xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision 52e97a28d47bf50364bef55cc6a1119c8364f0b5)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/Utils/Local.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Use.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/GenericDomTree.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Cloning.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49 #include "llvm/Transforms/Utils/ValueMapper.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <iterator>
53 #include <numeric>
54 #include <utility>
55 
56 #define DEBUG_TYPE "simple-loop-unswitch"
57 
58 using namespace llvm;
59 
60 STATISTIC(NumBranches, "Number of branches unswitched");
61 STATISTIC(NumSwitches, "Number of switches unswitched");
62 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
63 
64 static cl::opt<bool> EnableNonTrivialUnswitch(
65     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
66     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
67              "following the configuration passed into the pass."));
68 
69 static cl::opt<int>
70     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
71                       cl::desc("The cost threshold for unswitching a loop."));
72 
73 /// Collect all of the loop invariant input values transitively used by the
74 /// homogeneous instruction graph from a given root.
75 ///
76 /// This essentially walks from a root recursively through loop variant operands
77 /// which have the exact same opcode and finds all inputs which are loop
78 /// invariant. For some operations these can be re-associated and unswitched out
79 /// of the loop entirely.
80 static TinyPtrVector<Value *>
81 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
82                                          LoopInfo &LI) {
83   assert(!L.isLoopInvariant(&Root) &&
84          "Only need to walk the graph if root itself is not invariant.");
85   TinyPtrVector<Value *> Invariants;
86 
87   // Build a worklist and recurse through operators collecting invariants.
88   SmallVector<Instruction *, 4> Worklist;
89   SmallPtrSet<Instruction *, 8> Visited;
90   Worklist.push_back(&Root);
91   Visited.insert(&Root);
92   do {
93     Instruction &I = *Worklist.pop_back_val();
94     for (Value *OpV : I.operand_values()) {
95       // Skip constants as unswitching isn't interesting for them.
96       if (isa<Constant>(OpV))
97         continue;
98 
99       // Add it to our result if loop invariant.
100       if (L.isLoopInvariant(OpV)) {
101         Invariants.push_back(OpV);
102         continue;
103       }
104 
105       // If not an instruction with the same opcode, nothing we can do.
106       Instruction *OpI = dyn_cast<Instruction>(OpV);
107       if (!OpI || OpI->getOpcode() != Root.getOpcode())
108         continue;
109 
110       // Visit this operand.
111       if (Visited.insert(OpI).second)
112         Worklist.push_back(OpI);
113     }
114   } while (!Worklist.empty());
115 
116   return Invariants;
117 }
118 
119 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
120                                      Constant &Replacement) {
121   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
122 
123   // Replace uses of LIC in the loop with the given constant.
124   for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
125     // Grab the use and walk past it so we can clobber it in the use list.
126     Use *U = &*UI++;
127     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
128 
129     // Replace this use within the loop body.
130     if (UserI && L.contains(UserI))
131       U->set(&Replacement);
132   }
133 }
134 
135 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
136 /// incoming values along this edge.
137 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
138                                          BasicBlock &ExitBB) {
139   for (Instruction &I : ExitBB) {
140     auto *PN = dyn_cast<PHINode>(&I);
141     if (!PN)
142       // No more PHIs to check.
143       return true;
144 
145     // If the incoming value for this edge isn't loop invariant the unswitch
146     // won't be trivial.
147     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
148       return false;
149   }
150   llvm_unreachable("Basic blocks should never be empty!");
151 }
152 
153 /// Insert code to test a set of loop invariant values, and conditionally branch
154 /// on them.
155 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
156                                                   ArrayRef<Value *> Invariants,
157                                                   bool Direction,
158                                                   BasicBlock &UnswitchedSucc,
159                                                   BasicBlock &NormalSucc) {
160   IRBuilder<> IRB(&BB);
161   Value *Cond = Invariants.front();
162   for (Value *Invariant :
163        make_range(std::next(Invariants.begin()), Invariants.end()))
164     if (Direction)
165       Cond = IRB.CreateOr(Cond, Invariant);
166     else
167       Cond = IRB.CreateAnd(Cond, Invariant);
168 
169   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
170                    Direction ? &NormalSucc : &UnswitchedSucc);
171 }
172 
173 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
174 ///
175 /// Requires that the loop exit and unswitched basic block are the same, and
176 /// that the exiting block was a unique predecessor of that block. Rewrites the
177 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
178 /// PHI nodes from the old preheader that now contains the unswitched
179 /// terminator.
180 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
181                                                   BasicBlock &OldExitingBB,
182                                                   BasicBlock &OldPH) {
183   for (PHINode &PN : UnswitchedBB.phis()) {
184     // When the loop exit is directly unswitched we just need to update the
185     // incoming basic block. We loop to handle weird cases with repeated
186     // incoming blocks, but expect to typically only have one operand here.
187     for (auto i : seq<int>(0, PN.getNumOperands())) {
188       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
189              "Found incoming block different from unique predecessor!");
190       PN.setIncomingBlock(i, &OldPH);
191     }
192   }
193 }
194 
195 /// Rewrite the PHI nodes in the loop exit basic block and the split off
196 /// unswitched block.
197 ///
198 /// Because the exit block remains an exit from the loop, this rewrites the
199 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
200 /// nodes into the unswitched basic block to select between the value in the
201 /// old preheader and the loop exit.
202 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
203                                                       BasicBlock &UnswitchedBB,
204                                                       BasicBlock &OldExitingBB,
205                                                       BasicBlock &OldPH,
206                                                       bool FullUnswitch) {
207   assert(&ExitBB != &UnswitchedBB &&
208          "Must have different loop exit and unswitched blocks!");
209   Instruction *InsertPt = &*UnswitchedBB.begin();
210   for (PHINode &PN : ExitBB.phis()) {
211     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
212                                   PN.getName() + ".split", InsertPt);
213 
214     // Walk backwards over the old PHI node's inputs to minimize the cost of
215     // removing each one. We have to do this weird loop manually so that we
216     // create the same number of new incoming edges in the new PHI as we expect
217     // each case-based edge to be included in the unswitched switch in some
218     // cases.
219     // FIXME: This is really, really gross. It would be much cleaner if LLVM
220     // allowed us to create a single entry for a predecessor block without
221     // having separate entries for each "edge" even though these edges are
222     // required to produce identical results.
223     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
224       if (PN.getIncomingBlock(i) != &OldExitingBB)
225         continue;
226 
227       Value *Incoming = PN.getIncomingValue(i);
228       if (FullUnswitch)
229         // No more edge from the old exiting block to the exit block.
230         PN.removeIncomingValue(i);
231 
232       NewPN->addIncoming(Incoming, &OldPH);
233     }
234 
235     // Now replace the old PHI with the new one and wire the old one in as an
236     // input to the new one.
237     PN.replaceAllUsesWith(NewPN);
238     NewPN->addIncoming(&PN, &ExitBB);
239   }
240 }
241 
242 /// Hoist the current loop up to the innermost loop containing a remaining exit.
243 ///
244 /// Because we've removed an exit from the loop, we may have changed the set of
245 /// loops reachable and need to move the current loop up the loop nest or even
246 /// to an entirely separate nest.
247 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
248                                  DominatorTree &DT, LoopInfo &LI) {
249   // If the loop is already at the top level, we can't hoist it anywhere.
250   Loop *OldParentL = L.getParentLoop();
251   if (!OldParentL)
252     return;
253 
254   SmallVector<BasicBlock *, 4> Exits;
255   L.getExitBlocks(Exits);
256   Loop *NewParentL = nullptr;
257   for (auto *ExitBB : Exits)
258     if (Loop *ExitL = LI.getLoopFor(ExitBB))
259       if (!NewParentL || NewParentL->contains(ExitL))
260         NewParentL = ExitL;
261 
262   if (NewParentL == OldParentL)
263     return;
264 
265   // The new parent loop (if different) should always contain the old one.
266   if (NewParentL)
267     assert(NewParentL->contains(OldParentL) &&
268            "Can only hoist this loop up the nest!");
269 
270   // The preheader will need to move with the body of this loop. However,
271   // because it isn't in this loop we also need to update the primary loop map.
272   assert(OldParentL == LI.getLoopFor(&Preheader) &&
273          "Parent loop of this loop should contain this loop's preheader!");
274   LI.changeLoopFor(&Preheader, NewParentL);
275 
276   // Remove this loop from its old parent.
277   OldParentL->removeChildLoop(&L);
278 
279   // Add the loop either to the new parent or as a top-level loop.
280   if (NewParentL)
281     NewParentL->addChildLoop(&L);
282   else
283     LI.addTopLevelLoop(&L);
284 
285   // Remove this loops blocks from the old parent and every other loop up the
286   // nest until reaching the new parent. Also update all of these
287   // no-longer-containing loops to reflect the nesting change.
288   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
289        OldContainingL = OldContainingL->getParentLoop()) {
290     llvm::erase_if(OldContainingL->getBlocksVector(),
291                    [&](const BasicBlock *BB) {
292                      return BB == &Preheader || L.contains(BB);
293                    });
294 
295     OldContainingL->getBlocksSet().erase(&Preheader);
296     for (BasicBlock *BB : L.blocks())
297       OldContainingL->getBlocksSet().erase(BB);
298 
299     // Because we just hoisted a loop out of this one, we have essentially
300     // created new exit paths from it. That means we need to form LCSSA PHI
301     // nodes for values used in the no-longer-nested loop.
302     formLCSSA(*OldContainingL, DT, &LI, nullptr);
303 
304     // We shouldn't need to form dedicated exits because the exit introduced
305     // here is the (just split by unswitching) preheader. However, after trivial
306     // unswitching it is possible to get new non-dedicated exits out of parent
307     // loop so let's conservatively form dedicated exit blocks and figure out
308     // if we can optimize later.
309     formDedicatedExitBlocks(OldContainingL, &DT, &LI, /*PreserveLCSSA*/ true);
310   }
311 }
312 
313 /// Unswitch a trivial branch if the condition is loop invariant.
314 ///
315 /// This routine should only be called when loop code leading to the branch has
316 /// been validated as trivial (no side effects). This routine checks if the
317 /// condition is invariant and one of the successors is a loop exit. This
318 /// allows us to unswitch without duplicating the loop, making it trivial.
319 ///
320 /// If this routine fails to unswitch the branch it returns false.
321 ///
322 /// If the branch can be unswitched, this routine splits the preheader and
323 /// hoists the branch above that split. Preserves loop simplified form
324 /// (splitting the exit block as necessary). It simplifies the branch within
325 /// the loop to an unconditional branch but doesn't remove it entirely. Further
326 /// cleanup can be done with some simplify-cfg like pass.
327 ///
328 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
329 /// invalidated by this.
330 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
331                                   LoopInfo &LI, ScalarEvolution *SE) {
332   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
333   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
334 
335   // The loop invariant values that we want to unswitch.
336   TinyPtrVector<Value *> Invariants;
337 
338   // When true, we're fully unswitching the branch rather than just unswitching
339   // some input conditions to the branch.
340   bool FullUnswitch = false;
341 
342   if (L.isLoopInvariant(BI.getCondition())) {
343     Invariants.push_back(BI.getCondition());
344     FullUnswitch = true;
345   } else {
346     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
347       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
348     if (Invariants.empty())
349       // Couldn't find invariant inputs!
350       return false;
351   }
352 
353   // Check that one of the branch's successors exits, and which one.
354   bool ExitDirection = true;
355   int LoopExitSuccIdx = 0;
356   auto *LoopExitBB = BI.getSuccessor(0);
357   if (L.contains(LoopExitBB)) {
358     ExitDirection = false;
359     LoopExitSuccIdx = 1;
360     LoopExitBB = BI.getSuccessor(1);
361     if (L.contains(LoopExitBB))
362       return false;
363   }
364   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
365   auto *ParentBB = BI.getParent();
366   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
367     return false;
368 
369   // When unswitching only part of the branch's condition, we need the exit
370   // block to be reached directly from the partially unswitched input. This can
371   // be done when the exit block is along the true edge and the branch condition
372   // is a graph of `or` operations, or the exit block is along the false edge
373   // and the condition is a graph of `and` operations.
374   if (!FullUnswitch) {
375     if (ExitDirection) {
376       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
377         return false;
378     } else {
379       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
380         return false;
381     }
382   }
383 
384   LLVM_DEBUG({
385     dbgs() << "    unswitching trivial invariant conditions for: " << BI
386            << "\n";
387     for (Value *Invariant : Invariants) {
388       dbgs() << "      " << *Invariant << " == true";
389       if (Invariant != Invariants.back())
390         dbgs() << " ||";
391       dbgs() << "\n";
392     }
393   });
394 
395   // If we have scalar evolutions, we need to invalidate them including this
396   // loop and the loop containing the exit block.
397   if (SE) {
398     if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
399       SE->forgetLoop(ExitL);
400     else
401       // Forget the entire nest as this exits the entire nest.
402       SE->forgetTopmostLoop(&L);
403   }
404 
405   // Split the preheader, so that we know that there is a safe place to insert
406   // the conditional branch. We will change the preheader to have a conditional
407   // branch on LoopCond.
408   BasicBlock *OldPH = L.getLoopPreheader();
409   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
410 
411   // Now that we have a place to insert the conditional branch, create a place
412   // to branch to: this is the exit block out of the loop that we are
413   // unswitching. We need to split this if there are other loop predecessors.
414   // Because the loop is in simplified form, *any* other predecessor is enough.
415   BasicBlock *UnswitchedBB;
416   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
417     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
418            "A branch's parent isn't a predecessor!");
419     UnswitchedBB = LoopExitBB;
420   } else {
421     UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
422   }
423 
424   // Actually move the invariant uses into the unswitched position. If possible,
425   // we do this by moving the instructions, but when doing partial unswitching
426   // we do it by building a new merge of the values in the unswitched position.
427   OldPH->getTerminator()->eraseFromParent();
428   if (FullUnswitch) {
429     // If fully unswitching, we can use the existing branch instruction.
430     // Splice it into the old PH to gate reaching the new preheader and re-point
431     // its successors.
432     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
433                                 BI);
434     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
435     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
436 
437     // Create a new unconditional branch that will continue the loop as a new
438     // terminator.
439     BranchInst::Create(ContinueBB, ParentBB);
440   } else {
441     // Only unswitching a subset of inputs to the condition, so we will need to
442     // build a new branch that merges the invariant inputs.
443     if (ExitDirection)
444       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
445                  Instruction::Or &&
446              "Must have an `or` of `i1`s for the condition!");
447     else
448       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
449                  Instruction::And &&
450              "Must have an `and` of `i1`s for the condition!");
451     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
452                                           *UnswitchedBB, *NewPH);
453   }
454 
455   // Rewrite the relevant PHI nodes.
456   if (UnswitchedBB == LoopExitBB)
457     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
458   else
459     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
460                                               *ParentBB, *OldPH, FullUnswitch);
461 
462   // Now we need to update the dominator tree.
463   SmallVector<DominatorTree::UpdateType, 2> DTUpdates;
464   DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
465   if (FullUnswitch)
466     DTUpdates.push_back({DT.Delete, ParentBB, LoopExitBB});
467   DT.applyUpdates(DTUpdates);
468 
469   // The constant we can replace all of our invariants with inside the loop
470   // body. If any of the invariants have a value other than this the loop won't
471   // be entered.
472   ConstantInt *Replacement = ExitDirection
473                                  ? ConstantInt::getFalse(BI.getContext())
474                                  : ConstantInt::getTrue(BI.getContext());
475 
476   // Since this is an i1 condition we can also trivially replace uses of it
477   // within the loop with a constant.
478   for (Value *Invariant : Invariants)
479     replaceLoopInvariantUses(L, Invariant, *Replacement);
480 
481   // If this was full unswitching, we may have changed the nesting relationship
482   // for this loop so hoist it to its correct parent if needed.
483   if (FullUnswitch)
484     hoistLoopToNewParent(L, *NewPH, DT, LI);
485 
486   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
487   ++NumTrivial;
488   ++NumBranches;
489   return true;
490 }
491 
492 /// Unswitch a trivial switch if the condition is loop invariant.
493 ///
494 /// This routine should only be called when loop code leading to the switch has
495 /// been validated as trivial (no side effects). This routine checks if the
496 /// condition is invariant and that at least one of the successors is a loop
497 /// exit. This allows us to unswitch without duplicating the loop, making it
498 /// trivial.
499 ///
500 /// If this routine fails to unswitch the switch it returns false.
501 ///
502 /// If the switch can be unswitched, this routine splits the preheader and
503 /// copies the switch above that split. If the default case is one of the
504 /// exiting cases, it copies the non-exiting cases and points them at the new
505 /// preheader. If the default case is not exiting, it copies the exiting cases
506 /// and points the default at the preheader. It preserves loop simplified form
507 /// (splitting the exit blocks as necessary). It simplifies the switch within
508 /// the loop by removing now-dead cases. If the default case is one of those
509 /// unswitched, it replaces its destination with a new basic block containing
510 /// only unreachable. Such basic blocks, while technically loop exits, are not
511 /// considered for unswitching so this is a stable transform and the same
512 /// switch will not be revisited. If after unswitching there is only a single
513 /// in-loop successor, the switch is further simplified to an unconditional
514 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
515 ///
516 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
517 /// invalidated by this.
518 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
519                                   LoopInfo &LI, ScalarEvolution *SE) {
520   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
521   Value *LoopCond = SI.getCondition();
522 
523   // If this isn't switching on an invariant condition, we can't unswitch it.
524   if (!L.isLoopInvariant(LoopCond))
525     return false;
526 
527   auto *ParentBB = SI.getParent();
528 
529   SmallVector<int, 4> ExitCaseIndices;
530   for (auto Case : SI.cases()) {
531     auto *SuccBB = Case.getCaseSuccessor();
532     if (!L.contains(SuccBB) &&
533         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
534       ExitCaseIndices.push_back(Case.getCaseIndex());
535   }
536   BasicBlock *DefaultExitBB = nullptr;
537   if (!L.contains(SI.getDefaultDest()) &&
538       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
539       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
540     DefaultExitBB = SI.getDefaultDest();
541   else if (ExitCaseIndices.empty())
542     return false;
543 
544   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
545 
546   // We may need to invalidate SCEVs for the outermost loop reached by any of
547   // the exits.
548   Loop *OuterL = &L;
549 
550   if (DefaultExitBB) {
551     // Clear out the default destination temporarily to allow accurate
552     // predecessor lists to be examined below.
553     SI.setDefaultDest(nullptr);
554     // Check the loop containing this exit.
555     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
556     if (!ExitL || ExitL->contains(OuterL))
557       OuterL = ExitL;
558   }
559 
560   // Store the exit cases into a separate data structure and remove them from
561   // the switch.
562   SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
563   ExitCases.reserve(ExitCaseIndices.size());
564   // We walk the case indices backwards so that we remove the last case first
565   // and don't disrupt the earlier indices.
566   for (unsigned Index : reverse(ExitCaseIndices)) {
567     auto CaseI = SI.case_begin() + Index;
568     // Compute the outer loop from this exit.
569     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
570     if (!ExitL || ExitL->contains(OuterL))
571       OuterL = ExitL;
572     // Save the value of this case.
573     ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
574     // Delete the unswitched cases.
575     SI.removeCase(CaseI);
576   }
577 
578   if (SE) {
579     if (OuterL)
580       SE->forgetLoop(OuterL);
581     else
582       SE->forgetTopmostLoop(&L);
583   }
584 
585   // Check if after this all of the remaining cases point at the same
586   // successor.
587   BasicBlock *CommonSuccBB = nullptr;
588   if (SI.getNumCases() > 0 &&
589       std::all_of(std::next(SI.case_begin()), SI.case_end(),
590                   [&SI](const SwitchInst::CaseHandle &Case) {
591                     return Case.getCaseSuccessor() ==
592                            SI.case_begin()->getCaseSuccessor();
593                   }))
594     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
595   if (!DefaultExitBB) {
596     // If we're not unswitching the default, we need it to match any cases to
597     // have a common successor or if we have no cases it is the common
598     // successor.
599     if (SI.getNumCases() == 0)
600       CommonSuccBB = SI.getDefaultDest();
601     else if (SI.getDefaultDest() != CommonSuccBB)
602       CommonSuccBB = nullptr;
603   }
604 
605   // Split the preheader, so that we know that there is a safe place to insert
606   // the switch.
607   BasicBlock *OldPH = L.getLoopPreheader();
608   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
609   OldPH->getTerminator()->eraseFromParent();
610 
611   // Now add the unswitched switch.
612   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
613 
614   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
615   // First, we split any exit blocks with remaining in-loop predecessors. Then
616   // we update the PHIs in one of two ways depending on if there was a split.
617   // We walk in reverse so that we split in the same order as the cases
618   // appeared. This is purely for convenience of reading the resulting IR, but
619   // it doesn't cost anything really.
620   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
621   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
622   // Handle the default exit if necessary.
623   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
624   // ranges aren't quite powerful enough yet.
625   if (DefaultExitBB) {
626     if (pred_empty(DefaultExitBB)) {
627       UnswitchedExitBBs.insert(DefaultExitBB);
628       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
629     } else {
630       auto *SplitBB =
631           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
632       rewritePHINodesForExitAndUnswitchedBlocks(
633           *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
634       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
635     }
636   }
637   // Note that we must use a reference in the for loop so that we update the
638   // container.
639   for (auto &CasePair : reverse(ExitCases)) {
640     // Grab a reference to the exit block in the pair so that we can update it.
641     BasicBlock *ExitBB = CasePair.second;
642 
643     // If this case is the last edge into the exit block, we can simply reuse it
644     // as it will no longer be a loop exit. No mapping necessary.
645     if (pred_empty(ExitBB)) {
646       // Only rewrite once.
647       if (UnswitchedExitBBs.insert(ExitBB).second)
648         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
649       continue;
650     }
651 
652     // Otherwise we need to split the exit block so that we retain an exit
653     // block from the loop and a target for the unswitched condition.
654     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
655     if (!SplitExitBB) {
656       // If this is the first time we see this, do the split and remember it.
657       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
658       rewritePHINodesForExitAndUnswitchedBlocks(
659           *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
660     }
661     // Update the case pair to point to the split block.
662     CasePair.second = SplitExitBB;
663   }
664 
665   // Now add the unswitched cases. We do this in reverse order as we built them
666   // in reverse order.
667   for (auto CasePair : reverse(ExitCases)) {
668     ConstantInt *CaseVal = CasePair.first;
669     BasicBlock *UnswitchedBB = CasePair.second;
670 
671     NewSI->addCase(CaseVal, UnswitchedBB);
672   }
673 
674   // If the default was unswitched, re-point it and add explicit cases for
675   // entering the loop.
676   if (DefaultExitBB) {
677     NewSI->setDefaultDest(DefaultExitBB);
678 
679     // We removed all the exit cases, so we just copy the cases to the
680     // unswitched switch.
681     for (auto Case : SI.cases())
682       NewSI->addCase(Case.getCaseValue(), NewPH);
683   }
684 
685   // If we ended up with a common successor for every path through the switch
686   // after unswitching, rewrite it to an unconditional branch to make it easy
687   // to recognize. Otherwise we potentially have to recognize the default case
688   // pointing at unreachable and other complexity.
689   if (CommonSuccBB) {
690     BasicBlock *BB = SI.getParent();
691     // We may have had multiple edges to this common successor block, so remove
692     // them as predecessors. We skip the first one, either the default or the
693     // actual first case.
694     bool SkippedFirst = DefaultExitBB == nullptr;
695     for (auto Case : SI.cases()) {
696       assert(Case.getCaseSuccessor() == CommonSuccBB &&
697              "Non-common successor!");
698       (void)Case;
699       if (!SkippedFirst) {
700         SkippedFirst = true;
701         continue;
702       }
703       CommonSuccBB->removePredecessor(BB,
704                                       /*DontDeleteUselessPHIs*/ true);
705     }
706     // Now nuke the switch and replace it with a direct branch.
707     SI.eraseFromParent();
708     BranchInst::Create(CommonSuccBB, BB);
709   } else if (DefaultExitBB) {
710     assert(SI.getNumCases() > 0 &&
711            "If we had no cases we'd have a common successor!");
712     // Move the last case to the default successor. This is valid as if the
713     // default got unswitched it cannot be reached. This has the advantage of
714     // being simple and keeping the number of edges from this switch to
715     // successors the same, and avoiding any PHI update complexity.
716     auto LastCaseI = std::prev(SI.case_end());
717     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
718     SI.removeCase(LastCaseI);
719   }
720 
721   // Walk the unswitched exit blocks and the unswitched split blocks and update
722   // the dominator tree based on the CFG edits. While we are walking unordered
723   // containers here, the API for applyUpdates takes an unordered list of
724   // updates and requires them to not contain duplicates.
725   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
726   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
727     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
728     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
729   }
730   for (auto SplitUnswitchedPair : SplitExitBBMap) {
731     auto *UnswitchedBB = SplitUnswitchedPair.second;
732     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB});
733     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
734   }
735   DT.applyUpdates(DTUpdates);
736   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
737 
738   // We may have changed the nesting relationship for this loop so hoist it to
739   // its correct parent if needed.
740   hoistLoopToNewParent(L, *NewPH, DT, LI);
741 
742   ++NumTrivial;
743   ++NumSwitches;
744   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
745   return true;
746 }
747 
748 /// This routine scans the loop to find a branch or switch which occurs before
749 /// any side effects occur. These can potentially be unswitched without
750 /// duplicating the loop. If a branch or switch is successfully unswitched the
751 /// scanning continues to see if subsequent branches or switches have become
752 /// trivial. Once all trivial candidates have been unswitched, this routine
753 /// returns.
754 ///
755 /// The return value indicates whether anything was unswitched (and therefore
756 /// changed).
757 ///
758 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
759 /// invalidated by this.
760 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
761                                          LoopInfo &LI, ScalarEvolution *SE) {
762   bool Changed = false;
763 
764   // If loop header has only one reachable successor we should keep looking for
765   // trivial condition candidates in the successor as well. An alternative is
766   // to constant fold conditions and merge successors into loop header (then we
767   // only need to check header's terminator). The reason for not doing this in
768   // LoopUnswitch pass is that it could potentially break LoopPassManager's
769   // invariants. Folding dead branches could either eliminate the current loop
770   // or make other loops unreachable. LCSSA form might also not be preserved
771   // after deleting branches. The following code keeps traversing loop header's
772   // successors until it finds the trivial condition candidate (condition that
773   // is not a constant). Since unswitching generates branches with constant
774   // conditions, this scenario could be very common in practice.
775   BasicBlock *CurrentBB = L.getHeader();
776   SmallPtrSet<BasicBlock *, 8> Visited;
777   Visited.insert(CurrentBB);
778   do {
779     // Check if there are any side-effecting instructions (e.g. stores, calls,
780     // volatile loads) in the part of the loop that the code *would* execute
781     // without unswitching.
782     if (llvm::any_of(*CurrentBB,
783                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
784       return Changed;
785 
786     TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
787 
788     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
789       // Don't bother trying to unswitch past a switch with a constant
790       // condition. This should be removed prior to running this pass by
791       // simplify-cfg.
792       if (isa<Constant>(SI->getCondition()))
793         return Changed;
794 
795       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE))
796         // Couldn't unswitch this one so we're done.
797         return Changed;
798 
799       // Mark that we managed to unswitch something.
800       Changed = true;
801 
802       // If unswitching turned the terminator into an unconditional branch then
803       // we can continue. The unswitching logic specifically works to fold any
804       // cases it can into an unconditional branch to make it easier to
805       // recognize here.
806       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
807       if (!BI || BI->isConditional())
808         return Changed;
809 
810       CurrentBB = BI->getSuccessor(0);
811       continue;
812     }
813 
814     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
815     if (!BI)
816       // We do not understand other terminator instructions.
817       return Changed;
818 
819     // Don't bother trying to unswitch past an unconditional branch or a branch
820     // with a constant value. These should be removed by simplify-cfg prior to
821     // running this pass.
822     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
823       return Changed;
824 
825     // Found a trivial condition candidate: non-foldable conditional branch. If
826     // we fail to unswitch this, we can't do anything else that is trivial.
827     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE))
828       return Changed;
829 
830     // Mark that we managed to unswitch something.
831     Changed = true;
832 
833     // If we only unswitched some of the conditions feeding the branch, we won't
834     // have collapsed it to a single successor.
835     BI = cast<BranchInst>(CurrentBB->getTerminator());
836     if (BI->isConditional())
837       return Changed;
838 
839     // Follow the newly unconditional branch into its successor.
840     CurrentBB = BI->getSuccessor(0);
841 
842     // When continuing, if we exit the loop or reach a previous visited block,
843     // then we can not reach any trivial condition candidates (unfoldable
844     // branch instructions or switch instructions) and no unswitch can happen.
845   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
846 
847   return Changed;
848 }
849 
850 /// Build the cloned blocks for an unswitched copy of the given loop.
851 ///
852 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
853 /// after the split block (`SplitBB`) that will be used to select between the
854 /// cloned and original loop.
855 ///
856 /// This routine handles cloning all of the necessary loop blocks and exit
857 /// blocks including rewriting their instructions and the relevant PHI nodes.
858 /// Any loop blocks or exit blocks which are dominated by a different successor
859 /// than the one for this clone of the loop blocks can be trivially skipped. We
860 /// use the `DominatingSucc` map to determine whether a block satisfies that
861 /// property with a simple map lookup.
862 ///
863 /// It also correctly creates the unconditional branch in the cloned
864 /// unswitched parent block to only point at the unswitched successor.
865 ///
866 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
867 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
868 /// the cloned blocks (and their loops) are left without full `LoopInfo`
869 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
870 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
871 /// instead the caller must recompute an accurate DT. It *does* correctly
872 /// update the `AssumptionCache` provided in `AC`.
873 static BasicBlock *buildClonedLoopBlocks(
874     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
875     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
876     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
877     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
878     ValueToValueMapTy &VMap,
879     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
880     DominatorTree &DT, LoopInfo &LI) {
881   SmallVector<BasicBlock *, 4> NewBlocks;
882   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
883 
884   // We will need to clone a bunch of blocks, wrap up the clone operation in
885   // a helper.
886   auto CloneBlock = [&](BasicBlock *OldBB) {
887     // Clone the basic block and insert it before the new preheader.
888     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
889     NewBB->moveBefore(LoopPH);
890 
891     // Record this block and the mapping.
892     NewBlocks.push_back(NewBB);
893     VMap[OldBB] = NewBB;
894 
895     return NewBB;
896   };
897 
898   // We skip cloning blocks when they have a dominating succ that is not the
899   // succ we are cloning for.
900   auto SkipBlock = [&](BasicBlock *BB) {
901     auto It = DominatingSucc.find(BB);
902     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
903   };
904 
905   // First, clone the preheader.
906   auto *ClonedPH = CloneBlock(LoopPH);
907 
908   // Then clone all the loop blocks, skipping the ones that aren't necessary.
909   for (auto *LoopBB : L.blocks())
910     if (!SkipBlock(LoopBB))
911       CloneBlock(LoopBB);
912 
913   // Split all the loop exit edges so that when we clone the exit blocks, if
914   // any of the exit blocks are *also* a preheader for some other loop, we
915   // don't create multiple predecessors entering the loop header.
916   for (auto *ExitBB : ExitBlocks) {
917     if (SkipBlock(ExitBB))
918       continue;
919 
920     // When we are going to clone an exit, we don't need to clone all the
921     // instructions in the exit block and we want to ensure we have an easy
922     // place to merge the CFG, so split the exit first. This is always safe to
923     // do because there cannot be any non-loop predecessors of a loop exit in
924     // loop simplified form.
925     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
926 
927     // Rearrange the names to make it easier to write test cases by having the
928     // exit block carry the suffix rather than the merge block carrying the
929     // suffix.
930     MergeBB->takeName(ExitBB);
931     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
932 
933     // Now clone the original exit block.
934     auto *ClonedExitBB = CloneBlock(ExitBB);
935     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
936            "Exit block should have been split to have one successor!");
937     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
938            "Cloned exit block has the wrong successor!");
939 
940     // Remap any cloned instructions and create a merge phi node for them.
941     for (auto ZippedInsts : llvm::zip_first(
942              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
943              llvm::make_range(ClonedExitBB->begin(),
944                               std::prev(ClonedExitBB->end())))) {
945       Instruction &I = std::get<0>(ZippedInsts);
946       Instruction &ClonedI = std::get<1>(ZippedInsts);
947 
948       // The only instructions in the exit block should be PHI nodes and
949       // potentially a landing pad.
950       assert(
951           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
952           "Bad instruction in exit block!");
953       // We should have a value map between the instruction and its clone.
954       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
955 
956       auto *MergePN =
957           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
958                           &*MergeBB->getFirstInsertionPt());
959       I.replaceAllUsesWith(MergePN);
960       MergePN->addIncoming(&I, ExitBB);
961       MergePN->addIncoming(&ClonedI, ClonedExitBB);
962     }
963   }
964 
965   // Rewrite the instructions in the cloned blocks to refer to the instructions
966   // in the cloned blocks. We have to do this as a second pass so that we have
967   // everything available. Also, we have inserted new instructions which may
968   // include assume intrinsics, so we update the assumption cache while
969   // processing this.
970   for (auto *ClonedBB : NewBlocks)
971     for (Instruction &I : *ClonedBB) {
972       RemapInstruction(&I, VMap,
973                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
974       if (auto *II = dyn_cast<IntrinsicInst>(&I))
975         if (II->getIntrinsicID() == Intrinsic::assume)
976           AC.registerAssumption(II);
977     }
978 
979   // Update any PHI nodes in the cloned successors of the skipped blocks to not
980   // have spurious incoming values.
981   for (auto *LoopBB : L.blocks())
982     if (SkipBlock(LoopBB))
983       for (auto *SuccBB : successors(LoopBB))
984         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
985           for (PHINode &PN : ClonedSuccBB->phis())
986             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
987 
988   // Remove the cloned parent as a predecessor of any successor we ended up
989   // cloning other than the unswitched one.
990   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
991   for (auto *SuccBB : successors(ParentBB)) {
992     if (SuccBB == UnswitchedSuccBB)
993       continue;
994 
995     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
996     if (!ClonedSuccBB)
997       continue;
998 
999     ClonedSuccBB->removePredecessor(ClonedParentBB,
1000                                     /*DontDeleteUselessPHIs*/ true);
1001   }
1002 
1003   // Replace the cloned branch with an unconditional branch to the cloned
1004   // unswitched successor.
1005   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1006   ClonedParentBB->getTerminator()->eraseFromParent();
1007   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1008 
1009   // If there are duplicate entries in the PHI nodes because of multiple edges
1010   // to the unswitched successor, we need to nuke all but one as we replaced it
1011   // with a direct branch.
1012   for (PHINode &PN : ClonedSuccBB->phis()) {
1013     bool Found = false;
1014     // Loop over the incoming operands backwards so we can easily delete as we
1015     // go without invalidating the index.
1016     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1017       if (PN.getIncomingBlock(i) != ClonedParentBB)
1018         continue;
1019       if (!Found) {
1020         Found = true;
1021         continue;
1022       }
1023       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1024     }
1025   }
1026 
1027   // Record the domtree updates for the new blocks.
1028   SmallPtrSet<BasicBlock *, 4> SuccSet;
1029   for (auto *ClonedBB : NewBlocks) {
1030     for (auto *SuccBB : successors(ClonedBB))
1031       if (SuccSet.insert(SuccBB).second)
1032         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1033     SuccSet.clear();
1034   }
1035 
1036   return ClonedPH;
1037 }
1038 
1039 /// Recursively clone the specified loop and all of its children.
1040 ///
1041 /// The target parent loop for the clone should be provided, or can be null if
1042 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1043 /// with the provided value map. The entire original loop must be present in
1044 /// the value map. The cloned loop is returned.
1045 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1046                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1047   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1048     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1049     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1050     for (auto *BB : OrigL.blocks()) {
1051       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1052       ClonedL.addBlockEntry(ClonedBB);
1053       if (LI.getLoopFor(BB) == &OrigL)
1054         LI.changeLoopFor(ClonedBB, &ClonedL);
1055     }
1056   };
1057 
1058   // We specially handle the first loop because it may get cloned into
1059   // a different parent and because we most commonly are cloning leaf loops.
1060   Loop *ClonedRootL = LI.AllocateLoop();
1061   if (RootParentL)
1062     RootParentL->addChildLoop(ClonedRootL);
1063   else
1064     LI.addTopLevelLoop(ClonedRootL);
1065   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1066 
1067   if (OrigRootL.empty())
1068     return ClonedRootL;
1069 
1070   // If we have a nest, we can quickly clone the entire loop nest using an
1071   // iterative approach because it is a tree. We keep the cloned parent in the
1072   // data structure to avoid repeatedly querying through a map to find it.
1073   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1074   // Build up the loops to clone in reverse order as we'll clone them from the
1075   // back.
1076   for (Loop *ChildL : llvm::reverse(OrigRootL))
1077     LoopsToClone.push_back({ClonedRootL, ChildL});
1078   do {
1079     Loop *ClonedParentL, *L;
1080     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1081     Loop *ClonedL = LI.AllocateLoop();
1082     ClonedParentL->addChildLoop(ClonedL);
1083     AddClonedBlocksToLoop(*L, *ClonedL);
1084     for (Loop *ChildL : llvm::reverse(*L))
1085       LoopsToClone.push_back({ClonedL, ChildL});
1086   } while (!LoopsToClone.empty());
1087 
1088   return ClonedRootL;
1089 }
1090 
1091 /// Build the cloned loops of an original loop from unswitching.
1092 ///
1093 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1094 /// operation. We need to re-verify that there even is a loop (as the backedge
1095 /// may not have been cloned), and even if there are remaining backedges the
1096 /// backedge set may be different. However, we know that each child loop is
1097 /// undisturbed, we only need to find where to place each child loop within
1098 /// either any parent loop or within a cloned version of the original loop.
1099 ///
1100 /// Because child loops may end up cloned outside of any cloned version of the
1101 /// original loop, multiple cloned sibling loops may be created. All of them
1102 /// are returned so that the newly introduced loop nest roots can be
1103 /// identified.
1104 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1105                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1106                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1107   Loop *ClonedL = nullptr;
1108 
1109   auto *OrigPH = OrigL.getLoopPreheader();
1110   auto *OrigHeader = OrigL.getHeader();
1111 
1112   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1113   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1114 
1115   // We need to know the loops of the cloned exit blocks to even compute the
1116   // accurate parent loop. If we only clone exits to some parent of the
1117   // original parent, we want to clone into that outer loop. We also keep track
1118   // of the loops that our cloned exit blocks participate in.
1119   Loop *ParentL = nullptr;
1120   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1121   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1122   ClonedExitsInLoops.reserve(ExitBlocks.size());
1123   for (auto *ExitBB : ExitBlocks)
1124     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1125       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1126         ExitLoopMap[ClonedExitBB] = ExitL;
1127         ClonedExitsInLoops.push_back(ClonedExitBB);
1128         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1129           ParentL = ExitL;
1130       }
1131   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1132           ParentL->contains(OrigL.getParentLoop())) &&
1133          "The computed parent loop should always contain (or be) the parent of "
1134          "the original loop.");
1135 
1136   // We build the set of blocks dominated by the cloned header from the set of
1137   // cloned blocks out of the original loop. While not all of these will
1138   // necessarily be in the cloned loop, it is enough to establish that they
1139   // aren't in unreachable cycles, etc.
1140   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1141   for (auto *BB : OrigL.blocks())
1142     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1143       ClonedLoopBlocks.insert(ClonedBB);
1144 
1145   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1146   // skipped cloning some region of this loop which can in turn skip some of
1147   // the backedges so we have to rebuild the blocks in the loop based on the
1148   // backedges that remain after cloning.
1149   SmallVector<BasicBlock *, 16> Worklist;
1150   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1151   for (auto *Pred : predecessors(ClonedHeader)) {
1152     // The only possible non-loop header predecessor is the preheader because
1153     // we know we cloned the loop in simplified form.
1154     if (Pred == ClonedPH)
1155       continue;
1156 
1157     // Because the loop was in simplified form, the only non-loop predecessor
1158     // should be the preheader.
1159     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1160                                            "header other than the preheader "
1161                                            "that is not part of the loop!");
1162 
1163     // Insert this block into the loop set and on the first visit (and if it
1164     // isn't the header we're currently walking) put it into the worklist to
1165     // recurse through.
1166     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1167       Worklist.push_back(Pred);
1168   }
1169 
1170   // If we had any backedges then there *is* a cloned loop. Put the header into
1171   // the loop set and then walk the worklist backwards to find all the blocks
1172   // that remain within the loop after cloning.
1173   if (!BlocksInClonedLoop.empty()) {
1174     BlocksInClonedLoop.insert(ClonedHeader);
1175 
1176     while (!Worklist.empty()) {
1177       BasicBlock *BB = Worklist.pop_back_val();
1178       assert(BlocksInClonedLoop.count(BB) &&
1179              "Didn't put block into the loop set!");
1180 
1181       // Insert any predecessors that are in the possible set into the cloned
1182       // set, and if the insert is successful, add them to the worklist. Note
1183       // that we filter on the blocks that are definitely reachable via the
1184       // backedge to the loop header so we may prune out dead code within the
1185       // cloned loop.
1186       for (auto *Pred : predecessors(BB))
1187         if (ClonedLoopBlocks.count(Pred) &&
1188             BlocksInClonedLoop.insert(Pred).second)
1189           Worklist.push_back(Pred);
1190     }
1191 
1192     ClonedL = LI.AllocateLoop();
1193     if (ParentL) {
1194       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1195       ParentL->addChildLoop(ClonedL);
1196     } else {
1197       LI.addTopLevelLoop(ClonedL);
1198     }
1199     NonChildClonedLoops.push_back(ClonedL);
1200 
1201     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1202     // We don't want to just add the cloned loop blocks based on how we
1203     // discovered them. The original order of blocks was carefully built in
1204     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1205     // that logic, we just re-walk the original blocks (and those of the child
1206     // loops) and filter them as we add them into the cloned loop.
1207     for (auto *BB : OrigL.blocks()) {
1208       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1209       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1210         continue;
1211 
1212       // Directly add the blocks that are only in this loop.
1213       if (LI.getLoopFor(BB) == &OrigL) {
1214         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1215         continue;
1216       }
1217 
1218       // We want to manually add it to this loop and parents.
1219       // Registering it with LoopInfo will happen when we clone the top
1220       // loop for this block.
1221       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1222         PL->addBlockEntry(ClonedBB);
1223     }
1224 
1225     // Now add each child loop whose header remains within the cloned loop. All
1226     // of the blocks within the loop must satisfy the same constraints as the
1227     // header so once we pass the header checks we can just clone the entire
1228     // child loop nest.
1229     for (Loop *ChildL : OrigL) {
1230       auto *ClonedChildHeader =
1231           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1232       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1233         continue;
1234 
1235 #ifndef NDEBUG
1236       // We should never have a cloned child loop header but fail to have
1237       // all of the blocks for that child loop.
1238       for (auto *ChildLoopBB : ChildL->blocks())
1239         assert(BlocksInClonedLoop.count(
1240                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1241                "Child cloned loop has a header within the cloned outer "
1242                "loop but not all of its blocks!");
1243 #endif
1244 
1245       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1246     }
1247   }
1248 
1249   // Now that we've handled all the components of the original loop that were
1250   // cloned into a new loop, we still need to handle anything from the original
1251   // loop that wasn't in a cloned loop.
1252 
1253   // Figure out what blocks are left to place within any loop nest containing
1254   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1255   // them.
1256   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1257   if (BlocksInClonedLoop.empty())
1258     UnloopedBlockSet.insert(ClonedPH);
1259   for (auto *ClonedBB : ClonedLoopBlocks)
1260     if (!BlocksInClonedLoop.count(ClonedBB))
1261       UnloopedBlockSet.insert(ClonedBB);
1262 
1263   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1264   // backwards across these to process them inside out. The order shouldn't
1265   // matter as we're just trying to build up the map from inside-out; we use
1266   // the map in a more stably ordered way below.
1267   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1268   llvm::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(),
1269              [&](BasicBlock *LHS, BasicBlock *RHS) {
1270                return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1271                       ExitLoopMap.lookup(RHS)->getLoopDepth();
1272              });
1273 
1274   // Populate the existing ExitLoopMap with everything reachable from each
1275   // exit, starting from the inner most exit.
1276   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1277     assert(Worklist.empty() && "Didn't clear worklist!");
1278 
1279     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1280     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1281 
1282     // Walk the CFG back until we hit the cloned PH adding everything reachable
1283     // and in the unlooped set to this exit block's loop.
1284     Worklist.push_back(ExitBB);
1285     do {
1286       BasicBlock *BB = Worklist.pop_back_val();
1287       // We can stop recursing at the cloned preheader (if we get there).
1288       if (BB == ClonedPH)
1289         continue;
1290 
1291       for (BasicBlock *PredBB : predecessors(BB)) {
1292         // If this pred has already been moved to our set or is part of some
1293         // (inner) loop, no update needed.
1294         if (!UnloopedBlockSet.erase(PredBB)) {
1295           assert(
1296               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1297               "Predecessor not mapped to a loop!");
1298           continue;
1299         }
1300 
1301         // We just insert into the loop set here. We'll add these blocks to the
1302         // exit loop after we build up the set in an order that doesn't rely on
1303         // predecessor order (which in turn relies on use list order).
1304         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1305         (void)Inserted;
1306         assert(Inserted && "Should only visit an unlooped block once!");
1307 
1308         // And recurse through to its predecessors.
1309         Worklist.push_back(PredBB);
1310       }
1311     } while (!Worklist.empty());
1312   }
1313 
1314   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1315   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1316   // in their original order adding them to the correct loop.
1317 
1318   // We need a stable insertion order. We use the order of the original loop
1319   // order and map into the correct parent loop.
1320   for (auto *BB : llvm::concat<BasicBlock *const>(
1321            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1322     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1323       OuterL->addBasicBlockToLoop(BB, LI);
1324 
1325 #ifndef NDEBUG
1326   for (auto &BBAndL : ExitLoopMap) {
1327     auto *BB = BBAndL.first;
1328     auto *OuterL = BBAndL.second;
1329     assert(LI.getLoopFor(BB) == OuterL &&
1330            "Failed to put all blocks into outer loops!");
1331   }
1332 #endif
1333 
1334   // Now that all the blocks are placed into the correct containing loop in the
1335   // absence of child loops, find all the potentially cloned child loops and
1336   // clone them into whatever outer loop we placed their header into.
1337   for (Loop *ChildL : OrigL) {
1338     auto *ClonedChildHeader =
1339         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1340     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1341       continue;
1342 
1343 #ifndef NDEBUG
1344     for (auto *ChildLoopBB : ChildL->blocks())
1345       assert(VMap.count(ChildLoopBB) &&
1346              "Cloned a child loop header but not all of that loops blocks!");
1347 #endif
1348 
1349     NonChildClonedLoops.push_back(cloneLoopNest(
1350         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1351   }
1352 }
1353 
1354 static void
1355 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1356                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1357                        DominatorTree &DT) {
1358   // Find all the dead clones, and remove them from their successors.
1359   SmallVector<BasicBlock *, 16> DeadBlocks;
1360   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1361     for (auto &VMap : VMaps)
1362       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1363         if (!DT.isReachableFromEntry(ClonedBB)) {
1364           for (BasicBlock *SuccBB : successors(ClonedBB))
1365             SuccBB->removePredecessor(ClonedBB);
1366           DeadBlocks.push_back(ClonedBB);
1367         }
1368 
1369   // Drop any remaining references to break cycles.
1370   for (BasicBlock *BB : DeadBlocks)
1371     BB->dropAllReferences();
1372   // Erase them from the IR.
1373   for (BasicBlock *BB : DeadBlocks)
1374     BB->eraseFromParent();
1375 }
1376 
1377 static void
1378 deleteDeadBlocksFromLoop(Loop &L,
1379                          SmallVectorImpl<BasicBlock *> &ExitBlocks,
1380                          DominatorTree &DT, LoopInfo &LI) {
1381   // Find all the dead blocks, and remove them from their successors.
1382   SmallVector<BasicBlock *, 16> DeadBlocks;
1383   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1384     if (!DT.isReachableFromEntry(BB)) {
1385       for (BasicBlock *SuccBB : successors(BB))
1386         SuccBB->removePredecessor(BB);
1387       DeadBlocks.push_back(BB);
1388     }
1389 
1390   SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(),
1391                                              DeadBlocks.end());
1392 
1393   // Filter out the dead blocks from the exit blocks list so that it can be
1394   // used in the caller.
1395   llvm::erase_if(ExitBlocks,
1396                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1397 
1398   // Walk from this loop up through its parents removing all of the dead blocks.
1399   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1400     for (auto *BB : DeadBlocks)
1401       ParentL->getBlocksSet().erase(BB);
1402     llvm::erase_if(ParentL->getBlocksVector(),
1403                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1404   }
1405 
1406   // Now delete the dead child loops. This raw delete will clear them
1407   // recursively.
1408   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1409     if (!DeadBlockSet.count(ChildL->getHeader()))
1410       return false;
1411 
1412     assert(llvm::all_of(ChildL->blocks(),
1413                         [&](BasicBlock *ChildBB) {
1414                           return DeadBlockSet.count(ChildBB);
1415                         }) &&
1416            "If the child loop header is dead all blocks in the child loop must "
1417            "be dead as well!");
1418     LI.destroy(ChildL);
1419     return true;
1420   });
1421 
1422   // Remove the loop mappings for the dead blocks and drop all the references
1423   // from these blocks to others to handle cyclic references as we start
1424   // deleting the blocks themselves.
1425   for (auto *BB : DeadBlocks) {
1426     // Check that the dominator tree has already been updated.
1427     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1428     LI.changeLoopFor(BB, nullptr);
1429     BB->dropAllReferences();
1430   }
1431 
1432   // Actually delete the blocks now that they've been fully unhooked from the
1433   // IR.
1434   for (auto *BB : DeadBlocks)
1435     BB->eraseFromParent();
1436 }
1437 
1438 /// Recompute the set of blocks in a loop after unswitching.
1439 ///
1440 /// This walks from the original headers predecessors to rebuild the loop. We
1441 /// take advantage of the fact that new blocks can't have been added, and so we
1442 /// filter by the original loop's blocks. This also handles potentially
1443 /// unreachable code that we don't want to explore but might be found examining
1444 /// the predecessors of the header.
1445 ///
1446 /// If the original loop is no longer a loop, this will return an empty set. If
1447 /// it remains a loop, all the blocks within it will be added to the set
1448 /// (including those blocks in inner loops).
1449 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1450                                                                  LoopInfo &LI) {
1451   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1452 
1453   auto *PH = L.getLoopPreheader();
1454   auto *Header = L.getHeader();
1455 
1456   // A worklist to use while walking backwards from the header.
1457   SmallVector<BasicBlock *, 16> Worklist;
1458 
1459   // First walk the predecessors of the header to find the backedges. This will
1460   // form the basis of our walk.
1461   for (auto *Pred : predecessors(Header)) {
1462     // Skip the preheader.
1463     if (Pred == PH)
1464       continue;
1465 
1466     // Because the loop was in simplified form, the only non-loop predecessor
1467     // is the preheader.
1468     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1469                                "than the preheader that is not part of the "
1470                                "loop!");
1471 
1472     // Insert this block into the loop set and on the first visit and, if it
1473     // isn't the header we're currently walking, put it into the worklist to
1474     // recurse through.
1475     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1476       Worklist.push_back(Pred);
1477   }
1478 
1479   // If no backedges were found, we're done.
1480   if (LoopBlockSet.empty())
1481     return LoopBlockSet;
1482 
1483   // We found backedges, recurse through them to identify the loop blocks.
1484   while (!Worklist.empty()) {
1485     BasicBlock *BB = Worklist.pop_back_val();
1486     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1487 
1488     // No need to walk past the header.
1489     if (BB == Header)
1490       continue;
1491 
1492     // Because we know the inner loop structure remains valid we can use the
1493     // loop structure to jump immediately across the entire nested loop.
1494     // Further, because it is in loop simplified form, we can directly jump
1495     // to its preheader afterward.
1496     if (Loop *InnerL = LI.getLoopFor(BB))
1497       if (InnerL != &L) {
1498         assert(L.contains(InnerL) &&
1499                "Should not reach a loop *outside* this loop!");
1500         // The preheader is the only possible predecessor of the loop so
1501         // insert it into the set and check whether it was already handled.
1502         auto *InnerPH = InnerL->getLoopPreheader();
1503         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1504                                       "but not contain the inner loop "
1505                                       "preheader!");
1506         if (!LoopBlockSet.insert(InnerPH).second)
1507           // The only way to reach the preheader is through the loop body
1508           // itself so if it has been visited the loop is already handled.
1509           continue;
1510 
1511         // Insert all of the blocks (other than those already present) into
1512         // the loop set. We expect at least the block that led us to find the
1513         // inner loop to be in the block set, but we may also have other loop
1514         // blocks if they were already enqueued as predecessors of some other
1515         // outer loop block.
1516         for (auto *InnerBB : InnerL->blocks()) {
1517           if (InnerBB == BB) {
1518             assert(LoopBlockSet.count(InnerBB) &&
1519                    "Block should already be in the set!");
1520             continue;
1521           }
1522 
1523           LoopBlockSet.insert(InnerBB);
1524         }
1525 
1526         // Add the preheader to the worklist so we will continue past the
1527         // loop body.
1528         Worklist.push_back(InnerPH);
1529         continue;
1530       }
1531 
1532     // Insert any predecessors that were in the original loop into the new
1533     // set, and if the insert is successful, add them to the worklist.
1534     for (auto *Pred : predecessors(BB))
1535       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1536         Worklist.push_back(Pred);
1537   }
1538 
1539   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1540 
1541   // We've found all the blocks participating in the loop, return our completed
1542   // set.
1543   return LoopBlockSet;
1544 }
1545 
1546 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1547 ///
1548 /// The removal may have removed some child loops entirely but cannot have
1549 /// disturbed any remaining child loops. However, they may need to be hoisted
1550 /// to the parent loop (or to be top-level loops). The original loop may be
1551 /// completely removed.
1552 ///
1553 /// The sibling loops resulting from this update are returned. If the original
1554 /// loop remains a valid loop, it will be the first entry in this list with all
1555 /// of the newly sibling loops following it.
1556 ///
1557 /// Returns true if the loop remains a loop after unswitching, and false if it
1558 /// is no longer a loop after unswitching (and should not continue to be
1559 /// referenced).
1560 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1561                                      LoopInfo &LI,
1562                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1563   auto *PH = L.getLoopPreheader();
1564 
1565   // Compute the actual parent loop from the exit blocks. Because we may have
1566   // pruned some exits the loop may be different from the original parent.
1567   Loop *ParentL = nullptr;
1568   SmallVector<Loop *, 4> ExitLoops;
1569   SmallVector<BasicBlock *, 4> ExitsInLoops;
1570   ExitsInLoops.reserve(ExitBlocks.size());
1571   for (auto *ExitBB : ExitBlocks)
1572     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1573       ExitLoops.push_back(ExitL);
1574       ExitsInLoops.push_back(ExitBB);
1575       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1576         ParentL = ExitL;
1577     }
1578 
1579   // Recompute the blocks participating in this loop. This may be empty if it
1580   // is no longer a loop.
1581   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1582 
1583   // If we still have a loop, we need to re-set the loop's parent as the exit
1584   // block set changing may have moved it within the loop nest. Note that this
1585   // can only happen when this loop has a parent as it can only hoist the loop
1586   // *up* the nest.
1587   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1588     // Remove this loop's (original) blocks from all of the intervening loops.
1589     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1590          IL = IL->getParentLoop()) {
1591       IL->getBlocksSet().erase(PH);
1592       for (auto *BB : L.blocks())
1593         IL->getBlocksSet().erase(BB);
1594       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1595         return BB == PH || L.contains(BB);
1596       });
1597     }
1598 
1599     LI.changeLoopFor(PH, ParentL);
1600     L.getParentLoop()->removeChildLoop(&L);
1601     if (ParentL)
1602       ParentL->addChildLoop(&L);
1603     else
1604       LI.addTopLevelLoop(&L);
1605   }
1606 
1607   // Now we update all the blocks which are no longer within the loop.
1608   auto &Blocks = L.getBlocksVector();
1609   auto BlocksSplitI =
1610       LoopBlockSet.empty()
1611           ? Blocks.begin()
1612           : std::stable_partition(
1613                 Blocks.begin(), Blocks.end(),
1614                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1615 
1616   // Before we erase the list of unlooped blocks, build a set of them.
1617   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1618   if (LoopBlockSet.empty())
1619     UnloopedBlocks.insert(PH);
1620 
1621   // Now erase these blocks from the loop.
1622   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1623     L.getBlocksSet().erase(BB);
1624   Blocks.erase(BlocksSplitI, Blocks.end());
1625 
1626   // Sort the exits in ascending loop depth, we'll work backwards across these
1627   // to process them inside out.
1628   std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1629                    [&](BasicBlock *LHS, BasicBlock *RHS) {
1630                      return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1631                    });
1632 
1633   // We'll build up a set for each exit loop.
1634   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1635   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1636 
1637   auto RemoveUnloopedBlocksFromLoop =
1638       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1639         for (auto *BB : UnloopedBlocks)
1640           L.getBlocksSet().erase(BB);
1641         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1642           return UnloopedBlocks.count(BB);
1643         });
1644       };
1645 
1646   SmallVector<BasicBlock *, 16> Worklist;
1647   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1648     assert(Worklist.empty() && "Didn't clear worklist!");
1649     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1650 
1651     // Grab the next exit block, in decreasing loop depth order.
1652     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1653     Loop &ExitL = *LI.getLoopFor(ExitBB);
1654     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1655 
1656     // Erase all of the unlooped blocks from the loops between the previous
1657     // exit loop and this exit loop. This works because the ExitInLoops list is
1658     // sorted in increasing order of loop depth and thus we visit loops in
1659     // decreasing order of loop depth.
1660     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1661       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1662 
1663     // Walk the CFG back until we hit the cloned PH adding everything reachable
1664     // and in the unlooped set to this exit block's loop.
1665     Worklist.push_back(ExitBB);
1666     do {
1667       BasicBlock *BB = Worklist.pop_back_val();
1668       // We can stop recursing at the cloned preheader (if we get there).
1669       if (BB == PH)
1670         continue;
1671 
1672       for (BasicBlock *PredBB : predecessors(BB)) {
1673         // If this pred has already been moved to our set or is part of some
1674         // (inner) loop, no update needed.
1675         if (!UnloopedBlocks.erase(PredBB)) {
1676           assert((NewExitLoopBlocks.count(PredBB) ||
1677                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1678                  "Predecessor not in a nested loop (or already visited)!");
1679           continue;
1680         }
1681 
1682         // We just insert into the loop set here. We'll add these blocks to the
1683         // exit loop after we build up the set in a deterministic order rather
1684         // than the predecessor-influenced visit order.
1685         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1686         (void)Inserted;
1687         assert(Inserted && "Should only visit an unlooped block once!");
1688 
1689         // And recurse through to its predecessors.
1690         Worklist.push_back(PredBB);
1691       }
1692     } while (!Worklist.empty());
1693 
1694     // If blocks in this exit loop were directly part of the original loop (as
1695     // opposed to a child loop) update the map to point to this exit loop. This
1696     // just updates a map and so the fact that the order is unstable is fine.
1697     for (auto *BB : NewExitLoopBlocks)
1698       if (Loop *BBL = LI.getLoopFor(BB))
1699         if (BBL == &L || !L.contains(BBL))
1700           LI.changeLoopFor(BB, &ExitL);
1701 
1702     // We will remove the remaining unlooped blocks from this loop in the next
1703     // iteration or below.
1704     NewExitLoopBlocks.clear();
1705   }
1706 
1707   // Any remaining unlooped blocks are no longer part of any loop unless they
1708   // are part of some child loop.
1709   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1710     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1711   for (auto *BB : UnloopedBlocks)
1712     if (Loop *BBL = LI.getLoopFor(BB))
1713       if (BBL == &L || !L.contains(BBL))
1714         LI.changeLoopFor(BB, nullptr);
1715 
1716   // Sink all the child loops whose headers are no longer in the loop set to
1717   // the parent (or to be top level loops). We reach into the loop and directly
1718   // update its subloop vector to make this batch update efficient.
1719   auto &SubLoops = L.getSubLoopsVector();
1720   auto SubLoopsSplitI =
1721       LoopBlockSet.empty()
1722           ? SubLoops.begin()
1723           : std::stable_partition(
1724                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1725                   return LoopBlockSet.count(SubL->getHeader());
1726                 });
1727   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1728     HoistedLoops.push_back(HoistedL);
1729     HoistedL->setParentLoop(nullptr);
1730 
1731     // To compute the new parent of this hoisted loop we look at where we
1732     // placed the preheader above. We can't lookup the header itself because we
1733     // retained the mapping from the header to the hoisted loop. But the
1734     // preheader and header should have the exact same new parent computed
1735     // based on the set of exit blocks from the original loop as the preheader
1736     // is a predecessor of the header and so reached in the reverse walk. And
1737     // because the loops were all in simplified form the preheader of the
1738     // hoisted loop can't be part of some *other* loop.
1739     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1740       NewParentL->addChildLoop(HoistedL);
1741     else
1742       LI.addTopLevelLoop(HoistedL);
1743   }
1744   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1745 
1746   // Actually delete the loop if nothing remained within it.
1747   if (Blocks.empty()) {
1748     assert(SubLoops.empty() &&
1749            "Failed to remove all subloops from the original loop!");
1750     if (Loop *ParentL = L.getParentLoop())
1751       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1752     else
1753       LI.removeLoop(llvm::find(LI, &L));
1754     LI.destroy(&L);
1755     return false;
1756   }
1757 
1758   return true;
1759 }
1760 
1761 /// Helper to visit a dominator subtree, invoking a callable on each node.
1762 ///
1763 /// Returning false at any point will stop walking past that node of the tree.
1764 template <typename CallableT>
1765 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1766   SmallVector<DomTreeNode *, 4> DomWorklist;
1767   DomWorklist.push_back(DT[BB]);
1768 #ifndef NDEBUG
1769   SmallPtrSet<DomTreeNode *, 4> Visited;
1770   Visited.insert(DT[BB]);
1771 #endif
1772   do {
1773     DomTreeNode *N = DomWorklist.pop_back_val();
1774 
1775     // Visit this node.
1776     if (!Callable(N->getBlock()))
1777       continue;
1778 
1779     // Accumulate the child nodes.
1780     for (DomTreeNode *ChildN : *N) {
1781       assert(Visited.insert(ChildN).second &&
1782              "Cannot visit a node twice when walking a tree!");
1783       DomWorklist.push_back(ChildN);
1784     }
1785   } while (!DomWorklist.empty());
1786 }
1787 
1788 static bool unswitchNontrivialInvariants(
1789     Loop &L, TerminatorInst &TI, ArrayRef<Value *> Invariants,
1790     DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
1791     function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1792     ScalarEvolution *SE) {
1793   auto *ParentBB = TI.getParent();
1794   BranchInst *BI = dyn_cast<BranchInst>(&TI);
1795   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1796 
1797   // We can only unswitch switches, conditional branches with an invariant
1798   // condition, or combining invariant conditions with an instruction.
1799   assert((SI || BI->isConditional()) &&
1800          "Can only unswitch switches and conditional branch!");
1801   bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1802   if (FullUnswitch)
1803     assert(Invariants.size() == 1 &&
1804            "Cannot have other invariants with full unswitching!");
1805   else
1806     assert(isa<Instruction>(BI->getCondition()) &&
1807            "Partial unswitching requires an instruction as the condition!");
1808 
1809   // Constant and BBs tracking the cloned and continuing successor. When we are
1810   // unswitching the entire condition, this can just be trivially chosen to
1811   // unswitch towards `true`. However, when we are unswitching a set of
1812   // invariants combined with `and` or `or`, the combining operation determines
1813   // the best direction to unswitch: we want to unswitch the direction that will
1814   // collapse the branch.
1815   bool Direction = true;
1816   int ClonedSucc = 0;
1817   if (!FullUnswitch) {
1818     if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1819       assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1820                  Instruction::And &&
1821              "Only `or` and `and` instructions can combine invariants being "
1822              "unswitched.");
1823       Direction = false;
1824       ClonedSucc = 1;
1825     }
1826   }
1827 
1828   BasicBlock *RetainedSuccBB =
1829       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1830   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1831   if (BI)
1832     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1833   else
1834     for (auto Case : SI->cases())
1835       if (Case.getCaseSuccessor() != RetainedSuccBB)
1836         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
1837 
1838   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1839          "Should not unswitch the same successor we are retaining!");
1840 
1841   // The branch should be in this exact loop. Any inner loop's invariant branch
1842   // should be handled by unswitching that inner loop. The caller of this
1843   // routine should filter out any candidates that remain (but were skipped for
1844   // whatever reason).
1845   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1846 
1847   SmallVector<BasicBlock *, 4> ExitBlocks;
1848   L.getUniqueExitBlocks(ExitBlocks);
1849 
1850   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
1851   // don't know how to split those exit blocks.
1852   // FIXME: We should teach SplitBlock to handle this and remove this
1853   // restriction.
1854   for (auto *ExitBB : ExitBlocks)
1855     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI()))
1856       return false;
1857 
1858   // Compute the parent loop now before we start hacking on things.
1859   Loop *ParentL = L.getParentLoop();
1860 
1861   // Compute the outer-most loop containing one of our exit blocks. This is the
1862   // furthest up our loopnest which can be mutated, which we will use below to
1863   // update things.
1864   Loop *OuterExitL = &L;
1865   for (auto *ExitBB : ExitBlocks) {
1866     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1867     if (!NewOuterExitL) {
1868       // We exited the entire nest with this block, so we're done.
1869       OuterExitL = nullptr;
1870       break;
1871     }
1872     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1873       OuterExitL = NewOuterExitL;
1874   }
1875 
1876   // At this point, we're definitely going to unswitch something so invalidate
1877   // any cached information in ScalarEvolution for the outer most loop
1878   // containing an exit block and all nested loops.
1879   if (SE) {
1880     if (OuterExitL)
1881       SE->forgetLoop(OuterExitL);
1882     else
1883       SE->forgetTopmostLoop(&L);
1884   }
1885 
1886   // If the edge from this terminator to a successor dominates that successor,
1887   // store a map from each block in its dominator subtree to it. This lets us
1888   // tell when cloning for a particular successor if a block is dominated by
1889   // some *other* successor with a single data structure. We use this to
1890   // significantly reduce cloning.
1891   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
1892   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
1893            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
1894     if (SuccBB->getUniquePredecessor() ||
1895         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
1896           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
1897         }))
1898       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
1899         DominatingSucc[BB] = SuccBB;
1900         return true;
1901       });
1902 
1903   // Split the preheader, so that we know that there is a safe place to insert
1904   // the conditional branch. We will change the preheader to have a conditional
1905   // branch on LoopCond. The original preheader will become the split point
1906   // between the unswitched versions, and we will have a new preheader for the
1907   // original loop.
1908   BasicBlock *SplitBB = L.getLoopPreheader();
1909   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
1910 
1911   // Keep track of the dominator tree updates needed.
1912   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1913 
1914   // Clone the loop for each unswitched successor.
1915   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
1916   VMaps.reserve(UnswitchedSuccBBs.size());
1917   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
1918   for (auto *SuccBB : UnswitchedSuccBBs) {
1919     VMaps.emplace_back(new ValueToValueMapTy());
1920     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
1921         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
1922         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI);
1923   }
1924 
1925   // The stitching of the branched code back together depends on whether we're
1926   // doing full unswitching or not with the exception that we always want to
1927   // nuke the initial terminator placed in the split block.
1928   SplitBB->getTerminator()->eraseFromParent();
1929   if (FullUnswitch) {
1930     // First we need to unhook the successor relationship as we'll be replacing
1931     // the terminator with a direct branch. This is much simpler for branches
1932     // than switches so we handle those first.
1933     if (BI) {
1934       // Remove the parent as a predecessor of the unswitched successor.
1935       assert(UnswitchedSuccBBs.size() == 1 &&
1936              "Only one possible unswitched block for a branch!");
1937       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
1938       UnswitchedSuccBB->removePredecessor(ParentBB,
1939                                           /*DontDeleteUselessPHIs*/ true);
1940       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
1941     } else {
1942       // Note that we actually want to remove the parent block as a predecessor
1943       // of *every* case successor. The case successor is either unswitched,
1944       // completely eliminating an edge from the parent to that successor, or it
1945       // is a duplicate edge to the retained successor as the retained successor
1946       // is always the default successor and as we'll replace this with a direct
1947       // branch we no longer need the duplicate entries in the PHI nodes.
1948       assert(SI->getDefaultDest() == RetainedSuccBB &&
1949              "Not retaining default successor!");
1950       for (auto &Case : SI->cases())
1951         Case.getCaseSuccessor()->removePredecessor(
1952             ParentBB,
1953             /*DontDeleteUselessPHIs*/ true);
1954 
1955       // We need to use the set to populate domtree updates as even when there
1956       // are multiple cases pointing at the same successor we only want to
1957       // remove and insert one edge in the domtree.
1958       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
1959         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
1960     }
1961 
1962     // Now that we've unhooked the successor relationship, splice the terminator
1963     // from the original loop to the split.
1964     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
1965 
1966     // Now wire up the terminator to the preheaders.
1967     if (BI) {
1968       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
1969       BI->setSuccessor(ClonedSucc, ClonedPH);
1970       BI->setSuccessor(1 - ClonedSucc, LoopPH);
1971       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
1972     } else {
1973       assert(SI && "Must either be a branch or switch!");
1974 
1975       // Walk the cases and directly update their successors.
1976       SI->setDefaultDest(LoopPH);
1977       for (auto &Case : SI->cases())
1978         if (Case.getCaseSuccessor() == RetainedSuccBB)
1979           Case.setSuccessor(LoopPH);
1980         else
1981           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
1982 
1983       // We need to use the set to populate domtree updates as even when there
1984       // are multiple cases pointing at the same successor we only want to
1985       // remove and insert one edge in the domtree.
1986       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
1987         DTUpdates.push_back(
1988             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
1989     }
1990 
1991     // Create a new unconditional branch to the continuing block (as opposed to
1992     // the one cloned).
1993     BranchInst::Create(RetainedSuccBB, ParentBB);
1994   } else {
1995     assert(BI && "Only branches have partial unswitching.");
1996     assert(UnswitchedSuccBBs.size() == 1 &&
1997            "Only one possible unswitched block for a branch!");
1998     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
1999     // When doing a partial unswitch, we have to do a bit more work to build up
2000     // the branch in the split block.
2001     buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2002                                           *ClonedPH, *LoopPH);
2003     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2004   }
2005 
2006   // Apply the updates accumulated above to get an up-to-date dominator tree.
2007   DT.applyUpdates(DTUpdates);
2008 
2009   // Now that we have an accurate dominator tree, first delete the dead cloned
2010   // blocks so that we can accurately build any cloned loops. It is important to
2011   // not delete the blocks from the original loop yet because we still want to
2012   // reference the original loop to understand the cloned loop's structure.
2013   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT);
2014 
2015   // Build the cloned loop structure itself. This may be substantially
2016   // different from the original structure due to the simplified CFG. This also
2017   // handles inserting all the cloned blocks into the correct loops.
2018   SmallVector<Loop *, 4> NonChildClonedLoops;
2019   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2020     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2021 
2022   // Now that our cloned loops have been built, we can update the original loop.
2023   // First we delete the dead blocks from it and then we rebuild the loop
2024   // structure taking these deletions into account.
2025   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI);
2026   SmallVector<Loop *, 4> HoistedLoops;
2027   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2028 
2029   // This transformation has a high risk of corrupting the dominator tree, and
2030   // the below steps to rebuild loop structures will result in hard to debug
2031   // errors in that case so verify that the dominator tree is sane first.
2032   // FIXME: Remove this when the bugs stop showing up and rely on existing
2033   // verification steps.
2034   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2035 
2036   if (BI) {
2037     // If we unswitched a branch which collapses the condition to a known
2038     // constant we want to replace all the uses of the invariants within both
2039     // the original and cloned blocks. We do this here so that we can use the
2040     // now updated dominator tree to identify which side the users are on.
2041     assert(UnswitchedSuccBBs.size() == 1 &&
2042            "Only one possible unswitched block for a branch!");
2043     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2044     ConstantInt *UnswitchedReplacement =
2045         Direction ? ConstantInt::getTrue(BI->getContext())
2046                   : ConstantInt::getFalse(BI->getContext());
2047     ConstantInt *ContinueReplacement =
2048         Direction ? ConstantInt::getFalse(BI->getContext())
2049                   : ConstantInt::getTrue(BI->getContext());
2050     for (Value *Invariant : Invariants)
2051       for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2052            UI != UE;) {
2053         // Grab the use and walk past it so we can clobber it in the use list.
2054         Use *U = &*UI++;
2055         Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2056         if (!UserI)
2057           continue;
2058 
2059         // Replace it with the 'continue' side if in the main loop body, and the
2060         // unswitched if in the cloned blocks.
2061         if (DT.dominates(LoopPH, UserI->getParent()))
2062           U->set(ContinueReplacement);
2063         else if (DT.dominates(ClonedPH, UserI->getParent()))
2064           U->set(UnswitchedReplacement);
2065       }
2066   }
2067 
2068   // We can change which blocks are exit blocks of all the cloned sibling
2069   // loops, the current loop, and any parent loops which shared exit blocks
2070   // with the current loop. As a consequence, we need to re-form LCSSA for
2071   // them. But we shouldn't need to re-form LCSSA for any child loops.
2072   // FIXME: This could be made more efficient by tracking which exit blocks are
2073   // new, and focusing on them, but that isn't likely to be necessary.
2074   //
2075   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2076   // loop nest and update every loop that could have had its exits changed. We
2077   // also need to cover any intervening loops. We add all of these loops to
2078   // a list and sort them by loop depth to achieve this without updating
2079   // unnecessary loops.
2080   auto UpdateLoop = [&](Loop &UpdateL) {
2081 #ifndef NDEBUG
2082     UpdateL.verifyLoop();
2083     for (Loop *ChildL : UpdateL) {
2084       ChildL->verifyLoop();
2085       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2086              "Perturbed a child loop's LCSSA form!");
2087     }
2088 #endif
2089     // First build LCSSA for this loop so that we can preserve it when
2090     // forming dedicated exits. We don't want to perturb some other loop's
2091     // LCSSA while doing that CFG edit.
2092     formLCSSA(UpdateL, DT, &LI, nullptr);
2093 
2094     // For loops reached by this loop's original exit blocks we may
2095     // introduced new, non-dedicated exits. At least try to re-form dedicated
2096     // exits for these loops. This may fail if they couldn't have dedicated
2097     // exits to start with.
2098     formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true);
2099   };
2100 
2101   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2102   // and we can do it in any order as they don't nest relative to each other.
2103   //
2104   // Also check if any of the loops we have updated have become top-level loops
2105   // as that will necessitate widening the outer loop scope.
2106   for (Loop *UpdatedL :
2107        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2108     UpdateLoop(*UpdatedL);
2109     if (!UpdatedL->getParentLoop())
2110       OuterExitL = nullptr;
2111   }
2112   if (IsStillLoop) {
2113     UpdateLoop(L);
2114     if (!L.getParentLoop())
2115       OuterExitL = nullptr;
2116   }
2117 
2118   // If the original loop had exit blocks, walk up through the outer most loop
2119   // of those exit blocks to update LCSSA and form updated dedicated exits.
2120   if (OuterExitL != &L)
2121     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2122          OuterL = OuterL->getParentLoop())
2123       UpdateLoop(*OuterL);
2124 
2125 #ifndef NDEBUG
2126   // Verify the entire loop structure to catch any incorrect updates before we
2127   // progress in the pass pipeline.
2128   LI.verify(DT);
2129 #endif
2130 
2131   // Now that we've unswitched something, make callbacks to report the changes.
2132   // For that we need to merge together the updated loops and the cloned loops
2133   // and check whether the original loop survived.
2134   SmallVector<Loop *, 4> SibLoops;
2135   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2136     if (UpdatedL->getParentLoop() == ParentL)
2137       SibLoops.push_back(UpdatedL);
2138   UnswitchCB(IsStillLoop, SibLoops);
2139 
2140   ++NumBranches;
2141   return true;
2142 }
2143 
2144 /// Recursively compute the cost of a dominator subtree based on the per-block
2145 /// cost map provided.
2146 ///
2147 /// The recursive computation is memozied into the provided DT-indexed cost map
2148 /// to allow querying it for most nodes in the domtree without it becoming
2149 /// quadratic.
2150 static int
2151 computeDomSubtreeCost(DomTreeNode &N,
2152                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2153                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2154   // Don't accumulate cost (or recurse through) blocks not in our block cost
2155   // map and thus not part of the duplication cost being considered.
2156   auto BBCostIt = BBCostMap.find(N.getBlock());
2157   if (BBCostIt == BBCostMap.end())
2158     return 0;
2159 
2160   // Lookup this node to see if we already computed its cost.
2161   auto DTCostIt = DTCostMap.find(&N);
2162   if (DTCostIt != DTCostMap.end())
2163     return DTCostIt->second;
2164 
2165   // If not, we have to compute it. We can't use insert above and update
2166   // because computing the cost may insert more things into the map.
2167   int Cost = std::accumulate(
2168       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2169         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2170       });
2171   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2172   (void)Inserted;
2173   assert(Inserted && "Should not insert a node while visiting children!");
2174   return Cost;
2175 }
2176 
2177 static bool
2178 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2179                       AssumptionCache &AC, TargetTransformInfo &TTI,
2180                       function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2181                       ScalarEvolution *SE) {
2182   // Collect all invariant conditions within this loop (as opposed to an inner
2183   // loop which would be handled when visiting that inner loop).
2184   SmallVector<std::pair<TerminatorInst *, TinyPtrVector<Value *>>, 4>
2185       UnswitchCandidates;
2186   for (auto *BB : L.blocks()) {
2187     if (LI.getLoopFor(BB) != &L)
2188       continue;
2189 
2190     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2191       // We can only consider fully loop-invariant switch conditions as we need
2192       // to completely eliminate the switch after unswitching.
2193       if (!isa<Constant>(SI->getCondition()) &&
2194           L.isLoopInvariant(SI->getCondition()))
2195         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2196       continue;
2197     }
2198 
2199     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2200     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2201         BI->getSuccessor(0) == BI->getSuccessor(1))
2202       continue;
2203 
2204     if (L.isLoopInvariant(BI->getCondition())) {
2205       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2206       continue;
2207     }
2208 
2209     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2210     if (CondI.getOpcode() != Instruction::And &&
2211       CondI.getOpcode() != Instruction::Or)
2212       continue;
2213 
2214     TinyPtrVector<Value *> Invariants =
2215         collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2216     if (Invariants.empty())
2217       continue;
2218 
2219     UnswitchCandidates.push_back({BI, std::move(Invariants)});
2220   }
2221 
2222   // If we didn't find any candidates, we're done.
2223   if (UnswitchCandidates.empty())
2224     return false;
2225 
2226   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2227   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2228   // irreducible control flow into reducible control flow and introduce new
2229   // loops "out of thin air". If we ever discover important use cases for doing
2230   // this, we can add support to loop unswitch, but it is a lot of complexity
2231   // for what seems little or no real world benefit.
2232   LoopBlocksRPO RPOT(&L);
2233   RPOT.perform(&LI);
2234   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2235     return false;
2236 
2237   LLVM_DEBUG(
2238       dbgs() << "Considering " << UnswitchCandidates.size()
2239              << " non-trivial loop invariant conditions for unswitching.\n");
2240 
2241   // Given that unswitching these terminators will require duplicating parts of
2242   // the loop, so we need to be able to model that cost. Compute the ephemeral
2243   // values and set up a data structure to hold per-BB costs. We cache each
2244   // block's cost so that we don't recompute this when considering different
2245   // subsets of the loop for duplication during unswitching.
2246   SmallPtrSet<const Value *, 4> EphValues;
2247   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2248   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2249 
2250   // Compute the cost of each block, as well as the total loop cost. Also, bail
2251   // out if we see instructions which are incompatible with loop unswitching
2252   // (convergent, noduplicate, or cross-basic-block tokens).
2253   // FIXME: We might be able to safely handle some of these in non-duplicated
2254   // regions.
2255   int LoopCost = 0;
2256   for (auto *BB : L.blocks()) {
2257     int Cost = 0;
2258     for (auto &I : *BB) {
2259       if (EphValues.count(&I))
2260         continue;
2261 
2262       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2263         return false;
2264       if (auto CS = CallSite(&I))
2265         if (CS.isConvergent() || CS.cannotDuplicate())
2266           return false;
2267 
2268       Cost += TTI.getUserCost(&I);
2269     }
2270     assert(Cost >= 0 && "Must not have negative costs!");
2271     LoopCost += Cost;
2272     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2273     BBCostMap[BB] = Cost;
2274   }
2275   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2276 
2277   // Now we find the best candidate by searching for the one with the following
2278   // properties in order:
2279   //
2280   // 1) An unswitching cost below the threshold
2281   // 2) The smallest number of duplicated unswitch candidates (to avoid
2282   //    creating redundant subsequent unswitching)
2283   // 3) The smallest cost after unswitching.
2284   //
2285   // We prioritize reducing fanout of unswitch candidates provided the cost
2286   // remains below the threshold because this has a multiplicative effect.
2287   //
2288   // This requires memoizing each dominator subtree to avoid redundant work.
2289   //
2290   // FIXME: Need to actually do the number of candidates part above.
2291   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2292   // Given a terminator which might be unswitched, computes the non-duplicated
2293   // cost for that terminator.
2294   auto ComputeUnswitchedCost = [&](TerminatorInst &TI, bool FullUnswitch) {
2295     BasicBlock &BB = *TI.getParent();
2296     SmallPtrSet<BasicBlock *, 4> Visited;
2297 
2298     int Cost = LoopCost;
2299     for (BasicBlock *SuccBB : successors(&BB)) {
2300       // Don't count successors more than once.
2301       if (!Visited.insert(SuccBB).second)
2302         continue;
2303 
2304       // If this is a partial unswitch candidate, then it must be a conditional
2305       // branch with a condition of either `or` or `and`. In that case, one of
2306       // the successors is necessarily duplicated, so don't even try to remove
2307       // its cost.
2308       if (!FullUnswitch) {
2309         auto &BI = cast<BranchInst>(TI);
2310         if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2311             Instruction::And) {
2312           if (SuccBB == BI.getSuccessor(1))
2313             continue;
2314         } else {
2315           assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2316                      Instruction::Or &&
2317                  "Only `and` and `or` conditions can result in a partial "
2318                  "unswitch!");
2319           if (SuccBB == BI.getSuccessor(0))
2320             continue;
2321         }
2322       }
2323 
2324       // This successor's domtree will not need to be duplicated after
2325       // unswitching if the edge to the successor dominates it (and thus the
2326       // entire tree). This essentially means there is no other path into this
2327       // subtree and so it will end up live in only one clone of the loop.
2328       if (SuccBB->getUniquePredecessor() ||
2329           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2330             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2331           })) {
2332         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2333         assert(Cost >= 0 &&
2334                "Non-duplicated cost should never exceed total loop cost!");
2335       }
2336     }
2337 
2338     // Now scale the cost by the number of unique successors minus one. We
2339     // subtract one because there is already at least one copy of the entire
2340     // loop. This is computing the new cost of unswitching a condition.
2341     assert(Visited.size() > 1 &&
2342            "Cannot unswitch a condition without multiple distinct successors!");
2343     return Cost * (Visited.size() - 1);
2344   };
2345   TerminatorInst *BestUnswitchTI = nullptr;
2346   int BestUnswitchCost;
2347   ArrayRef<Value *> BestUnswitchInvariants;
2348   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2349     TerminatorInst &TI = *TerminatorAndInvariants.first;
2350     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2351     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2352     int CandidateCost = ComputeUnswitchedCost(
2353         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2354                                      Invariants[0] == BI->getCondition()));
2355     LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2356                       << " for unswitch candidate: " << TI << "\n");
2357     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2358       BestUnswitchTI = &TI;
2359       BestUnswitchCost = CandidateCost;
2360       BestUnswitchInvariants = Invariants;
2361     }
2362   }
2363 
2364   if (BestUnswitchCost >= UnswitchThreshold) {
2365     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2366                       << BestUnswitchCost << "\n");
2367     return false;
2368   }
2369 
2370   LLVM_DEBUG(dbgs() << "  Trying to unswitch non-trivial (cost = "
2371                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2372                     << "\n");
2373   return unswitchNontrivialInvariants(
2374       L, *BestUnswitchTI, BestUnswitchInvariants, DT, LI, AC, UnswitchCB, SE);
2375 }
2376 
2377 /// Unswitch control flow predicated on loop invariant conditions.
2378 ///
2379 /// This first hoists all branches or switches which are trivial (IE, do not
2380 /// require duplicating any part of the loop) out of the loop body. It then
2381 /// looks at other loop invariant control flows and tries to unswitch those as
2382 /// well by cloning the loop if the result is small enough.
2383 ///
2384 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2385 /// updated based on the unswitch.
2386 ///
2387 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2388 /// true, we will attempt to do non-trivial unswitching as well as trivial
2389 /// unswitching.
2390 ///
2391 /// The `UnswitchCB` callback provided will be run after unswitching is
2392 /// complete, with the first parameter set to `true` if the provided loop
2393 /// remains a loop, and a list of new sibling loops created.
2394 ///
2395 /// If `SE` is non-null, we will update that analysis based on the unswitching
2396 /// done.
2397 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2398                          AssumptionCache &AC, TargetTransformInfo &TTI,
2399                          bool NonTrivial,
2400                          function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2401                          ScalarEvolution *SE) {
2402   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2403          "Loops must be in LCSSA form before unswitching.");
2404   bool Changed = false;
2405 
2406   // Must be in loop simplified form: we need a preheader and dedicated exits.
2407   if (!L.isLoopSimplifyForm())
2408     return false;
2409 
2410   // Try trivial unswitch first before loop over other basic blocks in the loop.
2411   if (unswitchAllTrivialConditions(L, DT, LI, SE)) {
2412     // If we unswitched successfully we will want to clean up the loop before
2413     // processing it further so just mark it as unswitched and return.
2414     UnswitchCB(/*CurrentLoopValid*/ true, {});
2415     return true;
2416   }
2417 
2418   // If we're not doing non-trivial unswitching, we're done. We both accept
2419   // a parameter but also check a local flag that can be used for testing
2420   // a debugging.
2421   if (!NonTrivial && !EnableNonTrivialUnswitch)
2422     return false;
2423 
2424   // For non-trivial unswitching, because it often creates new loops, we rely on
2425   // the pass manager to iterate on the loops rather than trying to immediately
2426   // reach a fixed point. There is no substantial advantage to iterating
2427   // internally, and if any of the new loops are simplified enough to contain
2428   // trivial unswitching we want to prefer those.
2429 
2430   // Try to unswitch the best invariant condition. We prefer this full unswitch to
2431   // a partial unswitch when possible below the threshold.
2432   if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE))
2433     return true;
2434 
2435   // No other opportunities to unswitch.
2436   return Changed;
2437 }
2438 
2439 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2440                                               LoopStandardAnalysisResults &AR,
2441                                               LPMUpdater &U) {
2442   Function &F = *L.getHeader()->getParent();
2443   (void)F;
2444 
2445   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2446                     << "\n");
2447 
2448   // Save the current loop name in a variable so that we can report it even
2449   // after it has been deleted.
2450   std::string LoopName = L.getName();
2451 
2452   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2453                                         ArrayRef<Loop *> NewLoops) {
2454     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2455     if (!NewLoops.empty())
2456       U.addSiblingLoops(NewLoops);
2457 
2458     // If the current loop remains valid, we should revisit it to catch any
2459     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2460     if (CurrentLoopValid)
2461       U.revisitCurrentLoop();
2462     else
2463       U.markLoopAsDeleted(L, LoopName);
2464   };
2465 
2466   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2467                     &AR.SE))
2468     return PreservedAnalyses::all();
2469 
2470   // Historically this pass has had issues with the dominator tree so verify it
2471   // in asserts builds.
2472   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2473   return getLoopPassPreservedAnalyses();
2474 }
2475 
2476 namespace {
2477 
2478 class SimpleLoopUnswitchLegacyPass : public LoopPass {
2479   bool NonTrivial;
2480 
2481 public:
2482   static char ID; // Pass ID, replacement for typeid
2483 
2484   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2485       : LoopPass(ID), NonTrivial(NonTrivial) {
2486     initializeSimpleLoopUnswitchLegacyPassPass(
2487         *PassRegistry::getPassRegistry());
2488   }
2489 
2490   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2491 
2492   void getAnalysisUsage(AnalysisUsage &AU) const override {
2493     AU.addRequired<AssumptionCacheTracker>();
2494     AU.addRequired<TargetTransformInfoWrapperPass>();
2495     getLoopAnalysisUsage(AU);
2496   }
2497 };
2498 
2499 } // end anonymous namespace
2500 
2501 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2502   if (skipLoop(L))
2503     return false;
2504 
2505   Function &F = *L->getHeader()->getParent();
2506 
2507   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2508                     << "\n");
2509 
2510   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2511   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2512   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2513   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2514 
2515   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2516   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2517 
2518   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2519                                ArrayRef<Loop *> NewLoops) {
2520     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2521     for (auto *NewL : NewLoops)
2522       LPM.addLoop(*NewL);
2523 
2524     // If the current loop remains valid, re-add it to the queue. This is
2525     // a little wasteful as we'll finish processing the current loop as well,
2526     // but it is the best we can do in the old PM.
2527     if (CurrentLoopValid)
2528       LPM.addLoop(*L);
2529     else
2530       LPM.markLoopAsDeleted(*L);
2531   };
2532 
2533   bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE);
2534 
2535   // If anything was unswitched, also clear any cached information about this
2536   // loop.
2537   LPM.deleteSimpleAnalysisLoop(L);
2538 
2539   // Historically this pass has had issues with the dominator tree so verify it
2540   // in asserts builds.
2541   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2542 
2543   return Changed;
2544 }
2545 
2546 char SimpleLoopUnswitchLegacyPass::ID = 0;
2547 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2548                       "Simple unswitch loops", false, false)
2549 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2550 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2551 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2552 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2553 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2554 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2555                     "Simple unswitch loops", false, false)
2556 
2557 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2558   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
2559 }
2560