 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 633 ExitCaseIndices.push_back(Case.getCaseIndex()); 634 BasicBlock *DefaultExitBB = nullptr; 635 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 636 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 637 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 638 DefaultExitBB = SI.getDefaultDest(); 639 } else if (ExitCaseIndices.empty()) 640 return false; 641 642 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 643 644 if (MSSAU && VerifyMemorySSA) 645 MSSAU->getMemorySSA()->verifyMemorySSA(); 646 647 // We may need to invalidate SCEVs for the outermost loop reached by any of 648 // the exits. 649 Loop *OuterL = &L; 650 651 if (DefaultExitBB) { 652 // Clear out the default destination temporarily to allow accurate 653 // predecessor lists to be examined below. 654 SI.setDefaultDest(nullptr); 655 // Check the loop containing this exit. 656 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 657 if (!ExitL || ExitL->contains(OuterL)) 658 OuterL = ExitL; 659 } 660 661 // Store the exit cases into a separate data structure and remove them from 662 // the switch. 663 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 664 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 665 4> ExitCases; 666 ExitCases.reserve(ExitCaseIndices.size()); 667 SwitchInstProfUpdateWrapper SIW(SI); 668 // We walk the case indices backwards so that we remove the last case first 669 // and don't disrupt the earlier indices. 670 for (unsigned Index : reverse(ExitCaseIndices)) { 671 auto CaseI = SI.case_begin() + Index; 672 // Compute the outer loop from this exit. 673 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 674 if (!ExitL || ExitL->contains(OuterL)) 675 OuterL = ExitL; 676 // Save the value of this case. 677 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 678 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 679 // Delete the unswitched cases. 680 SIW.removeCase(CaseI); 681 } 682 683 if (SE) { 684 if (OuterL) 685 SE->forgetLoop(OuterL); 686 else 687 SE->forgetTopmostLoop(&L); 688 } 689 690 // Check if after this all of the remaining cases point at the same 691 // successor. 692 BasicBlock *CommonSuccBB = nullptr; 693 if (SI.getNumCases() > 0 && 694 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { 695 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); 696 })) 697 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 698 if (!DefaultExitBB) { 699 // If we're not unswitching the default, we need it to match any cases to 700 // have a common successor or if we have no cases it is the common 701 // successor. 702 if (SI.getNumCases() == 0) 703 CommonSuccBB = SI.getDefaultDest(); 704 else if (SI.getDefaultDest() != CommonSuccBB) 705 CommonSuccBB = nullptr; 706 } 707 708 // Split the preheader, so that we know that there is a safe place to insert 709 // the switch. 710 BasicBlock *OldPH = L.getLoopPreheader(); 711 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 712 OldPH->getTerminator()->eraseFromParent(); 713 714 // Now add the unswitched switch. 715 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 716 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 717 718 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 719 // First, we split any exit blocks with remaining in-loop predecessors. Then 720 // we update the PHIs in one of two ways depending on if there was a split. 721 // We walk in reverse so that we split in the same order as the cases 722 // appeared. This is purely for convenience of reading the resulting IR, but 723 // it doesn't cost anything really. 724 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 725 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 726 // Handle the default exit if necessary. 727 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 728 // ranges aren't quite powerful enough yet. 729 if (DefaultExitBB) { 730 if (pred_empty(DefaultExitBB)) { 731 UnswitchedExitBBs.insert(DefaultExitBB); 732 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 733 } else { 734 auto *SplitBB = 735 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 736 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 737 *ParentBB, *OldPH, 738 /*FullUnswitch*/ true); 739 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 740 } 741 } 742 // Note that we must use a reference in the for loop so that we update the 743 // container. 744 for (auto &ExitCase : reverse(ExitCases)) { 745 // Grab a reference to the exit block in the pair so that we can update it. 746 BasicBlock *ExitBB = std::get<1>(ExitCase); 747 748 // If this case is the last edge into the exit block, we can simply reuse it 749 // as it will no longer be a loop exit. No mapping necessary. 750 if (pred_empty(ExitBB)) { 751 // Only rewrite once. 752 if (UnswitchedExitBBs.insert(ExitBB).second) 753 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 754 continue; 755 } 756 757 // Otherwise we need to split the exit block so that we retain an exit 758 // block from the loop and a target for the unswitched condition. 759 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 760 if (!SplitExitBB) { 761 // If this is the first time we see this, do the split and remember it. 762 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 763 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 764 *ParentBB, *OldPH, 765 /*FullUnswitch*/ true); 766 } 767 // Update the case pair to point to the split block. 768 std::get<1>(ExitCase) = SplitExitBB; 769 } 770 771 // Now add the unswitched cases. We do this in reverse order as we built them 772 // in reverse order. 773 for (auto &ExitCase : reverse(ExitCases)) { 774 ConstantInt *CaseVal = std::get<0>(ExitCase); 775 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 776 777 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 778 } 779 780 // If the default was unswitched, re-point it and add explicit cases for 781 // entering the loop. 782 if (DefaultExitBB) { 783 NewSIW->setDefaultDest(DefaultExitBB); 784 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 785 786 // We removed all the exit cases, so we just copy the cases to the 787 // unswitched switch. 788 for (const auto &Case : SI.cases()) 789 NewSIW.addCase(Case.getCaseValue(), NewPH, 790 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 791 } else if (DefaultCaseWeight) { 792 // We have to set branch weight of the default case. 793 uint64_t SW = *DefaultCaseWeight; 794 for (const auto &Case : SI.cases()) { 795 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 796 assert(W && 797 "case weight must be defined as default case weight is defined"); 798 SW += *W; 799 } 800 NewSIW.setSuccessorWeight(0, SW); 801 } 802 803 // If we ended up with a common successor for every path through the switch 804 // after unswitching, rewrite it to an unconditional branch to make it easy 805 // to recognize. Otherwise we potentially have to recognize the default case 806 // pointing at unreachable and other complexity. 807 if (CommonSuccBB) { 808 BasicBlock *BB = SI.getParent(); 809 // We may have had multiple edges to this common successor block, so remove 810 // them as predecessors. We skip the first one, either the default or the 811 // actual first case. 812 bool SkippedFirst = DefaultExitBB == nullptr; 813 for (auto Case : SI.cases()) { 814 assert(Case.getCaseSuccessor() == CommonSuccBB && 815 "Non-common successor!"); 816 (void)Case; 817 if (!SkippedFirst) { 818 SkippedFirst = true; 819 continue; 820 } 821 CommonSuccBB->removePredecessor(BB, 822 /*KeepOneInputPHIs*/ true); 823 } 824 // Now nuke the switch and replace it with a direct branch. 825 SIW.eraseFromParent(); 826 BranchInst::Create(CommonSuccBB, BB); 827 } else if (DefaultExitBB) { 828 assert(SI.getNumCases() > 0 && 829 "If we had no cases we'd have a common successor!"); 830 // Move the last case to the default successor. This is valid as if the 831 // default got unswitched it cannot be reached. This has the advantage of 832 // being simple and keeping the number of edges from this switch to 833 // successors the same, and avoiding any PHI update complexity. 834 auto LastCaseI = std::prev(SI.case_end()); 835 836 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 837 SIW.setSuccessorWeight( 838 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 839 SIW.removeCase(LastCaseI); 840 } 841 842 // Walk the unswitched exit blocks and the unswitched split blocks and update 843 // the dominator tree based on the CFG edits. While we are walking unordered 844 // containers here, the API for applyUpdates takes an unordered list of 845 // updates and requires them to not contain duplicates. 846 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 847 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 848 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 849 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 850 } 851 for (auto SplitUnswitchedPair : SplitExitBBMap) { 852 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 853 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 854 } 855 856 if (MSSAU) { 857 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 858 if (VerifyMemorySSA) 859 MSSAU->getMemorySSA()->verifyMemorySSA(); 860 } else { 861 DT.applyUpdates(DTUpdates); 862 } 863 864 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 865 866 // We may have changed the nesting relationship for this loop so hoist it to 867 // its correct parent if needed. 868 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 869 870 if (MSSAU && VerifyMemorySSA) 871 MSSAU->getMemorySSA()->verifyMemorySSA(); 872 873 ++NumTrivial; 874 ++NumSwitches; 875 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 876 return true; 877 } 878 879 /// This routine scans the loop to find a branch or switch which occurs before 880 /// any side effects occur. These can potentially be unswitched without 881 /// duplicating the loop. If a branch or switch is successfully unswitched the 882 /// scanning continues to see if subsequent branches or switches have become 883 /// trivial. Once all trivial candidates have been unswitched, this routine 884 /// returns. 885 /// 886 /// The return value indicates whether anything was unswitched (and therefore 887 /// changed). 888 /// 889 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 890 /// invalidated by this. 891 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 892 LoopInfo &LI, ScalarEvolution *SE, 893 MemorySSAUpdater *MSSAU) { 894 bool Changed = false; 895 896 // If loop header has only one reachable successor we should keep looking for 897 // trivial condition candidates in the successor as well. An alternative is 898 // to constant fold conditions and merge successors into loop header (then we 899 // only need to check header's terminator). The reason for not doing this in 900 // LoopUnswitch pass is that it could potentially break LoopPassManager's 901 // invariants. Folding dead branches could either eliminate the current loop 902 // or make other loops unreachable. LCSSA form might also not be preserved 903 // after deleting branches. The following code keeps traversing loop header's 904 // successors until it finds the trivial condition candidate (condition that 905 // is not a constant). Since unswitching generates branches with constant 906 // conditions, this scenario could be very common in practice. 907 BasicBlock *CurrentBB = L.getHeader(); 908 SmallPtrSet<BasicBlock *, 8> Visited; 909 Visited.insert(CurrentBB); 910 do { 911 // Check if there are any side-effecting instructions (e.g. stores, calls, 912 // volatile loads) in the part of the loop that the code *would* execute 913 // without unswitching. 914 if (MSSAU) // Possible early exit with MSSA 915 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 916 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 917 return Changed; 918 if (llvm::any_of(*CurrentBB, 919 [](Instruction &I) { return I.mayHaveSideEffects(); })) 920 return Changed; 921 922 Instruction *CurrentTerm = CurrentBB->getTerminator(); 923 924 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 925 // Don't bother trying to unswitch past a switch with a constant 926 // condition. This should be removed prior to running this pass by 927 // simplify-cfg. 928 if (isa<Constant>(SI->getCondition())) 929 return Changed; 930 931 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 932 // Couldn't unswitch this one so we're done. 933 return Changed; 934 935 // Mark that we managed to unswitch something. 936 Changed = true; 937 938 // If unswitching turned the terminator into an unconditional branch then 939 // we can continue. The unswitching logic specifically works to fold any 940 // cases it can into an unconditional branch to make it easier to 941 // recognize here. 942 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 943 if (!BI || BI->isConditional()) 944 return Changed; 945 946 CurrentBB = BI->getSuccessor(0); 947 continue; 948 } 949 950 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 951 if (!BI) 952 // We do not understand other terminator instructions. 953 return Changed; 954 955 // Don't bother trying to unswitch past an unconditional branch or a branch 956 // with a constant value. These should be removed by simplify-cfg prior to 957 // running this pass. 958 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 959 return Changed; 960 961 // Found a trivial condition candidate: non-foldable conditional branch. If 962 // we fail to unswitch this, we can't do anything else that is trivial. 963 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 964 return Changed; 965 966 // Mark that we managed to unswitch something. 967 Changed = true; 968 969 // If we only unswitched some of the conditions feeding the branch, we won't 970 // have collapsed it to a single successor. 971 BI = cast<BranchInst>(CurrentBB->getTerminator()); 972 if (BI->isConditional()) 973 return Changed; 974 975 // Follow the newly unconditional branch into its successor. 976 CurrentBB = BI->getSuccessor(0); 977 978 // When continuing, if we exit the loop or reach a previous visited block, 979 // then we can not reach any trivial condition candidates (unfoldable 980 // branch instructions or switch instructions) and no unswitch can happen. 981 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 982 983 return Changed; 984 } 985 986 /// Build the cloned blocks for an unswitched copy of the given loop. 987 /// 988 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 989 /// after the split block (`SplitBB`) that will be used to select between the 990 /// cloned and original loop. 991 /// 992 /// This routine handles cloning all of the necessary loop blocks and exit 993 /// blocks including rewriting their instructions and the relevant PHI nodes. 994 /// Any loop blocks or exit blocks which are dominated by a different successor 995 /// than the one for this clone of the loop blocks can be trivially skipped. We 996 /// use the `DominatingSucc` map to determine whether a block satisfies that 997 /// property with a simple map lookup. 998 /// 999 /// It also correctly creates the unconditional branch in the cloned 1000 /// unswitched parent block to only point at the unswitched successor. 1001 /// 1002 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1003 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1004 /// the cloned blocks (and their loops) are left without full `LoopInfo` 1005 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1006 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1007 /// instead the caller must recompute an accurate DT. It *does* correctly 1008 /// update the `AssumptionCache` provided in `AC`. 1009 static BasicBlock *buildClonedLoopBlocks( 1010 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1011 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1012 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1013 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1014 ValueToValueMapTy &VMap, 1015 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1016 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 1017 SmallVector<BasicBlock *, 4> NewBlocks; 1018 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1019 1020 // We will need to clone a bunch of blocks, wrap up the clone operation in 1021 // a helper. 1022 auto CloneBlock = [&](BasicBlock *OldBB) { 1023 // Clone the basic block and insert it before the new preheader. 1024 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1025 NewBB->moveBefore(LoopPH); 1026 1027 // Record this block and the mapping. 1028 NewBlocks.push_back(NewBB); 1029 VMap[OldBB] = NewBB; 1030 1031 return NewBB; 1032 }; 1033 1034 // We skip cloning blocks when they have a dominating succ that is not the 1035 // succ we are cloning for. 1036 auto SkipBlock = [&](BasicBlock *BB) { 1037 auto It = DominatingSucc.find(BB); 1038 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1039 }; 1040 1041 // First, clone the preheader. 1042 auto *ClonedPH = CloneBlock(LoopPH); 1043 1044 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1045 for (auto *LoopBB : L.blocks()) 1046 if (!SkipBlock(LoopBB)) 1047 CloneBlock(LoopBB); 1048 1049 // Split all the loop exit edges so that when we clone the exit blocks, if 1050 // any of the exit blocks are *also* a preheader for some other loop, we 1051 // don't create multiple predecessors entering the loop header. 1052 for (auto *ExitBB : ExitBlocks) { 1053 if (SkipBlock(ExitBB)) 1054 continue; 1055 1056 // When we are going to clone an exit, we don't need to clone all the 1057 // instructions in the exit block and we want to ensure we have an easy 1058 // place to merge the CFG, so split the exit first. This is always safe to 1059 // do because there cannot be any non-loop predecessors of a loop exit in 1060 // loop simplified form. 1061 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1062 1063 // Rearrange the names to make it easier to write test cases by having the 1064 // exit block carry the suffix rather than the merge block carrying the 1065 // suffix. 1066 MergeBB->takeName(ExitBB); 1067 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1068 1069 // Now clone the original exit block. 1070 auto *ClonedExitBB = CloneBlock(ExitBB); 1071 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1072 "Exit block should have been split to have one successor!"); 1073 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1074 "Cloned exit block has the wrong successor!"); 1075 1076 // Remap any cloned instructions and create a merge phi node for them. 1077 for (auto ZippedInsts : llvm::zip_first( 1078 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1079 llvm::make_range(ClonedExitBB->begin(), 1080 std::prev(ClonedExitBB->end())))) { 1081 Instruction &I = std::get<0>(ZippedInsts); 1082 Instruction &ClonedI = std::get<1>(ZippedInsts); 1083 1084 // The only instructions in the exit block should be PHI nodes and 1085 // potentially a landing pad. 1086 assert( 1087 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1088 "Bad instruction in exit block!"); 1089 // We should have a value map between the instruction and its clone. 1090 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1091 1092 auto *MergePN = 1093 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1094 &*MergeBB->getFirstInsertionPt()); 1095 I.replaceAllUsesWith(MergePN); 1096 MergePN->addIncoming(&I, ExitBB); 1097 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1098 } 1099 } 1100 1101 // Rewrite the instructions in the cloned blocks to refer to the instructions 1102 // in the cloned blocks. We have to do this as a second pass so that we have 1103 // everything available. Also, we have inserted new instructions which may 1104 // include assume intrinsics, so we update the assumption cache while 1105 // processing this. 1106 for (auto *ClonedBB : NewBlocks) 1107 for (Instruction &I : *ClonedBB) { 1108 RemapInstruction(&I, VMap, 1109 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1110 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1111 if (II->getIntrinsicID() == Intrinsic::assume) 1112 AC.registerAssumption(II); 1113 } 1114 1115 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1116 // have spurious incoming values. 1117 for (auto *LoopBB : L.blocks()) 1118 if (SkipBlock(LoopBB)) 1119 for (auto *SuccBB : successors(LoopBB)) 1120 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1121 for (PHINode &PN : ClonedSuccBB->phis()) 1122 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1123 1124 // Remove the cloned parent as a predecessor of any successor we ended up 1125 // cloning other than the unswitched one. 1126 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1127 for (auto *SuccBB : successors(ParentBB)) { 1128 if (SuccBB == UnswitchedSuccBB) 1129 continue; 1130 1131 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1132 if (!ClonedSuccBB) 1133 continue; 1134 1135 ClonedSuccBB->removePredecessor(ClonedParentBB, 1136 /*KeepOneInputPHIs*/ true); 1137 } 1138 1139 // Replace the cloned branch with an unconditional branch to the cloned 1140 // unswitched successor. 1141 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1142 Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 1143 // Trivial Simplification. If Terminator is a conditional branch and 1144 // condition becomes dead - erase it. 1145 Value *ClonedConditionToErase = nullptr; 1146 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 1147 ClonedConditionToErase = BI->getCondition(); 1148 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 1149 ClonedConditionToErase = SI->getCondition(); 1150 1151 ClonedTerminator->eraseFromParent(); 1152 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1153 1154 if (ClonedConditionToErase) 1155 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 1156 MSSAU); 1157 1158 // If there are duplicate entries in the PHI nodes because of multiple edges 1159 // to the unswitched successor, we need to nuke all but one as we replaced it 1160 // with a direct branch. 1161 for (PHINode &PN : ClonedSuccBB->phis()) { 1162 bool Found = false; 1163 // Loop over the incoming operands backwards so we can easily delete as we 1164 // go without invalidating the index. 1165 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1166 if (PN.getIncomingBlock(i) != ClonedParentBB) 1167 continue; 1168 if (!Found) { 1169 Found = true; 1170 continue; 1171 } 1172 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1173 } 1174 } 1175 1176 // Record the domtree updates for the new blocks. 1177 SmallPtrSet<BasicBlock *, 4> SuccSet; 1178 for (auto *ClonedBB : NewBlocks) { 1179 for (auto *SuccBB : successors(ClonedBB)) 1180 if (SuccSet.insert(SuccBB).second) 1181 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1182 SuccSet.clear(); 1183 } 1184 1185 return ClonedPH; 1186 } 1187 1188 /// Recursively clone the specified loop and all of its children. 1189 /// 1190 /// The target parent loop for the clone should be provided, or can be null if 1191 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1192 /// with the provided value map. The entire original loop must be present in 1193 /// the value map. The cloned loop is returned. 1194 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1195 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1196 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1197 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1198 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1199 for (auto *BB : OrigL.blocks()) { 1200 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1201 ClonedL.addBlockEntry(ClonedBB); 1202 if (LI.getLoopFor(BB) == &OrigL) 1203 LI.changeLoopFor(ClonedBB, &ClonedL); 1204 } 1205 }; 1206 1207 // We specially handle the first loop because it may get cloned into 1208 // a different parent and because we most commonly are cloning leaf loops. 1209 Loop *ClonedRootL = LI.AllocateLoop(); 1210 if (RootParentL) 1211 RootParentL->addChildLoop(ClonedRootL); 1212 else 1213 LI.addTopLevelLoop(ClonedRootL); 1214 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1215 1216 if (OrigRootL.isInnermost()) 1217 return ClonedRootL; 1218 1219 // If we have a nest, we can quickly clone the entire loop nest using an 1220 // iterative approach because it is a tree. We keep the cloned parent in the 1221 // data structure to avoid repeatedly querying through a map to find it. 1222 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1223 // Build up the loops to clone in reverse order as we'll clone them from the 1224 // back. 1225 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1226 LoopsToClone.push_back({ClonedRootL, ChildL}); 1227 do { 1228 Loop *ClonedParentL, *L; 1229 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1230 Loop *ClonedL = LI.AllocateLoop(); 1231 ClonedParentL->addChildLoop(ClonedL); 1232 AddClonedBlocksToLoop(*L, *ClonedL); 1233 for (Loop *ChildL : llvm::reverse(*L)) 1234 LoopsToClone.push_back({ClonedL, ChildL}); 1235 } while (!LoopsToClone.empty()); 1236 1237 return ClonedRootL; 1238 } 1239 1240 /// Build the cloned loops of an original loop from unswitching. 1241 /// 1242 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1243 /// operation. We need to re-verify that there even is a loop (as the backedge 1244 /// may not have been cloned), and even if there are remaining backedges the 1245 /// backedge set may be different. However, we know that each child loop is 1246 /// undisturbed, we only need to find where to place each child loop within 1247 /// either any parent loop or within a cloned version of the original loop. 1248 /// 1249 /// Because child loops may end up cloned outside of any cloned version of the 1250 /// original loop, multiple cloned sibling loops may be created. All of them 1251 /// are returned so that the newly introduced loop nest roots can be 1252 /// identified. 1253 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1254 const ValueToValueMapTy &VMap, LoopInfo &LI, 1255 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1256 Loop *ClonedL = nullptr; 1257 1258 auto *OrigPH = OrigL.getLoopPreheader(); 1259 auto *OrigHeader = OrigL.getHeader(); 1260 1261 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1262 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1263 1264 // We need to know the loops of the cloned exit blocks to even compute the 1265 // accurate parent loop. If we only clone exits to some parent of the 1266 // original parent, we want to clone into that outer loop. We also keep track 1267 // of the loops that our cloned exit blocks participate in. 1268 Loop *ParentL = nullptr; 1269 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1270 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1271 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1272 for (auto *ExitBB : ExitBlocks) 1273 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1274 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1275 ExitLoopMap[ClonedExitBB] = ExitL; 1276 ClonedExitsInLoops.push_back(ClonedExitBB); 1277 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1278 ParentL = ExitL; 1279 } 1280 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1281 ParentL->contains(OrigL.getParentLoop())) && 1282 "The computed parent loop should always contain (or be) the parent of " 1283 "the original loop."); 1284 1285 // We build the set of blocks dominated by the cloned header from the set of 1286 // cloned blocks out of the original loop. While not all of these will 1287 // necessarily be in the cloned loop, it is enough to establish that they 1288 // aren't in unreachable cycles, etc. 1289 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1290 for (auto *BB : OrigL.blocks()) 1291 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1292 ClonedLoopBlocks.insert(ClonedBB); 1293 1294 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1295 // skipped cloning some region of this loop which can in turn skip some of 1296 // the backedges so we have to rebuild the blocks in the loop based on the 1297 // backedges that remain after cloning. 1298 SmallVector<BasicBlock *, 16> Worklist; 1299 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1300 for (auto *Pred : predecessors(ClonedHeader)) { 1301 // The only possible non-loop header predecessor is the preheader because 1302 // we know we cloned the loop in simplified form. 1303 if (Pred == ClonedPH) 1304 continue; 1305 1306 // Because the loop was in simplified form, the only non-loop predecessor 1307 // should be the preheader. 1308 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1309 "header other than the preheader " 1310 "that is not part of the loop!"); 1311 1312 // Insert this block into the loop set and on the first visit (and if it 1313 // isn't the header we're currently walking) put it into the worklist to 1314 // recurse through. 1315 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1316 Worklist.push_back(Pred); 1317 } 1318 1319 // If we had any backedges then there *is* a cloned loop. Put the header into 1320 // the loop set and then walk the worklist backwards to find all the blocks 1321 // that remain within the loop after cloning. 1322 if (!BlocksInClonedLoop.empty()) { 1323 BlocksInClonedLoop.insert(ClonedHeader); 1324 1325 while (!Worklist.empty()) { 1326 BasicBlock *BB = Worklist.pop_back_val(); 1327 assert(BlocksInClonedLoop.count(BB) && 1328 "Didn't put block into the loop set!"); 1329 1330 // Insert any predecessors that are in the possible set into the cloned 1331 // set, and if the insert is successful, add them to the worklist. Note 1332 // that we filter on the blocks that are definitely reachable via the 1333 // backedge to the loop header so we may prune out dead code within the 1334 // cloned loop. 1335 for (auto *Pred : predecessors(BB)) 1336 if (ClonedLoopBlocks.count(Pred) && 1337 BlocksInClonedLoop.insert(Pred).second) 1338 Worklist.push_back(Pred); 1339 } 1340 1341 ClonedL = LI.AllocateLoop(); 1342 if (ParentL) { 1343 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1344 ParentL->addChildLoop(ClonedL); 1345 } else { 1346 LI.addTopLevelLoop(ClonedL); 1347 } 1348 NonChildClonedLoops.push_back(ClonedL); 1349 1350 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1351 // We don't want to just add the cloned loop blocks based on how we 1352 // discovered them. The original order of blocks was carefully built in 1353 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1354 // that logic, we just re-walk the original blocks (and those of the child 1355 // loops) and filter them as we add them into the cloned loop. 1356 for (auto *BB : OrigL.blocks()) { 1357 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1358 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1359 continue; 1360 1361 // Directly add the blocks that are only in this loop. 1362 if (LI.getLoopFor(BB) == &OrigL) { 1363 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1364 continue; 1365 } 1366 1367 // We want to manually add it to this loop and parents. 1368 // Registering it with LoopInfo will happen when we clone the top 1369 // loop for this block. 1370 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1371 PL->addBlockEntry(ClonedBB); 1372 } 1373 1374 // Now add each child loop whose header remains within the cloned loop. All 1375 // of the blocks within the loop must satisfy the same constraints as the 1376 // header so once we pass the header checks we can just clone the entire 1377 // child loop nest. 1378 for (Loop *ChildL : OrigL) { 1379 auto *ClonedChildHeader = 1380 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1381 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1382 continue; 1383 1384 #ifndef NDEBUG 1385 // We should never have a cloned child loop header but fail to have 1386 // all of the blocks for that child loop. 1387 for (auto *ChildLoopBB : ChildL->blocks()) 1388 assert(BlocksInClonedLoop.count( 1389 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1390 "Child cloned loop has a header within the cloned outer " 1391 "loop but not all of its blocks!"); 1392 #endif 1393 1394 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1395 } 1396 } 1397 1398 // Now that we've handled all the components of the original loop that were 1399 // cloned into a new loop, we still need to handle anything from the original 1400 // loop that wasn't in a cloned loop. 1401 1402 // Figure out what blocks are left to place within any loop nest containing 1403 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1404 // them. 1405 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1406 if (BlocksInClonedLoop.empty()) 1407 UnloopedBlockSet.insert(ClonedPH); 1408 for (auto *ClonedBB : ClonedLoopBlocks) 1409 if (!BlocksInClonedLoop.count(ClonedBB)) 1410 UnloopedBlockSet.insert(ClonedBB); 1411 1412 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1413 // backwards across these to process them inside out. The order shouldn't 1414 // matter as we're just trying to build up the map from inside-out; we use 1415 // the map in a more stably ordered way below. 1416 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1417 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1418 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1419 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1420 }); 1421 1422 // Populate the existing ExitLoopMap with everything reachable from each 1423 // exit, starting from the inner most exit. 1424 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1425 assert(Worklist.empty() && "Didn't clear worklist!"); 1426 1427 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1428 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1429 1430 // Walk the CFG back until we hit the cloned PH adding everything reachable 1431 // and in the unlooped set to this exit block's loop. 1432 Worklist.push_back(ExitBB); 1433 do { 1434 BasicBlock *BB = Worklist.pop_back_val(); 1435 // We can stop recursing at the cloned preheader (if we get there). 1436 if (BB == ClonedPH) 1437 continue; 1438 1439 for (BasicBlock *PredBB : predecessors(BB)) { 1440 // If this pred has already been moved to our set or is part of some 1441 // (inner) loop, no update needed. 1442 if (!UnloopedBlockSet.erase(PredBB)) { 1443 assert( 1444 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1445 "Predecessor not mapped to a loop!"); 1446 continue; 1447 } 1448 1449 // We just insert into the loop set here. We'll add these blocks to the 1450 // exit loop after we build up the set in an order that doesn't rely on 1451 // predecessor order (which in turn relies on use list order). 1452 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1453 (void)Inserted; 1454 assert(Inserted && "Should only visit an unlooped block once!"); 1455 1456 // And recurse through to its predecessors. 1457 Worklist.push_back(PredBB); 1458 } 1459 } while (!Worklist.empty()); 1460 } 1461 1462 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1463 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1464 // in their original order adding them to the correct loop. 1465 1466 // We need a stable insertion order. We use the order of the original loop 1467 // order and map into the correct parent loop. 1468 for (auto *BB : llvm::concat<BasicBlock *const>( 1469 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1470 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1471 OuterL->addBasicBlockToLoop(BB, LI); 1472 1473 #ifndef NDEBUG 1474 for (auto &BBAndL : ExitLoopMap) { 1475 auto *BB = BBAndL.first; 1476 auto *OuterL = BBAndL.second; 1477 assert(LI.getLoopFor(BB) == OuterL && 1478 "Failed to put all blocks into outer loops!"); 1479 } 1480 #endif 1481 1482 // Now that all the blocks are placed into the correct containing loop in the 1483 // absence of child loops, find all the potentially cloned child loops and 1484 // clone them into whatever outer loop we placed their header into. 1485 for (Loop *ChildL : OrigL) { 1486 auto *ClonedChildHeader = 1487 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1488 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1489 continue; 1490 1491 #ifndef NDEBUG 1492 for (auto *ChildLoopBB : ChildL->blocks()) 1493 assert(VMap.count(ChildLoopBB) && 1494 "Cloned a child loop header but not all of that loops blocks!"); 1495 #endif 1496 1497 NonChildClonedLoops.push_back(cloneLoopNest( 1498 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1499 } 1500 } 1501 1502 static void 1503 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1504 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1505 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1506 // Find all the dead clones, and remove them from their successors. 1507 SmallVector<BasicBlock *, 16> DeadBlocks; 1508 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1509 for (auto &VMap : VMaps) 1510 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1511 if (!DT.isReachableFromEntry(ClonedBB)) { 1512 for (BasicBlock *SuccBB : successors(ClonedBB)) 1513 SuccBB->removePredecessor(ClonedBB); 1514 DeadBlocks.push_back(ClonedBB); 1515 } 1516 1517 // Remove all MemorySSA in the dead blocks 1518 if (MSSAU) { 1519 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1520 DeadBlocks.end()); 1521 MSSAU->removeBlocks(DeadBlockSet); 1522 } 1523 1524 // Drop any remaining references to break cycles. 1525 for (BasicBlock *BB : DeadBlocks) 1526 BB->dropAllReferences(); 1527 // Erase them from the IR. 1528 for (BasicBlock *BB : DeadBlocks) 1529 BB->eraseFromParent(); 1530 } 1531 1532 static void deleteDeadBlocksFromLoop(Loop &L, 1533 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1534 DominatorTree &DT, LoopInfo &LI, 1535 MemorySSAUpdater *MSSAU) { 1536 // Find all the dead blocks tied to this loop, and remove them from their 1537 // successors. 1538 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1539 1540 // Start with loop/exit blocks and get a transitive closure of reachable dead 1541 // blocks. 1542 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1543 ExitBlocks.end()); 1544 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1545 while (!DeathCandidates.empty()) { 1546 auto *BB = DeathCandidates.pop_back_val(); 1547 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1548 for (BasicBlock *SuccBB : successors(BB)) { 1549 SuccBB->removePredecessor(BB); 1550 DeathCandidates.push_back(SuccBB); 1551 } 1552 DeadBlockSet.insert(BB); 1553 } 1554 } 1555 1556 // Remove all MemorySSA in the dead blocks 1557 if (MSSAU) 1558 MSSAU->removeBlocks(DeadBlockSet); 1559 1560 // Filter out the dead blocks from the exit blocks list so that it can be 1561 // used in the caller. 1562 llvm::erase_if(ExitBlocks, 1563 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1564 1565 // Walk from this loop up through its parents removing all of the dead blocks. 1566 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1567 for (auto *BB : DeadBlockSet) 1568 ParentL->getBlocksSet().erase(BB); 1569 llvm::erase_if(ParentL->getBlocksVector(), 1570 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1571 } 1572 1573 // Now delete the dead child loops. This raw delete will clear them 1574 // recursively. 1575 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1576 if (!DeadBlockSet.count(ChildL->getHeader())) 1577 return false; 1578 1579 assert(llvm::all_of(ChildL->blocks(), 1580 [&](BasicBlock *ChildBB) { 1581 return DeadBlockSet.count(ChildBB); 1582 }) && 1583 "If the child loop header is dead all blocks in the child loop must " 1584 "be dead as well!"); 1585 LI.destroy(ChildL); 1586 return true; 1587 }); 1588 1589 // Remove the loop mappings for the dead blocks and drop all the references 1590 // from these blocks to others to handle cyclic references as we start 1591 // deleting the blocks themselves. 1592 for (auto *BB : DeadBlockSet) { 1593 // Check that the dominator tree has already been updated. 1594 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1595 LI.changeLoopFor(BB, nullptr); 1596 // Drop all uses of the instructions to make sure we won't have dangling 1597 // uses in other blocks. 1598 for (auto &I : *BB) 1599 if (!I.use_empty()) 1600 I.replaceAllUsesWith(UndefValue::get(I.getType())); 1601 BB->dropAllReferences(); 1602 } 1603 1604 // Actually delete the blocks now that they've been fully unhooked from the 1605 // IR. 1606 for (auto *BB : DeadBlockSet) 1607 BB->eraseFromParent(); 1608 } 1609 1610 /// Recompute the set of blocks in a loop after unswitching. 1611 /// 1612 /// This walks from the original headers predecessors to rebuild the loop. We 1613 /// take advantage of the fact that new blocks can't have been added, and so we 1614 /// filter by the original loop's blocks. This also handles potentially 1615 /// unreachable code that we don't want to explore but might be found examining 1616 /// the predecessors of the header. 1617 /// 1618 /// If the original loop is no longer a loop, this will return an empty set. If 1619 /// it remains a loop, all the blocks within it will be added to the set 1620 /// (including those blocks in inner loops). 1621 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1622 LoopInfo &LI) { 1623 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1624 1625 auto *PH = L.getLoopPreheader(); 1626 auto *Header = L.getHeader(); 1627 1628 // A worklist to use while walking backwards from the header. 1629 SmallVector<BasicBlock *, 16> Worklist; 1630 1631 // First walk the predecessors of the header to find the backedges. This will 1632 // form the basis of our walk. 1633 for (auto *Pred : predecessors(Header)) { 1634 // Skip the preheader. 1635 if (Pred == PH) 1636 continue; 1637 1638 // Because the loop was in simplified form, the only non-loop predecessor 1639 // is the preheader. 1640 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1641 "than the preheader that is not part of the " 1642 "loop!"); 1643 1644 // Insert this block into the loop set and on the first visit and, if it 1645 // isn't the header we're currently walking, put it into the worklist to 1646 // recurse through. 1647 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1648 Worklist.push_back(Pred); 1649 } 1650 1651 // If no backedges were found, we're done. 1652 if (LoopBlockSet.empty()) 1653 return LoopBlockSet; 1654 1655 // We found backedges, recurse through them to identify the loop blocks. 1656 while (!Worklist.empty()) { 1657 BasicBlock *BB = Worklist.pop_back_val(); 1658 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1659 1660 // No need to walk past the header. 1661 if (BB == Header) 1662 continue; 1663 1664 // Because we know the inner loop structure remains valid we can use the 1665 // loop structure to jump immediately across the entire nested loop. 1666 // Further, because it is in loop simplified form, we can directly jump 1667 // to its preheader afterward. 1668 if (Loop *InnerL = LI.getLoopFor(BB)) 1669 if (InnerL != &L) { 1670 assert(L.contains(InnerL) && 1671 "Should not reach a loop *outside* this loop!"); 1672 // The preheader is the only possible predecessor of the loop so 1673 // insert it into the set and check whether it was already handled. 1674 auto *InnerPH = InnerL->getLoopPreheader(); 1675 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1676 "but not contain the inner loop " 1677 "preheader!"); 1678 if (!LoopBlockSet.insert(InnerPH).second) 1679 // The only way to reach the preheader is through the loop body 1680 // itself so if it has been visited the loop is already handled. 1681 continue; 1682 1683 // Insert all of the blocks (other than those already present) into 1684 // the loop set. We expect at least the block that led us to find the 1685 // inner loop to be in the block set, but we may also have other loop 1686 // blocks if they were already enqueued as predecessors of some other 1687 // outer loop block. 1688 for (auto *InnerBB : InnerL->blocks()) { 1689 if (InnerBB == BB) { 1690 assert(LoopBlockSet.count(InnerBB) && 1691 "Block should already be in the set!"); 1692 continue; 1693 } 1694 1695 LoopBlockSet.insert(InnerBB); 1696 } 1697 1698 // Add the preheader to the worklist so we will continue past the 1699 // loop body. 1700 Worklist.push_back(InnerPH); 1701 continue; 1702 } 1703 1704 // Insert any predecessors that were in the original loop into the new 1705 // set, and if the insert is successful, add them to the worklist. 1706 for (auto *Pred : predecessors(BB)) 1707 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1708 Worklist.push_back(Pred); 1709 } 1710 1711 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1712 1713 // We've found all the blocks participating in the loop, return our completed 1714 // set. 1715 return LoopBlockSet; 1716 } 1717 1718 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1719 /// 1720 /// The removal may have removed some child loops entirely but cannot have 1721 /// disturbed any remaining child loops. However, they may need to be hoisted 1722 /// to the parent loop (or to be top-level loops). The original loop may be 1723 /// completely removed. 1724 /// 1725 /// The sibling loops resulting from this update are returned. If the original 1726 /// loop remains a valid loop, it will be the first entry in this list with all 1727 /// of the newly sibling loops following it. 1728 /// 1729 /// Returns true if the loop remains a loop after unswitching, and false if it 1730 /// is no longer a loop after unswitching (and should not continue to be 1731 /// referenced). 1732 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1733 LoopInfo &LI, 1734 SmallVectorImpl<Loop *> &HoistedLoops) { 1735 auto *PH = L.getLoopPreheader(); 1736 1737 // Compute the actual parent loop from the exit blocks. Because we may have 1738 // pruned some exits the loop may be different from the original parent. 1739 Loop *ParentL = nullptr; 1740 SmallVector<Loop *, 4> ExitLoops; 1741 SmallVector<BasicBlock *, 4> ExitsInLoops; 1742 ExitsInLoops.reserve(ExitBlocks.size()); 1743 for (auto *ExitBB : ExitBlocks) 1744 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1745 ExitLoops.push_back(ExitL); 1746 ExitsInLoops.push_back(ExitBB); 1747 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1748 ParentL = ExitL; 1749 } 1750 1751 // Recompute the blocks participating in this loop. This may be empty if it 1752 // is no longer a loop. 1753 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1754 1755 // If we still have a loop, we need to re-set the loop's parent as the exit 1756 // block set changing may have moved it within the loop nest. Note that this 1757 // can only happen when this loop has a parent as it can only hoist the loop 1758 // *up* the nest. 1759 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1760 // Remove this loop's (original) blocks from all of the intervening loops. 1761 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1762 IL = IL->getParentLoop()) { 1763 IL->getBlocksSet().erase(PH); 1764 for (auto *BB : L.blocks()) 1765 IL->getBlocksSet().erase(BB); 1766 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1767 return BB == PH || L.contains(BB); 1768 }); 1769 } 1770 1771 LI.changeLoopFor(PH, ParentL); 1772 L.getParentLoop()->removeChildLoop(&L); 1773 if (ParentL) 1774 ParentL->addChildLoop(&L); 1775 else 1776 LI.addTopLevelLoop(&L); 1777 } 1778 1779 // Now we update all the blocks which are no longer within the loop. 1780 auto &Blocks = L.getBlocksVector(); 1781 auto BlocksSplitI = 1782 LoopBlockSet.empty() 1783 ? Blocks.begin() 1784 : std::stable_partition( 1785 Blocks.begin(), Blocks.end(), 1786 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1787 1788 // Before we erase the list of unlooped blocks, build a set of them. 1789 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1790 if (LoopBlockSet.empty()) 1791 UnloopedBlocks.insert(PH); 1792 1793 // Now erase these blocks from the loop. 1794 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1795 L.getBlocksSet().erase(BB); 1796 Blocks.erase(BlocksSplitI, Blocks.end()); 1797 1798 // Sort the exits in ascending loop depth, we'll work backwards across these 1799 // to process them inside out. 1800 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1801 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1802 }); 1803 1804 // We'll build up a set for each exit loop. 1805 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1806 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1807 1808 auto RemoveUnloopedBlocksFromLoop = 1809 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1810 for (auto *BB : UnloopedBlocks) 1811 L.getBlocksSet().erase(BB); 1812 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1813 return UnloopedBlocks.count(BB); 1814 }); 1815 }; 1816 1817 SmallVector<BasicBlock *, 16> Worklist; 1818 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1819 assert(Worklist.empty() && "Didn't clear worklist!"); 1820 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1821 1822 // Grab the next exit block, in decreasing loop depth order. 1823 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1824 Loop &ExitL = *LI.getLoopFor(ExitBB); 1825 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1826 1827 // Erase all of the unlooped blocks from the loops between the previous 1828 // exit loop and this exit loop. This works because the ExitInLoops list is 1829 // sorted in increasing order of loop depth and thus we visit loops in 1830 // decreasing order of loop depth. 1831 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1832 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1833 1834 // Walk the CFG back until we hit the cloned PH adding everything reachable 1835 // and in the unlooped set to this exit block's loop. 1836 Worklist.push_back(ExitBB); 1837 do { 1838 BasicBlock *BB = Worklist.pop_back_val(); 1839 // We can stop recursing at the cloned preheader (if we get there). 1840 if (BB == PH) 1841 continue; 1842 1843 for (BasicBlock *PredBB : predecessors(BB)) { 1844 // If this pred has already been moved to our set or is part of some 1845 // (inner) loop, no update needed. 1846 if (!UnloopedBlocks.erase(PredBB)) { 1847 assert((NewExitLoopBlocks.count(PredBB) || 1848 ExitL.contains(LI.getLoopFor(PredBB))) && 1849 "Predecessor not in a nested loop (or already visited)!"); 1850 continue; 1851 } 1852 1853 // We just insert into the loop set here. We'll add these blocks to the 1854 // exit loop after we build up the set in a deterministic order rather 1855 // than the predecessor-influenced visit order. 1856 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1857 (void)Inserted; 1858 assert(Inserted && "Should only visit an unlooped block once!"); 1859 1860 // And recurse through to its predecessors. 1861 Worklist.push_back(PredBB); 1862 } 1863 } while (!Worklist.empty()); 1864 1865 // If blocks in this exit loop were directly part of the original loop (as 1866 // opposed to a child loop) update the map to point to this exit loop. This 1867 // just updates a map and so the fact that the order is unstable is fine. 1868 for (auto *BB : NewExitLoopBlocks) 1869 if (Loop *BBL = LI.getLoopFor(BB)) 1870 if (BBL == &L || !L.contains(BBL)) 1871 LI.changeLoopFor(BB, &ExitL); 1872 1873 // We will remove the remaining unlooped blocks from this loop in the next 1874 // iteration or below. 1875 NewExitLoopBlocks.clear(); 1876 } 1877 1878 // Any remaining unlooped blocks are no longer part of any loop unless they 1879 // are part of some child loop. 1880 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1881 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1882 for (auto *BB : UnloopedBlocks) 1883 if (Loop *BBL = LI.getLoopFor(BB)) 1884 if (BBL == &L || !L.contains(BBL)) 1885 LI.changeLoopFor(BB, nullptr); 1886 1887 // Sink all the child loops whose headers are no longer in the loop set to 1888 // the parent (or to be top level loops). We reach into the loop and directly 1889 // update its subloop vector to make this batch update efficient. 1890 auto &SubLoops = L.getSubLoopsVector(); 1891 auto SubLoopsSplitI = 1892 LoopBlockSet.empty() 1893 ? SubLoops.begin() 1894 : std::stable_partition( 1895 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1896 return LoopBlockSet.count(SubL->getHeader()); 1897 }); 1898 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1899 HoistedLoops.push_back(HoistedL); 1900 HoistedL->setParentLoop(nullptr); 1901 1902 // To compute the new parent of this hoisted loop we look at where we 1903 // placed the preheader above. We can't lookup the header itself because we 1904 // retained the mapping from the header to the hoisted loop. But the 1905 // preheader and header should have the exact same new parent computed 1906 // based on the set of exit blocks from the original loop as the preheader 1907 // is a predecessor of the header and so reached in the reverse walk. And 1908 // because the loops were all in simplified form the preheader of the 1909 // hoisted loop can't be part of some *other* loop. 1910 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1911 NewParentL->addChildLoop(HoistedL); 1912 else 1913 LI.addTopLevelLoop(HoistedL); 1914 } 1915 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1916 1917 // Actually delete the loop if nothing remained within it. 1918 if (Blocks.empty()) { 1919 assert(SubLoops.empty() && 1920 "Failed to remove all subloops from the original loop!"); 1921 if (Loop *ParentL = L.getParentLoop()) 1922 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1923 else 1924 LI.removeLoop(llvm::find(LI, &L)); 1925 LI.destroy(&L); 1926 return false; 1927 } 1928 1929 return true; 1930 } 1931 1932 /// Helper to visit a dominator subtree, invoking a callable on each node. 1933 /// 1934 /// Returning false at any point will stop walking past that node of the tree. 1935 template <typename CallableT> 1936 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1937 SmallVector<DomTreeNode *, 4> DomWorklist; 1938 DomWorklist.push_back(DT[BB]); 1939 #ifndef NDEBUG 1940 SmallPtrSet<DomTreeNode *, 4> Visited; 1941 Visited.insert(DT[BB]); 1942 #endif 1943 do { 1944 DomTreeNode *N = DomWorklist.pop_back_val(); 1945 1946 // Visit this node. 1947 if (!Callable(N->getBlock())) 1948 continue; 1949 1950 // Accumulate the child nodes. 1951 for (DomTreeNode *ChildN : *N) { 1952 assert(Visited.insert(ChildN).second && 1953 "Cannot visit a node twice when walking a tree!"); 1954 DomWorklist.push_back(ChildN); 1955 } 1956 } while (!DomWorklist.empty()); 1957 } 1958 1959 static void unswitchNontrivialInvariants( 1960 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1961 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1962 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1963 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 1964 auto *ParentBB = TI.getParent(); 1965 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1966 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1967 1968 // We can only unswitch switches, conditional branches with an invariant 1969 // condition, or combining invariant conditions with an instruction. 1970 assert((SI || (BI && BI->isConditional())) && 1971 "Can only unswitch switches and conditional branch!"); 1972 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1973 if (FullUnswitch) 1974 assert(Invariants.size() == 1 && 1975 "Cannot have other invariants with full unswitching!"); 1976 else 1977 assert(isa<Instruction>(BI->getCondition()) && 1978 "Partial unswitching requires an instruction as the condition!"); 1979 1980 if (MSSAU && VerifyMemorySSA) 1981 MSSAU->getMemorySSA()->verifyMemorySSA(); 1982 1983 // Constant and BBs tracking the cloned and continuing successor. When we are 1984 // unswitching the entire condition, this can just be trivially chosen to 1985 // unswitch towards `true`. However, when we are unswitching a set of 1986 // invariants combined with `and` or `or`, the combining operation determines 1987 // the best direction to unswitch: we want to unswitch the direction that will 1988 // collapse the branch. 1989 bool Direction = true; 1990 int ClonedSucc = 0; 1991 if (!FullUnswitch) { 1992 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1993 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1994 Instruction::And && 1995 "Only `or` and `and` instructions can combine invariants being " 1996 "unswitched."); 1997 Direction = false; 1998 ClonedSucc = 1; 1999 } 2000 } 2001 2002 BasicBlock *RetainedSuccBB = 2003 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 2004 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 2005 if (BI) 2006 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 2007 else 2008 for (auto Case : SI->cases()) 2009 if (Case.getCaseSuccessor() != RetainedSuccBB) 2010 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 2011 2012 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 2013 "Should not unswitch the same successor we are retaining!"); 2014 2015 // The branch should be in this exact loop. Any inner loop's invariant branch 2016 // should be handled by unswitching that inner loop. The caller of this 2017 // routine should filter out any candidates that remain (but were skipped for 2018 // whatever reason). 2019 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2020 2021 // Compute the parent loop now before we start hacking on things. 2022 Loop *ParentL = L.getParentLoop(); 2023 // Get blocks in RPO order for MSSA update, before changing the CFG. 2024 LoopBlocksRPO LBRPO(&L); 2025 if (MSSAU) 2026 LBRPO.perform(&LI); 2027 2028 // Compute the outer-most loop containing one of our exit blocks. This is the 2029 // furthest up our loopnest which can be mutated, which we will use below to 2030 // update things. 2031 Loop *OuterExitL = &L; 2032 for (auto *ExitBB : ExitBlocks) { 2033 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2034 if (!NewOuterExitL) { 2035 // We exited the entire nest with this block, so we're done. 2036 OuterExitL = nullptr; 2037 break; 2038 } 2039 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2040 OuterExitL = NewOuterExitL; 2041 } 2042 2043 // At this point, we're definitely going to unswitch something so invalidate 2044 // any cached information in ScalarEvolution for the outer most loop 2045 // containing an exit block and all nested loops. 2046 if (SE) { 2047 if (OuterExitL) 2048 SE->forgetLoop(OuterExitL); 2049 else 2050 SE->forgetTopmostLoop(&L); 2051 } 2052 2053 // If the edge from this terminator to a successor dominates that successor, 2054 // store a map from each block in its dominator subtree to it. This lets us 2055 // tell when cloning for a particular successor if a block is dominated by 2056 // some *other* successor with a single data structure. We use this to 2057 // significantly reduce cloning. 2058 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2059 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2060 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2061 if (SuccBB->getUniquePredecessor() || 2062 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2063 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2064 })) 2065 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2066 DominatingSucc[BB] = SuccBB; 2067 return true; 2068 }); 2069 2070 // Split the preheader, so that we know that there is a safe place to insert 2071 // the conditional branch. We will change the preheader to have a conditional 2072 // branch on LoopCond. The original preheader will become the split point 2073 // between the unswitched versions, and we will have a new preheader for the 2074 // original loop. 2075 BasicBlock *SplitBB = L.getLoopPreheader(); 2076 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2077 2078 // Keep track of the dominator tree updates needed. 2079 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2080 2081 // Clone the loop for each unswitched successor. 2082 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2083 VMaps.reserve(UnswitchedSuccBBs.size()); 2084 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2085 for (auto *SuccBB : UnswitchedSuccBBs) { 2086 VMaps.emplace_back(new ValueToValueMapTy()); 2087 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2088 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2089 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2090 } 2091 2092 // Drop metadata if we may break its semantics by moving this instr into the 2093 // split block. 2094 if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 2095 if (DropNonTrivialImplicitNullChecks) 2096 // Do not spend time trying to understand if we can keep it, just drop it 2097 // to save compile time. 2098 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2099 else { 2100 // It is only legal to preserve make.implicit metadata if we are 2101 // guaranteed no reach implicit null check after following this branch. 2102 ICFLoopSafetyInfo SafetyInfo; 2103 SafetyInfo.computeLoopSafetyInfo(&L); 2104 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2105 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2106 } 2107 } 2108 2109 // The stitching of the branched code back together depends on whether we're 2110 // doing full unswitching or not with the exception that we always want to 2111 // nuke the initial terminator placed in the split block. 2112 SplitBB->getTerminator()->eraseFromParent(); 2113 if (FullUnswitch) { 2114 // Splice the terminator from the original loop and rewrite its 2115 // successors. 2116 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2117 2118 // Keep a clone of the terminator for MSSA updates. 2119 Instruction *NewTI = TI.clone(); 2120 ParentBB->getInstList().push_back(NewTI); 2121 2122 // First wire up the moved terminator to the preheaders. 2123 if (BI) { 2124 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2125 BI->setSuccessor(ClonedSucc, ClonedPH); 2126 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2127 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2128 } else { 2129 assert(SI && "Must either be a branch or switch!"); 2130 2131 // Walk the cases and directly update their successors. 2132 assert(SI->getDefaultDest() == RetainedSuccBB && 2133 "Not retaining default successor!"); 2134 SI->setDefaultDest(LoopPH); 2135 for (auto &Case : SI->cases()) 2136 if (Case.getCaseSuccessor() == RetainedSuccBB) 2137 Case.setSuccessor(LoopPH); 2138 else 2139 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2140 2141 // We need to use the set to populate domtree updates as even when there 2142 // are multiple cases pointing at the same successor we only want to 2143 // remove and insert one edge in the domtree. 2144 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2145 DTUpdates.push_back( 2146 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2147 } 2148 2149 if (MSSAU) { 2150 DT.applyUpdates(DTUpdates); 2151 DTUpdates.clear(); 2152 2153 // Remove all but one edge to the retained block and all unswitched 2154 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2155 // when we know we only keep a single edge for each case. 2156 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2157 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2158 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2159 2160 for (auto &VMap : VMaps) 2161 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2162 /*IgnoreIncomingWithNoClones=*/true); 2163 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2164 2165 // Remove all edges to unswitched blocks. 2166 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2167 MSSAU->removeEdge(ParentBB, SuccBB); 2168 } 2169 2170 // Now unhook the successor relationship as we'll be replacing 2171 // the terminator with a direct branch. This is much simpler for branches 2172 // than switches so we handle those first. 2173 if (BI) { 2174 // Remove the parent as a predecessor of the unswitched successor. 2175 assert(UnswitchedSuccBBs.size() == 1 && 2176 "Only one possible unswitched block for a branch!"); 2177 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2178 UnswitchedSuccBB->removePredecessor(ParentBB, 2179 /*KeepOneInputPHIs*/ true); 2180 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2181 } else { 2182 // Note that we actually want to remove the parent block as a predecessor 2183 // of *every* case successor. The case successor is either unswitched, 2184 // completely eliminating an edge from the parent to that successor, or it 2185 // is a duplicate edge to the retained successor as the retained successor 2186 // is always the default successor and as we'll replace this with a direct 2187 // branch we no longer need the duplicate entries in the PHI nodes. 2188 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2189 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2190 "Not retaining default successor!"); 2191 for (auto &Case : NewSI->cases()) 2192 Case.getCaseSuccessor()->removePredecessor( 2193 ParentBB, 2194 /*KeepOneInputPHIs*/ true); 2195 2196 // We need to use the set to populate domtree updates as even when there 2197 // are multiple cases pointing at the same successor we only want to 2198 // remove and insert one edge in the domtree. 2199 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2200 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2201 } 2202 2203 // After MSSAU update, remove the cloned terminator instruction NewTI. 2204 ParentBB->getTerminator()->eraseFromParent(); 2205 2206 // Create a new unconditional branch to the continuing block (as opposed to 2207 // the one cloned). 2208 BranchInst::Create(RetainedSuccBB, ParentBB); 2209 } else { 2210 assert(BI && "Only branches have partial unswitching."); 2211 assert(UnswitchedSuccBBs.size() == 1 && 2212 "Only one possible unswitched block for a branch!"); 2213 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2214 // When doing a partial unswitch, we have to do a bit more work to build up 2215 // the branch in the split block. 2216 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2217 *ClonedPH, *LoopPH); 2218 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2219 2220 if (MSSAU) { 2221 DT.applyUpdates(DTUpdates); 2222 DTUpdates.clear(); 2223 2224 // Perform MSSA cloning updates. 2225 for (auto &VMap : VMaps) 2226 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2227 /*IgnoreIncomingWithNoClones=*/true); 2228 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2229 } 2230 } 2231 2232 // Apply the updates accumulated above to get an up-to-date dominator tree. 2233 DT.applyUpdates(DTUpdates); 2234 2235 // Now that we have an accurate dominator tree, first delete the dead cloned 2236 // blocks so that we can accurately build any cloned loops. It is important to 2237 // not delete the blocks from the original loop yet because we still want to 2238 // reference the original loop to understand the cloned loop's structure. 2239 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2240 2241 // Build the cloned loop structure itself. This may be substantially 2242 // different from the original structure due to the simplified CFG. This also 2243 // handles inserting all the cloned blocks into the correct loops. 2244 SmallVector<Loop *, 4> NonChildClonedLoops; 2245 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2246 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2247 2248 // Now that our cloned loops have been built, we can update the original loop. 2249 // First we delete the dead blocks from it and then we rebuild the loop 2250 // structure taking these deletions into account. 2251 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2252 2253 if (MSSAU && VerifyMemorySSA) 2254 MSSAU->getMemorySSA()->verifyMemorySSA(); 2255 2256 SmallVector<Loop *, 4> HoistedLoops; 2257 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2258 2259 if (MSSAU && VerifyMemorySSA) 2260 MSSAU->getMemorySSA()->verifyMemorySSA(); 2261 2262 // This transformation has a high risk of corrupting the dominator tree, and 2263 // the below steps to rebuild loop structures will result in hard to debug 2264 // errors in that case so verify that the dominator tree is sane first. 2265 // FIXME: Remove this when the bugs stop showing up and rely on existing 2266 // verification steps. 2267 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2268 2269 if (BI) { 2270 // If we unswitched a branch which collapses the condition to a known 2271 // constant we want to replace all the uses of the invariants within both 2272 // the original and cloned blocks. We do this here so that we can use the 2273 // now updated dominator tree to identify which side the users are on. 2274 assert(UnswitchedSuccBBs.size() == 1 && 2275 "Only one possible unswitched block for a branch!"); 2276 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2277 2278 // When considering multiple partially-unswitched invariants 2279 // we cant just go replace them with constants in both branches. 2280 // 2281 // For 'AND' we infer that true branch ("continue") means true 2282 // for each invariant operand. 2283 // For 'OR' we can infer that false branch ("continue") means false 2284 // for each invariant operand. 2285 // So it happens that for multiple-partial case we dont replace 2286 // in the unswitched branch. 2287 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2288 2289 ConstantInt *UnswitchedReplacement = 2290 Direction ? ConstantInt::getTrue(BI->getContext()) 2291 : ConstantInt::getFalse(BI->getContext()); 2292 ConstantInt *ContinueReplacement = 2293 Direction ? ConstantInt::getFalse(BI->getContext()) 2294 : ConstantInt::getTrue(BI->getContext()); 2295 for (Value *Invariant : Invariants) 2296 // Use make_early_inc_range here as set invalidates the iterator. 2297 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 2298 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 2299 if (!UserI) 2300 continue; 2301 2302 // Replace it with the 'continue' side if in the main loop body, and the 2303 // unswitched if in the cloned blocks. 2304 if (DT.dominates(LoopPH, UserI->getParent())) 2305 U.set(ContinueReplacement); 2306 else if (ReplaceUnswitched && 2307 DT.dominates(ClonedPH, UserI->getParent())) 2308 U.set(UnswitchedReplacement); 2309 } 2310 } 2311 2312 // We can change which blocks are exit blocks of all the cloned sibling 2313 // loops, the current loop, and any parent loops which shared exit blocks 2314 // with the current loop. As a consequence, we need to re-form LCSSA for 2315 // them. But we shouldn't need to re-form LCSSA for any child loops. 2316 // FIXME: This could be made more efficient by tracking which exit blocks are 2317 // new, and focusing on them, but that isn't likely to be necessary. 2318 // 2319 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2320 // loop nest and update every loop that could have had its exits changed. We 2321 // also need to cover any intervening loops. We add all of these loops to 2322 // a list and sort them by loop depth to achieve this without updating 2323 // unnecessary loops. 2324 auto UpdateLoop = [&](Loop &UpdateL) { 2325 #ifndef NDEBUG 2326 UpdateL.verifyLoop(); 2327 for (Loop *ChildL : UpdateL) { 2328 ChildL->verifyLoop(); 2329 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2330 "Perturbed a child loop's LCSSA form!"); 2331 } 2332 #endif 2333 // First build LCSSA for this loop so that we can preserve it when 2334 // forming dedicated exits. We don't want to perturb some other loop's 2335 // LCSSA while doing that CFG edit. 2336 formLCSSA(UpdateL, DT, &LI, SE); 2337 2338 // For loops reached by this loop's original exit blocks we may 2339 // introduced new, non-dedicated exits. At least try to re-form dedicated 2340 // exits for these loops. This may fail if they couldn't have dedicated 2341 // exits to start with. 2342 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2343 }; 2344 2345 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2346 // and we can do it in any order as they don't nest relative to each other. 2347 // 2348 // Also check if any of the loops we have updated have become top-level loops 2349 // as that will necessitate widening the outer loop scope. 2350 for (Loop *UpdatedL : 2351 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2352 UpdateLoop(*UpdatedL); 2353 if (UpdatedL->isOutermost()) 2354 OuterExitL = nullptr; 2355 } 2356 if (IsStillLoop) { 2357 UpdateLoop(L); 2358 if (L.isOutermost()) 2359 OuterExitL = nullptr; 2360 } 2361 2362 // If the original loop had exit blocks, walk up through the outer most loop 2363 // of those exit blocks to update LCSSA and form updated dedicated exits. 2364 if (OuterExitL != &L) 2365 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2366 OuterL = OuterL->getParentLoop()) 2367 UpdateLoop(*OuterL); 2368 2369 #ifndef NDEBUG 2370 // Verify the entire loop structure to catch any incorrect updates before we 2371 // progress in the pass pipeline. 2372 LI.verify(DT); 2373 #endif 2374 2375 // Now that we've unswitched something, make callbacks to report the changes. 2376 // For that we need to merge together the updated loops and the cloned loops 2377 // and check whether the original loop survived. 2378 SmallVector<Loop *, 4> SibLoops; 2379 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2380 if (UpdatedL->getParentLoop() == ParentL) 2381 SibLoops.push_back(UpdatedL); 2382 UnswitchCB(IsStillLoop, SibLoops); 2383 2384 if (MSSAU && VerifyMemorySSA) 2385 MSSAU->getMemorySSA()->verifyMemorySSA(); 2386 2387 if (BI) 2388 ++NumBranches; 2389 else 2390 ++NumSwitches; 2391 } 2392 2393 /// Recursively compute the cost of a dominator subtree based on the per-block 2394 /// cost map provided. 2395 /// 2396 /// The recursive computation is memozied into the provided DT-indexed cost map 2397 /// to allow querying it for most nodes in the domtree without it becoming 2398 /// quadratic. 2399 static InstructionCost computeDomSubtreeCost( 2400 DomTreeNode &N, 2401 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, 2402 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { 2403 // Don't accumulate cost (or recurse through) blocks not in our block cost 2404 // map and thus not part of the duplication cost being considered. 2405 auto BBCostIt = BBCostMap.find(N.getBlock()); 2406 if (BBCostIt == BBCostMap.end()) 2407 return 0; 2408 2409 // Lookup this node to see if we already computed its cost. 2410 auto DTCostIt = DTCostMap.find(&N); 2411 if (DTCostIt != DTCostMap.end()) 2412 return DTCostIt->second; 2413 2414 // If not, we have to compute it. We can't use insert above and update 2415 // because computing the cost may insert more things into the map. 2416 InstructionCost Cost = std::accumulate( 2417 N.begin(), N.end(), BBCostIt->second, 2418 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { 2419 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2420 }); 2421 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2422 (void)Inserted; 2423 assert(Inserted && "Should not insert a node while visiting children!"); 2424 return Cost; 2425 } 2426 2427 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2428 /// making the following replacement: 2429 /// 2430 /// --code before guard-- 2431 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2432 /// --code after guard-- 2433 /// 2434 /// into 2435 /// 2436 /// --code before guard-- 2437 /// br i1 %cond, label %guarded, label %deopt 2438 /// 2439 /// guarded: 2440 /// --code after guard-- 2441 /// 2442 /// deopt: 2443 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2444 /// unreachable 2445 /// 2446 /// It also makes all relevant DT and LI updates, so that all structures are in 2447 /// valid state after this transform. 2448 static BranchInst * 2449 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2450 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2451 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2452 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2453 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2454 BasicBlock *CheckBB = GI->getParent(); 2455 2456 if (MSSAU && VerifyMemorySSA) 2457 MSSAU->getMemorySSA()->verifyMemorySSA(); 2458 2459 // Remove all CheckBB's successors from DomTree. A block can be seen among 2460 // successors more than once, but for DomTree it should be added only once. 2461 SmallPtrSet<BasicBlock *, 4> Successors; 2462 for (auto *Succ : successors(CheckBB)) 2463 if (Successors.insert(Succ).second) 2464 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2465 2466 Instruction *DeoptBlockTerm = 2467 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2468 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2469 // SplitBlockAndInsertIfThen inserts control flow that branches to 2470 // DeoptBlockTerm if the condition is true. We want the opposite. 2471 CheckBI->swapSuccessors(); 2472 2473 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2474 GuardedBlock->setName("guarded"); 2475 CheckBI->getSuccessor(1)->setName("deopt"); 2476 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2477 2478 // We now have a new exit block. 2479 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2480 2481 if (MSSAU) 2482 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2483 2484 GI->moveBefore(DeoptBlockTerm); 2485 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2486 2487 // Add new successors of CheckBB into DomTree. 2488 for (auto *Succ : successors(CheckBB)) 2489 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2490 2491 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2492 // successors. 2493 for (auto *Succ : Successors) 2494 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2495 2496 // Make proper changes to DT. 2497 DT.applyUpdates(DTUpdates); 2498 // Inform LI of a new loop block. 2499 L.addBasicBlockToLoop(GuardedBlock, LI); 2500 2501 if (MSSAU) { 2502 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2503 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2504 if (VerifyMemorySSA) 2505 MSSAU->getMemorySSA()->verifyMemorySSA(); 2506 } 2507 2508 ++NumGuards; 2509 return CheckBI; 2510 } 2511 2512 /// Cost multiplier is a way to limit potentially exponential behavior 2513 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2514 /// candidates available. Also accounting for the number of "sibling" loops with 2515 /// the idea to account for previous unswitches that already happened on this 2516 /// cluster of loops. There was an attempt to keep this formula simple, 2517 /// just enough to limit the worst case behavior. Even if it is not that simple 2518 /// now it is still not an attempt to provide a detailed heuristic size 2519 /// prediction. 2520 /// 2521 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2522 /// unswitch candidates, making adequate predictions instead of wild guesses. 2523 /// That requires knowing not just the number of "remaining" candidates but 2524 /// also costs of unswitching for each of these candidates. 2525 static int CalculateUnswitchCostMultiplier( 2526 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2527 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2528 UnswitchCandidates) { 2529 2530 // Guards and other exiting conditions do not contribute to exponential 2531 // explosion as soon as they dominate the latch (otherwise there might be 2532 // another path to the latch remaining that does not allow to eliminate the 2533 // loop copy on unswitch). 2534 BasicBlock *Latch = L.getLoopLatch(); 2535 BasicBlock *CondBlock = TI.getParent(); 2536 if (DT.dominates(CondBlock, Latch) && 2537 (isGuard(&TI) || 2538 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2539 return L.contains(SuccBB); 2540 }) <= 1)) { 2541 NumCostMultiplierSkipped++; 2542 return 1; 2543 } 2544 2545 auto *ParentL = L.getParentLoop(); 2546 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2547 : std::distance(LI.begin(), LI.end())); 2548 // Count amount of clones that all the candidates might cause during 2549 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2550 int UnswitchedClones = 0; 2551 for (auto Candidate : UnswitchCandidates) { 2552 Instruction *CI = Candidate.first; 2553 BasicBlock *CondBlock = CI->getParent(); 2554 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2555 if (isGuard(CI)) { 2556 if (!SkipExitingSuccessors) 2557 UnswitchedClones++; 2558 continue; 2559 } 2560 int NonExitingSuccessors = llvm::count_if( 2561 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2562 return !SkipExitingSuccessors || L.contains(SuccBB); 2563 }); 2564 UnswitchedClones += Log2_32(NonExitingSuccessors); 2565 } 2566 2567 // Ignore up to the "unscaled candidates" number of unswitch candidates 2568 // when calculating the power-of-two scaling of the cost. The main idea 2569 // with this control is to allow a small number of unswitches to happen 2570 // and rely more on siblings multiplier (see below) when the number 2571 // of candidates is small. 2572 unsigned ClonesPower = 2573 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2574 2575 // Allowing top-level loops to spread a bit more than nested ones. 2576 int SiblingsMultiplier = 2577 std::max((ParentL ? SiblingsCount 2578 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2579 1); 2580 // Compute the cost multiplier in a way that won't overflow by saturating 2581 // at an upper bound. 2582 int CostMultiplier; 2583 if (ClonesPower > Log2_32(UnswitchThreshold) || 2584 SiblingsMultiplier > UnswitchThreshold) 2585 CostMultiplier = UnswitchThreshold; 2586 else 2587 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2588 (int)UnswitchThreshold); 2589 2590 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2591 << " (siblings " << SiblingsMultiplier << " * clones " 2592 << (1 << ClonesPower) << ")" 2593 << " for unswitch candidate: " << TI << "\n"); 2594 return CostMultiplier; 2595 } 2596 2597 static bool 2598 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2599 AssumptionCache &AC, TargetTransformInfo &TTI, 2600 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2601 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2602 // Collect all invariant conditions within this loop (as opposed to an inner 2603 // loop which would be handled when visiting that inner loop). 2604 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2605 UnswitchCandidates; 2606 2607 // Whether or not we should also collect guards in the loop. 2608 bool CollectGuards = false; 2609 if (UnswitchGuards) { 2610 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2611 Intrinsic::getName(Intrinsic::experimental_guard)); 2612 if (GuardDecl && !GuardDecl->use_empty()) 2613 CollectGuards = true; 2614 } 2615 2616 for (auto *BB : L.blocks()) { 2617 if (LI.getLoopFor(BB) != &L) 2618 continue; 2619 2620 if (CollectGuards) 2621 for (auto &I : *BB) 2622 if (isGuard(&I)) { 2623 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2624 // TODO: Support AND, OR conditions and partial unswitching. 2625 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2626 UnswitchCandidates.push_back({&I, {Cond}}); 2627 } 2628 2629 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2630 // We can only consider fully loop-invariant switch conditions as we need 2631 // to completely eliminate the switch after unswitching. 2632 if (!isa<Constant>(SI->getCondition()) && 2633 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2634 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2635 continue; 2636 } 2637 2638 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2639 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2640 BI->getSuccessor(0) == BI->getSuccessor(1)) 2641 continue; 2642 2643 if (L.isLoopInvariant(BI->getCondition())) { 2644 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2645 continue; 2646 } 2647 2648 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2649 if (CondI.getOpcode() != Instruction::And && 2650 CondI.getOpcode() != Instruction::Or) 2651 continue; 2652 2653 TinyPtrVector<Value *> Invariants = 2654 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2655 if (Invariants.empty()) 2656 continue; 2657 2658 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2659 } 2660 2661 // If we didn't find any candidates, we're done. 2662 if (UnswitchCandidates.empty()) 2663 return false; 2664 2665 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2666 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2667 // irreducible control flow into reducible control flow and introduce new 2668 // loops "out of thin air". If we ever discover important use cases for doing 2669 // this, we can add support to loop unswitch, but it is a lot of complexity 2670 // for what seems little or no real world benefit. 2671 LoopBlocksRPO RPOT(&L); 2672 RPOT.perform(&LI); 2673 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2674 return false; 2675 2676 SmallVector<BasicBlock *, 4> ExitBlocks; 2677 L.getUniqueExitBlocks(ExitBlocks); 2678 2679 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2680 // don't know how to split those exit blocks. 2681 // FIXME: We should teach SplitBlock to handle this and remove this 2682 // restriction. 2683 for (auto *ExitBB : ExitBlocks) 2684 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2685 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2686 return false; 2687 } 2688 2689 LLVM_DEBUG( 2690 dbgs() << "Considering " << UnswitchCandidates.size() 2691 << " non-trivial loop invariant conditions for unswitching.\n"); 2692 2693 // Given that unswitching these terminators will require duplicating parts of 2694 // the loop, so we need to be able to model that cost. Compute the ephemeral 2695 // values and set up a data structure to hold per-BB costs. We cache each 2696 // block's cost so that we don't recompute this when considering different 2697 // subsets of the loop for duplication during unswitching. 2698 SmallPtrSet<const Value *, 4> EphValues; 2699 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2700 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; 2701 2702 // Compute the cost of each block, as well as the total loop cost. Also, bail 2703 // out if we see instructions which are incompatible with loop unswitching 2704 // (convergent, noduplicate, or cross-basic-block tokens). 2705 // FIXME: We might be able to safely handle some of these in non-duplicated 2706 // regions. 2707 TargetTransformInfo::TargetCostKind CostKind = 2708 L.getHeader()->getParent()->hasMinSize() 2709 ? TargetTransformInfo::TCK_CodeSize 2710 : TargetTransformInfo::TCK_SizeAndLatency; 2711 InstructionCost LoopCost = 0; 2712 for (auto *BB : L.blocks()) { 2713 InstructionCost Cost = 0; 2714 for (auto &I : *BB) { 2715 if (EphValues.count(&I)) 2716 continue; 2717 2718 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2719 return false; 2720 if (auto *CB = dyn_cast<CallBase>(&I)) 2721 if (CB->isConvergent() || CB->cannotDuplicate()) 2722 return false; 2723 2724 Cost += TTI.getUserCost(&I, CostKind); 2725 } 2726 assert(Cost >= 0 && "Must not have negative costs!"); 2727 LoopCost += Cost; 2728 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2729 BBCostMap[BB] = Cost; 2730 } 2731 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2732 2733 // Now we find the best candidate by searching for the one with the following 2734 // properties in order: 2735 // 2736 // 1) An unswitching cost below the threshold 2737 // 2) The smallest number of duplicated unswitch candidates (to avoid 2738 // creating redundant subsequent unswitching) 2739 // 3) The smallest cost after unswitching. 2740 // 2741 // We prioritize reducing fanout of unswitch candidates provided the cost 2742 // remains below the threshold because this has a multiplicative effect. 2743 // 2744 // This requires memoizing each dominator subtree to avoid redundant work. 2745 // 2746 // FIXME: Need to actually do the number of candidates part above. 2747 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; 2748 // Given a terminator which might be unswitched, computes the non-duplicated 2749 // cost for that terminator. 2750 auto ComputeUnswitchedCost = [&](Instruction &TI, 2751 bool FullUnswitch) -> InstructionCost { 2752 BasicBlock &BB = *TI.getParent(); 2753 SmallPtrSet<BasicBlock *, 4> Visited; 2754 2755 InstructionCost Cost = 0; 2756 for (BasicBlock *SuccBB : successors(&BB)) { 2757 // Don't count successors more than once. 2758 if (!Visited.insert(SuccBB).second) 2759 continue; 2760 2761 // If this is a partial unswitch candidate, then it must be a conditional 2762 // branch with a condition of either `or` or `and`. In that case, one of 2763 // the successors is necessarily duplicated, so don't even try to remove 2764 // its cost. 2765 if (!FullUnswitch) { 2766 auto &BI = cast<BranchInst>(TI); 2767 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2768 Instruction::And) { 2769 if (SuccBB == BI.getSuccessor(1)) 2770 continue; 2771 } else { 2772 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2773 Instruction::Or && 2774 "Only `and` and `or` conditions can result in a partial " 2775 "unswitch!"); 2776 if (SuccBB == BI.getSuccessor(0)) 2777 continue; 2778 } 2779 } 2780 2781 // This successor's domtree will not need to be duplicated after 2782 // unswitching if the edge to the successor dominates it (and thus the 2783 // entire tree). This essentially means there is no other path into this 2784 // subtree and so it will end up live in only one clone of the loop. 2785 if (SuccBB->getUniquePredecessor() || 2786 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2787 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2788 })) { 2789 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2790 assert(Cost <= LoopCost && 2791 "Non-duplicated cost should never exceed total loop cost!"); 2792 } 2793 } 2794 2795 // Now scale the cost by the number of unique successors minus one. We 2796 // subtract one because there is already at least one copy of the entire 2797 // loop. This is computing the new cost of unswitching a condition. 2798 // Note that guards always have 2 unique successors that are implicit and 2799 // will be materialized if we decide to unswitch it. 2800 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2801 assert(SuccessorsCount > 1 && 2802 "Cannot unswitch a condition without multiple distinct successors!"); 2803 return (LoopCost - Cost) * (SuccessorsCount - 1); 2804 }; 2805 Instruction *BestUnswitchTI = nullptr; 2806 InstructionCost BestUnswitchCost = 0; 2807 ArrayRef<Value *> BestUnswitchInvariants; 2808 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2809 Instruction &TI = *TerminatorAndInvariants.first; 2810 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2811 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2812 InstructionCost CandidateCost = ComputeUnswitchedCost( 2813 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2814 Invariants[0] == BI->getCondition())); 2815 // Calculate cost multiplier which is a tool to limit potentially 2816 // exponential behavior of loop-unswitch. 2817 if (EnableUnswitchCostMultiplier) { 2818 int CostMultiplier = 2819 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2820 assert( 2821 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2822 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2823 CandidateCost *= CostMultiplier; 2824 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2825 << " (multiplier: " << CostMultiplier << ")" 2826 << " for unswitch candidate: " << TI << "\n"); 2827 } else { 2828 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2829 << " for unswitch candidate: " << TI << "\n"); 2830 } 2831 2832 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2833 BestUnswitchTI = &TI; 2834 BestUnswitchCost = CandidateCost; 2835 BestUnswitchInvariants = Invariants; 2836 } 2837 } 2838 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2839 2840 if (BestUnswitchCost >= UnswitchThreshold) { 2841 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2842 << BestUnswitchCost << "\n"); 2843 return false; 2844 } 2845 2846 // If the best candidate is a guard, turn it into a branch. 2847 if (isGuard(BestUnswitchTI)) 2848 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2849 ExitBlocks, DT, LI, MSSAU); 2850 2851 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2852 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2853 << "\n"); 2854 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2855 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2856 return true; 2857 } 2858 2859 /// Unswitch control flow predicated on loop invariant conditions. 2860 /// 2861 /// This first hoists all branches or switches which are trivial (IE, do not 2862 /// require duplicating any part of the loop) out of the loop body. It then 2863 /// looks at other loop invariant control flows and tries to unswitch those as 2864 /// well by cloning the loop if the result is small enough. 2865 /// 2866 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2867 /// updated based on the unswitch. 2868 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 2869 /// 2870 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2871 /// true, we will attempt to do non-trivial unswitching as well as trivial 2872 /// unswitching. 2873 /// 2874 /// The `UnswitchCB` callback provided will be run after unswitching is 2875 /// complete, with the first parameter set to `true` if the provided loop 2876 /// remains a loop, and a list of new sibling loops created. 2877 /// 2878 /// If `SE` is non-null, we will update that analysis based on the unswitching 2879 /// done. 2880 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2881 AssumptionCache &AC, TargetTransformInfo &TTI, 2882 bool NonTrivial, 2883 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2884 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2885 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2886 "Loops must be in LCSSA form before unswitching."); 2887 2888 // Must be in loop simplified form: we need a preheader and dedicated exits. 2889 if (!L.isLoopSimplifyForm()) 2890 return false; 2891 2892 // Try trivial unswitch first before loop over other basic blocks in the loop. 2893 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2894 // If we unswitched successfully we will want to clean up the loop before 2895 // processing it further so just mark it as unswitched and return. 2896 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2897 return true; 2898 } 2899 2900 // If we're not doing non-trivial unswitching, we're done. We both accept 2901 // a parameter but also check a local flag that can be used for testing 2902 // a debugging. 2903 if (!NonTrivial && !EnableNonTrivialUnswitch) 2904 return false; 2905 2906 // Skip non-trivial unswitching for optsize functions. 2907 if (L.getHeader()->getParent()->hasOptSize()) 2908 return false; 2909 2910 // Skip non-trivial unswitching for loops that cannot be cloned. 2911 if (!L.isSafeToClone()) 2912 return false; 2913 2914 // For non-trivial unswitching, because it often creates new loops, we rely on 2915 // the pass manager to iterate on the loops rather than trying to immediately 2916 // reach a fixed point. There is no substantial advantage to iterating 2917 // internally, and if any of the new loops are simplified enough to contain 2918 // trivial unswitching we want to prefer those. 2919 2920 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2921 // a partial unswitch when possible below the threshold. 2922 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2923 return true; 2924 2925 // No other opportunities to unswitch. 2926 return false; 2927 } 2928 2929 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2930 LoopStandardAnalysisResults &AR, 2931 LPMUpdater &U) { 2932 Function &F = *L.getHeader()->getParent(); 2933 (void)F; 2934 2935 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2936 << "\n"); 2937 2938 // Save the current loop name in a variable so that we can report it even 2939 // after it has been deleted. 2940 std::string LoopName = std::string(L.getName()); 2941 2942 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2943 ArrayRef<Loop *> NewLoops) { 2944 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2945 if (!NewLoops.empty()) 2946 U.addSiblingLoops(NewLoops); 2947 2948 // If the current loop remains valid, we should revisit it to catch any 2949 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2950 if (CurrentLoopValid) 2951 U.revisitCurrentLoop(); 2952 else 2953 U.markLoopAsDeleted(L, LoopName); 2954 }; 2955 2956 Optional<MemorySSAUpdater> MSSAU; 2957 if (AR.MSSA) { 2958 MSSAU = MemorySSAUpdater(AR.MSSA); 2959 if (VerifyMemorySSA) 2960 AR.MSSA->verifyMemorySSA(); 2961 } 2962 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2963 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 2964 return PreservedAnalyses::all(); 2965 2966 if (AR.MSSA && VerifyMemorySSA) 2967 AR.MSSA->verifyMemorySSA(); 2968 2969 // Historically this pass has had issues with the dominator tree so verify it 2970 // in asserts builds. 2971 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2972 2973 auto PA = getLoopPassPreservedAnalyses(); 2974 if (AR.MSSA) 2975 PA.preserve<MemorySSAAnalysis>(); 2976 return PA; 2977 } 2978 2979 namespace { 2980 2981 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2982 bool NonTrivial; 2983 2984 public: 2985 static char ID; // Pass ID, replacement for typeid 2986 2987 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2988 : LoopPass(ID), NonTrivial(NonTrivial) { 2989 initializeSimpleLoopUnswitchLegacyPassPass( 2990 *PassRegistry::getPassRegistry()); 2991 } 2992 2993 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2994 2995 void getAnalysisUsage(AnalysisUsage &AU) const override { 2996 AU.addRequired<AssumptionCacheTracker>(); 2997 AU.addRequired<TargetTransformInfoWrapperPass>(); 2998 if (EnableMSSALoopDependency) { 2999 AU.addRequired<MemorySSAWrapperPass>(); 3000 AU.addPreserved<MemorySSAWrapperPass>(); 3001 } 3002 getLoopAnalysisUsage(AU); 3003 } 3004 }; 3005 3006 } // end anonymous namespace 3007 3008 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 3009 if (skipLoop(L)) 3010 return false; 3011 3012 Function &F = *L->getHeader()->getParent(); 3013 3014 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3015 << "\n"); 3016 3017 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3018 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3019 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3020 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3021 MemorySSA *MSSA = nullptr; 3022 Optional<MemorySSAUpdater> MSSAU; 3023 if (EnableMSSALoopDependency) { 3024 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3025 MSSAU = MemorySSAUpdater(MSSA); 3026 } 3027 3028 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 3029 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 3030 3031 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 3032 ArrayRef<Loop *> NewLoops) { 3033 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3034 for (auto *NewL : NewLoops) 3035 LPM.addLoop(*NewL); 3036 3037 // If the current loop remains valid, re-add it to the queue. This is 3038 // a little wasteful as we'll finish processing the current loop as well, 3039 // but it is the best we can do in the old PM. 3040 if (CurrentLoopValid) 3041 LPM.addLoop(*L); 3042 else 3043 LPM.markLoopAsDeleted(*L); 3044 }; 3045 3046 if (MSSA && VerifyMemorySSA) 3047 MSSA->verifyMemorySSA(); 3048 3049 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 3050 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 3051 3052 if (MSSA && VerifyMemorySSA) 3053 MSSA->verifyMemorySSA(); 3054 3055 // Historically this pass has had issues with the dominator tree so verify it 3056 // in asserts builds. 3057 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3058 3059 return Changed; 3060 } 3061 3062 char SimpleLoopUnswitchLegacyPass::ID = 0; 3063 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3064 "Simple unswitch loops", false, false) 3065 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3066 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3067 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3068 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3069 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3070 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3071 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3072 "Simple unswitch loops", false, false) 3073 3074 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3075 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3076 } 3077