1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/Utils/Local.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/InstrTypes.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Use.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/GenericDomTree.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Cloning.h" 52 #include "llvm/Transforms/Utils/LoopUtils.h" 53 #include "llvm/Transforms/Utils/ValueMapper.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <iterator> 57 #include <numeric> 58 #include <utility> 59 60 #define DEBUG_TYPE "simple-loop-unswitch" 61 62 using namespace llvm; 63 64 STATISTIC(NumBranches, "Number of branches unswitched"); 65 STATISTIC(NumSwitches, "Number of switches unswitched"); 66 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 67 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 68 STATISTIC( 69 NumCostMultiplierSkipped, 70 "Number of unswitch candidates that had their cost multiplier skipped"); 71 72 static cl::opt<bool> EnableNonTrivialUnswitch( 73 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 74 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 75 "following the configuration passed into the pass.")); 76 77 static cl::opt<int> 78 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 79 cl::desc("The cost threshold for unswitching a loop.")); 80 81 static cl::opt<bool> EnableUnswitchCostMultiplier( 82 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 83 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 84 "explosion in nontrivial unswitch.")); 85 static cl::opt<int> UnswitchSiblingsToplevelDiv( 86 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 87 cl::desc("Toplevel siblings divisor for cost multiplier.")); 88 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 89 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 90 cl::desc("Number of unswitch candidates that are ignored when calculating " 91 "cost multiplier.")); 92 static cl::opt<bool> UnswitchGuards( 93 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 94 cl::desc("If enabled, simple loop unswitching will also consider " 95 "llvm.experimental.guard intrinsics as unswitch candidates.")); 96 97 /// Collect all of the loop invariant input values transitively used by the 98 /// homogeneous instruction graph from a given root. 99 /// 100 /// This essentially walks from a root recursively through loop variant operands 101 /// which have the exact same opcode and finds all inputs which are loop 102 /// invariant. For some operations these can be re-associated and unswitched out 103 /// of the loop entirely. 104 static TinyPtrVector<Value *> 105 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 106 LoopInfo &LI) { 107 assert(!L.isLoopInvariant(&Root) && 108 "Only need to walk the graph if root itself is not invariant."); 109 TinyPtrVector<Value *> Invariants; 110 111 // Build a worklist and recurse through operators collecting invariants. 112 SmallVector<Instruction *, 4> Worklist; 113 SmallPtrSet<Instruction *, 8> Visited; 114 Worklist.push_back(&Root); 115 Visited.insert(&Root); 116 do { 117 Instruction &I = *Worklist.pop_back_val(); 118 for (Value *OpV : I.operand_values()) { 119 // Skip constants as unswitching isn't interesting for them. 120 if (isa<Constant>(OpV)) 121 continue; 122 123 // Add it to our result if loop invariant. 124 if (L.isLoopInvariant(OpV)) { 125 Invariants.push_back(OpV); 126 continue; 127 } 128 129 // If not an instruction with the same opcode, nothing we can do. 130 Instruction *OpI = dyn_cast<Instruction>(OpV); 131 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 132 continue; 133 134 // Visit this operand. 135 if (Visited.insert(OpI).second) 136 Worklist.push_back(OpI); 137 } 138 } while (!Worklist.empty()); 139 140 return Invariants; 141 } 142 143 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 144 Constant &Replacement) { 145 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 146 147 // Replace uses of LIC in the loop with the given constant. 148 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 149 // Grab the use and walk past it so we can clobber it in the use list. 150 Use *U = &*UI++; 151 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 152 153 // Replace this use within the loop body. 154 if (UserI && L.contains(UserI)) 155 U->set(&Replacement); 156 } 157 } 158 159 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 160 /// incoming values along this edge. 161 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 162 BasicBlock &ExitBB) { 163 for (Instruction &I : ExitBB) { 164 auto *PN = dyn_cast<PHINode>(&I); 165 if (!PN) 166 // No more PHIs to check. 167 return true; 168 169 // If the incoming value for this edge isn't loop invariant the unswitch 170 // won't be trivial. 171 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 172 return false; 173 } 174 llvm_unreachable("Basic blocks should never be empty!"); 175 } 176 177 /// Insert code to test a set of loop invariant values, and conditionally branch 178 /// on them. 179 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 180 ArrayRef<Value *> Invariants, 181 bool Direction, 182 BasicBlock &UnswitchedSucc, 183 BasicBlock &NormalSucc) { 184 IRBuilder<> IRB(&BB); 185 186 Value *Cond = Direction ? IRB.CreateOr(Invariants) : 187 IRB.CreateAnd(Invariants); 188 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 189 Direction ? &NormalSucc : &UnswitchedSucc); 190 } 191 192 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 193 /// 194 /// Requires that the loop exit and unswitched basic block are the same, and 195 /// that the exiting block was a unique predecessor of that block. Rewrites the 196 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 197 /// PHI nodes from the old preheader that now contains the unswitched 198 /// terminator. 199 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 200 BasicBlock &OldExitingBB, 201 BasicBlock &OldPH) { 202 for (PHINode &PN : UnswitchedBB.phis()) { 203 // When the loop exit is directly unswitched we just need to update the 204 // incoming basic block. We loop to handle weird cases with repeated 205 // incoming blocks, but expect to typically only have one operand here. 206 for (auto i : seq<int>(0, PN.getNumOperands())) { 207 assert(PN.getIncomingBlock(i) == &OldExitingBB && 208 "Found incoming block different from unique predecessor!"); 209 PN.setIncomingBlock(i, &OldPH); 210 } 211 } 212 } 213 214 /// Rewrite the PHI nodes in the loop exit basic block and the split off 215 /// unswitched block. 216 /// 217 /// Because the exit block remains an exit from the loop, this rewrites the 218 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 219 /// nodes into the unswitched basic block to select between the value in the 220 /// old preheader and the loop exit. 221 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 222 BasicBlock &UnswitchedBB, 223 BasicBlock &OldExitingBB, 224 BasicBlock &OldPH, 225 bool FullUnswitch) { 226 assert(&ExitBB != &UnswitchedBB && 227 "Must have different loop exit and unswitched blocks!"); 228 Instruction *InsertPt = &*UnswitchedBB.begin(); 229 for (PHINode &PN : ExitBB.phis()) { 230 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 231 PN.getName() + ".split", InsertPt); 232 233 // Walk backwards over the old PHI node's inputs to minimize the cost of 234 // removing each one. We have to do this weird loop manually so that we 235 // create the same number of new incoming edges in the new PHI as we expect 236 // each case-based edge to be included in the unswitched switch in some 237 // cases. 238 // FIXME: This is really, really gross. It would be much cleaner if LLVM 239 // allowed us to create a single entry for a predecessor block without 240 // having separate entries for each "edge" even though these edges are 241 // required to produce identical results. 242 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 243 if (PN.getIncomingBlock(i) != &OldExitingBB) 244 continue; 245 246 Value *Incoming = PN.getIncomingValue(i); 247 if (FullUnswitch) 248 // No more edge from the old exiting block to the exit block. 249 PN.removeIncomingValue(i); 250 251 NewPN->addIncoming(Incoming, &OldPH); 252 } 253 254 // Now replace the old PHI with the new one and wire the old one in as an 255 // input to the new one. 256 PN.replaceAllUsesWith(NewPN); 257 NewPN->addIncoming(&PN, &ExitBB); 258 } 259 } 260 261 /// Hoist the current loop up to the innermost loop containing a remaining exit. 262 /// 263 /// Because we've removed an exit from the loop, we may have changed the set of 264 /// loops reachable and need to move the current loop up the loop nest or even 265 /// to an entirely separate nest. 266 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 267 DominatorTree &DT, LoopInfo &LI, 268 MemorySSAUpdater *MSSAU) { 269 // If the loop is already at the top level, we can't hoist it anywhere. 270 Loop *OldParentL = L.getParentLoop(); 271 if (!OldParentL) 272 return; 273 274 SmallVector<BasicBlock *, 4> Exits; 275 L.getExitBlocks(Exits); 276 Loop *NewParentL = nullptr; 277 for (auto *ExitBB : Exits) 278 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 279 if (!NewParentL || NewParentL->contains(ExitL)) 280 NewParentL = ExitL; 281 282 if (NewParentL == OldParentL) 283 return; 284 285 // The new parent loop (if different) should always contain the old one. 286 if (NewParentL) 287 assert(NewParentL->contains(OldParentL) && 288 "Can only hoist this loop up the nest!"); 289 290 // The preheader will need to move with the body of this loop. However, 291 // because it isn't in this loop we also need to update the primary loop map. 292 assert(OldParentL == LI.getLoopFor(&Preheader) && 293 "Parent loop of this loop should contain this loop's preheader!"); 294 LI.changeLoopFor(&Preheader, NewParentL); 295 296 // Remove this loop from its old parent. 297 OldParentL->removeChildLoop(&L); 298 299 // Add the loop either to the new parent or as a top-level loop. 300 if (NewParentL) 301 NewParentL->addChildLoop(&L); 302 else 303 LI.addTopLevelLoop(&L); 304 305 // Remove this loops blocks from the old parent and every other loop up the 306 // nest until reaching the new parent. Also update all of these 307 // no-longer-containing loops to reflect the nesting change. 308 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 309 OldContainingL = OldContainingL->getParentLoop()) { 310 llvm::erase_if(OldContainingL->getBlocksVector(), 311 [&](const BasicBlock *BB) { 312 return BB == &Preheader || L.contains(BB); 313 }); 314 315 OldContainingL->getBlocksSet().erase(&Preheader); 316 for (BasicBlock *BB : L.blocks()) 317 OldContainingL->getBlocksSet().erase(BB); 318 319 // Because we just hoisted a loop out of this one, we have essentially 320 // created new exit paths from it. That means we need to form LCSSA PHI 321 // nodes for values used in the no-longer-nested loop. 322 formLCSSA(*OldContainingL, DT, &LI, nullptr); 323 324 // We shouldn't need to form dedicated exits because the exit introduced 325 // here is the (just split by unswitching) preheader. However, after trivial 326 // unswitching it is possible to get new non-dedicated exits out of parent 327 // loop so let's conservatively form dedicated exit blocks and figure out 328 // if we can optimize later. 329 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 330 /*PreserveLCSSA*/ true); 331 } 332 } 333 334 /// Unswitch a trivial branch if the condition is loop invariant. 335 /// 336 /// This routine should only be called when loop code leading to the branch has 337 /// been validated as trivial (no side effects). This routine checks if the 338 /// condition is invariant and one of the successors is a loop exit. This 339 /// allows us to unswitch without duplicating the loop, making it trivial. 340 /// 341 /// If this routine fails to unswitch the branch it returns false. 342 /// 343 /// If the branch can be unswitched, this routine splits the preheader and 344 /// hoists the branch above that split. Preserves loop simplified form 345 /// (splitting the exit block as necessary). It simplifies the branch within 346 /// the loop to an unconditional branch but doesn't remove it entirely. Further 347 /// cleanup can be done with some simplify-cfg like pass. 348 /// 349 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 350 /// invalidated by this. 351 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 352 LoopInfo &LI, ScalarEvolution *SE, 353 MemorySSAUpdater *MSSAU) { 354 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 355 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 356 357 // The loop invariant values that we want to unswitch. 358 TinyPtrVector<Value *> Invariants; 359 360 // When true, we're fully unswitching the branch rather than just unswitching 361 // some input conditions to the branch. 362 bool FullUnswitch = false; 363 364 if (L.isLoopInvariant(BI.getCondition())) { 365 Invariants.push_back(BI.getCondition()); 366 FullUnswitch = true; 367 } else { 368 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 369 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 370 if (Invariants.empty()) 371 // Couldn't find invariant inputs! 372 return false; 373 } 374 375 // Check that one of the branch's successors exits, and which one. 376 bool ExitDirection = true; 377 int LoopExitSuccIdx = 0; 378 auto *LoopExitBB = BI.getSuccessor(0); 379 if (L.contains(LoopExitBB)) { 380 ExitDirection = false; 381 LoopExitSuccIdx = 1; 382 LoopExitBB = BI.getSuccessor(1); 383 if (L.contains(LoopExitBB)) 384 return false; 385 } 386 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 387 auto *ParentBB = BI.getParent(); 388 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 389 return false; 390 391 // When unswitching only part of the branch's condition, we need the exit 392 // block to be reached directly from the partially unswitched input. This can 393 // be done when the exit block is along the true edge and the branch condition 394 // is a graph of `or` operations, or the exit block is along the false edge 395 // and the condition is a graph of `and` operations. 396 if (!FullUnswitch) { 397 if (ExitDirection) { 398 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 399 return false; 400 } else { 401 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 402 return false; 403 } 404 } 405 406 LLVM_DEBUG({ 407 dbgs() << " unswitching trivial invariant conditions for: " << BI 408 << "\n"; 409 for (Value *Invariant : Invariants) { 410 dbgs() << " " << *Invariant << " == true"; 411 if (Invariant != Invariants.back()) 412 dbgs() << " ||"; 413 dbgs() << "\n"; 414 } 415 }); 416 417 // If we have scalar evolutions, we need to invalidate them including this 418 // loop and the loop containing the exit block. 419 if (SE) { 420 if (Loop *ExitL = LI.getLoopFor(LoopExitBB)) 421 SE->forgetLoop(ExitL); 422 else 423 // Forget the entire nest as this exits the entire nest. 424 SE->forgetTopmostLoop(&L); 425 } 426 427 if (MSSAU && VerifyMemorySSA) 428 MSSAU->getMemorySSA()->verifyMemorySSA(); 429 430 // Split the preheader, so that we know that there is a safe place to insert 431 // the conditional branch. We will change the preheader to have a conditional 432 // branch on LoopCond. 433 BasicBlock *OldPH = L.getLoopPreheader(); 434 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 435 436 // Now that we have a place to insert the conditional branch, create a place 437 // to branch to: this is the exit block out of the loop that we are 438 // unswitching. We need to split this if there are other loop predecessors. 439 // Because the loop is in simplified form, *any* other predecessor is enough. 440 BasicBlock *UnswitchedBB; 441 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 442 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 443 "A branch's parent isn't a predecessor!"); 444 UnswitchedBB = LoopExitBB; 445 } else { 446 UnswitchedBB = 447 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 448 } 449 450 if (MSSAU && VerifyMemorySSA) 451 MSSAU->getMemorySSA()->verifyMemorySSA(); 452 453 // Actually move the invariant uses into the unswitched position. If possible, 454 // we do this by moving the instructions, but when doing partial unswitching 455 // we do it by building a new merge of the values in the unswitched position. 456 OldPH->getTerminator()->eraseFromParent(); 457 if (FullUnswitch) { 458 // If fully unswitching, we can use the existing branch instruction. 459 // Splice it into the old PH to gate reaching the new preheader and re-point 460 // its successors. 461 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 462 BI); 463 if (MSSAU) { 464 // Temporarily clone the terminator, to make MSSA update cheaper by 465 // separating "insert edge" updates from "remove edge" ones. 466 ParentBB->getInstList().push_back(BI.clone()); 467 } else { 468 // Create a new unconditional branch that will continue the loop as a new 469 // terminator. 470 BranchInst::Create(ContinueBB, ParentBB); 471 } 472 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 473 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 474 } else { 475 // Only unswitching a subset of inputs to the condition, so we will need to 476 // build a new branch that merges the invariant inputs. 477 if (ExitDirection) 478 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 479 Instruction::Or && 480 "Must have an `or` of `i1`s for the condition!"); 481 else 482 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 483 Instruction::And && 484 "Must have an `and` of `i1`s for the condition!"); 485 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 486 *UnswitchedBB, *NewPH); 487 } 488 489 // Update the dominator tree with the added edge. 490 DT.insertEdge(OldPH, UnswitchedBB); 491 492 // After the dominator tree was updated with the added edge, update MemorySSA 493 // if available. 494 if (MSSAU) { 495 SmallVector<CFGUpdate, 1> Updates; 496 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 497 MSSAU->applyInsertUpdates(Updates, DT); 498 } 499 500 // Finish updating dominator tree and memory ssa for full unswitch. 501 if (FullUnswitch) { 502 if (MSSAU) { 503 // Remove the cloned branch instruction. 504 ParentBB->getTerminator()->eraseFromParent(); 505 // Create unconditional branch now. 506 BranchInst::Create(ContinueBB, ParentBB); 507 MSSAU->removeEdge(ParentBB, LoopExitBB); 508 } 509 DT.deleteEdge(ParentBB, LoopExitBB); 510 } 511 512 if (MSSAU && VerifyMemorySSA) 513 MSSAU->getMemorySSA()->verifyMemorySSA(); 514 515 // Rewrite the relevant PHI nodes. 516 if (UnswitchedBB == LoopExitBB) 517 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 518 else 519 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 520 *ParentBB, *OldPH, FullUnswitch); 521 522 // The constant we can replace all of our invariants with inside the loop 523 // body. If any of the invariants have a value other than this the loop won't 524 // be entered. 525 ConstantInt *Replacement = ExitDirection 526 ? ConstantInt::getFalse(BI.getContext()) 527 : ConstantInt::getTrue(BI.getContext()); 528 529 // Since this is an i1 condition we can also trivially replace uses of it 530 // within the loop with a constant. 531 for (Value *Invariant : Invariants) 532 replaceLoopInvariantUses(L, Invariant, *Replacement); 533 534 // If this was full unswitching, we may have changed the nesting relationship 535 // for this loop so hoist it to its correct parent if needed. 536 if (FullUnswitch) 537 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU); 538 539 if (MSSAU && VerifyMemorySSA) 540 MSSAU->getMemorySSA()->verifyMemorySSA(); 541 542 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 543 ++NumTrivial; 544 ++NumBranches; 545 return true; 546 } 547 548 /// Unswitch a trivial switch if the condition is loop invariant. 549 /// 550 /// This routine should only be called when loop code leading to the switch has 551 /// been validated as trivial (no side effects). This routine checks if the 552 /// condition is invariant and that at least one of the successors is a loop 553 /// exit. This allows us to unswitch without duplicating the loop, making it 554 /// trivial. 555 /// 556 /// If this routine fails to unswitch the switch it returns false. 557 /// 558 /// If the switch can be unswitched, this routine splits the preheader and 559 /// copies the switch above that split. If the default case is one of the 560 /// exiting cases, it copies the non-exiting cases and points them at the new 561 /// preheader. If the default case is not exiting, it copies the exiting cases 562 /// and points the default at the preheader. It preserves loop simplified form 563 /// (splitting the exit blocks as necessary). It simplifies the switch within 564 /// the loop by removing now-dead cases. If the default case is one of those 565 /// unswitched, it replaces its destination with a new basic block containing 566 /// only unreachable. Such basic blocks, while technically loop exits, are not 567 /// considered for unswitching so this is a stable transform and the same 568 /// switch will not be revisited. If after unswitching there is only a single 569 /// in-loop successor, the switch is further simplified to an unconditional 570 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 571 /// 572 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 573 /// invalidated by this. 574 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 575 LoopInfo &LI, ScalarEvolution *SE, 576 MemorySSAUpdater *MSSAU) { 577 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 578 Value *LoopCond = SI.getCondition(); 579 580 // If this isn't switching on an invariant condition, we can't unswitch it. 581 if (!L.isLoopInvariant(LoopCond)) 582 return false; 583 584 auto *ParentBB = SI.getParent(); 585 586 SmallVector<int, 4> ExitCaseIndices; 587 for (auto Case : SI.cases()) { 588 auto *SuccBB = Case.getCaseSuccessor(); 589 if (!L.contains(SuccBB) && 590 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 591 ExitCaseIndices.push_back(Case.getCaseIndex()); 592 } 593 BasicBlock *DefaultExitBB = nullptr; 594 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 595 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 596 if (!L.contains(SI.getDefaultDest()) && 597 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 598 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) { 599 DefaultExitBB = SI.getDefaultDest(); 600 } else if (ExitCaseIndices.empty()) 601 return false; 602 603 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 604 605 if (MSSAU && VerifyMemorySSA) 606 MSSAU->getMemorySSA()->verifyMemorySSA(); 607 608 // We may need to invalidate SCEVs for the outermost loop reached by any of 609 // the exits. 610 Loop *OuterL = &L; 611 612 if (DefaultExitBB) { 613 // Clear out the default destination temporarily to allow accurate 614 // predecessor lists to be examined below. 615 SI.setDefaultDest(nullptr); 616 // Check the loop containing this exit. 617 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 618 if (!ExitL || ExitL->contains(OuterL)) 619 OuterL = ExitL; 620 } 621 622 // Store the exit cases into a separate data structure and remove them from 623 // the switch. 624 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 625 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 626 4> ExitCases; 627 ExitCases.reserve(ExitCaseIndices.size()); 628 SwitchInstProfUpdateWrapper SIW(SI); 629 // We walk the case indices backwards so that we remove the last case first 630 // and don't disrupt the earlier indices. 631 for (unsigned Index : reverse(ExitCaseIndices)) { 632 auto CaseI = SI.case_begin() + Index; 633 // Compute the outer loop from this exit. 634 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 635 if (!ExitL || ExitL->contains(OuterL)) 636 OuterL = ExitL; 637 // Save the value of this case. 638 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 639 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 640 // Delete the unswitched cases. 641 SIW.removeCase(CaseI); 642 } 643 644 if (SE) { 645 if (OuterL) 646 SE->forgetLoop(OuterL); 647 else 648 SE->forgetTopmostLoop(&L); 649 } 650 651 // Check if after this all of the remaining cases point at the same 652 // successor. 653 BasicBlock *CommonSuccBB = nullptr; 654 if (SI.getNumCases() > 0 && 655 std::all_of(std::next(SI.case_begin()), SI.case_end(), 656 [&SI](const SwitchInst::CaseHandle &Case) { 657 return Case.getCaseSuccessor() == 658 SI.case_begin()->getCaseSuccessor(); 659 })) 660 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 661 if (!DefaultExitBB) { 662 // If we're not unswitching the default, we need it to match any cases to 663 // have a common successor or if we have no cases it is the common 664 // successor. 665 if (SI.getNumCases() == 0) 666 CommonSuccBB = SI.getDefaultDest(); 667 else if (SI.getDefaultDest() != CommonSuccBB) 668 CommonSuccBB = nullptr; 669 } 670 671 // Split the preheader, so that we know that there is a safe place to insert 672 // the switch. 673 BasicBlock *OldPH = L.getLoopPreheader(); 674 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 675 OldPH->getTerminator()->eraseFromParent(); 676 677 // Now add the unswitched switch. 678 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 679 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 680 681 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 682 // First, we split any exit blocks with remaining in-loop predecessors. Then 683 // we update the PHIs in one of two ways depending on if there was a split. 684 // We walk in reverse so that we split in the same order as the cases 685 // appeared. This is purely for convenience of reading the resulting IR, but 686 // it doesn't cost anything really. 687 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 688 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 689 // Handle the default exit if necessary. 690 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 691 // ranges aren't quite powerful enough yet. 692 if (DefaultExitBB) { 693 if (pred_empty(DefaultExitBB)) { 694 UnswitchedExitBBs.insert(DefaultExitBB); 695 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 696 } else { 697 auto *SplitBB = 698 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 699 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 700 *ParentBB, *OldPH, 701 /*FullUnswitch*/ true); 702 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 703 } 704 } 705 // Note that we must use a reference in the for loop so that we update the 706 // container. 707 for (auto &ExitCase : reverse(ExitCases)) { 708 // Grab a reference to the exit block in the pair so that we can update it. 709 BasicBlock *ExitBB = std::get<1>(ExitCase); 710 711 // If this case is the last edge into the exit block, we can simply reuse it 712 // as it will no longer be a loop exit. No mapping necessary. 713 if (pred_empty(ExitBB)) { 714 // Only rewrite once. 715 if (UnswitchedExitBBs.insert(ExitBB).second) 716 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 717 continue; 718 } 719 720 // Otherwise we need to split the exit block so that we retain an exit 721 // block from the loop and a target for the unswitched condition. 722 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 723 if (!SplitExitBB) { 724 // If this is the first time we see this, do the split and remember it. 725 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 726 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 727 *ParentBB, *OldPH, 728 /*FullUnswitch*/ true); 729 } 730 // Update the case pair to point to the split block. 731 std::get<1>(ExitCase) = SplitExitBB; 732 } 733 734 // Now add the unswitched cases. We do this in reverse order as we built them 735 // in reverse order. 736 for (auto &ExitCase : reverse(ExitCases)) { 737 ConstantInt *CaseVal = std::get<0>(ExitCase); 738 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 739 740 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 741 } 742 743 // If the default was unswitched, re-point it and add explicit cases for 744 // entering the loop. 745 if (DefaultExitBB) { 746 NewSIW->setDefaultDest(DefaultExitBB); 747 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 748 749 // We removed all the exit cases, so we just copy the cases to the 750 // unswitched switch. 751 for (const auto &Case : SI.cases()) 752 NewSIW.addCase(Case.getCaseValue(), NewPH, 753 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 754 } else if (DefaultCaseWeight) { 755 // We have to set branch weight of the default case. 756 uint64_t SW = *DefaultCaseWeight; 757 for (const auto &Case : SI.cases()) { 758 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 759 assert(W && 760 "case weight must be defined as default case weight is defined"); 761 SW += *W; 762 } 763 NewSIW.setSuccessorWeight(0, SW); 764 } 765 766 // If we ended up with a common successor for every path through the switch 767 // after unswitching, rewrite it to an unconditional branch to make it easy 768 // to recognize. Otherwise we potentially have to recognize the default case 769 // pointing at unreachable and other complexity. 770 if (CommonSuccBB) { 771 BasicBlock *BB = SI.getParent(); 772 // We may have had multiple edges to this common successor block, so remove 773 // them as predecessors. We skip the first one, either the default or the 774 // actual first case. 775 bool SkippedFirst = DefaultExitBB == nullptr; 776 for (auto Case : SI.cases()) { 777 assert(Case.getCaseSuccessor() == CommonSuccBB && 778 "Non-common successor!"); 779 (void)Case; 780 if (!SkippedFirst) { 781 SkippedFirst = true; 782 continue; 783 } 784 CommonSuccBB->removePredecessor(BB, 785 /*KeepOneInputPHIs*/ true); 786 } 787 // Now nuke the switch and replace it with a direct branch. 788 SIW.eraseFromParent(); 789 BranchInst::Create(CommonSuccBB, BB); 790 } else if (DefaultExitBB) { 791 assert(SI.getNumCases() > 0 && 792 "If we had no cases we'd have a common successor!"); 793 // Move the last case to the default successor. This is valid as if the 794 // default got unswitched it cannot be reached. This has the advantage of 795 // being simple and keeping the number of edges from this switch to 796 // successors the same, and avoiding any PHI update complexity. 797 auto LastCaseI = std::prev(SI.case_end()); 798 799 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 800 SIW.setSuccessorWeight( 801 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 802 SIW.removeCase(LastCaseI); 803 } 804 805 // Walk the unswitched exit blocks and the unswitched split blocks and update 806 // the dominator tree based on the CFG edits. While we are walking unordered 807 // containers here, the API for applyUpdates takes an unordered list of 808 // updates and requires them to not contain duplicates. 809 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 810 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 811 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 812 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 813 } 814 for (auto SplitUnswitchedPair : SplitExitBBMap) { 815 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 816 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 817 } 818 DT.applyUpdates(DTUpdates); 819 820 if (MSSAU) { 821 MSSAU->applyUpdates(DTUpdates, DT); 822 if (VerifyMemorySSA) 823 MSSAU->getMemorySSA()->verifyMemorySSA(); 824 } 825 826 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 827 828 // We may have changed the nesting relationship for this loop so hoist it to 829 // its correct parent if needed. 830 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU); 831 832 if (MSSAU && VerifyMemorySSA) 833 MSSAU->getMemorySSA()->verifyMemorySSA(); 834 835 ++NumTrivial; 836 ++NumSwitches; 837 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 838 return true; 839 } 840 841 /// This routine scans the loop to find a branch or switch which occurs before 842 /// any side effects occur. These can potentially be unswitched without 843 /// duplicating the loop. If a branch or switch is successfully unswitched the 844 /// scanning continues to see if subsequent branches or switches have become 845 /// trivial. Once all trivial candidates have been unswitched, this routine 846 /// returns. 847 /// 848 /// The return value indicates whether anything was unswitched (and therefore 849 /// changed). 850 /// 851 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 852 /// invalidated by this. 853 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 854 LoopInfo &LI, ScalarEvolution *SE, 855 MemorySSAUpdater *MSSAU) { 856 bool Changed = false; 857 858 // If loop header has only one reachable successor we should keep looking for 859 // trivial condition candidates in the successor as well. An alternative is 860 // to constant fold conditions and merge successors into loop header (then we 861 // only need to check header's terminator). The reason for not doing this in 862 // LoopUnswitch pass is that it could potentially break LoopPassManager's 863 // invariants. Folding dead branches could either eliminate the current loop 864 // or make other loops unreachable. LCSSA form might also not be preserved 865 // after deleting branches. The following code keeps traversing loop header's 866 // successors until it finds the trivial condition candidate (condition that 867 // is not a constant). Since unswitching generates branches with constant 868 // conditions, this scenario could be very common in practice. 869 BasicBlock *CurrentBB = L.getHeader(); 870 SmallPtrSet<BasicBlock *, 8> Visited; 871 Visited.insert(CurrentBB); 872 do { 873 // Check if there are any side-effecting instructions (e.g. stores, calls, 874 // volatile loads) in the part of the loop that the code *would* execute 875 // without unswitching. 876 if (MSSAU) // Possible early exit with MSSA 877 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 878 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 879 return Changed; 880 if (llvm::any_of(*CurrentBB, 881 [](Instruction &I) { return I.mayHaveSideEffects(); })) 882 return Changed; 883 884 Instruction *CurrentTerm = CurrentBB->getTerminator(); 885 886 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 887 // Don't bother trying to unswitch past a switch with a constant 888 // condition. This should be removed prior to running this pass by 889 // simplify-cfg. 890 if (isa<Constant>(SI->getCondition())) 891 return Changed; 892 893 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 894 // Couldn't unswitch this one so we're done. 895 return Changed; 896 897 // Mark that we managed to unswitch something. 898 Changed = true; 899 900 // If unswitching turned the terminator into an unconditional branch then 901 // we can continue. The unswitching logic specifically works to fold any 902 // cases it can into an unconditional branch to make it easier to 903 // recognize here. 904 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 905 if (!BI || BI->isConditional()) 906 return Changed; 907 908 CurrentBB = BI->getSuccessor(0); 909 continue; 910 } 911 912 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 913 if (!BI) 914 // We do not understand other terminator instructions. 915 return Changed; 916 917 // Don't bother trying to unswitch past an unconditional branch or a branch 918 // with a constant value. These should be removed by simplify-cfg prior to 919 // running this pass. 920 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 921 return Changed; 922 923 // Found a trivial condition candidate: non-foldable conditional branch. If 924 // we fail to unswitch this, we can't do anything else that is trivial. 925 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 926 return Changed; 927 928 // Mark that we managed to unswitch something. 929 Changed = true; 930 931 // If we only unswitched some of the conditions feeding the branch, we won't 932 // have collapsed it to a single successor. 933 BI = cast<BranchInst>(CurrentBB->getTerminator()); 934 if (BI->isConditional()) 935 return Changed; 936 937 // Follow the newly unconditional branch into its successor. 938 CurrentBB = BI->getSuccessor(0); 939 940 // When continuing, if we exit the loop or reach a previous visited block, 941 // then we can not reach any trivial condition candidates (unfoldable 942 // branch instructions or switch instructions) and no unswitch can happen. 943 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 944 945 return Changed; 946 } 947 948 /// Build the cloned blocks for an unswitched copy of the given loop. 949 /// 950 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 951 /// after the split block (`SplitBB`) that will be used to select between the 952 /// cloned and original loop. 953 /// 954 /// This routine handles cloning all of the necessary loop blocks and exit 955 /// blocks including rewriting their instructions and the relevant PHI nodes. 956 /// Any loop blocks or exit blocks which are dominated by a different successor 957 /// than the one for this clone of the loop blocks can be trivially skipped. We 958 /// use the `DominatingSucc` map to determine whether a block satisfies that 959 /// property with a simple map lookup. 960 /// 961 /// It also correctly creates the unconditional branch in the cloned 962 /// unswitched parent block to only point at the unswitched successor. 963 /// 964 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 965 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 966 /// the cloned blocks (and their loops) are left without full `LoopInfo` 967 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 968 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 969 /// instead the caller must recompute an accurate DT. It *does* correctly 970 /// update the `AssumptionCache` provided in `AC`. 971 static BasicBlock *buildClonedLoopBlocks( 972 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 973 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 974 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 975 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 976 ValueToValueMapTy &VMap, 977 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 978 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 979 SmallVector<BasicBlock *, 4> NewBlocks; 980 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 981 982 // We will need to clone a bunch of blocks, wrap up the clone operation in 983 // a helper. 984 auto CloneBlock = [&](BasicBlock *OldBB) { 985 // Clone the basic block and insert it before the new preheader. 986 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 987 NewBB->moveBefore(LoopPH); 988 989 // Record this block and the mapping. 990 NewBlocks.push_back(NewBB); 991 VMap[OldBB] = NewBB; 992 993 return NewBB; 994 }; 995 996 // We skip cloning blocks when they have a dominating succ that is not the 997 // succ we are cloning for. 998 auto SkipBlock = [&](BasicBlock *BB) { 999 auto It = DominatingSucc.find(BB); 1000 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1001 }; 1002 1003 // First, clone the preheader. 1004 auto *ClonedPH = CloneBlock(LoopPH); 1005 1006 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1007 for (auto *LoopBB : L.blocks()) 1008 if (!SkipBlock(LoopBB)) 1009 CloneBlock(LoopBB); 1010 1011 // Split all the loop exit edges so that when we clone the exit blocks, if 1012 // any of the exit blocks are *also* a preheader for some other loop, we 1013 // don't create multiple predecessors entering the loop header. 1014 for (auto *ExitBB : ExitBlocks) { 1015 if (SkipBlock(ExitBB)) 1016 continue; 1017 1018 // When we are going to clone an exit, we don't need to clone all the 1019 // instructions in the exit block and we want to ensure we have an easy 1020 // place to merge the CFG, so split the exit first. This is always safe to 1021 // do because there cannot be any non-loop predecessors of a loop exit in 1022 // loop simplified form. 1023 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1024 1025 // Rearrange the names to make it easier to write test cases by having the 1026 // exit block carry the suffix rather than the merge block carrying the 1027 // suffix. 1028 MergeBB->takeName(ExitBB); 1029 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1030 1031 // Now clone the original exit block. 1032 auto *ClonedExitBB = CloneBlock(ExitBB); 1033 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1034 "Exit block should have been split to have one successor!"); 1035 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1036 "Cloned exit block has the wrong successor!"); 1037 1038 // Remap any cloned instructions and create a merge phi node for them. 1039 for (auto ZippedInsts : llvm::zip_first( 1040 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1041 llvm::make_range(ClonedExitBB->begin(), 1042 std::prev(ClonedExitBB->end())))) { 1043 Instruction &I = std::get<0>(ZippedInsts); 1044 Instruction &ClonedI = std::get<1>(ZippedInsts); 1045 1046 // The only instructions in the exit block should be PHI nodes and 1047 // potentially a landing pad. 1048 assert( 1049 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1050 "Bad instruction in exit block!"); 1051 // We should have a value map between the instruction and its clone. 1052 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1053 1054 auto *MergePN = 1055 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1056 &*MergeBB->getFirstInsertionPt()); 1057 I.replaceAllUsesWith(MergePN); 1058 MergePN->addIncoming(&I, ExitBB); 1059 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1060 } 1061 } 1062 1063 // Rewrite the instructions in the cloned blocks to refer to the instructions 1064 // in the cloned blocks. We have to do this as a second pass so that we have 1065 // everything available. Also, we have inserted new instructions which may 1066 // include assume intrinsics, so we update the assumption cache while 1067 // processing this. 1068 for (auto *ClonedBB : NewBlocks) 1069 for (Instruction &I : *ClonedBB) { 1070 RemapInstruction(&I, VMap, 1071 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1072 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1073 if (II->getIntrinsicID() == Intrinsic::assume) 1074 AC.registerAssumption(II); 1075 } 1076 1077 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1078 // have spurious incoming values. 1079 for (auto *LoopBB : L.blocks()) 1080 if (SkipBlock(LoopBB)) 1081 for (auto *SuccBB : successors(LoopBB)) 1082 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1083 for (PHINode &PN : ClonedSuccBB->phis()) 1084 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1085 1086 // Remove the cloned parent as a predecessor of any successor we ended up 1087 // cloning other than the unswitched one. 1088 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1089 for (auto *SuccBB : successors(ParentBB)) { 1090 if (SuccBB == UnswitchedSuccBB) 1091 continue; 1092 1093 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1094 if (!ClonedSuccBB) 1095 continue; 1096 1097 ClonedSuccBB->removePredecessor(ClonedParentBB, 1098 /*KeepOneInputPHIs*/ true); 1099 } 1100 1101 // Replace the cloned branch with an unconditional branch to the cloned 1102 // unswitched successor. 1103 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1104 ClonedParentBB->getTerminator()->eraseFromParent(); 1105 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1106 1107 // If there are duplicate entries in the PHI nodes because of multiple edges 1108 // to the unswitched successor, we need to nuke all but one as we replaced it 1109 // with a direct branch. 1110 for (PHINode &PN : ClonedSuccBB->phis()) { 1111 bool Found = false; 1112 // Loop over the incoming operands backwards so we can easily delete as we 1113 // go without invalidating the index. 1114 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1115 if (PN.getIncomingBlock(i) != ClonedParentBB) 1116 continue; 1117 if (!Found) { 1118 Found = true; 1119 continue; 1120 } 1121 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1122 } 1123 } 1124 1125 // Record the domtree updates for the new blocks. 1126 SmallPtrSet<BasicBlock *, 4> SuccSet; 1127 for (auto *ClonedBB : NewBlocks) { 1128 for (auto *SuccBB : successors(ClonedBB)) 1129 if (SuccSet.insert(SuccBB).second) 1130 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1131 SuccSet.clear(); 1132 } 1133 1134 return ClonedPH; 1135 } 1136 1137 /// Recursively clone the specified loop and all of its children. 1138 /// 1139 /// The target parent loop for the clone should be provided, or can be null if 1140 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1141 /// with the provided value map. The entire original loop must be present in 1142 /// the value map. The cloned loop is returned. 1143 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1144 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1145 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1146 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1147 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1148 for (auto *BB : OrigL.blocks()) { 1149 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1150 ClonedL.addBlockEntry(ClonedBB); 1151 if (LI.getLoopFor(BB) == &OrigL) 1152 LI.changeLoopFor(ClonedBB, &ClonedL); 1153 } 1154 }; 1155 1156 // We specially handle the first loop because it may get cloned into 1157 // a different parent and because we most commonly are cloning leaf loops. 1158 Loop *ClonedRootL = LI.AllocateLoop(); 1159 if (RootParentL) 1160 RootParentL->addChildLoop(ClonedRootL); 1161 else 1162 LI.addTopLevelLoop(ClonedRootL); 1163 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1164 1165 if (OrigRootL.empty()) 1166 return ClonedRootL; 1167 1168 // If we have a nest, we can quickly clone the entire loop nest using an 1169 // iterative approach because it is a tree. We keep the cloned parent in the 1170 // data structure to avoid repeatedly querying through a map to find it. 1171 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1172 // Build up the loops to clone in reverse order as we'll clone them from the 1173 // back. 1174 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1175 LoopsToClone.push_back({ClonedRootL, ChildL}); 1176 do { 1177 Loop *ClonedParentL, *L; 1178 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1179 Loop *ClonedL = LI.AllocateLoop(); 1180 ClonedParentL->addChildLoop(ClonedL); 1181 AddClonedBlocksToLoop(*L, *ClonedL); 1182 for (Loop *ChildL : llvm::reverse(*L)) 1183 LoopsToClone.push_back({ClonedL, ChildL}); 1184 } while (!LoopsToClone.empty()); 1185 1186 return ClonedRootL; 1187 } 1188 1189 /// Build the cloned loops of an original loop from unswitching. 1190 /// 1191 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1192 /// operation. We need to re-verify that there even is a loop (as the backedge 1193 /// may not have been cloned), and even if there are remaining backedges the 1194 /// backedge set may be different. However, we know that each child loop is 1195 /// undisturbed, we only need to find where to place each child loop within 1196 /// either any parent loop or within a cloned version of the original loop. 1197 /// 1198 /// Because child loops may end up cloned outside of any cloned version of the 1199 /// original loop, multiple cloned sibling loops may be created. All of them 1200 /// are returned so that the newly introduced loop nest roots can be 1201 /// identified. 1202 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1203 const ValueToValueMapTy &VMap, LoopInfo &LI, 1204 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1205 Loop *ClonedL = nullptr; 1206 1207 auto *OrigPH = OrigL.getLoopPreheader(); 1208 auto *OrigHeader = OrigL.getHeader(); 1209 1210 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1211 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1212 1213 // We need to know the loops of the cloned exit blocks to even compute the 1214 // accurate parent loop. If we only clone exits to some parent of the 1215 // original parent, we want to clone into that outer loop. We also keep track 1216 // of the loops that our cloned exit blocks participate in. 1217 Loop *ParentL = nullptr; 1218 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1219 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1220 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1221 for (auto *ExitBB : ExitBlocks) 1222 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1223 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1224 ExitLoopMap[ClonedExitBB] = ExitL; 1225 ClonedExitsInLoops.push_back(ClonedExitBB); 1226 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1227 ParentL = ExitL; 1228 } 1229 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1230 ParentL->contains(OrigL.getParentLoop())) && 1231 "The computed parent loop should always contain (or be) the parent of " 1232 "the original loop."); 1233 1234 // We build the set of blocks dominated by the cloned header from the set of 1235 // cloned blocks out of the original loop. While not all of these will 1236 // necessarily be in the cloned loop, it is enough to establish that they 1237 // aren't in unreachable cycles, etc. 1238 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1239 for (auto *BB : OrigL.blocks()) 1240 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1241 ClonedLoopBlocks.insert(ClonedBB); 1242 1243 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1244 // skipped cloning some region of this loop which can in turn skip some of 1245 // the backedges so we have to rebuild the blocks in the loop based on the 1246 // backedges that remain after cloning. 1247 SmallVector<BasicBlock *, 16> Worklist; 1248 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1249 for (auto *Pred : predecessors(ClonedHeader)) { 1250 // The only possible non-loop header predecessor is the preheader because 1251 // we know we cloned the loop in simplified form. 1252 if (Pred == ClonedPH) 1253 continue; 1254 1255 // Because the loop was in simplified form, the only non-loop predecessor 1256 // should be the preheader. 1257 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1258 "header other than the preheader " 1259 "that is not part of the loop!"); 1260 1261 // Insert this block into the loop set and on the first visit (and if it 1262 // isn't the header we're currently walking) put it into the worklist to 1263 // recurse through. 1264 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1265 Worklist.push_back(Pred); 1266 } 1267 1268 // If we had any backedges then there *is* a cloned loop. Put the header into 1269 // the loop set and then walk the worklist backwards to find all the blocks 1270 // that remain within the loop after cloning. 1271 if (!BlocksInClonedLoop.empty()) { 1272 BlocksInClonedLoop.insert(ClonedHeader); 1273 1274 while (!Worklist.empty()) { 1275 BasicBlock *BB = Worklist.pop_back_val(); 1276 assert(BlocksInClonedLoop.count(BB) && 1277 "Didn't put block into the loop set!"); 1278 1279 // Insert any predecessors that are in the possible set into the cloned 1280 // set, and if the insert is successful, add them to the worklist. Note 1281 // that we filter on the blocks that are definitely reachable via the 1282 // backedge to the loop header so we may prune out dead code within the 1283 // cloned loop. 1284 for (auto *Pred : predecessors(BB)) 1285 if (ClonedLoopBlocks.count(Pred) && 1286 BlocksInClonedLoop.insert(Pred).second) 1287 Worklist.push_back(Pred); 1288 } 1289 1290 ClonedL = LI.AllocateLoop(); 1291 if (ParentL) { 1292 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1293 ParentL->addChildLoop(ClonedL); 1294 } else { 1295 LI.addTopLevelLoop(ClonedL); 1296 } 1297 NonChildClonedLoops.push_back(ClonedL); 1298 1299 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1300 // We don't want to just add the cloned loop blocks based on how we 1301 // discovered them. The original order of blocks was carefully built in 1302 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1303 // that logic, we just re-walk the original blocks (and those of the child 1304 // loops) and filter them as we add them into the cloned loop. 1305 for (auto *BB : OrigL.blocks()) { 1306 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1307 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1308 continue; 1309 1310 // Directly add the blocks that are only in this loop. 1311 if (LI.getLoopFor(BB) == &OrigL) { 1312 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1313 continue; 1314 } 1315 1316 // We want to manually add it to this loop and parents. 1317 // Registering it with LoopInfo will happen when we clone the top 1318 // loop for this block. 1319 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1320 PL->addBlockEntry(ClonedBB); 1321 } 1322 1323 // Now add each child loop whose header remains within the cloned loop. All 1324 // of the blocks within the loop must satisfy the same constraints as the 1325 // header so once we pass the header checks we can just clone the entire 1326 // child loop nest. 1327 for (Loop *ChildL : OrigL) { 1328 auto *ClonedChildHeader = 1329 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1330 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1331 continue; 1332 1333 #ifndef NDEBUG 1334 // We should never have a cloned child loop header but fail to have 1335 // all of the blocks for that child loop. 1336 for (auto *ChildLoopBB : ChildL->blocks()) 1337 assert(BlocksInClonedLoop.count( 1338 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1339 "Child cloned loop has a header within the cloned outer " 1340 "loop but not all of its blocks!"); 1341 #endif 1342 1343 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1344 } 1345 } 1346 1347 // Now that we've handled all the components of the original loop that were 1348 // cloned into a new loop, we still need to handle anything from the original 1349 // loop that wasn't in a cloned loop. 1350 1351 // Figure out what blocks are left to place within any loop nest containing 1352 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1353 // them. 1354 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1355 if (BlocksInClonedLoop.empty()) 1356 UnloopedBlockSet.insert(ClonedPH); 1357 for (auto *ClonedBB : ClonedLoopBlocks) 1358 if (!BlocksInClonedLoop.count(ClonedBB)) 1359 UnloopedBlockSet.insert(ClonedBB); 1360 1361 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1362 // backwards across these to process them inside out. The order shouldn't 1363 // matter as we're just trying to build up the map from inside-out; we use 1364 // the map in a more stably ordered way below. 1365 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1366 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1367 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1368 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1369 }); 1370 1371 // Populate the existing ExitLoopMap with everything reachable from each 1372 // exit, starting from the inner most exit. 1373 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1374 assert(Worklist.empty() && "Didn't clear worklist!"); 1375 1376 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1377 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1378 1379 // Walk the CFG back until we hit the cloned PH adding everything reachable 1380 // and in the unlooped set to this exit block's loop. 1381 Worklist.push_back(ExitBB); 1382 do { 1383 BasicBlock *BB = Worklist.pop_back_val(); 1384 // We can stop recursing at the cloned preheader (if we get there). 1385 if (BB == ClonedPH) 1386 continue; 1387 1388 for (BasicBlock *PredBB : predecessors(BB)) { 1389 // If this pred has already been moved to our set or is part of some 1390 // (inner) loop, no update needed. 1391 if (!UnloopedBlockSet.erase(PredBB)) { 1392 assert( 1393 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1394 "Predecessor not mapped to a loop!"); 1395 continue; 1396 } 1397 1398 // We just insert into the loop set here. We'll add these blocks to the 1399 // exit loop after we build up the set in an order that doesn't rely on 1400 // predecessor order (which in turn relies on use list order). 1401 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1402 (void)Inserted; 1403 assert(Inserted && "Should only visit an unlooped block once!"); 1404 1405 // And recurse through to its predecessors. 1406 Worklist.push_back(PredBB); 1407 } 1408 } while (!Worklist.empty()); 1409 } 1410 1411 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1412 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1413 // in their original order adding them to the correct loop. 1414 1415 // We need a stable insertion order. We use the order of the original loop 1416 // order and map into the correct parent loop. 1417 for (auto *BB : llvm::concat<BasicBlock *const>( 1418 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1419 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1420 OuterL->addBasicBlockToLoop(BB, LI); 1421 1422 #ifndef NDEBUG 1423 for (auto &BBAndL : ExitLoopMap) { 1424 auto *BB = BBAndL.first; 1425 auto *OuterL = BBAndL.second; 1426 assert(LI.getLoopFor(BB) == OuterL && 1427 "Failed to put all blocks into outer loops!"); 1428 } 1429 #endif 1430 1431 // Now that all the blocks are placed into the correct containing loop in the 1432 // absence of child loops, find all the potentially cloned child loops and 1433 // clone them into whatever outer loop we placed their header into. 1434 for (Loop *ChildL : OrigL) { 1435 auto *ClonedChildHeader = 1436 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1437 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1438 continue; 1439 1440 #ifndef NDEBUG 1441 for (auto *ChildLoopBB : ChildL->blocks()) 1442 assert(VMap.count(ChildLoopBB) && 1443 "Cloned a child loop header but not all of that loops blocks!"); 1444 #endif 1445 1446 NonChildClonedLoops.push_back(cloneLoopNest( 1447 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1448 } 1449 } 1450 1451 static void 1452 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1453 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1454 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1455 // Find all the dead clones, and remove them from their successors. 1456 SmallVector<BasicBlock *, 16> DeadBlocks; 1457 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1458 for (auto &VMap : VMaps) 1459 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1460 if (!DT.isReachableFromEntry(ClonedBB)) { 1461 for (BasicBlock *SuccBB : successors(ClonedBB)) 1462 SuccBB->removePredecessor(ClonedBB); 1463 DeadBlocks.push_back(ClonedBB); 1464 } 1465 1466 // Remove all MemorySSA in the dead blocks 1467 if (MSSAU) { 1468 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1469 DeadBlocks.end()); 1470 MSSAU->removeBlocks(DeadBlockSet); 1471 } 1472 1473 // Drop any remaining references to break cycles. 1474 for (BasicBlock *BB : DeadBlocks) 1475 BB->dropAllReferences(); 1476 // Erase them from the IR. 1477 for (BasicBlock *BB : DeadBlocks) 1478 BB->eraseFromParent(); 1479 } 1480 1481 static void deleteDeadBlocksFromLoop(Loop &L, 1482 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1483 DominatorTree &DT, LoopInfo &LI, 1484 MemorySSAUpdater *MSSAU) { 1485 // Find all the dead blocks tied to this loop, and remove them from their 1486 // successors. 1487 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1488 1489 // Start with loop/exit blocks and get a transitive closure of reachable dead 1490 // blocks. 1491 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1492 ExitBlocks.end()); 1493 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1494 while (!DeathCandidates.empty()) { 1495 auto *BB = DeathCandidates.pop_back_val(); 1496 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1497 for (BasicBlock *SuccBB : successors(BB)) { 1498 SuccBB->removePredecessor(BB); 1499 DeathCandidates.push_back(SuccBB); 1500 } 1501 DeadBlockSet.insert(BB); 1502 } 1503 } 1504 1505 // Remove all MemorySSA in the dead blocks 1506 if (MSSAU) 1507 MSSAU->removeBlocks(DeadBlockSet); 1508 1509 // Filter out the dead blocks from the exit blocks list so that it can be 1510 // used in the caller. 1511 llvm::erase_if(ExitBlocks, 1512 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1513 1514 // Walk from this loop up through its parents removing all of the dead blocks. 1515 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1516 for (auto *BB : DeadBlockSet) 1517 ParentL->getBlocksSet().erase(BB); 1518 llvm::erase_if(ParentL->getBlocksVector(), 1519 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1520 } 1521 1522 // Now delete the dead child loops. This raw delete will clear them 1523 // recursively. 1524 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1525 if (!DeadBlockSet.count(ChildL->getHeader())) 1526 return false; 1527 1528 assert(llvm::all_of(ChildL->blocks(), 1529 [&](BasicBlock *ChildBB) { 1530 return DeadBlockSet.count(ChildBB); 1531 }) && 1532 "If the child loop header is dead all blocks in the child loop must " 1533 "be dead as well!"); 1534 LI.destroy(ChildL); 1535 return true; 1536 }); 1537 1538 // Remove the loop mappings for the dead blocks and drop all the references 1539 // from these blocks to others to handle cyclic references as we start 1540 // deleting the blocks themselves. 1541 for (auto *BB : DeadBlockSet) { 1542 // Check that the dominator tree has already been updated. 1543 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1544 LI.changeLoopFor(BB, nullptr); 1545 BB->dropAllReferences(); 1546 } 1547 1548 // Actually delete the blocks now that they've been fully unhooked from the 1549 // IR. 1550 for (auto *BB : DeadBlockSet) 1551 BB->eraseFromParent(); 1552 } 1553 1554 /// Recompute the set of blocks in a loop after unswitching. 1555 /// 1556 /// This walks from the original headers predecessors to rebuild the loop. We 1557 /// take advantage of the fact that new blocks can't have been added, and so we 1558 /// filter by the original loop's blocks. This also handles potentially 1559 /// unreachable code that we don't want to explore but might be found examining 1560 /// the predecessors of the header. 1561 /// 1562 /// If the original loop is no longer a loop, this will return an empty set. If 1563 /// it remains a loop, all the blocks within it will be added to the set 1564 /// (including those blocks in inner loops). 1565 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1566 LoopInfo &LI) { 1567 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1568 1569 auto *PH = L.getLoopPreheader(); 1570 auto *Header = L.getHeader(); 1571 1572 // A worklist to use while walking backwards from the header. 1573 SmallVector<BasicBlock *, 16> Worklist; 1574 1575 // First walk the predecessors of the header to find the backedges. This will 1576 // form the basis of our walk. 1577 for (auto *Pred : predecessors(Header)) { 1578 // Skip the preheader. 1579 if (Pred == PH) 1580 continue; 1581 1582 // Because the loop was in simplified form, the only non-loop predecessor 1583 // is the preheader. 1584 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1585 "than the preheader that is not part of the " 1586 "loop!"); 1587 1588 // Insert this block into the loop set and on the first visit and, if it 1589 // isn't the header we're currently walking, put it into the worklist to 1590 // recurse through. 1591 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1592 Worklist.push_back(Pred); 1593 } 1594 1595 // If no backedges were found, we're done. 1596 if (LoopBlockSet.empty()) 1597 return LoopBlockSet; 1598 1599 // We found backedges, recurse through them to identify the loop blocks. 1600 while (!Worklist.empty()) { 1601 BasicBlock *BB = Worklist.pop_back_val(); 1602 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1603 1604 // No need to walk past the header. 1605 if (BB == Header) 1606 continue; 1607 1608 // Because we know the inner loop structure remains valid we can use the 1609 // loop structure to jump immediately across the entire nested loop. 1610 // Further, because it is in loop simplified form, we can directly jump 1611 // to its preheader afterward. 1612 if (Loop *InnerL = LI.getLoopFor(BB)) 1613 if (InnerL != &L) { 1614 assert(L.contains(InnerL) && 1615 "Should not reach a loop *outside* this loop!"); 1616 // The preheader is the only possible predecessor of the loop so 1617 // insert it into the set and check whether it was already handled. 1618 auto *InnerPH = InnerL->getLoopPreheader(); 1619 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1620 "but not contain the inner loop " 1621 "preheader!"); 1622 if (!LoopBlockSet.insert(InnerPH).second) 1623 // The only way to reach the preheader is through the loop body 1624 // itself so if it has been visited the loop is already handled. 1625 continue; 1626 1627 // Insert all of the blocks (other than those already present) into 1628 // the loop set. We expect at least the block that led us to find the 1629 // inner loop to be in the block set, but we may also have other loop 1630 // blocks if they were already enqueued as predecessors of some other 1631 // outer loop block. 1632 for (auto *InnerBB : InnerL->blocks()) { 1633 if (InnerBB == BB) { 1634 assert(LoopBlockSet.count(InnerBB) && 1635 "Block should already be in the set!"); 1636 continue; 1637 } 1638 1639 LoopBlockSet.insert(InnerBB); 1640 } 1641 1642 // Add the preheader to the worklist so we will continue past the 1643 // loop body. 1644 Worklist.push_back(InnerPH); 1645 continue; 1646 } 1647 1648 // Insert any predecessors that were in the original loop into the new 1649 // set, and if the insert is successful, add them to the worklist. 1650 for (auto *Pred : predecessors(BB)) 1651 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1652 Worklist.push_back(Pred); 1653 } 1654 1655 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1656 1657 // We've found all the blocks participating in the loop, return our completed 1658 // set. 1659 return LoopBlockSet; 1660 } 1661 1662 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1663 /// 1664 /// The removal may have removed some child loops entirely but cannot have 1665 /// disturbed any remaining child loops. However, they may need to be hoisted 1666 /// to the parent loop (or to be top-level loops). The original loop may be 1667 /// completely removed. 1668 /// 1669 /// The sibling loops resulting from this update are returned. If the original 1670 /// loop remains a valid loop, it will be the first entry in this list with all 1671 /// of the newly sibling loops following it. 1672 /// 1673 /// Returns true if the loop remains a loop after unswitching, and false if it 1674 /// is no longer a loop after unswitching (and should not continue to be 1675 /// referenced). 1676 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1677 LoopInfo &LI, 1678 SmallVectorImpl<Loop *> &HoistedLoops) { 1679 auto *PH = L.getLoopPreheader(); 1680 1681 // Compute the actual parent loop from the exit blocks. Because we may have 1682 // pruned some exits the loop may be different from the original parent. 1683 Loop *ParentL = nullptr; 1684 SmallVector<Loop *, 4> ExitLoops; 1685 SmallVector<BasicBlock *, 4> ExitsInLoops; 1686 ExitsInLoops.reserve(ExitBlocks.size()); 1687 for (auto *ExitBB : ExitBlocks) 1688 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1689 ExitLoops.push_back(ExitL); 1690 ExitsInLoops.push_back(ExitBB); 1691 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1692 ParentL = ExitL; 1693 } 1694 1695 // Recompute the blocks participating in this loop. This may be empty if it 1696 // is no longer a loop. 1697 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1698 1699 // If we still have a loop, we need to re-set the loop's parent as the exit 1700 // block set changing may have moved it within the loop nest. Note that this 1701 // can only happen when this loop has a parent as it can only hoist the loop 1702 // *up* the nest. 1703 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1704 // Remove this loop's (original) blocks from all of the intervening loops. 1705 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1706 IL = IL->getParentLoop()) { 1707 IL->getBlocksSet().erase(PH); 1708 for (auto *BB : L.blocks()) 1709 IL->getBlocksSet().erase(BB); 1710 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1711 return BB == PH || L.contains(BB); 1712 }); 1713 } 1714 1715 LI.changeLoopFor(PH, ParentL); 1716 L.getParentLoop()->removeChildLoop(&L); 1717 if (ParentL) 1718 ParentL->addChildLoop(&L); 1719 else 1720 LI.addTopLevelLoop(&L); 1721 } 1722 1723 // Now we update all the blocks which are no longer within the loop. 1724 auto &Blocks = L.getBlocksVector(); 1725 auto BlocksSplitI = 1726 LoopBlockSet.empty() 1727 ? Blocks.begin() 1728 : std::stable_partition( 1729 Blocks.begin(), Blocks.end(), 1730 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1731 1732 // Before we erase the list of unlooped blocks, build a set of them. 1733 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1734 if (LoopBlockSet.empty()) 1735 UnloopedBlocks.insert(PH); 1736 1737 // Now erase these blocks from the loop. 1738 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1739 L.getBlocksSet().erase(BB); 1740 Blocks.erase(BlocksSplitI, Blocks.end()); 1741 1742 // Sort the exits in ascending loop depth, we'll work backwards across these 1743 // to process them inside out. 1744 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1745 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1746 }); 1747 1748 // We'll build up a set for each exit loop. 1749 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1750 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1751 1752 auto RemoveUnloopedBlocksFromLoop = 1753 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1754 for (auto *BB : UnloopedBlocks) 1755 L.getBlocksSet().erase(BB); 1756 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1757 return UnloopedBlocks.count(BB); 1758 }); 1759 }; 1760 1761 SmallVector<BasicBlock *, 16> Worklist; 1762 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1763 assert(Worklist.empty() && "Didn't clear worklist!"); 1764 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1765 1766 // Grab the next exit block, in decreasing loop depth order. 1767 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1768 Loop &ExitL = *LI.getLoopFor(ExitBB); 1769 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1770 1771 // Erase all of the unlooped blocks from the loops between the previous 1772 // exit loop and this exit loop. This works because the ExitInLoops list is 1773 // sorted in increasing order of loop depth and thus we visit loops in 1774 // decreasing order of loop depth. 1775 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1776 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1777 1778 // Walk the CFG back until we hit the cloned PH adding everything reachable 1779 // and in the unlooped set to this exit block's loop. 1780 Worklist.push_back(ExitBB); 1781 do { 1782 BasicBlock *BB = Worklist.pop_back_val(); 1783 // We can stop recursing at the cloned preheader (if we get there). 1784 if (BB == PH) 1785 continue; 1786 1787 for (BasicBlock *PredBB : predecessors(BB)) { 1788 // If this pred has already been moved to our set or is part of some 1789 // (inner) loop, no update needed. 1790 if (!UnloopedBlocks.erase(PredBB)) { 1791 assert((NewExitLoopBlocks.count(PredBB) || 1792 ExitL.contains(LI.getLoopFor(PredBB))) && 1793 "Predecessor not in a nested loop (or already visited)!"); 1794 continue; 1795 } 1796 1797 // We just insert into the loop set here. We'll add these blocks to the 1798 // exit loop after we build up the set in a deterministic order rather 1799 // than the predecessor-influenced visit order. 1800 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1801 (void)Inserted; 1802 assert(Inserted && "Should only visit an unlooped block once!"); 1803 1804 // And recurse through to its predecessors. 1805 Worklist.push_back(PredBB); 1806 } 1807 } while (!Worklist.empty()); 1808 1809 // If blocks in this exit loop were directly part of the original loop (as 1810 // opposed to a child loop) update the map to point to this exit loop. This 1811 // just updates a map and so the fact that the order is unstable is fine. 1812 for (auto *BB : NewExitLoopBlocks) 1813 if (Loop *BBL = LI.getLoopFor(BB)) 1814 if (BBL == &L || !L.contains(BBL)) 1815 LI.changeLoopFor(BB, &ExitL); 1816 1817 // We will remove the remaining unlooped blocks from this loop in the next 1818 // iteration or below. 1819 NewExitLoopBlocks.clear(); 1820 } 1821 1822 // Any remaining unlooped blocks are no longer part of any loop unless they 1823 // are part of some child loop. 1824 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1825 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1826 for (auto *BB : UnloopedBlocks) 1827 if (Loop *BBL = LI.getLoopFor(BB)) 1828 if (BBL == &L || !L.contains(BBL)) 1829 LI.changeLoopFor(BB, nullptr); 1830 1831 // Sink all the child loops whose headers are no longer in the loop set to 1832 // the parent (or to be top level loops). We reach into the loop and directly 1833 // update its subloop vector to make this batch update efficient. 1834 auto &SubLoops = L.getSubLoopsVector(); 1835 auto SubLoopsSplitI = 1836 LoopBlockSet.empty() 1837 ? SubLoops.begin() 1838 : std::stable_partition( 1839 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1840 return LoopBlockSet.count(SubL->getHeader()); 1841 }); 1842 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1843 HoistedLoops.push_back(HoistedL); 1844 HoistedL->setParentLoop(nullptr); 1845 1846 // To compute the new parent of this hoisted loop we look at where we 1847 // placed the preheader above. We can't lookup the header itself because we 1848 // retained the mapping from the header to the hoisted loop. But the 1849 // preheader and header should have the exact same new parent computed 1850 // based on the set of exit blocks from the original loop as the preheader 1851 // is a predecessor of the header and so reached in the reverse walk. And 1852 // because the loops were all in simplified form the preheader of the 1853 // hoisted loop can't be part of some *other* loop. 1854 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1855 NewParentL->addChildLoop(HoistedL); 1856 else 1857 LI.addTopLevelLoop(HoistedL); 1858 } 1859 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1860 1861 // Actually delete the loop if nothing remained within it. 1862 if (Blocks.empty()) { 1863 assert(SubLoops.empty() && 1864 "Failed to remove all subloops from the original loop!"); 1865 if (Loop *ParentL = L.getParentLoop()) 1866 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1867 else 1868 LI.removeLoop(llvm::find(LI, &L)); 1869 LI.destroy(&L); 1870 return false; 1871 } 1872 1873 return true; 1874 } 1875 1876 /// Helper to visit a dominator subtree, invoking a callable on each node. 1877 /// 1878 /// Returning false at any point will stop walking past that node of the tree. 1879 template <typename CallableT> 1880 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1881 SmallVector<DomTreeNode *, 4> DomWorklist; 1882 DomWorklist.push_back(DT[BB]); 1883 #ifndef NDEBUG 1884 SmallPtrSet<DomTreeNode *, 4> Visited; 1885 Visited.insert(DT[BB]); 1886 #endif 1887 do { 1888 DomTreeNode *N = DomWorklist.pop_back_val(); 1889 1890 // Visit this node. 1891 if (!Callable(N->getBlock())) 1892 continue; 1893 1894 // Accumulate the child nodes. 1895 for (DomTreeNode *ChildN : *N) { 1896 assert(Visited.insert(ChildN).second && 1897 "Cannot visit a node twice when walking a tree!"); 1898 DomWorklist.push_back(ChildN); 1899 } 1900 } while (!DomWorklist.empty()); 1901 } 1902 1903 static void unswitchNontrivialInvariants( 1904 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1905 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1906 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1907 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 1908 auto *ParentBB = TI.getParent(); 1909 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1910 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1911 1912 // We can only unswitch switches, conditional branches with an invariant 1913 // condition, or combining invariant conditions with an instruction. 1914 assert((SI || (BI && BI->isConditional())) && 1915 "Can only unswitch switches and conditional branch!"); 1916 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1917 if (FullUnswitch) 1918 assert(Invariants.size() == 1 && 1919 "Cannot have other invariants with full unswitching!"); 1920 else 1921 assert(isa<Instruction>(BI->getCondition()) && 1922 "Partial unswitching requires an instruction as the condition!"); 1923 1924 if (MSSAU && VerifyMemorySSA) 1925 MSSAU->getMemorySSA()->verifyMemorySSA(); 1926 1927 // Constant and BBs tracking the cloned and continuing successor. When we are 1928 // unswitching the entire condition, this can just be trivially chosen to 1929 // unswitch towards `true`. However, when we are unswitching a set of 1930 // invariants combined with `and` or `or`, the combining operation determines 1931 // the best direction to unswitch: we want to unswitch the direction that will 1932 // collapse the branch. 1933 bool Direction = true; 1934 int ClonedSucc = 0; 1935 if (!FullUnswitch) { 1936 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1937 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1938 Instruction::And && 1939 "Only `or` and `and` instructions can combine invariants being " 1940 "unswitched."); 1941 Direction = false; 1942 ClonedSucc = 1; 1943 } 1944 } 1945 1946 BasicBlock *RetainedSuccBB = 1947 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1948 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1949 if (BI) 1950 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1951 else 1952 for (auto Case : SI->cases()) 1953 if (Case.getCaseSuccessor() != RetainedSuccBB) 1954 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1955 1956 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 1957 "Should not unswitch the same successor we are retaining!"); 1958 1959 // The branch should be in this exact loop. Any inner loop's invariant branch 1960 // should be handled by unswitching that inner loop. The caller of this 1961 // routine should filter out any candidates that remain (but were skipped for 1962 // whatever reason). 1963 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1964 1965 // Compute the parent loop now before we start hacking on things. 1966 Loop *ParentL = L.getParentLoop(); 1967 // Get blocks in RPO order for MSSA update, before changing the CFG. 1968 LoopBlocksRPO LBRPO(&L); 1969 if (MSSAU) 1970 LBRPO.perform(&LI); 1971 1972 // Compute the outer-most loop containing one of our exit blocks. This is the 1973 // furthest up our loopnest which can be mutated, which we will use below to 1974 // update things. 1975 Loop *OuterExitL = &L; 1976 for (auto *ExitBB : ExitBlocks) { 1977 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1978 if (!NewOuterExitL) { 1979 // We exited the entire nest with this block, so we're done. 1980 OuterExitL = nullptr; 1981 break; 1982 } 1983 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1984 OuterExitL = NewOuterExitL; 1985 } 1986 1987 // At this point, we're definitely going to unswitch something so invalidate 1988 // any cached information in ScalarEvolution for the outer most loop 1989 // containing an exit block and all nested loops. 1990 if (SE) { 1991 if (OuterExitL) 1992 SE->forgetLoop(OuterExitL); 1993 else 1994 SE->forgetTopmostLoop(&L); 1995 } 1996 1997 // If the edge from this terminator to a successor dominates that successor, 1998 // store a map from each block in its dominator subtree to it. This lets us 1999 // tell when cloning for a particular successor if a block is dominated by 2000 // some *other* successor with a single data structure. We use this to 2001 // significantly reduce cloning. 2002 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2003 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2004 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2005 if (SuccBB->getUniquePredecessor() || 2006 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2007 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2008 })) 2009 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2010 DominatingSucc[BB] = SuccBB; 2011 return true; 2012 }); 2013 2014 // Split the preheader, so that we know that there is a safe place to insert 2015 // the conditional branch. We will change the preheader to have a conditional 2016 // branch on LoopCond. The original preheader will become the split point 2017 // between the unswitched versions, and we will have a new preheader for the 2018 // original loop. 2019 BasicBlock *SplitBB = L.getLoopPreheader(); 2020 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2021 2022 // Keep track of the dominator tree updates needed. 2023 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2024 2025 // Clone the loop for each unswitched successor. 2026 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2027 VMaps.reserve(UnswitchedSuccBBs.size()); 2028 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2029 for (auto *SuccBB : UnswitchedSuccBBs) { 2030 VMaps.emplace_back(new ValueToValueMapTy()); 2031 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2032 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2033 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2034 } 2035 2036 // The stitching of the branched code back together depends on whether we're 2037 // doing full unswitching or not with the exception that we always want to 2038 // nuke the initial terminator placed in the split block. 2039 SplitBB->getTerminator()->eraseFromParent(); 2040 if (FullUnswitch) { 2041 // Splice the terminator from the original loop and rewrite its 2042 // successors. 2043 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2044 2045 // Keep a clone of the terminator for MSSA updates. 2046 Instruction *NewTI = TI.clone(); 2047 ParentBB->getInstList().push_back(NewTI); 2048 2049 // First wire up the moved terminator to the preheaders. 2050 if (BI) { 2051 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2052 BI->setSuccessor(ClonedSucc, ClonedPH); 2053 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2054 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2055 } else { 2056 assert(SI && "Must either be a branch or switch!"); 2057 2058 // Walk the cases and directly update their successors. 2059 assert(SI->getDefaultDest() == RetainedSuccBB && 2060 "Not retaining default successor!"); 2061 SI->setDefaultDest(LoopPH); 2062 for (auto &Case : SI->cases()) 2063 if (Case.getCaseSuccessor() == RetainedSuccBB) 2064 Case.setSuccessor(LoopPH); 2065 else 2066 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2067 2068 // We need to use the set to populate domtree updates as even when there 2069 // are multiple cases pointing at the same successor we only want to 2070 // remove and insert one edge in the domtree. 2071 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2072 DTUpdates.push_back( 2073 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2074 } 2075 2076 if (MSSAU) { 2077 DT.applyUpdates(DTUpdates); 2078 DTUpdates.clear(); 2079 2080 // Remove all but one edge to the retained block and all unswitched 2081 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2082 // when we know we only keep a single edge for each case. 2083 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2084 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2085 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2086 2087 for (auto &VMap : VMaps) 2088 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2089 /*IgnoreIncomingWithNoClones=*/true); 2090 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2091 2092 // Remove all edges to unswitched blocks. 2093 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2094 MSSAU->removeEdge(ParentBB, SuccBB); 2095 } 2096 2097 // Now unhook the successor relationship as we'll be replacing 2098 // the terminator with a direct branch. This is much simpler for branches 2099 // than switches so we handle those first. 2100 if (BI) { 2101 // Remove the parent as a predecessor of the unswitched successor. 2102 assert(UnswitchedSuccBBs.size() == 1 && 2103 "Only one possible unswitched block for a branch!"); 2104 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2105 UnswitchedSuccBB->removePredecessor(ParentBB, 2106 /*KeepOneInputPHIs*/ true); 2107 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2108 } else { 2109 // Note that we actually want to remove the parent block as a predecessor 2110 // of *every* case successor. The case successor is either unswitched, 2111 // completely eliminating an edge from the parent to that successor, or it 2112 // is a duplicate edge to the retained successor as the retained successor 2113 // is always the default successor and as we'll replace this with a direct 2114 // branch we no longer need the duplicate entries in the PHI nodes. 2115 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2116 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2117 "Not retaining default successor!"); 2118 for (auto &Case : NewSI->cases()) 2119 Case.getCaseSuccessor()->removePredecessor( 2120 ParentBB, 2121 /*KeepOneInputPHIs*/ true); 2122 2123 // We need to use the set to populate domtree updates as even when there 2124 // are multiple cases pointing at the same successor we only want to 2125 // remove and insert one edge in the domtree. 2126 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2127 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2128 } 2129 2130 // After MSSAU update, remove the cloned terminator instruction NewTI. 2131 ParentBB->getTerminator()->eraseFromParent(); 2132 2133 // Create a new unconditional branch to the continuing block (as opposed to 2134 // the one cloned). 2135 BranchInst::Create(RetainedSuccBB, ParentBB); 2136 } else { 2137 assert(BI && "Only branches have partial unswitching."); 2138 assert(UnswitchedSuccBBs.size() == 1 && 2139 "Only one possible unswitched block for a branch!"); 2140 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2141 // When doing a partial unswitch, we have to do a bit more work to build up 2142 // the branch in the split block. 2143 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2144 *ClonedPH, *LoopPH); 2145 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2146 2147 if (MSSAU) { 2148 DT.applyUpdates(DTUpdates); 2149 DTUpdates.clear(); 2150 2151 // Perform MSSA cloning updates. 2152 for (auto &VMap : VMaps) 2153 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2154 /*IgnoreIncomingWithNoClones=*/true); 2155 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2156 } 2157 } 2158 2159 // Apply the updates accumulated above to get an up-to-date dominator tree. 2160 DT.applyUpdates(DTUpdates); 2161 2162 // Now that we have an accurate dominator tree, first delete the dead cloned 2163 // blocks so that we can accurately build any cloned loops. It is important to 2164 // not delete the blocks from the original loop yet because we still want to 2165 // reference the original loop to understand the cloned loop's structure. 2166 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2167 2168 // Build the cloned loop structure itself. This may be substantially 2169 // different from the original structure due to the simplified CFG. This also 2170 // handles inserting all the cloned blocks into the correct loops. 2171 SmallVector<Loop *, 4> NonChildClonedLoops; 2172 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2173 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2174 2175 // Now that our cloned loops have been built, we can update the original loop. 2176 // First we delete the dead blocks from it and then we rebuild the loop 2177 // structure taking these deletions into account. 2178 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2179 2180 if (MSSAU && VerifyMemorySSA) 2181 MSSAU->getMemorySSA()->verifyMemorySSA(); 2182 2183 SmallVector<Loop *, 4> HoistedLoops; 2184 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2185 2186 if (MSSAU && VerifyMemorySSA) 2187 MSSAU->getMemorySSA()->verifyMemorySSA(); 2188 2189 // This transformation has a high risk of corrupting the dominator tree, and 2190 // the below steps to rebuild loop structures will result in hard to debug 2191 // errors in that case so verify that the dominator tree is sane first. 2192 // FIXME: Remove this when the bugs stop showing up and rely on existing 2193 // verification steps. 2194 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2195 2196 if (BI) { 2197 // If we unswitched a branch which collapses the condition to a known 2198 // constant we want to replace all the uses of the invariants within both 2199 // the original and cloned blocks. We do this here so that we can use the 2200 // now updated dominator tree to identify which side the users are on. 2201 assert(UnswitchedSuccBBs.size() == 1 && 2202 "Only one possible unswitched block for a branch!"); 2203 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2204 2205 // When considering multiple partially-unswitched invariants 2206 // we cant just go replace them with constants in both branches. 2207 // 2208 // For 'AND' we infer that true branch ("continue") means true 2209 // for each invariant operand. 2210 // For 'OR' we can infer that false branch ("continue") means false 2211 // for each invariant operand. 2212 // So it happens that for multiple-partial case we dont replace 2213 // in the unswitched branch. 2214 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2215 2216 ConstantInt *UnswitchedReplacement = 2217 Direction ? ConstantInt::getTrue(BI->getContext()) 2218 : ConstantInt::getFalse(BI->getContext()); 2219 ConstantInt *ContinueReplacement = 2220 Direction ? ConstantInt::getFalse(BI->getContext()) 2221 : ConstantInt::getTrue(BI->getContext()); 2222 for (Value *Invariant : Invariants) 2223 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2224 UI != UE;) { 2225 // Grab the use and walk past it so we can clobber it in the use list. 2226 Use *U = &*UI++; 2227 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2228 if (!UserI) 2229 continue; 2230 2231 // Replace it with the 'continue' side if in the main loop body, and the 2232 // unswitched if in the cloned blocks. 2233 if (DT.dominates(LoopPH, UserI->getParent())) 2234 U->set(ContinueReplacement); 2235 else if (ReplaceUnswitched && 2236 DT.dominates(ClonedPH, UserI->getParent())) 2237 U->set(UnswitchedReplacement); 2238 } 2239 } 2240 2241 // We can change which blocks are exit blocks of all the cloned sibling 2242 // loops, the current loop, and any parent loops which shared exit blocks 2243 // with the current loop. As a consequence, we need to re-form LCSSA for 2244 // them. But we shouldn't need to re-form LCSSA for any child loops. 2245 // FIXME: This could be made more efficient by tracking which exit blocks are 2246 // new, and focusing on them, but that isn't likely to be necessary. 2247 // 2248 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2249 // loop nest and update every loop that could have had its exits changed. We 2250 // also need to cover any intervening loops. We add all of these loops to 2251 // a list and sort them by loop depth to achieve this without updating 2252 // unnecessary loops. 2253 auto UpdateLoop = [&](Loop &UpdateL) { 2254 #ifndef NDEBUG 2255 UpdateL.verifyLoop(); 2256 for (Loop *ChildL : UpdateL) { 2257 ChildL->verifyLoop(); 2258 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2259 "Perturbed a child loop's LCSSA form!"); 2260 } 2261 #endif 2262 // First build LCSSA for this loop so that we can preserve it when 2263 // forming dedicated exits. We don't want to perturb some other loop's 2264 // LCSSA while doing that CFG edit. 2265 formLCSSA(UpdateL, DT, &LI, nullptr); 2266 2267 // For loops reached by this loop's original exit blocks we may 2268 // introduced new, non-dedicated exits. At least try to re-form dedicated 2269 // exits for these loops. This may fail if they couldn't have dedicated 2270 // exits to start with. 2271 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2272 }; 2273 2274 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2275 // and we can do it in any order as they don't nest relative to each other. 2276 // 2277 // Also check if any of the loops we have updated have become top-level loops 2278 // as that will necessitate widening the outer loop scope. 2279 for (Loop *UpdatedL : 2280 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2281 UpdateLoop(*UpdatedL); 2282 if (!UpdatedL->getParentLoop()) 2283 OuterExitL = nullptr; 2284 } 2285 if (IsStillLoop) { 2286 UpdateLoop(L); 2287 if (!L.getParentLoop()) 2288 OuterExitL = nullptr; 2289 } 2290 2291 // If the original loop had exit blocks, walk up through the outer most loop 2292 // of those exit blocks to update LCSSA and form updated dedicated exits. 2293 if (OuterExitL != &L) 2294 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2295 OuterL = OuterL->getParentLoop()) 2296 UpdateLoop(*OuterL); 2297 2298 #ifndef NDEBUG 2299 // Verify the entire loop structure to catch any incorrect updates before we 2300 // progress in the pass pipeline. 2301 LI.verify(DT); 2302 #endif 2303 2304 // Now that we've unswitched something, make callbacks to report the changes. 2305 // For that we need to merge together the updated loops and the cloned loops 2306 // and check whether the original loop survived. 2307 SmallVector<Loop *, 4> SibLoops; 2308 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2309 if (UpdatedL->getParentLoop() == ParentL) 2310 SibLoops.push_back(UpdatedL); 2311 UnswitchCB(IsStillLoop, SibLoops); 2312 2313 if (MSSAU && VerifyMemorySSA) 2314 MSSAU->getMemorySSA()->verifyMemorySSA(); 2315 2316 if (BI) 2317 ++NumBranches; 2318 else 2319 ++NumSwitches; 2320 } 2321 2322 /// Recursively compute the cost of a dominator subtree based on the per-block 2323 /// cost map provided. 2324 /// 2325 /// The recursive computation is memozied into the provided DT-indexed cost map 2326 /// to allow querying it for most nodes in the domtree without it becoming 2327 /// quadratic. 2328 static int 2329 computeDomSubtreeCost(DomTreeNode &N, 2330 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2331 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2332 // Don't accumulate cost (or recurse through) blocks not in our block cost 2333 // map and thus not part of the duplication cost being considered. 2334 auto BBCostIt = BBCostMap.find(N.getBlock()); 2335 if (BBCostIt == BBCostMap.end()) 2336 return 0; 2337 2338 // Lookup this node to see if we already computed its cost. 2339 auto DTCostIt = DTCostMap.find(&N); 2340 if (DTCostIt != DTCostMap.end()) 2341 return DTCostIt->second; 2342 2343 // If not, we have to compute it. We can't use insert above and update 2344 // because computing the cost may insert more things into the map. 2345 int Cost = std::accumulate( 2346 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2347 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2348 }); 2349 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2350 (void)Inserted; 2351 assert(Inserted && "Should not insert a node while visiting children!"); 2352 return Cost; 2353 } 2354 2355 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2356 /// making the following replacement: 2357 /// 2358 /// --code before guard-- 2359 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2360 /// --code after guard-- 2361 /// 2362 /// into 2363 /// 2364 /// --code before guard-- 2365 /// br i1 %cond, label %guarded, label %deopt 2366 /// 2367 /// guarded: 2368 /// --code after guard-- 2369 /// 2370 /// deopt: 2371 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2372 /// unreachable 2373 /// 2374 /// It also makes all relevant DT and LI updates, so that all structures are in 2375 /// valid state after this transform. 2376 static BranchInst * 2377 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2378 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2379 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2380 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2381 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2382 BasicBlock *CheckBB = GI->getParent(); 2383 2384 if (MSSAU && VerifyMemorySSA) 2385 MSSAU->getMemorySSA()->verifyMemorySSA(); 2386 2387 // Remove all CheckBB's successors from DomTree. A block can be seen among 2388 // successors more than once, but for DomTree it should be added only once. 2389 SmallPtrSet<BasicBlock *, 4> Successors; 2390 for (auto *Succ : successors(CheckBB)) 2391 if (Successors.insert(Succ).second) 2392 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2393 2394 Instruction *DeoptBlockTerm = 2395 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2396 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2397 // SplitBlockAndInsertIfThen inserts control flow that branches to 2398 // DeoptBlockTerm if the condition is true. We want the opposite. 2399 CheckBI->swapSuccessors(); 2400 2401 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2402 GuardedBlock->setName("guarded"); 2403 CheckBI->getSuccessor(1)->setName("deopt"); 2404 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2405 2406 // We now have a new exit block. 2407 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2408 2409 if (MSSAU) 2410 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2411 2412 GI->moveBefore(DeoptBlockTerm); 2413 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2414 2415 // Add new successors of CheckBB into DomTree. 2416 for (auto *Succ : successors(CheckBB)) 2417 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2418 2419 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2420 // successors. 2421 for (auto *Succ : Successors) 2422 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2423 2424 // Make proper changes to DT. 2425 DT.applyUpdates(DTUpdates); 2426 // Inform LI of a new loop block. 2427 L.addBasicBlockToLoop(GuardedBlock, LI); 2428 2429 if (MSSAU) { 2430 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2431 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End); 2432 if (VerifyMemorySSA) 2433 MSSAU->getMemorySSA()->verifyMemorySSA(); 2434 } 2435 2436 ++NumGuards; 2437 return CheckBI; 2438 } 2439 2440 /// Cost multiplier is a way to limit potentially exponential behavior 2441 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2442 /// candidates available. Also accounting for the number of "sibling" loops with 2443 /// the idea to account for previous unswitches that already happened on this 2444 /// cluster of loops. There was an attempt to keep this formula simple, 2445 /// just enough to limit the worst case behavior. Even if it is not that simple 2446 /// now it is still not an attempt to provide a detailed heuristic size 2447 /// prediction. 2448 /// 2449 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2450 /// unswitch candidates, making adequate predictions instead of wild guesses. 2451 /// That requires knowing not just the number of "remaining" candidates but 2452 /// also costs of unswitching for each of these candidates. 2453 static int calculateUnswitchCostMultiplier( 2454 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2455 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2456 UnswitchCandidates) { 2457 2458 // Guards and other exiting conditions do not contribute to exponential 2459 // explosion as soon as they dominate the latch (otherwise there might be 2460 // another path to the latch remaining that does not allow to eliminate the 2461 // loop copy on unswitch). 2462 BasicBlock *Latch = L.getLoopLatch(); 2463 BasicBlock *CondBlock = TI.getParent(); 2464 if (DT.dominates(CondBlock, Latch) && 2465 (isGuard(&TI) || 2466 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2467 return L.contains(SuccBB); 2468 }) <= 1)) { 2469 NumCostMultiplierSkipped++; 2470 return 1; 2471 } 2472 2473 auto *ParentL = L.getParentLoop(); 2474 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2475 : std::distance(LI.begin(), LI.end())); 2476 // Count amount of clones that all the candidates might cause during 2477 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2478 int UnswitchedClones = 0; 2479 for (auto Candidate : UnswitchCandidates) { 2480 Instruction *CI = Candidate.first; 2481 BasicBlock *CondBlock = CI->getParent(); 2482 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2483 if (isGuard(CI)) { 2484 if (!SkipExitingSuccessors) 2485 UnswitchedClones++; 2486 continue; 2487 } 2488 int NonExitingSuccessors = llvm::count_if( 2489 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2490 return !SkipExitingSuccessors || L.contains(SuccBB); 2491 }); 2492 UnswitchedClones += Log2_32(NonExitingSuccessors); 2493 } 2494 2495 // Ignore up to the "unscaled candidates" number of unswitch candidates 2496 // when calculating the power-of-two scaling of the cost. The main idea 2497 // with this control is to allow a small number of unswitches to happen 2498 // and rely more on siblings multiplier (see below) when the number 2499 // of candidates is small. 2500 unsigned ClonesPower = 2501 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2502 2503 // Allowing top-level loops to spread a bit more than nested ones. 2504 int SiblingsMultiplier = 2505 std::max((ParentL ? SiblingsCount 2506 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2507 1); 2508 // Compute the cost multiplier in a way that won't overflow by saturating 2509 // at an upper bound. 2510 int CostMultiplier; 2511 if (ClonesPower > Log2_32(UnswitchThreshold) || 2512 SiblingsMultiplier > UnswitchThreshold) 2513 CostMultiplier = UnswitchThreshold; 2514 else 2515 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2516 (int)UnswitchThreshold); 2517 2518 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2519 << " (siblings " << SiblingsMultiplier << " * clones " 2520 << (1 << ClonesPower) << ")" 2521 << " for unswitch candidate: " << TI << "\n"); 2522 return CostMultiplier; 2523 } 2524 2525 static bool 2526 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2527 AssumptionCache &AC, TargetTransformInfo &TTI, 2528 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2529 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2530 // Collect all invariant conditions within this loop (as opposed to an inner 2531 // loop which would be handled when visiting that inner loop). 2532 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2533 UnswitchCandidates; 2534 2535 // Whether or not we should also collect guards in the loop. 2536 bool CollectGuards = false; 2537 if (UnswitchGuards) { 2538 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2539 Intrinsic::getName(Intrinsic::experimental_guard)); 2540 if (GuardDecl && !GuardDecl->use_empty()) 2541 CollectGuards = true; 2542 } 2543 2544 for (auto *BB : L.blocks()) { 2545 if (LI.getLoopFor(BB) != &L) 2546 continue; 2547 2548 if (CollectGuards) 2549 for (auto &I : *BB) 2550 if (isGuard(&I)) { 2551 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2552 // TODO: Support AND, OR conditions and partial unswitching. 2553 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2554 UnswitchCandidates.push_back({&I, {Cond}}); 2555 } 2556 2557 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2558 // We can only consider fully loop-invariant switch conditions as we need 2559 // to completely eliminate the switch after unswitching. 2560 if (!isa<Constant>(SI->getCondition()) && 2561 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2562 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2563 continue; 2564 } 2565 2566 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2567 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2568 BI->getSuccessor(0) == BI->getSuccessor(1)) 2569 continue; 2570 2571 if (L.isLoopInvariant(BI->getCondition())) { 2572 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2573 continue; 2574 } 2575 2576 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2577 if (CondI.getOpcode() != Instruction::And && 2578 CondI.getOpcode() != Instruction::Or) 2579 continue; 2580 2581 TinyPtrVector<Value *> Invariants = 2582 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2583 if (Invariants.empty()) 2584 continue; 2585 2586 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2587 } 2588 2589 // If we didn't find any candidates, we're done. 2590 if (UnswitchCandidates.empty()) 2591 return false; 2592 2593 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2594 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2595 // irreducible control flow into reducible control flow and introduce new 2596 // loops "out of thin air". If we ever discover important use cases for doing 2597 // this, we can add support to loop unswitch, but it is a lot of complexity 2598 // for what seems little or no real world benefit. 2599 LoopBlocksRPO RPOT(&L); 2600 RPOT.perform(&LI); 2601 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2602 return false; 2603 2604 SmallVector<BasicBlock *, 4> ExitBlocks; 2605 L.getUniqueExitBlocks(ExitBlocks); 2606 2607 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2608 // don't know how to split those exit blocks. 2609 // FIXME: We should teach SplitBlock to handle this and remove this 2610 // restriction. 2611 for (auto *ExitBB : ExitBlocks) 2612 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2613 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2614 return false; 2615 } 2616 2617 LLVM_DEBUG( 2618 dbgs() << "Considering " << UnswitchCandidates.size() 2619 << " non-trivial loop invariant conditions for unswitching.\n"); 2620 2621 // Given that unswitching these terminators will require duplicating parts of 2622 // the loop, so we need to be able to model that cost. Compute the ephemeral 2623 // values and set up a data structure to hold per-BB costs. We cache each 2624 // block's cost so that we don't recompute this when considering different 2625 // subsets of the loop for duplication during unswitching. 2626 SmallPtrSet<const Value *, 4> EphValues; 2627 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2628 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2629 2630 // Compute the cost of each block, as well as the total loop cost. Also, bail 2631 // out if we see instructions which are incompatible with loop unswitching 2632 // (convergent, noduplicate, or cross-basic-block tokens). 2633 // FIXME: We might be able to safely handle some of these in non-duplicated 2634 // regions. 2635 int LoopCost = 0; 2636 for (auto *BB : L.blocks()) { 2637 int Cost = 0; 2638 for (auto &I : *BB) { 2639 if (EphValues.count(&I)) 2640 continue; 2641 2642 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2643 return false; 2644 if (auto CS = CallSite(&I)) 2645 if (CS.isConvergent() || CS.cannotDuplicate()) 2646 return false; 2647 2648 Cost += TTI.getUserCost(&I); 2649 } 2650 assert(Cost >= 0 && "Must not have negative costs!"); 2651 LoopCost += Cost; 2652 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2653 BBCostMap[BB] = Cost; 2654 } 2655 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2656 2657 // Now we find the best candidate by searching for the one with the following 2658 // properties in order: 2659 // 2660 // 1) An unswitching cost below the threshold 2661 // 2) The smallest number of duplicated unswitch candidates (to avoid 2662 // creating redundant subsequent unswitching) 2663 // 3) The smallest cost after unswitching. 2664 // 2665 // We prioritize reducing fanout of unswitch candidates provided the cost 2666 // remains below the threshold because this has a multiplicative effect. 2667 // 2668 // This requires memoizing each dominator subtree to avoid redundant work. 2669 // 2670 // FIXME: Need to actually do the number of candidates part above. 2671 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2672 // Given a terminator which might be unswitched, computes the non-duplicated 2673 // cost for that terminator. 2674 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2675 BasicBlock &BB = *TI.getParent(); 2676 SmallPtrSet<BasicBlock *, 4> Visited; 2677 2678 int Cost = LoopCost; 2679 for (BasicBlock *SuccBB : successors(&BB)) { 2680 // Don't count successors more than once. 2681 if (!Visited.insert(SuccBB).second) 2682 continue; 2683 2684 // If this is a partial unswitch candidate, then it must be a conditional 2685 // branch with a condition of either `or` or `and`. In that case, one of 2686 // the successors is necessarily duplicated, so don't even try to remove 2687 // its cost. 2688 if (!FullUnswitch) { 2689 auto &BI = cast<BranchInst>(TI); 2690 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2691 Instruction::And) { 2692 if (SuccBB == BI.getSuccessor(1)) 2693 continue; 2694 } else { 2695 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2696 Instruction::Or && 2697 "Only `and` and `or` conditions can result in a partial " 2698 "unswitch!"); 2699 if (SuccBB == BI.getSuccessor(0)) 2700 continue; 2701 } 2702 } 2703 2704 // This successor's domtree will not need to be duplicated after 2705 // unswitching if the edge to the successor dominates it (and thus the 2706 // entire tree). This essentially means there is no other path into this 2707 // subtree and so it will end up live in only one clone of the loop. 2708 if (SuccBB->getUniquePredecessor() || 2709 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2710 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2711 })) { 2712 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2713 assert(Cost >= 0 && 2714 "Non-duplicated cost should never exceed total loop cost!"); 2715 } 2716 } 2717 2718 // Now scale the cost by the number of unique successors minus one. We 2719 // subtract one because there is already at least one copy of the entire 2720 // loop. This is computing the new cost of unswitching a condition. 2721 // Note that guards always have 2 unique successors that are implicit and 2722 // will be materialized if we decide to unswitch it. 2723 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2724 assert(SuccessorsCount > 1 && 2725 "Cannot unswitch a condition without multiple distinct successors!"); 2726 return Cost * (SuccessorsCount - 1); 2727 }; 2728 Instruction *BestUnswitchTI = nullptr; 2729 int BestUnswitchCost = 0; 2730 ArrayRef<Value *> BestUnswitchInvariants; 2731 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2732 Instruction &TI = *TerminatorAndInvariants.first; 2733 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2734 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2735 int CandidateCost = ComputeUnswitchedCost( 2736 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2737 Invariants[0] == BI->getCondition())); 2738 // Calculate cost multiplier which is a tool to limit potentially 2739 // exponential behavior of loop-unswitch. 2740 if (EnableUnswitchCostMultiplier) { 2741 int CostMultiplier = 2742 calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2743 assert( 2744 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2745 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2746 CandidateCost *= CostMultiplier; 2747 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2748 << " (multiplier: " << CostMultiplier << ")" 2749 << " for unswitch candidate: " << TI << "\n"); 2750 } else { 2751 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2752 << " for unswitch candidate: " << TI << "\n"); 2753 } 2754 2755 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2756 BestUnswitchTI = &TI; 2757 BestUnswitchCost = CandidateCost; 2758 BestUnswitchInvariants = Invariants; 2759 } 2760 } 2761 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2762 2763 if (BestUnswitchCost >= UnswitchThreshold) { 2764 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2765 << BestUnswitchCost << "\n"); 2766 return false; 2767 } 2768 2769 // If the best candidate is a guard, turn it into a branch. 2770 if (isGuard(BestUnswitchTI)) 2771 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2772 ExitBlocks, DT, LI, MSSAU); 2773 2774 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2775 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2776 << "\n"); 2777 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2778 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2779 return true; 2780 } 2781 2782 /// Unswitch control flow predicated on loop invariant conditions. 2783 /// 2784 /// This first hoists all branches or switches which are trivial (IE, do not 2785 /// require duplicating any part of the loop) out of the loop body. It then 2786 /// looks at other loop invariant control flows and tries to unswitch those as 2787 /// well by cloning the loop if the result is small enough. 2788 /// 2789 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2790 /// updated based on the unswitch. 2791 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 2792 /// 2793 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2794 /// true, we will attempt to do non-trivial unswitching as well as trivial 2795 /// unswitching. 2796 /// 2797 /// The `UnswitchCB` callback provided will be run after unswitching is 2798 /// complete, with the first parameter set to `true` if the provided loop 2799 /// remains a loop, and a list of new sibling loops created. 2800 /// 2801 /// If `SE` is non-null, we will update that analysis based on the unswitching 2802 /// done. 2803 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2804 AssumptionCache &AC, TargetTransformInfo &TTI, 2805 bool NonTrivial, 2806 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2807 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2808 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2809 "Loops must be in LCSSA form before unswitching."); 2810 bool Changed = false; 2811 2812 // Must be in loop simplified form: we need a preheader and dedicated exits. 2813 if (!L.isLoopSimplifyForm()) 2814 return false; 2815 2816 // Try trivial unswitch first before loop over other basic blocks in the loop. 2817 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2818 // If we unswitched successfully we will want to clean up the loop before 2819 // processing it further so just mark it as unswitched and return. 2820 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2821 return true; 2822 } 2823 2824 // If we're not doing non-trivial unswitching, we're done. We both accept 2825 // a parameter but also check a local flag that can be used for testing 2826 // a debugging. 2827 if (!NonTrivial && !EnableNonTrivialUnswitch) 2828 return false; 2829 2830 // For non-trivial unswitching, because it often creates new loops, we rely on 2831 // the pass manager to iterate on the loops rather than trying to immediately 2832 // reach a fixed point. There is no substantial advantage to iterating 2833 // internally, and if any of the new loops are simplified enough to contain 2834 // trivial unswitching we want to prefer those. 2835 2836 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2837 // a partial unswitch when possible below the threshold. 2838 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2839 return true; 2840 2841 // No other opportunities to unswitch. 2842 return Changed; 2843 } 2844 2845 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2846 LoopStandardAnalysisResults &AR, 2847 LPMUpdater &U) { 2848 Function &F = *L.getHeader()->getParent(); 2849 (void)F; 2850 2851 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2852 << "\n"); 2853 2854 // Save the current loop name in a variable so that we can report it even 2855 // after it has been deleted. 2856 std::string LoopName = L.getName(); 2857 2858 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2859 ArrayRef<Loop *> NewLoops) { 2860 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2861 if (!NewLoops.empty()) 2862 U.addSiblingLoops(NewLoops); 2863 2864 // If the current loop remains valid, we should revisit it to catch any 2865 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2866 if (CurrentLoopValid) 2867 U.revisitCurrentLoop(); 2868 else 2869 U.markLoopAsDeleted(L, LoopName); 2870 }; 2871 2872 Optional<MemorySSAUpdater> MSSAU; 2873 if (AR.MSSA) { 2874 MSSAU = MemorySSAUpdater(AR.MSSA); 2875 if (VerifyMemorySSA) 2876 AR.MSSA->verifyMemorySSA(); 2877 } 2878 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2879 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 2880 return PreservedAnalyses::all(); 2881 2882 if (AR.MSSA && VerifyMemorySSA) 2883 AR.MSSA->verifyMemorySSA(); 2884 2885 // Historically this pass has had issues with the dominator tree so verify it 2886 // in asserts builds. 2887 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2888 2889 auto PA = getLoopPassPreservedAnalyses(); 2890 if (AR.MSSA) 2891 PA.preserve<MemorySSAAnalysis>(); 2892 return PA; 2893 } 2894 2895 namespace { 2896 2897 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2898 bool NonTrivial; 2899 2900 public: 2901 static char ID; // Pass ID, replacement for typeid 2902 2903 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2904 : LoopPass(ID), NonTrivial(NonTrivial) { 2905 initializeSimpleLoopUnswitchLegacyPassPass( 2906 *PassRegistry::getPassRegistry()); 2907 } 2908 2909 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2910 2911 void getAnalysisUsage(AnalysisUsage &AU) const override { 2912 AU.addRequired<AssumptionCacheTracker>(); 2913 AU.addRequired<TargetTransformInfoWrapperPass>(); 2914 if (EnableMSSALoopDependency) { 2915 AU.addRequired<MemorySSAWrapperPass>(); 2916 AU.addPreserved<MemorySSAWrapperPass>(); 2917 } 2918 getLoopAnalysisUsage(AU); 2919 } 2920 }; 2921 2922 } // end anonymous namespace 2923 2924 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2925 if (skipLoop(L)) 2926 return false; 2927 2928 Function &F = *L->getHeader()->getParent(); 2929 2930 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2931 << "\n"); 2932 2933 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2934 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2935 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2936 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2937 MemorySSA *MSSA = nullptr; 2938 Optional<MemorySSAUpdater> MSSAU; 2939 if (EnableMSSALoopDependency) { 2940 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2941 MSSAU = MemorySSAUpdater(MSSA); 2942 } 2943 2944 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 2945 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 2946 2947 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2948 ArrayRef<Loop *> NewLoops) { 2949 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2950 for (auto *NewL : NewLoops) 2951 LPM.addLoop(*NewL); 2952 2953 // If the current loop remains valid, re-add it to the queue. This is 2954 // a little wasteful as we'll finish processing the current loop as well, 2955 // but it is the best we can do in the old PM. 2956 if (CurrentLoopValid) 2957 LPM.addLoop(*L); 2958 else 2959 LPM.markLoopAsDeleted(*L); 2960 }; 2961 2962 if (MSSA && VerifyMemorySSA) 2963 MSSA->verifyMemorySSA(); 2964 2965 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 2966 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 2967 2968 if (MSSA && VerifyMemorySSA) 2969 MSSA->verifyMemorySSA(); 2970 2971 // If anything was unswitched, also clear any cached information about this 2972 // loop. 2973 LPM.deleteSimpleAnalysisLoop(L); 2974 2975 // Historically this pass has had issues with the dominator tree so verify it 2976 // in asserts builds. 2977 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2978 2979 return Changed; 2980 } 2981 2982 char SimpleLoopUnswitchLegacyPass::ID = 0; 2983 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2984 "Simple unswitch loops", false, false) 2985 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2986 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2987 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2988 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2989 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 2990 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2991 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2992 "Simple unswitch loops", false, false) 2993 2994 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2995 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2996 } 2997