1 //===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/LoopAnalysisManager.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/LoopPass.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Use.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTree.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Cloning.h" 44 #include "llvm/Transforms/Utils/LoopUtils.h" 45 #include "llvm/Transforms/Utils/ValueMapper.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <iterator> 49 #include <numeric> 50 #include <utility> 51 52 #define DEBUG_TYPE "simple-loop-unswitch" 53 54 using namespace llvm; 55 56 STATISTIC(NumBranches, "Number of branches unswitched"); 57 STATISTIC(NumSwitches, "Number of switches unswitched"); 58 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 59 60 static cl::opt<bool> EnableNonTrivialUnswitch( 61 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 62 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 63 "following the configuration passed into the pass.")); 64 65 static cl::opt<int> 66 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 67 cl::desc("The cost threshold for unswitching a loop.")); 68 69 static void replaceLoopUsesWithConstant(Loop &L, Value &LIC, 70 Constant &Replacement) { 71 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); 72 73 // Replace uses of LIC in the loop with the given constant. 74 for (auto UI = LIC.use_begin(), UE = LIC.use_end(); UI != UE;) { 75 // Grab the use and walk past it so we can clobber it in the use list. 76 Use *U = &*UI++; 77 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 78 if (!UserI || !L.contains(UserI)) 79 continue; 80 81 // Replace this use within the loop body. 82 *U = &Replacement; 83 } 84 } 85 86 /// Update the IDom for a basic block whose predecessor set has changed. 87 /// 88 /// This routine is designed to work when the domtree update is relatively 89 /// localized by leveraging a known common dominator, often a loop header. 90 /// 91 /// FIXME: Should consider hand-rolling a slightly more efficient non-DFS 92 /// approach here as we can do that easily by persisting the candidate IDom's 93 /// dominating set between each predecessor. 94 /// 95 /// FIXME: Longer term, many uses of this can be replaced by an incremental 96 /// domtree update strategy that starts from a known dominating block and 97 /// rebuilds that subtree. 98 static bool updateIDomWithKnownCommonDominator(BasicBlock *BB, 99 BasicBlock *KnownDominatingBB, 100 DominatorTree &DT) { 101 assert(pred_begin(BB) != pred_end(BB) && 102 "This routine does not handle unreachable blocks!"); 103 104 BasicBlock *OrigIDom = DT[BB]->getIDom()->getBlock(); 105 106 BasicBlock *IDom = *pred_begin(BB); 107 assert(DT.dominates(KnownDominatingBB, IDom) && 108 "Bad known dominating block!"); 109 110 // Walk all of the other predecessors finding the nearest common dominator 111 // until all predecessors are covered or we reach the loop header. The loop 112 // header necessarily dominates all loop exit blocks in loop simplified form 113 // so we can early-exit the moment we hit that block. 114 for (auto PI = std::next(pred_begin(BB)), PE = pred_end(BB); 115 PI != PE && IDom != KnownDominatingBB; ++PI) { 116 assert(DT.dominates(KnownDominatingBB, *PI) && 117 "Bad known dominating block!"); 118 IDom = DT.findNearestCommonDominator(IDom, *PI); 119 } 120 121 if (IDom == OrigIDom) 122 return false; 123 124 DT.changeImmediateDominator(BB, IDom); 125 return true; 126 } 127 128 // Note that we don't currently use the IDFCalculator here for two reasons: 129 // 1) It computes dominator tree levels for the entire function on each run 130 // of 'compute'. While this isn't terrible, given that we expect to update 131 // relatively small subtrees of the domtree, it isn't necessarily the right 132 // tradeoff. 133 // 2) The interface doesn't fit this usage well. It doesn't operate in 134 // append-only, and builds several sets that we don't need. 135 // 136 // FIXME: Neither of these issues are a big deal and could be addressed with 137 // some amount of refactoring of IDFCalculator. That would allow us to share 138 // the core logic here (which is solving the same core problem). 139 static void appendDomFrontier(DomTreeNode *Node, 140 SmallSetVector<BasicBlock *, 4> &Worklist, 141 SmallVectorImpl<DomTreeNode *> &DomNodes, 142 SmallPtrSetImpl<BasicBlock *> &DomSet) { 143 assert(DomNodes.empty() && "Must start with no dominator nodes."); 144 assert(DomSet.empty() && "Must start with an empty dominator set."); 145 146 // First flatten this subtree into sequence of nodes by doing a pre-order 147 // walk. 148 DomNodes.push_back(Node); 149 // We intentionally re-evaluate the size as each node can add new children. 150 // Because this is a tree walk, this cannot add any duplicates. 151 for (int i = 0; i < (int)DomNodes.size(); ++i) 152 DomNodes.insert(DomNodes.end(), DomNodes[i]->begin(), DomNodes[i]->end()); 153 154 // Now create a set of the basic blocks so we can quickly test for 155 // dominated successors. We could in theory use the DFS numbers of the 156 // dominator tree for this, but we want this to remain predictably fast 157 // even while we mutate the dominator tree in ways that would invalidate 158 // the DFS numbering. 159 for (DomTreeNode *InnerN : DomNodes) 160 DomSet.insert(InnerN->getBlock()); 161 162 // Now re-walk the nodes, appending every successor of every node that isn't 163 // in the set. Note that we don't append the node itself, even though if it 164 // is a successor it does not strictly dominate itself and thus it would be 165 // part of the dominance frontier. The reason we don't append it is that 166 // the node passed in came *from* the worklist and so it has already been 167 // processed. 168 for (DomTreeNode *InnerN : DomNodes) 169 for (BasicBlock *SuccBB : successors(InnerN->getBlock())) 170 if (!DomSet.count(SuccBB)) 171 Worklist.insert(SuccBB); 172 173 DomNodes.clear(); 174 DomSet.clear(); 175 } 176 177 /// Update the dominator tree after unswitching a particular former exit block. 178 /// 179 /// This handles the full update of the dominator tree after hoisting a block 180 /// that previously was an exit block (or split off of an exit block) up to be 181 /// reached from the new immediate dominator of the preheader. 182 /// 183 /// The common case is simple -- we just move the unswitched block to have an 184 /// immediate dominator of the old preheader. But in complex cases, there may 185 /// be other blocks reachable from the unswitched block that are immediately 186 /// dominated by some node between the unswitched one and the old preheader. 187 /// All of these also need to be hoisted in the dominator tree. We also want to 188 /// minimize queries to the dominator tree because each step of this 189 /// invalidates any DFS numbers that would make queries fast. 190 static void updateDTAfterUnswitch(BasicBlock *UnswitchedBB, BasicBlock *OldPH, 191 DominatorTree &DT) { 192 DomTreeNode *OldPHNode = DT[OldPH]; 193 DomTreeNode *UnswitchedNode = DT[UnswitchedBB]; 194 // If the dominator tree has already been updated for this unswitched node, 195 // we're done. This makes it easier to use this routine if there are multiple 196 // paths to the same unswitched destination. 197 if (UnswitchedNode->getIDom() == OldPHNode) 198 return; 199 200 // First collect the domtree nodes that we are hoisting over. These are the 201 // set of nodes which may have children that need to be hoisted as well. 202 SmallPtrSet<DomTreeNode *, 4> DomChain; 203 for (auto *IDom = UnswitchedNode->getIDom(); IDom != OldPHNode; 204 IDom = IDom->getIDom()) 205 DomChain.insert(IDom); 206 207 // The unswitched block ends up immediately dominated by the old preheader -- 208 // regardless of whether it is the loop exit block or split off of the loop 209 // exit block. 210 DT.changeImmediateDominator(UnswitchedNode, OldPHNode); 211 212 // For everything that moves up the dominator tree, we need to examine the 213 // dominator frontier to see if it additionally should move up the dominator 214 // tree. This lambda appends the dominator frontier for a node on the 215 // worklist. 216 SmallSetVector<BasicBlock *, 4> Worklist; 217 218 // Scratch data structures reused by domfrontier finding. 219 SmallVector<DomTreeNode *, 4> DomNodes; 220 SmallPtrSet<BasicBlock *, 4> DomSet; 221 222 // Append the initial dom frontier nodes. 223 appendDomFrontier(UnswitchedNode, Worklist, DomNodes, DomSet); 224 225 // Walk the worklist. We grow the list in the loop and so must recompute size. 226 for (int i = 0; i < (int)Worklist.size(); ++i) { 227 auto *BB = Worklist[i]; 228 229 DomTreeNode *Node = DT[BB]; 230 assert(!DomChain.count(Node) && 231 "Cannot be dominated by a block you can reach!"); 232 233 // If this block had an immediate dominator somewhere in the chain 234 // we hoisted over, then its position in the domtree needs to move as it is 235 // reachable from a node hoisted over this chain. 236 if (!DomChain.count(Node->getIDom())) 237 continue; 238 239 DT.changeImmediateDominator(Node, OldPHNode); 240 241 // Now add this node's dominator frontier to the worklist as well. 242 appendDomFrontier(Node, Worklist, DomNodes, DomSet); 243 } 244 } 245 246 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 247 /// incoming values along this edge. 248 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 249 BasicBlock &ExitBB) { 250 for (Instruction &I : ExitBB) { 251 auto *PN = dyn_cast<PHINode>(&I); 252 if (!PN) 253 // No more PHIs to check. 254 return true; 255 256 // If the incoming value for this edge isn't loop invariant the unswitch 257 // won't be trivial. 258 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 259 return false; 260 } 261 llvm_unreachable("Basic blocks should never be empty!"); 262 } 263 264 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 265 /// 266 /// Requires that the loop exit and unswitched basic block are the same, and 267 /// that the exiting block was a unique predecessor of that block. Rewrites the 268 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 269 /// PHI nodes from the old preheader that now contains the unswitched 270 /// terminator. 271 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 272 BasicBlock &OldExitingBB, 273 BasicBlock &OldPH) { 274 for (Instruction &I : UnswitchedBB) { 275 auto *PN = dyn_cast<PHINode>(&I); 276 if (!PN) 277 // No more PHIs to check. 278 break; 279 280 // When the loop exit is directly unswitched we just need to update the 281 // incoming basic block. We loop to handle weird cases with repeated 282 // incoming blocks, but expect to typically only have one operand here. 283 for (auto i : seq<int>(0, PN->getNumOperands())) { 284 assert(PN->getIncomingBlock(i) == &OldExitingBB && 285 "Found incoming block different from unique predecessor!"); 286 PN->setIncomingBlock(i, &OldPH); 287 } 288 } 289 } 290 291 /// Rewrite the PHI nodes in the loop exit basic block and the split off 292 /// unswitched block. 293 /// 294 /// Because the exit block remains an exit from the loop, this rewrites the 295 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 296 /// nodes into the unswitched basic block to select between the value in the 297 /// old preheader and the loop exit. 298 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 299 BasicBlock &UnswitchedBB, 300 BasicBlock &OldExitingBB, 301 BasicBlock &OldPH) { 302 assert(&ExitBB != &UnswitchedBB && 303 "Must have different loop exit and unswitched blocks!"); 304 Instruction *InsertPt = &*UnswitchedBB.begin(); 305 for (Instruction &I : ExitBB) { 306 auto *PN = dyn_cast<PHINode>(&I); 307 if (!PN) 308 // No more PHIs to check. 309 break; 310 311 auto *NewPN = PHINode::Create(PN->getType(), /*NumReservedValues*/ 2, 312 PN->getName() + ".split", InsertPt); 313 314 // Walk backwards over the old PHI node's inputs to minimize the cost of 315 // removing each one. We have to do this weird loop manually so that we 316 // create the same number of new incoming edges in the new PHI as we expect 317 // each case-based edge to be included in the unswitched switch in some 318 // cases. 319 // FIXME: This is really, really gross. It would be much cleaner if LLVM 320 // allowed us to create a single entry for a predecessor block without 321 // having separate entries for each "edge" even though these edges are 322 // required to produce identical results. 323 for (int i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 324 if (PN->getIncomingBlock(i) != &OldExitingBB) 325 continue; 326 327 Value *Incoming = PN->removeIncomingValue(i); 328 NewPN->addIncoming(Incoming, &OldPH); 329 } 330 331 // Now replace the old PHI with the new one and wire the old one in as an 332 // input to the new one. 333 PN->replaceAllUsesWith(NewPN); 334 NewPN->addIncoming(PN, &ExitBB); 335 } 336 } 337 338 /// Unswitch a trivial branch if the condition is loop invariant. 339 /// 340 /// This routine should only be called when loop code leading to the branch has 341 /// been validated as trivial (no side effects). This routine checks if the 342 /// condition is invariant and one of the successors is a loop exit. This 343 /// allows us to unswitch without duplicating the loop, making it trivial. 344 /// 345 /// If this routine fails to unswitch the branch it returns false. 346 /// 347 /// If the branch can be unswitched, this routine splits the preheader and 348 /// hoists the branch above that split. Preserves loop simplified form 349 /// (splitting the exit block as necessary). It simplifies the branch within 350 /// the loop to an unconditional branch but doesn't remove it entirely. Further 351 /// cleanup can be done with some simplify-cfg like pass. 352 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 353 LoopInfo &LI) { 354 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 355 DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 356 357 Value *LoopCond = BI.getCondition(); 358 359 // Need a trivial loop condition to unswitch. 360 if (!L.isLoopInvariant(LoopCond)) 361 return false; 362 363 // FIXME: We should compute this once at the start and update it! 364 SmallVector<BasicBlock *, 16> ExitBlocks; 365 L.getExitBlocks(ExitBlocks); 366 SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(), 367 ExitBlocks.end()); 368 369 // Check to see if a successor of the branch is guaranteed to 370 // exit through a unique exit block without having any 371 // side-effects. If so, determine the value of Cond that causes 372 // it to do this. 373 ConstantInt *CondVal = ConstantInt::getTrue(BI.getContext()); 374 ConstantInt *Replacement = ConstantInt::getFalse(BI.getContext()); 375 int LoopExitSuccIdx = 0; 376 auto *LoopExitBB = BI.getSuccessor(0); 377 if (!ExitBlockSet.count(LoopExitBB)) { 378 std::swap(CondVal, Replacement); 379 LoopExitSuccIdx = 1; 380 LoopExitBB = BI.getSuccessor(1); 381 if (!ExitBlockSet.count(LoopExitBB)) 382 return false; 383 } 384 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 385 assert(L.contains(ContinueBB) && 386 "Cannot have both successors exit and still be in the loop!"); 387 388 auto *ParentBB = BI.getParent(); 389 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 390 return false; 391 392 DEBUG(dbgs() << " unswitching trivial branch when: " << CondVal 393 << " == " << LoopCond << "\n"); 394 395 // Split the preheader, so that we know that there is a safe place to insert 396 // the conditional branch. We will change the preheader to have a conditional 397 // branch on LoopCond. 398 BasicBlock *OldPH = L.getLoopPreheader(); 399 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 400 401 // Now that we have a place to insert the conditional branch, create a place 402 // to branch to: this is the exit block out of the loop that we are 403 // unswitching. We need to split this if there are other loop predecessors. 404 // Because the loop is in simplified form, *any* other predecessor is enough. 405 BasicBlock *UnswitchedBB; 406 if (BasicBlock *PredBB = LoopExitBB->getUniquePredecessor()) { 407 (void)PredBB; 408 assert(PredBB == BI.getParent() && 409 "A branch's parent isn't a predecessor!"); 410 UnswitchedBB = LoopExitBB; 411 } else { 412 UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI); 413 } 414 415 // Now splice the branch to gate reaching the new preheader and re-point its 416 // successors. 417 OldPH->getInstList().splice(std::prev(OldPH->end()), 418 BI.getParent()->getInstList(), BI); 419 OldPH->getTerminator()->eraseFromParent(); 420 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 421 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 422 423 // Create a new unconditional branch that will continue the loop as a new 424 // terminator. 425 BranchInst::Create(ContinueBB, ParentBB); 426 427 // Rewrite the relevant PHI nodes. 428 if (UnswitchedBB == LoopExitBB) 429 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 430 else 431 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 432 *ParentBB, *OldPH); 433 434 // Now we need to update the dominator tree. 435 updateDTAfterUnswitch(UnswitchedBB, OldPH, DT); 436 // But if we split something off of the loop exit block then we also removed 437 // one of the predecessors for the loop exit block and may need to update its 438 // idom. 439 if (UnswitchedBB != LoopExitBB) 440 updateIDomWithKnownCommonDominator(LoopExitBB, L.getHeader(), DT); 441 442 // Since this is an i1 condition we can also trivially replace uses of it 443 // within the loop with a constant. 444 replaceLoopUsesWithConstant(L, *LoopCond, *Replacement); 445 446 ++NumTrivial; 447 ++NumBranches; 448 return true; 449 } 450 451 /// Unswitch a trivial switch if the condition is loop invariant. 452 /// 453 /// This routine should only be called when loop code leading to the switch has 454 /// been validated as trivial (no side effects). This routine checks if the 455 /// condition is invariant and that at least one of the successors is a loop 456 /// exit. This allows us to unswitch without duplicating the loop, making it 457 /// trivial. 458 /// 459 /// If this routine fails to unswitch the switch it returns false. 460 /// 461 /// If the switch can be unswitched, this routine splits the preheader and 462 /// copies the switch above that split. If the default case is one of the 463 /// exiting cases, it copies the non-exiting cases and points them at the new 464 /// preheader. If the default case is not exiting, it copies the exiting cases 465 /// and points the default at the preheader. It preserves loop simplified form 466 /// (splitting the exit blocks as necessary). It simplifies the switch within 467 /// the loop by removing now-dead cases. If the default case is one of those 468 /// unswitched, it replaces its destination with a new basic block containing 469 /// only unreachable. Such basic blocks, while technically loop exits, are not 470 /// considered for unswitching so this is a stable transform and the same 471 /// switch will not be revisited. If after unswitching there is only a single 472 /// in-loop successor, the switch is further simplified to an unconditional 473 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 474 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 475 LoopInfo &LI) { 476 DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 477 Value *LoopCond = SI.getCondition(); 478 479 // If this isn't switching on an invariant condition, we can't unswitch it. 480 if (!L.isLoopInvariant(LoopCond)) 481 return false; 482 483 auto *ParentBB = SI.getParent(); 484 485 // FIXME: We should compute this once at the start and update it! 486 SmallVector<BasicBlock *, 16> ExitBlocks; 487 L.getExitBlocks(ExitBlocks); 488 SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(), 489 ExitBlocks.end()); 490 491 SmallVector<int, 4> ExitCaseIndices; 492 for (auto Case : SI.cases()) { 493 auto *SuccBB = Case.getCaseSuccessor(); 494 if (ExitBlockSet.count(SuccBB) && 495 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 496 ExitCaseIndices.push_back(Case.getCaseIndex()); 497 } 498 BasicBlock *DefaultExitBB = nullptr; 499 if (ExitBlockSet.count(SI.getDefaultDest()) && 500 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 501 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 502 DefaultExitBB = SI.getDefaultDest(); 503 else if (ExitCaseIndices.empty()) 504 return false; 505 506 DEBUG(dbgs() << " unswitching trivial cases...\n"); 507 508 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 509 ExitCases.reserve(ExitCaseIndices.size()); 510 // We walk the case indices backwards so that we remove the last case first 511 // and don't disrupt the earlier indices. 512 for (unsigned Index : reverse(ExitCaseIndices)) { 513 auto CaseI = SI.case_begin() + Index; 514 // Save the value of this case. 515 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 516 // Delete the unswitched cases. 517 SI.removeCase(CaseI); 518 } 519 520 // Check if after this all of the remaining cases point at the same 521 // successor. 522 BasicBlock *CommonSuccBB = nullptr; 523 if (SI.getNumCases() > 0 && 524 std::all_of(std::next(SI.case_begin()), SI.case_end(), 525 [&SI](const SwitchInst::CaseHandle &Case) { 526 return Case.getCaseSuccessor() == 527 SI.case_begin()->getCaseSuccessor(); 528 })) 529 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 530 531 if (DefaultExitBB) { 532 // We can't remove the default edge so replace it with an edge to either 533 // the single common remaining successor (if we have one) or an unreachable 534 // block. 535 if (CommonSuccBB) { 536 SI.setDefaultDest(CommonSuccBB); 537 } else { 538 BasicBlock *UnreachableBB = BasicBlock::Create( 539 ParentBB->getContext(), 540 Twine(ParentBB->getName()) + ".unreachable_default", 541 ParentBB->getParent()); 542 new UnreachableInst(ParentBB->getContext(), UnreachableBB); 543 SI.setDefaultDest(UnreachableBB); 544 DT.addNewBlock(UnreachableBB, ParentBB); 545 } 546 } else { 547 // If we're not unswitching the default, we need it to match any cases to 548 // have a common successor or if we have no cases it is the common 549 // successor. 550 if (SI.getNumCases() == 0) 551 CommonSuccBB = SI.getDefaultDest(); 552 else if (SI.getDefaultDest() != CommonSuccBB) 553 CommonSuccBB = nullptr; 554 } 555 556 // Split the preheader, so that we know that there is a safe place to insert 557 // the switch. 558 BasicBlock *OldPH = L.getLoopPreheader(); 559 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 560 OldPH->getTerminator()->eraseFromParent(); 561 562 // Now add the unswitched switch. 563 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 564 565 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 566 // First, we split any exit blocks with remaining in-loop predecessors. Then 567 // we update the PHIs in one of two ways depending on if there was a split. 568 // We walk in reverse so that we split in the same order as the cases 569 // appeared. This is purely for convenience of reading the resulting IR, but 570 // it doesn't cost anything really. 571 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 572 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 573 // Handle the default exit if necessary. 574 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 575 // ranges aren't quite powerful enough yet. 576 if (DefaultExitBB) { 577 if (pred_empty(DefaultExitBB)) { 578 UnswitchedExitBBs.insert(DefaultExitBB); 579 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 580 } else { 581 auto *SplitBB = 582 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI); 583 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 584 *ParentBB, *OldPH); 585 updateIDomWithKnownCommonDominator(DefaultExitBB, L.getHeader(), DT); 586 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 587 } 588 } 589 // Note that we must use a reference in the for loop so that we update the 590 // container. 591 for (auto &CasePair : reverse(ExitCases)) { 592 // Grab a reference to the exit block in the pair so that we can update it. 593 BasicBlock *ExitBB = CasePair.second; 594 595 // If this case is the last edge into the exit block, we can simply reuse it 596 // as it will no longer be a loop exit. No mapping necessary. 597 if (pred_empty(ExitBB)) { 598 // Only rewrite once. 599 if (UnswitchedExitBBs.insert(ExitBB).second) 600 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 601 continue; 602 } 603 604 // Otherwise we need to split the exit block so that we retain an exit 605 // block from the loop and a target for the unswitched condition. 606 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 607 if (!SplitExitBB) { 608 // If this is the first time we see this, do the split and remember it. 609 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 610 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 611 *ParentBB, *OldPH); 612 updateIDomWithKnownCommonDominator(ExitBB, L.getHeader(), DT); 613 } 614 // Update the case pair to point to the split block. 615 CasePair.second = SplitExitBB; 616 } 617 618 // Now add the unswitched cases. We do this in reverse order as we built them 619 // in reverse order. 620 for (auto CasePair : reverse(ExitCases)) { 621 ConstantInt *CaseVal = CasePair.first; 622 BasicBlock *UnswitchedBB = CasePair.second; 623 624 NewSI->addCase(CaseVal, UnswitchedBB); 625 updateDTAfterUnswitch(UnswitchedBB, OldPH, DT); 626 } 627 628 // If the default was unswitched, re-point it and add explicit cases for 629 // entering the loop. 630 if (DefaultExitBB) { 631 NewSI->setDefaultDest(DefaultExitBB); 632 updateDTAfterUnswitch(DefaultExitBB, OldPH, DT); 633 634 // We removed all the exit cases, so we just copy the cases to the 635 // unswitched switch. 636 for (auto Case : SI.cases()) 637 NewSI->addCase(Case.getCaseValue(), NewPH); 638 } 639 640 // If we ended up with a common successor for every path through the switch 641 // after unswitching, rewrite it to an unconditional branch to make it easy 642 // to recognize. Otherwise we potentially have to recognize the default case 643 // pointing at unreachable and other complexity. 644 if (CommonSuccBB) { 645 BasicBlock *BB = SI.getParent(); 646 SI.eraseFromParent(); 647 BranchInst::Create(CommonSuccBB, BB); 648 } 649 650 DT.verifyDomTree(); 651 ++NumTrivial; 652 ++NumSwitches; 653 return true; 654 } 655 656 /// This routine scans the loop to find a branch or switch which occurs before 657 /// any side effects occur. These can potentially be unswitched without 658 /// duplicating the loop. If a branch or switch is successfully unswitched the 659 /// scanning continues to see if subsequent branches or switches have become 660 /// trivial. Once all trivial candidates have been unswitched, this routine 661 /// returns. 662 /// 663 /// The return value indicates whether anything was unswitched (and therefore 664 /// changed). 665 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 666 LoopInfo &LI) { 667 bool Changed = false; 668 669 // If loop header has only one reachable successor we should keep looking for 670 // trivial condition candidates in the successor as well. An alternative is 671 // to constant fold conditions and merge successors into loop header (then we 672 // only need to check header's terminator). The reason for not doing this in 673 // LoopUnswitch pass is that it could potentially break LoopPassManager's 674 // invariants. Folding dead branches could either eliminate the current loop 675 // or make other loops unreachable. LCSSA form might also not be preserved 676 // after deleting branches. The following code keeps traversing loop header's 677 // successors until it finds the trivial condition candidate (condition that 678 // is not a constant). Since unswitching generates branches with constant 679 // conditions, this scenario could be very common in practice. 680 BasicBlock *CurrentBB = L.getHeader(); 681 SmallPtrSet<BasicBlock *, 8> Visited; 682 Visited.insert(CurrentBB); 683 do { 684 // Check if there are any side-effecting instructions (e.g. stores, calls, 685 // volatile loads) in the part of the loop that the code *would* execute 686 // without unswitching. 687 if (llvm::any_of(*CurrentBB, 688 [](Instruction &I) { return I.mayHaveSideEffects(); })) 689 return Changed; 690 691 TerminatorInst *CurrentTerm = CurrentBB->getTerminator(); 692 693 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 694 // Don't bother trying to unswitch past a switch with a constant 695 // condition. This should be removed prior to running this pass by 696 // simplify-cfg. 697 if (isa<Constant>(SI->getCondition())) 698 return Changed; 699 700 if (!unswitchTrivialSwitch(L, *SI, DT, LI)) 701 // Coludn't unswitch this one so we're done. 702 return Changed; 703 704 // Mark that we managed to unswitch something. 705 Changed = true; 706 707 // If unswitching turned the terminator into an unconditional branch then 708 // we can continue. The unswitching logic specifically works to fold any 709 // cases it can into an unconditional branch to make it easier to 710 // recognize here. 711 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 712 if (!BI || BI->isConditional()) 713 return Changed; 714 715 CurrentBB = BI->getSuccessor(0); 716 continue; 717 } 718 719 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 720 if (!BI) 721 // We do not understand other terminator instructions. 722 return Changed; 723 724 // Don't bother trying to unswitch past an unconditional branch or a branch 725 // with a constant value. These should be removed by simplify-cfg prior to 726 // running this pass. 727 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 728 return Changed; 729 730 // Found a trivial condition candidate: non-foldable conditional branch. If 731 // we fail to unswitch this, we can't do anything else that is trivial. 732 if (!unswitchTrivialBranch(L, *BI, DT, LI)) 733 return Changed; 734 735 // Mark that we managed to unswitch something. 736 Changed = true; 737 738 // We unswitched the branch. This should always leave us with an 739 // unconditional branch that we can follow now. 740 BI = cast<BranchInst>(CurrentBB->getTerminator()); 741 assert(!BI->isConditional() && 742 "Cannot form a conditional branch by unswitching1"); 743 CurrentBB = BI->getSuccessor(0); 744 745 // When continuing, if we exit the loop or reach a previous visited block, 746 // then we can not reach any trivial condition candidates (unfoldable 747 // branch instructions or switch instructions) and no unswitch can happen. 748 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 749 750 return Changed; 751 } 752 753 /// Build the cloned blocks for an unswitched copy of the given loop. 754 /// 755 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 756 /// after the split block (`SplitBB`) that will be used to select between the 757 /// cloned and original loop. 758 /// 759 /// This routine handles cloning all of the necessary loop blocks and exit 760 /// blocks including rewriting their instructions and the relevant PHI nodes. 761 /// It skips loop and exit blocks that are not necessary based on the provided 762 /// set. It also correctly creates the unconditional branch in the cloned 763 /// unswitched parent block to only point at the unswitched successor. 764 /// 765 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 766 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 767 /// the cloned blocks (and their loops) are left without full `LoopInfo` 768 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 769 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 770 /// instead the caller must recompute an accurate DT. It *does* correctly 771 /// update the `AssumptionCache` provided in `AC`. 772 static BasicBlock *buildClonedLoopBlocks( 773 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 774 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 775 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 776 const SmallPtrSetImpl<BasicBlock *> &SkippedLoopAndExitBlocks, 777 ValueToValueMapTy &VMap, AssumptionCache &AC, DominatorTree &DT, 778 LoopInfo &LI) { 779 SmallVector<BasicBlock *, 4> NewBlocks; 780 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 781 782 // We will need to clone a bunch of blocks, wrap up the clone operation in 783 // a helper. 784 auto CloneBlock = [&](BasicBlock *OldBB) { 785 // Clone the basic block and insert it before the new preheader. 786 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 787 NewBB->moveBefore(LoopPH); 788 789 // Record this block and the mapping. 790 NewBlocks.push_back(NewBB); 791 VMap[OldBB] = NewBB; 792 793 // Add the block to the domtree. We'll move it to the correct position 794 // below. 795 DT.addNewBlock(NewBB, SplitBB); 796 797 return NewBB; 798 }; 799 800 // First, clone the preheader. 801 auto *ClonedPH = CloneBlock(LoopPH); 802 803 // Then clone all the loop blocks, skipping the ones that aren't necessary. 804 for (auto *LoopBB : L.blocks()) 805 if (!SkippedLoopAndExitBlocks.count(LoopBB)) 806 CloneBlock(LoopBB); 807 808 // Split all the loop exit edges so that when we clone the exit blocks, if 809 // any of the exit blocks are *also* a preheader for some other loop, we 810 // don't create multiple predecessors entering the loop header. 811 for (auto *ExitBB : ExitBlocks) { 812 if (SkippedLoopAndExitBlocks.count(ExitBB)) 813 continue; 814 815 // When we are going to clone an exit, we don't need to clone all the 816 // instructions in the exit block and we want to ensure we have an easy 817 // place to merge the CFG, so split the exit first. This is always safe to 818 // do because there cannot be any non-loop predecessors of a loop exit in 819 // loop simplified form. 820 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 821 822 // Rearrange the names to make it easier to write test cases by having the 823 // exit block carry the suffix rather than the merge block carrying the 824 // suffix. 825 MergeBB->takeName(ExitBB); 826 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 827 828 // Now clone the original exit block. 829 auto *ClonedExitBB = CloneBlock(ExitBB); 830 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 831 "Exit block should have been split to have one successor!"); 832 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 833 "Cloned exit block has the wrong successor!"); 834 835 // Move the merge block's idom to be the split point as one exit is 836 // dominated by one header, and the other by another, so we know the split 837 // point dominates both. While the dominator tree isn't fully accurate, we 838 // want sub-trees within the original loop to be correctly reflect 839 // dominance within that original loop (at least) and that requires moving 840 // the merge block out of that subtree. 841 // FIXME: This is very brittle as we essentially have a partial contract on 842 // the dominator tree. We really need to instead update it and keep it 843 // valid or stop relying on it. 844 DT.changeImmediateDominator(MergeBB, SplitBB); 845 846 // Remap any cloned instructions and create a merge phi node for them. 847 for (auto ZippedInsts : llvm::zip_first( 848 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 849 llvm::make_range(ClonedExitBB->begin(), 850 std::prev(ClonedExitBB->end())))) { 851 Instruction &I = std::get<0>(ZippedInsts); 852 Instruction &ClonedI = std::get<1>(ZippedInsts); 853 854 // The only instructions in the exit block should be PHI nodes and 855 // potentially a landing pad. 856 assert( 857 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 858 "Bad instruction in exit block!"); 859 // We should have a value map between the instruction and its clone. 860 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 861 862 auto *MergePN = 863 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 864 &*MergeBB->getFirstInsertionPt()); 865 I.replaceAllUsesWith(MergePN); 866 MergePN->addIncoming(&I, ExitBB); 867 MergePN->addIncoming(&ClonedI, ClonedExitBB); 868 } 869 } 870 871 // Rewrite the instructions in the cloned blocks to refer to the instructions 872 // in the cloned blocks. We have to do this as a second pass so that we have 873 // everything available. Also, we have inserted new instructions which may 874 // include assume intrinsics, so we update the assumption cache while 875 // processing this. 876 for (auto *ClonedBB : NewBlocks) 877 for (Instruction &I : *ClonedBB) { 878 RemapInstruction(&I, VMap, 879 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 880 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 881 if (II->getIntrinsicID() == Intrinsic::assume) 882 AC.registerAssumption(II); 883 } 884 885 // Remove the cloned parent as a predecessor of the cloned continue successor 886 // if we did in fact clone it. 887 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 888 if (auto *ClonedContinueSuccBB = 889 cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB))) 890 ClonedContinueSuccBB->removePredecessor(ClonedParentBB, 891 /*DontDeleteUselessPHIs*/ true); 892 // Replace the cloned branch with an unconditional branch to the cloneed 893 // unswitched successor. 894 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 895 ClonedParentBB->getTerminator()->eraseFromParent(); 896 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 897 898 // Update any PHI nodes in the cloned successors of the skipped blocks to not 899 // have spurious incoming values. 900 for (auto *LoopBB : L.blocks()) 901 if (SkippedLoopAndExitBlocks.count(LoopBB)) 902 for (auto *SuccBB : successors(LoopBB)) 903 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 904 for (PHINode &PN : ClonedSuccBB->phis()) 905 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 906 907 return ClonedPH; 908 } 909 910 /// Recursively clone the specified loop and all of its children. 911 /// 912 /// The target parent loop for the clone should be provided, or can be null if 913 /// the clone is a top-level loop. While cloning, all the blocks are mapped 914 /// with the provided value map. The entire original loop must be present in 915 /// the value map. The cloned loop is returned. 916 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 917 const ValueToValueMapTy &VMap, LoopInfo &LI) { 918 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 919 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 920 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 921 for (auto *BB : OrigL.blocks()) { 922 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 923 ClonedL.addBlockEntry(ClonedBB); 924 if (LI.getLoopFor(BB) == &OrigL) { 925 assert(!LI.getLoopFor(ClonedBB) && 926 "Should not have an existing loop for this block!"); 927 LI.changeLoopFor(ClonedBB, &ClonedL); 928 } 929 } 930 }; 931 932 // We specially handle the first loop because it may get cloned into 933 // a different parent and because we most commonly are cloning leaf loops. 934 Loop *ClonedRootL = LI.AllocateLoop(); 935 if (RootParentL) 936 RootParentL->addChildLoop(ClonedRootL); 937 else 938 LI.addTopLevelLoop(ClonedRootL); 939 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 940 941 if (OrigRootL.empty()) 942 return ClonedRootL; 943 944 // If we have a nest, we can quickly clone the entire loop nest using an 945 // iterative approach because it is a tree. We keep the cloned parent in the 946 // data structure to avoid repeatedly querying through a map to find it. 947 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 948 // Build up the loops to clone in reverse order as we'll clone them from the 949 // back. 950 for (Loop *ChildL : llvm::reverse(OrigRootL)) 951 LoopsToClone.push_back({ClonedRootL, ChildL}); 952 do { 953 Loop *ClonedParentL, *L; 954 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 955 Loop *ClonedL = LI.AllocateLoop(); 956 ClonedParentL->addChildLoop(ClonedL); 957 AddClonedBlocksToLoop(*L, *ClonedL); 958 for (Loop *ChildL : llvm::reverse(*L)) 959 LoopsToClone.push_back({ClonedL, ChildL}); 960 } while (!LoopsToClone.empty()); 961 962 return ClonedRootL; 963 } 964 965 /// Build the cloned loops of an original loop from unswitching. 966 /// 967 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 968 /// operation. We need to re-verify that there even is a loop (as the backedge 969 /// may not have been cloned), and even if there are remaining backedges the 970 /// backedge set may be different. However, we know that each child loop is 971 /// undisturbed, we only need to find where to place each child loop within 972 /// either any parent loop or within a cloned version of the original loop. 973 /// 974 /// Because child loops may end up cloned outside of any cloned version of the 975 /// original loop, multiple cloned sibling loops may be created. All of them 976 /// are returned so that the newly introduced loop nest roots can be 977 /// identified. 978 static Loop *buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 979 const ValueToValueMapTy &VMap, LoopInfo &LI, 980 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 981 Loop *ClonedL = nullptr; 982 983 auto *OrigPH = OrigL.getLoopPreheader(); 984 auto *OrigHeader = OrigL.getHeader(); 985 986 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 987 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 988 989 // We need to know the loops of the cloned exit blocks to even compute the 990 // accurate parent loop. If we only clone exits to some parent of the 991 // original parent, we want to clone into that outer loop. We also keep track 992 // of the loops that our cloned exit blocks participate in. 993 Loop *ParentL = nullptr; 994 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 995 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 996 ClonedExitsInLoops.reserve(ExitBlocks.size()); 997 for (auto *ExitBB : ExitBlocks) 998 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 999 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1000 ExitLoopMap[ClonedExitBB] = ExitL; 1001 ClonedExitsInLoops.push_back(ClonedExitBB); 1002 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1003 ParentL = ExitL; 1004 } 1005 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1006 ParentL->contains(OrigL.getParentLoop())) && 1007 "The computed parent loop should always contain (or be) the parent of " 1008 "the original loop."); 1009 1010 // We build the set of blocks dominated by the cloned header from the set of 1011 // cloned blocks out of the original loop. While not all of these will 1012 // necessarily be in the cloned loop, it is enough to establish that they 1013 // aren't in unreachable cycles, etc. 1014 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1015 for (auto *BB : OrigL.blocks()) 1016 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1017 ClonedLoopBlocks.insert(ClonedBB); 1018 1019 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1020 // skipped cloning some region of this loop which can in turn skip some of 1021 // the backedges so we have to rebuild the blocks in the loop based on the 1022 // backedges that remain after cloning. 1023 SmallVector<BasicBlock *, 16> Worklist; 1024 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1025 for (auto *Pred : predecessors(ClonedHeader)) { 1026 // The only possible non-loop header predecessor is the preheader because 1027 // we know we cloned the loop in simplified form. 1028 if (Pred == ClonedPH) 1029 continue; 1030 1031 // Because the loop was in simplified form, the only non-loop predecessor 1032 // should be the preheader. 1033 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1034 "header other than the preheader " 1035 "that is not part of the loop!"); 1036 1037 // Insert this block into the loop set and on the first visit (and if it 1038 // isn't the header we're currently walking) put it into the worklist to 1039 // recurse through. 1040 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1041 Worklist.push_back(Pred); 1042 } 1043 1044 // If we had any backedges then there *is* a cloned loop. Put the header into 1045 // the loop set and then walk the worklist backwards to find all the blocks 1046 // that remain within the loop after cloning. 1047 if (!BlocksInClonedLoop.empty()) { 1048 BlocksInClonedLoop.insert(ClonedHeader); 1049 1050 while (!Worklist.empty()) { 1051 BasicBlock *BB = Worklist.pop_back_val(); 1052 assert(BlocksInClonedLoop.count(BB) && 1053 "Didn't put block into the loop set!"); 1054 1055 // Insert any predecessors that are in the possible set into the cloned 1056 // set, and if the insert is successful, add them to the worklist. Note 1057 // that we filter on the blocks that are definitely reachable via the 1058 // backedge to the loop header so we may prune out dead code within the 1059 // cloned loop. 1060 for (auto *Pred : predecessors(BB)) 1061 if (ClonedLoopBlocks.count(Pred) && 1062 BlocksInClonedLoop.insert(Pred).second) 1063 Worklist.push_back(Pred); 1064 } 1065 1066 ClonedL = LI.AllocateLoop(); 1067 if (ParentL) { 1068 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1069 ParentL->addChildLoop(ClonedL); 1070 } else { 1071 LI.addTopLevelLoop(ClonedL); 1072 } 1073 1074 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1075 // We don't want to just add the cloned loop blocks based on how we 1076 // discovered them. The original order of blocks was carefully built in 1077 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1078 // that logic, we just re-walk the original blocks (and those of the child 1079 // loops) and filter them as we add them into the cloned loop. 1080 for (auto *BB : OrigL.blocks()) { 1081 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1082 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1083 continue; 1084 1085 // Directly add the blocks that are only in this loop. 1086 if (LI.getLoopFor(BB) == &OrigL) { 1087 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1088 continue; 1089 } 1090 1091 // We want to manually add it to this loop and parents. 1092 // Registering it with LoopInfo will happen when we clone the top 1093 // loop for this block. 1094 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1095 PL->addBlockEntry(ClonedBB); 1096 } 1097 1098 // Now add each child loop whose header remains within the cloned loop. All 1099 // of the blocks within the loop must satisfy the same constraints as the 1100 // header so once we pass the header checks we can just clone the entire 1101 // child loop nest. 1102 for (Loop *ChildL : OrigL) { 1103 auto *ClonedChildHeader = 1104 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1105 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1106 continue; 1107 1108 #ifndef NDEBUG 1109 // We should never have a cloned child loop header but fail to have 1110 // all of the blocks for that child loop. 1111 for (auto *ChildLoopBB : ChildL->blocks()) 1112 assert(BlocksInClonedLoop.count( 1113 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1114 "Child cloned loop has a header within the cloned outer " 1115 "loop but not all of its blocks!"); 1116 #endif 1117 1118 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1119 } 1120 } 1121 1122 // Now that we've handled all the components of the original loop that were 1123 // cloned into a new loop, we still need to handle anything from the original 1124 // loop that wasn't in a cloned loop. 1125 1126 // Figure out what blocks are left to place within any loop nest containing 1127 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1128 // them. 1129 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1130 if (BlocksInClonedLoop.empty()) 1131 UnloopedBlockSet.insert(ClonedPH); 1132 for (auto *ClonedBB : ClonedLoopBlocks) 1133 if (!BlocksInClonedLoop.count(ClonedBB)) 1134 UnloopedBlockSet.insert(ClonedBB); 1135 1136 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1137 // backwards across these to process them inside out. The order shouldn't 1138 // matter as we're just trying to build up the map from inside-out; we use 1139 // the map in a more stably ordered way below. 1140 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1141 std::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(), 1142 [&](BasicBlock *LHS, BasicBlock *RHS) { 1143 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1144 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1145 }); 1146 1147 // Populate the existing ExitLoopMap with everything reachable from each 1148 // exit, starting from the inner most exit. 1149 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1150 assert(Worklist.empty() && "Didn't clear worklist!"); 1151 1152 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1153 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1154 1155 // Walk the CFG back until we hit the cloned PH adding everything reachable 1156 // and in the unlooped set to this exit block's loop. 1157 Worklist.push_back(ExitBB); 1158 do { 1159 BasicBlock *BB = Worklist.pop_back_val(); 1160 // We can stop recursing at the cloned preheader (if we get there). 1161 if (BB == ClonedPH) 1162 continue; 1163 1164 for (BasicBlock *PredBB : predecessors(BB)) { 1165 // If this pred has already been moved to our set or is part of some 1166 // (inner) loop, no update needed. 1167 if (!UnloopedBlockSet.erase(PredBB)) { 1168 assert( 1169 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1170 "Predecessor not mapped to a loop!"); 1171 continue; 1172 } 1173 1174 // We just insert into the loop set here. We'll add these blocks to the 1175 // exit loop after we build up the set in an order that doesn't rely on 1176 // predecessor order (which in turn relies on use list order). 1177 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1178 (void)Inserted; 1179 assert(Inserted && "Should only visit an unlooped block once!"); 1180 1181 // And recurse through to its predecessors. 1182 Worklist.push_back(PredBB); 1183 } 1184 } while (!Worklist.empty()); 1185 } 1186 1187 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1188 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1189 // in their original order adding them to the correct loop. 1190 1191 // We need a stable insertion order. We use the order of the original loop 1192 // order and map into the correct parent loop. 1193 for (auto *BB : llvm::concat<BasicBlock *const>( 1194 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1195 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1196 OuterL->addBasicBlockToLoop(BB, LI); 1197 1198 #ifndef NDEBUG 1199 for (auto &BBAndL : ExitLoopMap) { 1200 auto *BB = BBAndL.first; 1201 auto *OuterL = BBAndL.second; 1202 assert(LI.getLoopFor(BB) == OuterL && 1203 "Failed to put all blocks into outer loops!"); 1204 } 1205 #endif 1206 1207 // Now that all the blocks are placed into the correct containing loop in the 1208 // absence of child loops, find all the potentially cloned child loops and 1209 // clone them into whatever outer loop we placed their header into. 1210 for (Loop *ChildL : OrigL) { 1211 auto *ClonedChildHeader = 1212 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1213 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1214 continue; 1215 1216 #ifndef NDEBUG 1217 for (auto *ChildLoopBB : ChildL->blocks()) 1218 assert(VMap.count(ChildLoopBB) && 1219 "Cloned a child loop header but not all of that loops blocks!"); 1220 #endif 1221 1222 NonChildClonedLoops.push_back(cloneLoopNest( 1223 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1224 } 1225 1226 // Return the main cloned loop if any. 1227 return ClonedL; 1228 } 1229 1230 static void deleteDeadBlocksFromLoop(Loop &L, BasicBlock *DeadSubtreeRoot, 1231 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1232 DominatorTree &DT, LoopInfo &LI) { 1233 // Walk the dominator tree to build up the set of blocks we will delete here. 1234 // The order is designed to allow us to always delete bottom-up and avoid any 1235 // dangling uses. 1236 SmallSetVector<BasicBlock *, 16> DeadBlocks; 1237 DeadBlocks.insert(DeadSubtreeRoot); 1238 for (int i = 0; i < (int)DeadBlocks.size(); ++i) 1239 for (DomTreeNode *ChildN : *DT[DeadBlocks[i]]) { 1240 // FIXME: This assert should pass and that means we don't change nearly 1241 // as much below! Consider rewriting all of this to avoid deleting 1242 // blocks. They are always cloned before being deleted, and so instead 1243 // could just be moved. 1244 // FIXME: This in turn means that we might actually be more able to 1245 // update the domtree. 1246 assert((L.contains(ChildN->getBlock()) || 1247 llvm::find(ExitBlocks, ChildN->getBlock()) != ExitBlocks.end()) && 1248 "Should never reach beyond the loop and exits when deleting!"); 1249 DeadBlocks.insert(ChildN->getBlock()); 1250 } 1251 1252 // Filter out the dead blocks from the exit blocks list so that it can be 1253 // used in the caller. 1254 llvm::erase_if(ExitBlocks, 1255 [&](BasicBlock *BB) { return DeadBlocks.count(BB); }); 1256 1257 // Remove these blocks from their successors. 1258 for (auto *BB : DeadBlocks) 1259 for (BasicBlock *SuccBB : successors(BB)) 1260 SuccBB->removePredecessor(BB, /*DontDeleteUselessPHIs*/ true); 1261 1262 // Walk from this loop up through its parents removing all of the dead blocks. 1263 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1264 for (auto *BB : DeadBlocks) 1265 ParentL->getBlocksSet().erase(BB); 1266 llvm::erase_if(ParentL->getBlocksVector(), 1267 [&](BasicBlock *BB) { return DeadBlocks.count(BB); }); 1268 } 1269 1270 // Now delete the dead child loops. This raw delete will clear them 1271 // recursively. 1272 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1273 if (!DeadBlocks.count(ChildL->getHeader())) 1274 return false; 1275 1276 assert(llvm::all_of(ChildL->blocks(), 1277 [&](BasicBlock *ChildBB) { 1278 return DeadBlocks.count(ChildBB); 1279 }) && 1280 "If the child loop header is dead all blocks in the child loop must " 1281 "be dead as well!"); 1282 LI.destroy(ChildL); 1283 return true; 1284 }); 1285 1286 // Remove the mappings for the dead blocks. 1287 for (auto *BB : DeadBlocks) 1288 LI.changeLoopFor(BB, nullptr); 1289 1290 // Drop all the references from these blocks to others to handle cyclic 1291 // references as we start deleting the blocks themselves. 1292 for (auto *BB : DeadBlocks) 1293 BB->dropAllReferences(); 1294 1295 for (auto *BB : llvm::reverse(DeadBlocks)) { 1296 DT.eraseNode(BB); 1297 BB->eraseFromParent(); 1298 } 1299 } 1300 1301 /// Recompute the set of blocks in a loop after unswitching. 1302 /// 1303 /// This walks from the original headers predecessors to rebuild the loop. We 1304 /// take advantage of the fact that new blocks can't have been added, and so we 1305 /// filter by the original loop's blocks. This also handles potentially 1306 /// unreachable code that we don't want to explore but might be found examining 1307 /// the predecessors of the header. 1308 /// 1309 /// If the original loop is no longer a loop, this will return an empty set. If 1310 /// it remains a loop, all the blocks within it will be added to the set 1311 /// (including those blocks in inner loops). 1312 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1313 LoopInfo &LI) { 1314 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1315 1316 auto *PH = L.getLoopPreheader(); 1317 auto *Header = L.getHeader(); 1318 1319 // A worklist to use while walking backwards from the header. 1320 SmallVector<BasicBlock *, 16> Worklist; 1321 1322 // First walk the predecessors of the header to find the backedges. This will 1323 // form the basis of our walk. 1324 for (auto *Pred : predecessors(Header)) { 1325 // Skip the preheader. 1326 if (Pred == PH) 1327 continue; 1328 1329 // Because the loop was in simplified form, the only non-loop predecessor 1330 // is the preheader. 1331 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1332 "than the preheader that is not part of the " 1333 "loop!"); 1334 1335 // Insert this block into the loop set and on the first visit and, if it 1336 // isn't the header we're currently walking, put it into the worklist to 1337 // recurse through. 1338 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1339 Worklist.push_back(Pred); 1340 } 1341 1342 // If no backedges were found, we're done. 1343 if (LoopBlockSet.empty()) 1344 return LoopBlockSet; 1345 1346 // Add the loop header to the set. 1347 LoopBlockSet.insert(Header); 1348 1349 // We found backedges, recurse through them to identify the loop blocks. 1350 while (!Worklist.empty()) { 1351 BasicBlock *BB = Worklist.pop_back_val(); 1352 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1353 1354 // Because we know the inner loop structure remains valid we can use the 1355 // loop structure to jump immediately across the entire nested loop. 1356 // Further, because it is in loop simplified form, we can directly jump 1357 // to its preheader afterward. 1358 if (Loop *InnerL = LI.getLoopFor(BB)) 1359 if (InnerL != &L) { 1360 assert(L.contains(InnerL) && 1361 "Should not reach a loop *outside* this loop!"); 1362 // The preheader is the only possible predecessor of the loop so 1363 // insert it into the set and check whether it was already handled. 1364 auto *InnerPH = InnerL->getLoopPreheader(); 1365 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1366 "but not contain the inner loop " 1367 "preheader!"); 1368 if (!LoopBlockSet.insert(InnerPH).second) 1369 // The only way to reach the preheader is through the loop body 1370 // itself so if it has been visited the loop is already handled. 1371 continue; 1372 1373 // Insert all of the blocks (other than those already present) into 1374 // the loop set. The only block we expect to already be in the set is 1375 // the one we used to find this loop as we immediately handle the 1376 // others the first time we encounter the loop. 1377 for (auto *InnerBB : InnerL->blocks()) { 1378 if (InnerBB == BB) { 1379 assert(LoopBlockSet.count(InnerBB) && 1380 "Block should already be in the set!"); 1381 continue; 1382 } 1383 1384 bool Inserted = LoopBlockSet.insert(InnerBB).second; 1385 (void)Inserted; 1386 assert(Inserted && "Should only insert an inner loop once!"); 1387 } 1388 1389 // Add the preheader to the worklist so we will continue past the 1390 // loop body. 1391 Worklist.push_back(InnerPH); 1392 continue; 1393 } 1394 1395 // Insert any predecessors that were in the original loop into the new 1396 // set, and if the insert is successful, add them to the worklist. 1397 for (auto *Pred : predecessors(BB)) 1398 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1399 Worklist.push_back(Pred); 1400 } 1401 1402 // We've found all the blocks participating in the loop, return our completed 1403 // set. 1404 return LoopBlockSet; 1405 } 1406 1407 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1408 /// 1409 /// The removal may have removed some child loops entirely but cannot have 1410 /// disturbed any remaining child loops. However, they may need to be hoisted 1411 /// to the parent loop (or to be top-level loops). The original loop may be 1412 /// completely removed. 1413 /// 1414 /// The sibling loops resulting from this update are returned. If the original 1415 /// loop remains a valid loop, it will be the first entry in this list with all 1416 /// of the newly sibling loops following it. 1417 /// 1418 /// Returns true if the loop remains a loop after unswitching, and false if it 1419 /// is no longer a loop after unswitching (and should not continue to be 1420 /// referenced). 1421 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1422 LoopInfo &LI, 1423 SmallVectorImpl<Loop *> &HoistedLoops) { 1424 auto *PH = L.getLoopPreheader(); 1425 1426 // Compute the actual parent loop from the exit blocks. Because we may have 1427 // pruned some exits the loop may be different from the original parent. 1428 Loop *ParentL = nullptr; 1429 SmallVector<Loop *, 4> ExitLoops; 1430 SmallVector<BasicBlock *, 4> ExitsInLoops; 1431 ExitsInLoops.reserve(ExitBlocks.size()); 1432 for (auto *ExitBB : ExitBlocks) 1433 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1434 ExitLoops.push_back(ExitL); 1435 ExitsInLoops.push_back(ExitBB); 1436 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1437 ParentL = ExitL; 1438 } 1439 1440 // Recompute the blocks participating in this loop. This may be empty if it 1441 // is no longer a loop. 1442 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1443 1444 // If we still have a loop, we need to re-set the loop's parent as the exit 1445 // block set changing may have moved it within the loop nest. Note that this 1446 // can only happen when this loop has a parent as it can only hoist the loop 1447 // *up* the nest. 1448 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1449 // Remove this loop's (original) blocks from all of the intervening loops. 1450 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1451 IL = IL->getParentLoop()) { 1452 IL->getBlocksSet().erase(PH); 1453 for (auto *BB : L.blocks()) 1454 IL->getBlocksSet().erase(BB); 1455 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1456 return BB == PH || L.contains(BB); 1457 }); 1458 } 1459 1460 LI.changeLoopFor(PH, ParentL); 1461 L.getParentLoop()->removeChildLoop(&L); 1462 if (ParentL) 1463 ParentL->addChildLoop(&L); 1464 else 1465 LI.addTopLevelLoop(&L); 1466 } 1467 1468 // Now we update all the blocks which are no longer within the loop. 1469 auto &Blocks = L.getBlocksVector(); 1470 auto BlocksSplitI = 1471 LoopBlockSet.empty() 1472 ? Blocks.begin() 1473 : std::stable_partition( 1474 Blocks.begin(), Blocks.end(), 1475 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1476 1477 // Before we erase the list of unlooped blocks, build a set of them. 1478 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1479 if (LoopBlockSet.empty()) 1480 UnloopedBlocks.insert(PH); 1481 1482 // Now erase these blocks from the loop. 1483 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1484 L.getBlocksSet().erase(BB); 1485 Blocks.erase(BlocksSplitI, Blocks.end()); 1486 1487 // Sort the exits in ascending loop depth, we'll work backwards across these 1488 // to process them inside out. 1489 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1490 [&](BasicBlock *LHS, BasicBlock *RHS) { 1491 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1492 }); 1493 1494 // We'll build up a set for each exit loop. 1495 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1496 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1497 1498 auto RemoveUnloopedBlocksFromLoop = 1499 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1500 for (auto *BB : UnloopedBlocks) 1501 L.getBlocksSet().erase(BB); 1502 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1503 return UnloopedBlocks.count(BB); 1504 }); 1505 }; 1506 1507 SmallVector<BasicBlock *, 16> Worklist; 1508 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1509 assert(Worklist.empty() && "Didn't clear worklist!"); 1510 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1511 1512 // Grab the next exit block, in decreasing loop depth order. 1513 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1514 Loop &ExitL = *LI.getLoopFor(ExitBB); 1515 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1516 1517 // Erase all of the unlooped blocks from the loops between the previous 1518 // exit loop and this exit loop. This works because the ExitInLoops list is 1519 // sorted in increasing order of loop depth and thus we visit loops in 1520 // decreasing order of loop depth. 1521 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1522 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1523 1524 // Walk the CFG back until we hit the cloned PH adding everything reachable 1525 // and in the unlooped set to this exit block's loop. 1526 Worklist.push_back(ExitBB); 1527 do { 1528 BasicBlock *BB = Worklist.pop_back_val(); 1529 // We can stop recursing at the cloned preheader (if we get there). 1530 if (BB == PH) 1531 continue; 1532 1533 for (BasicBlock *PredBB : predecessors(BB)) { 1534 // If this pred has already been moved to our set or is part of some 1535 // (inner) loop, no update needed. 1536 if (!UnloopedBlocks.erase(PredBB)) { 1537 assert((NewExitLoopBlocks.count(PredBB) || 1538 ExitL.contains(LI.getLoopFor(PredBB))) && 1539 "Predecessor not in a nested loop (or already visited)!"); 1540 continue; 1541 } 1542 1543 // We just insert into the loop set here. We'll add these blocks to the 1544 // exit loop after we build up the set in a deterministic order rather 1545 // than the predecessor-influenced visit order. 1546 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1547 (void)Inserted; 1548 assert(Inserted && "Should only visit an unlooped block once!"); 1549 1550 // And recurse through to its predecessors. 1551 Worklist.push_back(PredBB); 1552 } 1553 } while (!Worklist.empty()); 1554 1555 // If blocks in this exit loop were directly part of the original loop (as 1556 // opposed to a child loop) update the map to point to this exit loop. This 1557 // just updates a map and so the fact that the order is unstable is fine. 1558 for (auto *BB : NewExitLoopBlocks) 1559 if (Loop *BBL = LI.getLoopFor(BB)) 1560 if (BBL == &L || !L.contains(BBL)) 1561 LI.changeLoopFor(BB, &ExitL); 1562 1563 // We will remove the remaining unlooped blocks from this loop in the next 1564 // iteration or below. 1565 NewExitLoopBlocks.clear(); 1566 } 1567 1568 // Any remaining unlooped blocks are no longer part of any loop unless they 1569 // are part of some child loop. 1570 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1571 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1572 for (auto *BB : UnloopedBlocks) 1573 if (Loop *BBL = LI.getLoopFor(BB)) 1574 if (BBL == &L || !L.contains(BBL)) 1575 LI.changeLoopFor(BB, nullptr); 1576 1577 // Sink all the child loops whose headers are no longer in the loop set to 1578 // the parent (or to be top level loops). We reach into the loop and directly 1579 // update its subloop vector to make this batch update efficient. 1580 auto &SubLoops = L.getSubLoopsVector(); 1581 auto SubLoopsSplitI = 1582 LoopBlockSet.empty() 1583 ? SubLoops.begin() 1584 : std::stable_partition( 1585 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1586 return LoopBlockSet.count(SubL->getHeader()); 1587 }); 1588 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1589 HoistedLoops.push_back(HoistedL); 1590 HoistedL->setParentLoop(nullptr); 1591 1592 // To compute the new parent of this hoisted loop we look at where we 1593 // placed the preheader above. We can't lookup the header itself because we 1594 // retained the mapping from the header to the hoisted loop. But the 1595 // preheader and header should have the exact same new parent computed 1596 // based on the set of exit blocks from the original loop as the preheader 1597 // is a predecessor of the header and so reached in the reverse walk. And 1598 // because the loops were all in simplified form the preheader of the 1599 // hoisted loop can't be part of some *other* loop. 1600 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1601 NewParentL->addChildLoop(HoistedL); 1602 else 1603 LI.addTopLevelLoop(HoistedL); 1604 } 1605 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1606 1607 // Actually delete the loop if nothing remained within it. 1608 if (Blocks.empty()) { 1609 assert(SubLoops.empty() && 1610 "Failed to remove all subloops from the original loop!"); 1611 if (Loop *ParentL = L.getParentLoop()) 1612 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1613 else 1614 LI.removeLoop(llvm::find(LI, &L)); 1615 LI.destroy(&L); 1616 return false; 1617 } 1618 1619 return true; 1620 } 1621 1622 /// Helper to visit a dominator subtree, invoking a callable on each node. 1623 /// 1624 /// Returning false at any point will stop walking past that node of the tree. 1625 template <typename CallableT> 1626 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1627 SmallVector<DomTreeNode *, 4> DomWorklist; 1628 DomWorklist.push_back(DT[BB]); 1629 #ifndef NDEBUG 1630 SmallPtrSet<DomTreeNode *, 4> Visited; 1631 Visited.insert(DT[BB]); 1632 #endif 1633 do { 1634 DomTreeNode *N = DomWorklist.pop_back_val(); 1635 1636 // Visit this node. 1637 if (!Callable(N->getBlock())) 1638 continue; 1639 1640 // Accumulate the child nodes. 1641 for (DomTreeNode *ChildN : *N) { 1642 assert(Visited.insert(ChildN).second && 1643 "Cannot visit a node twice when walking a tree!"); 1644 DomWorklist.push_back(ChildN); 1645 } 1646 } while (!DomWorklist.empty()); 1647 } 1648 1649 /// Take an invariant branch that has been determined to be safe and worthwhile 1650 /// to unswitch despite being non-trivial to do so and perform the unswitch. 1651 /// 1652 /// This directly updates the CFG to hoist the predicate out of the loop, and 1653 /// clone the necessary parts of the loop to maintain behavior. 1654 /// 1655 /// It also updates both dominator tree and loopinfo based on the unswitching. 1656 /// 1657 /// Once unswitching has been performed it runs the provided callback to report 1658 /// the new loops and no-longer valid loops to the caller. 1659 static bool unswitchInvariantBranch( 1660 Loop &L, BranchInst &BI, DominatorTree &DT, LoopInfo &LI, 1661 AssumptionCache &AC, 1662 function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) { 1663 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 1664 assert(L.isLoopInvariant(BI.getCondition()) && 1665 "Can only unswitch an invariant branch condition!"); 1666 1667 // Constant and BBs tracking the cloned and continuing successor. 1668 const int ClonedSucc = 0; 1669 auto *ParentBB = BI.getParent(); 1670 auto *UnswitchedSuccBB = BI.getSuccessor(ClonedSucc); 1671 auto *ContinueSuccBB = BI.getSuccessor(1 - ClonedSucc); 1672 1673 assert(UnswitchedSuccBB != ContinueSuccBB && 1674 "Should not unswitch a branch that always goes to the same place!"); 1675 1676 // The branch should be in this exact loop. Any inner loop's invariant branch 1677 // should be handled by unswitching that inner loop. The caller of this 1678 // routine should filter out any candidates that remain (but were skipped for 1679 // whatever reason). 1680 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1681 1682 SmallVector<BasicBlock *, 4> ExitBlocks; 1683 L.getUniqueExitBlocks(ExitBlocks); 1684 1685 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 1686 // don't know how to split those exit blocks. 1687 // FIXME: We should teach SplitBlock to handle this and remove this 1688 // restriction. 1689 for (auto *ExitBB : ExitBlocks) 1690 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) 1691 return false; 1692 1693 SmallPtrSet<BasicBlock *, 4> ExitBlockSet(ExitBlocks.begin(), 1694 ExitBlocks.end()); 1695 1696 // Compute the parent loop now before we start hacking on things. 1697 Loop *ParentL = L.getParentLoop(); 1698 1699 // Compute the outer-most loop containing one of our exit blocks. This is the 1700 // furthest up our loopnest which can be mutated, which we will use below to 1701 // update things. 1702 Loop *OuterExitL = &L; 1703 for (auto *ExitBB : ExitBlocks) { 1704 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1705 if (!NewOuterExitL) { 1706 // We exited the entire nest with this block, so we're done. 1707 OuterExitL = nullptr; 1708 break; 1709 } 1710 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1711 OuterExitL = NewOuterExitL; 1712 } 1713 1714 // If the edge we *aren't* cloning in the unswitch (the continuing edge) 1715 // dominates its target, we can skip cloning the dominated region of the loop 1716 // and its exits. We compute this as a set of nodes to be skipped. 1717 SmallPtrSet<BasicBlock *, 4> SkippedLoopAndExitBlocks; 1718 if (ContinueSuccBB->getUniquePredecessor() || 1719 llvm::all_of(predecessors(ContinueSuccBB), [&](BasicBlock *PredBB) { 1720 return PredBB == ParentBB || DT.dominates(ContinueSuccBB, PredBB); 1721 })) { 1722 visitDomSubTree(DT, ContinueSuccBB, [&](BasicBlock *BB) { 1723 SkippedLoopAndExitBlocks.insert(BB); 1724 return true; 1725 }); 1726 } 1727 // Similarly, if the edge we *are* cloning in the unswitch (the unswitched 1728 // edge) dominates its target, we will end up with dead nodes in the original 1729 // loop and its exits that will need to be deleted. Here, we just retain that 1730 // the property holds and will compute the deleted set later. 1731 bool DeleteUnswitchedSucc = 1732 UnswitchedSuccBB->getUniquePredecessor() || 1733 llvm::all_of(predecessors(UnswitchedSuccBB), [&](BasicBlock *PredBB) { 1734 return PredBB == ParentBB || DT.dominates(UnswitchedSuccBB, PredBB); 1735 }); 1736 1737 // Split the preheader, so that we know that there is a safe place to insert 1738 // the conditional branch. We will change the preheader to have a conditional 1739 // branch on LoopCond. The original preheader will become the split point 1740 // between the unswitched versions, and we will have a new preheader for the 1741 // original loop. 1742 BasicBlock *SplitBB = L.getLoopPreheader(); 1743 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI); 1744 1745 // Keep a mapping for the cloned values. 1746 ValueToValueMapTy VMap; 1747 1748 // Build the cloned blocks from the loop. 1749 auto *ClonedPH = buildClonedLoopBlocks( 1750 L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB, 1751 ContinueSuccBB, SkippedLoopAndExitBlocks, VMap, AC, DT, LI); 1752 1753 // Build the cloned loop structure itself. This may be substantially 1754 // different from the original structure due to the simplified CFG. This also 1755 // handles inserting all the cloned blocks into the correct loops. 1756 SmallVector<Loop *, 4> NonChildClonedLoops; 1757 Loop *ClonedL = 1758 buildClonedLoops(L, ExitBlocks, VMap, LI, NonChildClonedLoops); 1759 1760 // Remove the parent as a predecessor of the unswitched successor. 1761 UnswitchedSuccBB->removePredecessor(ParentBB, /*DontDeleteUselessPHIs*/ true); 1762 1763 // Now splice the branch from the original loop and use it to select between 1764 // the two loops. 1765 SplitBB->getTerminator()->eraseFromParent(); 1766 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), BI); 1767 BI.setSuccessor(ClonedSucc, ClonedPH); 1768 BI.setSuccessor(1 - ClonedSucc, LoopPH); 1769 1770 // Create a new unconditional branch to the continuing block (as opposed to 1771 // the one cloned). 1772 BranchInst::Create(ContinueSuccBB, ParentBB); 1773 1774 // Delete anything that was made dead in the original loop due to 1775 // unswitching. 1776 if (DeleteUnswitchedSucc) 1777 deleteDeadBlocksFromLoop(L, UnswitchedSuccBB, ExitBlocks, DT, LI); 1778 1779 SmallVector<Loop *, 4> HoistedLoops; 1780 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 1781 1782 // This will have completely invalidated the dominator tree. We can't easily 1783 // bound how much is invalid because in some cases we will refine the 1784 // predecessor set of exit blocks of the loop which can move large unrelated 1785 // regions of code into a new subtree. 1786 // 1787 // FIXME: Eventually, we should use an incremental update utility that 1788 // leverages the existing information in the dominator tree (and potentially 1789 // the nature of the change) to more efficiently update things. 1790 DT.recalculate(*SplitBB->getParent()); 1791 1792 // We can change which blocks are exit blocks of all the cloned sibling 1793 // loops, the current loop, and any parent loops which shared exit blocks 1794 // with the current loop. As a consequence, we need to re-form LCSSA for 1795 // them. But we shouldn't need to re-form LCSSA for any child loops. 1796 // FIXME: This could be made more efficient by tracking which exit blocks are 1797 // new, and focusing on them, but that isn't likely to be necessary. 1798 // 1799 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 1800 // loop nest and update every loop that could have had its exits changed. We 1801 // also need to cover any intervening loops. We add all of these loops to 1802 // a list and sort them by loop depth to achieve this without updating 1803 // unnecessary loops. 1804 auto UpdateLCSSA = [&](Loop &UpdateL) { 1805 #ifndef NDEBUG 1806 for (Loop *ChildL : UpdateL) 1807 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 1808 "Perturbed a child loop's LCSSA form!"); 1809 #endif 1810 formLCSSA(UpdateL, DT, &LI, nullptr); 1811 }; 1812 1813 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 1814 // and we can do it in any order as they don't nest relative to each other. 1815 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 1816 UpdateLCSSA(*UpdatedL); 1817 1818 // If the original loop had exit blocks, walk up through the outer most loop 1819 // of those exit blocks to update LCSSA and form updated dedicated exits. 1820 if (OuterExitL != &L) { 1821 SmallVector<Loop *, 4> OuterLoops; 1822 // We start with the cloned loop and the current loop if they are loops and 1823 // move toward OuterExitL. Also, if either the cloned loop or the current 1824 // loop have become top level loops we need to walk all the way out. 1825 if (ClonedL) { 1826 OuterLoops.push_back(ClonedL); 1827 if (!ClonedL->getParentLoop()) 1828 OuterExitL = nullptr; 1829 } 1830 if (IsStillLoop) { 1831 OuterLoops.push_back(&L); 1832 if (!L.getParentLoop()) 1833 OuterExitL = nullptr; 1834 } 1835 // Grab all of the enclosing loops now. 1836 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 1837 OuterL = OuterL->getParentLoop()) 1838 OuterLoops.push_back(OuterL); 1839 1840 // Finally, update our list of outer loops. This is nicely ordered to work 1841 // inside-out. 1842 for (Loop *OuterL : OuterLoops) { 1843 // First build LCSSA for this loop so that we can preserve it when 1844 // forming dedicated exits. We don't want to perturb some other loop's 1845 // LCSSA while doing that CFG edit. 1846 UpdateLCSSA(*OuterL); 1847 1848 // For loops reached by this loop's original exit blocks we may 1849 // introduced new, non-dedicated exits. At least try to re-form dedicated 1850 // exits for these loops. This may fail if they couldn't have dedicated 1851 // exits to start with. 1852 formDedicatedExitBlocks(OuterL, &DT, &LI, /*PreserveLCSSA*/ true); 1853 } 1854 } 1855 1856 #ifndef NDEBUG 1857 // Verify the entire loop structure to catch any incorrect updates before we 1858 // progress in the pass pipeline. 1859 LI.verify(DT); 1860 #endif 1861 1862 // Now that we've unswitched something, make callbacks to report the changes. 1863 // For that we need to merge together the updated loops and the cloned loops 1864 // and check whether the original loop survived. 1865 SmallVector<Loop *, 4> SibLoops; 1866 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 1867 if (UpdatedL->getParentLoop() == ParentL) 1868 SibLoops.push_back(UpdatedL); 1869 NonTrivialUnswitchCB(IsStillLoop, SibLoops); 1870 1871 ++NumBranches; 1872 return true; 1873 } 1874 1875 /// Recursively compute the cost of a dominator subtree based on the per-block 1876 /// cost map provided. 1877 /// 1878 /// The recursive computation is memozied into the provided DT-indexed cost map 1879 /// to allow querying it for most nodes in the domtree without it becoming 1880 /// quadratic. 1881 static int 1882 computeDomSubtreeCost(DomTreeNode &N, 1883 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 1884 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 1885 // Don't accumulate cost (or recurse through) blocks not in our block cost 1886 // map and thus not part of the duplication cost being considered. 1887 auto BBCostIt = BBCostMap.find(N.getBlock()); 1888 if (BBCostIt == BBCostMap.end()) 1889 return 0; 1890 1891 // Lookup this node to see if we already computed its cost. 1892 auto DTCostIt = DTCostMap.find(&N); 1893 if (DTCostIt != DTCostMap.end()) 1894 return DTCostIt->second; 1895 1896 // If not, we have to compute it. We can't use insert above and update 1897 // because computing the cost may insert more things into the map. 1898 int Cost = std::accumulate( 1899 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 1900 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 1901 }); 1902 bool Inserted = DTCostMap.insert({&N, Cost}).second; 1903 (void)Inserted; 1904 assert(Inserted && "Should not insert a node while visiting children!"); 1905 return Cost; 1906 } 1907 1908 /// Unswitch control flow predicated on loop invariant conditions. 1909 /// 1910 /// This first hoists all branches or switches which are trivial (IE, do not 1911 /// require duplicating any part of the loop) out of the loop body. It then 1912 /// looks at other loop invariant control flows and tries to unswitch those as 1913 /// well by cloning the loop if the result is small enough. 1914 static bool 1915 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 1916 TargetTransformInfo &TTI, bool NonTrivial, 1917 function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) { 1918 assert(L.isRecursivelyLCSSAForm(DT, LI) && 1919 "Loops must be in LCSSA form before unswitching."); 1920 bool Changed = false; 1921 1922 // Must be in loop simplified form: we need a preheader and dedicated exits. 1923 if (!L.isLoopSimplifyForm()) 1924 return false; 1925 1926 // Try trivial unswitch first before loop over other basic blocks in the loop. 1927 Changed |= unswitchAllTrivialConditions(L, DT, LI); 1928 1929 // If we're not doing non-trivial unswitching, we're done. We both accept 1930 // a parameter but also check a local flag that can be used for testing 1931 // a debugging. 1932 if (!NonTrivial && !EnableNonTrivialUnswitch) 1933 return Changed; 1934 1935 // Collect all remaining invariant branch conditions within this loop (as 1936 // opposed to an inner loop which would be handled when visiting that inner 1937 // loop). 1938 SmallVector<TerminatorInst *, 4> UnswitchCandidates; 1939 for (auto *BB : L.blocks()) 1940 if (LI.getLoopFor(BB) == &L) 1941 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1942 if (BI->isConditional() && L.isLoopInvariant(BI->getCondition()) && 1943 BI->getSuccessor(0) != BI->getSuccessor(1)) 1944 UnswitchCandidates.push_back(BI); 1945 1946 // If we didn't find any candidates, we're done. 1947 if (UnswitchCandidates.empty()) 1948 return Changed; 1949 1950 DEBUG(dbgs() << "Considering " << UnswitchCandidates.size() 1951 << " non-trivial loop invariant conditions for unswitching.\n"); 1952 1953 // Given that unswitching these terminators will require duplicating parts of 1954 // the loop, so we need to be able to model that cost. Compute the ephemeral 1955 // values and set up a data structure to hold per-BB costs. We cache each 1956 // block's cost so that we don't recompute this when considering different 1957 // subsets of the loop for duplication during unswitching. 1958 SmallPtrSet<const Value *, 4> EphValues; 1959 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 1960 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 1961 1962 // Compute the cost of each block, as well as the total loop cost. Also, bail 1963 // out if we see instructions which are incompatible with loop unswitching 1964 // (convergent, noduplicate, or cross-basic-block tokens). 1965 // FIXME: We might be able to safely handle some of these in non-duplicated 1966 // regions. 1967 int LoopCost = 0; 1968 for (auto *BB : L.blocks()) { 1969 int Cost = 0; 1970 for (auto &I : *BB) { 1971 if (EphValues.count(&I)) 1972 continue; 1973 1974 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 1975 return Changed; 1976 if (auto CS = CallSite(&I)) 1977 if (CS.isConvergent() || CS.cannotDuplicate()) 1978 return Changed; 1979 1980 Cost += TTI.getUserCost(&I); 1981 } 1982 assert(Cost >= 0 && "Must not have negative costs!"); 1983 LoopCost += Cost; 1984 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 1985 BBCostMap[BB] = Cost; 1986 } 1987 DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 1988 1989 // Now we find the best candidate by searching for the one with the following 1990 // properties in order: 1991 // 1992 // 1) An unswitching cost below the threshold 1993 // 2) The smallest number of duplicated unswitch candidates (to avoid 1994 // creating redundant subsequent unswitching) 1995 // 3) The smallest cost after unswitching. 1996 // 1997 // We prioritize reducing fanout of unswitch candidates provided the cost 1998 // remains below the threshold because this has a multiplicative effect. 1999 // 2000 // This requires memoizing each dominator subtree to avoid redundant work. 2001 // 2002 // FIXME: Need to actually do the number of candidates part above. 2003 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2004 // Given a terminator which might be unswitched, computes the non-duplicated 2005 // cost for that terminator. 2006 auto ComputeUnswitchedCost = [&](TerminatorInst *TI) { 2007 BasicBlock &BB = *TI->getParent(); 2008 SmallPtrSet<BasicBlock *, 4> Visited; 2009 2010 int Cost = LoopCost; 2011 for (BasicBlock *SuccBB : successors(&BB)) { 2012 // Don't count successors more than once. 2013 if (!Visited.insert(SuccBB).second) 2014 continue; 2015 2016 // This successor's domtree will not need to be duplicated after 2017 // unswitching if the edge to the successor dominates it (and thus the 2018 // entire tree). This essentially means there is no other path into this 2019 // subtree and so it will end up live in only one clone of the loop. 2020 if (SuccBB->getUniquePredecessor() || 2021 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2022 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2023 })) { 2024 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2025 assert(Cost >= 0 && 2026 "Non-duplicated cost should never exceed total loop cost!"); 2027 } 2028 } 2029 2030 // Now scale the cost by the number of unique successors minus one. We 2031 // subtract one because there is already at least one copy of the entire 2032 // loop. This is computing the new cost of unswitching a condition. 2033 assert(Visited.size() > 1 && 2034 "Cannot unswitch a condition without multiple distinct successors!"); 2035 return Cost * (Visited.size() - 1); 2036 }; 2037 TerminatorInst *BestUnswitchTI = nullptr; 2038 int BestUnswitchCost; 2039 for (TerminatorInst *CandidateTI : UnswitchCandidates) { 2040 int CandidateCost = ComputeUnswitchedCost(CandidateTI); 2041 DEBUG(dbgs() << " Computed cost of " << CandidateCost 2042 << " for unswitch candidate: " << *CandidateTI << "\n"); 2043 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2044 BestUnswitchTI = CandidateTI; 2045 BestUnswitchCost = CandidateCost; 2046 } 2047 } 2048 2049 if (BestUnswitchCost < UnswitchThreshold) { 2050 DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = " 2051 << BestUnswitchCost << ") branch: " << *BestUnswitchTI 2052 << "\n"); 2053 Changed |= unswitchInvariantBranch(L, cast<BranchInst>(*BestUnswitchTI), DT, 2054 LI, AC, NonTrivialUnswitchCB); 2055 } else { 2056 DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << BestUnswitchCost 2057 << "\n"); 2058 } 2059 2060 return Changed; 2061 } 2062 2063 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2064 LoopStandardAnalysisResults &AR, 2065 LPMUpdater &U) { 2066 Function &F = *L.getHeader()->getParent(); 2067 (void)F; 2068 2069 DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L << "\n"); 2070 2071 // Save the current loop name in a variable so that we can report it even 2072 // after it has been deleted. 2073 std::string LoopName = L.getName(); 2074 2075 auto NonTrivialUnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2076 ArrayRef<Loop *> NewLoops) { 2077 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2078 U.addSiblingLoops(NewLoops); 2079 2080 // If the current loop remains valid, we should revisit it to catch any 2081 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2082 if (CurrentLoopValid) 2083 U.revisitCurrentLoop(); 2084 else 2085 U.markLoopAsDeleted(L, LoopName); 2086 }; 2087 2088 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, 2089 NonTrivialUnswitchCB)) 2090 return PreservedAnalyses::all(); 2091 2092 #ifndef NDEBUG 2093 // Historically this pass has had issues with the dominator tree so verify it 2094 // in asserts builds. 2095 AR.DT.verifyDomTree(); 2096 #endif 2097 return getLoopPassPreservedAnalyses(); 2098 } 2099 2100 namespace { 2101 2102 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2103 bool NonTrivial; 2104 2105 public: 2106 static char ID; // Pass ID, replacement for typeid 2107 2108 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2109 : LoopPass(ID), NonTrivial(NonTrivial) { 2110 initializeSimpleLoopUnswitchLegacyPassPass( 2111 *PassRegistry::getPassRegistry()); 2112 } 2113 2114 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2115 2116 void getAnalysisUsage(AnalysisUsage &AU) const override { 2117 AU.addRequired<AssumptionCacheTracker>(); 2118 AU.addRequired<TargetTransformInfoWrapperPass>(); 2119 getLoopAnalysisUsage(AU); 2120 } 2121 }; 2122 2123 } // end anonymous namespace 2124 2125 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2126 if (skipLoop(L)) 2127 return false; 2128 2129 Function &F = *L->getHeader()->getParent(); 2130 2131 DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L << "\n"); 2132 2133 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2134 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2135 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2136 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2137 2138 auto NonTrivialUnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2139 ArrayRef<Loop *> NewLoops) { 2140 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2141 for (auto *NewL : NewLoops) 2142 LPM.addLoop(*NewL); 2143 2144 // If the current loop remains valid, re-add it to the queue. This is 2145 // a little wasteful as we'll finish processing the current loop as well, 2146 // but it is the best we can do in the old PM. 2147 if (CurrentLoopValid) 2148 LPM.addLoop(*L); 2149 else 2150 LPM.markLoopAsDeleted(*L); 2151 }; 2152 2153 bool Changed = 2154 unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, NonTrivialUnswitchCB); 2155 2156 // If anything was unswitched, also clear any cached information about this 2157 // loop. 2158 LPM.deleteSimpleAnalysisLoop(L); 2159 2160 #ifndef NDEBUG 2161 // Historically this pass has had issues with the dominator tree so verify it 2162 // in asserts builds. 2163 DT.verifyDomTree(); 2164 #endif 2165 return Changed; 2166 } 2167 2168 char SimpleLoopUnswitchLegacyPass::ID = 0; 2169 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2170 "Simple unswitch loops", false, false) 2171 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2172 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2173 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2174 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2175 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2176 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2177 "Simple unswitch loops", false, false) 2178 2179 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2180 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2181 } 2182