1 //===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/Utils/Local.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Use.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/GenericDomTree.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Cloning.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include "llvm/Transforms/Utils/ValueMapper.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <numeric> 54 #include <utility> 55 56 #define DEBUG_TYPE "simple-loop-unswitch" 57 58 using namespace llvm; 59 60 STATISTIC(NumBranches, "Number of branches unswitched"); 61 STATISTIC(NumSwitches, "Number of switches unswitched"); 62 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 63 64 static cl::opt<bool> EnableNonTrivialUnswitch( 65 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 66 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 67 "following the configuration passed into the pass.")); 68 69 static cl::opt<int> 70 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 71 cl::desc("The cost threshold for unswitching a loop.")); 72 73 /// Collect all of the loop invariant input values transitively used by the 74 /// homogeneous instruction graph from a given root. 75 /// 76 /// This essentially walks from a root recursively through loop variant operands 77 /// which have the exact same opcode and finds all inputs which are loop 78 /// invariant. For some operations these can be re-associated and unswitched out 79 /// of the loop entirely. 80 static SmallVector<Value *, 4> 81 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 82 LoopInfo &LI) { 83 SmallVector<Value *, 4> Invariants; 84 assert(!L.isLoopInvariant(&Root) && 85 "Only need to walk the graph if root itself is not invariant."); 86 87 // Build a worklist and recurse through operators collecting invariants. 88 SmallVector<Instruction *, 4> Worklist; 89 SmallPtrSet<Instruction *, 8> Visited; 90 Worklist.push_back(&Root); 91 Visited.insert(&Root); 92 do { 93 Instruction &I = *Worklist.pop_back_val(); 94 for (Value *OpV : I.operand_values()) { 95 // Skip constants as unswitching isn't interesting for them. 96 if (isa<Constant>(OpV)) 97 continue; 98 99 // Add it to our result if loop invariant. 100 if (L.isLoopInvariant(OpV)) { 101 Invariants.push_back(OpV); 102 continue; 103 } 104 105 // If not an instruction with the same opcode, nothing we can do. 106 Instruction *OpI = dyn_cast<Instruction>(OpV); 107 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 108 continue; 109 110 // Visit this operand. 111 if (Visited.insert(OpI).second) 112 Worklist.push_back(OpI); 113 } 114 } while (!Worklist.empty()); 115 116 return Invariants; 117 } 118 119 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 120 Constant &Replacement) { 121 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 122 123 // Replace uses of LIC in the loop with the given constant. 124 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 125 // Grab the use and walk past it so we can clobber it in the use list. 126 Use *U = &*UI++; 127 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 128 129 // Replace this use within the loop body. 130 if (UserI && L.contains(UserI)) 131 U->set(&Replacement); 132 } 133 } 134 135 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 136 /// incoming values along this edge. 137 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 138 BasicBlock &ExitBB) { 139 for (Instruction &I : ExitBB) { 140 auto *PN = dyn_cast<PHINode>(&I); 141 if (!PN) 142 // No more PHIs to check. 143 return true; 144 145 // If the incoming value for this edge isn't loop invariant the unswitch 146 // won't be trivial. 147 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 148 return false; 149 } 150 llvm_unreachable("Basic blocks should never be empty!"); 151 } 152 153 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 154 /// 155 /// Requires that the loop exit and unswitched basic block are the same, and 156 /// that the exiting block was a unique predecessor of that block. Rewrites the 157 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 158 /// PHI nodes from the old preheader that now contains the unswitched 159 /// terminator. 160 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 161 BasicBlock &OldExitingBB, 162 BasicBlock &OldPH) { 163 for (PHINode &PN : UnswitchedBB.phis()) { 164 // When the loop exit is directly unswitched we just need to update the 165 // incoming basic block. We loop to handle weird cases with repeated 166 // incoming blocks, but expect to typically only have one operand here. 167 for (auto i : seq<int>(0, PN.getNumOperands())) { 168 assert(PN.getIncomingBlock(i) == &OldExitingBB && 169 "Found incoming block different from unique predecessor!"); 170 PN.setIncomingBlock(i, &OldPH); 171 } 172 } 173 } 174 175 /// Rewrite the PHI nodes in the loop exit basic block and the split off 176 /// unswitched block. 177 /// 178 /// Because the exit block remains an exit from the loop, this rewrites the 179 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 180 /// nodes into the unswitched basic block to select between the value in the 181 /// old preheader and the loop exit. 182 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 183 BasicBlock &UnswitchedBB, 184 BasicBlock &OldExitingBB, 185 BasicBlock &OldPH, 186 bool FullUnswitch) { 187 assert(&ExitBB != &UnswitchedBB && 188 "Must have different loop exit and unswitched blocks!"); 189 Instruction *InsertPt = &*UnswitchedBB.begin(); 190 for (PHINode &PN : ExitBB.phis()) { 191 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 192 PN.getName() + ".split", InsertPt); 193 194 // Walk backwards over the old PHI node's inputs to minimize the cost of 195 // removing each one. We have to do this weird loop manually so that we 196 // create the same number of new incoming edges in the new PHI as we expect 197 // each case-based edge to be included in the unswitched switch in some 198 // cases. 199 // FIXME: This is really, really gross. It would be much cleaner if LLVM 200 // allowed us to create a single entry for a predecessor block without 201 // having separate entries for each "edge" even though these edges are 202 // required to produce identical results. 203 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 204 if (PN.getIncomingBlock(i) != &OldExitingBB) 205 continue; 206 207 Value *Incoming = PN.getIncomingValue(i); 208 if (FullUnswitch) 209 // No more edge from the old exiting block to the exit block. 210 PN.removeIncomingValue(i); 211 212 NewPN->addIncoming(Incoming, &OldPH); 213 } 214 215 // Now replace the old PHI with the new one and wire the old one in as an 216 // input to the new one. 217 PN.replaceAllUsesWith(NewPN); 218 NewPN->addIncoming(&PN, &ExitBB); 219 } 220 } 221 222 /// Unswitch a trivial branch if the condition is loop invariant. 223 /// 224 /// This routine should only be called when loop code leading to the branch has 225 /// been validated as trivial (no side effects). This routine checks if the 226 /// condition is invariant and one of the successors is a loop exit. This 227 /// allows us to unswitch without duplicating the loop, making it trivial. 228 /// 229 /// If this routine fails to unswitch the branch it returns false. 230 /// 231 /// If the branch can be unswitched, this routine splits the preheader and 232 /// hoists the branch above that split. Preserves loop simplified form 233 /// (splitting the exit block as necessary). It simplifies the branch within 234 /// the loop to an unconditional branch but doesn't remove it entirely. Further 235 /// cleanup can be done with some simplify-cfg like pass. 236 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 237 LoopInfo &LI) { 238 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 239 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 240 241 // The loop invariant values that we want to unswitch. 242 SmallVector<Value *, 4> Invariants; 243 244 // When true, we're fully unswitching the branch rather than just unswitching 245 // some input conditions to the branch. 246 bool FullUnswitch = false; 247 248 if (L.isLoopInvariant(BI.getCondition())) { 249 Invariants.push_back(BI.getCondition()); 250 FullUnswitch = true; 251 } else { 252 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 253 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 254 if (Invariants.empty()) 255 // Couldn't find invariant inputs! 256 return false; 257 } 258 259 // Check that one of the branch's successors exits, and which one. 260 bool ExitDirection = true; 261 int LoopExitSuccIdx = 0; 262 auto *LoopExitBB = BI.getSuccessor(0); 263 if (L.contains(LoopExitBB)) { 264 ExitDirection = false; 265 LoopExitSuccIdx = 1; 266 LoopExitBB = BI.getSuccessor(1); 267 if (L.contains(LoopExitBB)) 268 return false; 269 } 270 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 271 auto *ParentBB = BI.getParent(); 272 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 273 return false; 274 275 // When unswitching only part of the branch's condition, we need the exit 276 // block to be reached directly from the partially unswitched input. This can 277 // be done when the exit block is along the true edge and the branch condition 278 // is a graph of `or` operations, or the exit block is along the false edge 279 // and the condition is a graph of `and` operations. 280 if (!FullUnswitch) { 281 if (ExitDirection) { 282 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 283 return false; 284 } else { 285 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 286 return false; 287 } 288 } 289 290 LLVM_DEBUG({ 291 dbgs() << " unswitching trivial invariant conditions for: " << BI 292 << "\n"; 293 for (Value *Invariant : Invariants) { 294 dbgs() << " " << *Invariant << " == true"; 295 if (Invariant != Invariants.back()) 296 dbgs() << " ||"; 297 dbgs() << "\n"; 298 } 299 }); 300 301 // Split the preheader, so that we know that there is a safe place to insert 302 // the conditional branch. We will change the preheader to have a conditional 303 // branch on LoopCond. 304 BasicBlock *OldPH = L.getLoopPreheader(); 305 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 306 307 // Now that we have a place to insert the conditional branch, create a place 308 // to branch to: this is the exit block out of the loop that we are 309 // unswitching. We need to split this if there are other loop predecessors. 310 // Because the loop is in simplified form, *any* other predecessor is enough. 311 BasicBlock *UnswitchedBB; 312 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 313 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 314 "A branch's parent isn't a predecessor!"); 315 UnswitchedBB = LoopExitBB; 316 } else { 317 UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI); 318 } 319 320 // Actually move the invariant uses into the unswitched position. If possible, 321 // we do this by moving the instructions, but when doing partial unswitching 322 // we do it by building a new merge of the values in the unswitched position. 323 OldPH->getTerminator()->eraseFromParent(); 324 if (FullUnswitch) { 325 // If fully unswitching, we can use the existing branch instruction. 326 // Splice it into the old PH to gate reaching the new preheader and re-point 327 // its successors. 328 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 329 BI); 330 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 331 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 332 333 // Create a new unconditional branch that will continue the loop as a new 334 // terminator. 335 BranchInst::Create(ContinueBB, ParentBB); 336 } else { 337 // Only unswitching a subset of inputs to the condition, so we will need to 338 // build a new branch that merges the invariant inputs. 339 IRBuilder<> IRB(OldPH); 340 Value *Cond = Invariants.front(); 341 if (ExitDirection) 342 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 343 Instruction::Or && 344 "Must have an `or` of `i1`s for the condition!"); 345 else 346 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 347 Instruction::And && 348 "Must have an `and` of `i1`s for the condition!"); 349 for (Value *Invariant : 350 make_range(std::next(Invariants.begin()), Invariants.end())) 351 if (ExitDirection) 352 Cond = IRB.CreateOr(Cond, Invariant); 353 else 354 Cond = IRB.CreateAnd(Cond, Invariant); 355 356 BasicBlock *Succs[2]; 357 Succs[LoopExitSuccIdx] = UnswitchedBB; 358 Succs[1 - LoopExitSuccIdx] = NewPH; 359 IRB.CreateCondBr(Cond, Succs[0], Succs[1]); 360 } 361 362 // Rewrite the relevant PHI nodes. 363 if (UnswitchedBB == LoopExitBB) 364 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 365 else 366 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 367 *ParentBB, *OldPH, FullUnswitch); 368 369 // Now we need to update the dominator tree. 370 DT.insertEdge(OldPH, UnswitchedBB); 371 if (FullUnswitch) 372 DT.deleteEdge(ParentBB, UnswitchedBB); 373 374 // The constant we can replace all of our invariants with inside the loop 375 // body. If any of the invariants have a value other than this the loop won't 376 // be entered. 377 ConstantInt *Replacement = ExitDirection 378 ? ConstantInt::getFalse(BI.getContext()) 379 : ConstantInt::getTrue(BI.getContext()); 380 381 // Since this is an i1 condition we can also trivially replace uses of it 382 // within the loop with a constant. 383 for (Value *Invariant : Invariants) 384 replaceLoopInvariantUses(L, Invariant, *Replacement); 385 386 ++NumTrivial; 387 ++NumBranches; 388 return true; 389 } 390 391 /// Unswitch a trivial switch if the condition is loop invariant. 392 /// 393 /// This routine should only be called when loop code leading to the switch has 394 /// been validated as trivial (no side effects). This routine checks if the 395 /// condition is invariant and that at least one of the successors is a loop 396 /// exit. This allows us to unswitch without duplicating the loop, making it 397 /// trivial. 398 /// 399 /// If this routine fails to unswitch the switch it returns false. 400 /// 401 /// If the switch can be unswitched, this routine splits the preheader and 402 /// copies the switch above that split. If the default case is one of the 403 /// exiting cases, it copies the non-exiting cases and points them at the new 404 /// preheader. If the default case is not exiting, it copies the exiting cases 405 /// and points the default at the preheader. It preserves loop simplified form 406 /// (splitting the exit blocks as necessary). It simplifies the switch within 407 /// the loop by removing now-dead cases. If the default case is one of those 408 /// unswitched, it replaces its destination with a new basic block containing 409 /// only unreachable. Such basic blocks, while technically loop exits, are not 410 /// considered for unswitching so this is a stable transform and the same 411 /// switch will not be revisited. If after unswitching there is only a single 412 /// in-loop successor, the switch is further simplified to an unconditional 413 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 414 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 415 LoopInfo &LI) { 416 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 417 Value *LoopCond = SI.getCondition(); 418 419 // If this isn't switching on an invariant condition, we can't unswitch it. 420 if (!L.isLoopInvariant(LoopCond)) 421 return false; 422 423 auto *ParentBB = SI.getParent(); 424 425 SmallVector<int, 4> ExitCaseIndices; 426 for (auto Case : SI.cases()) { 427 auto *SuccBB = Case.getCaseSuccessor(); 428 if (!L.contains(SuccBB) && 429 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 430 ExitCaseIndices.push_back(Case.getCaseIndex()); 431 } 432 BasicBlock *DefaultExitBB = nullptr; 433 if (!L.contains(SI.getDefaultDest()) && 434 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 435 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 436 DefaultExitBB = SI.getDefaultDest(); 437 else if (ExitCaseIndices.empty()) 438 return false; 439 440 LLVM_DEBUG(dbgs() << " unswitching trivial cases...\n"); 441 442 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 443 ExitCases.reserve(ExitCaseIndices.size()); 444 // We walk the case indices backwards so that we remove the last case first 445 // and don't disrupt the earlier indices. 446 for (unsigned Index : reverse(ExitCaseIndices)) { 447 auto CaseI = SI.case_begin() + Index; 448 // Save the value of this case. 449 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 450 // Delete the unswitched cases. 451 SI.removeCase(CaseI); 452 } 453 454 // Check if after this all of the remaining cases point at the same 455 // successor. 456 BasicBlock *CommonSuccBB = nullptr; 457 if (SI.getNumCases() > 0 && 458 std::all_of(std::next(SI.case_begin()), SI.case_end(), 459 [&SI](const SwitchInst::CaseHandle &Case) { 460 return Case.getCaseSuccessor() == 461 SI.case_begin()->getCaseSuccessor(); 462 })) 463 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 464 465 if (DefaultExitBB) { 466 // We can't remove the default edge so replace it with an edge to either 467 // the single common remaining successor (if we have one) or an unreachable 468 // block. 469 if (CommonSuccBB) { 470 SI.setDefaultDest(CommonSuccBB); 471 } else { 472 BasicBlock *UnreachableBB = BasicBlock::Create( 473 ParentBB->getContext(), 474 Twine(ParentBB->getName()) + ".unreachable_default", 475 ParentBB->getParent()); 476 new UnreachableInst(ParentBB->getContext(), UnreachableBB); 477 SI.setDefaultDest(UnreachableBB); 478 DT.addNewBlock(UnreachableBB, ParentBB); 479 } 480 } else { 481 // If we're not unswitching the default, we need it to match any cases to 482 // have a common successor or if we have no cases it is the common 483 // successor. 484 if (SI.getNumCases() == 0) 485 CommonSuccBB = SI.getDefaultDest(); 486 else if (SI.getDefaultDest() != CommonSuccBB) 487 CommonSuccBB = nullptr; 488 } 489 490 // Split the preheader, so that we know that there is a safe place to insert 491 // the switch. 492 BasicBlock *OldPH = L.getLoopPreheader(); 493 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 494 OldPH->getTerminator()->eraseFromParent(); 495 496 // Now add the unswitched switch. 497 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 498 499 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 500 // First, we split any exit blocks with remaining in-loop predecessors. Then 501 // we update the PHIs in one of two ways depending on if there was a split. 502 // We walk in reverse so that we split in the same order as the cases 503 // appeared. This is purely for convenience of reading the resulting IR, but 504 // it doesn't cost anything really. 505 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 506 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 507 // Handle the default exit if necessary. 508 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 509 // ranges aren't quite powerful enough yet. 510 if (DefaultExitBB) { 511 if (pred_empty(DefaultExitBB)) { 512 UnswitchedExitBBs.insert(DefaultExitBB); 513 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 514 } else { 515 auto *SplitBB = 516 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI); 517 rewritePHINodesForExitAndUnswitchedBlocks( 518 *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 519 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 520 } 521 } 522 // Note that we must use a reference in the for loop so that we update the 523 // container. 524 for (auto &CasePair : reverse(ExitCases)) { 525 // Grab a reference to the exit block in the pair so that we can update it. 526 BasicBlock *ExitBB = CasePair.second; 527 528 // If this case is the last edge into the exit block, we can simply reuse it 529 // as it will no longer be a loop exit. No mapping necessary. 530 if (pred_empty(ExitBB)) { 531 // Only rewrite once. 532 if (UnswitchedExitBBs.insert(ExitBB).second) 533 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 534 continue; 535 } 536 537 // Otherwise we need to split the exit block so that we retain an exit 538 // block from the loop and a target for the unswitched condition. 539 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 540 if (!SplitExitBB) { 541 // If this is the first time we see this, do the split and remember it. 542 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 543 rewritePHINodesForExitAndUnswitchedBlocks( 544 *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 545 } 546 // Update the case pair to point to the split block. 547 CasePair.second = SplitExitBB; 548 } 549 550 // Now add the unswitched cases. We do this in reverse order as we built them 551 // in reverse order. 552 for (auto CasePair : reverse(ExitCases)) { 553 ConstantInt *CaseVal = CasePair.first; 554 BasicBlock *UnswitchedBB = CasePair.second; 555 556 NewSI->addCase(CaseVal, UnswitchedBB); 557 } 558 559 // If the default was unswitched, re-point it and add explicit cases for 560 // entering the loop. 561 if (DefaultExitBB) { 562 NewSI->setDefaultDest(DefaultExitBB); 563 564 // We removed all the exit cases, so we just copy the cases to the 565 // unswitched switch. 566 for (auto Case : SI.cases()) 567 NewSI->addCase(Case.getCaseValue(), NewPH); 568 } 569 570 // If we ended up with a common successor for every path through the switch 571 // after unswitching, rewrite it to an unconditional branch to make it easy 572 // to recognize. Otherwise we potentially have to recognize the default case 573 // pointing at unreachable and other complexity. 574 if (CommonSuccBB) { 575 BasicBlock *BB = SI.getParent(); 576 SI.eraseFromParent(); 577 BranchInst::Create(CommonSuccBB, BB); 578 } 579 580 // Walk the unswitched exit blocks and the unswitched split blocks and update 581 // the dominator tree based on the CFG edits. While we are walking unordered 582 // containers here, the API for applyUpdates takes an unordered list of 583 // updates and requires them to not contain duplicates. 584 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 585 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 586 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 587 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 588 } 589 for (auto SplitUnswitchedPair : SplitExitBBMap) { 590 auto *UnswitchedBB = SplitUnswitchedPair.second; 591 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); 592 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 593 } 594 DT.applyUpdates(DTUpdates); 595 596 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 597 ++NumTrivial; 598 ++NumSwitches; 599 return true; 600 } 601 602 /// This routine scans the loop to find a branch or switch which occurs before 603 /// any side effects occur. These can potentially be unswitched without 604 /// duplicating the loop. If a branch or switch is successfully unswitched the 605 /// scanning continues to see if subsequent branches or switches have become 606 /// trivial. Once all trivial candidates have been unswitched, this routine 607 /// returns. 608 /// 609 /// The return value indicates whether anything was unswitched (and therefore 610 /// changed). 611 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 612 LoopInfo &LI) { 613 bool Changed = false; 614 615 // If loop header has only one reachable successor we should keep looking for 616 // trivial condition candidates in the successor as well. An alternative is 617 // to constant fold conditions and merge successors into loop header (then we 618 // only need to check header's terminator). The reason for not doing this in 619 // LoopUnswitch pass is that it could potentially break LoopPassManager's 620 // invariants. Folding dead branches could either eliminate the current loop 621 // or make other loops unreachable. LCSSA form might also not be preserved 622 // after deleting branches. The following code keeps traversing loop header's 623 // successors until it finds the trivial condition candidate (condition that 624 // is not a constant). Since unswitching generates branches with constant 625 // conditions, this scenario could be very common in practice. 626 BasicBlock *CurrentBB = L.getHeader(); 627 SmallPtrSet<BasicBlock *, 8> Visited; 628 Visited.insert(CurrentBB); 629 do { 630 // Check if there are any side-effecting instructions (e.g. stores, calls, 631 // volatile loads) in the part of the loop that the code *would* execute 632 // without unswitching. 633 if (llvm::any_of(*CurrentBB, 634 [](Instruction &I) { return I.mayHaveSideEffects(); })) 635 return Changed; 636 637 TerminatorInst *CurrentTerm = CurrentBB->getTerminator(); 638 639 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 640 // Don't bother trying to unswitch past a switch with a constant 641 // condition. This should be removed prior to running this pass by 642 // simplify-cfg. 643 if (isa<Constant>(SI->getCondition())) 644 return Changed; 645 646 if (!unswitchTrivialSwitch(L, *SI, DT, LI)) 647 // Couldn't unswitch this one so we're done. 648 return Changed; 649 650 // Mark that we managed to unswitch something. 651 Changed = true; 652 653 // If unswitching turned the terminator into an unconditional branch then 654 // we can continue. The unswitching logic specifically works to fold any 655 // cases it can into an unconditional branch to make it easier to 656 // recognize here. 657 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 658 if (!BI || BI->isConditional()) 659 return Changed; 660 661 CurrentBB = BI->getSuccessor(0); 662 continue; 663 } 664 665 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 666 if (!BI) 667 // We do not understand other terminator instructions. 668 return Changed; 669 670 // Don't bother trying to unswitch past an unconditional branch or a branch 671 // with a constant value. These should be removed by simplify-cfg prior to 672 // running this pass. 673 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 674 return Changed; 675 676 // Found a trivial condition candidate: non-foldable conditional branch. If 677 // we fail to unswitch this, we can't do anything else that is trivial. 678 if (!unswitchTrivialBranch(L, *BI, DT, LI)) 679 return Changed; 680 681 // Mark that we managed to unswitch something. 682 Changed = true; 683 684 // If we only unswitched some of the conditions feeding the branch, we won't 685 // have collapsed it to a single successor. 686 BI = cast<BranchInst>(CurrentBB->getTerminator()); 687 if (BI->isConditional()) 688 return Changed; 689 690 // Follow the newly unconditional branch into its successor. 691 CurrentBB = BI->getSuccessor(0); 692 693 // When continuing, if we exit the loop or reach a previous visited block, 694 // then we can not reach any trivial condition candidates (unfoldable 695 // branch instructions or switch instructions) and no unswitch can happen. 696 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 697 698 return Changed; 699 } 700 701 /// Build the cloned blocks for an unswitched copy of the given loop. 702 /// 703 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 704 /// after the split block (`SplitBB`) that will be used to select between the 705 /// cloned and original loop. 706 /// 707 /// This routine handles cloning all of the necessary loop blocks and exit 708 /// blocks including rewriting their instructions and the relevant PHI nodes. 709 /// It skips loop and exit blocks that are not necessary based on the provided 710 /// set. It also correctly creates the unconditional branch in the cloned 711 /// unswitched parent block to only point at the unswitched successor. 712 /// 713 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 714 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 715 /// the cloned blocks (and their loops) are left without full `LoopInfo` 716 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 717 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 718 /// instead the caller must recompute an accurate DT. It *does* correctly 719 /// update the `AssumptionCache` provided in `AC`. 720 static BasicBlock *buildClonedLoopBlocks( 721 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 722 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 723 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 724 const SmallPtrSetImpl<BasicBlock *> &SkippedLoopAndExitBlocks, 725 ValueToValueMapTy &VMap, 726 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 727 DominatorTree &DT, LoopInfo &LI) { 728 SmallVector<BasicBlock *, 4> NewBlocks; 729 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 730 731 // We will need to clone a bunch of blocks, wrap up the clone operation in 732 // a helper. 733 auto CloneBlock = [&](BasicBlock *OldBB) { 734 // Clone the basic block and insert it before the new preheader. 735 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 736 NewBB->moveBefore(LoopPH); 737 738 // Record this block and the mapping. 739 NewBlocks.push_back(NewBB); 740 VMap[OldBB] = NewBB; 741 742 return NewBB; 743 }; 744 745 // First, clone the preheader. 746 auto *ClonedPH = CloneBlock(LoopPH); 747 748 // Then clone all the loop blocks, skipping the ones that aren't necessary. 749 for (auto *LoopBB : L.blocks()) 750 if (!SkippedLoopAndExitBlocks.count(LoopBB)) 751 CloneBlock(LoopBB); 752 753 // Split all the loop exit edges so that when we clone the exit blocks, if 754 // any of the exit blocks are *also* a preheader for some other loop, we 755 // don't create multiple predecessors entering the loop header. 756 for (auto *ExitBB : ExitBlocks) { 757 if (SkippedLoopAndExitBlocks.count(ExitBB)) 758 continue; 759 760 // When we are going to clone an exit, we don't need to clone all the 761 // instructions in the exit block and we want to ensure we have an easy 762 // place to merge the CFG, so split the exit first. This is always safe to 763 // do because there cannot be any non-loop predecessors of a loop exit in 764 // loop simplified form. 765 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 766 767 // Rearrange the names to make it easier to write test cases by having the 768 // exit block carry the suffix rather than the merge block carrying the 769 // suffix. 770 MergeBB->takeName(ExitBB); 771 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 772 773 // Now clone the original exit block. 774 auto *ClonedExitBB = CloneBlock(ExitBB); 775 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 776 "Exit block should have been split to have one successor!"); 777 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 778 "Cloned exit block has the wrong successor!"); 779 780 // Remap any cloned instructions and create a merge phi node for them. 781 for (auto ZippedInsts : llvm::zip_first( 782 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 783 llvm::make_range(ClonedExitBB->begin(), 784 std::prev(ClonedExitBB->end())))) { 785 Instruction &I = std::get<0>(ZippedInsts); 786 Instruction &ClonedI = std::get<1>(ZippedInsts); 787 788 // The only instructions in the exit block should be PHI nodes and 789 // potentially a landing pad. 790 assert( 791 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 792 "Bad instruction in exit block!"); 793 // We should have a value map between the instruction and its clone. 794 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 795 796 auto *MergePN = 797 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 798 &*MergeBB->getFirstInsertionPt()); 799 I.replaceAllUsesWith(MergePN); 800 MergePN->addIncoming(&I, ExitBB); 801 MergePN->addIncoming(&ClonedI, ClonedExitBB); 802 } 803 } 804 805 // Rewrite the instructions in the cloned blocks to refer to the instructions 806 // in the cloned blocks. We have to do this as a second pass so that we have 807 // everything available. Also, we have inserted new instructions which may 808 // include assume intrinsics, so we update the assumption cache while 809 // processing this. 810 for (auto *ClonedBB : NewBlocks) 811 for (Instruction &I : *ClonedBB) { 812 RemapInstruction(&I, VMap, 813 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 814 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 815 if (II->getIntrinsicID() == Intrinsic::assume) 816 AC.registerAssumption(II); 817 } 818 819 // Remove the cloned parent as a predecessor of the cloned continue successor 820 // if we did in fact clone it. 821 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 822 if (auto *ClonedContinueSuccBB = 823 cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB))) 824 ClonedContinueSuccBB->removePredecessor(ClonedParentBB, 825 /*DontDeleteUselessPHIs*/ true); 826 // Replace the cloned branch with an unconditional branch to the cloned 827 // unswitched successor. 828 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 829 ClonedParentBB->getTerminator()->eraseFromParent(); 830 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 831 832 // Update any PHI nodes in the cloned successors of the skipped blocks to not 833 // have spurious incoming values. 834 for (auto *LoopBB : L.blocks()) 835 if (SkippedLoopAndExitBlocks.count(LoopBB)) 836 for (auto *SuccBB : successors(LoopBB)) 837 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 838 for (PHINode &PN : ClonedSuccBB->phis()) 839 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 840 841 // Record the domtree updates for the new blocks. 842 SmallPtrSet<BasicBlock *, 4> SuccSet; 843 for (auto *ClonedBB : NewBlocks) { 844 for (auto *SuccBB : successors(ClonedBB)) 845 if (SuccSet.insert(SuccBB).second) 846 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 847 SuccSet.clear(); 848 } 849 850 return ClonedPH; 851 } 852 853 /// Recursively clone the specified loop and all of its children. 854 /// 855 /// The target parent loop for the clone should be provided, or can be null if 856 /// the clone is a top-level loop. While cloning, all the blocks are mapped 857 /// with the provided value map. The entire original loop must be present in 858 /// the value map. The cloned loop is returned. 859 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 860 const ValueToValueMapTy &VMap, LoopInfo &LI) { 861 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 862 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 863 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 864 for (auto *BB : OrigL.blocks()) { 865 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 866 ClonedL.addBlockEntry(ClonedBB); 867 if (LI.getLoopFor(BB) == &OrigL) 868 LI.changeLoopFor(ClonedBB, &ClonedL); 869 } 870 }; 871 872 // We specially handle the first loop because it may get cloned into 873 // a different parent and because we most commonly are cloning leaf loops. 874 Loop *ClonedRootL = LI.AllocateLoop(); 875 if (RootParentL) 876 RootParentL->addChildLoop(ClonedRootL); 877 else 878 LI.addTopLevelLoop(ClonedRootL); 879 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 880 881 if (OrigRootL.empty()) 882 return ClonedRootL; 883 884 // If we have a nest, we can quickly clone the entire loop nest using an 885 // iterative approach because it is a tree. We keep the cloned parent in the 886 // data structure to avoid repeatedly querying through a map to find it. 887 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 888 // Build up the loops to clone in reverse order as we'll clone them from the 889 // back. 890 for (Loop *ChildL : llvm::reverse(OrigRootL)) 891 LoopsToClone.push_back({ClonedRootL, ChildL}); 892 do { 893 Loop *ClonedParentL, *L; 894 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 895 Loop *ClonedL = LI.AllocateLoop(); 896 ClonedParentL->addChildLoop(ClonedL); 897 AddClonedBlocksToLoop(*L, *ClonedL); 898 for (Loop *ChildL : llvm::reverse(*L)) 899 LoopsToClone.push_back({ClonedL, ChildL}); 900 } while (!LoopsToClone.empty()); 901 902 return ClonedRootL; 903 } 904 905 /// Build the cloned loops of an original loop from unswitching. 906 /// 907 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 908 /// operation. We need to re-verify that there even is a loop (as the backedge 909 /// may not have been cloned), and even if there are remaining backedges the 910 /// backedge set may be different. However, we know that each child loop is 911 /// undisturbed, we only need to find where to place each child loop within 912 /// either any parent loop or within a cloned version of the original loop. 913 /// 914 /// Because child loops may end up cloned outside of any cloned version of the 915 /// original loop, multiple cloned sibling loops may be created. All of them 916 /// are returned so that the newly introduced loop nest roots can be 917 /// identified. 918 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 919 const ValueToValueMapTy &VMap, LoopInfo &LI, 920 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 921 Loop *ClonedL = nullptr; 922 923 auto *OrigPH = OrigL.getLoopPreheader(); 924 auto *OrigHeader = OrigL.getHeader(); 925 926 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 927 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 928 929 // We need to know the loops of the cloned exit blocks to even compute the 930 // accurate parent loop. If we only clone exits to some parent of the 931 // original parent, we want to clone into that outer loop. We also keep track 932 // of the loops that our cloned exit blocks participate in. 933 Loop *ParentL = nullptr; 934 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 935 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 936 ClonedExitsInLoops.reserve(ExitBlocks.size()); 937 for (auto *ExitBB : ExitBlocks) 938 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 939 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 940 ExitLoopMap[ClonedExitBB] = ExitL; 941 ClonedExitsInLoops.push_back(ClonedExitBB); 942 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 943 ParentL = ExitL; 944 } 945 assert((!ParentL || ParentL == OrigL.getParentLoop() || 946 ParentL->contains(OrigL.getParentLoop())) && 947 "The computed parent loop should always contain (or be) the parent of " 948 "the original loop."); 949 950 // We build the set of blocks dominated by the cloned header from the set of 951 // cloned blocks out of the original loop. While not all of these will 952 // necessarily be in the cloned loop, it is enough to establish that they 953 // aren't in unreachable cycles, etc. 954 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 955 for (auto *BB : OrigL.blocks()) 956 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 957 ClonedLoopBlocks.insert(ClonedBB); 958 959 // Rebuild the set of blocks that will end up in the cloned loop. We may have 960 // skipped cloning some region of this loop which can in turn skip some of 961 // the backedges so we have to rebuild the blocks in the loop based on the 962 // backedges that remain after cloning. 963 SmallVector<BasicBlock *, 16> Worklist; 964 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 965 for (auto *Pred : predecessors(ClonedHeader)) { 966 // The only possible non-loop header predecessor is the preheader because 967 // we know we cloned the loop in simplified form. 968 if (Pred == ClonedPH) 969 continue; 970 971 // Because the loop was in simplified form, the only non-loop predecessor 972 // should be the preheader. 973 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 974 "header other than the preheader " 975 "that is not part of the loop!"); 976 977 // Insert this block into the loop set and on the first visit (and if it 978 // isn't the header we're currently walking) put it into the worklist to 979 // recurse through. 980 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 981 Worklist.push_back(Pred); 982 } 983 984 // If we had any backedges then there *is* a cloned loop. Put the header into 985 // the loop set and then walk the worklist backwards to find all the blocks 986 // that remain within the loop after cloning. 987 if (!BlocksInClonedLoop.empty()) { 988 BlocksInClonedLoop.insert(ClonedHeader); 989 990 while (!Worklist.empty()) { 991 BasicBlock *BB = Worklist.pop_back_val(); 992 assert(BlocksInClonedLoop.count(BB) && 993 "Didn't put block into the loop set!"); 994 995 // Insert any predecessors that are in the possible set into the cloned 996 // set, and if the insert is successful, add them to the worklist. Note 997 // that we filter on the blocks that are definitely reachable via the 998 // backedge to the loop header so we may prune out dead code within the 999 // cloned loop. 1000 for (auto *Pred : predecessors(BB)) 1001 if (ClonedLoopBlocks.count(Pred) && 1002 BlocksInClonedLoop.insert(Pred).second) 1003 Worklist.push_back(Pred); 1004 } 1005 1006 ClonedL = LI.AllocateLoop(); 1007 if (ParentL) { 1008 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1009 ParentL->addChildLoop(ClonedL); 1010 } else { 1011 LI.addTopLevelLoop(ClonedL); 1012 } 1013 NonChildClonedLoops.push_back(ClonedL); 1014 1015 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1016 // We don't want to just add the cloned loop blocks based on how we 1017 // discovered them. The original order of blocks was carefully built in 1018 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1019 // that logic, we just re-walk the original blocks (and those of the child 1020 // loops) and filter them as we add them into the cloned loop. 1021 for (auto *BB : OrigL.blocks()) { 1022 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1023 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1024 continue; 1025 1026 // Directly add the blocks that are only in this loop. 1027 if (LI.getLoopFor(BB) == &OrigL) { 1028 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1029 continue; 1030 } 1031 1032 // We want to manually add it to this loop and parents. 1033 // Registering it with LoopInfo will happen when we clone the top 1034 // loop for this block. 1035 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1036 PL->addBlockEntry(ClonedBB); 1037 } 1038 1039 // Now add each child loop whose header remains within the cloned loop. All 1040 // of the blocks within the loop must satisfy the same constraints as the 1041 // header so once we pass the header checks we can just clone the entire 1042 // child loop nest. 1043 for (Loop *ChildL : OrigL) { 1044 auto *ClonedChildHeader = 1045 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1046 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1047 continue; 1048 1049 #ifndef NDEBUG 1050 // We should never have a cloned child loop header but fail to have 1051 // all of the blocks for that child loop. 1052 for (auto *ChildLoopBB : ChildL->blocks()) 1053 assert(BlocksInClonedLoop.count( 1054 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1055 "Child cloned loop has a header within the cloned outer " 1056 "loop but not all of its blocks!"); 1057 #endif 1058 1059 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1060 } 1061 } 1062 1063 // Now that we've handled all the components of the original loop that were 1064 // cloned into a new loop, we still need to handle anything from the original 1065 // loop that wasn't in a cloned loop. 1066 1067 // Figure out what blocks are left to place within any loop nest containing 1068 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1069 // them. 1070 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1071 if (BlocksInClonedLoop.empty()) 1072 UnloopedBlockSet.insert(ClonedPH); 1073 for (auto *ClonedBB : ClonedLoopBlocks) 1074 if (!BlocksInClonedLoop.count(ClonedBB)) 1075 UnloopedBlockSet.insert(ClonedBB); 1076 1077 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1078 // backwards across these to process them inside out. The order shouldn't 1079 // matter as we're just trying to build up the map from inside-out; we use 1080 // the map in a more stably ordered way below. 1081 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1082 llvm::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(), 1083 [&](BasicBlock *LHS, BasicBlock *RHS) { 1084 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1085 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1086 }); 1087 1088 // Populate the existing ExitLoopMap with everything reachable from each 1089 // exit, starting from the inner most exit. 1090 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1091 assert(Worklist.empty() && "Didn't clear worklist!"); 1092 1093 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1094 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1095 1096 // Walk the CFG back until we hit the cloned PH adding everything reachable 1097 // and in the unlooped set to this exit block's loop. 1098 Worklist.push_back(ExitBB); 1099 do { 1100 BasicBlock *BB = Worklist.pop_back_val(); 1101 // We can stop recursing at the cloned preheader (if we get there). 1102 if (BB == ClonedPH) 1103 continue; 1104 1105 for (BasicBlock *PredBB : predecessors(BB)) { 1106 // If this pred has already been moved to our set or is part of some 1107 // (inner) loop, no update needed. 1108 if (!UnloopedBlockSet.erase(PredBB)) { 1109 assert( 1110 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1111 "Predecessor not mapped to a loop!"); 1112 continue; 1113 } 1114 1115 // We just insert into the loop set here. We'll add these blocks to the 1116 // exit loop after we build up the set in an order that doesn't rely on 1117 // predecessor order (which in turn relies on use list order). 1118 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1119 (void)Inserted; 1120 assert(Inserted && "Should only visit an unlooped block once!"); 1121 1122 // And recurse through to its predecessors. 1123 Worklist.push_back(PredBB); 1124 } 1125 } while (!Worklist.empty()); 1126 } 1127 1128 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1129 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1130 // in their original order adding them to the correct loop. 1131 1132 // We need a stable insertion order. We use the order of the original loop 1133 // order and map into the correct parent loop. 1134 for (auto *BB : llvm::concat<BasicBlock *const>( 1135 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1136 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1137 OuterL->addBasicBlockToLoop(BB, LI); 1138 1139 #ifndef NDEBUG 1140 for (auto &BBAndL : ExitLoopMap) { 1141 auto *BB = BBAndL.first; 1142 auto *OuterL = BBAndL.second; 1143 assert(LI.getLoopFor(BB) == OuterL && 1144 "Failed to put all blocks into outer loops!"); 1145 } 1146 #endif 1147 1148 // Now that all the blocks are placed into the correct containing loop in the 1149 // absence of child loops, find all the potentially cloned child loops and 1150 // clone them into whatever outer loop we placed their header into. 1151 for (Loop *ChildL : OrigL) { 1152 auto *ClonedChildHeader = 1153 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1154 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1155 continue; 1156 1157 #ifndef NDEBUG 1158 for (auto *ChildLoopBB : ChildL->blocks()) 1159 assert(VMap.count(ChildLoopBB) && 1160 "Cloned a child loop header but not all of that loops blocks!"); 1161 #endif 1162 1163 NonChildClonedLoops.push_back(cloneLoopNest( 1164 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1165 } 1166 } 1167 1168 static void 1169 deleteDeadBlocksFromLoop(Loop &L, 1170 const SmallVectorImpl<BasicBlock *> &DeadBlocks, 1171 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1172 DominatorTree &DT, LoopInfo &LI) { 1173 SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(), 1174 DeadBlocks.end()); 1175 1176 // Filter out the dead blocks from the exit blocks list so that it can be 1177 // used in the caller. 1178 llvm::erase_if(ExitBlocks, 1179 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1180 1181 // Remove these blocks from their successors. 1182 for (auto *BB : DeadBlocks) 1183 for (BasicBlock *SuccBB : successors(BB)) 1184 SuccBB->removePredecessor(BB, /*DontDeleteUselessPHIs*/ true); 1185 1186 // Walk from this loop up through its parents removing all of the dead blocks. 1187 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1188 for (auto *BB : DeadBlocks) 1189 ParentL->getBlocksSet().erase(BB); 1190 llvm::erase_if(ParentL->getBlocksVector(), 1191 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1192 } 1193 1194 // Now delete the dead child loops. This raw delete will clear them 1195 // recursively. 1196 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1197 if (!DeadBlockSet.count(ChildL->getHeader())) 1198 return false; 1199 1200 assert(llvm::all_of(ChildL->blocks(), 1201 [&](BasicBlock *ChildBB) { 1202 return DeadBlockSet.count(ChildBB); 1203 }) && 1204 "If the child loop header is dead all blocks in the child loop must " 1205 "be dead as well!"); 1206 LI.destroy(ChildL); 1207 return true; 1208 }); 1209 1210 // Remove the loop mappings for the dead blocks and drop all the references 1211 // from these blocks to others to handle cyclic references as we start 1212 // deleting the blocks themselves. 1213 for (auto *BB : DeadBlocks) { 1214 // Check that the dominator tree has already been updated. 1215 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1216 LI.changeLoopFor(BB, nullptr); 1217 BB->dropAllReferences(); 1218 } 1219 1220 // Actually delete the blocks now that they've been fully unhooked from the 1221 // IR. 1222 for (auto *BB : DeadBlocks) 1223 BB->eraseFromParent(); 1224 } 1225 1226 /// Recompute the set of blocks in a loop after unswitching. 1227 /// 1228 /// This walks from the original headers predecessors to rebuild the loop. We 1229 /// take advantage of the fact that new blocks can't have been added, and so we 1230 /// filter by the original loop's blocks. This also handles potentially 1231 /// unreachable code that we don't want to explore but might be found examining 1232 /// the predecessors of the header. 1233 /// 1234 /// If the original loop is no longer a loop, this will return an empty set. If 1235 /// it remains a loop, all the blocks within it will be added to the set 1236 /// (including those blocks in inner loops). 1237 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1238 LoopInfo &LI) { 1239 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1240 1241 auto *PH = L.getLoopPreheader(); 1242 auto *Header = L.getHeader(); 1243 1244 // A worklist to use while walking backwards from the header. 1245 SmallVector<BasicBlock *, 16> Worklist; 1246 1247 // First walk the predecessors of the header to find the backedges. This will 1248 // form the basis of our walk. 1249 for (auto *Pred : predecessors(Header)) { 1250 // Skip the preheader. 1251 if (Pred == PH) 1252 continue; 1253 1254 // Because the loop was in simplified form, the only non-loop predecessor 1255 // is the preheader. 1256 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1257 "than the preheader that is not part of the " 1258 "loop!"); 1259 1260 // Insert this block into the loop set and on the first visit and, if it 1261 // isn't the header we're currently walking, put it into the worklist to 1262 // recurse through. 1263 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1264 Worklist.push_back(Pred); 1265 } 1266 1267 // If no backedges were found, we're done. 1268 if (LoopBlockSet.empty()) 1269 return LoopBlockSet; 1270 1271 // We found backedges, recurse through them to identify the loop blocks. 1272 while (!Worklist.empty()) { 1273 BasicBlock *BB = Worklist.pop_back_val(); 1274 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1275 1276 // No need to walk past the header. 1277 if (BB == Header) 1278 continue; 1279 1280 // Because we know the inner loop structure remains valid we can use the 1281 // loop structure to jump immediately across the entire nested loop. 1282 // Further, because it is in loop simplified form, we can directly jump 1283 // to its preheader afterward. 1284 if (Loop *InnerL = LI.getLoopFor(BB)) 1285 if (InnerL != &L) { 1286 assert(L.contains(InnerL) && 1287 "Should not reach a loop *outside* this loop!"); 1288 // The preheader is the only possible predecessor of the loop so 1289 // insert it into the set and check whether it was already handled. 1290 auto *InnerPH = InnerL->getLoopPreheader(); 1291 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1292 "but not contain the inner loop " 1293 "preheader!"); 1294 if (!LoopBlockSet.insert(InnerPH).second) 1295 // The only way to reach the preheader is through the loop body 1296 // itself so if it has been visited the loop is already handled. 1297 continue; 1298 1299 // Insert all of the blocks (other than those already present) into 1300 // the loop set. We expect at least the block that led us to find the 1301 // inner loop to be in the block set, but we may also have other loop 1302 // blocks if they were already enqueued as predecessors of some other 1303 // outer loop block. 1304 for (auto *InnerBB : InnerL->blocks()) { 1305 if (InnerBB == BB) { 1306 assert(LoopBlockSet.count(InnerBB) && 1307 "Block should already be in the set!"); 1308 continue; 1309 } 1310 1311 LoopBlockSet.insert(InnerBB); 1312 } 1313 1314 // Add the preheader to the worklist so we will continue past the 1315 // loop body. 1316 Worklist.push_back(InnerPH); 1317 continue; 1318 } 1319 1320 // Insert any predecessors that were in the original loop into the new 1321 // set, and if the insert is successful, add them to the worklist. 1322 for (auto *Pred : predecessors(BB)) 1323 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1324 Worklist.push_back(Pred); 1325 } 1326 1327 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1328 1329 // We've found all the blocks participating in the loop, return our completed 1330 // set. 1331 return LoopBlockSet; 1332 } 1333 1334 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1335 /// 1336 /// The removal may have removed some child loops entirely but cannot have 1337 /// disturbed any remaining child loops. However, they may need to be hoisted 1338 /// to the parent loop (or to be top-level loops). The original loop may be 1339 /// completely removed. 1340 /// 1341 /// The sibling loops resulting from this update are returned. If the original 1342 /// loop remains a valid loop, it will be the first entry in this list with all 1343 /// of the newly sibling loops following it. 1344 /// 1345 /// Returns true if the loop remains a loop after unswitching, and false if it 1346 /// is no longer a loop after unswitching (and should not continue to be 1347 /// referenced). 1348 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1349 LoopInfo &LI, 1350 SmallVectorImpl<Loop *> &HoistedLoops) { 1351 auto *PH = L.getLoopPreheader(); 1352 1353 // Compute the actual parent loop from the exit blocks. Because we may have 1354 // pruned some exits the loop may be different from the original parent. 1355 Loop *ParentL = nullptr; 1356 SmallVector<Loop *, 4> ExitLoops; 1357 SmallVector<BasicBlock *, 4> ExitsInLoops; 1358 ExitsInLoops.reserve(ExitBlocks.size()); 1359 for (auto *ExitBB : ExitBlocks) 1360 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1361 ExitLoops.push_back(ExitL); 1362 ExitsInLoops.push_back(ExitBB); 1363 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1364 ParentL = ExitL; 1365 } 1366 1367 // Recompute the blocks participating in this loop. This may be empty if it 1368 // is no longer a loop. 1369 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1370 1371 // If we still have a loop, we need to re-set the loop's parent as the exit 1372 // block set changing may have moved it within the loop nest. Note that this 1373 // can only happen when this loop has a parent as it can only hoist the loop 1374 // *up* the nest. 1375 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1376 // Remove this loop's (original) blocks from all of the intervening loops. 1377 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1378 IL = IL->getParentLoop()) { 1379 IL->getBlocksSet().erase(PH); 1380 for (auto *BB : L.blocks()) 1381 IL->getBlocksSet().erase(BB); 1382 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1383 return BB == PH || L.contains(BB); 1384 }); 1385 } 1386 1387 LI.changeLoopFor(PH, ParentL); 1388 L.getParentLoop()->removeChildLoop(&L); 1389 if (ParentL) 1390 ParentL->addChildLoop(&L); 1391 else 1392 LI.addTopLevelLoop(&L); 1393 } 1394 1395 // Now we update all the blocks which are no longer within the loop. 1396 auto &Blocks = L.getBlocksVector(); 1397 auto BlocksSplitI = 1398 LoopBlockSet.empty() 1399 ? Blocks.begin() 1400 : std::stable_partition( 1401 Blocks.begin(), Blocks.end(), 1402 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1403 1404 // Before we erase the list of unlooped blocks, build a set of them. 1405 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1406 if (LoopBlockSet.empty()) 1407 UnloopedBlocks.insert(PH); 1408 1409 // Now erase these blocks from the loop. 1410 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1411 L.getBlocksSet().erase(BB); 1412 Blocks.erase(BlocksSplitI, Blocks.end()); 1413 1414 // Sort the exits in ascending loop depth, we'll work backwards across these 1415 // to process them inside out. 1416 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1417 [&](BasicBlock *LHS, BasicBlock *RHS) { 1418 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1419 }); 1420 1421 // We'll build up a set for each exit loop. 1422 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1423 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1424 1425 auto RemoveUnloopedBlocksFromLoop = 1426 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1427 for (auto *BB : UnloopedBlocks) 1428 L.getBlocksSet().erase(BB); 1429 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1430 return UnloopedBlocks.count(BB); 1431 }); 1432 }; 1433 1434 SmallVector<BasicBlock *, 16> Worklist; 1435 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1436 assert(Worklist.empty() && "Didn't clear worklist!"); 1437 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1438 1439 // Grab the next exit block, in decreasing loop depth order. 1440 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1441 Loop &ExitL = *LI.getLoopFor(ExitBB); 1442 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1443 1444 // Erase all of the unlooped blocks from the loops between the previous 1445 // exit loop and this exit loop. This works because the ExitInLoops list is 1446 // sorted in increasing order of loop depth and thus we visit loops in 1447 // decreasing order of loop depth. 1448 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1449 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1450 1451 // Walk the CFG back until we hit the cloned PH adding everything reachable 1452 // and in the unlooped set to this exit block's loop. 1453 Worklist.push_back(ExitBB); 1454 do { 1455 BasicBlock *BB = Worklist.pop_back_val(); 1456 // We can stop recursing at the cloned preheader (if we get there). 1457 if (BB == PH) 1458 continue; 1459 1460 for (BasicBlock *PredBB : predecessors(BB)) { 1461 // If this pred has already been moved to our set or is part of some 1462 // (inner) loop, no update needed. 1463 if (!UnloopedBlocks.erase(PredBB)) { 1464 assert((NewExitLoopBlocks.count(PredBB) || 1465 ExitL.contains(LI.getLoopFor(PredBB))) && 1466 "Predecessor not in a nested loop (or already visited)!"); 1467 continue; 1468 } 1469 1470 // We just insert into the loop set here. We'll add these blocks to the 1471 // exit loop after we build up the set in a deterministic order rather 1472 // than the predecessor-influenced visit order. 1473 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1474 (void)Inserted; 1475 assert(Inserted && "Should only visit an unlooped block once!"); 1476 1477 // And recurse through to its predecessors. 1478 Worklist.push_back(PredBB); 1479 } 1480 } while (!Worklist.empty()); 1481 1482 // If blocks in this exit loop were directly part of the original loop (as 1483 // opposed to a child loop) update the map to point to this exit loop. This 1484 // just updates a map and so the fact that the order is unstable is fine. 1485 for (auto *BB : NewExitLoopBlocks) 1486 if (Loop *BBL = LI.getLoopFor(BB)) 1487 if (BBL == &L || !L.contains(BBL)) 1488 LI.changeLoopFor(BB, &ExitL); 1489 1490 // We will remove the remaining unlooped blocks from this loop in the next 1491 // iteration or below. 1492 NewExitLoopBlocks.clear(); 1493 } 1494 1495 // Any remaining unlooped blocks are no longer part of any loop unless they 1496 // are part of some child loop. 1497 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1498 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1499 for (auto *BB : UnloopedBlocks) 1500 if (Loop *BBL = LI.getLoopFor(BB)) 1501 if (BBL == &L || !L.contains(BBL)) 1502 LI.changeLoopFor(BB, nullptr); 1503 1504 // Sink all the child loops whose headers are no longer in the loop set to 1505 // the parent (or to be top level loops). We reach into the loop and directly 1506 // update its subloop vector to make this batch update efficient. 1507 auto &SubLoops = L.getSubLoopsVector(); 1508 auto SubLoopsSplitI = 1509 LoopBlockSet.empty() 1510 ? SubLoops.begin() 1511 : std::stable_partition( 1512 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1513 return LoopBlockSet.count(SubL->getHeader()); 1514 }); 1515 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1516 HoistedLoops.push_back(HoistedL); 1517 HoistedL->setParentLoop(nullptr); 1518 1519 // To compute the new parent of this hoisted loop we look at where we 1520 // placed the preheader above. We can't lookup the header itself because we 1521 // retained the mapping from the header to the hoisted loop. But the 1522 // preheader and header should have the exact same new parent computed 1523 // based on the set of exit blocks from the original loop as the preheader 1524 // is a predecessor of the header and so reached in the reverse walk. And 1525 // because the loops were all in simplified form the preheader of the 1526 // hoisted loop can't be part of some *other* loop. 1527 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1528 NewParentL->addChildLoop(HoistedL); 1529 else 1530 LI.addTopLevelLoop(HoistedL); 1531 } 1532 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1533 1534 // Actually delete the loop if nothing remained within it. 1535 if (Blocks.empty()) { 1536 assert(SubLoops.empty() && 1537 "Failed to remove all subloops from the original loop!"); 1538 if (Loop *ParentL = L.getParentLoop()) 1539 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1540 else 1541 LI.removeLoop(llvm::find(LI, &L)); 1542 LI.destroy(&L); 1543 return false; 1544 } 1545 1546 return true; 1547 } 1548 1549 /// Helper to visit a dominator subtree, invoking a callable on each node. 1550 /// 1551 /// Returning false at any point will stop walking past that node of the tree. 1552 template <typename CallableT> 1553 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1554 SmallVector<DomTreeNode *, 4> DomWorklist; 1555 DomWorklist.push_back(DT[BB]); 1556 #ifndef NDEBUG 1557 SmallPtrSet<DomTreeNode *, 4> Visited; 1558 Visited.insert(DT[BB]); 1559 #endif 1560 do { 1561 DomTreeNode *N = DomWorklist.pop_back_val(); 1562 1563 // Visit this node. 1564 if (!Callable(N->getBlock())) 1565 continue; 1566 1567 // Accumulate the child nodes. 1568 for (DomTreeNode *ChildN : *N) { 1569 assert(Visited.insert(ChildN).second && 1570 "Cannot visit a node twice when walking a tree!"); 1571 DomWorklist.push_back(ChildN); 1572 } 1573 } while (!DomWorklist.empty()); 1574 } 1575 1576 /// Take an invariant branch that has been determined to be safe and worthwhile 1577 /// to unswitch despite being non-trivial to do so and perform the unswitch. 1578 /// 1579 /// This directly updates the CFG to hoist the predicate out of the loop, and 1580 /// clone the necessary parts of the loop to maintain behavior. 1581 /// 1582 /// It also updates both dominator tree and loopinfo based on the unswitching. 1583 /// 1584 /// Once unswitching has been performed it runs the provided callback to report 1585 /// the new loops and no-longer valid loops to the caller. 1586 static bool unswitchInvariantBranch( 1587 Loop &L, BranchInst &BI, DominatorTree &DT, LoopInfo &LI, 1588 AssumptionCache &AC, 1589 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB) { 1590 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 1591 assert(L.isLoopInvariant(BI.getCondition()) && 1592 "Can only unswitch an invariant branch condition!"); 1593 1594 // Constant and BBs tracking the cloned and continuing successor. 1595 const int ClonedSucc = 0; 1596 auto *ParentBB = BI.getParent(); 1597 auto *UnswitchedSuccBB = BI.getSuccessor(ClonedSucc); 1598 auto *ContinueSuccBB = BI.getSuccessor(1 - ClonedSucc); 1599 1600 assert(UnswitchedSuccBB != ContinueSuccBB && 1601 "Should not unswitch a branch that always goes to the same place!"); 1602 1603 // The branch should be in this exact loop. Any inner loop's invariant branch 1604 // should be handled by unswitching that inner loop. The caller of this 1605 // routine should filter out any candidates that remain (but were skipped for 1606 // whatever reason). 1607 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1608 1609 SmallVector<BasicBlock *, 4> ExitBlocks; 1610 L.getUniqueExitBlocks(ExitBlocks); 1611 1612 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 1613 // don't know how to split those exit blocks. 1614 // FIXME: We should teach SplitBlock to handle this and remove this 1615 // restriction. 1616 for (auto *ExitBB : ExitBlocks) 1617 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) 1618 return false; 1619 1620 SmallPtrSet<BasicBlock *, 4> ExitBlockSet(ExitBlocks.begin(), 1621 ExitBlocks.end()); 1622 1623 // Compute the parent loop now before we start hacking on things. 1624 Loop *ParentL = L.getParentLoop(); 1625 1626 // Compute the outer-most loop containing one of our exit blocks. This is the 1627 // furthest up our loopnest which can be mutated, which we will use below to 1628 // update things. 1629 Loop *OuterExitL = &L; 1630 for (auto *ExitBB : ExitBlocks) { 1631 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1632 if (!NewOuterExitL) { 1633 // We exited the entire nest with this block, so we're done. 1634 OuterExitL = nullptr; 1635 break; 1636 } 1637 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1638 OuterExitL = NewOuterExitL; 1639 } 1640 1641 // If the edge we *aren't* cloning in the unswitch (the continuing edge) 1642 // dominates its target, we can skip cloning the dominated region of the loop 1643 // and its exits. We compute this as a set of nodes to be skipped. 1644 SmallPtrSet<BasicBlock *, 4> SkippedLoopAndExitBlocks; 1645 if (ContinueSuccBB->getUniquePredecessor() || 1646 llvm::all_of(predecessors(ContinueSuccBB), [&](BasicBlock *PredBB) { 1647 return PredBB == ParentBB || DT.dominates(ContinueSuccBB, PredBB); 1648 })) { 1649 visitDomSubTree(DT, ContinueSuccBB, [&](BasicBlock *BB) { 1650 SkippedLoopAndExitBlocks.insert(BB); 1651 return true; 1652 }); 1653 } 1654 // Similarly, if the edge we *are* cloning in the unswitch (the unswitched 1655 // edge) dominates its target, we will end up with dead nodes in the original 1656 // loop and its exits that will need to be deleted. Here, we just retain that 1657 // the property holds and will compute the deleted set later. 1658 bool DeleteUnswitchedSucc = 1659 UnswitchedSuccBB->getUniquePredecessor() || 1660 llvm::all_of(predecessors(UnswitchedSuccBB), [&](BasicBlock *PredBB) { 1661 return PredBB == ParentBB || DT.dominates(UnswitchedSuccBB, PredBB); 1662 }); 1663 1664 // Split the preheader, so that we know that there is a safe place to insert 1665 // the conditional branch. We will change the preheader to have a conditional 1666 // branch on LoopCond. The original preheader will become the split point 1667 // between the unswitched versions, and we will have a new preheader for the 1668 // original loop. 1669 BasicBlock *SplitBB = L.getLoopPreheader(); 1670 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI); 1671 1672 // Keep a mapping for the cloned values. 1673 ValueToValueMapTy VMap; 1674 1675 // Keep track of the dominator tree updates needed. 1676 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1677 1678 // Build the cloned blocks from the loop. 1679 auto *ClonedPH = buildClonedLoopBlocks( 1680 L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB, 1681 ContinueSuccBB, SkippedLoopAndExitBlocks, VMap, DTUpdates, AC, DT, LI); 1682 1683 // Remove the parent as a predecessor of the unswitched successor. 1684 UnswitchedSuccBB->removePredecessor(ParentBB, /*DontDeleteUselessPHIs*/ true); 1685 1686 // Now splice the branch from the original loop and use it to select between 1687 // the two loops. 1688 SplitBB->getTerminator()->eraseFromParent(); 1689 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), BI); 1690 BI.setSuccessor(ClonedSucc, ClonedPH); 1691 BI.setSuccessor(1 - ClonedSucc, LoopPH); 1692 1693 // Create a new unconditional branch to the continuing block (as opposed to 1694 // the one cloned). 1695 BranchInst::Create(ContinueSuccBB, ParentBB); 1696 1697 // Before we update the dominator tree, collect the dead blocks if we're going 1698 // to end up deleting the unswitched successor. 1699 SmallVector<BasicBlock *, 16> DeadBlocks; 1700 if (DeleteUnswitchedSucc) { 1701 DeadBlocks.push_back(UnswitchedSuccBB); 1702 for (int i = 0; i < (int)DeadBlocks.size(); ++i) { 1703 // If we reach an exit block, stop recursing as the unswitched loop will 1704 // end up reaching the merge block which we make the successor of the 1705 // exit. 1706 if (ExitBlockSet.count(DeadBlocks[i])) 1707 continue; 1708 1709 // Insert the children that are within the loop or exit block set. Other 1710 // children may reach out of the loop. While we don't expect these to be 1711 // dead (as the unswitched clone should reach them) we don't try to prove 1712 // that here. 1713 for (DomTreeNode *ChildN : *DT[DeadBlocks[i]]) 1714 if (L.contains(ChildN->getBlock()) || 1715 ExitBlockSet.count(ChildN->getBlock())) 1716 DeadBlocks.push_back(ChildN->getBlock()); 1717 } 1718 } 1719 1720 // Add the remaining edges to our updates and apply them to get an up-to-date 1721 // dominator tree. Note that this will cause the dead blocks above to be 1722 // unreachable and no longer in the dominator tree. 1723 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 1724 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 1725 DT.applyUpdates(DTUpdates); 1726 1727 // Build the cloned loop structure itself. This may be substantially 1728 // different from the original structure due to the simplified CFG. This also 1729 // handles inserting all the cloned blocks into the correct loops. 1730 SmallVector<Loop *, 4> NonChildClonedLoops; 1731 buildClonedLoops(L, ExitBlocks, VMap, LI, NonChildClonedLoops); 1732 1733 // Delete anything that was made dead in the original loop due to 1734 // unswitching. 1735 if (!DeadBlocks.empty()) 1736 deleteDeadBlocksFromLoop(L, DeadBlocks, ExitBlocks, DT, LI); 1737 1738 SmallVector<Loop *, 4> HoistedLoops; 1739 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 1740 1741 // This transformation has a high risk of corrupting the dominator tree, and 1742 // the below steps to rebuild loop structures will result in hard to debug 1743 // errors in that case so verify that the dominator tree is sane first. 1744 // FIXME: Remove this when the bugs stop showing up and rely on existing 1745 // verification steps. 1746 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1747 1748 // We can change which blocks are exit blocks of all the cloned sibling 1749 // loops, the current loop, and any parent loops which shared exit blocks 1750 // with the current loop. As a consequence, we need to re-form LCSSA for 1751 // them. But we shouldn't need to re-form LCSSA for any child loops. 1752 // FIXME: This could be made more efficient by tracking which exit blocks are 1753 // new, and focusing on them, but that isn't likely to be necessary. 1754 // 1755 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 1756 // loop nest and update every loop that could have had its exits changed. We 1757 // also need to cover any intervening loops. We add all of these loops to 1758 // a list and sort them by loop depth to achieve this without updating 1759 // unnecessary loops. 1760 auto UpdateLoop = [&](Loop &UpdateL) { 1761 #ifndef NDEBUG 1762 UpdateL.verifyLoop(); 1763 for (Loop *ChildL : UpdateL) { 1764 ChildL->verifyLoop(); 1765 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 1766 "Perturbed a child loop's LCSSA form!"); 1767 } 1768 #endif 1769 // First build LCSSA for this loop so that we can preserve it when 1770 // forming dedicated exits. We don't want to perturb some other loop's 1771 // LCSSA while doing that CFG edit. 1772 formLCSSA(UpdateL, DT, &LI, nullptr); 1773 1774 // For loops reached by this loop's original exit blocks we may 1775 // introduced new, non-dedicated exits. At least try to re-form dedicated 1776 // exits for these loops. This may fail if they couldn't have dedicated 1777 // exits to start with. 1778 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); 1779 }; 1780 1781 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 1782 // and we can do it in any order as they don't nest relative to each other. 1783 // 1784 // Also check if any of the loops we have updated have become top-level loops 1785 // as that will necessitate widening the outer loop scope. 1786 for (Loop *UpdatedL : 1787 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 1788 UpdateLoop(*UpdatedL); 1789 if (!UpdatedL->getParentLoop()) 1790 OuterExitL = nullptr; 1791 } 1792 if (IsStillLoop) { 1793 UpdateLoop(L); 1794 if (!L.getParentLoop()) 1795 OuterExitL = nullptr; 1796 } 1797 1798 // If the original loop had exit blocks, walk up through the outer most loop 1799 // of those exit blocks to update LCSSA and form updated dedicated exits. 1800 if (OuterExitL != &L) 1801 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 1802 OuterL = OuterL->getParentLoop()) 1803 UpdateLoop(*OuterL); 1804 1805 #ifndef NDEBUG 1806 // Verify the entire loop structure to catch any incorrect updates before we 1807 // progress in the pass pipeline. 1808 LI.verify(DT); 1809 #endif 1810 1811 // Now that we've unswitched something, make callbacks to report the changes. 1812 // For that we need to merge together the updated loops and the cloned loops 1813 // and check whether the original loop survived. 1814 SmallVector<Loop *, 4> SibLoops; 1815 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 1816 if (UpdatedL->getParentLoop() == ParentL) 1817 SibLoops.push_back(UpdatedL); 1818 UnswitchCB(IsStillLoop, SibLoops); 1819 1820 ++NumBranches; 1821 return true; 1822 } 1823 1824 /// Recursively compute the cost of a dominator subtree based on the per-block 1825 /// cost map provided. 1826 /// 1827 /// The recursive computation is memozied into the provided DT-indexed cost map 1828 /// to allow querying it for most nodes in the domtree without it becoming 1829 /// quadratic. 1830 static int 1831 computeDomSubtreeCost(DomTreeNode &N, 1832 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 1833 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 1834 // Don't accumulate cost (or recurse through) blocks not in our block cost 1835 // map and thus not part of the duplication cost being considered. 1836 auto BBCostIt = BBCostMap.find(N.getBlock()); 1837 if (BBCostIt == BBCostMap.end()) 1838 return 0; 1839 1840 // Lookup this node to see if we already computed its cost. 1841 auto DTCostIt = DTCostMap.find(&N); 1842 if (DTCostIt != DTCostMap.end()) 1843 return DTCostIt->second; 1844 1845 // If not, we have to compute it. We can't use insert above and update 1846 // because computing the cost may insert more things into the map. 1847 int Cost = std::accumulate( 1848 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 1849 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 1850 }); 1851 bool Inserted = DTCostMap.insert({&N, Cost}).second; 1852 (void)Inserted; 1853 assert(Inserted && "Should not insert a node while visiting children!"); 1854 return Cost; 1855 } 1856 1857 /// Unswitch control flow predicated on loop invariant conditions. 1858 /// 1859 /// This first hoists all branches or switches which are trivial (IE, do not 1860 /// require duplicating any part of the loop) out of the loop body. It then 1861 /// looks at other loop invariant control flows and tries to unswitch those as 1862 /// well by cloning the loop if the result is small enough. 1863 static bool 1864 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 1865 TargetTransformInfo &TTI, bool NonTrivial, 1866 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB) { 1867 assert(L.isRecursivelyLCSSAForm(DT, LI) && 1868 "Loops must be in LCSSA form before unswitching."); 1869 1870 // Must be in loop simplified form: we need a preheader and dedicated exits. 1871 if (!L.isLoopSimplifyForm()) 1872 return false; 1873 1874 // Try trivial unswitch first before loop over other basic blocks in the loop. 1875 if (unswitchAllTrivialConditions(L, DT, LI)) { 1876 // If we unswitched successfully we will want to clean up the loop before 1877 // processing it further so just mark it as unswitched and return. 1878 UnswitchCB(/*CurrentLoopValid*/ true, {}); 1879 return true; 1880 } 1881 1882 // If we're not doing non-trivial unswitching, we're done. We both accept 1883 // a parameter but also check a local flag that can be used for testing 1884 // a debugging. 1885 if (!NonTrivial && !EnableNonTrivialUnswitch) 1886 return false; 1887 1888 // Collect all remaining invariant branch conditions within this loop (as 1889 // opposed to an inner loop which would be handled when visiting that inner 1890 // loop). 1891 SmallVector<TerminatorInst *, 4> UnswitchCandidates; 1892 for (auto *BB : L.blocks()) 1893 if (LI.getLoopFor(BB) == &L) 1894 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1895 if (BI->isConditional() && L.isLoopInvariant(BI->getCondition()) && 1896 BI->getSuccessor(0) != BI->getSuccessor(1)) 1897 UnswitchCandidates.push_back(BI); 1898 1899 // If we didn't find any candidates, we're done. 1900 if (UnswitchCandidates.empty()) 1901 return false; 1902 1903 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 1904 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 1905 // irreducible control flow into reducible control flow and introduce new 1906 // loops "out of thin air". If we ever discover important use cases for doing 1907 // this, we can add support to loop unswitch, but it is a lot of complexity 1908 // for what seems little or no real world benefit. 1909 LoopBlocksRPO RPOT(&L); 1910 RPOT.perform(&LI); 1911 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 1912 return false; 1913 1914 LLVM_DEBUG( 1915 dbgs() << "Considering " << UnswitchCandidates.size() 1916 << " non-trivial loop invariant conditions for unswitching.\n"); 1917 1918 // Given that unswitching these terminators will require duplicating parts of 1919 // the loop, so we need to be able to model that cost. Compute the ephemeral 1920 // values and set up a data structure to hold per-BB costs. We cache each 1921 // block's cost so that we don't recompute this when considering different 1922 // subsets of the loop for duplication during unswitching. 1923 SmallPtrSet<const Value *, 4> EphValues; 1924 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 1925 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 1926 1927 // Compute the cost of each block, as well as the total loop cost. Also, bail 1928 // out if we see instructions which are incompatible with loop unswitching 1929 // (convergent, noduplicate, or cross-basic-block tokens). 1930 // FIXME: We might be able to safely handle some of these in non-duplicated 1931 // regions. 1932 int LoopCost = 0; 1933 for (auto *BB : L.blocks()) { 1934 int Cost = 0; 1935 for (auto &I : *BB) { 1936 if (EphValues.count(&I)) 1937 continue; 1938 1939 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 1940 return false; 1941 if (auto CS = CallSite(&I)) 1942 if (CS.isConvergent() || CS.cannotDuplicate()) 1943 return false; 1944 1945 Cost += TTI.getUserCost(&I); 1946 } 1947 assert(Cost >= 0 && "Must not have negative costs!"); 1948 LoopCost += Cost; 1949 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 1950 BBCostMap[BB] = Cost; 1951 } 1952 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 1953 1954 // Now we find the best candidate by searching for the one with the following 1955 // properties in order: 1956 // 1957 // 1) An unswitching cost below the threshold 1958 // 2) The smallest number of duplicated unswitch candidates (to avoid 1959 // creating redundant subsequent unswitching) 1960 // 3) The smallest cost after unswitching. 1961 // 1962 // We prioritize reducing fanout of unswitch candidates provided the cost 1963 // remains below the threshold because this has a multiplicative effect. 1964 // 1965 // This requires memoizing each dominator subtree to avoid redundant work. 1966 // 1967 // FIXME: Need to actually do the number of candidates part above. 1968 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 1969 // Given a terminator which might be unswitched, computes the non-duplicated 1970 // cost for that terminator. 1971 auto ComputeUnswitchedCost = [&](TerminatorInst *TI) { 1972 BasicBlock &BB = *TI->getParent(); 1973 SmallPtrSet<BasicBlock *, 4> Visited; 1974 1975 int Cost = LoopCost; 1976 for (BasicBlock *SuccBB : successors(&BB)) { 1977 // Don't count successors more than once. 1978 if (!Visited.insert(SuccBB).second) 1979 continue; 1980 1981 // This successor's domtree will not need to be duplicated after 1982 // unswitching if the edge to the successor dominates it (and thus the 1983 // entire tree). This essentially means there is no other path into this 1984 // subtree and so it will end up live in only one clone of the loop. 1985 if (SuccBB->getUniquePredecessor() || 1986 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 1987 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 1988 })) { 1989 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 1990 assert(Cost >= 0 && 1991 "Non-duplicated cost should never exceed total loop cost!"); 1992 } 1993 } 1994 1995 // Now scale the cost by the number of unique successors minus one. We 1996 // subtract one because there is already at least one copy of the entire 1997 // loop. This is computing the new cost of unswitching a condition. 1998 assert(Visited.size() > 1 && 1999 "Cannot unswitch a condition without multiple distinct successors!"); 2000 return Cost * (Visited.size() - 1); 2001 }; 2002 TerminatorInst *BestUnswitchTI = nullptr; 2003 int BestUnswitchCost; 2004 for (TerminatorInst *CandidateTI : UnswitchCandidates) { 2005 int CandidateCost = ComputeUnswitchedCost(CandidateTI); 2006 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2007 << " for unswitch candidate: " << *CandidateTI << "\n"); 2008 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2009 BestUnswitchTI = CandidateTI; 2010 BestUnswitchCost = CandidateCost; 2011 } 2012 } 2013 2014 if (BestUnswitchCost >= UnswitchThreshold) { 2015 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2016 << BestUnswitchCost << "\n"); 2017 return false; 2018 } 2019 2020 LLVM_DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = " 2021 << BestUnswitchCost << ") branch: " << *BestUnswitchTI 2022 << "\n"); 2023 return unswitchInvariantBranch(L, cast<BranchInst>(*BestUnswitchTI), DT, LI, 2024 AC, UnswitchCB); 2025 } 2026 2027 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2028 LoopStandardAnalysisResults &AR, 2029 LPMUpdater &U) { 2030 Function &F = *L.getHeader()->getParent(); 2031 (void)F; 2032 2033 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2034 << "\n"); 2035 2036 // Save the current loop name in a variable so that we can report it even 2037 // after it has been deleted. 2038 std::string LoopName = L.getName(); 2039 2040 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2041 ArrayRef<Loop *> NewLoops) { 2042 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2043 if (!NewLoops.empty()) 2044 U.addSiblingLoops(NewLoops); 2045 2046 // If the current loop remains valid, we should revisit it to catch any 2047 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2048 if (CurrentLoopValid) 2049 U.revisitCurrentLoop(); 2050 else 2051 U.markLoopAsDeleted(L, LoopName); 2052 }; 2053 2054 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, 2055 UnswitchCB)) 2056 return PreservedAnalyses::all(); 2057 2058 // Historically this pass has had issues with the dominator tree so verify it 2059 // in asserts builds. 2060 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2061 return getLoopPassPreservedAnalyses(); 2062 } 2063 2064 namespace { 2065 2066 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2067 bool NonTrivial; 2068 2069 public: 2070 static char ID; // Pass ID, replacement for typeid 2071 2072 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2073 : LoopPass(ID), NonTrivial(NonTrivial) { 2074 initializeSimpleLoopUnswitchLegacyPassPass( 2075 *PassRegistry::getPassRegistry()); 2076 } 2077 2078 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2079 2080 void getAnalysisUsage(AnalysisUsage &AU) const override { 2081 AU.addRequired<AssumptionCacheTracker>(); 2082 AU.addRequired<TargetTransformInfoWrapperPass>(); 2083 getLoopAnalysisUsage(AU); 2084 } 2085 }; 2086 2087 } // end anonymous namespace 2088 2089 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2090 if (skipLoop(L)) 2091 return false; 2092 2093 Function &F = *L->getHeader()->getParent(); 2094 2095 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2096 << "\n"); 2097 2098 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2099 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2100 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2101 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2102 2103 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2104 ArrayRef<Loop *> NewLoops) { 2105 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2106 for (auto *NewL : NewLoops) 2107 LPM.addLoop(*NewL); 2108 2109 // If the current loop remains valid, re-add it to the queue. This is 2110 // a little wasteful as we'll finish processing the current loop as well, 2111 // but it is the best we can do in the old PM. 2112 if (CurrentLoopValid) 2113 LPM.addLoop(*L); 2114 else 2115 LPM.markLoopAsDeleted(*L); 2116 }; 2117 2118 bool Changed = 2119 unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB); 2120 2121 // If anything was unswitched, also clear any cached information about this 2122 // loop. 2123 LPM.deleteSimpleAnalysisLoop(L); 2124 2125 // Historically this pass has had issues with the dominator tree so verify it 2126 // in asserts builds. 2127 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2128 2129 return Changed; 2130 } 2131 2132 char SimpleLoopUnswitchLegacyPass::ID = 0; 2133 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2134 "Simple unswitch loops", false, false) 2135 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2136 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2137 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2138 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2139 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2140 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2141 "Simple unswitch loops", false, false) 2142 2143 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2144 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2145 } 2146