xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision 51ebcaaf258ee206c6e7179a6803ef4e13e32a2e)
1 //===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/LoopAnalysisManager.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Use.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTree.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/Cloning.h"
44 #include "llvm/Transforms/Utils/LoopUtils.h"
45 #include "llvm/Transforms/Utils/ValueMapper.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <iterator>
49 #include <numeric>
50 #include <utility>
51 
52 #define DEBUG_TYPE "simple-loop-unswitch"
53 
54 using namespace llvm;
55 
56 STATISTIC(NumBranches, "Number of branches unswitched");
57 STATISTIC(NumSwitches, "Number of switches unswitched");
58 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
59 
60 static cl::opt<bool> EnableNonTrivialUnswitch(
61     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
62     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
63              "following the configuration passed into the pass."));
64 
65 static cl::opt<int>
66     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
67                       cl::desc("The cost threshold for unswitching a loop."));
68 
69 static void replaceLoopUsesWithConstant(Loop &L, Value &LIC,
70                                         Constant &Replacement) {
71   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
72 
73   // Replace uses of LIC in the loop with the given constant.
74   for (auto UI = LIC.use_begin(), UE = LIC.use_end(); UI != UE;) {
75     // Grab the use and walk past it so we can clobber it in the use list.
76     Use *U = &*UI++;
77     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
78     if (!UserI || !L.contains(UserI))
79       continue;
80 
81     // Replace this use within the loop body.
82     *U = &Replacement;
83   }
84 }
85 
86 /// Update the IDom for a basic block whose predecessor set has changed.
87 ///
88 /// This routine is designed to work when the domtree update is relatively
89 /// localized by leveraging a known common dominator, often a loop header.
90 ///
91 /// FIXME: Should consider hand-rolling a slightly more efficient non-DFS
92 /// approach here as we can do that easily by persisting the candidate IDom's
93 /// dominating set between each predecessor.
94 ///
95 /// FIXME: Longer term, many uses of this can be replaced by an incremental
96 /// domtree update strategy that starts from a known dominating block and
97 /// rebuilds that subtree.
98 static bool updateIDomWithKnownCommonDominator(BasicBlock *BB,
99                                                BasicBlock *KnownDominatingBB,
100                                                DominatorTree &DT) {
101   assert(pred_begin(BB) != pred_end(BB) &&
102          "This routine does not handle unreachable blocks!");
103 
104   BasicBlock *OrigIDom = DT[BB]->getIDom()->getBlock();
105 
106   BasicBlock *IDom = *pred_begin(BB);
107   assert(DT.dominates(KnownDominatingBB, IDom) &&
108          "Bad known dominating block!");
109 
110   // Walk all of the other predecessors finding the nearest common dominator
111   // until all predecessors are covered or we reach the loop header. The loop
112   // header necessarily dominates all loop exit blocks in loop simplified form
113   // so we can early-exit the moment we hit that block.
114   for (auto PI = std::next(pred_begin(BB)), PE = pred_end(BB);
115        PI != PE && IDom != KnownDominatingBB; ++PI) {
116     assert(DT.dominates(KnownDominatingBB, *PI) &&
117            "Bad known dominating block!");
118     IDom = DT.findNearestCommonDominator(IDom, *PI);
119   }
120 
121   if (IDom == OrigIDom)
122     return false;
123 
124   DT.changeImmediateDominator(BB, IDom);
125   return true;
126 }
127 
128 // Note that we don't currently use the IDFCalculator here for two reasons:
129 // 1) It computes dominator tree levels for the entire function on each run
130 //    of 'compute'. While this isn't terrible, given that we expect to update
131 //    relatively small subtrees of the domtree, it isn't necessarily the right
132 //    tradeoff.
133 // 2) The interface doesn't fit this usage well. It doesn't operate in
134 //    append-only, and builds several sets that we don't need.
135 //
136 // FIXME: Neither of these issues are a big deal and could be addressed with
137 // some amount of refactoring of IDFCalculator. That would allow us to share
138 // the core logic here (which is solving the same core problem).
139 static void appendDomFrontier(DomTreeNode *Node,
140                               SmallSetVector<BasicBlock *, 4> &Worklist,
141                               SmallVectorImpl<DomTreeNode *> &DomNodes,
142                               SmallPtrSetImpl<BasicBlock *> &DomSet) {
143   assert(DomNodes.empty() && "Must start with no dominator nodes.");
144   assert(DomSet.empty() && "Must start with an empty dominator set.");
145 
146   // First flatten this subtree into sequence of nodes by doing a pre-order
147   // walk.
148   DomNodes.push_back(Node);
149   // We intentionally re-evaluate the size as each node can add new children.
150   // Because this is a tree walk, this cannot add any duplicates.
151   for (int i = 0; i < (int)DomNodes.size(); ++i)
152     DomNodes.insert(DomNodes.end(), DomNodes[i]->begin(), DomNodes[i]->end());
153 
154   // Now create a set of the basic blocks so we can quickly test for
155   // dominated successors. We could in theory use the DFS numbers of the
156   // dominator tree for this, but we want this to remain predictably fast
157   // even while we mutate the dominator tree in ways that would invalidate
158   // the DFS numbering.
159   for (DomTreeNode *InnerN : DomNodes)
160     DomSet.insert(InnerN->getBlock());
161 
162   // Now re-walk the nodes, appending every successor of every node that isn't
163   // in the set. Note that we don't append the node itself, even though if it
164   // is a successor it does not strictly dominate itself and thus it would be
165   // part of the dominance frontier. The reason we don't append it is that
166   // the node passed in came *from* the worklist and so it has already been
167   // processed.
168   for (DomTreeNode *InnerN : DomNodes)
169     for (BasicBlock *SuccBB : successors(InnerN->getBlock()))
170       if (!DomSet.count(SuccBB))
171         Worklist.insert(SuccBB);
172 
173   DomNodes.clear();
174   DomSet.clear();
175 }
176 
177 /// Update the dominator tree after unswitching a particular former exit block.
178 ///
179 /// This handles the full update of the dominator tree after hoisting a block
180 /// that previously was an exit block (or split off of an exit block) up to be
181 /// reached from the new immediate dominator of the preheader.
182 ///
183 /// The common case is simple -- we just move the unswitched block to have an
184 /// immediate dominator of the old preheader. But in complex cases, there may
185 /// be other blocks reachable from the unswitched block that are immediately
186 /// dominated by some node between the unswitched one and the old preheader.
187 /// All of these also need to be hoisted in the dominator tree. We also want to
188 /// minimize queries to the dominator tree because each step of this
189 /// invalidates any DFS numbers that would make queries fast.
190 static void updateDTAfterUnswitch(BasicBlock *UnswitchedBB, BasicBlock *OldPH,
191                                   DominatorTree &DT) {
192   DomTreeNode *OldPHNode = DT[OldPH];
193   DomTreeNode *UnswitchedNode = DT[UnswitchedBB];
194   // If the dominator tree has already been updated for this unswitched node,
195   // we're done. This makes it easier to use this routine if there are multiple
196   // paths to the same unswitched destination.
197   if (UnswitchedNode->getIDom() == OldPHNode)
198     return;
199 
200   // First collect the domtree nodes that we are hoisting over. These are the
201   // set of nodes which may have children that need to be hoisted as well.
202   SmallPtrSet<DomTreeNode *, 4> DomChain;
203   for (auto *IDom = UnswitchedNode->getIDom(); IDom != OldPHNode;
204        IDom = IDom->getIDom())
205     DomChain.insert(IDom);
206 
207   // The unswitched block ends up immediately dominated by the old preheader --
208   // regardless of whether it is the loop exit block or split off of the loop
209   // exit block.
210   DT.changeImmediateDominator(UnswitchedNode, OldPHNode);
211 
212   // For everything that moves up the dominator tree, we need to examine the
213   // dominator frontier to see if it additionally should move up the dominator
214   // tree. This lambda appends the dominator frontier for a node on the
215   // worklist.
216   SmallSetVector<BasicBlock *, 4> Worklist;
217 
218   // Scratch data structures reused by domfrontier finding.
219   SmallVector<DomTreeNode *, 4> DomNodes;
220   SmallPtrSet<BasicBlock *, 4> DomSet;
221 
222   // Append the initial dom frontier nodes.
223   appendDomFrontier(UnswitchedNode, Worklist, DomNodes, DomSet);
224 
225   // Walk the worklist. We grow the list in the loop and so must recompute size.
226   for (int i = 0; i < (int)Worklist.size(); ++i) {
227     auto *BB = Worklist[i];
228 
229     DomTreeNode *Node = DT[BB];
230     assert(!DomChain.count(Node) &&
231            "Cannot be dominated by a block you can reach!");
232 
233     // If this block had an immediate dominator somewhere in the chain
234     // we hoisted over, then its position in the domtree needs to move as it is
235     // reachable from a node hoisted over this chain.
236     if (!DomChain.count(Node->getIDom()))
237       continue;
238 
239     DT.changeImmediateDominator(Node, OldPHNode);
240 
241     // Now add this node's dominator frontier to the worklist as well.
242     appendDomFrontier(Node, Worklist, DomNodes, DomSet);
243   }
244 }
245 
246 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
247 /// incoming values along this edge.
248 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
249                                          BasicBlock &ExitBB) {
250   for (Instruction &I : ExitBB) {
251     auto *PN = dyn_cast<PHINode>(&I);
252     if (!PN)
253       // No more PHIs to check.
254       return true;
255 
256     // If the incoming value for this edge isn't loop invariant the unswitch
257     // won't be trivial.
258     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
259       return false;
260   }
261   llvm_unreachable("Basic blocks should never be empty!");
262 }
263 
264 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
265 ///
266 /// Requires that the loop exit and unswitched basic block are the same, and
267 /// that the exiting block was a unique predecessor of that block. Rewrites the
268 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
269 /// PHI nodes from the old preheader that now contains the unswitched
270 /// terminator.
271 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
272                                                   BasicBlock &OldExitingBB,
273                                                   BasicBlock &OldPH) {
274   for (Instruction &I : UnswitchedBB) {
275     auto *PN = dyn_cast<PHINode>(&I);
276     if (!PN)
277       // No more PHIs to check.
278       break;
279 
280     // When the loop exit is directly unswitched we just need to update the
281     // incoming basic block. We loop to handle weird cases with repeated
282     // incoming blocks, but expect to typically only have one operand here.
283     for (auto i : seq<int>(0, PN->getNumOperands())) {
284       assert(PN->getIncomingBlock(i) == &OldExitingBB &&
285              "Found incoming block different from unique predecessor!");
286       PN->setIncomingBlock(i, &OldPH);
287     }
288   }
289 }
290 
291 /// Rewrite the PHI nodes in the loop exit basic block and the split off
292 /// unswitched block.
293 ///
294 /// Because the exit block remains an exit from the loop, this rewrites the
295 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
296 /// nodes into the unswitched basic block to select between the value in the
297 /// old preheader and the loop exit.
298 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
299                                                       BasicBlock &UnswitchedBB,
300                                                       BasicBlock &OldExitingBB,
301                                                       BasicBlock &OldPH) {
302   assert(&ExitBB != &UnswitchedBB &&
303          "Must have different loop exit and unswitched blocks!");
304   Instruction *InsertPt = &*UnswitchedBB.begin();
305   for (Instruction &I : ExitBB) {
306     auto *PN = dyn_cast<PHINode>(&I);
307     if (!PN)
308       // No more PHIs to check.
309       break;
310 
311     auto *NewPN = PHINode::Create(PN->getType(), /*NumReservedValues*/ 2,
312                                   PN->getName() + ".split", InsertPt);
313 
314     // Walk backwards over the old PHI node's inputs to minimize the cost of
315     // removing each one. We have to do this weird loop manually so that we
316     // create the same number of new incoming edges in the new PHI as we expect
317     // each case-based edge to be included in the unswitched switch in some
318     // cases.
319     // FIXME: This is really, really gross. It would be much cleaner if LLVM
320     // allowed us to create a single entry for a predecessor block without
321     // having separate entries for each "edge" even though these edges are
322     // required to produce identical results.
323     for (int i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
324       if (PN->getIncomingBlock(i) != &OldExitingBB)
325         continue;
326 
327       Value *Incoming = PN->removeIncomingValue(i);
328       NewPN->addIncoming(Incoming, &OldPH);
329     }
330 
331     // Now replace the old PHI with the new one and wire the old one in as an
332     // input to the new one.
333     PN->replaceAllUsesWith(NewPN);
334     NewPN->addIncoming(PN, &ExitBB);
335   }
336 }
337 
338 /// Unswitch a trivial branch if the condition is loop invariant.
339 ///
340 /// This routine should only be called when loop code leading to the branch has
341 /// been validated as trivial (no side effects). This routine checks if the
342 /// condition is invariant and one of the successors is a loop exit. This
343 /// allows us to unswitch without duplicating the loop, making it trivial.
344 ///
345 /// If this routine fails to unswitch the branch it returns false.
346 ///
347 /// If the branch can be unswitched, this routine splits the preheader and
348 /// hoists the branch above that split. Preserves loop simplified form
349 /// (splitting the exit block as necessary). It simplifies the branch within
350 /// the loop to an unconditional branch but doesn't remove it entirely. Further
351 /// cleanup can be done with some simplify-cfg like pass.
352 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
353                                   LoopInfo &LI) {
354   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
355   DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
356 
357   Value *LoopCond = BI.getCondition();
358 
359   // Need a trivial loop condition to unswitch.
360   if (!L.isLoopInvariant(LoopCond))
361     return false;
362 
363   // FIXME: We should compute this once at the start and update it!
364   SmallVector<BasicBlock *, 16> ExitBlocks;
365   L.getExitBlocks(ExitBlocks);
366   SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
367                                              ExitBlocks.end());
368 
369   // Check to see if a successor of the branch is guaranteed to
370   // exit through a unique exit block without having any
371   // side-effects.  If so, determine the value of Cond that causes
372   // it to do this.
373   ConstantInt *CondVal = ConstantInt::getTrue(BI.getContext());
374   ConstantInt *Replacement = ConstantInt::getFalse(BI.getContext());
375   int LoopExitSuccIdx = 0;
376   auto *LoopExitBB = BI.getSuccessor(0);
377   if (!ExitBlockSet.count(LoopExitBB)) {
378     std::swap(CondVal, Replacement);
379     LoopExitSuccIdx = 1;
380     LoopExitBB = BI.getSuccessor(1);
381     if (!ExitBlockSet.count(LoopExitBB))
382       return false;
383   }
384   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
385   assert(L.contains(ContinueBB) &&
386          "Cannot have both successors exit and still be in the loop!");
387 
388   auto *ParentBB = BI.getParent();
389   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
390     return false;
391 
392   DEBUG(dbgs() << "    unswitching trivial branch when: " << CondVal
393                << " == " << LoopCond << "\n");
394 
395   // Split the preheader, so that we know that there is a safe place to insert
396   // the conditional branch. We will change the preheader to have a conditional
397   // branch on LoopCond.
398   BasicBlock *OldPH = L.getLoopPreheader();
399   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
400 
401   // Now that we have a place to insert the conditional branch, create a place
402   // to branch to: this is the exit block out of the loop that we are
403   // unswitching. We need to split this if there are other loop predecessors.
404   // Because the loop is in simplified form, *any* other predecessor is enough.
405   BasicBlock *UnswitchedBB;
406   if (BasicBlock *PredBB = LoopExitBB->getUniquePredecessor()) {
407     (void)PredBB;
408     assert(PredBB == BI.getParent() &&
409            "A branch's parent isn't a predecessor!");
410     UnswitchedBB = LoopExitBB;
411   } else {
412     UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
413   }
414 
415   // Now splice the branch to gate reaching the new preheader and re-point its
416   // successors.
417   OldPH->getInstList().splice(std::prev(OldPH->end()),
418                               BI.getParent()->getInstList(), BI);
419   OldPH->getTerminator()->eraseFromParent();
420   BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
421   BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
422 
423   // Create a new unconditional branch that will continue the loop as a new
424   // terminator.
425   BranchInst::Create(ContinueBB, ParentBB);
426 
427   // Rewrite the relevant PHI nodes.
428   if (UnswitchedBB == LoopExitBB)
429     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
430   else
431     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
432                                               *ParentBB, *OldPH);
433 
434   // Now we need to update the dominator tree.
435   updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
436   // But if we split something off of the loop exit block then we also removed
437   // one of the predecessors for the loop exit block and may need to update its
438   // idom.
439   if (UnswitchedBB != LoopExitBB)
440     updateIDomWithKnownCommonDominator(LoopExitBB, L.getHeader(), DT);
441 
442   // Since this is an i1 condition we can also trivially replace uses of it
443   // within the loop with a constant.
444   replaceLoopUsesWithConstant(L, *LoopCond, *Replacement);
445 
446   ++NumTrivial;
447   ++NumBranches;
448   return true;
449 }
450 
451 /// Unswitch a trivial switch if the condition is loop invariant.
452 ///
453 /// This routine should only be called when loop code leading to the switch has
454 /// been validated as trivial (no side effects). This routine checks if the
455 /// condition is invariant and that at least one of the successors is a loop
456 /// exit. This allows us to unswitch without duplicating the loop, making it
457 /// trivial.
458 ///
459 /// If this routine fails to unswitch the switch it returns false.
460 ///
461 /// If the switch can be unswitched, this routine splits the preheader and
462 /// copies the switch above that split. If the default case is one of the
463 /// exiting cases, it copies the non-exiting cases and points them at the new
464 /// preheader. If the default case is not exiting, it copies the exiting cases
465 /// and points the default at the preheader. It preserves loop simplified form
466 /// (splitting the exit blocks as necessary). It simplifies the switch within
467 /// the loop by removing now-dead cases. If the default case is one of those
468 /// unswitched, it replaces its destination with a new basic block containing
469 /// only unreachable. Such basic blocks, while technically loop exits, are not
470 /// considered for unswitching so this is a stable transform and the same
471 /// switch will not be revisited. If after unswitching there is only a single
472 /// in-loop successor, the switch is further simplified to an unconditional
473 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
474 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
475                                   LoopInfo &LI) {
476   DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
477   Value *LoopCond = SI.getCondition();
478 
479   // If this isn't switching on an invariant condition, we can't unswitch it.
480   if (!L.isLoopInvariant(LoopCond))
481     return false;
482 
483   auto *ParentBB = SI.getParent();
484 
485   // FIXME: We should compute this once at the start and update it!
486   SmallVector<BasicBlock *, 16> ExitBlocks;
487   L.getExitBlocks(ExitBlocks);
488   SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
489                                              ExitBlocks.end());
490 
491   SmallVector<int, 4> ExitCaseIndices;
492   for (auto Case : SI.cases()) {
493     auto *SuccBB = Case.getCaseSuccessor();
494     if (ExitBlockSet.count(SuccBB) &&
495         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
496       ExitCaseIndices.push_back(Case.getCaseIndex());
497   }
498   BasicBlock *DefaultExitBB = nullptr;
499   if (ExitBlockSet.count(SI.getDefaultDest()) &&
500       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
501       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
502     DefaultExitBB = SI.getDefaultDest();
503   else if (ExitCaseIndices.empty())
504     return false;
505 
506   DEBUG(dbgs() << "    unswitching trivial cases...\n");
507 
508   SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
509   ExitCases.reserve(ExitCaseIndices.size());
510   // We walk the case indices backwards so that we remove the last case first
511   // and don't disrupt the earlier indices.
512   for (unsigned Index : reverse(ExitCaseIndices)) {
513     auto CaseI = SI.case_begin() + Index;
514     // Save the value of this case.
515     ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
516     // Delete the unswitched cases.
517     SI.removeCase(CaseI);
518   }
519 
520   // Check if after this all of the remaining cases point at the same
521   // successor.
522   BasicBlock *CommonSuccBB = nullptr;
523   if (SI.getNumCases() > 0 &&
524       std::all_of(std::next(SI.case_begin()), SI.case_end(),
525                   [&SI](const SwitchInst::CaseHandle &Case) {
526                     return Case.getCaseSuccessor() ==
527                            SI.case_begin()->getCaseSuccessor();
528                   }))
529     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
530 
531   if (DefaultExitBB) {
532     // We can't remove the default edge so replace it with an edge to either
533     // the single common remaining successor (if we have one) or an unreachable
534     // block.
535     if (CommonSuccBB) {
536       SI.setDefaultDest(CommonSuccBB);
537     } else {
538       BasicBlock *UnreachableBB = BasicBlock::Create(
539           ParentBB->getContext(),
540           Twine(ParentBB->getName()) + ".unreachable_default",
541           ParentBB->getParent());
542       new UnreachableInst(ParentBB->getContext(), UnreachableBB);
543       SI.setDefaultDest(UnreachableBB);
544       DT.addNewBlock(UnreachableBB, ParentBB);
545     }
546   } else {
547     // If we're not unswitching the default, we need it to match any cases to
548     // have a common successor or if we have no cases it is the common
549     // successor.
550     if (SI.getNumCases() == 0)
551       CommonSuccBB = SI.getDefaultDest();
552     else if (SI.getDefaultDest() != CommonSuccBB)
553       CommonSuccBB = nullptr;
554   }
555 
556   // Split the preheader, so that we know that there is a safe place to insert
557   // the switch.
558   BasicBlock *OldPH = L.getLoopPreheader();
559   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
560   OldPH->getTerminator()->eraseFromParent();
561 
562   // Now add the unswitched switch.
563   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
564 
565   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
566   // First, we split any exit blocks with remaining in-loop predecessors. Then
567   // we update the PHIs in one of two ways depending on if there was a split.
568   // We walk in reverse so that we split in the same order as the cases
569   // appeared. This is purely for convenience of reading the resulting IR, but
570   // it doesn't cost anything really.
571   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
572   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
573   // Handle the default exit if necessary.
574   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
575   // ranges aren't quite powerful enough yet.
576   if (DefaultExitBB) {
577     if (pred_empty(DefaultExitBB)) {
578       UnswitchedExitBBs.insert(DefaultExitBB);
579       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
580     } else {
581       auto *SplitBB =
582           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
583       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
584                                                 *ParentBB, *OldPH);
585       updateIDomWithKnownCommonDominator(DefaultExitBB, L.getHeader(), DT);
586       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
587     }
588   }
589   // Note that we must use a reference in the for loop so that we update the
590   // container.
591   for (auto &CasePair : reverse(ExitCases)) {
592     // Grab a reference to the exit block in the pair so that we can update it.
593     BasicBlock *ExitBB = CasePair.second;
594 
595     // If this case is the last edge into the exit block, we can simply reuse it
596     // as it will no longer be a loop exit. No mapping necessary.
597     if (pred_empty(ExitBB)) {
598       // Only rewrite once.
599       if (UnswitchedExitBBs.insert(ExitBB).second)
600         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
601       continue;
602     }
603 
604     // Otherwise we need to split the exit block so that we retain an exit
605     // block from the loop and a target for the unswitched condition.
606     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
607     if (!SplitExitBB) {
608       // If this is the first time we see this, do the split and remember it.
609       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
610       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
611                                                 *ParentBB, *OldPH);
612       updateIDomWithKnownCommonDominator(ExitBB, L.getHeader(), DT);
613     }
614     // Update the case pair to point to the split block.
615     CasePair.second = SplitExitBB;
616   }
617 
618   // Now add the unswitched cases. We do this in reverse order as we built them
619   // in reverse order.
620   for (auto CasePair : reverse(ExitCases)) {
621     ConstantInt *CaseVal = CasePair.first;
622     BasicBlock *UnswitchedBB = CasePair.second;
623 
624     NewSI->addCase(CaseVal, UnswitchedBB);
625     updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
626   }
627 
628   // If the default was unswitched, re-point it and add explicit cases for
629   // entering the loop.
630   if (DefaultExitBB) {
631     NewSI->setDefaultDest(DefaultExitBB);
632     updateDTAfterUnswitch(DefaultExitBB, OldPH, DT);
633 
634     // We removed all the exit cases, so we just copy the cases to the
635     // unswitched switch.
636     for (auto Case : SI.cases())
637       NewSI->addCase(Case.getCaseValue(), NewPH);
638   }
639 
640   // If we ended up with a common successor for every path through the switch
641   // after unswitching, rewrite it to an unconditional branch to make it easy
642   // to recognize. Otherwise we potentially have to recognize the default case
643   // pointing at unreachable and other complexity.
644   if (CommonSuccBB) {
645     BasicBlock *BB = SI.getParent();
646     SI.eraseFromParent();
647     BranchInst::Create(CommonSuccBB, BB);
648   }
649 
650   DT.verifyDomTree();
651   ++NumTrivial;
652   ++NumSwitches;
653   return true;
654 }
655 
656 /// This routine scans the loop to find a branch or switch which occurs before
657 /// any side effects occur. These can potentially be unswitched without
658 /// duplicating the loop. If a branch or switch is successfully unswitched the
659 /// scanning continues to see if subsequent branches or switches have become
660 /// trivial. Once all trivial candidates have been unswitched, this routine
661 /// returns.
662 ///
663 /// The return value indicates whether anything was unswitched (and therefore
664 /// changed).
665 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
666                                          LoopInfo &LI) {
667   bool Changed = false;
668 
669   // If loop header has only one reachable successor we should keep looking for
670   // trivial condition candidates in the successor as well. An alternative is
671   // to constant fold conditions and merge successors into loop header (then we
672   // only need to check header's terminator). The reason for not doing this in
673   // LoopUnswitch pass is that it could potentially break LoopPassManager's
674   // invariants. Folding dead branches could either eliminate the current loop
675   // or make other loops unreachable. LCSSA form might also not be preserved
676   // after deleting branches. The following code keeps traversing loop header's
677   // successors until it finds the trivial condition candidate (condition that
678   // is not a constant). Since unswitching generates branches with constant
679   // conditions, this scenario could be very common in practice.
680   BasicBlock *CurrentBB = L.getHeader();
681   SmallPtrSet<BasicBlock *, 8> Visited;
682   Visited.insert(CurrentBB);
683   do {
684     // Check if there are any side-effecting instructions (e.g. stores, calls,
685     // volatile loads) in the part of the loop that the code *would* execute
686     // without unswitching.
687     if (llvm::any_of(*CurrentBB,
688                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
689       return Changed;
690 
691     TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
692 
693     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
694       // Don't bother trying to unswitch past a switch with a constant
695       // condition. This should be removed prior to running this pass by
696       // simplify-cfg.
697       if (isa<Constant>(SI->getCondition()))
698         return Changed;
699 
700       if (!unswitchTrivialSwitch(L, *SI, DT, LI))
701         // Coludn't unswitch this one so we're done.
702         return Changed;
703 
704       // Mark that we managed to unswitch something.
705       Changed = true;
706 
707       // If unswitching turned the terminator into an unconditional branch then
708       // we can continue. The unswitching logic specifically works to fold any
709       // cases it can into an unconditional branch to make it easier to
710       // recognize here.
711       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
712       if (!BI || BI->isConditional())
713         return Changed;
714 
715       CurrentBB = BI->getSuccessor(0);
716       continue;
717     }
718 
719     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
720     if (!BI)
721       // We do not understand other terminator instructions.
722       return Changed;
723 
724     // Don't bother trying to unswitch past an unconditional branch or a branch
725     // with a constant value. These should be removed by simplify-cfg prior to
726     // running this pass.
727     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
728       return Changed;
729 
730     // Found a trivial condition candidate: non-foldable conditional branch. If
731     // we fail to unswitch this, we can't do anything else that is trivial.
732     if (!unswitchTrivialBranch(L, *BI, DT, LI))
733       return Changed;
734 
735     // Mark that we managed to unswitch something.
736     Changed = true;
737 
738     // We unswitched the branch. This should always leave us with an
739     // unconditional branch that we can follow now.
740     BI = cast<BranchInst>(CurrentBB->getTerminator());
741     assert(!BI->isConditional() &&
742            "Cannot form a conditional branch by unswitching1");
743     CurrentBB = BI->getSuccessor(0);
744 
745     // When continuing, if we exit the loop or reach a previous visited block,
746     // then we can not reach any trivial condition candidates (unfoldable
747     // branch instructions or switch instructions) and no unswitch can happen.
748   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
749 
750   return Changed;
751 }
752 
753 /// Build the cloned blocks for an unswitched copy of the given loop.
754 ///
755 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
756 /// after the split block (`SplitBB`) that will be used to select between the
757 /// cloned and original loop.
758 ///
759 /// This routine handles cloning all of the necessary loop blocks and exit
760 /// blocks including rewriting their instructions and the relevant PHI nodes.
761 /// It skips loop and exit blocks that are not necessary based on the provided
762 /// set. It also correctly creates the unconditional branch in the cloned
763 /// unswitched parent block to only point at the unswitched successor.
764 ///
765 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
766 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
767 /// the cloned blocks (and their loops) are left without full `LoopInfo`
768 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
769 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
770 /// instead the caller must recompute an accurate DT. It *does* correctly
771 /// update the `AssumptionCache` provided in `AC`.
772 static BasicBlock *buildClonedLoopBlocks(
773     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
774     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
775     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
776     const SmallPtrSetImpl<BasicBlock *> &SkippedLoopAndExitBlocks,
777     ValueToValueMapTy &VMap, AssumptionCache &AC, DominatorTree &DT,
778     LoopInfo &LI) {
779   SmallVector<BasicBlock *, 4> NewBlocks;
780   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
781 
782   // We will need to clone a bunch of blocks, wrap up the clone operation in
783   // a helper.
784   auto CloneBlock = [&](BasicBlock *OldBB) {
785     // Clone the basic block and insert it before the new preheader.
786     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
787     NewBB->moveBefore(LoopPH);
788 
789     // Record this block and the mapping.
790     NewBlocks.push_back(NewBB);
791     VMap[OldBB] = NewBB;
792 
793     // Add the block to the domtree. We'll move it to the correct position
794     // below.
795     DT.addNewBlock(NewBB, SplitBB);
796 
797     return NewBB;
798   };
799 
800   // First, clone the preheader.
801   auto *ClonedPH = CloneBlock(LoopPH);
802 
803   // Then clone all the loop blocks, skipping the ones that aren't necessary.
804   for (auto *LoopBB : L.blocks())
805     if (!SkippedLoopAndExitBlocks.count(LoopBB))
806       CloneBlock(LoopBB);
807 
808   // Split all the loop exit edges so that when we clone the exit blocks, if
809   // any of the exit blocks are *also* a preheader for some other loop, we
810   // don't create multiple predecessors entering the loop header.
811   for (auto *ExitBB : ExitBlocks) {
812     if (SkippedLoopAndExitBlocks.count(ExitBB))
813       continue;
814 
815     // When we are going to clone an exit, we don't need to clone all the
816     // instructions in the exit block and we want to ensure we have an easy
817     // place to merge the CFG, so split the exit first. This is always safe to
818     // do because there cannot be any non-loop predecessors of a loop exit in
819     // loop simplified form.
820     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
821 
822     // Rearrange the names to make it easier to write test cases by having the
823     // exit block carry the suffix rather than the merge block carrying the
824     // suffix.
825     MergeBB->takeName(ExitBB);
826     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
827 
828     // Now clone the original exit block.
829     auto *ClonedExitBB = CloneBlock(ExitBB);
830     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
831            "Exit block should have been split to have one successor!");
832     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
833            "Cloned exit block has the wrong successor!");
834 
835     // Move the merge block's idom to be the split point as one exit is
836     // dominated by one header, and the other by another, so we know the split
837     // point dominates both. While the dominator tree isn't fully accurate, we
838     // want sub-trees within the original loop to be correctly reflect
839     // dominance within that original loop (at least) and that requires moving
840     // the merge block out of that subtree.
841     // FIXME: This is very brittle as we essentially have a partial contract on
842     // the dominator tree. We really need to instead update it and keep it
843     // valid or stop relying on it.
844     DT.changeImmediateDominator(MergeBB, SplitBB);
845 
846     // Remap any cloned instructions and create a merge phi node for them.
847     for (auto ZippedInsts : llvm::zip_first(
848              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
849              llvm::make_range(ClonedExitBB->begin(),
850                               std::prev(ClonedExitBB->end())))) {
851       Instruction &I = std::get<0>(ZippedInsts);
852       Instruction &ClonedI = std::get<1>(ZippedInsts);
853 
854       // The only instructions in the exit block should be PHI nodes and
855       // potentially a landing pad.
856       assert(
857           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
858           "Bad instruction in exit block!");
859       // We should have a value map between the instruction and its clone.
860       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
861 
862       auto *MergePN =
863           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
864                           &*MergeBB->getFirstInsertionPt());
865       I.replaceAllUsesWith(MergePN);
866       MergePN->addIncoming(&I, ExitBB);
867       MergePN->addIncoming(&ClonedI, ClonedExitBB);
868     }
869   }
870 
871   // Rewrite the instructions in the cloned blocks to refer to the instructions
872   // in the cloned blocks. We have to do this as a second pass so that we have
873   // everything available. Also, we have inserted new instructions which may
874   // include assume intrinsics, so we update the assumption cache while
875   // processing this.
876   for (auto *ClonedBB : NewBlocks)
877     for (Instruction &I : *ClonedBB) {
878       RemapInstruction(&I, VMap,
879                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
880       if (auto *II = dyn_cast<IntrinsicInst>(&I))
881         if (II->getIntrinsicID() == Intrinsic::assume)
882           AC.registerAssumption(II);
883     }
884 
885   // Remove the cloned parent as a predecessor of the cloned continue successor
886   // if we did in fact clone it.
887   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
888   if (auto *ClonedContinueSuccBB =
889           cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB)))
890     ClonedContinueSuccBB->removePredecessor(ClonedParentBB,
891                                             /*DontDeleteUselessPHIs*/ true);
892   // Replace the cloned branch with an unconditional branch to the cloneed
893   // unswitched successor.
894   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
895   ClonedParentBB->getTerminator()->eraseFromParent();
896   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
897 
898   // Update any PHI nodes in the cloned successors of the skipped blocks to not
899   // have spurious incoming values.
900   for (auto *LoopBB : L.blocks())
901     if (SkippedLoopAndExitBlocks.count(LoopBB))
902       for (auto *SuccBB : successors(LoopBB))
903         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
904           for (PHINode &PN : ClonedSuccBB->phis())
905             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
906 
907   return ClonedPH;
908 }
909 
910 /// Recursively clone the specified loop and all of its children.
911 ///
912 /// The target parent loop for the clone should be provided, or can be null if
913 /// the clone is a top-level loop. While cloning, all the blocks are mapped
914 /// with the provided value map. The entire original loop must be present in
915 /// the value map. The cloned loop is returned.
916 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
917                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
918   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
919     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
920     ClonedL.reserveBlocks(OrigL.getNumBlocks());
921     for (auto *BB : OrigL.blocks()) {
922       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
923       ClonedL.addBlockEntry(ClonedBB);
924       if (LI.getLoopFor(BB) == &OrigL) {
925         assert(!LI.getLoopFor(ClonedBB) &&
926                "Should not have an existing loop for this block!");
927         LI.changeLoopFor(ClonedBB, &ClonedL);
928       }
929     }
930   };
931 
932   // We specially handle the first loop because it may get cloned into
933   // a different parent and because we most commonly are cloning leaf loops.
934   Loop *ClonedRootL = LI.AllocateLoop();
935   if (RootParentL)
936     RootParentL->addChildLoop(ClonedRootL);
937   else
938     LI.addTopLevelLoop(ClonedRootL);
939   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
940 
941   if (OrigRootL.empty())
942     return ClonedRootL;
943 
944   // If we have a nest, we can quickly clone the entire loop nest using an
945   // iterative approach because it is a tree. We keep the cloned parent in the
946   // data structure to avoid repeatedly querying through a map to find it.
947   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
948   // Build up the loops to clone in reverse order as we'll clone them from the
949   // back.
950   for (Loop *ChildL : llvm::reverse(OrigRootL))
951     LoopsToClone.push_back({ClonedRootL, ChildL});
952   do {
953     Loop *ClonedParentL, *L;
954     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
955     Loop *ClonedL = LI.AllocateLoop();
956     ClonedParentL->addChildLoop(ClonedL);
957     AddClonedBlocksToLoop(*L, *ClonedL);
958     for (Loop *ChildL : llvm::reverse(*L))
959       LoopsToClone.push_back({ClonedL, ChildL});
960   } while (!LoopsToClone.empty());
961 
962   return ClonedRootL;
963 }
964 
965 /// Build the cloned loops of an original loop from unswitching.
966 ///
967 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
968 /// operation. We need to re-verify that there even is a loop (as the backedge
969 /// may not have been cloned), and even if there are remaining backedges the
970 /// backedge set may be different. However, we know that each child loop is
971 /// undisturbed, we only need to find where to place each child loop within
972 /// either any parent loop or within a cloned version of the original loop.
973 ///
974 /// Because child loops may end up cloned outside of any cloned version of the
975 /// original loop, multiple cloned sibling loops may be created. All of them
976 /// are returned so that the newly introduced loop nest roots can be
977 /// identified.
978 static Loop *buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
979                               const ValueToValueMapTy &VMap, LoopInfo &LI,
980                               SmallVectorImpl<Loop *> &NonChildClonedLoops) {
981   Loop *ClonedL = nullptr;
982 
983   auto *OrigPH = OrigL.getLoopPreheader();
984   auto *OrigHeader = OrigL.getHeader();
985 
986   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
987   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
988 
989   // We need to know the loops of the cloned exit blocks to even compute the
990   // accurate parent loop. If we only clone exits to some parent of the
991   // original parent, we want to clone into that outer loop. We also keep track
992   // of the loops that our cloned exit blocks participate in.
993   Loop *ParentL = nullptr;
994   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
995   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
996   ClonedExitsInLoops.reserve(ExitBlocks.size());
997   for (auto *ExitBB : ExitBlocks)
998     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
999       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1000         ExitLoopMap[ClonedExitBB] = ExitL;
1001         ClonedExitsInLoops.push_back(ClonedExitBB);
1002         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1003           ParentL = ExitL;
1004       }
1005   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1006           ParentL->contains(OrigL.getParentLoop())) &&
1007          "The computed parent loop should always contain (or be) the parent of "
1008          "the original loop.");
1009 
1010   // We build the set of blocks dominated by the cloned header from the set of
1011   // cloned blocks out of the original loop. While not all of these will
1012   // necessarily be in the cloned loop, it is enough to establish that they
1013   // aren't in unreachable cycles, etc.
1014   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1015   for (auto *BB : OrigL.blocks())
1016     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1017       ClonedLoopBlocks.insert(ClonedBB);
1018 
1019   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1020   // skipped cloning some region of this loop which can in turn skip some of
1021   // the backedges so we have to rebuild the blocks in the loop based on the
1022   // backedges that remain after cloning.
1023   SmallVector<BasicBlock *, 16> Worklist;
1024   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1025   for (auto *Pred : predecessors(ClonedHeader)) {
1026     // The only possible non-loop header predecessor is the preheader because
1027     // we know we cloned the loop in simplified form.
1028     if (Pred == ClonedPH)
1029       continue;
1030 
1031     // Because the loop was in simplified form, the only non-loop predecessor
1032     // should be the preheader.
1033     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1034                                            "header other than the preheader "
1035                                            "that is not part of the loop!");
1036 
1037     // Insert this block into the loop set and on the first visit (and if it
1038     // isn't the header we're currently walking) put it into the worklist to
1039     // recurse through.
1040     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1041       Worklist.push_back(Pred);
1042   }
1043 
1044   // If we had any backedges then there *is* a cloned loop. Put the header into
1045   // the loop set and then walk the worklist backwards to find all the blocks
1046   // that remain within the loop after cloning.
1047   if (!BlocksInClonedLoop.empty()) {
1048     BlocksInClonedLoop.insert(ClonedHeader);
1049 
1050     while (!Worklist.empty()) {
1051       BasicBlock *BB = Worklist.pop_back_val();
1052       assert(BlocksInClonedLoop.count(BB) &&
1053              "Didn't put block into the loop set!");
1054 
1055       // Insert any predecessors that are in the possible set into the cloned
1056       // set, and if the insert is successful, add them to the worklist. Note
1057       // that we filter on the blocks that are definitely reachable via the
1058       // backedge to the loop header so we may prune out dead code within the
1059       // cloned loop.
1060       for (auto *Pred : predecessors(BB))
1061         if (ClonedLoopBlocks.count(Pred) &&
1062             BlocksInClonedLoop.insert(Pred).second)
1063           Worklist.push_back(Pred);
1064     }
1065 
1066     ClonedL = LI.AllocateLoop();
1067     if (ParentL) {
1068       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1069       ParentL->addChildLoop(ClonedL);
1070     } else {
1071       LI.addTopLevelLoop(ClonedL);
1072     }
1073 
1074     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1075     // We don't want to just add the cloned loop blocks based on how we
1076     // discovered them. The original order of blocks was carefully built in
1077     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1078     // that logic, we just re-walk the original blocks (and those of the child
1079     // loops) and filter them as we add them into the cloned loop.
1080     for (auto *BB : OrigL.blocks()) {
1081       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1082       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1083         continue;
1084 
1085       // Directly add the blocks that are only in this loop.
1086       if (LI.getLoopFor(BB) == &OrigL) {
1087         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1088         continue;
1089       }
1090 
1091       // We want to manually add it to this loop and parents.
1092       // Registering it with LoopInfo will happen when we clone the top
1093       // loop for this block.
1094       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1095         PL->addBlockEntry(ClonedBB);
1096     }
1097 
1098     // Now add each child loop whose header remains within the cloned loop. All
1099     // of the blocks within the loop must satisfy the same constraints as the
1100     // header so once we pass the header checks we can just clone the entire
1101     // child loop nest.
1102     for (Loop *ChildL : OrigL) {
1103       auto *ClonedChildHeader =
1104           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1105       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1106         continue;
1107 
1108 #ifndef NDEBUG
1109       // We should never have a cloned child loop header but fail to have
1110       // all of the blocks for that child loop.
1111       for (auto *ChildLoopBB : ChildL->blocks())
1112         assert(BlocksInClonedLoop.count(
1113                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1114                "Child cloned loop has a header within the cloned outer "
1115                "loop but not all of its blocks!");
1116 #endif
1117 
1118       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1119     }
1120   }
1121 
1122   // Now that we've handled all the components of the original loop that were
1123   // cloned into a new loop, we still need to handle anything from the original
1124   // loop that wasn't in a cloned loop.
1125 
1126   // Figure out what blocks are left to place within any loop nest containing
1127   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1128   // them.
1129   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1130   if (BlocksInClonedLoop.empty())
1131     UnloopedBlockSet.insert(ClonedPH);
1132   for (auto *ClonedBB : ClonedLoopBlocks)
1133     if (!BlocksInClonedLoop.count(ClonedBB))
1134       UnloopedBlockSet.insert(ClonedBB);
1135 
1136   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1137   // backwards across these to process them inside out. The order shouldn't
1138   // matter as we're just trying to build up the map from inside-out; we use
1139   // the map in a more stably ordered way below.
1140   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1141   std::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(),
1142             [&](BasicBlock *LHS, BasicBlock *RHS) {
1143               return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1144                      ExitLoopMap.lookup(RHS)->getLoopDepth();
1145             });
1146 
1147   // Populate the existing ExitLoopMap with everything reachable from each
1148   // exit, starting from the inner most exit.
1149   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1150     assert(Worklist.empty() && "Didn't clear worklist!");
1151 
1152     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1153     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1154 
1155     // Walk the CFG back until we hit the cloned PH adding everything reachable
1156     // and in the unlooped set to this exit block's loop.
1157     Worklist.push_back(ExitBB);
1158     do {
1159       BasicBlock *BB = Worklist.pop_back_val();
1160       // We can stop recursing at the cloned preheader (if we get there).
1161       if (BB == ClonedPH)
1162         continue;
1163 
1164       for (BasicBlock *PredBB : predecessors(BB)) {
1165         // If this pred has already been moved to our set or is part of some
1166         // (inner) loop, no update needed.
1167         if (!UnloopedBlockSet.erase(PredBB)) {
1168           assert(
1169               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1170               "Predecessor not mapped to a loop!");
1171           continue;
1172         }
1173 
1174         // We just insert into the loop set here. We'll add these blocks to the
1175         // exit loop after we build up the set in an order that doesn't rely on
1176         // predecessor order (which in turn relies on use list order).
1177         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1178         (void)Inserted;
1179         assert(Inserted && "Should only visit an unlooped block once!");
1180 
1181         // And recurse through to its predecessors.
1182         Worklist.push_back(PredBB);
1183       }
1184     } while (!Worklist.empty());
1185   }
1186 
1187   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1188   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1189   // in their original order adding them to the correct loop.
1190 
1191   // We need a stable insertion order. We use the order of the original loop
1192   // order and map into the correct parent loop.
1193   for (auto *BB : llvm::concat<BasicBlock *const>(
1194            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1195     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1196       OuterL->addBasicBlockToLoop(BB, LI);
1197 
1198 #ifndef NDEBUG
1199   for (auto &BBAndL : ExitLoopMap) {
1200     auto *BB = BBAndL.first;
1201     auto *OuterL = BBAndL.second;
1202     assert(LI.getLoopFor(BB) == OuterL &&
1203            "Failed to put all blocks into outer loops!");
1204   }
1205 #endif
1206 
1207   // Now that all the blocks are placed into the correct containing loop in the
1208   // absence of child loops, find all the potentially cloned child loops and
1209   // clone them into whatever outer loop we placed their header into.
1210   for (Loop *ChildL : OrigL) {
1211     auto *ClonedChildHeader =
1212         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1213     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1214       continue;
1215 
1216 #ifndef NDEBUG
1217     for (auto *ChildLoopBB : ChildL->blocks())
1218       assert(VMap.count(ChildLoopBB) &&
1219              "Cloned a child loop header but not all of that loops blocks!");
1220 #endif
1221 
1222     NonChildClonedLoops.push_back(cloneLoopNest(
1223         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1224   }
1225 
1226   // Return the main cloned loop if any.
1227   return ClonedL;
1228 }
1229 
1230 static void deleteDeadBlocksFromLoop(Loop &L, BasicBlock *DeadSubtreeRoot,
1231                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1232                                      DominatorTree &DT, LoopInfo &LI) {
1233   // Walk the dominator tree to build up the set of blocks we will delete here.
1234   // The order is designed to allow us to always delete bottom-up and avoid any
1235   // dangling uses.
1236   SmallSetVector<BasicBlock *, 16> DeadBlocks;
1237   DeadBlocks.insert(DeadSubtreeRoot);
1238   for (int i = 0; i < (int)DeadBlocks.size(); ++i)
1239     for (DomTreeNode *ChildN : *DT[DeadBlocks[i]]) {
1240       // FIXME: This assert should pass and that means we don't change nearly
1241       // as much below! Consider rewriting all of this to avoid deleting
1242       // blocks. They are always cloned before being deleted, and so instead
1243       // could just be moved.
1244       // FIXME: This in turn means that we might actually be more able to
1245       // update the domtree.
1246       assert((L.contains(ChildN->getBlock()) ||
1247               llvm::find(ExitBlocks, ChildN->getBlock()) != ExitBlocks.end()) &&
1248              "Should never reach beyond the loop and exits when deleting!");
1249       DeadBlocks.insert(ChildN->getBlock());
1250     }
1251 
1252   // Filter out the dead blocks from the exit blocks list so that it can be
1253   // used in the caller.
1254   llvm::erase_if(ExitBlocks,
1255                  [&](BasicBlock *BB) { return DeadBlocks.count(BB); });
1256 
1257   // Remove these blocks from their successors.
1258   for (auto *BB : DeadBlocks)
1259     for (BasicBlock *SuccBB : successors(BB))
1260       SuccBB->removePredecessor(BB, /*DontDeleteUselessPHIs*/ true);
1261 
1262   // Walk from this loop up through its parents removing all of the dead blocks.
1263   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1264     for (auto *BB : DeadBlocks)
1265       ParentL->getBlocksSet().erase(BB);
1266     llvm::erase_if(ParentL->getBlocksVector(),
1267                    [&](BasicBlock *BB) { return DeadBlocks.count(BB); });
1268   }
1269 
1270   // Now delete the dead child loops. This raw delete will clear them
1271   // recursively.
1272   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1273     if (!DeadBlocks.count(ChildL->getHeader()))
1274       return false;
1275 
1276     assert(llvm::all_of(ChildL->blocks(),
1277                         [&](BasicBlock *ChildBB) {
1278                           return DeadBlocks.count(ChildBB);
1279                         }) &&
1280            "If the child loop header is dead all blocks in the child loop must "
1281            "be dead as well!");
1282     LI.destroy(ChildL);
1283     return true;
1284   });
1285 
1286   // Remove the mappings for the dead blocks.
1287   for (auto *BB : DeadBlocks)
1288     LI.changeLoopFor(BB, nullptr);
1289 
1290   // Drop all the references from these blocks to others to handle cyclic
1291   // references as we start deleting the blocks themselves.
1292   for (auto *BB : DeadBlocks)
1293     BB->dropAllReferences();
1294 
1295   for (auto *BB : llvm::reverse(DeadBlocks)) {
1296     DT.eraseNode(BB);
1297     BB->eraseFromParent();
1298   }
1299 }
1300 
1301 /// Recompute the set of blocks in a loop after unswitching.
1302 ///
1303 /// This walks from the original headers predecessors to rebuild the loop. We
1304 /// take advantage of the fact that new blocks can't have been added, and so we
1305 /// filter by the original loop's blocks. This also handles potentially
1306 /// unreachable code that we don't want to explore but might be found examining
1307 /// the predecessors of the header.
1308 ///
1309 /// If the original loop is no longer a loop, this will return an empty set. If
1310 /// it remains a loop, all the blocks within it will be added to the set
1311 /// (including those blocks in inner loops).
1312 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1313                                                                  LoopInfo &LI) {
1314   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1315 
1316   auto *PH = L.getLoopPreheader();
1317   auto *Header = L.getHeader();
1318 
1319   // A worklist to use while walking backwards from the header.
1320   SmallVector<BasicBlock *, 16> Worklist;
1321 
1322   // First walk the predecessors of the header to find the backedges. This will
1323   // form the basis of our walk.
1324   for (auto *Pred : predecessors(Header)) {
1325     // Skip the preheader.
1326     if (Pred == PH)
1327       continue;
1328 
1329     // Because the loop was in simplified form, the only non-loop predecessor
1330     // is the preheader.
1331     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1332                                "than the preheader that is not part of the "
1333                                "loop!");
1334 
1335     // Insert this block into the loop set and on the first visit and, if it
1336     // isn't the header we're currently walking, put it into the worklist to
1337     // recurse through.
1338     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1339       Worklist.push_back(Pred);
1340   }
1341 
1342   // If no backedges were found, we're done.
1343   if (LoopBlockSet.empty())
1344     return LoopBlockSet;
1345 
1346   // Add the loop header to the set.
1347   LoopBlockSet.insert(Header);
1348 
1349   // We found backedges, recurse through them to identify the loop blocks.
1350   while (!Worklist.empty()) {
1351     BasicBlock *BB = Worklist.pop_back_val();
1352     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1353 
1354     // Because we know the inner loop structure remains valid we can use the
1355     // loop structure to jump immediately across the entire nested loop.
1356     // Further, because it is in loop simplified form, we can directly jump
1357     // to its preheader afterward.
1358     if (Loop *InnerL = LI.getLoopFor(BB))
1359       if (InnerL != &L) {
1360         assert(L.contains(InnerL) &&
1361                "Should not reach a loop *outside* this loop!");
1362         // The preheader is the only possible predecessor of the loop so
1363         // insert it into the set and check whether it was already handled.
1364         auto *InnerPH = InnerL->getLoopPreheader();
1365         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1366                                       "but not contain the inner loop "
1367                                       "preheader!");
1368         if (!LoopBlockSet.insert(InnerPH).second)
1369           // The only way to reach the preheader is through the loop body
1370           // itself so if it has been visited the loop is already handled.
1371           continue;
1372 
1373         // Insert all of the blocks (other than those already present) into
1374         // the loop set. The only block we expect to already be in the set is
1375         // the one we used to find this loop as we immediately handle the
1376         // others the first time we encounter the loop.
1377         for (auto *InnerBB : InnerL->blocks()) {
1378           if (InnerBB == BB) {
1379             assert(LoopBlockSet.count(InnerBB) &&
1380                    "Block should already be in the set!");
1381             continue;
1382           }
1383 
1384           bool Inserted = LoopBlockSet.insert(InnerBB).second;
1385           (void)Inserted;
1386           assert(Inserted && "Should only insert an inner loop once!");
1387         }
1388 
1389         // Add the preheader to the worklist so we will continue past the
1390         // loop body.
1391         Worklist.push_back(InnerPH);
1392         continue;
1393       }
1394 
1395     // Insert any predecessors that were in the original loop into the new
1396     // set, and if the insert is successful, add them to the worklist.
1397     for (auto *Pred : predecessors(BB))
1398       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1399         Worklist.push_back(Pred);
1400   }
1401 
1402   // We've found all the blocks participating in the loop, return our completed
1403   // set.
1404   return LoopBlockSet;
1405 }
1406 
1407 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1408 ///
1409 /// The removal may have removed some child loops entirely but cannot have
1410 /// disturbed any remaining child loops. However, they may need to be hoisted
1411 /// to the parent loop (or to be top-level loops). The original loop may be
1412 /// completely removed.
1413 ///
1414 /// The sibling loops resulting from this update are returned. If the original
1415 /// loop remains a valid loop, it will be the first entry in this list with all
1416 /// of the newly sibling loops following it.
1417 ///
1418 /// Returns true if the loop remains a loop after unswitching, and false if it
1419 /// is no longer a loop after unswitching (and should not continue to be
1420 /// referenced).
1421 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1422                                      LoopInfo &LI,
1423                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1424   auto *PH = L.getLoopPreheader();
1425 
1426   // Compute the actual parent loop from the exit blocks. Because we may have
1427   // pruned some exits the loop may be different from the original parent.
1428   Loop *ParentL = nullptr;
1429   SmallVector<Loop *, 4> ExitLoops;
1430   SmallVector<BasicBlock *, 4> ExitsInLoops;
1431   ExitsInLoops.reserve(ExitBlocks.size());
1432   for (auto *ExitBB : ExitBlocks)
1433     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1434       ExitLoops.push_back(ExitL);
1435       ExitsInLoops.push_back(ExitBB);
1436       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1437         ParentL = ExitL;
1438     }
1439 
1440   // Recompute the blocks participating in this loop. This may be empty if it
1441   // is no longer a loop.
1442   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1443 
1444   // If we still have a loop, we need to re-set the loop's parent as the exit
1445   // block set changing may have moved it within the loop nest. Note that this
1446   // can only happen when this loop has a parent as it can only hoist the loop
1447   // *up* the nest.
1448   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1449     // Remove this loop's (original) blocks from all of the intervening loops.
1450     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1451          IL = IL->getParentLoop()) {
1452       IL->getBlocksSet().erase(PH);
1453       for (auto *BB : L.blocks())
1454         IL->getBlocksSet().erase(BB);
1455       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1456         return BB == PH || L.contains(BB);
1457       });
1458     }
1459 
1460     LI.changeLoopFor(PH, ParentL);
1461     L.getParentLoop()->removeChildLoop(&L);
1462     if (ParentL)
1463       ParentL->addChildLoop(&L);
1464     else
1465       LI.addTopLevelLoop(&L);
1466   }
1467 
1468   // Now we update all the blocks which are no longer within the loop.
1469   auto &Blocks = L.getBlocksVector();
1470   auto BlocksSplitI =
1471       LoopBlockSet.empty()
1472           ? Blocks.begin()
1473           : std::stable_partition(
1474                 Blocks.begin(), Blocks.end(),
1475                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1476 
1477   // Before we erase the list of unlooped blocks, build a set of them.
1478   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1479   if (LoopBlockSet.empty())
1480     UnloopedBlocks.insert(PH);
1481 
1482   // Now erase these blocks from the loop.
1483   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1484     L.getBlocksSet().erase(BB);
1485   Blocks.erase(BlocksSplitI, Blocks.end());
1486 
1487   // Sort the exits in ascending loop depth, we'll work backwards across these
1488   // to process them inside out.
1489   std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1490                    [&](BasicBlock *LHS, BasicBlock *RHS) {
1491                      return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1492                    });
1493 
1494   // We'll build up a set for each exit loop.
1495   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1496   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1497 
1498   auto RemoveUnloopedBlocksFromLoop =
1499       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1500         for (auto *BB : UnloopedBlocks)
1501           L.getBlocksSet().erase(BB);
1502         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1503           return UnloopedBlocks.count(BB);
1504         });
1505       };
1506 
1507   SmallVector<BasicBlock *, 16> Worklist;
1508   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1509     assert(Worklist.empty() && "Didn't clear worklist!");
1510     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1511 
1512     // Grab the next exit block, in decreasing loop depth order.
1513     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1514     Loop &ExitL = *LI.getLoopFor(ExitBB);
1515     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1516 
1517     // Erase all of the unlooped blocks from the loops between the previous
1518     // exit loop and this exit loop. This works because the ExitInLoops list is
1519     // sorted in increasing order of loop depth and thus we visit loops in
1520     // decreasing order of loop depth.
1521     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1522       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1523 
1524     // Walk the CFG back until we hit the cloned PH adding everything reachable
1525     // and in the unlooped set to this exit block's loop.
1526     Worklist.push_back(ExitBB);
1527     do {
1528       BasicBlock *BB = Worklist.pop_back_val();
1529       // We can stop recursing at the cloned preheader (if we get there).
1530       if (BB == PH)
1531         continue;
1532 
1533       for (BasicBlock *PredBB : predecessors(BB)) {
1534         // If this pred has already been moved to our set or is part of some
1535         // (inner) loop, no update needed.
1536         if (!UnloopedBlocks.erase(PredBB)) {
1537           assert((NewExitLoopBlocks.count(PredBB) ||
1538                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1539                  "Predecessor not in a nested loop (or already visited)!");
1540           continue;
1541         }
1542 
1543         // We just insert into the loop set here. We'll add these blocks to the
1544         // exit loop after we build up the set in a deterministic order rather
1545         // than the predecessor-influenced visit order.
1546         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1547         (void)Inserted;
1548         assert(Inserted && "Should only visit an unlooped block once!");
1549 
1550         // And recurse through to its predecessors.
1551         Worklist.push_back(PredBB);
1552       }
1553     } while (!Worklist.empty());
1554 
1555     // If blocks in this exit loop were directly part of the original loop (as
1556     // opposed to a child loop) update the map to point to this exit loop. This
1557     // just updates a map and so the fact that the order is unstable is fine.
1558     for (auto *BB : NewExitLoopBlocks)
1559       if (Loop *BBL = LI.getLoopFor(BB))
1560         if (BBL == &L || !L.contains(BBL))
1561           LI.changeLoopFor(BB, &ExitL);
1562 
1563     // We will remove the remaining unlooped blocks from this loop in the next
1564     // iteration or below.
1565     NewExitLoopBlocks.clear();
1566   }
1567 
1568   // Any remaining unlooped blocks are no longer part of any loop unless they
1569   // are part of some child loop.
1570   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1571     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1572   for (auto *BB : UnloopedBlocks)
1573     if (Loop *BBL = LI.getLoopFor(BB))
1574       if (BBL == &L || !L.contains(BBL))
1575         LI.changeLoopFor(BB, nullptr);
1576 
1577   // Sink all the child loops whose headers are no longer in the loop set to
1578   // the parent (or to be top level loops). We reach into the loop and directly
1579   // update its subloop vector to make this batch update efficient.
1580   auto &SubLoops = L.getSubLoopsVector();
1581   auto SubLoopsSplitI =
1582       LoopBlockSet.empty()
1583           ? SubLoops.begin()
1584           : std::stable_partition(
1585                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1586                   return LoopBlockSet.count(SubL->getHeader());
1587                 });
1588   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1589     HoistedLoops.push_back(HoistedL);
1590     HoistedL->setParentLoop(nullptr);
1591 
1592     // To compute the new parent of this hoisted loop we look at where we
1593     // placed the preheader above. We can't lookup the header itself because we
1594     // retained the mapping from the header to the hoisted loop. But the
1595     // preheader and header should have the exact same new parent computed
1596     // based on the set of exit blocks from the original loop as the preheader
1597     // is a predecessor of the header and so reached in the reverse walk. And
1598     // because the loops were all in simplified form the preheader of the
1599     // hoisted loop can't be part of some *other* loop.
1600     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1601       NewParentL->addChildLoop(HoistedL);
1602     else
1603       LI.addTopLevelLoop(HoistedL);
1604   }
1605   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1606 
1607   // Actually delete the loop if nothing remained within it.
1608   if (Blocks.empty()) {
1609     assert(SubLoops.empty() &&
1610            "Failed to remove all subloops from the original loop!");
1611     if (Loop *ParentL = L.getParentLoop())
1612       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1613     else
1614       LI.removeLoop(llvm::find(LI, &L));
1615     LI.destroy(&L);
1616     return false;
1617   }
1618 
1619   return true;
1620 }
1621 
1622 /// Helper to visit a dominator subtree, invoking a callable on each node.
1623 ///
1624 /// Returning false at any point will stop walking past that node of the tree.
1625 template <typename CallableT>
1626 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1627   SmallVector<DomTreeNode *, 4> DomWorklist;
1628   DomWorklist.push_back(DT[BB]);
1629 #ifndef NDEBUG
1630   SmallPtrSet<DomTreeNode *, 4> Visited;
1631   Visited.insert(DT[BB]);
1632 #endif
1633   do {
1634     DomTreeNode *N = DomWorklist.pop_back_val();
1635 
1636     // Visit this node.
1637     if (!Callable(N->getBlock()))
1638       continue;
1639 
1640     // Accumulate the child nodes.
1641     for (DomTreeNode *ChildN : *N) {
1642       assert(Visited.insert(ChildN).second &&
1643              "Cannot visit a node twice when walking a tree!");
1644       DomWorklist.push_back(ChildN);
1645     }
1646   } while (!DomWorklist.empty());
1647 }
1648 
1649 /// Take an invariant branch that has been determined to be safe and worthwhile
1650 /// to unswitch despite being non-trivial to do so and perform the unswitch.
1651 ///
1652 /// This directly updates the CFG to hoist the predicate out of the loop, and
1653 /// clone the necessary parts of the loop to maintain behavior.
1654 ///
1655 /// It also updates both dominator tree and loopinfo based on the unswitching.
1656 ///
1657 /// Once unswitching has been performed it runs the provided callback to report
1658 /// the new loops and no-longer valid loops to the caller.
1659 static bool unswitchInvariantBranch(
1660     Loop &L, BranchInst &BI, DominatorTree &DT, LoopInfo &LI,
1661     AssumptionCache &AC,
1662     function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
1663   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
1664   assert(L.isLoopInvariant(BI.getCondition()) &&
1665          "Can only unswitch an invariant branch condition!");
1666 
1667   // Constant and BBs tracking the cloned and continuing successor.
1668   const int ClonedSucc = 0;
1669   auto *ParentBB = BI.getParent();
1670   auto *UnswitchedSuccBB = BI.getSuccessor(ClonedSucc);
1671   auto *ContinueSuccBB = BI.getSuccessor(1 - ClonedSucc);
1672 
1673   assert(UnswitchedSuccBB != ContinueSuccBB &&
1674          "Should not unswitch a branch that always goes to the same place!");
1675 
1676   // The branch should be in this exact loop. Any inner loop's invariant branch
1677   // should be handled by unswitching that inner loop. The caller of this
1678   // routine should filter out any candidates that remain (but were skipped for
1679   // whatever reason).
1680   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1681 
1682   SmallVector<BasicBlock *, 4> ExitBlocks;
1683   L.getUniqueExitBlocks(ExitBlocks);
1684 
1685   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
1686   // don't know how to split those exit blocks.
1687   // FIXME: We should teach SplitBlock to handle this and remove this
1688   // restriction.
1689   for (auto *ExitBB : ExitBlocks)
1690     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI()))
1691       return false;
1692 
1693   SmallPtrSet<BasicBlock *, 4> ExitBlockSet(ExitBlocks.begin(),
1694                                             ExitBlocks.end());
1695 
1696   // Compute the parent loop now before we start hacking on things.
1697   Loop *ParentL = L.getParentLoop();
1698 
1699   // Compute the outer-most loop containing one of our exit blocks. This is the
1700   // furthest up our loopnest which can be mutated, which we will use below to
1701   // update things.
1702   Loop *OuterExitL = &L;
1703   for (auto *ExitBB : ExitBlocks) {
1704     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1705     if (!NewOuterExitL) {
1706       // We exited the entire nest with this block, so we're done.
1707       OuterExitL = nullptr;
1708       break;
1709     }
1710     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1711       OuterExitL = NewOuterExitL;
1712   }
1713 
1714   // If the edge we *aren't* cloning in the unswitch (the continuing edge)
1715   // dominates its target, we can skip cloning the dominated region of the loop
1716   // and its exits. We compute this as a set of nodes to be skipped.
1717   SmallPtrSet<BasicBlock *, 4> SkippedLoopAndExitBlocks;
1718   if (ContinueSuccBB->getUniquePredecessor() ||
1719       llvm::all_of(predecessors(ContinueSuccBB), [&](BasicBlock *PredBB) {
1720         return PredBB == ParentBB || DT.dominates(ContinueSuccBB, PredBB);
1721       })) {
1722     visitDomSubTree(DT, ContinueSuccBB, [&](BasicBlock *BB) {
1723       SkippedLoopAndExitBlocks.insert(BB);
1724       return true;
1725     });
1726   }
1727   // Similarly, if the edge we *are* cloning in the unswitch (the unswitched
1728   // edge) dominates its target, we will end up with dead nodes in the original
1729   // loop and its exits that will need to be deleted. Here, we just retain that
1730   // the property holds and will compute the deleted set later.
1731   bool DeleteUnswitchedSucc =
1732       UnswitchedSuccBB->getUniquePredecessor() ||
1733       llvm::all_of(predecessors(UnswitchedSuccBB), [&](BasicBlock *PredBB) {
1734         return PredBB == ParentBB || DT.dominates(UnswitchedSuccBB, PredBB);
1735       });
1736 
1737   // Split the preheader, so that we know that there is a safe place to insert
1738   // the conditional branch. We will change the preheader to have a conditional
1739   // branch on LoopCond. The original preheader will become the split point
1740   // between the unswitched versions, and we will have a new preheader for the
1741   // original loop.
1742   BasicBlock *SplitBB = L.getLoopPreheader();
1743   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
1744 
1745   // Keep a mapping for the cloned values.
1746   ValueToValueMapTy VMap;
1747 
1748   // Build the cloned blocks from the loop.
1749   auto *ClonedPH = buildClonedLoopBlocks(
1750       L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB,
1751       ContinueSuccBB, SkippedLoopAndExitBlocks, VMap, AC, DT, LI);
1752 
1753   // Build the cloned loop structure itself. This may be substantially
1754   // different from the original structure due to the simplified CFG. This also
1755   // handles inserting all the cloned blocks into the correct loops.
1756   SmallVector<Loop *, 4> NonChildClonedLoops;
1757   Loop *ClonedL =
1758       buildClonedLoops(L, ExitBlocks, VMap, LI, NonChildClonedLoops);
1759 
1760   // Remove the parent as a predecessor of the unswitched successor.
1761   UnswitchedSuccBB->removePredecessor(ParentBB, /*DontDeleteUselessPHIs*/ true);
1762 
1763   // Now splice the branch from the original loop and use it to select between
1764   // the two loops.
1765   SplitBB->getTerminator()->eraseFromParent();
1766   SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), BI);
1767   BI.setSuccessor(ClonedSucc, ClonedPH);
1768   BI.setSuccessor(1 - ClonedSucc, LoopPH);
1769 
1770   // Create a new unconditional branch to the continuing block (as opposed to
1771   // the one cloned).
1772   BranchInst::Create(ContinueSuccBB, ParentBB);
1773 
1774   // Delete anything that was made dead in the original loop due to
1775   // unswitching.
1776   if (DeleteUnswitchedSucc)
1777     deleteDeadBlocksFromLoop(L, UnswitchedSuccBB, ExitBlocks, DT, LI);
1778 
1779   SmallVector<Loop *, 4> HoistedLoops;
1780   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
1781 
1782   // This will have completely invalidated the dominator tree. We can't easily
1783   // bound how much is invalid because in some cases we will refine the
1784   // predecessor set of exit blocks of the loop which can move large unrelated
1785   // regions of code into a new subtree.
1786   //
1787   // FIXME: Eventually, we should use an incremental update utility that
1788   // leverages the existing information in the dominator tree (and potentially
1789   // the nature of the change) to more efficiently update things.
1790   DT.recalculate(*SplitBB->getParent());
1791 
1792   // We can change which blocks are exit blocks of all the cloned sibling
1793   // loops, the current loop, and any parent loops which shared exit blocks
1794   // with the current loop. As a consequence, we need to re-form LCSSA for
1795   // them. But we shouldn't need to re-form LCSSA for any child loops.
1796   // FIXME: This could be made more efficient by tracking which exit blocks are
1797   // new, and focusing on them, but that isn't likely to be necessary.
1798   //
1799   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
1800   // loop nest and update every loop that could have had its exits changed. We
1801   // also need to cover any intervening loops. We add all of these loops to
1802   // a list and sort them by loop depth to achieve this without updating
1803   // unnecessary loops.
1804   auto UpdateLCSSA = [&](Loop &UpdateL) {
1805 #ifndef NDEBUG
1806     for (Loop *ChildL : UpdateL)
1807       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
1808              "Perturbed a child loop's LCSSA form!");
1809 #endif
1810     formLCSSA(UpdateL, DT, &LI, nullptr);
1811   };
1812 
1813   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
1814   // and we can do it in any order as they don't nest relative to each other.
1815   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
1816     UpdateLCSSA(*UpdatedL);
1817 
1818   // If the original loop had exit blocks, walk up through the outer most loop
1819   // of those exit blocks to update LCSSA and form updated dedicated exits.
1820   if (OuterExitL != &L) {
1821     SmallVector<Loop *, 4> OuterLoops;
1822     // We start with the cloned loop and the current loop if they are loops and
1823     // move toward OuterExitL. Also, if either the cloned loop or the current
1824     // loop have become top level loops we need to walk all the way out.
1825     if (ClonedL) {
1826       OuterLoops.push_back(ClonedL);
1827       if (!ClonedL->getParentLoop())
1828         OuterExitL = nullptr;
1829     }
1830     if (IsStillLoop) {
1831       OuterLoops.push_back(&L);
1832       if (!L.getParentLoop())
1833         OuterExitL = nullptr;
1834     }
1835     // Grab all of the enclosing loops now.
1836     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
1837          OuterL = OuterL->getParentLoop())
1838       OuterLoops.push_back(OuterL);
1839 
1840     // Finally, update our list of outer loops. This is nicely ordered to work
1841     // inside-out.
1842     for (Loop *OuterL : OuterLoops) {
1843       // First build LCSSA for this loop so that we can preserve it when
1844       // forming dedicated exits. We don't want to perturb some other loop's
1845       // LCSSA while doing that CFG edit.
1846       UpdateLCSSA(*OuterL);
1847 
1848       // For loops reached by this loop's original exit blocks we may
1849       // introduced new, non-dedicated exits. At least try to re-form dedicated
1850       // exits for these loops. This may fail if they couldn't have dedicated
1851       // exits to start with.
1852       formDedicatedExitBlocks(OuterL, &DT, &LI, /*PreserveLCSSA*/ true);
1853     }
1854   }
1855 
1856 #ifndef NDEBUG
1857   // Verify the entire loop structure to catch any incorrect updates before we
1858   // progress in the pass pipeline.
1859   LI.verify(DT);
1860 #endif
1861 
1862   // Now that we've unswitched something, make callbacks to report the changes.
1863   // For that we need to merge together the updated loops and the cloned loops
1864   // and check whether the original loop survived.
1865   SmallVector<Loop *, 4> SibLoops;
1866   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
1867     if (UpdatedL->getParentLoop() == ParentL)
1868       SibLoops.push_back(UpdatedL);
1869   NonTrivialUnswitchCB(IsStillLoop, SibLoops);
1870 
1871   ++NumBranches;
1872   return true;
1873 }
1874 
1875 /// Recursively compute the cost of a dominator subtree based on the per-block
1876 /// cost map provided.
1877 ///
1878 /// The recursive computation is memozied into the provided DT-indexed cost map
1879 /// to allow querying it for most nodes in the domtree without it becoming
1880 /// quadratic.
1881 static int
1882 computeDomSubtreeCost(DomTreeNode &N,
1883                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
1884                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
1885   // Don't accumulate cost (or recurse through) blocks not in our block cost
1886   // map and thus not part of the duplication cost being considered.
1887   auto BBCostIt = BBCostMap.find(N.getBlock());
1888   if (BBCostIt == BBCostMap.end())
1889     return 0;
1890 
1891   // Lookup this node to see if we already computed its cost.
1892   auto DTCostIt = DTCostMap.find(&N);
1893   if (DTCostIt != DTCostMap.end())
1894     return DTCostIt->second;
1895 
1896   // If not, we have to compute it. We can't use insert above and update
1897   // because computing the cost may insert more things into the map.
1898   int Cost = std::accumulate(
1899       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
1900         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
1901       });
1902   bool Inserted = DTCostMap.insert({&N, Cost}).second;
1903   (void)Inserted;
1904   assert(Inserted && "Should not insert a node while visiting children!");
1905   return Cost;
1906 }
1907 
1908 /// Unswitch control flow predicated on loop invariant conditions.
1909 ///
1910 /// This first hoists all branches or switches which are trivial (IE, do not
1911 /// require duplicating any part of the loop) out of the loop body. It then
1912 /// looks at other loop invariant control flows and tries to unswitch those as
1913 /// well by cloning the loop if the result is small enough.
1914 static bool
1915 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
1916              TargetTransformInfo &TTI, bool NonTrivial,
1917              function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
1918   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
1919          "Loops must be in LCSSA form before unswitching.");
1920   bool Changed = false;
1921 
1922   // Must be in loop simplified form: we need a preheader and dedicated exits.
1923   if (!L.isLoopSimplifyForm())
1924     return false;
1925 
1926   // Try trivial unswitch first before loop over other basic blocks in the loop.
1927   Changed |= unswitchAllTrivialConditions(L, DT, LI);
1928 
1929   // If we're not doing non-trivial unswitching, we're done. We both accept
1930   // a parameter but also check a local flag that can be used for testing
1931   // a debugging.
1932   if (!NonTrivial && !EnableNonTrivialUnswitch)
1933     return Changed;
1934 
1935   // Collect all remaining invariant branch conditions within this loop (as
1936   // opposed to an inner loop which would be handled when visiting that inner
1937   // loop).
1938   SmallVector<TerminatorInst *, 4> UnswitchCandidates;
1939   for (auto *BB : L.blocks())
1940     if (LI.getLoopFor(BB) == &L)
1941       if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1942         if (BI->isConditional() && L.isLoopInvariant(BI->getCondition()) &&
1943             BI->getSuccessor(0) != BI->getSuccessor(1))
1944           UnswitchCandidates.push_back(BI);
1945 
1946   // If we didn't find any candidates, we're done.
1947   if (UnswitchCandidates.empty())
1948     return Changed;
1949 
1950   DEBUG(dbgs() << "Considering " << UnswitchCandidates.size()
1951                << " non-trivial loop invariant conditions for unswitching.\n");
1952 
1953   // Given that unswitching these terminators will require duplicating parts of
1954   // the loop, so we need to be able to model that cost. Compute the ephemeral
1955   // values and set up a data structure to hold per-BB costs. We cache each
1956   // block's cost so that we don't recompute this when considering different
1957   // subsets of the loop for duplication during unswitching.
1958   SmallPtrSet<const Value *, 4> EphValues;
1959   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
1960   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
1961 
1962   // Compute the cost of each block, as well as the total loop cost. Also, bail
1963   // out if we see instructions which are incompatible with loop unswitching
1964   // (convergent, noduplicate, or cross-basic-block tokens).
1965   // FIXME: We might be able to safely handle some of these in non-duplicated
1966   // regions.
1967   int LoopCost = 0;
1968   for (auto *BB : L.blocks()) {
1969     int Cost = 0;
1970     for (auto &I : *BB) {
1971       if (EphValues.count(&I))
1972         continue;
1973 
1974       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
1975         return Changed;
1976       if (auto CS = CallSite(&I))
1977         if (CS.isConvergent() || CS.cannotDuplicate())
1978           return Changed;
1979 
1980       Cost += TTI.getUserCost(&I);
1981     }
1982     assert(Cost >= 0 && "Must not have negative costs!");
1983     LoopCost += Cost;
1984     assert(LoopCost >= 0 && "Must not have negative loop costs!");
1985     BBCostMap[BB] = Cost;
1986   }
1987   DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
1988 
1989   // Now we find the best candidate by searching for the one with the following
1990   // properties in order:
1991   //
1992   // 1) An unswitching cost below the threshold
1993   // 2) The smallest number of duplicated unswitch candidates (to avoid
1994   //    creating redundant subsequent unswitching)
1995   // 3) The smallest cost after unswitching.
1996   //
1997   // We prioritize reducing fanout of unswitch candidates provided the cost
1998   // remains below the threshold because this has a multiplicative effect.
1999   //
2000   // This requires memoizing each dominator subtree to avoid redundant work.
2001   //
2002   // FIXME: Need to actually do the number of candidates part above.
2003   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2004   // Given a terminator which might be unswitched, computes the non-duplicated
2005   // cost for that terminator.
2006   auto ComputeUnswitchedCost = [&](TerminatorInst *TI) {
2007     BasicBlock &BB = *TI->getParent();
2008     SmallPtrSet<BasicBlock *, 4> Visited;
2009 
2010     int Cost = LoopCost;
2011     for (BasicBlock *SuccBB : successors(&BB)) {
2012       // Don't count successors more than once.
2013       if (!Visited.insert(SuccBB).second)
2014         continue;
2015 
2016       // This successor's domtree will not need to be duplicated after
2017       // unswitching if the edge to the successor dominates it (and thus the
2018       // entire tree). This essentially means there is no other path into this
2019       // subtree and so it will end up live in only one clone of the loop.
2020       if (SuccBB->getUniquePredecessor() ||
2021           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2022             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2023           })) {
2024         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2025         assert(Cost >= 0 &&
2026                "Non-duplicated cost should never exceed total loop cost!");
2027       }
2028     }
2029 
2030     // Now scale the cost by the number of unique successors minus one. We
2031     // subtract one because there is already at least one copy of the entire
2032     // loop. This is computing the new cost of unswitching a condition.
2033     assert(Visited.size() > 1 &&
2034            "Cannot unswitch a condition without multiple distinct successors!");
2035     return Cost * (Visited.size() - 1);
2036   };
2037   TerminatorInst *BestUnswitchTI = nullptr;
2038   int BestUnswitchCost;
2039   for (TerminatorInst *CandidateTI : UnswitchCandidates) {
2040     int CandidateCost = ComputeUnswitchedCost(CandidateTI);
2041     DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2042                  << " for unswitch candidate: " << *CandidateTI << "\n");
2043     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2044       BestUnswitchTI = CandidateTI;
2045       BestUnswitchCost = CandidateCost;
2046     }
2047   }
2048 
2049   if (BestUnswitchCost < UnswitchThreshold) {
2050     DEBUG(dbgs() << "  Trying to unswitch non-trivial (cost = "
2051                  << BestUnswitchCost << ") branch: " << *BestUnswitchTI
2052                  << "\n");
2053     Changed |= unswitchInvariantBranch(L, cast<BranchInst>(*BestUnswitchTI), DT,
2054                                        LI, AC, NonTrivialUnswitchCB);
2055   } else {
2056     DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << BestUnswitchCost
2057                  << "\n");
2058   }
2059 
2060   return Changed;
2061 }
2062 
2063 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2064                                               LoopStandardAnalysisResults &AR,
2065                                               LPMUpdater &U) {
2066   Function &F = *L.getHeader()->getParent();
2067   (void)F;
2068 
2069   DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L << "\n");
2070 
2071   // Save the current loop name in a variable so that we can report it even
2072   // after it has been deleted.
2073   std::string LoopName = L.getName();
2074 
2075   auto NonTrivialUnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2076                                                   ArrayRef<Loop *> NewLoops) {
2077     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2078     U.addSiblingLoops(NewLoops);
2079 
2080     // If the current loop remains valid, we should revisit it to catch any
2081     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2082     if (CurrentLoopValid)
2083       U.revisitCurrentLoop();
2084     else
2085       U.markLoopAsDeleted(L, LoopName);
2086   };
2087 
2088   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial,
2089                     NonTrivialUnswitchCB))
2090     return PreservedAnalyses::all();
2091 
2092 #ifndef NDEBUG
2093   // Historically this pass has had issues with the dominator tree so verify it
2094   // in asserts builds.
2095   AR.DT.verifyDomTree();
2096 #endif
2097   return getLoopPassPreservedAnalyses();
2098 }
2099 
2100 namespace {
2101 
2102 class SimpleLoopUnswitchLegacyPass : public LoopPass {
2103   bool NonTrivial;
2104 
2105 public:
2106   static char ID; // Pass ID, replacement for typeid
2107 
2108   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2109       : LoopPass(ID), NonTrivial(NonTrivial) {
2110     initializeSimpleLoopUnswitchLegacyPassPass(
2111         *PassRegistry::getPassRegistry());
2112   }
2113 
2114   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2115 
2116   void getAnalysisUsage(AnalysisUsage &AU) const override {
2117     AU.addRequired<AssumptionCacheTracker>();
2118     AU.addRequired<TargetTransformInfoWrapperPass>();
2119     getLoopAnalysisUsage(AU);
2120   }
2121 };
2122 
2123 } // end anonymous namespace
2124 
2125 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2126   if (skipLoop(L))
2127     return false;
2128 
2129   Function &F = *L->getHeader()->getParent();
2130 
2131   DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L << "\n");
2132 
2133   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2134   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2135   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2136   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2137 
2138   auto NonTrivialUnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2139                                          ArrayRef<Loop *> NewLoops) {
2140     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2141     for (auto *NewL : NewLoops)
2142       LPM.addLoop(*NewL);
2143 
2144     // If the current loop remains valid, re-add it to the queue. This is
2145     // a little wasteful as we'll finish processing the current loop as well,
2146     // but it is the best we can do in the old PM.
2147     if (CurrentLoopValid)
2148       LPM.addLoop(*L);
2149     else
2150       LPM.markLoopAsDeleted(*L);
2151   };
2152 
2153   bool Changed =
2154       unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, NonTrivialUnswitchCB);
2155 
2156   // If anything was unswitched, also clear any cached information about this
2157   // loop.
2158   LPM.deleteSimpleAnalysisLoop(L);
2159 
2160 #ifndef NDEBUG
2161   // Historically this pass has had issues with the dominator tree so verify it
2162   // in asserts builds.
2163   DT.verifyDomTree();
2164 #endif
2165   return Changed;
2166 }
2167 
2168 char SimpleLoopUnswitchLegacyPass::ID = 0;
2169 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2170                       "Simple unswitch loops", false, false)
2171 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2172 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2173 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2174 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2175 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2176 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2177                     "Simple unswitch loops", false, false)
2178 
2179 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2180   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
2181 }
2182