1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/GuardUtils.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/MustExecute.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/ProfDataUtils.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/GenericDomTree.h" 55 #include "llvm/Support/InstructionCost.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Transforms/Scalar/LoopPassManager.h" 58 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 59 #include "llvm/Transforms/Utils/Cloning.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include "llvm/Transforms/Utils/LoopUtils.h" 62 #include "llvm/Transforms/Utils/ValueMapper.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <iterator> 66 #include <numeric> 67 #include <optional> 68 #include <utility> 69 70 #define DEBUG_TYPE "simple-loop-unswitch" 71 72 using namespace llvm; 73 using namespace llvm::PatternMatch; 74 75 STATISTIC(NumBranches, "Number of branches unswitched"); 76 STATISTIC(NumSwitches, "Number of switches unswitched"); 77 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 78 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 79 STATISTIC( 80 NumCostMultiplierSkipped, 81 "Number of unswitch candidates that had their cost multiplier skipped"); 82 STATISTIC(NumInvariantConditionsInjected, 83 "Number of invariant conditions injected and unswitched"); 84 85 static cl::opt<bool> EnableNonTrivialUnswitch( 86 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 87 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 88 "following the configuration passed into the pass.")); 89 90 static cl::opt<int> 91 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 92 cl::desc("The cost threshold for unswitching a loop.")); 93 94 static cl::opt<bool> EnableUnswitchCostMultiplier( 95 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 96 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 97 "explosion in nontrivial unswitch.")); 98 static cl::opt<int> UnswitchSiblingsToplevelDiv( 99 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 100 cl::desc("Toplevel siblings divisor for cost multiplier.")); 101 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 102 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 103 cl::desc("Number of unswitch candidates that are ignored when calculating " 104 "cost multiplier.")); 105 static cl::opt<bool> UnswitchGuards( 106 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 107 cl::desc("If enabled, simple loop unswitching will also consider " 108 "llvm.experimental.guard intrinsics as unswitch candidates.")); 109 static cl::opt<bool> DropNonTrivialImplicitNullChecks( 110 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 111 cl::init(false), cl::Hidden, 112 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 113 "null checks to save time analyzing if we can keep it.")); 114 static cl::opt<unsigned> 115 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", 116 cl::desc("Max number of memory uses to explore during " 117 "partial unswitching analysis"), 118 cl::init(100), cl::Hidden); 119 static cl::opt<bool> FreezeLoopUnswitchCond( 120 "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden, 121 cl::desc("If enabled, the freeze instruction will be added to condition " 122 "of loop unswitch to prevent miscompilation.")); 123 124 static cl::opt<bool> InjectInvariantConditions( 125 "simple-loop-unswitch-inject-invariant-conditions", cl::Hidden, 126 cl::desc("Whether we should inject new invariants and unswitch them to " 127 "eliminate some existing (non-invariant) conditions."), 128 cl::init(true)); 129 130 static cl::opt<unsigned> InjectInvariantConditionHotnesThreshold( 131 "simple-loop-unswitch-inject-invariant-condition-hotness-threshold", 132 cl::Hidden, cl::desc("Only try to inject loop invariant conditions and " 133 "unswitch on them to eliminate branches that are " 134 "not-taken 1/<this option> times or less."), 135 cl::init(16)); 136 137 namespace { 138 struct CompareDesc { 139 BranchInst *Term; 140 Value *Invariant; 141 BasicBlock *InLoopSucc; 142 143 CompareDesc(BranchInst *Term, Value *Invariant, BasicBlock *InLoopSucc) 144 : Term(Term), Invariant(Invariant), InLoopSucc(InLoopSucc) {} 145 }; 146 147 struct InjectedInvariant { 148 ICmpInst::Predicate Pred; 149 Value *LHS; 150 Value *RHS; 151 BasicBlock *InLoopSucc; 152 153 InjectedInvariant(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 154 BasicBlock *InLoopSucc) 155 : Pred(Pred), LHS(LHS), RHS(RHS), InLoopSucc(InLoopSucc) {} 156 }; 157 158 struct NonTrivialUnswitchCandidate { 159 Instruction *TI = nullptr; 160 TinyPtrVector<Value *> Invariants; 161 std::optional<InstructionCost> Cost; 162 std::optional<InjectedInvariant> PendingInjection; 163 NonTrivialUnswitchCandidate( 164 Instruction *TI, ArrayRef<Value *> Invariants, 165 std::optional<InstructionCost> Cost = std::nullopt, 166 std::optional<InjectedInvariant> PendingInjection = std::nullopt) 167 : TI(TI), Invariants(Invariants), Cost(Cost), 168 PendingInjection(PendingInjection) {}; 169 170 bool hasPendingInjection() const { return PendingInjection.has_value(); } 171 }; 172 } // end anonymous namespace. 173 174 // Helper to skip (select x, true, false), which matches both a logical AND and 175 // OR and can confuse code that tries to determine if \p Cond is either a 176 // logical AND or OR but not both. 177 static Value *skipTrivialSelect(Value *Cond) { 178 Value *CondNext; 179 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero()))) 180 Cond = CondNext; 181 return Cond; 182 } 183 184 /// Collect all of the loop invariant input values transitively used by the 185 /// homogeneous instruction graph from a given root. 186 /// 187 /// This essentially walks from a root recursively through loop variant operands 188 /// which have perform the same logical operation (AND or OR) and finds all 189 /// inputs which are loop invariant. For some operations these can be 190 /// re-associated and unswitched out of the loop entirely. 191 static TinyPtrVector<Value *> 192 collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root, 193 const LoopInfo &LI) { 194 assert(!L.isLoopInvariant(&Root) && 195 "Only need to walk the graph if root itself is not invariant."); 196 TinyPtrVector<Value *> Invariants; 197 198 bool IsRootAnd = match(&Root, m_LogicalAnd()); 199 bool IsRootOr = match(&Root, m_LogicalOr()); 200 201 // Build a worklist and recurse through operators collecting invariants. 202 SmallVector<Instruction *, 4> Worklist; 203 SmallPtrSet<Instruction *, 8> Visited; 204 Worklist.push_back(&Root); 205 Visited.insert(&Root); 206 do { 207 Instruction &I = *Worklist.pop_back_val(); 208 for (Value *OpV : I.operand_values()) { 209 // Skip constants as unswitching isn't interesting for them. 210 if (isa<Constant>(OpV)) 211 continue; 212 213 // Add it to our result if loop invariant. 214 if (L.isLoopInvariant(OpV)) { 215 Invariants.push_back(OpV); 216 continue; 217 } 218 219 // If not an instruction with the same opcode, nothing we can do. 220 Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV)); 221 222 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) || 223 (IsRootOr && match(OpI, m_LogicalOr())))) { 224 // Visit this operand. 225 if (Visited.insert(OpI).second) 226 Worklist.push_back(OpI); 227 } 228 } 229 } while (!Worklist.empty()); 230 231 return Invariants; 232 } 233 234 static void replaceLoopInvariantUses(const Loop &L, Value *Invariant, 235 Constant &Replacement) { 236 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 237 238 // Replace uses of LIC in the loop with the given constant. 239 // We use make_early_inc_range as set invalidates the iterator. 240 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 241 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 242 243 // Replace this use within the loop body. 244 if (UserI && L.contains(UserI)) 245 U.set(&Replacement); 246 } 247 } 248 249 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 250 /// incoming values along this edge. 251 static bool areLoopExitPHIsLoopInvariant(const Loop &L, 252 const BasicBlock &ExitingBB, 253 const BasicBlock &ExitBB) { 254 for (const Instruction &I : ExitBB) { 255 auto *PN = dyn_cast<PHINode>(&I); 256 if (!PN) 257 // No more PHIs to check. 258 return true; 259 260 // If the incoming value for this edge isn't loop invariant the unswitch 261 // won't be trivial. 262 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 263 return false; 264 } 265 llvm_unreachable("Basic blocks should never be empty!"); 266 } 267 268 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the 269 /// end of \p BB and conditionally branch on the copied condition. We only 270 /// branch on a single value. 271 static void buildPartialUnswitchConditionalBranch( 272 BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction, 273 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze, 274 const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) { 275 IRBuilder<> IRB(&BB); 276 277 SmallVector<Value *> FrozenInvariants; 278 for (Value *Inv : Invariants) { 279 if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT)) 280 Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr"); 281 FrozenInvariants.push_back(Inv); 282 } 283 284 Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants) 285 : IRB.CreateAnd(FrozenInvariants); 286 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 287 Direction ? &NormalSucc : &UnswitchedSucc); 288 } 289 290 /// Copy a set of loop invariant values, and conditionally branch on them. 291 static void buildPartialInvariantUnswitchConditionalBranch( 292 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction, 293 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, 294 MemorySSAUpdater *MSSAU) { 295 ValueToValueMapTy VMap; 296 for (auto *Val : reverse(ToDuplicate)) { 297 Instruction *Inst = cast<Instruction>(Val); 298 Instruction *NewInst = Inst->clone(); 299 NewInst->insertInto(&BB, BB.end()); 300 RemapInstruction(NewInst, VMap, 301 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 302 VMap[Val] = NewInst; 303 304 if (!MSSAU) 305 continue; 306 307 MemorySSA *MSSA = MSSAU->getMemorySSA(); 308 if (auto *MemUse = 309 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) { 310 auto *DefiningAccess = MemUse->getDefiningAccess(); 311 // Get the first defining access before the loop. 312 while (L.contains(DefiningAccess->getBlock())) { 313 // If the defining access is a MemoryPhi, get the incoming 314 // value for the pre-header as defining access. 315 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess)) 316 DefiningAccess = 317 MemPhi->getIncomingValueForBlock(L.getLoopPreheader()); 318 else 319 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess(); 320 } 321 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess, 322 NewInst->getParent(), 323 MemorySSA::BeforeTerminator); 324 } 325 } 326 327 IRBuilder<> IRB(&BB); 328 Value *Cond = VMap[ToDuplicate[0]]; 329 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 330 Direction ? &NormalSucc : &UnswitchedSucc); 331 } 332 333 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 334 /// 335 /// Requires that the loop exit and unswitched basic block are the same, and 336 /// that the exiting block was a unique predecessor of that block. Rewrites the 337 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 338 /// PHI nodes from the old preheader that now contains the unswitched 339 /// terminator. 340 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 341 BasicBlock &OldExitingBB, 342 BasicBlock &OldPH) { 343 for (PHINode &PN : UnswitchedBB.phis()) { 344 // When the loop exit is directly unswitched we just need to update the 345 // incoming basic block. We loop to handle weird cases with repeated 346 // incoming blocks, but expect to typically only have one operand here. 347 for (auto i : seq<int>(0, PN.getNumOperands())) { 348 assert(PN.getIncomingBlock(i) == &OldExitingBB && 349 "Found incoming block different from unique predecessor!"); 350 PN.setIncomingBlock(i, &OldPH); 351 } 352 } 353 } 354 355 /// Rewrite the PHI nodes in the loop exit basic block and the split off 356 /// unswitched block. 357 /// 358 /// Because the exit block remains an exit from the loop, this rewrites the 359 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 360 /// nodes into the unswitched basic block to select between the value in the 361 /// old preheader and the loop exit. 362 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 363 BasicBlock &UnswitchedBB, 364 BasicBlock &OldExitingBB, 365 BasicBlock &OldPH, 366 bool FullUnswitch) { 367 assert(&ExitBB != &UnswitchedBB && 368 "Must have different loop exit and unswitched blocks!"); 369 Instruction *InsertPt = &*UnswitchedBB.begin(); 370 for (PHINode &PN : ExitBB.phis()) { 371 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 372 PN.getName() + ".split", InsertPt); 373 374 // Walk backwards over the old PHI node's inputs to minimize the cost of 375 // removing each one. We have to do this weird loop manually so that we 376 // create the same number of new incoming edges in the new PHI as we expect 377 // each case-based edge to be included in the unswitched switch in some 378 // cases. 379 // FIXME: This is really, really gross. It would be much cleaner if LLVM 380 // allowed us to create a single entry for a predecessor block without 381 // having separate entries for each "edge" even though these edges are 382 // required to produce identical results. 383 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 384 if (PN.getIncomingBlock(i) != &OldExitingBB) 385 continue; 386 387 Value *Incoming = PN.getIncomingValue(i); 388 if (FullUnswitch) 389 // No more edge from the old exiting block to the exit block. 390 PN.removeIncomingValue(i); 391 392 NewPN->addIncoming(Incoming, &OldPH); 393 } 394 395 // Now replace the old PHI with the new one and wire the old one in as an 396 // input to the new one. 397 PN.replaceAllUsesWith(NewPN); 398 NewPN->addIncoming(&PN, &ExitBB); 399 } 400 } 401 402 /// Hoist the current loop up to the innermost loop containing a remaining exit. 403 /// 404 /// Because we've removed an exit from the loop, we may have changed the set of 405 /// loops reachable and need to move the current loop up the loop nest or even 406 /// to an entirely separate nest. 407 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 408 DominatorTree &DT, LoopInfo &LI, 409 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 410 // If the loop is already at the top level, we can't hoist it anywhere. 411 Loop *OldParentL = L.getParentLoop(); 412 if (!OldParentL) 413 return; 414 415 SmallVector<BasicBlock *, 4> Exits; 416 L.getExitBlocks(Exits); 417 Loop *NewParentL = nullptr; 418 for (auto *ExitBB : Exits) 419 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 420 if (!NewParentL || NewParentL->contains(ExitL)) 421 NewParentL = ExitL; 422 423 if (NewParentL == OldParentL) 424 return; 425 426 // The new parent loop (if different) should always contain the old one. 427 if (NewParentL) 428 assert(NewParentL->contains(OldParentL) && 429 "Can only hoist this loop up the nest!"); 430 431 // The preheader will need to move with the body of this loop. However, 432 // because it isn't in this loop we also need to update the primary loop map. 433 assert(OldParentL == LI.getLoopFor(&Preheader) && 434 "Parent loop of this loop should contain this loop's preheader!"); 435 LI.changeLoopFor(&Preheader, NewParentL); 436 437 // Remove this loop from its old parent. 438 OldParentL->removeChildLoop(&L); 439 440 // Add the loop either to the new parent or as a top-level loop. 441 if (NewParentL) 442 NewParentL->addChildLoop(&L); 443 else 444 LI.addTopLevelLoop(&L); 445 446 // Remove this loops blocks from the old parent and every other loop up the 447 // nest until reaching the new parent. Also update all of these 448 // no-longer-containing loops to reflect the nesting change. 449 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 450 OldContainingL = OldContainingL->getParentLoop()) { 451 llvm::erase_if(OldContainingL->getBlocksVector(), 452 [&](const BasicBlock *BB) { 453 return BB == &Preheader || L.contains(BB); 454 }); 455 456 OldContainingL->getBlocksSet().erase(&Preheader); 457 for (BasicBlock *BB : L.blocks()) 458 OldContainingL->getBlocksSet().erase(BB); 459 460 // Because we just hoisted a loop out of this one, we have essentially 461 // created new exit paths from it. That means we need to form LCSSA PHI 462 // nodes for values used in the no-longer-nested loop. 463 formLCSSA(*OldContainingL, DT, &LI, SE); 464 465 // We shouldn't need to form dedicated exits because the exit introduced 466 // here is the (just split by unswitching) preheader. However, after trivial 467 // unswitching it is possible to get new non-dedicated exits out of parent 468 // loop so let's conservatively form dedicated exit blocks and figure out 469 // if we can optimize later. 470 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 471 /*PreserveLCSSA*/ true); 472 } 473 } 474 475 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 476 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 477 // as exiting block. 478 static const Loop *getTopMostExitingLoop(const BasicBlock *ExitBB, 479 const LoopInfo &LI) { 480 const Loop *TopMost = LI.getLoopFor(ExitBB); 481 const Loop *Current = TopMost; 482 while (Current) { 483 if (Current->isLoopExiting(ExitBB)) 484 TopMost = Current; 485 Current = Current->getParentLoop(); 486 } 487 return TopMost; 488 } 489 490 /// Unswitch a trivial branch if the condition is loop invariant. 491 /// 492 /// This routine should only be called when loop code leading to the branch has 493 /// been validated as trivial (no side effects). This routine checks if the 494 /// condition is invariant and one of the successors is a loop exit. This 495 /// allows us to unswitch without duplicating the loop, making it trivial. 496 /// 497 /// If this routine fails to unswitch the branch it returns false. 498 /// 499 /// If the branch can be unswitched, this routine splits the preheader and 500 /// hoists the branch above that split. Preserves loop simplified form 501 /// (splitting the exit block as necessary). It simplifies the branch within 502 /// the loop to an unconditional branch but doesn't remove it entirely. Further 503 /// cleanup can be done with some simplifycfg like pass. 504 /// 505 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 506 /// invalidated by this. 507 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 508 LoopInfo &LI, ScalarEvolution *SE, 509 MemorySSAUpdater *MSSAU) { 510 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 511 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 512 513 // The loop invariant values that we want to unswitch. 514 TinyPtrVector<Value *> Invariants; 515 516 // When true, we're fully unswitching the branch rather than just unswitching 517 // some input conditions to the branch. 518 bool FullUnswitch = false; 519 520 Value *Cond = skipTrivialSelect(BI.getCondition()); 521 if (L.isLoopInvariant(Cond)) { 522 Invariants.push_back(Cond); 523 FullUnswitch = true; 524 } else { 525 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 526 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 527 if (Invariants.empty()) { 528 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n"); 529 return false; 530 } 531 } 532 533 // Check that one of the branch's successors exits, and which one. 534 bool ExitDirection = true; 535 int LoopExitSuccIdx = 0; 536 auto *LoopExitBB = BI.getSuccessor(0); 537 if (L.contains(LoopExitBB)) { 538 ExitDirection = false; 539 LoopExitSuccIdx = 1; 540 LoopExitBB = BI.getSuccessor(1); 541 if (L.contains(LoopExitBB)) { 542 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n"); 543 return false; 544 } 545 } 546 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 547 auto *ParentBB = BI.getParent(); 548 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) { 549 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n"); 550 return false; 551 } 552 553 // When unswitching only part of the branch's condition, we need the exit 554 // block to be reached directly from the partially unswitched input. This can 555 // be done when the exit block is along the true edge and the branch condition 556 // is a graph of `or` operations, or the exit block is along the false edge 557 // and the condition is a graph of `and` operations. 558 if (!FullUnswitch) { 559 if (ExitDirection ? !match(Cond, m_LogicalOr()) 560 : !match(Cond, m_LogicalAnd())) { 561 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for " 562 "non-full unswitch!\n"); 563 return false; 564 } 565 } 566 567 LLVM_DEBUG({ 568 dbgs() << " unswitching trivial invariant conditions for: " << BI 569 << "\n"; 570 for (Value *Invariant : Invariants) { 571 dbgs() << " " << *Invariant << " == true"; 572 if (Invariant != Invariants.back()) 573 dbgs() << " ||"; 574 dbgs() << "\n"; 575 } 576 }); 577 578 // If we have scalar evolutions, we need to invalidate them including this 579 // loop, the loop containing the exit block and the topmost parent loop 580 // exiting via LoopExitBB. 581 if (SE) { 582 if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 583 SE->forgetLoop(ExitL); 584 else 585 // Forget the entire nest as this exits the entire nest. 586 SE->forgetTopmostLoop(&L); 587 SE->forgetBlockAndLoopDispositions(); 588 } 589 590 if (MSSAU && VerifyMemorySSA) 591 MSSAU->getMemorySSA()->verifyMemorySSA(); 592 593 // Split the preheader, so that we know that there is a safe place to insert 594 // the conditional branch. We will change the preheader to have a conditional 595 // branch on LoopCond. 596 BasicBlock *OldPH = L.getLoopPreheader(); 597 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 598 599 // Now that we have a place to insert the conditional branch, create a place 600 // to branch to: this is the exit block out of the loop that we are 601 // unswitching. We need to split this if there are other loop predecessors. 602 // Because the loop is in simplified form, *any* other predecessor is enough. 603 BasicBlock *UnswitchedBB; 604 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 605 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 606 "A branch's parent isn't a predecessor!"); 607 UnswitchedBB = LoopExitBB; 608 } else { 609 UnswitchedBB = 610 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 611 } 612 613 if (MSSAU && VerifyMemorySSA) 614 MSSAU->getMemorySSA()->verifyMemorySSA(); 615 616 // Actually move the invariant uses into the unswitched position. If possible, 617 // we do this by moving the instructions, but when doing partial unswitching 618 // we do it by building a new merge of the values in the unswitched position. 619 OldPH->getTerminator()->eraseFromParent(); 620 if (FullUnswitch) { 621 // If fully unswitching, we can use the existing branch instruction. 622 // Splice it into the old PH to gate reaching the new preheader and re-point 623 // its successors. 624 OldPH->splice(OldPH->end(), BI.getParent(), BI.getIterator()); 625 BI.setCondition(Cond); 626 if (MSSAU) { 627 // Temporarily clone the terminator, to make MSSA update cheaper by 628 // separating "insert edge" updates from "remove edge" ones. 629 BI.clone()->insertInto(ParentBB, ParentBB->end()); 630 } else { 631 // Create a new unconditional branch that will continue the loop as a new 632 // terminator. 633 BranchInst::Create(ContinueBB, ParentBB); 634 } 635 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 636 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 637 } else { 638 // Only unswitching a subset of inputs to the condition, so we will need to 639 // build a new branch that merges the invariant inputs. 640 if (ExitDirection) 641 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) && 642 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the " 643 "condition!"); 644 else 645 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) && 646 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the" 647 " condition!"); 648 buildPartialUnswitchConditionalBranch( 649 *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH, 650 FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT); 651 } 652 653 // Update the dominator tree with the added edge. 654 DT.insertEdge(OldPH, UnswitchedBB); 655 656 // After the dominator tree was updated with the added edge, update MemorySSA 657 // if available. 658 if (MSSAU) { 659 SmallVector<CFGUpdate, 1> Updates; 660 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 661 MSSAU->applyInsertUpdates(Updates, DT); 662 } 663 664 // Finish updating dominator tree and memory ssa for full unswitch. 665 if (FullUnswitch) { 666 if (MSSAU) { 667 // Remove the cloned branch instruction. 668 ParentBB->getTerminator()->eraseFromParent(); 669 // Create unconditional branch now. 670 BranchInst::Create(ContinueBB, ParentBB); 671 MSSAU->removeEdge(ParentBB, LoopExitBB); 672 } 673 DT.deleteEdge(ParentBB, LoopExitBB); 674 } 675 676 if (MSSAU && VerifyMemorySSA) 677 MSSAU->getMemorySSA()->verifyMemorySSA(); 678 679 // Rewrite the relevant PHI nodes. 680 if (UnswitchedBB == LoopExitBB) 681 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 682 else 683 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 684 *ParentBB, *OldPH, FullUnswitch); 685 686 // The constant we can replace all of our invariants with inside the loop 687 // body. If any of the invariants have a value other than this the loop won't 688 // be entered. 689 ConstantInt *Replacement = ExitDirection 690 ? ConstantInt::getFalse(BI.getContext()) 691 : ConstantInt::getTrue(BI.getContext()); 692 693 // Since this is an i1 condition we can also trivially replace uses of it 694 // within the loop with a constant. 695 for (Value *Invariant : Invariants) 696 replaceLoopInvariantUses(L, Invariant, *Replacement); 697 698 // If this was full unswitching, we may have changed the nesting relationship 699 // for this loop so hoist it to its correct parent if needed. 700 if (FullUnswitch) 701 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 702 703 if (MSSAU && VerifyMemorySSA) 704 MSSAU->getMemorySSA()->verifyMemorySSA(); 705 706 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 707 ++NumTrivial; 708 ++NumBranches; 709 return true; 710 } 711 712 /// Unswitch a trivial switch if the condition is loop invariant. 713 /// 714 /// This routine should only be called when loop code leading to the switch has 715 /// been validated as trivial (no side effects). This routine checks if the 716 /// condition is invariant and that at least one of the successors is a loop 717 /// exit. This allows us to unswitch without duplicating the loop, making it 718 /// trivial. 719 /// 720 /// If this routine fails to unswitch the switch it returns false. 721 /// 722 /// If the switch can be unswitched, this routine splits the preheader and 723 /// copies the switch above that split. If the default case is one of the 724 /// exiting cases, it copies the non-exiting cases and points them at the new 725 /// preheader. If the default case is not exiting, it copies the exiting cases 726 /// and points the default at the preheader. It preserves loop simplified form 727 /// (splitting the exit blocks as necessary). It simplifies the switch within 728 /// the loop by removing now-dead cases. If the default case is one of those 729 /// unswitched, it replaces its destination with a new basic block containing 730 /// only unreachable. Such basic blocks, while technically loop exits, are not 731 /// considered for unswitching so this is a stable transform and the same 732 /// switch will not be revisited. If after unswitching there is only a single 733 /// in-loop successor, the switch is further simplified to an unconditional 734 /// branch. Still more cleanup can be done with some simplifycfg like pass. 735 /// 736 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 737 /// invalidated by this. 738 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 739 LoopInfo &LI, ScalarEvolution *SE, 740 MemorySSAUpdater *MSSAU) { 741 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 742 Value *LoopCond = SI.getCondition(); 743 744 // If this isn't switching on an invariant condition, we can't unswitch it. 745 if (!L.isLoopInvariant(LoopCond)) 746 return false; 747 748 auto *ParentBB = SI.getParent(); 749 750 // The same check must be used both for the default and the exit cases. We 751 // should never leave edges from the switch instruction to a basic block that 752 // we are unswitching, hence the condition used to determine the default case 753 // needs to also be used to populate ExitCaseIndices, which is then used to 754 // remove cases from the switch. 755 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 756 // BBToCheck is not an exit block if it is inside loop L. 757 if (L.contains(&BBToCheck)) 758 return false; 759 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 760 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 761 return false; 762 // We do not unswitch a block that only has an unreachable statement, as 763 // it's possible this is a previously unswitched block. Only unswitch if 764 // either the terminator is not unreachable, or, if it is, it's not the only 765 // instruction in the block. 766 auto *TI = BBToCheck.getTerminator(); 767 bool isUnreachable = isa<UnreachableInst>(TI); 768 return !isUnreachable || 769 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 770 }; 771 772 SmallVector<int, 4> ExitCaseIndices; 773 for (auto Case : SI.cases()) 774 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 775 ExitCaseIndices.push_back(Case.getCaseIndex()); 776 BasicBlock *DefaultExitBB = nullptr; 777 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 778 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 779 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 780 DefaultExitBB = SI.getDefaultDest(); 781 } else if (ExitCaseIndices.empty()) 782 return false; 783 784 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 785 786 if (MSSAU && VerifyMemorySSA) 787 MSSAU->getMemorySSA()->verifyMemorySSA(); 788 789 // We may need to invalidate SCEVs for the outermost loop reached by any of 790 // the exits. 791 Loop *OuterL = &L; 792 793 if (DefaultExitBB) { 794 // Clear out the default destination temporarily to allow accurate 795 // predecessor lists to be examined below. 796 SI.setDefaultDest(nullptr); 797 // Check the loop containing this exit. 798 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 799 if (!ExitL || ExitL->contains(OuterL)) 800 OuterL = ExitL; 801 } 802 803 // Store the exit cases into a separate data structure and remove them from 804 // the switch. 805 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 806 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 807 4> ExitCases; 808 ExitCases.reserve(ExitCaseIndices.size()); 809 SwitchInstProfUpdateWrapper SIW(SI); 810 // We walk the case indices backwards so that we remove the last case first 811 // and don't disrupt the earlier indices. 812 for (unsigned Index : reverse(ExitCaseIndices)) { 813 auto CaseI = SI.case_begin() + Index; 814 // Compute the outer loop from this exit. 815 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 816 if (!ExitL || ExitL->contains(OuterL)) 817 OuterL = ExitL; 818 // Save the value of this case. 819 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 820 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 821 // Delete the unswitched cases. 822 SIW.removeCase(CaseI); 823 } 824 825 if (SE) { 826 if (OuterL) 827 SE->forgetLoop(OuterL); 828 else 829 SE->forgetTopmostLoop(&L); 830 } 831 832 // Check if after this all of the remaining cases point at the same 833 // successor. 834 BasicBlock *CommonSuccBB = nullptr; 835 if (SI.getNumCases() > 0 && 836 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { 837 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); 838 })) 839 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 840 if (!DefaultExitBB) { 841 // If we're not unswitching the default, we need it to match any cases to 842 // have a common successor or if we have no cases it is the common 843 // successor. 844 if (SI.getNumCases() == 0) 845 CommonSuccBB = SI.getDefaultDest(); 846 else if (SI.getDefaultDest() != CommonSuccBB) 847 CommonSuccBB = nullptr; 848 } 849 850 // Split the preheader, so that we know that there is a safe place to insert 851 // the switch. 852 BasicBlock *OldPH = L.getLoopPreheader(); 853 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 854 OldPH->getTerminator()->eraseFromParent(); 855 856 // Now add the unswitched switch. 857 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 858 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 859 860 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 861 // First, we split any exit blocks with remaining in-loop predecessors. Then 862 // we update the PHIs in one of two ways depending on if there was a split. 863 // We walk in reverse so that we split in the same order as the cases 864 // appeared. This is purely for convenience of reading the resulting IR, but 865 // it doesn't cost anything really. 866 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 867 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 868 // Handle the default exit if necessary. 869 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 870 // ranges aren't quite powerful enough yet. 871 if (DefaultExitBB) { 872 if (pred_empty(DefaultExitBB)) { 873 UnswitchedExitBBs.insert(DefaultExitBB); 874 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 875 } else { 876 auto *SplitBB = 877 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 878 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 879 *ParentBB, *OldPH, 880 /*FullUnswitch*/ true); 881 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 882 } 883 } 884 // Note that we must use a reference in the for loop so that we update the 885 // container. 886 for (auto &ExitCase : reverse(ExitCases)) { 887 // Grab a reference to the exit block in the pair so that we can update it. 888 BasicBlock *ExitBB = std::get<1>(ExitCase); 889 890 // If this case is the last edge into the exit block, we can simply reuse it 891 // as it will no longer be a loop exit. No mapping necessary. 892 if (pred_empty(ExitBB)) { 893 // Only rewrite once. 894 if (UnswitchedExitBBs.insert(ExitBB).second) 895 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 896 continue; 897 } 898 899 // Otherwise we need to split the exit block so that we retain an exit 900 // block from the loop and a target for the unswitched condition. 901 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 902 if (!SplitExitBB) { 903 // If this is the first time we see this, do the split and remember it. 904 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 905 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 906 *ParentBB, *OldPH, 907 /*FullUnswitch*/ true); 908 } 909 // Update the case pair to point to the split block. 910 std::get<1>(ExitCase) = SplitExitBB; 911 } 912 913 // Now add the unswitched cases. We do this in reverse order as we built them 914 // in reverse order. 915 for (auto &ExitCase : reverse(ExitCases)) { 916 ConstantInt *CaseVal = std::get<0>(ExitCase); 917 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 918 919 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 920 } 921 922 // If the default was unswitched, re-point it and add explicit cases for 923 // entering the loop. 924 if (DefaultExitBB) { 925 NewSIW->setDefaultDest(DefaultExitBB); 926 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 927 928 // We removed all the exit cases, so we just copy the cases to the 929 // unswitched switch. 930 for (const auto &Case : SI.cases()) 931 NewSIW.addCase(Case.getCaseValue(), NewPH, 932 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 933 } else if (DefaultCaseWeight) { 934 // We have to set branch weight of the default case. 935 uint64_t SW = *DefaultCaseWeight; 936 for (const auto &Case : SI.cases()) { 937 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 938 assert(W && 939 "case weight must be defined as default case weight is defined"); 940 SW += *W; 941 } 942 NewSIW.setSuccessorWeight(0, SW); 943 } 944 945 // If we ended up with a common successor for every path through the switch 946 // after unswitching, rewrite it to an unconditional branch to make it easy 947 // to recognize. Otherwise we potentially have to recognize the default case 948 // pointing at unreachable and other complexity. 949 if (CommonSuccBB) { 950 BasicBlock *BB = SI.getParent(); 951 // We may have had multiple edges to this common successor block, so remove 952 // them as predecessors. We skip the first one, either the default or the 953 // actual first case. 954 bool SkippedFirst = DefaultExitBB == nullptr; 955 for (auto Case : SI.cases()) { 956 assert(Case.getCaseSuccessor() == CommonSuccBB && 957 "Non-common successor!"); 958 (void)Case; 959 if (!SkippedFirst) { 960 SkippedFirst = true; 961 continue; 962 } 963 CommonSuccBB->removePredecessor(BB, 964 /*KeepOneInputPHIs*/ true); 965 } 966 // Now nuke the switch and replace it with a direct branch. 967 SIW.eraseFromParent(); 968 BranchInst::Create(CommonSuccBB, BB); 969 } else if (DefaultExitBB) { 970 assert(SI.getNumCases() > 0 && 971 "If we had no cases we'd have a common successor!"); 972 // Move the last case to the default successor. This is valid as if the 973 // default got unswitched it cannot be reached. This has the advantage of 974 // being simple and keeping the number of edges from this switch to 975 // successors the same, and avoiding any PHI update complexity. 976 auto LastCaseI = std::prev(SI.case_end()); 977 978 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 979 SIW.setSuccessorWeight( 980 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 981 SIW.removeCase(LastCaseI); 982 } 983 984 // Walk the unswitched exit blocks and the unswitched split blocks and update 985 // the dominator tree based on the CFG edits. While we are walking unordered 986 // containers here, the API for applyUpdates takes an unordered list of 987 // updates and requires them to not contain duplicates. 988 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 989 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 990 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 991 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 992 } 993 for (auto SplitUnswitchedPair : SplitExitBBMap) { 994 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 995 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 996 } 997 998 if (MSSAU) { 999 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 1000 if (VerifyMemorySSA) 1001 MSSAU->getMemorySSA()->verifyMemorySSA(); 1002 } else { 1003 DT.applyUpdates(DTUpdates); 1004 } 1005 1006 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1007 1008 // We may have changed the nesting relationship for this loop so hoist it to 1009 // its correct parent if needed. 1010 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 1011 1012 if (MSSAU && VerifyMemorySSA) 1013 MSSAU->getMemorySSA()->verifyMemorySSA(); 1014 1015 ++NumTrivial; 1016 ++NumSwitches; 1017 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 1018 return true; 1019 } 1020 1021 /// This routine scans the loop to find a branch or switch which occurs before 1022 /// any side effects occur. These can potentially be unswitched without 1023 /// duplicating the loop. If a branch or switch is successfully unswitched the 1024 /// scanning continues to see if subsequent branches or switches have become 1025 /// trivial. Once all trivial candidates have been unswitched, this routine 1026 /// returns. 1027 /// 1028 /// The return value indicates whether anything was unswitched (and therefore 1029 /// changed). 1030 /// 1031 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 1032 /// invalidated by this. 1033 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 1034 LoopInfo &LI, ScalarEvolution *SE, 1035 MemorySSAUpdater *MSSAU) { 1036 bool Changed = false; 1037 1038 // If loop header has only one reachable successor we should keep looking for 1039 // trivial condition candidates in the successor as well. An alternative is 1040 // to constant fold conditions and merge successors into loop header (then we 1041 // only need to check header's terminator). The reason for not doing this in 1042 // LoopUnswitch pass is that it could potentially break LoopPassManager's 1043 // invariants. Folding dead branches could either eliminate the current loop 1044 // or make other loops unreachable. LCSSA form might also not be preserved 1045 // after deleting branches. The following code keeps traversing loop header's 1046 // successors until it finds the trivial condition candidate (condition that 1047 // is not a constant). Since unswitching generates branches with constant 1048 // conditions, this scenario could be very common in practice. 1049 BasicBlock *CurrentBB = L.getHeader(); 1050 SmallPtrSet<BasicBlock *, 8> Visited; 1051 Visited.insert(CurrentBB); 1052 do { 1053 // Check if there are any side-effecting instructions (e.g. stores, calls, 1054 // volatile loads) in the part of the loop that the code *would* execute 1055 // without unswitching. 1056 if (MSSAU) // Possible early exit with MSSA 1057 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 1058 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 1059 return Changed; 1060 if (llvm::any_of(*CurrentBB, 1061 [](Instruction &I) { return I.mayHaveSideEffects(); })) 1062 return Changed; 1063 1064 Instruction *CurrentTerm = CurrentBB->getTerminator(); 1065 1066 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 1067 // Don't bother trying to unswitch past a switch with a constant 1068 // condition. This should be removed prior to running this pass by 1069 // simplifycfg. 1070 if (isa<Constant>(SI->getCondition())) 1071 return Changed; 1072 1073 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 1074 // Couldn't unswitch this one so we're done. 1075 return Changed; 1076 1077 // Mark that we managed to unswitch something. 1078 Changed = true; 1079 1080 // If unswitching turned the terminator into an unconditional branch then 1081 // we can continue. The unswitching logic specifically works to fold any 1082 // cases it can into an unconditional branch to make it easier to 1083 // recognize here. 1084 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 1085 if (!BI || BI->isConditional()) 1086 return Changed; 1087 1088 CurrentBB = BI->getSuccessor(0); 1089 continue; 1090 } 1091 1092 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 1093 if (!BI) 1094 // We do not understand other terminator instructions. 1095 return Changed; 1096 1097 // Don't bother trying to unswitch past an unconditional branch or a branch 1098 // with a constant value. These should be removed by simplifycfg prior to 1099 // running this pass. 1100 if (!BI->isConditional() || 1101 isa<Constant>(skipTrivialSelect(BI->getCondition()))) 1102 return Changed; 1103 1104 // Found a trivial condition candidate: non-foldable conditional branch. If 1105 // we fail to unswitch this, we can't do anything else that is trivial. 1106 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 1107 return Changed; 1108 1109 // Mark that we managed to unswitch something. 1110 Changed = true; 1111 1112 // If we only unswitched some of the conditions feeding the branch, we won't 1113 // have collapsed it to a single successor. 1114 BI = cast<BranchInst>(CurrentBB->getTerminator()); 1115 if (BI->isConditional()) 1116 return Changed; 1117 1118 // Follow the newly unconditional branch into its successor. 1119 CurrentBB = BI->getSuccessor(0); 1120 1121 // When continuing, if we exit the loop or reach a previous visited block, 1122 // then we can not reach any trivial condition candidates (unfoldable 1123 // branch instructions or switch instructions) and no unswitch can happen. 1124 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 1125 1126 return Changed; 1127 } 1128 1129 /// Build the cloned blocks for an unswitched copy of the given loop. 1130 /// 1131 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 1132 /// after the split block (`SplitBB`) that will be used to select between the 1133 /// cloned and original loop. 1134 /// 1135 /// This routine handles cloning all of the necessary loop blocks and exit 1136 /// blocks including rewriting their instructions and the relevant PHI nodes. 1137 /// Any loop blocks or exit blocks which are dominated by a different successor 1138 /// than the one for this clone of the loop blocks can be trivially skipped. We 1139 /// use the `DominatingSucc` map to determine whether a block satisfies that 1140 /// property with a simple map lookup. 1141 /// 1142 /// It also correctly creates the unconditional branch in the cloned 1143 /// unswitched parent block to only point at the unswitched successor. 1144 /// 1145 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1146 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1147 /// the cloned blocks (and their loops) are left without full `LoopInfo` 1148 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1149 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1150 /// instead the caller must recompute an accurate DT. It *does* correctly 1151 /// update the `AssumptionCache` provided in `AC`. 1152 static BasicBlock *buildClonedLoopBlocks( 1153 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1154 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1155 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1156 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1157 ValueToValueMapTy &VMap, 1158 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1159 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, 1160 ScalarEvolution *SE) { 1161 SmallVector<BasicBlock *, 4> NewBlocks; 1162 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1163 1164 // We will need to clone a bunch of blocks, wrap up the clone operation in 1165 // a helper. 1166 auto CloneBlock = [&](BasicBlock *OldBB) { 1167 // Clone the basic block and insert it before the new preheader. 1168 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1169 NewBB->moveBefore(LoopPH); 1170 1171 // Record this block and the mapping. 1172 NewBlocks.push_back(NewBB); 1173 VMap[OldBB] = NewBB; 1174 1175 return NewBB; 1176 }; 1177 1178 // We skip cloning blocks when they have a dominating succ that is not the 1179 // succ we are cloning for. 1180 auto SkipBlock = [&](BasicBlock *BB) { 1181 auto It = DominatingSucc.find(BB); 1182 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1183 }; 1184 1185 // First, clone the preheader. 1186 auto *ClonedPH = CloneBlock(LoopPH); 1187 1188 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1189 for (auto *LoopBB : L.blocks()) 1190 if (!SkipBlock(LoopBB)) 1191 CloneBlock(LoopBB); 1192 1193 // Split all the loop exit edges so that when we clone the exit blocks, if 1194 // any of the exit blocks are *also* a preheader for some other loop, we 1195 // don't create multiple predecessors entering the loop header. 1196 for (auto *ExitBB : ExitBlocks) { 1197 if (SkipBlock(ExitBB)) 1198 continue; 1199 1200 // When we are going to clone an exit, we don't need to clone all the 1201 // instructions in the exit block and we want to ensure we have an easy 1202 // place to merge the CFG, so split the exit first. This is always safe to 1203 // do because there cannot be any non-loop predecessors of a loop exit in 1204 // loop simplified form. 1205 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1206 1207 // Rearrange the names to make it easier to write test cases by having the 1208 // exit block carry the suffix rather than the merge block carrying the 1209 // suffix. 1210 MergeBB->takeName(ExitBB); 1211 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1212 1213 // Now clone the original exit block. 1214 auto *ClonedExitBB = CloneBlock(ExitBB); 1215 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1216 "Exit block should have been split to have one successor!"); 1217 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1218 "Cloned exit block has the wrong successor!"); 1219 1220 // Remap any cloned instructions and create a merge phi node for them. 1221 for (auto ZippedInsts : llvm::zip_first( 1222 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1223 llvm::make_range(ClonedExitBB->begin(), 1224 std::prev(ClonedExitBB->end())))) { 1225 Instruction &I = std::get<0>(ZippedInsts); 1226 Instruction &ClonedI = std::get<1>(ZippedInsts); 1227 1228 // The only instructions in the exit block should be PHI nodes and 1229 // potentially a landing pad. 1230 assert( 1231 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1232 "Bad instruction in exit block!"); 1233 // We should have a value map between the instruction and its clone. 1234 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1235 1236 // Forget SCEVs based on exit phis in case SCEV looked through the phi. 1237 if (SE && isa<PHINode>(I)) 1238 SE->forgetValue(&I); 1239 1240 auto *MergePN = 1241 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1242 &*MergeBB->getFirstInsertionPt()); 1243 I.replaceAllUsesWith(MergePN); 1244 MergePN->addIncoming(&I, ExitBB); 1245 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1246 } 1247 } 1248 1249 // Rewrite the instructions in the cloned blocks to refer to the instructions 1250 // in the cloned blocks. We have to do this as a second pass so that we have 1251 // everything available. Also, we have inserted new instructions which may 1252 // include assume intrinsics, so we update the assumption cache while 1253 // processing this. 1254 for (auto *ClonedBB : NewBlocks) 1255 for (Instruction &I : *ClonedBB) { 1256 RemapInstruction(&I, VMap, 1257 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1258 if (auto *II = dyn_cast<AssumeInst>(&I)) 1259 AC.registerAssumption(II); 1260 } 1261 1262 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1263 // have spurious incoming values. 1264 for (auto *LoopBB : L.blocks()) 1265 if (SkipBlock(LoopBB)) 1266 for (auto *SuccBB : successors(LoopBB)) 1267 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1268 for (PHINode &PN : ClonedSuccBB->phis()) 1269 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1270 1271 // Remove the cloned parent as a predecessor of any successor we ended up 1272 // cloning other than the unswitched one. 1273 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1274 for (auto *SuccBB : successors(ParentBB)) { 1275 if (SuccBB == UnswitchedSuccBB) 1276 continue; 1277 1278 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1279 if (!ClonedSuccBB) 1280 continue; 1281 1282 ClonedSuccBB->removePredecessor(ClonedParentBB, 1283 /*KeepOneInputPHIs*/ true); 1284 } 1285 1286 // Replace the cloned branch with an unconditional branch to the cloned 1287 // unswitched successor. 1288 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1289 Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 1290 // Trivial Simplification. If Terminator is a conditional branch and 1291 // condition becomes dead - erase it. 1292 Value *ClonedConditionToErase = nullptr; 1293 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 1294 ClonedConditionToErase = BI->getCondition(); 1295 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 1296 ClonedConditionToErase = SI->getCondition(); 1297 1298 ClonedTerminator->eraseFromParent(); 1299 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1300 1301 if (ClonedConditionToErase) 1302 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 1303 MSSAU); 1304 1305 // If there are duplicate entries in the PHI nodes because of multiple edges 1306 // to the unswitched successor, we need to nuke all but one as we replaced it 1307 // with a direct branch. 1308 for (PHINode &PN : ClonedSuccBB->phis()) { 1309 bool Found = false; 1310 // Loop over the incoming operands backwards so we can easily delete as we 1311 // go without invalidating the index. 1312 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1313 if (PN.getIncomingBlock(i) != ClonedParentBB) 1314 continue; 1315 if (!Found) { 1316 Found = true; 1317 continue; 1318 } 1319 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1320 } 1321 } 1322 1323 // Record the domtree updates for the new blocks. 1324 SmallPtrSet<BasicBlock *, 4> SuccSet; 1325 for (auto *ClonedBB : NewBlocks) { 1326 for (auto *SuccBB : successors(ClonedBB)) 1327 if (SuccSet.insert(SuccBB).second) 1328 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1329 SuccSet.clear(); 1330 } 1331 1332 return ClonedPH; 1333 } 1334 1335 /// Recursively clone the specified loop and all of its children. 1336 /// 1337 /// The target parent loop for the clone should be provided, or can be null if 1338 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1339 /// with the provided value map. The entire original loop must be present in 1340 /// the value map. The cloned loop is returned. 1341 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1342 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1343 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1344 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1345 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1346 for (auto *BB : OrigL.blocks()) { 1347 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1348 ClonedL.addBlockEntry(ClonedBB); 1349 if (LI.getLoopFor(BB) == &OrigL) 1350 LI.changeLoopFor(ClonedBB, &ClonedL); 1351 } 1352 }; 1353 1354 // We specially handle the first loop because it may get cloned into 1355 // a different parent and because we most commonly are cloning leaf loops. 1356 Loop *ClonedRootL = LI.AllocateLoop(); 1357 if (RootParentL) 1358 RootParentL->addChildLoop(ClonedRootL); 1359 else 1360 LI.addTopLevelLoop(ClonedRootL); 1361 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1362 1363 if (OrigRootL.isInnermost()) 1364 return ClonedRootL; 1365 1366 // If we have a nest, we can quickly clone the entire loop nest using an 1367 // iterative approach because it is a tree. We keep the cloned parent in the 1368 // data structure to avoid repeatedly querying through a map to find it. 1369 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1370 // Build up the loops to clone in reverse order as we'll clone them from the 1371 // back. 1372 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1373 LoopsToClone.push_back({ClonedRootL, ChildL}); 1374 do { 1375 Loop *ClonedParentL, *L; 1376 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1377 Loop *ClonedL = LI.AllocateLoop(); 1378 ClonedParentL->addChildLoop(ClonedL); 1379 AddClonedBlocksToLoop(*L, *ClonedL); 1380 for (Loop *ChildL : llvm::reverse(*L)) 1381 LoopsToClone.push_back({ClonedL, ChildL}); 1382 } while (!LoopsToClone.empty()); 1383 1384 return ClonedRootL; 1385 } 1386 1387 /// Build the cloned loops of an original loop from unswitching. 1388 /// 1389 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1390 /// operation. We need to re-verify that there even is a loop (as the backedge 1391 /// may not have been cloned), and even if there are remaining backedges the 1392 /// backedge set may be different. However, we know that each child loop is 1393 /// undisturbed, we only need to find where to place each child loop within 1394 /// either any parent loop or within a cloned version of the original loop. 1395 /// 1396 /// Because child loops may end up cloned outside of any cloned version of the 1397 /// original loop, multiple cloned sibling loops may be created. All of them 1398 /// are returned so that the newly introduced loop nest roots can be 1399 /// identified. 1400 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1401 const ValueToValueMapTy &VMap, LoopInfo &LI, 1402 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1403 Loop *ClonedL = nullptr; 1404 1405 auto *OrigPH = OrigL.getLoopPreheader(); 1406 auto *OrigHeader = OrigL.getHeader(); 1407 1408 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1409 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1410 1411 // We need to know the loops of the cloned exit blocks to even compute the 1412 // accurate parent loop. If we only clone exits to some parent of the 1413 // original parent, we want to clone into that outer loop. We also keep track 1414 // of the loops that our cloned exit blocks participate in. 1415 Loop *ParentL = nullptr; 1416 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1417 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1418 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1419 for (auto *ExitBB : ExitBlocks) 1420 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1421 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1422 ExitLoopMap[ClonedExitBB] = ExitL; 1423 ClonedExitsInLoops.push_back(ClonedExitBB); 1424 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1425 ParentL = ExitL; 1426 } 1427 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1428 ParentL->contains(OrigL.getParentLoop())) && 1429 "The computed parent loop should always contain (or be) the parent of " 1430 "the original loop."); 1431 1432 // We build the set of blocks dominated by the cloned header from the set of 1433 // cloned blocks out of the original loop. While not all of these will 1434 // necessarily be in the cloned loop, it is enough to establish that they 1435 // aren't in unreachable cycles, etc. 1436 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1437 for (auto *BB : OrigL.blocks()) 1438 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1439 ClonedLoopBlocks.insert(ClonedBB); 1440 1441 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1442 // skipped cloning some region of this loop which can in turn skip some of 1443 // the backedges so we have to rebuild the blocks in the loop based on the 1444 // backedges that remain after cloning. 1445 SmallVector<BasicBlock *, 16> Worklist; 1446 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1447 for (auto *Pred : predecessors(ClonedHeader)) { 1448 // The only possible non-loop header predecessor is the preheader because 1449 // we know we cloned the loop in simplified form. 1450 if (Pred == ClonedPH) 1451 continue; 1452 1453 // Because the loop was in simplified form, the only non-loop predecessor 1454 // should be the preheader. 1455 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1456 "header other than the preheader " 1457 "that is not part of the loop!"); 1458 1459 // Insert this block into the loop set and on the first visit (and if it 1460 // isn't the header we're currently walking) put it into the worklist to 1461 // recurse through. 1462 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1463 Worklist.push_back(Pred); 1464 } 1465 1466 // If we had any backedges then there *is* a cloned loop. Put the header into 1467 // the loop set and then walk the worklist backwards to find all the blocks 1468 // that remain within the loop after cloning. 1469 if (!BlocksInClonedLoop.empty()) { 1470 BlocksInClonedLoop.insert(ClonedHeader); 1471 1472 while (!Worklist.empty()) { 1473 BasicBlock *BB = Worklist.pop_back_val(); 1474 assert(BlocksInClonedLoop.count(BB) && 1475 "Didn't put block into the loop set!"); 1476 1477 // Insert any predecessors that are in the possible set into the cloned 1478 // set, and if the insert is successful, add them to the worklist. Note 1479 // that we filter on the blocks that are definitely reachable via the 1480 // backedge to the loop header so we may prune out dead code within the 1481 // cloned loop. 1482 for (auto *Pred : predecessors(BB)) 1483 if (ClonedLoopBlocks.count(Pred) && 1484 BlocksInClonedLoop.insert(Pred).second) 1485 Worklist.push_back(Pred); 1486 } 1487 1488 ClonedL = LI.AllocateLoop(); 1489 if (ParentL) { 1490 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1491 ParentL->addChildLoop(ClonedL); 1492 } else { 1493 LI.addTopLevelLoop(ClonedL); 1494 } 1495 NonChildClonedLoops.push_back(ClonedL); 1496 1497 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1498 // We don't want to just add the cloned loop blocks based on how we 1499 // discovered them. The original order of blocks was carefully built in 1500 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1501 // that logic, we just re-walk the original blocks (and those of the child 1502 // loops) and filter them as we add them into the cloned loop. 1503 for (auto *BB : OrigL.blocks()) { 1504 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1505 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1506 continue; 1507 1508 // Directly add the blocks that are only in this loop. 1509 if (LI.getLoopFor(BB) == &OrigL) { 1510 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1511 continue; 1512 } 1513 1514 // We want to manually add it to this loop and parents. 1515 // Registering it with LoopInfo will happen when we clone the top 1516 // loop for this block. 1517 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1518 PL->addBlockEntry(ClonedBB); 1519 } 1520 1521 // Now add each child loop whose header remains within the cloned loop. All 1522 // of the blocks within the loop must satisfy the same constraints as the 1523 // header so once we pass the header checks we can just clone the entire 1524 // child loop nest. 1525 for (Loop *ChildL : OrigL) { 1526 auto *ClonedChildHeader = 1527 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1528 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1529 continue; 1530 1531 #ifndef NDEBUG 1532 // We should never have a cloned child loop header but fail to have 1533 // all of the blocks for that child loop. 1534 for (auto *ChildLoopBB : ChildL->blocks()) 1535 assert(BlocksInClonedLoop.count( 1536 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1537 "Child cloned loop has a header within the cloned outer " 1538 "loop but not all of its blocks!"); 1539 #endif 1540 1541 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1542 } 1543 } 1544 1545 // Now that we've handled all the components of the original loop that were 1546 // cloned into a new loop, we still need to handle anything from the original 1547 // loop that wasn't in a cloned loop. 1548 1549 // Figure out what blocks are left to place within any loop nest containing 1550 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1551 // them. 1552 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1553 if (BlocksInClonedLoop.empty()) 1554 UnloopedBlockSet.insert(ClonedPH); 1555 for (auto *ClonedBB : ClonedLoopBlocks) 1556 if (!BlocksInClonedLoop.count(ClonedBB)) 1557 UnloopedBlockSet.insert(ClonedBB); 1558 1559 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1560 // backwards across these to process them inside out. The order shouldn't 1561 // matter as we're just trying to build up the map from inside-out; we use 1562 // the map in a more stably ordered way below. 1563 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1564 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1565 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1566 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1567 }); 1568 1569 // Populate the existing ExitLoopMap with everything reachable from each 1570 // exit, starting from the inner most exit. 1571 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1572 assert(Worklist.empty() && "Didn't clear worklist!"); 1573 1574 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1575 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1576 1577 // Walk the CFG back until we hit the cloned PH adding everything reachable 1578 // and in the unlooped set to this exit block's loop. 1579 Worklist.push_back(ExitBB); 1580 do { 1581 BasicBlock *BB = Worklist.pop_back_val(); 1582 // We can stop recursing at the cloned preheader (if we get there). 1583 if (BB == ClonedPH) 1584 continue; 1585 1586 for (BasicBlock *PredBB : predecessors(BB)) { 1587 // If this pred has already been moved to our set or is part of some 1588 // (inner) loop, no update needed. 1589 if (!UnloopedBlockSet.erase(PredBB)) { 1590 assert( 1591 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1592 "Predecessor not mapped to a loop!"); 1593 continue; 1594 } 1595 1596 // We just insert into the loop set here. We'll add these blocks to the 1597 // exit loop after we build up the set in an order that doesn't rely on 1598 // predecessor order (which in turn relies on use list order). 1599 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1600 (void)Inserted; 1601 assert(Inserted && "Should only visit an unlooped block once!"); 1602 1603 // And recurse through to its predecessors. 1604 Worklist.push_back(PredBB); 1605 } 1606 } while (!Worklist.empty()); 1607 } 1608 1609 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1610 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1611 // in their original order adding them to the correct loop. 1612 1613 // We need a stable insertion order. We use the order of the original loop 1614 // order and map into the correct parent loop. 1615 for (auto *BB : llvm::concat<BasicBlock *const>( 1616 ArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1617 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1618 OuterL->addBasicBlockToLoop(BB, LI); 1619 1620 #ifndef NDEBUG 1621 for (auto &BBAndL : ExitLoopMap) { 1622 auto *BB = BBAndL.first; 1623 auto *OuterL = BBAndL.second; 1624 assert(LI.getLoopFor(BB) == OuterL && 1625 "Failed to put all blocks into outer loops!"); 1626 } 1627 #endif 1628 1629 // Now that all the blocks are placed into the correct containing loop in the 1630 // absence of child loops, find all the potentially cloned child loops and 1631 // clone them into whatever outer loop we placed their header into. 1632 for (Loop *ChildL : OrigL) { 1633 auto *ClonedChildHeader = 1634 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1635 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1636 continue; 1637 1638 #ifndef NDEBUG 1639 for (auto *ChildLoopBB : ChildL->blocks()) 1640 assert(VMap.count(ChildLoopBB) && 1641 "Cloned a child loop header but not all of that loops blocks!"); 1642 #endif 1643 1644 NonChildClonedLoops.push_back(cloneLoopNest( 1645 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1646 } 1647 } 1648 1649 static void 1650 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1651 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1652 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1653 // Find all the dead clones, and remove them from their successors. 1654 SmallVector<BasicBlock *, 16> DeadBlocks; 1655 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1656 for (const auto &VMap : VMaps) 1657 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1658 if (!DT.isReachableFromEntry(ClonedBB)) { 1659 for (BasicBlock *SuccBB : successors(ClonedBB)) 1660 SuccBB->removePredecessor(ClonedBB); 1661 DeadBlocks.push_back(ClonedBB); 1662 } 1663 1664 // Remove all MemorySSA in the dead blocks 1665 if (MSSAU) { 1666 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1667 DeadBlocks.end()); 1668 MSSAU->removeBlocks(DeadBlockSet); 1669 } 1670 1671 // Drop any remaining references to break cycles. 1672 for (BasicBlock *BB : DeadBlocks) 1673 BB->dropAllReferences(); 1674 // Erase them from the IR. 1675 for (BasicBlock *BB : DeadBlocks) 1676 BB->eraseFromParent(); 1677 } 1678 1679 static void 1680 deleteDeadBlocksFromLoop(Loop &L, 1681 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1682 DominatorTree &DT, LoopInfo &LI, 1683 MemorySSAUpdater *MSSAU, 1684 ScalarEvolution *SE, 1685 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 1686 // Find all the dead blocks tied to this loop, and remove them from their 1687 // successors. 1688 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1689 1690 // Start with loop/exit blocks and get a transitive closure of reachable dead 1691 // blocks. 1692 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1693 ExitBlocks.end()); 1694 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1695 while (!DeathCandidates.empty()) { 1696 auto *BB = DeathCandidates.pop_back_val(); 1697 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1698 for (BasicBlock *SuccBB : successors(BB)) { 1699 SuccBB->removePredecessor(BB); 1700 DeathCandidates.push_back(SuccBB); 1701 } 1702 DeadBlockSet.insert(BB); 1703 } 1704 } 1705 1706 // Remove all MemorySSA in the dead blocks 1707 if (MSSAU) 1708 MSSAU->removeBlocks(DeadBlockSet); 1709 1710 // Filter out the dead blocks from the exit blocks list so that it can be 1711 // used in the caller. 1712 llvm::erase_if(ExitBlocks, 1713 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1714 1715 // Walk from this loop up through its parents removing all of the dead blocks. 1716 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1717 for (auto *BB : DeadBlockSet) 1718 ParentL->getBlocksSet().erase(BB); 1719 llvm::erase_if(ParentL->getBlocksVector(), 1720 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1721 } 1722 1723 // Now delete the dead child loops. This raw delete will clear them 1724 // recursively. 1725 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1726 if (!DeadBlockSet.count(ChildL->getHeader())) 1727 return false; 1728 1729 assert(llvm::all_of(ChildL->blocks(), 1730 [&](BasicBlock *ChildBB) { 1731 return DeadBlockSet.count(ChildBB); 1732 }) && 1733 "If the child loop header is dead all blocks in the child loop must " 1734 "be dead as well!"); 1735 DestroyLoopCB(*ChildL, ChildL->getName()); 1736 if (SE) 1737 SE->forgetBlockAndLoopDispositions(); 1738 LI.destroy(ChildL); 1739 return true; 1740 }); 1741 1742 // Remove the loop mappings for the dead blocks and drop all the references 1743 // from these blocks to others to handle cyclic references as we start 1744 // deleting the blocks themselves. 1745 for (auto *BB : DeadBlockSet) { 1746 // Check that the dominator tree has already been updated. 1747 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1748 LI.changeLoopFor(BB, nullptr); 1749 // Drop all uses of the instructions to make sure we won't have dangling 1750 // uses in other blocks. 1751 for (auto &I : *BB) 1752 if (!I.use_empty()) 1753 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 1754 BB->dropAllReferences(); 1755 } 1756 1757 // Actually delete the blocks now that they've been fully unhooked from the 1758 // IR. 1759 for (auto *BB : DeadBlockSet) 1760 BB->eraseFromParent(); 1761 } 1762 1763 /// Recompute the set of blocks in a loop after unswitching. 1764 /// 1765 /// This walks from the original headers predecessors to rebuild the loop. We 1766 /// take advantage of the fact that new blocks can't have been added, and so we 1767 /// filter by the original loop's blocks. This also handles potentially 1768 /// unreachable code that we don't want to explore but might be found examining 1769 /// the predecessors of the header. 1770 /// 1771 /// If the original loop is no longer a loop, this will return an empty set. If 1772 /// it remains a loop, all the blocks within it will be added to the set 1773 /// (including those blocks in inner loops). 1774 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1775 LoopInfo &LI) { 1776 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1777 1778 auto *PH = L.getLoopPreheader(); 1779 auto *Header = L.getHeader(); 1780 1781 // A worklist to use while walking backwards from the header. 1782 SmallVector<BasicBlock *, 16> Worklist; 1783 1784 // First walk the predecessors of the header to find the backedges. This will 1785 // form the basis of our walk. 1786 for (auto *Pred : predecessors(Header)) { 1787 // Skip the preheader. 1788 if (Pred == PH) 1789 continue; 1790 1791 // Because the loop was in simplified form, the only non-loop predecessor 1792 // is the preheader. 1793 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1794 "than the preheader that is not part of the " 1795 "loop!"); 1796 1797 // Insert this block into the loop set and on the first visit and, if it 1798 // isn't the header we're currently walking, put it into the worklist to 1799 // recurse through. 1800 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1801 Worklist.push_back(Pred); 1802 } 1803 1804 // If no backedges were found, we're done. 1805 if (LoopBlockSet.empty()) 1806 return LoopBlockSet; 1807 1808 // We found backedges, recurse through them to identify the loop blocks. 1809 while (!Worklist.empty()) { 1810 BasicBlock *BB = Worklist.pop_back_val(); 1811 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1812 1813 // No need to walk past the header. 1814 if (BB == Header) 1815 continue; 1816 1817 // Because we know the inner loop structure remains valid we can use the 1818 // loop structure to jump immediately across the entire nested loop. 1819 // Further, because it is in loop simplified form, we can directly jump 1820 // to its preheader afterward. 1821 if (Loop *InnerL = LI.getLoopFor(BB)) 1822 if (InnerL != &L) { 1823 assert(L.contains(InnerL) && 1824 "Should not reach a loop *outside* this loop!"); 1825 // The preheader is the only possible predecessor of the loop so 1826 // insert it into the set and check whether it was already handled. 1827 auto *InnerPH = InnerL->getLoopPreheader(); 1828 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1829 "but not contain the inner loop " 1830 "preheader!"); 1831 if (!LoopBlockSet.insert(InnerPH).second) 1832 // The only way to reach the preheader is through the loop body 1833 // itself so if it has been visited the loop is already handled. 1834 continue; 1835 1836 // Insert all of the blocks (other than those already present) into 1837 // the loop set. We expect at least the block that led us to find the 1838 // inner loop to be in the block set, but we may also have other loop 1839 // blocks if they were already enqueued as predecessors of some other 1840 // outer loop block. 1841 for (auto *InnerBB : InnerL->blocks()) { 1842 if (InnerBB == BB) { 1843 assert(LoopBlockSet.count(InnerBB) && 1844 "Block should already be in the set!"); 1845 continue; 1846 } 1847 1848 LoopBlockSet.insert(InnerBB); 1849 } 1850 1851 // Add the preheader to the worklist so we will continue past the 1852 // loop body. 1853 Worklist.push_back(InnerPH); 1854 continue; 1855 } 1856 1857 // Insert any predecessors that were in the original loop into the new 1858 // set, and if the insert is successful, add them to the worklist. 1859 for (auto *Pred : predecessors(BB)) 1860 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1861 Worklist.push_back(Pred); 1862 } 1863 1864 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1865 1866 // We've found all the blocks participating in the loop, return our completed 1867 // set. 1868 return LoopBlockSet; 1869 } 1870 1871 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1872 /// 1873 /// The removal may have removed some child loops entirely but cannot have 1874 /// disturbed any remaining child loops. However, they may need to be hoisted 1875 /// to the parent loop (or to be top-level loops). The original loop may be 1876 /// completely removed. 1877 /// 1878 /// The sibling loops resulting from this update are returned. If the original 1879 /// loop remains a valid loop, it will be the first entry in this list with all 1880 /// of the newly sibling loops following it. 1881 /// 1882 /// Returns true if the loop remains a loop after unswitching, and false if it 1883 /// is no longer a loop after unswitching (and should not continue to be 1884 /// referenced). 1885 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1886 LoopInfo &LI, 1887 SmallVectorImpl<Loop *> &HoistedLoops, 1888 ScalarEvolution *SE) { 1889 auto *PH = L.getLoopPreheader(); 1890 1891 // Compute the actual parent loop from the exit blocks. Because we may have 1892 // pruned some exits the loop may be different from the original parent. 1893 Loop *ParentL = nullptr; 1894 SmallVector<Loop *, 4> ExitLoops; 1895 SmallVector<BasicBlock *, 4> ExitsInLoops; 1896 ExitsInLoops.reserve(ExitBlocks.size()); 1897 for (auto *ExitBB : ExitBlocks) 1898 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1899 ExitLoops.push_back(ExitL); 1900 ExitsInLoops.push_back(ExitBB); 1901 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1902 ParentL = ExitL; 1903 } 1904 1905 // Recompute the blocks participating in this loop. This may be empty if it 1906 // is no longer a loop. 1907 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1908 1909 // If we still have a loop, we need to re-set the loop's parent as the exit 1910 // block set changing may have moved it within the loop nest. Note that this 1911 // can only happen when this loop has a parent as it can only hoist the loop 1912 // *up* the nest. 1913 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1914 // Remove this loop's (original) blocks from all of the intervening loops. 1915 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1916 IL = IL->getParentLoop()) { 1917 IL->getBlocksSet().erase(PH); 1918 for (auto *BB : L.blocks()) 1919 IL->getBlocksSet().erase(BB); 1920 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1921 return BB == PH || L.contains(BB); 1922 }); 1923 } 1924 1925 LI.changeLoopFor(PH, ParentL); 1926 L.getParentLoop()->removeChildLoop(&L); 1927 if (ParentL) 1928 ParentL->addChildLoop(&L); 1929 else 1930 LI.addTopLevelLoop(&L); 1931 } 1932 1933 // Now we update all the blocks which are no longer within the loop. 1934 auto &Blocks = L.getBlocksVector(); 1935 auto BlocksSplitI = 1936 LoopBlockSet.empty() 1937 ? Blocks.begin() 1938 : std::stable_partition( 1939 Blocks.begin(), Blocks.end(), 1940 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1941 1942 // Before we erase the list of unlooped blocks, build a set of them. 1943 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1944 if (LoopBlockSet.empty()) 1945 UnloopedBlocks.insert(PH); 1946 1947 // Now erase these blocks from the loop. 1948 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1949 L.getBlocksSet().erase(BB); 1950 Blocks.erase(BlocksSplitI, Blocks.end()); 1951 1952 // Sort the exits in ascending loop depth, we'll work backwards across these 1953 // to process them inside out. 1954 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1955 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1956 }); 1957 1958 // We'll build up a set for each exit loop. 1959 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1960 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1961 1962 auto RemoveUnloopedBlocksFromLoop = 1963 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1964 for (auto *BB : UnloopedBlocks) 1965 L.getBlocksSet().erase(BB); 1966 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1967 return UnloopedBlocks.count(BB); 1968 }); 1969 }; 1970 1971 SmallVector<BasicBlock *, 16> Worklist; 1972 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1973 assert(Worklist.empty() && "Didn't clear worklist!"); 1974 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1975 1976 // Grab the next exit block, in decreasing loop depth order. 1977 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1978 Loop &ExitL = *LI.getLoopFor(ExitBB); 1979 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1980 1981 // Erase all of the unlooped blocks from the loops between the previous 1982 // exit loop and this exit loop. This works because the ExitInLoops list is 1983 // sorted in increasing order of loop depth and thus we visit loops in 1984 // decreasing order of loop depth. 1985 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1986 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1987 1988 // Walk the CFG back until we hit the cloned PH adding everything reachable 1989 // and in the unlooped set to this exit block's loop. 1990 Worklist.push_back(ExitBB); 1991 do { 1992 BasicBlock *BB = Worklist.pop_back_val(); 1993 // We can stop recursing at the cloned preheader (if we get there). 1994 if (BB == PH) 1995 continue; 1996 1997 for (BasicBlock *PredBB : predecessors(BB)) { 1998 // If this pred has already been moved to our set or is part of some 1999 // (inner) loop, no update needed. 2000 if (!UnloopedBlocks.erase(PredBB)) { 2001 assert((NewExitLoopBlocks.count(PredBB) || 2002 ExitL.contains(LI.getLoopFor(PredBB))) && 2003 "Predecessor not in a nested loop (or already visited)!"); 2004 continue; 2005 } 2006 2007 // We just insert into the loop set here. We'll add these blocks to the 2008 // exit loop after we build up the set in a deterministic order rather 2009 // than the predecessor-influenced visit order. 2010 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 2011 (void)Inserted; 2012 assert(Inserted && "Should only visit an unlooped block once!"); 2013 2014 // And recurse through to its predecessors. 2015 Worklist.push_back(PredBB); 2016 } 2017 } while (!Worklist.empty()); 2018 2019 // If blocks in this exit loop were directly part of the original loop (as 2020 // opposed to a child loop) update the map to point to this exit loop. This 2021 // just updates a map and so the fact that the order is unstable is fine. 2022 for (auto *BB : NewExitLoopBlocks) 2023 if (Loop *BBL = LI.getLoopFor(BB)) 2024 if (BBL == &L || !L.contains(BBL)) 2025 LI.changeLoopFor(BB, &ExitL); 2026 2027 // We will remove the remaining unlooped blocks from this loop in the next 2028 // iteration or below. 2029 NewExitLoopBlocks.clear(); 2030 } 2031 2032 // Any remaining unlooped blocks are no longer part of any loop unless they 2033 // are part of some child loop. 2034 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 2035 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 2036 for (auto *BB : UnloopedBlocks) 2037 if (Loop *BBL = LI.getLoopFor(BB)) 2038 if (BBL == &L || !L.contains(BBL)) 2039 LI.changeLoopFor(BB, nullptr); 2040 2041 // Sink all the child loops whose headers are no longer in the loop set to 2042 // the parent (or to be top level loops). We reach into the loop and directly 2043 // update its subloop vector to make this batch update efficient. 2044 auto &SubLoops = L.getSubLoopsVector(); 2045 auto SubLoopsSplitI = 2046 LoopBlockSet.empty() 2047 ? SubLoops.begin() 2048 : std::stable_partition( 2049 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 2050 return LoopBlockSet.count(SubL->getHeader()); 2051 }); 2052 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 2053 HoistedLoops.push_back(HoistedL); 2054 HoistedL->setParentLoop(nullptr); 2055 2056 // To compute the new parent of this hoisted loop we look at where we 2057 // placed the preheader above. We can't lookup the header itself because we 2058 // retained the mapping from the header to the hoisted loop. But the 2059 // preheader and header should have the exact same new parent computed 2060 // based on the set of exit blocks from the original loop as the preheader 2061 // is a predecessor of the header and so reached in the reverse walk. And 2062 // because the loops were all in simplified form the preheader of the 2063 // hoisted loop can't be part of some *other* loop. 2064 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 2065 NewParentL->addChildLoop(HoistedL); 2066 else 2067 LI.addTopLevelLoop(HoistedL); 2068 } 2069 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 2070 2071 // Actually delete the loop if nothing remained within it. 2072 if (Blocks.empty()) { 2073 assert(SubLoops.empty() && 2074 "Failed to remove all subloops from the original loop!"); 2075 if (Loop *ParentL = L.getParentLoop()) 2076 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 2077 else 2078 LI.removeLoop(llvm::find(LI, &L)); 2079 // markLoopAsDeleted for L should be triggered by the caller (it is typically 2080 // done by using the UnswitchCB callback). 2081 if (SE) 2082 SE->forgetBlockAndLoopDispositions(); 2083 LI.destroy(&L); 2084 return false; 2085 } 2086 2087 return true; 2088 } 2089 2090 /// Helper to visit a dominator subtree, invoking a callable on each node. 2091 /// 2092 /// Returning false at any point will stop walking past that node of the tree. 2093 template <typename CallableT> 2094 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 2095 SmallVector<DomTreeNode *, 4> DomWorklist; 2096 DomWorklist.push_back(DT[BB]); 2097 #ifndef NDEBUG 2098 SmallPtrSet<DomTreeNode *, 4> Visited; 2099 Visited.insert(DT[BB]); 2100 #endif 2101 do { 2102 DomTreeNode *N = DomWorklist.pop_back_val(); 2103 2104 // Visit this node. 2105 if (!Callable(N->getBlock())) 2106 continue; 2107 2108 // Accumulate the child nodes. 2109 for (DomTreeNode *ChildN : *N) { 2110 assert(Visited.insert(ChildN).second && 2111 "Cannot visit a node twice when walking a tree!"); 2112 DomWorklist.push_back(ChildN); 2113 } 2114 } while (!DomWorklist.empty()); 2115 } 2116 2117 static void unswitchNontrivialInvariants( 2118 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 2119 IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI, 2120 AssumptionCache &AC, 2121 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 2122 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 2123 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 2124 auto *ParentBB = TI.getParent(); 2125 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2126 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 2127 2128 // We can only unswitch switches, conditional branches with an invariant 2129 // condition, or combining invariant conditions with an instruction or 2130 // partially invariant instructions. 2131 assert((SI || (BI && BI->isConditional())) && 2132 "Can only unswitch switches and conditional branch!"); 2133 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty(); 2134 bool FullUnswitch = 2135 SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] && 2136 !PartiallyInvariant); 2137 if (FullUnswitch) 2138 assert(Invariants.size() == 1 && 2139 "Cannot have other invariants with full unswitching!"); 2140 else 2141 assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) && 2142 "Partial unswitching requires an instruction as the condition!"); 2143 2144 if (MSSAU && VerifyMemorySSA) 2145 MSSAU->getMemorySSA()->verifyMemorySSA(); 2146 2147 // Constant and BBs tracking the cloned and continuing successor. When we are 2148 // unswitching the entire condition, this can just be trivially chosen to 2149 // unswitch towards `true`. However, when we are unswitching a set of 2150 // invariants combined with `and` or `or` or partially invariant instructions, 2151 // the combining operation determines the best direction to unswitch: we want 2152 // to unswitch the direction that will collapse the branch. 2153 bool Direction = true; 2154 int ClonedSucc = 0; 2155 if (!FullUnswitch) { 2156 Value *Cond = skipTrivialSelect(BI->getCondition()); 2157 (void)Cond; 2158 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || 2159 PartiallyInvariant) && 2160 "Only `or`, `and`, an `select`, partially invariant instructions " 2161 "can combine invariants being unswitched."); 2162 if (!match(Cond, m_LogicalOr())) { 2163 if (match(Cond, m_LogicalAnd()) || 2164 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) { 2165 Direction = false; 2166 ClonedSucc = 1; 2167 } 2168 } 2169 } 2170 2171 BasicBlock *RetainedSuccBB = 2172 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 2173 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 2174 if (BI) 2175 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 2176 else 2177 for (auto Case : SI->cases()) 2178 if (Case.getCaseSuccessor() != RetainedSuccBB) 2179 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 2180 2181 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 2182 "Should not unswitch the same successor we are retaining!"); 2183 2184 // The branch should be in this exact loop. Any inner loop's invariant branch 2185 // should be handled by unswitching that inner loop. The caller of this 2186 // routine should filter out any candidates that remain (but were skipped for 2187 // whatever reason). 2188 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2189 2190 // Compute the parent loop now before we start hacking on things. 2191 Loop *ParentL = L.getParentLoop(); 2192 // Get blocks in RPO order for MSSA update, before changing the CFG. 2193 LoopBlocksRPO LBRPO(&L); 2194 if (MSSAU) 2195 LBRPO.perform(&LI); 2196 2197 // Compute the outer-most loop containing one of our exit blocks. This is the 2198 // furthest up our loopnest which can be mutated, which we will use below to 2199 // update things. 2200 Loop *OuterExitL = &L; 2201 SmallVector<BasicBlock *, 4> ExitBlocks; 2202 L.getUniqueExitBlocks(ExitBlocks); 2203 for (auto *ExitBB : ExitBlocks) { 2204 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2205 if (!NewOuterExitL) { 2206 // We exited the entire nest with this block, so we're done. 2207 OuterExitL = nullptr; 2208 break; 2209 } 2210 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2211 OuterExitL = NewOuterExitL; 2212 } 2213 2214 // At this point, we're definitely going to unswitch something so invalidate 2215 // any cached information in ScalarEvolution for the outer most loop 2216 // containing an exit block and all nested loops. 2217 if (SE) { 2218 if (OuterExitL) 2219 SE->forgetLoop(OuterExitL); 2220 else 2221 SE->forgetTopmostLoop(&L); 2222 SE->forgetBlockAndLoopDispositions(); 2223 } 2224 2225 bool InsertFreeze = false; 2226 if (FreezeLoopUnswitchCond) { 2227 ICFLoopSafetyInfo SafetyInfo; 2228 SafetyInfo.computeLoopSafetyInfo(&L); 2229 InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L); 2230 } 2231 2232 // Perform the isGuaranteedNotToBeUndefOrPoison() query before the transform, 2233 // otherwise the branch instruction will have been moved outside the loop 2234 // already, and may imply that a poison condition is always UB. 2235 Value *FullUnswitchCond = nullptr; 2236 if (FullUnswitch) { 2237 FullUnswitchCond = 2238 BI ? skipTrivialSelect(BI->getCondition()) : SI->getCondition(); 2239 if (InsertFreeze) 2240 InsertFreeze = !isGuaranteedNotToBeUndefOrPoison( 2241 FullUnswitchCond, &AC, L.getLoopPreheader()->getTerminator(), &DT); 2242 } 2243 2244 // If the edge from this terminator to a successor dominates that successor, 2245 // store a map from each block in its dominator subtree to it. This lets us 2246 // tell when cloning for a particular successor if a block is dominated by 2247 // some *other* successor with a single data structure. We use this to 2248 // significantly reduce cloning. 2249 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2250 for (auto *SuccBB : llvm::concat<BasicBlock *const>(ArrayRef(RetainedSuccBB), 2251 UnswitchedSuccBBs)) 2252 if (SuccBB->getUniquePredecessor() || 2253 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2254 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2255 })) 2256 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2257 DominatingSucc[BB] = SuccBB; 2258 return true; 2259 }); 2260 2261 // Split the preheader, so that we know that there is a safe place to insert 2262 // the conditional branch. We will change the preheader to have a conditional 2263 // branch on LoopCond. The original preheader will become the split point 2264 // between the unswitched versions, and we will have a new preheader for the 2265 // original loop. 2266 BasicBlock *SplitBB = L.getLoopPreheader(); 2267 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2268 2269 // Keep track of the dominator tree updates needed. 2270 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2271 2272 // Clone the loop for each unswitched successor. 2273 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2274 VMaps.reserve(UnswitchedSuccBBs.size()); 2275 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2276 for (auto *SuccBB : UnswitchedSuccBBs) { 2277 VMaps.emplace_back(new ValueToValueMapTy()); 2278 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2279 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2280 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE); 2281 } 2282 2283 // Drop metadata if we may break its semantics by moving this instr into the 2284 // split block. 2285 if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 2286 if (DropNonTrivialImplicitNullChecks) 2287 // Do not spend time trying to understand if we can keep it, just drop it 2288 // to save compile time. 2289 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2290 else { 2291 // It is only legal to preserve make.implicit metadata if we are 2292 // guaranteed no reach implicit null check after following this branch. 2293 ICFLoopSafetyInfo SafetyInfo; 2294 SafetyInfo.computeLoopSafetyInfo(&L); 2295 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2296 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2297 } 2298 } 2299 2300 // The stitching of the branched code back together depends on whether we're 2301 // doing full unswitching or not with the exception that we always want to 2302 // nuke the initial terminator placed in the split block. 2303 SplitBB->getTerminator()->eraseFromParent(); 2304 if (FullUnswitch) { 2305 // Splice the terminator from the original loop and rewrite its 2306 // successors. 2307 SplitBB->splice(SplitBB->end(), ParentBB, TI.getIterator()); 2308 2309 // Keep a clone of the terminator for MSSA updates. 2310 Instruction *NewTI = TI.clone(); 2311 NewTI->insertInto(ParentBB, ParentBB->end()); 2312 2313 // First wire up the moved terminator to the preheaders. 2314 if (BI) { 2315 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2316 BI->setSuccessor(ClonedSucc, ClonedPH); 2317 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2318 if (InsertFreeze) 2319 FullUnswitchCond = new FreezeInst( 2320 FullUnswitchCond, FullUnswitchCond->getName() + ".fr", BI); 2321 BI->setCondition(FullUnswitchCond); 2322 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2323 } else { 2324 assert(SI && "Must either be a branch or switch!"); 2325 2326 // Walk the cases and directly update their successors. 2327 assert(SI->getDefaultDest() == RetainedSuccBB && 2328 "Not retaining default successor!"); 2329 SI->setDefaultDest(LoopPH); 2330 for (const auto &Case : SI->cases()) 2331 if (Case.getCaseSuccessor() == RetainedSuccBB) 2332 Case.setSuccessor(LoopPH); 2333 else 2334 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2335 2336 if (InsertFreeze) 2337 SI->setCondition(new FreezeInst( 2338 FullUnswitchCond, FullUnswitchCond->getName() + ".fr", SI)); 2339 2340 // We need to use the set to populate domtree updates as even when there 2341 // are multiple cases pointing at the same successor we only want to 2342 // remove and insert one edge in the domtree. 2343 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2344 DTUpdates.push_back( 2345 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2346 } 2347 2348 if (MSSAU) { 2349 DT.applyUpdates(DTUpdates); 2350 DTUpdates.clear(); 2351 2352 // Remove all but one edge to the retained block and all unswitched 2353 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2354 // when we know we only keep a single edge for each case. 2355 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2356 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2357 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2358 2359 for (auto &VMap : VMaps) 2360 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2361 /*IgnoreIncomingWithNoClones=*/true); 2362 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2363 2364 // Remove all edges to unswitched blocks. 2365 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2366 MSSAU->removeEdge(ParentBB, SuccBB); 2367 } 2368 2369 // Now unhook the successor relationship as we'll be replacing 2370 // the terminator with a direct branch. This is much simpler for branches 2371 // than switches so we handle those first. 2372 if (BI) { 2373 // Remove the parent as a predecessor of the unswitched successor. 2374 assert(UnswitchedSuccBBs.size() == 1 && 2375 "Only one possible unswitched block for a branch!"); 2376 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2377 UnswitchedSuccBB->removePredecessor(ParentBB, 2378 /*KeepOneInputPHIs*/ true); 2379 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2380 } else { 2381 // Note that we actually want to remove the parent block as a predecessor 2382 // of *every* case successor. The case successor is either unswitched, 2383 // completely eliminating an edge from the parent to that successor, or it 2384 // is a duplicate edge to the retained successor as the retained successor 2385 // is always the default successor and as we'll replace this with a direct 2386 // branch we no longer need the duplicate entries in the PHI nodes. 2387 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2388 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2389 "Not retaining default successor!"); 2390 for (const auto &Case : NewSI->cases()) 2391 Case.getCaseSuccessor()->removePredecessor( 2392 ParentBB, 2393 /*KeepOneInputPHIs*/ true); 2394 2395 // We need to use the set to populate domtree updates as even when there 2396 // are multiple cases pointing at the same successor we only want to 2397 // remove and insert one edge in the domtree. 2398 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2399 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2400 } 2401 2402 // After MSSAU update, remove the cloned terminator instruction NewTI. 2403 ParentBB->getTerminator()->eraseFromParent(); 2404 2405 // Create a new unconditional branch to the continuing block (as opposed to 2406 // the one cloned). 2407 BranchInst::Create(RetainedSuccBB, ParentBB); 2408 } else { 2409 assert(BI && "Only branches have partial unswitching."); 2410 assert(UnswitchedSuccBBs.size() == 1 && 2411 "Only one possible unswitched block for a branch!"); 2412 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2413 // When doing a partial unswitch, we have to do a bit more work to build up 2414 // the branch in the split block. 2415 if (PartiallyInvariant) 2416 buildPartialInvariantUnswitchConditionalBranch( 2417 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU); 2418 else { 2419 buildPartialUnswitchConditionalBranch( 2420 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, 2421 FreezeLoopUnswitchCond, BI, &AC, DT); 2422 } 2423 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2424 2425 if (MSSAU) { 2426 DT.applyUpdates(DTUpdates); 2427 DTUpdates.clear(); 2428 2429 // Perform MSSA cloning updates. 2430 for (auto &VMap : VMaps) 2431 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2432 /*IgnoreIncomingWithNoClones=*/true); 2433 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2434 } 2435 } 2436 2437 // Apply the updates accumulated above to get an up-to-date dominator tree. 2438 DT.applyUpdates(DTUpdates); 2439 2440 // Now that we have an accurate dominator tree, first delete the dead cloned 2441 // blocks so that we can accurately build any cloned loops. It is important to 2442 // not delete the blocks from the original loop yet because we still want to 2443 // reference the original loop to understand the cloned loop's structure. 2444 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2445 2446 // Build the cloned loop structure itself. This may be substantially 2447 // different from the original structure due to the simplified CFG. This also 2448 // handles inserting all the cloned blocks into the correct loops. 2449 SmallVector<Loop *, 4> NonChildClonedLoops; 2450 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2451 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2452 2453 // Now that our cloned loops have been built, we can update the original loop. 2454 // First we delete the dead blocks from it and then we rebuild the loop 2455 // structure taking these deletions into account. 2456 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE,DestroyLoopCB); 2457 2458 if (MSSAU && VerifyMemorySSA) 2459 MSSAU->getMemorySSA()->verifyMemorySSA(); 2460 2461 SmallVector<Loop *, 4> HoistedLoops; 2462 bool IsStillLoop = 2463 rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE); 2464 2465 if (MSSAU && VerifyMemorySSA) 2466 MSSAU->getMemorySSA()->verifyMemorySSA(); 2467 2468 // This transformation has a high risk of corrupting the dominator tree, and 2469 // the below steps to rebuild loop structures will result in hard to debug 2470 // errors in that case so verify that the dominator tree is sane first. 2471 // FIXME: Remove this when the bugs stop showing up and rely on existing 2472 // verification steps. 2473 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2474 2475 if (BI && !PartiallyInvariant) { 2476 // If we unswitched a branch which collapses the condition to a known 2477 // constant we want to replace all the uses of the invariants within both 2478 // the original and cloned blocks. We do this here so that we can use the 2479 // now updated dominator tree to identify which side the users are on. 2480 assert(UnswitchedSuccBBs.size() == 1 && 2481 "Only one possible unswitched block for a branch!"); 2482 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2483 2484 // When considering multiple partially-unswitched invariants 2485 // we cant just go replace them with constants in both branches. 2486 // 2487 // For 'AND' we infer that true branch ("continue") means true 2488 // for each invariant operand. 2489 // For 'OR' we can infer that false branch ("continue") means false 2490 // for each invariant operand. 2491 // So it happens that for multiple-partial case we dont replace 2492 // in the unswitched branch. 2493 bool ReplaceUnswitched = 2494 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant; 2495 2496 ConstantInt *UnswitchedReplacement = 2497 Direction ? ConstantInt::getTrue(BI->getContext()) 2498 : ConstantInt::getFalse(BI->getContext()); 2499 ConstantInt *ContinueReplacement = 2500 Direction ? ConstantInt::getFalse(BI->getContext()) 2501 : ConstantInt::getTrue(BI->getContext()); 2502 for (Value *Invariant : Invariants) { 2503 assert(!isa<Constant>(Invariant) && 2504 "Should not be replacing constant values!"); 2505 // Use make_early_inc_range here as set invalidates the iterator. 2506 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 2507 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 2508 if (!UserI) 2509 continue; 2510 2511 // Replace it with the 'continue' side if in the main loop body, and the 2512 // unswitched if in the cloned blocks. 2513 if (DT.dominates(LoopPH, UserI->getParent())) 2514 U.set(ContinueReplacement); 2515 else if (ReplaceUnswitched && 2516 DT.dominates(ClonedPH, UserI->getParent())) 2517 U.set(UnswitchedReplacement); 2518 } 2519 } 2520 } 2521 2522 // We can change which blocks are exit blocks of all the cloned sibling 2523 // loops, the current loop, and any parent loops which shared exit blocks 2524 // with the current loop. As a consequence, we need to re-form LCSSA for 2525 // them. But we shouldn't need to re-form LCSSA for any child loops. 2526 // FIXME: This could be made more efficient by tracking which exit blocks are 2527 // new, and focusing on them, but that isn't likely to be necessary. 2528 // 2529 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2530 // loop nest and update every loop that could have had its exits changed. We 2531 // also need to cover any intervening loops. We add all of these loops to 2532 // a list and sort them by loop depth to achieve this without updating 2533 // unnecessary loops. 2534 auto UpdateLoop = [&](Loop &UpdateL) { 2535 #ifndef NDEBUG 2536 UpdateL.verifyLoop(); 2537 for (Loop *ChildL : UpdateL) { 2538 ChildL->verifyLoop(); 2539 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2540 "Perturbed a child loop's LCSSA form!"); 2541 } 2542 #endif 2543 // First build LCSSA for this loop so that we can preserve it when 2544 // forming dedicated exits. We don't want to perturb some other loop's 2545 // LCSSA while doing that CFG edit. 2546 formLCSSA(UpdateL, DT, &LI, SE); 2547 2548 // For loops reached by this loop's original exit blocks we may 2549 // introduced new, non-dedicated exits. At least try to re-form dedicated 2550 // exits for these loops. This may fail if they couldn't have dedicated 2551 // exits to start with. 2552 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2553 }; 2554 2555 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2556 // and we can do it in any order as they don't nest relative to each other. 2557 // 2558 // Also check if any of the loops we have updated have become top-level loops 2559 // as that will necessitate widening the outer loop scope. 2560 for (Loop *UpdatedL : 2561 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2562 UpdateLoop(*UpdatedL); 2563 if (UpdatedL->isOutermost()) 2564 OuterExitL = nullptr; 2565 } 2566 if (IsStillLoop) { 2567 UpdateLoop(L); 2568 if (L.isOutermost()) 2569 OuterExitL = nullptr; 2570 } 2571 2572 // If the original loop had exit blocks, walk up through the outer most loop 2573 // of those exit blocks to update LCSSA and form updated dedicated exits. 2574 if (OuterExitL != &L) 2575 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2576 OuterL = OuterL->getParentLoop()) 2577 UpdateLoop(*OuterL); 2578 2579 #ifndef NDEBUG 2580 // Verify the entire loop structure to catch any incorrect updates before we 2581 // progress in the pass pipeline. 2582 LI.verify(DT); 2583 #endif 2584 2585 // Now that we've unswitched something, make callbacks to report the changes. 2586 // For that we need to merge together the updated loops and the cloned loops 2587 // and check whether the original loop survived. 2588 SmallVector<Loop *, 4> SibLoops; 2589 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2590 if (UpdatedL->getParentLoop() == ParentL) 2591 SibLoops.push_back(UpdatedL); 2592 UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops); 2593 2594 if (MSSAU && VerifyMemorySSA) 2595 MSSAU->getMemorySSA()->verifyMemorySSA(); 2596 2597 if (BI) 2598 ++NumBranches; 2599 else 2600 ++NumSwitches; 2601 } 2602 2603 /// Recursively compute the cost of a dominator subtree based on the per-block 2604 /// cost map provided. 2605 /// 2606 /// The recursive computation is memozied into the provided DT-indexed cost map 2607 /// to allow querying it for most nodes in the domtree without it becoming 2608 /// quadratic. 2609 static InstructionCost computeDomSubtreeCost( 2610 DomTreeNode &N, 2611 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, 2612 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { 2613 // Don't accumulate cost (or recurse through) blocks not in our block cost 2614 // map and thus not part of the duplication cost being considered. 2615 auto BBCostIt = BBCostMap.find(N.getBlock()); 2616 if (BBCostIt == BBCostMap.end()) 2617 return 0; 2618 2619 // Lookup this node to see if we already computed its cost. 2620 auto DTCostIt = DTCostMap.find(&N); 2621 if (DTCostIt != DTCostMap.end()) 2622 return DTCostIt->second; 2623 2624 // If not, we have to compute it. We can't use insert above and update 2625 // because computing the cost may insert more things into the map. 2626 InstructionCost Cost = std::accumulate( 2627 N.begin(), N.end(), BBCostIt->second, 2628 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { 2629 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2630 }); 2631 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2632 (void)Inserted; 2633 assert(Inserted && "Should not insert a node while visiting children!"); 2634 return Cost; 2635 } 2636 2637 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2638 /// making the following replacement: 2639 /// 2640 /// --code before guard-- 2641 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2642 /// --code after guard-- 2643 /// 2644 /// into 2645 /// 2646 /// --code before guard-- 2647 /// br i1 %cond, label %guarded, label %deopt 2648 /// 2649 /// guarded: 2650 /// --code after guard-- 2651 /// 2652 /// deopt: 2653 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2654 /// unreachable 2655 /// 2656 /// It also makes all relevant DT and LI updates, so that all structures are in 2657 /// valid state after this transform. 2658 static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2659 DominatorTree &DT, LoopInfo &LI, 2660 MemorySSAUpdater *MSSAU) { 2661 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2662 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2663 BasicBlock *CheckBB = GI->getParent(); 2664 2665 if (MSSAU && VerifyMemorySSA) 2666 MSSAU->getMemorySSA()->verifyMemorySSA(); 2667 2668 // Remove all CheckBB's successors from DomTree. A block can be seen among 2669 // successors more than once, but for DomTree it should be added only once. 2670 SmallPtrSet<BasicBlock *, 4> Successors; 2671 for (auto *Succ : successors(CheckBB)) 2672 if (Successors.insert(Succ).second) 2673 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2674 2675 Instruction *DeoptBlockTerm = 2676 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2677 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2678 // SplitBlockAndInsertIfThen inserts control flow that branches to 2679 // DeoptBlockTerm if the condition is true. We want the opposite. 2680 CheckBI->swapSuccessors(); 2681 2682 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2683 GuardedBlock->setName("guarded"); 2684 CheckBI->getSuccessor(1)->setName("deopt"); 2685 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2686 2687 if (MSSAU) 2688 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2689 2690 GI->moveBefore(DeoptBlockTerm); 2691 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2692 2693 // Add new successors of CheckBB into DomTree. 2694 for (auto *Succ : successors(CheckBB)) 2695 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2696 2697 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2698 // successors. 2699 for (auto *Succ : Successors) 2700 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2701 2702 // Make proper changes to DT. 2703 DT.applyUpdates(DTUpdates); 2704 // Inform LI of a new loop block. 2705 L.addBasicBlockToLoop(GuardedBlock, LI); 2706 2707 if (MSSAU) { 2708 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2709 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2710 if (VerifyMemorySSA) 2711 MSSAU->getMemorySSA()->verifyMemorySSA(); 2712 } 2713 2714 ++NumGuards; 2715 return CheckBI; 2716 } 2717 2718 /// Cost multiplier is a way to limit potentially exponential behavior 2719 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2720 /// candidates available. Also accounting for the number of "sibling" loops with 2721 /// the idea to account for previous unswitches that already happened on this 2722 /// cluster of loops. There was an attempt to keep this formula simple, 2723 /// just enough to limit the worst case behavior. Even if it is not that simple 2724 /// now it is still not an attempt to provide a detailed heuristic size 2725 /// prediction. 2726 /// 2727 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2728 /// unswitch candidates, making adequate predictions instead of wild guesses. 2729 /// That requires knowing not just the number of "remaining" candidates but 2730 /// also costs of unswitching for each of these candidates. 2731 static int CalculateUnswitchCostMultiplier( 2732 const Instruction &TI, const Loop &L, const LoopInfo &LI, 2733 const DominatorTree &DT, 2734 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) { 2735 2736 // Guards and other exiting conditions do not contribute to exponential 2737 // explosion as soon as they dominate the latch (otherwise there might be 2738 // another path to the latch remaining that does not allow to eliminate the 2739 // loop copy on unswitch). 2740 const BasicBlock *Latch = L.getLoopLatch(); 2741 const BasicBlock *CondBlock = TI.getParent(); 2742 if (DT.dominates(CondBlock, Latch) && 2743 (isGuard(&TI) || 2744 llvm::count_if(successors(&TI), [&L](const BasicBlock *SuccBB) { 2745 return L.contains(SuccBB); 2746 }) <= 1)) { 2747 NumCostMultiplierSkipped++; 2748 return 1; 2749 } 2750 2751 auto *ParentL = L.getParentLoop(); 2752 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2753 : std::distance(LI.begin(), LI.end())); 2754 // Count amount of clones that all the candidates might cause during 2755 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2756 int UnswitchedClones = 0; 2757 for (auto Candidate : UnswitchCandidates) { 2758 const Instruction *CI = Candidate.TI; 2759 const BasicBlock *CondBlock = CI->getParent(); 2760 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2761 if (isGuard(CI)) { 2762 if (!SkipExitingSuccessors) 2763 UnswitchedClones++; 2764 continue; 2765 } 2766 int NonExitingSuccessors = 2767 llvm::count_if(successors(CondBlock), 2768 [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) { 2769 return !SkipExitingSuccessors || L.contains(SuccBB); 2770 }); 2771 UnswitchedClones += Log2_32(NonExitingSuccessors); 2772 } 2773 2774 // Ignore up to the "unscaled candidates" number of unswitch candidates 2775 // when calculating the power-of-two scaling of the cost. The main idea 2776 // with this control is to allow a small number of unswitches to happen 2777 // and rely more on siblings multiplier (see below) when the number 2778 // of candidates is small. 2779 unsigned ClonesPower = 2780 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2781 2782 // Allowing top-level loops to spread a bit more than nested ones. 2783 int SiblingsMultiplier = 2784 std::max((ParentL ? SiblingsCount 2785 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2786 1); 2787 // Compute the cost multiplier in a way that won't overflow by saturating 2788 // at an upper bound. 2789 int CostMultiplier; 2790 if (ClonesPower > Log2_32(UnswitchThreshold) || 2791 SiblingsMultiplier > UnswitchThreshold) 2792 CostMultiplier = UnswitchThreshold; 2793 else 2794 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2795 (int)UnswitchThreshold); 2796 2797 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2798 << " (siblings " << SiblingsMultiplier << " * clones " 2799 << (1 << ClonesPower) << ")" 2800 << " for unswitch candidate: " << TI << "\n"); 2801 return CostMultiplier; 2802 } 2803 2804 static bool collectUnswitchCandidates( 2805 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, 2806 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, 2807 const Loop &L, const LoopInfo &LI, AAResults &AA, 2808 const MemorySSAUpdater *MSSAU) { 2809 assert(UnswitchCandidates.empty() && "Should be!"); 2810 // Whether or not we should also collect guards in the loop. 2811 bool CollectGuards = false; 2812 if (UnswitchGuards) { 2813 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2814 Intrinsic::getName(Intrinsic::experimental_guard)); 2815 if (GuardDecl && !GuardDecl->use_empty()) 2816 CollectGuards = true; 2817 } 2818 2819 for (auto *BB : L.blocks()) { 2820 if (LI.getLoopFor(BB) != &L) 2821 continue; 2822 2823 if (CollectGuards) 2824 for (auto &I : *BB) 2825 if (isGuard(&I)) { 2826 auto *Cond = 2827 skipTrivialSelect(cast<IntrinsicInst>(&I)->getArgOperand(0)); 2828 // TODO: Support AND, OR conditions and partial unswitching. 2829 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2830 UnswitchCandidates.push_back({&I, {Cond}}); 2831 } 2832 2833 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2834 // We can only consider fully loop-invariant switch conditions as we need 2835 // to completely eliminate the switch after unswitching. 2836 if (!isa<Constant>(SI->getCondition()) && 2837 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2838 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2839 continue; 2840 } 2841 2842 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2843 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2844 BI->getSuccessor(0) == BI->getSuccessor(1)) 2845 continue; 2846 2847 Value *Cond = skipTrivialSelect(BI->getCondition()); 2848 if (isa<Constant>(Cond)) 2849 continue; 2850 2851 if (L.isLoopInvariant(Cond)) { 2852 UnswitchCandidates.push_back({BI, {Cond}}); 2853 continue; 2854 } 2855 2856 Instruction &CondI = *cast<Instruction>(Cond); 2857 if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) { 2858 TinyPtrVector<Value *> Invariants = 2859 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2860 if (Invariants.empty()) 2861 continue; 2862 2863 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2864 continue; 2865 } 2866 } 2867 2868 if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") && 2869 !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) { 2870 return TerminatorAndInvariants.TI == L.getHeader()->getTerminator(); 2871 })) { 2872 MemorySSA *MSSA = MSSAU->getMemorySSA(); 2873 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) { 2874 LLVM_DEBUG( 2875 dbgs() << "simple-loop-unswitch: Found partially invariant condition " 2876 << *Info->InstToDuplicate[0] << "\n"); 2877 PartialIVInfo = *Info; 2878 PartialIVCondBranch = L.getHeader()->getTerminator(); 2879 TinyPtrVector<Value *> ValsToDuplicate; 2880 llvm::append_range(ValsToDuplicate, Info->InstToDuplicate); 2881 UnswitchCandidates.push_back( 2882 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)}); 2883 } 2884 } 2885 return !UnswitchCandidates.empty(); 2886 } 2887 2888 /// Tries to canonicalize condition described by: 2889 /// 2890 /// br (LHS pred RHS), label IfTrue, label IfFalse 2891 /// 2892 /// into its equivalent where `Pred` is something that we support for injected 2893 /// invariants (so far it is limited to ult), LHS in canonicalized form is 2894 /// non-invariant and RHS is an invariant. 2895 static void canonicalizeForInvariantConditionInjection( 2896 ICmpInst::Predicate &Pred, Value *&LHS, Value *&RHS, BasicBlock *&IfTrue, 2897 BasicBlock *&IfFalse, const Loop &L) { 2898 if (!L.contains(IfTrue)) { 2899 Pred = ICmpInst::getInversePredicate(Pred); 2900 std::swap(IfTrue, IfFalse); 2901 } 2902 2903 // Move loop-invariant argument to RHS position. 2904 if (L.isLoopInvariant(LHS)) { 2905 Pred = ICmpInst::getSwappedPredicate(Pred); 2906 std::swap(LHS, RHS); 2907 } 2908 2909 if (Pred == ICmpInst::ICMP_SGE && match(RHS, m_Zero())) { 2910 // Turn "x >=s 0" into "x <u UMIN_INT" 2911 Pred = ICmpInst::ICMP_ULT; 2912 RHS = ConstantInt::get( 2913 RHS->getContext(), 2914 APInt::getSignedMinValue(RHS->getType()->getIntegerBitWidth())); 2915 } 2916 } 2917 2918 /// Returns true, if predicate described by ( \p Pred, \p LHS, \p RHS ) 2919 /// succeeding into blocks ( \p IfTrue, \p IfFalse) can be optimized by 2920 /// injecting a loop-invariant condition. 2921 static bool shouldTryInjectInvariantCondition( 2922 const ICmpInst::Predicate Pred, const Value *LHS, const Value *RHS, 2923 const BasicBlock *IfTrue, const BasicBlock *IfFalse, const Loop &L) { 2924 if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS)) 2925 return false; 2926 // TODO: Support other predicates. 2927 if (Pred != ICmpInst::ICMP_ULT) 2928 return false; 2929 // TODO: Support non-loop-exiting branches? 2930 if (!L.contains(IfTrue) || L.contains(IfFalse)) 2931 return false; 2932 // FIXME: For some reason this causes problems with MSSA updates, need to 2933 // investigate why. So far, just don't unswitch latch. 2934 if (L.getHeader() == IfTrue) 2935 return false; 2936 return true; 2937 } 2938 2939 /// Returns true, if metadata on \p BI allows us to optimize branching into \p 2940 /// TakenSucc via injection of invariant conditions. The branch should be not 2941 /// enough and not previously unswitched, the information about this comes from 2942 /// the metadata. 2943 bool shouldTryInjectBasingOnMetadata(const BranchInst *BI, 2944 const BasicBlock *TakenSucc) { 2945 // Skip branches that have already been unswithed this way. After successful 2946 // unswitching of injected condition, we will still have a copy of this loop 2947 // which looks exactly the same as original one. To prevent the 2nd attempt 2948 // of unswitching it in the same pass, mark this branch as "nothing to do 2949 // here". 2950 if (BI->hasMetadata("llvm.invariant.condition.injection.disabled")) 2951 return false; 2952 SmallVector<uint32_t> Weights; 2953 if (!extractBranchWeights(*BI, Weights)) 2954 return false; 2955 unsigned T = InjectInvariantConditionHotnesThreshold; 2956 BranchProbability LikelyTaken(T - 1, T); 2957 2958 assert(Weights.size() == 2 && "Unexpected profile data!"); 2959 size_t Idx = BI->getSuccessor(0) == TakenSucc ? 0 : 1; 2960 auto Num = Weights[Idx]; 2961 auto Denom = Weights[0] + Weights[1]; 2962 // Degenerate or overflowed metadata. 2963 if (Denom == 0 || Num > Denom) 2964 return false; 2965 BranchProbability ActualTaken(Num, Denom); 2966 if (LikelyTaken > ActualTaken) 2967 return false; 2968 return true; 2969 } 2970 2971 /// Materialize pending invariant condition of the given candidate into IR. The 2972 /// injected loop-invariant condition implies the original loop-variant branch 2973 /// condition, so the materialization turns 2974 /// 2975 /// loop_block: 2976 /// ... 2977 /// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc 2978 /// 2979 /// into 2980 /// 2981 /// preheader: 2982 /// %invariant_cond = LHS pred RHS 2983 /// ... 2984 /// loop_block: 2985 /// br i1 %invariant_cond, label InLoopSucc, label OriginalCheck 2986 /// OriginalCheck: 2987 /// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc 2988 /// ... 2989 static NonTrivialUnswitchCandidate 2990 injectPendingInvariantConditions(NonTrivialUnswitchCandidate Candidate, Loop &L, 2991 DominatorTree &DT, LoopInfo &LI, 2992 AssumptionCache &AC, MemorySSAUpdater *MSSAU) { 2993 assert(Candidate.hasPendingInjection() && "Nothing to inject!"); 2994 BasicBlock *Preheader = L.getLoopPreheader(); 2995 assert(Preheader && "Loop is not in simplified form?"); 2996 assert(LI.getLoopFor(Candidate.TI->getParent()) == &L && 2997 "Unswitching branch of inner loop!"); 2998 2999 auto Pred = Candidate.PendingInjection->Pred; 3000 auto *LHS = Candidate.PendingInjection->LHS; 3001 auto *RHS = Candidate.PendingInjection->RHS; 3002 auto *InLoopSucc = Candidate.PendingInjection->InLoopSucc; 3003 auto *TI = cast<BranchInst>(Candidate.TI); 3004 auto *BB = Candidate.TI->getParent(); 3005 auto *OutOfLoopSucc = InLoopSucc == TI->getSuccessor(0) ? TI->getSuccessor(1) 3006 : TI->getSuccessor(0); 3007 // FIXME: Remove this once limitation on successors is lifted. 3008 assert(L.contains(InLoopSucc) && "Not supported yet!"); 3009 assert(!L.contains(OutOfLoopSucc) && "Not supported yet!"); 3010 auto &Ctx = BB->getContext(); 3011 3012 assert(LHS->getType() == RHS->getType() && "Type mismatch!"); 3013 // Do not use builder here: CreateICmp may simplify this intro a constant and 3014 // unswitching will break. Better optimize it away later. 3015 auto *InjectedCond = 3016 ICmpInst::Create(Instruction::ICmp, Pred, LHS, RHS, "injected.cond", 3017 Preheader->getTerminator()); 3018 auto *OldCond = TI->getCondition(); 3019 3020 BasicBlock *CheckBlock = BasicBlock::Create(Ctx, BB->getName() + ".check", 3021 BB->getParent(), InLoopSucc); 3022 IRBuilder<> Builder(TI); 3023 auto *InvariantBr = 3024 Builder.CreateCondBr(InjectedCond, InLoopSucc, CheckBlock); 3025 3026 Builder.SetInsertPoint(CheckBlock); 3027 auto *NewTerm = Builder.CreateCondBr(OldCond, InLoopSucc, OutOfLoopSucc); 3028 3029 TI->eraseFromParent(); 3030 // Prevent infinite unswitching. 3031 NewTerm->setMetadata("llvm.invariant.condition.injection.disabled", 3032 MDNode::get(BB->getContext(), {})); 3033 3034 // Fixup phis. 3035 for (auto &I : *InLoopSucc) { 3036 auto *PN = dyn_cast<PHINode>(&I); 3037 if (!PN) 3038 break; 3039 auto *Inc = PN->getIncomingValueForBlock(BB); 3040 PN->addIncoming(Inc, CheckBlock); 3041 } 3042 OutOfLoopSucc->replacePhiUsesWith(BB, CheckBlock); 3043 3044 SmallVector<DominatorTree::UpdateType, 4> DTUpdates = { 3045 { DominatorTree::Insert, BB, CheckBlock }, 3046 { DominatorTree::Insert, CheckBlock, InLoopSucc }, 3047 { DominatorTree::Insert, CheckBlock, OutOfLoopSucc }, 3048 { DominatorTree::Delete, BB, OutOfLoopSucc } 3049 }; 3050 3051 DT.applyUpdates(DTUpdates); 3052 if (MSSAU) 3053 MSSAU->applyUpdates(DTUpdates, DT); 3054 L.addBasicBlockToLoop(CheckBlock, LI); 3055 3056 #ifndef NDEBUG 3057 DT.verify(); 3058 LI.verify(DT); 3059 if (MSSAU && VerifyMemorySSA) 3060 MSSAU->getMemorySSA()->verifyMemorySSA(); 3061 #endif 3062 3063 // TODO: In fact, cost of unswitching a new invariant candidate is *slightly* 3064 // higher because we have just inserted a new block. Need to think how to 3065 // adjust the cost of injected candidates when it was first computed. 3066 LLVM_DEBUG(dbgs() << "Injected a new loop-invariant branch " << *InvariantBr 3067 << " and considering it for unswitching."); 3068 ++NumInvariantConditionsInjected; 3069 return NonTrivialUnswitchCandidate(InvariantBr, { InjectedCond }, 3070 Candidate.Cost); 3071 } 3072 3073 /// Given chain of loop branch conditions looking like: 3074 /// br (Variant < Invariant1) 3075 /// br (Variant < Invariant2) 3076 /// br (Variant < Invariant3) 3077 /// ... 3078 /// collect set of invariant conditions on which we want to unswitch, which 3079 /// look like: 3080 /// Invariant1 <= Invariant2 3081 /// Invariant2 <= Invariant3 3082 /// ... 3083 /// Though they might not immediately exist in the IR, we can still inject them. 3084 static bool insertCandidatesWithPendingInjections( 3085 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, Loop &L, 3086 ICmpInst::Predicate Pred, ArrayRef<CompareDesc> Compares, 3087 const DominatorTree &DT) { 3088 3089 assert(ICmpInst::isRelational(Pred)); 3090 assert(ICmpInst::isStrictPredicate(Pred)); 3091 if (Compares.size() < 2) 3092 return false; 3093 ICmpInst::Predicate NonStrictPred = ICmpInst::getNonStrictPredicate(Pred); 3094 for (auto Prev = Compares.begin(), Next = Compares.begin() + 1; 3095 Next != Compares.end(); ++Prev, ++Next) { 3096 Value *LHS = Next->Invariant; 3097 Value *RHS = Prev->Invariant; 3098 BasicBlock *InLoopSucc = Prev->InLoopSucc; 3099 InjectedInvariant ToInject(NonStrictPred, LHS, RHS, InLoopSucc); 3100 NonTrivialUnswitchCandidate Candidate(Prev->Term, { LHS, RHS }, 3101 std::nullopt, std::move(ToInject)); 3102 UnswitchCandidates.push_back(std::move(Candidate)); 3103 } 3104 return true; 3105 } 3106 3107 /// Collect unswitch candidates by invariant conditions that are not immediately 3108 /// present in the loop. However, they can be injected into the code if we 3109 /// decide it's profitable. 3110 /// An example of such conditions is following: 3111 /// 3112 /// for (...) { 3113 /// x = load ... 3114 /// if (! x <u C1) break; 3115 /// if (! x <u C2) break; 3116 /// <do something> 3117 /// } 3118 /// 3119 /// We can unswitch by condition "C1 <=u C2". If that is true, then "x <u C1 <= 3120 /// C2" automatically implies "x <u C2", so we can get rid of one of 3121 /// loop-variant checks in unswitched loop version. 3122 static bool collectUnswitchCandidatesWithInjections( 3123 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, 3124 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, Loop &L, 3125 const DominatorTree &DT, const LoopInfo &LI, AAResults &AA, 3126 const MemorySSAUpdater *MSSAU) { 3127 if (!InjectInvariantConditions) 3128 return false; 3129 3130 if (!DT.isReachableFromEntry(L.getHeader())) 3131 return false; 3132 auto *Latch = L.getLoopLatch(); 3133 // Need to have a single latch and a preheader. 3134 if (!Latch) 3135 return false; 3136 assert(L.getLoopPreheader() && "Must have a preheader!"); 3137 3138 DenseMap<Value *, SmallVector<CompareDesc, 4> > CandidatesULT; 3139 // Traverse the conditions that dominate latch (and therefore dominate each 3140 // other). 3141 for (auto *DTN = DT.getNode(Latch); L.contains(DTN->getBlock()); 3142 DTN = DTN->getIDom()) { 3143 ICmpInst::Predicate Pred; 3144 Value *LHS = nullptr, *RHS = nullptr; 3145 BasicBlock *IfTrue = nullptr, *IfFalse = nullptr; 3146 auto *BB = DTN->getBlock(); 3147 // Ignore inner loops. 3148 if (LI.getLoopFor(BB) != &L) 3149 continue; 3150 auto *Term = BB->getTerminator(); 3151 if (!match(Term, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), 3152 m_BasicBlock(IfTrue), m_BasicBlock(IfFalse)))) 3153 continue; 3154 canonicalizeForInvariantConditionInjection(Pred, LHS, RHS, IfTrue, IfFalse, 3155 L); 3156 if (!shouldTryInjectInvariantCondition(Pred, LHS, RHS, IfTrue, IfFalse, L)) 3157 continue; 3158 if (!shouldTryInjectBasingOnMetadata(cast<BranchInst>(Term), IfTrue)) 3159 continue; 3160 CompareDesc Desc(cast<BranchInst>(Term), RHS, IfTrue); 3161 CandidatesULT[LHS].push_back(Desc); 3162 } 3163 3164 bool Found = false; 3165 for (auto &It : CandidatesULT) 3166 Found |= insertCandidatesWithPendingInjections( 3167 UnswitchCandidates, L, ICmpInst::ICMP_ULT, It.second, DT); 3168 return Found; 3169 } 3170 3171 static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) { 3172 if (!L.isSafeToClone()) 3173 return false; 3174 for (auto *BB : L.blocks()) 3175 for (auto &I : *BB) { 3176 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 3177 return false; 3178 if (auto *CB = dyn_cast<CallBase>(&I)) { 3179 assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone()."); 3180 if (CB->isConvergent()) 3181 return false; 3182 } 3183 } 3184 3185 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 3186 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 3187 // irreducible control flow into reducible control flow and introduce new 3188 // loops "out of thin air". If we ever discover important use cases for doing 3189 // this, we can add support to loop unswitch, but it is a lot of complexity 3190 // for what seems little or no real world benefit. 3191 LoopBlocksRPO RPOT(&L); 3192 RPOT.perform(&LI); 3193 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 3194 return false; 3195 3196 SmallVector<BasicBlock *, 4> ExitBlocks; 3197 L.getUniqueExitBlocks(ExitBlocks); 3198 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch 3199 // instruction as we don't know how to split those exit blocks. 3200 // FIXME: We should teach SplitBlock to handle this and remove this 3201 // restriction. 3202 for (auto *ExitBB : ExitBlocks) { 3203 auto *I = ExitBB->getFirstNonPHI(); 3204 if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) { 3205 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch " 3206 "in exit block\n"); 3207 return false; 3208 } 3209 } 3210 3211 return true; 3212 } 3213 3214 static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate( 3215 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L, 3216 const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC, 3217 const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) { 3218 // Given that unswitching these terminators will require duplicating parts of 3219 // the loop, so we need to be able to model that cost. Compute the ephemeral 3220 // values and set up a data structure to hold per-BB costs. We cache each 3221 // block's cost so that we don't recompute this when considering different 3222 // subsets of the loop for duplication during unswitching. 3223 SmallPtrSet<const Value *, 4> EphValues; 3224 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 3225 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; 3226 3227 // Compute the cost of each block, as well as the total loop cost. Also, bail 3228 // out if we see instructions which are incompatible with loop unswitching 3229 // (convergent, noduplicate, or cross-basic-block tokens). 3230 // FIXME: We might be able to safely handle some of these in non-duplicated 3231 // regions. 3232 TargetTransformInfo::TargetCostKind CostKind = 3233 L.getHeader()->getParent()->hasMinSize() 3234 ? TargetTransformInfo::TCK_CodeSize 3235 : TargetTransformInfo::TCK_SizeAndLatency; 3236 InstructionCost LoopCost = 0; 3237 for (auto *BB : L.blocks()) { 3238 InstructionCost Cost = 0; 3239 for (auto &I : *BB) { 3240 if (EphValues.count(&I)) 3241 continue; 3242 Cost += TTI.getInstructionCost(&I, CostKind); 3243 } 3244 assert(Cost >= 0 && "Must not have negative costs!"); 3245 LoopCost += Cost; 3246 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 3247 BBCostMap[BB] = Cost; 3248 } 3249 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 3250 3251 // Now we find the best candidate by searching for the one with the following 3252 // properties in order: 3253 // 3254 // 1) An unswitching cost below the threshold 3255 // 2) The smallest number of duplicated unswitch candidates (to avoid 3256 // creating redundant subsequent unswitching) 3257 // 3) The smallest cost after unswitching. 3258 // 3259 // We prioritize reducing fanout of unswitch candidates provided the cost 3260 // remains below the threshold because this has a multiplicative effect. 3261 // 3262 // This requires memoizing each dominator subtree to avoid redundant work. 3263 // 3264 // FIXME: Need to actually do the number of candidates part above. 3265 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; 3266 // Given a terminator which might be unswitched, computes the non-duplicated 3267 // cost for that terminator. 3268 auto ComputeUnswitchedCost = [&](Instruction &TI, 3269 bool FullUnswitch) -> InstructionCost { 3270 BasicBlock &BB = *TI.getParent(); 3271 SmallPtrSet<BasicBlock *, 4> Visited; 3272 3273 InstructionCost Cost = 0; 3274 for (BasicBlock *SuccBB : successors(&BB)) { 3275 // Don't count successors more than once. 3276 if (!Visited.insert(SuccBB).second) 3277 continue; 3278 3279 // If this is a partial unswitch candidate, then it must be a conditional 3280 // branch with a condition of either `or`, `and`, their corresponding 3281 // select forms or partially invariant instructions. In that case, one of 3282 // the successors is necessarily duplicated, so don't even try to remove 3283 // its cost. 3284 if (!FullUnswitch) { 3285 auto &BI = cast<BranchInst>(TI); 3286 Value *Cond = skipTrivialSelect(BI.getCondition()); 3287 if (match(Cond, m_LogicalAnd())) { 3288 if (SuccBB == BI.getSuccessor(1)) 3289 continue; 3290 } else if (match(Cond, m_LogicalOr())) { 3291 if (SuccBB == BI.getSuccessor(0)) 3292 continue; 3293 } else if ((PartialIVInfo.KnownValue->isOneValue() && 3294 SuccBB == BI.getSuccessor(0)) || 3295 (!PartialIVInfo.KnownValue->isOneValue() && 3296 SuccBB == BI.getSuccessor(1))) 3297 continue; 3298 } 3299 3300 // This successor's domtree will not need to be duplicated after 3301 // unswitching if the edge to the successor dominates it (and thus the 3302 // entire tree). This essentially means there is no other path into this 3303 // subtree and so it will end up live in only one clone of the loop. 3304 if (SuccBB->getUniquePredecessor() || 3305 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 3306 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 3307 })) { 3308 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 3309 assert(Cost <= LoopCost && 3310 "Non-duplicated cost should never exceed total loop cost!"); 3311 } 3312 } 3313 3314 // Now scale the cost by the number of unique successors minus one. We 3315 // subtract one because there is already at least one copy of the entire 3316 // loop. This is computing the new cost of unswitching a condition. 3317 // Note that guards always have 2 unique successors that are implicit and 3318 // will be materialized if we decide to unswitch it. 3319 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 3320 assert(SuccessorsCount > 1 && 3321 "Cannot unswitch a condition without multiple distinct successors!"); 3322 return (LoopCost - Cost) * (SuccessorsCount - 1); 3323 }; 3324 3325 std::optional<NonTrivialUnswitchCandidate> Best; 3326 for (auto &Candidate : UnswitchCandidates) { 3327 Instruction &TI = *Candidate.TI; 3328 ArrayRef<Value *> Invariants = Candidate.Invariants; 3329 BranchInst *BI = dyn_cast<BranchInst>(&TI); 3330 bool FullUnswitch = 3331 !BI || Candidate.hasPendingInjection() || 3332 (Invariants.size() == 1 && 3333 Invariants[0] == skipTrivialSelect(BI->getCondition())); 3334 InstructionCost CandidateCost = ComputeUnswitchedCost(TI, FullUnswitch); 3335 // Calculate cost multiplier which is a tool to limit potentially 3336 // exponential behavior of loop-unswitch. 3337 if (EnableUnswitchCostMultiplier) { 3338 int CostMultiplier = 3339 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 3340 assert( 3341 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 3342 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 3343 CandidateCost *= CostMultiplier; 3344 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 3345 << " (multiplier: " << CostMultiplier << ")" 3346 << " for unswitch candidate: " << TI << "\n"); 3347 } else { 3348 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 3349 << " for unswitch candidate: " << TI << "\n"); 3350 } 3351 3352 if (!Best || CandidateCost < Best->Cost) { 3353 Best = Candidate; 3354 Best->Cost = CandidateCost; 3355 } 3356 } 3357 assert(Best && "Must be!"); 3358 return *Best; 3359 } 3360 3361 static bool unswitchBestCondition( 3362 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 3363 AAResults &AA, TargetTransformInfo &TTI, 3364 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 3365 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 3366 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 3367 // Collect all invariant conditions within this loop (as opposed to an inner 3368 // loop which would be handled when visiting that inner loop). 3369 SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates; 3370 IVConditionInfo PartialIVInfo; 3371 Instruction *PartialIVCondBranch = nullptr; 3372 collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo, 3373 PartialIVCondBranch, L, LI, AA, MSSAU); 3374 collectUnswitchCandidatesWithInjections(UnswitchCandidates, PartialIVInfo, 3375 PartialIVCondBranch, L, DT, LI, AA, 3376 MSSAU); 3377 // If we didn't find any candidates, we're done. 3378 if (UnswitchCandidates.empty()) 3379 return false; 3380 3381 LLVM_DEBUG( 3382 dbgs() << "Considering " << UnswitchCandidates.size() 3383 << " non-trivial loop invariant conditions for unswitching.\n"); 3384 3385 NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate( 3386 UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo); 3387 3388 assert(Best.TI && "Failed to find loop unswitch candidate"); 3389 assert(Best.Cost && "Failed to compute cost"); 3390 3391 if (*Best.Cost >= UnswitchThreshold) { 3392 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost 3393 << "\n"); 3394 return false; 3395 } 3396 3397 if (Best.hasPendingInjection()) 3398 Best = injectPendingInvariantConditions(Best, L, DT, LI, AC, MSSAU); 3399 assert(!Best.hasPendingInjection() && 3400 "All injections should have been done by now!"); 3401 3402 if (Best.TI != PartialIVCondBranch) 3403 PartialIVInfo.InstToDuplicate.clear(); 3404 3405 // If the best candidate is a guard, turn it into a branch. 3406 if (isGuard(Best.TI)) 3407 Best.TI = 3408 turnGuardIntoBranch(cast<IntrinsicInst>(Best.TI), L, DT, LI, MSSAU); 3409 3410 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " << Best.Cost 3411 << ") terminator: " << *Best.TI << "\n"); 3412 unswitchNontrivialInvariants(L, *Best.TI, Best.Invariants, PartialIVInfo, DT, 3413 LI, AC, UnswitchCB, SE, MSSAU, DestroyLoopCB); 3414 return true; 3415 } 3416 3417 /// Unswitch control flow predicated on loop invariant conditions. 3418 /// 3419 /// This first hoists all branches or switches which are trivial (IE, do not 3420 /// require duplicating any part of the loop) out of the loop body. It then 3421 /// looks at other loop invariant control flows and tries to unswitch those as 3422 /// well by cloning the loop if the result is small enough. 3423 /// 3424 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are 3425 /// also updated based on the unswitch. The `MSSA` analysis is also updated if 3426 /// valid (i.e. its use is enabled). 3427 /// 3428 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 3429 /// true, we will attempt to do non-trivial unswitching as well as trivial 3430 /// unswitching. 3431 /// 3432 /// The `UnswitchCB` callback provided will be run after unswitching is 3433 /// complete, with the first parameter set to `true` if the provided loop 3434 /// remains a loop, and a list of new sibling loops created. 3435 /// 3436 /// If `SE` is non-null, we will update that analysis based on the unswitching 3437 /// done. 3438 static bool 3439 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 3440 AAResults &AA, TargetTransformInfo &TTI, bool Trivial, 3441 bool NonTrivial, 3442 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 3443 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 3444 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, 3445 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 3446 assert(L.isRecursivelyLCSSAForm(DT, LI) && 3447 "Loops must be in LCSSA form before unswitching."); 3448 3449 // Must be in loop simplified form: we need a preheader and dedicated exits. 3450 if (!L.isLoopSimplifyForm()) 3451 return false; 3452 3453 // Try trivial unswitch first before loop over other basic blocks in the loop. 3454 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 3455 // If we unswitched successfully we will want to clean up the loop before 3456 // processing it further so just mark it as unswitched and return. 3457 UnswitchCB(/*CurrentLoopValid*/ true, false, {}); 3458 return true; 3459 } 3460 3461 // Check whether we should continue with non-trivial conditions. 3462 // EnableNonTrivialUnswitch: Global variable that forces non-trivial 3463 // unswitching for testing and debugging. 3464 // NonTrivial: Parameter that enables non-trivial unswitching for this 3465 // invocation of the transform. But this should be allowed only 3466 // for targets without branch divergence. 3467 // 3468 // FIXME: If divergence analysis becomes available to a loop 3469 // transform, we should allow unswitching for non-trivial uniform 3470 // branches even on targets that have divergence. 3471 // https://bugs.llvm.org/show_bug.cgi?id=48819 3472 bool ContinueWithNonTrivial = 3473 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence()); 3474 if (!ContinueWithNonTrivial) 3475 return false; 3476 3477 // Skip non-trivial unswitching for optsize functions. 3478 if (L.getHeader()->getParent()->hasOptSize()) 3479 return false; 3480 3481 // Skip cold loops, as unswitching them brings little benefit 3482 // but increases the code size 3483 if (PSI && PSI->hasProfileSummary() && BFI && 3484 PSI->isFunctionColdInCallGraph(L.getHeader()->getParent(), *BFI)) { 3485 LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n"); 3486 return false; 3487 } 3488 3489 // Perform legality checks. 3490 if (!isSafeForNoNTrivialUnswitching(L, LI)) 3491 return false; 3492 3493 // For non-trivial unswitching, because it often creates new loops, we rely on 3494 // the pass manager to iterate on the loops rather than trying to immediately 3495 // reach a fixed point. There is no substantial advantage to iterating 3496 // internally, and if any of the new loops are simplified enough to contain 3497 // trivial unswitching we want to prefer those. 3498 3499 // Try to unswitch the best invariant condition. We prefer this full unswitch to 3500 // a partial unswitch when possible below the threshold. 3501 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU, 3502 DestroyLoopCB)) 3503 return true; 3504 3505 // No other opportunities to unswitch. 3506 return false; 3507 } 3508 3509 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 3510 LoopStandardAnalysisResults &AR, 3511 LPMUpdater &U) { 3512 Function &F = *L.getHeader()->getParent(); 3513 (void)F; 3514 ProfileSummaryInfo *PSI = nullptr; 3515 if (auto OuterProxy = 3516 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR) 3517 .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F)) 3518 PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 3519 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 3520 << "\n"); 3521 3522 // Save the current loop name in a variable so that we can report it even 3523 // after it has been deleted. 3524 std::string LoopName = std::string(L.getName()); 3525 3526 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 3527 bool PartiallyInvariant, 3528 ArrayRef<Loop *> NewLoops) { 3529 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3530 if (!NewLoops.empty()) 3531 U.addSiblingLoops(NewLoops); 3532 3533 // If the current loop remains valid, we should revisit it to catch any 3534 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 3535 if (CurrentLoopValid) { 3536 if (PartiallyInvariant) { 3537 // Mark the new loop as partially unswitched, to avoid unswitching on 3538 // the same condition again. 3539 auto &Context = L.getHeader()->getContext(); 3540 MDNode *DisableUnswitchMD = MDNode::get( 3541 Context, 3542 MDString::get(Context, "llvm.loop.unswitch.partial.disable")); 3543 MDNode *NewLoopID = makePostTransformationMetadata( 3544 Context, L.getLoopID(), {"llvm.loop.unswitch.partial"}, 3545 {DisableUnswitchMD}); 3546 L.setLoopID(NewLoopID); 3547 } else 3548 U.revisitCurrentLoop(); 3549 } else 3550 U.markLoopAsDeleted(L, LoopName); 3551 }; 3552 3553 auto DestroyLoopCB = [&U](Loop &L, StringRef Name) { 3554 U.markLoopAsDeleted(L, Name); 3555 }; 3556 3557 std::optional<MemorySSAUpdater> MSSAU; 3558 if (AR.MSSA) { 3559 MSSAU = MemorySSAUpdater(AR.MSSA); 3560 if (VerifyMemorySSA) 3561 AR.MSSA->verifyMemorySSA(); 3562 } 3563 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial, 3564 UnswitchCB, &AR.SE, MSSAU ? &*MSSAU : nullptr, PSI, AR.BFI, 3565 DestroyLoopCB)) 3566 return PreservedAnalyses::all(); 3567 3568 if (AR.MSSA && VerifyMemorySSA) 3569 AR.MSSA->verifyMemorySSA(); 3570 3571 // Historically this pass has had issues with the dominator tree so verify it 3572 // in asserts builds. 3573 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 3574 3575 auto PA = getLoopPassPreservedAnalyses(); 3576 if (AR.MSSA) 3577 PA.preserve<MemorySSAAnalysis>(); 3578 return PA; 3579 } 3580 3581 void SimpleLoopUnswitchPass::printPipeline( 3582 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 3583 static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline( 3584 OS, MapClassName2PassName); 3585 3586 OS << '<'; 3587 OS << (NonTrivial ? "" : "no-") << "nontrivial;"; 3588 OS << (Trivial ? "" : "no-") << "trivial"; 3589 OS << '>'; 3590 } 3591 3592 namespace { 3593 3594 class SimpleLoopUnswitchLegacyPass : public LoopPass { 3595 bool NonTrivial; 3596 3597 public: 3598 static char ID; // Pass ID, replacement for typeid 3599 3600 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 3601 : LoopPass(ID), NonTrivial(NonTrivial) { 3602 initializeSimpleLoopUnswitchLegacyPassPass( 3603 *PassRegistry::getPassRegistry()); 3604 } 3605 3606 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 3607 3608 void getAnalysisUsage(AnalysisUsage &AU) const override { 3609 AU.addRequired<AssumptionCacheTracker>(); 3610 AU.addRequired<TargetTransformInfoWrapperPass>(); 3611 AU.addRequired<MemorySSAWrapperPass>(); 3612 AU.addPreserved<MemorySSAWrapperPass>(); 3613 getLoopAnalysisUsage(AU); 3614 } 3615 }; 3616 3617 } // end anonymous namespace 3618 3619 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 3620 if (skipLoop(L)) 3621 return false; 3622 3623 Function &F = *L->getHeader()->getParent(); 3624 3625 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3626 << "\n"); 3627 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3628 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3629 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3630 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 3631 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3632 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3633 MemorySSAUpdater MSSAU(MSSA); 3634 3635 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 3636 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 3637 3638 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant, 3639 ArrayRef<Loop *> NewLoops) { 3640 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3641 for (auto *NewL : NewLoops) 3642 LPM.addLoop(*NewL); 3643 3644 // If the current loop remains valid, re-add it to the queue. This is 3645 // a little wasteful as we'll finish processing the current loop as well, 3646 // but it is the best we can do in the old PM. 3647 if (CurrentLoopValid) { 3648 // If the current loop has been unswitched using a partially invariant 3649 // condition, we should not re-add the current loop to avoid unswitching 3650 // on the same condition again. 3651 if (!PartiallyInvariant) 3652 LPM.addLoop(*L); 3653 } else 3654 LPM.markLoopAsDeleted(*L); 3655 }; 3656 3657 auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) { 3658 LPM.markLoopAsDeleted(L); 3659 }; 3660 3661 if (VerifyMemorySSA) 3662 MSSA->verifyMemorySSA(); 3663 bool Changed = 3664 unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, UnswitchCB, SE, 3665 &MSSAU, nullptr, nullptr, DestroyLoopCB); 3666 3667 if (VerifyMemorySSA) 3668 MSSA->verifyMemorySSA(); 3669 3670 // Historically this pass has had issues with the dominator tree so verify it 3671 // in asserts builds. 3672 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3673 3674 return Changed; 3675 } 3676 3677 char SimpleLoopUnswitchLegacyPass::ID = 0; 3678 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3679 "Simple unswitch loops", false, false) 3680 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3681 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3682 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3683 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3684 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3685 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3686 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3687 "Simple unswitch loops", false, false) 3688 3689 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3690 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3691 } 3692