1 //===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/Utils/Local.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Use.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/GenericDomTree.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Cloning.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include "llvm/Transforms/Utils/ValueMapper.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <numeric> 54 #include <utility> 55 56 #define DEBUG_TYPE "simple-loop-unswitch" 57 58 using namespace llvm; 59 60 STATISTIC(NumBranches, "Number of branches unswitched"); 61 STATISTIC(NumSwitches, "Number of switches unswitched"); 62 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 63 64 static cl::opt<bool> EnableNonTrivialUnswitch( 65 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 66 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 67 "following the configuration passed into the pass.")); 68 69 static cl::opt<int> 70 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 71 cl::desc("The cost threshold for unswitching a loop.")); 72 73 /// Collect all of the loop invariant input values transitively used by the 74 /// homogeneous instruction graph from a given root. 75 /// 76 /// This essentially walks from a root recursively through loop variant operands 77 /// which have the exact same opcode and finds all inputs which are loop 78 /// invariant. For some operations these can be re-associated and unswitched out 79 /// of the loop entirely. 80 static TinyPtrVector<Value *> 81 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 82 LoopInfo &LI) { 83 assert(!L.isLoopInvariant(&Root) && 84 "Only need to walk the graph if root itself is not invariant."); 85 TinyPtrVector<Value *> Invariants; 86 87 // Build a worklist and recurse through operators collecting invariants. 88 SmallVector<Instruction *, 4> Worklist; 89 SmallPtrSet<Instruction *, 8> Visited; 90 Worklist.push_back(&Root); 91 Visited.insert(&Root); 92 do { 93 Instruction &I = *Worklist.pop_back_val(); 94 for (Value *OpV : I.operand_values()) { 95 // Skip constants as unswitching isn't interesting for them. 96 if (isa<Constant>(OpV)) 97 continue; 98 99 // Add it to our result if loop invariant. 100 if (L.isLoopInvariant(OpV)) { 101 Invariants.push_back(OpV); 102 continue; 103 } 104 105 // If not an instruction with the same opcode, nothing we can do. 106 Instruction *OpI = dyn_cast<Instruction>(OpV); 107 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 108 continue; 109 110 // Visit this operand. 111 if (Visited.insert(OpI).second) 112 Worklist.push_back(OpI); 113 } 114 } while (!Worklist.empty()); 115 116 return Invariants; 117 } 118 119 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 120 Constant &Replacement) { 121 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 122 123 // Replace uses of LIC in the loop with the given constant. 124 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 125 // Grab the use and walk past it so we can clobber it in the use list. 126 Use *U = &*UI++; 127 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 128 129 // Replace this use within the loop body. 130 if (UserI && L.contains(UserI)) 131 U->set(&Replacement); 132 } 133 } 134 135 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 136 /// incoming values along this edge. 137 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 138 BasicBlock &ExitBB) { 139 for (Instruction &I : ExitBB) { 140 auto *PN = dyn_cast<PHINode>(&I); 141 if (!PN) 142 // No more PHIs to check. 143 return true; 144 145 // If the incoming value for this edge isn't loop invariant the unswitch 146 // won't be trivial. 147 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 148 return false; 149 } 150 llvm_unreachable("Basic blocks should never be empty!"); 151 } 152 153 /// Insert code to test a set of loop invariant values, and conditionally branch 154 /// on them. 155 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 156 ArrayRef<Value *> Invariants, 157 bool Direction, 158 BasicBlock &UnswitchedSucc, 159 BasicBlock &NormalSucc) { 160 IRBuilder<> IRB(&BB); 161 Value *Cond = Invariants.front(); 162 for (Value *Invariant : 163 make_range(std::next(Invariants.begin()), Invariants.end())) 164 if (Direction) 165 Cond = IRB.CreateOr(Cond, Invariant); 166 else 167 Cond = IRB.CreateAnd(Cond, Invariant); 168 169 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 170 Direction ? &NormalSucc : &UnswitchedSucc); 171 } 172 173 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 174 /// 175 /// Requires that the loop exit and unswitched basic block are the same, and 176 /// that the exiting block was a unique predecessor of that block. Rewrites the 177 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 178 /// PHI nodes from the old preheader that now contains the unswitched 179 /// terminator. 180 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 181 BasicBlock &OldExitingBB, 182 BasicBlock &OldPH) { 183 for (PHINode &PN : UnswitchedBB.phis()) { 184 // When the loop exit is directly unswitched we just need to update the 185 // incoming basic block. We loop to handle weird cases with repeated 186 // incoming blocks, but expect to typically only have one operand here. 187 for (auto i : seq<int>(0, PN.getNumOperands())) { 188 assert(PN.getIncomingBlock(i) == &OldExitingBB && 189 "Found incoming block different from unique predecessor!"); 190 PN.setIncomingBlock(i, &OldPH); 191 } 192 } 193 } 194 195 /// Rewrite the PHI nodes in the loop exit basic block and the split off 196 /// unswitched block. 197 /// 198 /// Because the exit block remains an exit from the loop, this rewrites the 199 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 200 /// nodes into the unswitched basic block to select between the value in the 201 /// old preheader and the loop exit. 202 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 203 BasicBlock &UnswitchedBB, 204 BasicBlock &OldExitingBB, 205 BasicBlock &OldPH, 206 bool FullUnswitch) { 207 assert(&ExitBB != &UnswitchedBB && 208 "Must have different loop exit and unswitched blocks!"); 209 Instruction *InsertPt = &*UnswitchedBB.begin(); 210 for (PHINode &PN : ExitBB.phis()) { 211 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 212 PN.getName() + ".split", InsertPt); 213 214 // Walk backwards over the old PHI node's inputs to minimize the cost of 215 // removing each one. We have to do this weird loop manually so that we 216 // create the same number of new incoming edges in the new PHI as we expect 217 // each case-based edge to be included in the unswitched switch in some 218 // cases. 219 // FIXME: This is really, really gross. It would be much cleaner if LLVM 220 // allowed us to create a single entry for a predecessor block without 221 // having separate entries for each "edge" even though these edges are 222 // required to produce identical results. 223 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 224 if (PN.getIncomingBlock(i) != &OldExitingBB) 225 continue; 226 227 Value *Incoming = PN.getIncomingValue(i); 228 if (FullUnswitch) 229 // No more edge from the old exiting block to the exit block. 230 PN.removeIncomingValue(i); 231 232 NewPN->addIncoming(Incoming, &OldPH); 233 } 234 235 // Now replace the old PHI with the new one and wire the old one in as an 236 // input to the new one. 237 PN.replaceAllUsesWith(NewPN); 238 NewPN->addIncoming(&PN, &ExitBB); 239 } 240 } 241 242 /// Unswitch a trivial branch if the condition is loop invariant. 243 /// 244 /// This routine should only be called when loop code leading to the branch has 245 /// been validated as trivial (no side effects). This routine checks if the 246 /// condition is invariant and one of the successors is a loop exit. This 247 /// allows us to unswitch without duplicating the loop, making it trivial. 248 /// 249 /// If this routine fails to unswitch the branch it returns false. 250 /// 251 /// If the branch can be unswitched, this routine splits the preheader and 252 /// hoists the branch above that split. Preserves loop simplified form 253 /// (splitting the exit block as necessary). It simplifies the branch within 254 /// the loop to an unconditional branch but doesn't remove it entirely. Further 255 /// cleanup can be done with some simplify-cfg like pass. 256 /// 257 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 258 /// invalidated by this. 259 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 260 LoopInfo &LI, ScalarEvolution *SE) { 261 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 262 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 263 264 // The loop invariant values that we want to unswitch. 265 TinyPtrVector<Value *> Invariants; 266 267 // When true, we're fully unswitching the branch rather than just unswitching 268 // some input conditions to the branch. 269 bool FullUnswitch = false; 270 271 if (L.isLoopInvariant(BI.getCondition())) { 272 Invariants.push_back(BI.getCondition()); 273 FullUnswitch = true; 274 } else { 275 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 276 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 277 if (Invariants.empty()) 278 // Couldn't find invariant inputs! 279 return false; 280 } 281 282 // Check that one of the branch's successors exits, and which one. 283 bool ExitDirection = true; 284 int LoopExitSuccIdx = 0; 285 auto *LoopExitBB = BI.getSuccessor(0); 286 if (L.contains(LoopExitBB)) { 287 ExitDirection = false; 288 LoopExitSuccIdx = 1; 289 LoopExitBB = BI.getSuccessor(1); 290 if (L.contains(LoopExitBB)) 291 return false; 292 } 293 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 294 auto *ParentBB = BI.getParent(); 295 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 296 return false; 297 298 // When unswitching only part of the branch's condition, we need the exit 299 // block to be reached directly from the partially unswitched input. This can 300 // be done when the exit block is along the true edge and the branch condition 301 // is a graph of `or` operations, or the exit block is along the false edge 302 // and the condition is a graph of `and` operations. 303 if (!FullUnswitch) { 304 if (ExitDirection) { 305 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 306 return false; 307 } else { 308 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 309 return false; 310 } 311 } 312 313 LLVM_DEBUG({ 314 dbgs() << " unswitching trivial invariant conditions for: " << BI 315 << "\n"; 316 for (Value *Invariant : Invariants) { 317 dbgs() << " " << *Invariant << " == true"; 318 if (Invariant != Invariants.back()) 319 dbgs() << " ||"; 320 dbgs() << "\n"; 321 } 322 }); 323 324 // If we have scalar evolutions, we need to invalidate them including this 325 // loop and the loop containing the exit block. 326 if (SE) { 327 if (Loop *ExitL = LI.getLoopFor(LoopExitBB)) 328 SE->forgetLoop(ExitL); 329 else 330 // Forget the entire nest as this exits the entire nest. 331 SE->forgetTopmostLoop(&L); 332 } 333 334 // Split the preheader, so that we know that there is a safe place to insert 335 // the conditional branch. We will change the preheader to have a conditional 336 // branch on LoopCond. 337 BasicBlock *OldPH = L.getLoopPreheader(); 338 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 339 340 // Now that we have a place to insert the conditional branch, create a place 341 // to branch to: this is the exit block out of the loop that we are 342 // unswitching. We need to split this if there are other loop predecessors. 343 // Because the loop is in simplified form, *any* other predecessor is enough. 344 BasicBlock *UnswitchedBB; 345 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 346 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 347 "A branch's parent isn't a predecessor!"); 348 UnswitchedBB = LoopExitBB; 349 } else { 350 UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI); 351 } 352 353 // Actually move the invariant uses into the unswitched position. If possible, 354 // we do this by moving the instructions, but when doing partial unswitching 355 // we do it by building a new merge of the values in the unswitched position. 356 OldPH->getTerminator()->eraseFromParent(); 357 if (FullUnswitch) { 358 // If fully unswitching, we can use the existing branch instruction. 359 // Splice it into the old PH to gate reaching the new preheader and re-point 360 // its successors. 361 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 362 BI); 363 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 364 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 365 366 // Create a new unconditional branch that will continue the loop as a new 367 // terminator. 368 BranchInst::Create(ContinueBB, ParentBB); 369 } else { 370 // Only unswitching a subset of inputs to the condition, so we will need to 371 // build a new branch that merges the invariant inputs. 372 if (ExitDirection) 373 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 374 Instruction::Or && 375 "Must have an `or` of `i1`s for the condition!"); 376 else 377 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 378 Instruction::And && 379 "Must have an `and` of `i1`s for the condition!"); 380 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 381 *UnswitchedBB, *NewPH); 382 } 383 384 // Rewrite the relevant PHI nodes. 385 if (UnswitchedBB == LoopExitBB) 386 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 387 else 388 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 389 *ParentBB, *OldPH, FullUnswitch); 390 391 // Now we need to update the dominator tree. 392 DT.insertEdge(OldPH, UnswitchedBB); 393 if (FullUnswitch) 394 DT.deleteEdge(ParentBB, UnswitchedBB); 395 396 // The constant we can replace all of our invariants with inside the loop 397 // body. If any of the invariants have a value other than this the loop won't 398 // be entered. 399 ConstantInt *Replacement = ExitDirection 400 ? ConstantInt::getFalse(BI.getContext()) 401 : ConstantInt::getTrue(BI.getContext()); 402 403 // Since this is an i1 condition we can also trivially replace uses of it 404 // within the loop with a constant. 405 for (Value *Invariant : Invariants) 406 replaceLoopInvariantUses(L, Invariant, *Replacement); 407 408 ++NumTrivial; 409 ++NumBranches; 410 return true; 411 } 412 413 /// Unswitch a trivial switch if the condition is loop invariant. 414 /// 415 /// This routine should only be called when loop code leading to the switch has 416 /// been validated as trivial (no side effects). This routine checks if the 417 /// condition is invariant and that at least one of the successors is a loop 418 /// exit. This allows us to unswitch without duplicating the loop, making it 419 /// trivial. 420 /// 421 /// If this routine fails to unswitch the switch it returns false. 422 /// 423 /// If the switch can be unswitched, this routine splits the preheader and 424 /// copies the switch above that split. If the default case is one of the 425 /// exiting cases, it copies the non-exiting cases and points them at the new 426 /// preheader. If the default case is not exiting, it copies the exiting cases 427 /// and points the default at the preheader. It preserves loop simplified form 428 /// (splitting the exit blocks as necessary). It simplifies the switch within 429 /// the loop by removing now-dead cases. If the default case is one of those 430 /// unswitched, it replaces its destination with a new basic block containing 431 /// only unreachable. Such basic blocks, while technically loop exits, are not 432 /// considered for unswitching so this is a stable transform and the same 433 /// switch will not be revisited. If after unswitching there is only a single 434 /// in-loop successor, the switch is further simplified to an unconditional 435 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 436 /// 437 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 438 /// invalidated by this. 439 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 440 LoopInfo &LI, ScalarEvolution *SE) { 441 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 442 Value *LoopCond = SI.getCondition(); 443 444 // If this isn't switching on an invariant condition, we can't unswitch it. 445 if (!L.isLoopInvariant(LoopCond)) 446 return false; 447 448 auto *ParentBB = SI.getParent(); 449 450 SmallVector<int, 4> ExitCaseIndices; 451 for (auto Case : SI.cases()) { 452 auto *SuccBB = Case.getCaseSuccessor(); 453 if (!L.contains(SuccBB) && 454 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 455 ExitCaseIndices.push_back(Case.getCaseIndex()); 456 } 457 BasicBlock *DefaultExitBB = nullptr; 458 if (!L.contains(SI.getDefaultDest()) && 459 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 460 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 461 DefaultExitBB = SI.getDefaultDest(); 462 else if (ExitCaseIndices.empty()) 463 return false; 464 465 LLVM_DEBUG(dbgs() << " unswitching trivial cases...\n"); 466 467 // We may need to invalidate SCEVs for the outermost loop reached by any of 468 // the exits. 469 Loop *OuterL = &L; 470 471 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 472 ExitCases.reserve(ExitCaseIndices.size()); 473 // We walk the case indices backwards so that we remove the last case first 474 // and don't disrupt the earlier indices. 475 for (unsigned Index : reverse(ExitCaseIndices)) { 476 auto CaseI = SI.case_begin() + Index; 477 // Compute the outer loop from this exit. 478 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 479 if (!ExitL || ExitL->contains(OuterL)) 480 OuterL = ExitL; 481 // Save the value of this case. 482 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 483 // Delete the unswitched cases. 484 SI.removeCase(CaseI); 485 } 486 487 if (SE) { 488 if (OuterL) 489 SE->forgetLoop(OuterL); 490 else 491 SE->forgetTopmostLoop(&L); 492 } 493 494 // Check if after this all of the remaining cases point at the same 495 // successor. 496 BasicBlock *CommonSuccBB = nullptr; 497 if (SI.getNumCases() > 0 && 498 std::all_of(std::next(SI.case_begin()), SI.case_end(), 499 [&SI](const SwitchInst::CaseHandle &Case) { 500 return Case.getCaseSuccessor() == 501 SI.case_begin()->getCaseSuccessor(); 502 })) 503 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 504 505 if (DefaultExitBB) { 506 // We can't remove the default edge so replace it with an edge to either 507 // the single common remaining successor (if we have one) or an unreachable 508 // block. 509 if (CommonSuccBB) { 510 SI.setDefaultDest(CommonSuccBB); 511 } else { 512 BasicBlock *UnreachableBB = BasicBlock::Create( 513 ParentBB->getContext(), 514 Twine(ParentBB->getName()) + ".unreachable_default", 515 ParentBB->getParent()); 516 new UnreachableInst(ParentBB->getContext(), UnreachableBB); 517 SI.setDefaultDest(UnreachableBB); 518 DT.addNewBlock(UnreachableBB, ParentBB); 519 } 520 } else { 521 // If we're not unswitching the default, we need it to match any cases to 522 // have a common successor or if we have no cases it is the common 523 // successor. 524 if (SI.getNumCases() == 0) 525 CommonSuccBB = SI.getDefaultDest(); 526 else if (SI.getDefaultDest() != CommonSuccBB) 527 CommonSuccBB = nullptr; 528 } 529 530 // Split the preheader, so that we know that there is a safe place to insert 531 // the switch. 532 BasicBlock *OldPH = L.getLoopPreheader(); 533 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 534 OldPH->getTerminator()->eraseFromParent(); 535 536 // Now add the unswitched switch. 537 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 538 539 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 540 // First, we split any exit blocks with remaining in-loop predecessors. Then 541 // we update the PHIs in one of two ways depending on if there was a split. 542 // We walk in reverse so that we split in the same order as the cases 543 // appeared. This is purely for convenience of reading the resulting IR, but 544 // it doesn't cost anything really. 545 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 546 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 547 // Handle the default exit if necessary. 548 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 549 // ranges aren't quite powerful enough yet. 550 if (DefaultExitBB) { 551 if (pred_empty(DefaultExitBB)) { 552 UnswitchedExitBBs.insert(DefaultExitBB); 553 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 554 } else { 555 auto *SplitBB = 556 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI); 557 rewritePHINodesForExitAndUnswitchedBlocks( 558 *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 559 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 560 } 561 } 562 // Note that we must use a reference in the for loop so that we update the 563 // container. 564 for (auto &CasePair : reverse(ExitCases)) { 565 // Grab a reference to the exit block in the pair so that we can update it. 566 BasicBlock *ExitBB = CasePair.second; 567 568 // If this case is the last edge into the exit block, we can simply reuse it 569 // as it will no longer be a loop exit. No mapping necessary. 570 if (pred_empty(ExitBB)) { 571 // Only rewrite once. 572 if (UnswitchedExitBBs.insert(ExitBB).second) 573 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 574 continue; 575 } 576 577 // Otherwise we need to split the exit block so that we retain an exit 578 // block from the loop and a target for the unswitched condition. 579 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 580 if (!SplitExitBB) { 581 // If this is the first time we see this, do the split and remember it. 582 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 583 rewritePHINodesForExitAndUnswitchedBlocks( 584 *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 585 } 586 // Update the case pair to point to the split block. 587 CasePair.second = SplitExitBB; 588 } 589 590 // Now add the unswitched cases. We do this in reverse order as we built them 591 // in reverse order. 592 for (auto CasePair : reverse(ExitCases)) { 593 ConstantInt *CaseVal = CasePair.first; 594 BasicBlock *UnswitchedBB = CasePair.second; 595 596 NewSI->addCase(CaseVal, UnswitchedBB); 597 } 598 599 // If the default was unswitched, re-point it and add explicit cases for 600 // entering the loop. 601 if (DefaultExitBB) { 602 NewSI->setDefaultDest(DefaultExitBB); 603 604 // We removed all the exit cases, so we just copy the cases to the 605 // unswitched switch. 606 for (auto Case : SI.cases()) 607 NewSI->addCase(Case.getCaseValue(), NewPH); 608 } 609 610 // If we ended up with a common successor for every path through the switch 611 // after unswitching, rewrite it to an unconditional branch to make it easy 612 // to recognize. Otherwise we potentially have to recognize the default case 613 // pointing at unreachable and other complexity. 614 if (CommonSuccBB) { 615 BasicBlock *BB = SI.getParent(); 616 SI.eraseFromParent(); 617 BranchInst::Create(CommonSuccBB, BB); 618 } 619 620 // Walk the unswitched exit blocks and the unswitched split blocks and update 621 // the dominator tree based on the CFG edits. While we are walking unordered 622 // containers here, the API for applyUpdates takes an unordered list of 623 // updates and requires them to not contain duplicates. 624 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 625 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 626 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 627 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 628 } 629 for (auto SplitUnswitchedPair : SplitExitBBMap) { 630 auto *UnswitchedBB = SplitUnswitchedPair.second; 631 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); 632 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 633 } 634 DT.applyUpdates(DTUpdates); 635 636 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 637 ++NumTrivial; 638 ++NumSwitches; 639 return true; 640 } 641 642 /// This routine scans the loop to find a branch or switch which occurs before 643 /// any side effects occur. These can potentially be unswitched without 644 /// duplicating the loop. If a branch or switch is successfully unswitched the 645 /// scanning continues to see if subsequent branches or switches have become 646 /// trivial. Once all trivial candidates have been unswitched, this routine 647 /// returns. 648 /// 649 /// The return value indicates whether anything was unswitched (and therefore 650 /// changed). 651 /// 652 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 653 /// invalidated by this. 654 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 655 LoopInfo &LI, ScalarEvolution *SE) { 656 bool Changed = false; 657 658 // If loop header has only one reachable successor we should keep looking for 659 // trivial condition candidates in the successor as well. An alternative is 660 // to constant fold conditions and merge successors into loop header (then we 661 // only need to check header's terminator). The reason for not doing this in 662 // LoopUnswitch pass is that it could potentially break LoopPassManager's 663 // invariants. Folding dead branches could either eliminate the current loop 664 // or make other loops unreachable. LCSSA form might also not be preserved 665 // after deleting branches. The following code keeps traversing loop header's 666 // successors until it finds the trivial condition candidate (condition that 667 // is not a constant). Since unswitching generates branches with constant 668 // conditions, this scenario could be very common in practice. 669 BasicBlock *CurrentBB = L.getHeader(); 670 SmallPtrSet<BasicBlock *, 8> Visited; 671 Visited.insert(CurrentBB); 672 do { 673 // Check if there are any side-effecting instructions (e.g. stores, calls, 674 // volatile loads) in the part of the loop that the code *would* execute 675 // without unswitching. 676 if (llvm::any_of(*CurrentBB, 677 [](Instruction &I) { return I.mayHaveSideEffects(); })) 678 return Changed; 679 680 TerminatorInst *CurrentTerm = CurrentBB->getTerminator(); 681 682 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 683 // Don't bother trying to unswitch past a switch with a constant 684 // condition. This should be removed prior to running this pass by 685 // simplify-cfg. 686 if (isa<Constant>(SI->getCondition())) 687 return Changed; 688 689 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE)) 690 // Couldn't unswitch this one so we're done. 691 return Changed; 692 693 // Mark that we managed to unswitch something. 694 Changed = true; 695 696 // If unswitching turned the terminator into an unconditional branch then 697 // we can continue. The unswitching logic specifically works to fold any 698 // cases it can into an unconditional branch to make it easier to 699 // recognize here. 700 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 701 if (!BI || BI->isConditional()) 702 return Changed; 703 704 CurrentBB = BI->getSuccessor(0); 705 continue; 706 } 707 708 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 709 if (!BI) 710 // We do not understand other terminator instructions. 711 return Changed; 712 713 // Don't bother trying to unswitch past an unconditional branch or a branch 714 // with a constant value. These should be removed by simplify-cfg prior to 715 // running this pass. 716 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 717 return Changed; 718 719 // Found a trivial condition candidate: non-foldable conditional branch. If 720 // we fail to unswitch this, we can't do anything else that is trivial. 721 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE)) 722 return Changed; 723 724 // Mark that we managed to unswitch something. 725 Changed = true; 726 727 // If we only unswitched some of the conditions feeding the branch, we won't 728 // have collapsed it to a single successor. 729 BI = cast<BranchInst>(CurrentBB->getTerminator()); 730 if (BI->isConditional()) 731 return Changed; 732 733 // Follow the newly unconditional branch into its successor. 734 CurrentBB = BI->getSuccessor(0); 735 736 // When continuing, if we exit the loop or reach a previous visited block, 737 // then we can not reach any trivial condition candidates (unfoldable 738 // branch instructions or switch instructions) and no unswitch can happen. 739 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 740 741 return Changed; 742 } 743 744 /// Build the cloned blocks for an unswitched copy of the given loop. 745 /// 746 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 747 /// after the split block (`SplitBB`) that will be used to select between the 748 /// cloned and original loop. 749 /// 750 /// This routine handles cloning all of the necessary loop blocks and exit 751 /// blocks including rewriting their instructions and the relevant PHI nodes. 752 /// Any loop blocks or exit blocks which are dominated by a different successor 753 /// than the one for this clone of the loop blocks can be trivially skipped. We 754 /// use the `DominatingSucc` map to determine whether a block satisfies that 755 /// property with a simple map lookup. 756 /// 757 /// It also correctly creates the unconditional branch in the cloned 758 /// unswitched parent block to only point at the unswitched successor. 759 /// 760 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 761 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 762 /// the cloned blocks (and their loops) are left without full `LoopInfo` 763 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 764 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 765 /// instead the caller must recompute an accurate DT. It *does* correctly 766 /// update the `AssumptionCache` provided in `AC`. 767 static BasicBlock *buildClonedLoopBlocks( 768 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 769 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 770 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 771 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 772 ValueToValueMapTy &VMap, 773 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 774 DominatorTree &DT, LoopInfo &LI) { 775 SmallVector<BasicBlock *, 4> NewBlocks; 776 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 777 778 // We will need to clone a bunch of blocks, wrap up the clone operation in 779 // a helper. 780 auto CloneBlock = [&](BasicBlock *OldBB) { 781 // Clone the basic block and insert it before the new preheader. 782 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 783 NewBB->moveBefore(LoopPH); 784 785 // Record this block and the mapping. 786 NewBlocks.push_back(NewBB); 787 VMap[OldBB] = NewBB; 788 789 return NewBB; 790 }; 791 792 // We skip cloning blocks when they have a dominating succ that is not the 793 // succ we are cloning for. 794 auto SkipBlock = [&](BasicBlock *BB) { 795 auto It = DominatingSucc.find(BB); 796 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 797 }; 798 799 // First, clone the preheader. 800 auto *ClonedPH = CloneBlock(LoopPH); 801 802 // Then clone all the loop blocks, skipping the ones that aren't necessary. 803 for (auto *LoopBB : L.blocks()) 804 if (!SkipBlock(LoopBB)) 805 CloneBlock(LoopBB); 806 807 // Split all the loop exit edges so that when we clone the exit blocks, if 808 // any of the exit blocks are *also* a preheader for some other loop, we 809 // don't create multiple predecessors entering the loop header. 810 for (auto *ExitBB : ExitBlocks) { 811 if (SkipBlock(ExitBB)) 812 continue; 813 814 // When we are going to clone an exit, we don't need to clone all the 815 // instructions in the exit block and we want to ensure we have an easy 816 // place to merge the CFG, so split the exit first. This is always safe to 817 // do because there cannot be any non-loop predecessors of a loop exit in 818 // loop simplified form. 819 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 820 821 // Rearrange the names to make it easier to write test cases by having the 822 // exit block carry the suffix rather than the merge block carrying the 823 // suffix. 824 MergeBB->takeName(ExitBB); 825 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 826 827 // Now clone the original exit block. 828 auto *ClonedExitBB = CloneBlock(ExitBB); 829 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 830 "Exit block should have been split to have one successor!"); 831 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 832 "Cloned exit block has the wrong successor!"); 833 834 // Remap any cloned instructions and create a merge phi node for them. 835 for (auto ZippedInsts : llvm::zip_first( 836 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 837 llvm::make_range(ClonedExitBB->begin(), 838 std::prev(ClonedExitBB->end())))) { 839 Instruction &I = std::get<0>(ZippedInsts); 840 Instruction &ClonedI = std::get<1>(ZippedInsts); 841 842 // The only instructions in the exit block should be PHI nodes and 843 // potentially a landing pad. 844 assert( 845 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 846 "Bad instruction in exit block!"); 847 // We should have a value map between the instruction and its clone. 848 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 849 850 auto *MergePN = 851 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 852 &*MergeBB->getFirstInsertionPt()); 853 I.replaceAllUsesWith(MergePN); 854 MergePN->addIncoming(&I, ExitBB); 855 MergePN->addIncoming(&ClonedI, ClonedExitBB); 856 } 857 } 858 859 // Rewrite the instructions in the cloned blocks to refer to the instructions 860 // in the cloned blocks. We have to do this as a second pass so that we have 861 // everything available. Also, we have inserted new instructions which may 862 // include assume intrinsics, so we update the assumption cache while 863 // processing this. 864 for (auto *ClonedBB : NewBlocks) 865 for (Instruction &I : *ClonedBB) { 866 RemapInstruction(&I, VMap, 867 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 868 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 869 if (II->getIntrinsicID() == Intrinsic::assume) 870 AC.registerAssumption(II); 871 } 872 873 // Remove the cloned parent as a predecessor of the cloned continue successor 874 // if we did in fact clone it. 875 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 876 if (auto *ClonedContinueSuccBB = 877 cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB))) 878 ClonedContinueSuccBB->removePredecessor(ClonedParentBB, 879 /*DontDeleteUselessPHIs*/ true); 880 // Replace the cloned branch with an unconditional branch to the cloned 881 // unswitched successor. 882 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 883 ClonedParentBB->getTerminator()->eraseFromParent(); 884 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 885 886 // Update any PHI nodes in the cloned successors of the skipped blocks to not 887 // have spurious incoming values. 888 for (auto *LoopBB : L.blocks()) 889 if (SkipBlock(LoopBB)) 890 for (auto *SuccBB : successors(LoopBB)) 891 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 892 for (PHINode &PN : ClonedSuccBB->phis()) 893 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 894 895 // Record the domtree updates for the new blocks. 896 SmallPtrSet<BasicBlock *, 4> SuccSet; 897 for (auto *ClonedBB : NewBlocks) { 898 for (auto *SuccBB : successors(ClonedBB)) 899 if (SuccSet.insert(SuccBB).second) 900 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 901 SuccSet.clear(); 902 } 903 904 return ClonedPH; 905 } 906 907 /// Recursively clone the specified loop and all of its children. 908 /// 909 /// The target parent loop for the clone should be provided, or can be null if 910 /// the clone is a top-level loop. While cloning, all the blocks are mapped 911 /// with the provided value map. The entire original loop must be present in 912 /// the value map. The cloned loop is returned. 913 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 914 const ValueToValueMapTy &VMap, LoopInfo &LI) { 915 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 916 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 917 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 918 for (auto *BB : OrigL.blocks()) { 919 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 920 ClonedL.addBlockEntry(ClonedBB); 921 if (LI.getLoopFor(BB) == &OrigL) 922 LI.changeLoopFor(ClonedBB, &ClonedL); 923 } 924 }; 925 926 // We specially handle the first loop because it may get cloned into 927 // a different parent and because we most commonly are cloning leaf loops. 928 Loop *ClonedRootL = LI.AllocateLoop(); 929 if (RootParentL) 930 RootParentL->addChildLoop(ClonedRootL); 931 else 932 LI.addTopLevelLoop(ClonedRootL); 933 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 934 935 if (OrigRootL.empty()) 936 return ClonedRootL; 937 938 // If we have a nest, we can quickly clone the entire loop nest using an 939 // iterative approach because it is a tree. We keep the cloned parent in the 940 // data structure to avoid repeatedly querying through a map to find it. 941 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 942 // Build up the loops to clone in reverse order as we'll clone them from the 943 // back. 944 for (Loop *ChildL : llvm::reverse(OrigRootL)) 945 LoopsToClone.push_back({ClonedRootL, ChildL}); 946 do { 947 Loop *ClonedParentL, *L; 948 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 949 Loop *ClonedL = LI.AllocateLoop(); 950 ClonedParentL->addChildLoop(ClonedL); 951 AddClonedBlocksToLoop(*L, *ClonedL); 952 for (Loop *ChildL : llvm::reverse(*L)) 953 LoopsToClone.push_back({ClonedL, ChildL}); 954 } while (!LoopsToClone.empty()); 955 956 return ClonedRootL; 957 } 958 959 /// Build the cloned loops of an original loop from unswitching. 960 /// 961 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 962 /// operation. We need to re-verify that there even is a loop (as the backedge 963 /// may not have been cloned), and even if there are remaining backedges the 964 /// backedge set may be different. However, we know that each child loop is 965 /// undisturbed, we only need to find where to place each child loop within 966 /// either any parent loop or within a cloned version of the original loop. 967 /// 968 /// Because child loops may end up cloned outside of any cloned version of the 969 /// original loop, multiple cloned sibling loops may be created. All of them 970 /// are returned so that the newly introduced loop nest roots can be 971 /// identified. 972 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 973 const ValueToValueMapTy &VMap, LoopInfo &LI, 974 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 975 Loop *ClonedL = nullptr; 976 977 auto *OrigPH = OrigL.getLoopPreheader(); 978 auto *OrigHeader = OrigL.getHeader(); 979 980 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 981 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 982 983 // We need to know the loops of the cloned exit blocks to even compute the 984 // accurate parent loop. If we only clone exits to some parent of the 985 // original parent, we want to clone into that outer loop. We also keep track 986 // of the loops that our cloned exit blocks participate in. 987 Loop *ParentL = nullptr; 988 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 989 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 990 ClonedExitsInLoops.reserve(ExitBlocks.size()); 991 for (auto *ExitBB : ExitBlocks) 992 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 993 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 994 ExitLoopMap[ClonedExitBB] = ExitL; 995 ClonedExitsInLoops.push_back(ClonedExitBB); 996 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 997 ParentL = ExitL; 998 } 999 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1000 ParentL->contains(OrigL.getParentLoop())) && 1001 "The computed parent loop should always contain (or be) the parent of " 1002 "the original loop."); 1003 1004 // We build the set of blocks dominated by the cloned header from the set of 1005 // cloned blocks out of the original loop. While not all of these will 1006 // necessarily be in the cloned loop, it is enough to establish that they 1007 // aren't in unreachable cycles, etc. 1008 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1009 for (auto *BB : OrigL.blocks()) 1010 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1011 ClonedLoopBlocks.insert(ClonedBB); 1012 1013 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1014 // skipped cloning some region of this loop which can in turn skip some of 1015 // the backedges so we have to rebuild the blocks in the loop based on the 1016 // backedges that remain after cloning. 1017 SmallVector<BasicBlock *, 16> Worklist; 1018 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1019 for (auto *Pred : predecessors(ClonedHeader)) { 1020 // The only possible non-loop header predecessor is the preheader because 1021 // we know we cloned the loop in simplified form. 1022 if (Pred == ClonedPH) 1023 continue; 1024 1025 // Because the loop was in simplified form, the only non-loop predecessor 1026 // should be the preheader. 1027 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1028 "header other than the preheader " 1029 "that is not part of the loop!"); 1030 1031 // Insert this block into the loop set and on the first visit (and if it 1032 // isn't the header we're currently walking) put it into the worklist to 1033 // recurse through. 1034 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1035 Worklist.push_back(Pred); 1036 } 1037 1038 // If we had any backedges then there *is* a cloned loop. Put the header into 1039 // the loop set and then walk the worklist backwards to find all the blocks 1040 // that remain within the loop after cloning. 1041 if (!BlocksInClonedLoop.empty()) { 1042 BlocksInClonedLoop.insert(ClonedHeader); 1043 1044 while (!Worklist.empty()) { 1045 BasicBlock *BB = Worklist.pop_back_val(); 1046 assert(BlocksInClonedLoop.count(BB) && 1047 "Didn't put block into the loop set!"); 1048 1049 // Insert any predecessors that are in the possible set into the cloned 1050 // set, and if the insert is successful, add them to the worklist. Note 1051 // that we filter on the blocks that are definitely reachable via the 1052 // backedge to the loop header so we may prune out dead code within the 1053 // cloned loop. 1054 for (auto *Pred : predecessors(BB)) 1055 if (ClonedLoopBlocks.count(Pred) && 1056 BlocksInClonedLoop.insert(Pred).second) 1057 Worklist.push_back(Pred); 1058 } 1059 1060 ClonedL = LI.AllocateLoop(); 1061 if (ParentL) { 1062 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1063 ParentL->addChildLoop(ClonedL); 1064 } else { 1065 LI.addTopLevelLoop(ClonedL); 1066 } 1067 NonChildClonedLoops.push_back(ClonedL); 1068 1069 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1070 // We don't want to just add the cloned loop blocks based on how we 1071 // discovered them. The original order of blocks was carefully built in 1072 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1073 // that logic, we just re-walk the original blocks (and those of the child 1074 // loops) and filter them as we add them into the cloned loop. 1075 for (auto *BB : OrigL.blocks()) { 1076 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1077 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1078 continue; 1079 1080 // Directly add the blocks that are only in this loop. 1081 if (LI.getLoopFor(BB) == &OrigL) { 1082 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1083 continue; 1084 } 1085 1086 // We want to manually add it to this loop and parents. 1087 // Registering it with LoopInfo will happen when we clone the top 1088 // loop for this block. 1089 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1090 PL->addBlockEntry(ClonedBB); 1091 } 1092 1093 // Now add each child loop whose header remains within the cloned loop. All 1094 // of the blocks within the loop must satisfy the same constraints as the 1095 // header so once we pass the header checks we can just clone the entire 1096 // child loop nest. 1097 for (Loop *ChildL : OrigL) { 1098 auto *ClonedChildHeader = 1099 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1100 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1101 continue; 1102 1103 #ifndef NDEBUG 1104 // We should never have a cloned child loop header but fail to have 1105 // all of the blocks for that child loop. 1106 for (auto *ChildLoopBB : ChildL->blocks()) 1107 assert(BlocksInClonedLoop.count( 1108 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1109 "Child cloned loop has a header within the cloned outer " 1110 "loop but not all of its blocks!"); 1111 #endif 1112 1113 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1114 } 1115 } 1116 1117 // Now that we've handled all the components of the original loop that were 1118 // cloned into a new loop, we still need to handle anything from the original 1119 // loop that wasn't in a cloned loop. 1120 1121 // Figure out what blocks are left to place within any loop nest containing 1122 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1123 // them. 1124 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1125 if (BlocksInClonedLoop.empty()) 1126 UnloopedBlockSet.insert(ClonedPH); 1127 for (auto *ClonedBB : ClonedLoopBlocks) 1128 if (!BlocksInClonedLoop.count(ClonedBB)) 1129 UnloopedBlockSet.insert(ClonedBB); 1130 1131 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1132 // backwards across these to process them inside out. The order shouldn't 1133 // matter as we're just trying to build up the map from inside-out; we use 1134 // the map in a more stably ordered way below. 1135 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1136 llvm::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(), 1137 [&](BasicBlock *LHS, BasicBlock *RHS) { 1138 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1139 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1140 }); 1141 1142 // Populate the existing ExitLoopMap with everything reachable from each 1143 // exit, starting from the inner most exit. 1144 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1145 assert(Worklist.empty() && "Didn't clear worklist!"); 1146 1147 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1148 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1149 1150 // Walk the CFG back until we hit the cloned PH adding everything reachable 1151 // and in the unlooped set to this exit block's loop. 1152 Worklist.push_back(ExitBB); 1153 do { 1154 BasicBlock *BB = Worklist.pop_back_val(); 1155 // We can stop recursing at the cloned preheader (if we get there). 1156 if (BB == ClonedPH) 1157 continue; 1158 1159 for (BasicBlock *PredBB : predecessors(BB)) { 1160 // If this pred has already been moved to our set or is part of some 1161 // (inner) loop, no update needed. 1162 if (!UnloopedBlockSet.erase(PredBB)) { 1163 assert( 1164 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1165 "Predecessor not mapped to a loop!"); 1166 continue; 1167 } 1168 1169 // We just insert into the loop set here. We'll add these blocks to the 1170 // exit loop after we build up the set in an order that doesn't rely on 1171 // predecessor order (which in turn relies on use list order). 1172 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1173 (void)Inserted; 1174 assert(Inserted && "Should only visit an unlooped block once!"); 1175 1176 // And recurse through to its predecessors. 1177 Worklist.push_back(PredBB); 1178 } 1179 } while (!Worklist.empty()); 1180 } 1181 1182 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1183 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1184 // in their original order adding them to the correct loop. 1185 1186 // We need a stable insertion order. We use the order of the original loop 1187 // order and map into the correct parent loop. 1188 for (auto *BB : llvm::concat<BasicBlock *const>( 1189 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1190 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1191 OuterL->addBasicBlockToLoop(BB, LI); 1192 1193 #ifndef NDEBUG 1194 for (auto &BBAndL : ExitLoopMap) { 1195 auto *BB = BBAndL.first; 1196 auto *OuterL = BBAndL.second; 1197 assert(LI.getLoopFor(BB) == OuterL && 1198 "Failed to put all blocks into outer loops!"); 1199 } 1200 #endif 1201 1202 // Now that all the blocks are placed into the correct containing loop in the 1203 // absence of child loops, find all the potentially cloned child loops and 1204 // clone them into whatever outer loop we placed their header into. 1205 for (Loop *ChildL : OrigL) { 1206 auto *ClonedChildHeader = 1207 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1208 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1209 continue; 1210 1211 #ifndef NDEBUG 1212 for (auto *ChildLoopBB : ChildL->blocks()) 1213 assert(VMap.count(ChildLoopBB) && 1214 "Cloned a child loop header but not all of that loops blocks!"); 1215 #endif 1216 1217 NonChildClonedLoops.push_back(cloneLoopNest( 1218 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1219 } 1220 } 1221 1222 static void 1223 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1224 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1225 DominatorTree &DT) { 1226 // Find all the dead clones, and remove them from their successors. 1227 SmallVector<BasicBlock *, 16> DeadBlocks; 1228 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1229 for (auto &VMap : VMaps) 1230 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1231 if (!DT.isReachableFromEntry(ClonedBB)) { 1232 for (BasicBlock *SuccBB : successors(ClonedBB)) 1233 SuccBB->removePredecessor(ClonedBB); 1234 DeadBlocks.push_back(ClonedBB); 1235 } 1236 1237 // Drop any remaining references to break cycles. 1238 for (BasicBlock *BB : DeadBlocks) 1239 BB->dropAllReferences(); 1240 // Erase them from the IR. 1241 for (BasicBlock *BB : DeadBlocks) 1242 BB->eraseFromParent(); 1243 } 1244 1245 static void 1246 deleteDeadBlocksFromLoop(Loop &L, 1247 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1248 DominatorTree &DT, LoopInfo &LI) { 1249 // Find all the dead blocks, and remove them from their successors. 1250 SmallVector<BasicBlock *, 16> DeadBlocks; 1251 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1252 if (!DT.isReachableFromEntry(BB)) { 1253 for (BasicBlock *SuccBB : successors(BB)) 1254 SuccBB->removePredecessor(BB); 1255 DeadBlocks.push_back(BB); 1256 } 1257 1258 SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(), 1259 DeadBlocks.end()); 1260 1261 // Filter out the dead blocks from the exit blocks list so that it can be 1262 // used in the caller. 1263 llvm::erase_if(ExitBlocks, 1264 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1265 1266 // Walk from this loop up through its parents removing all of the dead blocks. 1267 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1268 for (auto *BB : DeadBlocks) 1269 ParentL->getBlocksSet().erase(BB); 1270 llvm::erase_if(ParentL->getBlocksVector(), 1271 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1272 } 1273 1274 // Now delete the dead child loops. This raw delete will clear them 1275 // recursively. 1276 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1277 if (!DeadBlockSet.count(ChildL->getHeader())) 1278 return false; 1279 1280 assert(llvm::all_of(ChildL->blocks(), 1281 [&](BasicBlock *ChildBB) { 1282 return DeadBlockSet.count(ChildBB); 1283 }) && 1284 "If the child loop header is dead all blocks in the child loop must " 1285 "be dead as well!"); 1286 LI.destroy(ChildL); 1287 return true; 1288 }); 1289 1290 // Remove the loop mappings for the dead blocks and drop all the references 1291 // from these blocks to others to handle cyclic references as we start 1292 // deleting the blocks themselves. 1293 for (auto *BB : DeadBlocks) { 1294 // Check that the dominator tree has already been updated. 1295 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1296 LI.changeLoopFor(BB, nullptr); 1297 BB->dropAllReferences(); 1298 } 1299 1300 // Actually delete the blocks now that they've been fully unhooked from the 1301 // IR. 1302 for (auto *BB : DeadBlocks) 1303 BB->eraseFromParent(); 1304 } 1305 1306 /// Recompute the set of blocks in a loop after unswitching. 1307 /// 1308 /// This walks from the original headers predecessors to rebuild the loop. We 1309 /// take advantage of the fact that new blocks can't have been added, and so we 1310 /// filter by the original loop's blocks. This also handles potentially 1311 /// unreachable code that we don't want to explore but might be found examining 1312 /// the predecessors of the header. 1313 /// 1314 /// If the original loop is no longer a loop, this will return an empty set. If 1315 /// it remains a loop, all the blocks within it will be added to the set 1316 /// (including those blocks in inner loops). 1317 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1318 LoopInfo &LI) { 1319 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1320 1321 auto *PH = L.getLoopPreheader(); 1322 auto *Header = L.getHeader(); 1323 1324 // A worklist to use while walking backwards from the header. 1325 SmallVector<BasicBlock *, 16> Worklist; 1326 1327 // First walk the predecessors of the header to find the backedges. This will 1328 // form the basis of our walk. 1329 for (auto *Pred : predecessors(Header)) { 1330 // Skip the preheader. 1331 if (Pred == PH) 1332 continue; 1333 1334 // Because the loop was in simplified form, the only non-loop predecessor 1335 // is the preheader. 1336 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1337 "than the preheader that is not part of the " 1338 "loop!"); 1339 1340 // Insert this block into the loop set and on the first visit and, if it 1341 // isn't the header we're currently walking, put it into the worklist to 1342 // recurse through. 1343 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1344 Worklist.push_back(Pred); 1345 } 1346 1347 // If no backedges were found, we're done. 1348 if (LoopBlockSet.empty()) 1349 return LoopBlockSet; 1350 1351 // We found backedges, recurse through them to identify the loop blocks. 1352 while (!Worklist.empty()) { 1353 BasicBlock *BB = Worklist.pop_back_val(); 1354 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1355 1356 // No need to walk past the header. 1357 if (BB == Header) 1358 continue; 1359 1360 // Because we know the inner loop structure remains valid we can use the 1361 // loop structure to jump immediately across the entire nested loop. 1362 // Further, because it is in loop simplified form, we can directly jump 1363 // to its preheader afterward. 1364 if (Loop *InnerL = LI.getLoopFor(BB)) 1365 if (InnerL != &L) { 1366 assert(L.contains(InnerL) && 1367 "Should not reach a loop *outside* this loop!"); 1368 // The preheader is the only possible predecessor of the loop so 1369 // insert it into the set and check whether it was already handled. 1370 auto *InnerPH = InnerL->getLoopPreheader(); 1371 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1372 "but not contain the inner loop " 1373 "preheader!"); 1374 if (!LoopBlockSet.insert(InnerPH).second) 1375 // The only way to reach the preheader is through the loop body 1376 // itself so if it has been visited the loop is already handled. 1377 continue; 1378 1379 // Insert all of the blocks (other than those already present) into 1380 // the loop set. We expect at least the block that led us to find the 1381 // inner loop to be in the block set, but we may also have other loop 1382 // blocks if they were already enqueued as predecessors of some other 1383 // outer loop block. 1384 for (auto *InnerBB : InnerL->blocks()) { 1385 if (InnerBB == BB) { 1386 assert(LoopBlockSet.count(InnerBB) && 1387 "Block should already be in the set!"); 1388 continue; 1389 } 1390 1391 LoopBlockSet.insert(InnerBB); 1392 } 1393 1394 // Add the preheader to the worklist so we will continue past the 1395 // loop body. 1396 Worklist.push_back(InnerPH); 1397 continue; 1398 } 1399 1400 // Insert any predecessors that were in the original loop into the new 1401 // set, and if the insert is successful, add them to the worklist. 1402 for (auto *Pred : predecessors(BB)) 1403 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1404 Worklist.push_back(Pred); 1405 } 1406 1407 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1408 1409 // We've found all the blocks participating in the loop, return our completed 1410 // set. 1411 return LoopBlockSet; 1412 } 1413 1414 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1415 /// 1416 /// The removal may have removed some child loops entirely but cannot have 1417 /// disturbed any remaining child loops. However, they may need to be hoisted 1418 /// to the parent loop (or to be top-level loops). The original loop may be 1419 /// completely removed. 1420 /// 1421 /// The sibling loops resulting from this update are returned. If the original 1422 /// loop remains a valid loop, it will be the first entry in this list with all 1423 /// of the newly sibling loops following it. 1424 /// 1425 /// Returns true if the loop remains a loop after unswitching, and false if it 1426 /// is no longer a loop after unswitching (and should not continue to be 1427 /// referenced). 1428 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1429 LoopInfo &LI, 1430 SmallVectorImpl<Loop *> &HoistedLoops) { 1431 auto *PH = L.getLoopPreheader(); 1432 1433 // Compute the actual parent loop from the exit blocks. Because we may have 1434 // pruned some exits the loop may be different from the original parent. 1435 Loop *ParentL = nullptr; 1436 SmallVector<Loop *, 4> ExitLoops; 1437 SmallVector<BasicBlock *, 4> ExitsInLoops; 1438 ExitsInLoops.reserve(ExitBlocks.size()); 1439 for (auto *ExitBB : ExitBlocks) 1440 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1441 ExitLoops.push_back(ExitL); 1442 ExitsInLoops.push_back(ExitBB); 1443 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1444 ParentL = ExitL; 1445 } 1446 1447 // Recompute the blocks participating in this loop. This may be empty if it 1448 // is no longer a loop. 1449 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1450 1451 // If we still have a loop, we need to re-set the loop's parent as the exit 1452 // block set changing may have moved it within the loop nest. Note that this 1453 // can only happen when this loop has a parent as it can only hoist the loop 1454 // *up* the nest. 1455 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1456 // Remove this loop's (original) blocks from all of the intervening loops. 1457 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1458 IL = IL->getParentLoop()) { 1459 IL->getBlocksSet().erase(PH); 1460 for (auto *BB : L.blocks()) 1461 IL->getBlocksSet().erase(BB); 1462 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1463 return BB == PH || L.contains(BB); 1464 }); 1465 } 1466 1467 LI.changeLoopFor(PH, ParentL); 1468 L.getParentLoop()->removeChildLoop(&L); 1469 if (ParentL) 1470 ParentL->addChildLoop(&L); 1471 else 1472 LI.addTopLevelLoop(&L); 1473 } 1474 1475 // Now we update all the blocks which are no longer within the loop. 1476 auto &Blocks = L.getBlocksVector(); 1477 auto BlocksSplitI = 1478 LoopBlockSet.empty() 1479 ? Blocks.begin() 1480 : std::stable_partition( 1481 Blocks.begin(), Blocks.end(), 1482 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1483 1484 // Before we erase the list of unlooped blocks, build a set of them. 1485 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1486 if (LoopBlockSet.empty()) 1487 UnloopedBlocks.insert(PH); 1488 1489 // Now erase these blocks from the loop. 1490 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1491 L.getBlocksSet().erase(BB); 1492 Blocks.erase(BlocksSplitI, Blocks.end()); 1493 1494 // Sort the exits in ascending loop depth, we'll work backwards across these 1495 // to process them inside out. 1496 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1497 [&](BasicBlock *LHS, BasicBlock *RHS) { 1498 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1499 }); 1500 1501 // We'll build up a set for each exit loop. 1502 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1503 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1504 1505 auto RemoveUnloopedBlocksFromLoop = 1506 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1507 for (auto *BB : UnloopedBlocks) 1508 L.getBlocksSet().erase(BB); 1509 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1510 return UnloopedBlocks.count(BB); 1511 }); 1512 }; 1513 1514 SmallVector<BasicBlock *, 16> Worklist; 1515 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1516 assert(Worklist.empty() && "Didn't clear worklist!"); 1517 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1518 1519 // Grab the next exit block, in decreasing loop depth order. 1520 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1521 Loop &ExitL = *LI.getLoopFor(ExitBB); 1522 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1523 1524 // Erase all of the unlooped blocks from the loops between the previous 1525 // exit loop and this exit loop. This works because the ExitInLoops list is 1526 // sorted in increasing order of loop depth and thus we visit loops in 1527 // decreasing order of loop depth. 1528 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1529 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1530 1531 // Walk the CFG back until we hit the cloned PH adding everything reachable 1532 // and in the unlooped set to this exit block's loop. 1533 Worklist.push_back(ExitBB); 1534 do { 1535 BasicBlock *BB = Worklist.pop_back_val(); 1536 // We can stop recursing at the cloned preheader (if we get there). 1537 if (BB == PH) 1538 continue; 1539 1540 for (BasicBlock *PredBB : predecessors(BB)) { 1541 // If this pred has already been moved to our set or is part of some 1542 // (inner) loop, no update needed. 1543 if (!UnloopedBlocks.erase(PredBB)) { 1544 assert((NewExitLoopBlocks.count(PredBB) || 1545 ExitL.contains(LI.getLoopFor(PredBB))) && 1546 "Predecessor not in a nested loop (or already visited)!"); 1547 continue; 1548 } 1549 1550 // We just insert into the loop set here. We'll add these blocks to the 1551 // exit loop after we build up the set in a deterministic order rather 1552 // than the predecessor-influenced visit order. 1553 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1554 (void)Inserted; 1555 assert(Inserted && "Should only visit an unlooped block once!"); 1556 1557 // And recurse through to its predecessors. 1558 Worklist.push_back(PredBB); 1559 } 1560 } while (!Worklist.empty()); 1561 1562 // If blocks in this exit loop were directly part of the original loop (as 1563 // opposed to a child loop) update the map to point to this exit loop. This 1564 // just updates a map and so the fact that the order is unstable is fine. 1565 for (auto *BB : NewExitLoopBlocks) 1566 if (Loop *BBL = LI.getLoopFor(BB)) 1567 if (BBL == &L || !L.contains(BBL)) 1568 LI.changeLoopFor(BB, &ExitL); 1569 1570 // We will remove the remaining unlooped blocks from this loop in the next 1571 // iteration or below. 1572 NewExitLoopBlocks.clear(); 1573 } 1574 1575 // Any remaining unlooped blocks are no longer part of any loop unless they 1576 // are part of some child loop. 1577 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1578 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1579 for (auto *BB : UnloopedBlocks) 1580 if (Loop *BBL = LI.getLoopFor(BB)) 1581 if (BBL == &L || !L.contains(BBL)) 1582 LI.changeLoopFor(BB, nullptr); 1583 1584 // Sink all the child loops whose headers are no longer in the loop set to 1585 // the parent (or to be top level loops). We reach into the loop and directly 1586 // update its subloop vector to make this batch update efficient. 1587 auto &SubLoops = L.getSubLoopsVector(); 1588 auto SubLoopsSplitI = 1589 LoopBlockSet.empty() 1590 ? SubLoops.begin() 1591 : std::stable_partition( 1592 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1593 return LoopBlockSet.count(SubL->getHeader()); 1594 }); 1595 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1596 HoistedLoops.push_back(HoistedL); 1597 HoistedL->setParentLoop(nullptr); 1598 1599 // To compute the new parent of this hoisted loop we look at where we 1600 // placed the preheader above. We can't lookup the header itself because we 1601 // retained the mapping from the header to the hoisted loop. But the 1602 // preheader and header should have the exact same new parent computed 1603 // based on the set of exit blocks from the original loop as the preheader 1604 // is a predecessor of the header and so reached in the reverse walk. And 1605 // because the loops were all in simplified form the preheader of the 1606 // hoisted loop can't be part of some *other* loop. 1607 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1608 NewParentL->addChildLoop(HoistedL); 1609 else 1610 LI.addTopLevelLoop(HoistedL); 1611 } 1612 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1613 1614 // Actually delete the loop if nothing remained within it. 1615 if (Blocks.empty()) { 1616 assert(SubLoops.empty() && 1617 "Failed to remove all subloops from the original loop!"); 1618 if (Loop *ParentL = L.getParentLoop()) 1619 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1620 else 1621 LI.removeLoop(llvm::find(LI, &L)); 1622 LI.destroy(&L); 1623 return false; 1624 } 1625 1626 return true; 1627 } 1628 1629 /// Helper to visit a dominator subtree, invoking a callable on each node. 1630 /// 1631 /// Returning false at any point will stop walking past that node of the tree. 1632 template <typename CallableT> 1633 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1634 SmallVector<DomTreeNode *, 4> DomWorklist; 1635 DomWorklist.push_back(DT[BB]); 1636 #ifndef NDEBUG 1637 SmallPtrSet<DomTreeNode *, 4> Visited; 1638 Visited.insert(DT[BB]); 1639 #endif 1640 do { 1641 DomTreeNode *N = DomWorklist.pop_back_val(); 1642 1643 // Visit this node. 1644 if (!Callable(N->getBlock())) 1645 continue; 1646 1647 // Accumulate the child nodes. 1648 for (DomTreeNode *ChildN : *N) { 1649 assert(Visited.insert(ChildN).second && 1650 "Cannot visit a node twice when walking a tree!"); 1651 DomWorklist.push_back(ChildN); 1652 } 1653 } while (!DomWorklist.empty()); 1654 } 1655 1656 static bool unswitchNontrivialInvariants( 1657 Loop &L, TerminatorInst &TI, ArrayRef<Value *> Invariants, 1658 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 1659 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1660 ScalarEvolution *SE) { 1661 auto *ParentBB = TI.getParent(); 1662 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1663 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1664 1665 // We can only unswitch switches, conditional branches with an invariant 1666 // condition, or combining invariant conditions with an instruction. 1667 assert((SI || BI->isConditional()) && 1668 "Can only unswitch switches and conditional branch!"); 1669 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1670 if (FullUnswitch) 1671 assert(Invariants.size() == 1 && 1672 "Cannot have other invariants with full unswitching!"); 1673 else 1674 assert(isa<Instruction>(BI->getCondition()) && 1675 "Partial unswitching requires an instruction as the condition!"); 1676 1677 // Constant and BBs tracking the cloned and continuing successor. When we are 1678 // unswitching the entire condition, this can just be trivially chosen to 1679 // unswitch towards `true`. However, when we are unswitching a set of 1680 // invariants combined with `and` or `or`, the combining operation determines 1681 // the best direction to unswitch: we want to unswitch the direction that will 1682 // collapse the branch. 1683 bool Direction = true; 1684 int ClonedSucc = 0; 1685 if (!FullUnswitch) { 1686 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1687 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1688 Instruction::And && 1689 "Only `or` and `and` instructions can combine invariants being " 1690 "unswitched."); 1691 Direction = false; 1692 ClonedSucc = 1; 1693 } 1694 } 1695 1696 BasicBlock *RetainedSuccBB = 1697 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1698 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1699 if (BI) 1700 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1701 else 1702 for (auto Case : SI->cases()) 1703 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1704 1705 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 1706 "Should not unswitch the same successor we are retaining!"); 1707 1708 // The branch should be in this exact loop. Any inner loop's invariant branch 1709 // should be handled by unswitching that inner loop. The caller of this 1710 // routine should filter out any candidates that remain (but were skipped for 1711 // whatever reason). 1712 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1713 1714 SmallVector<BasicBlock *, 4> ExitBlocks; 1715 L.getUniqueExitBlocks(ExitBlocks); 1716 1717 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 1718 // don't know how to split those exit blocks. 1719 // FIXME: We should teach SplitBlock to handle this and remove this 1720 // restriction. 1721 for (auto *ExitBB : ExitBlocks) 1722 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) 1723 return false; 1724 1725 // Compute the parent loop now before we start hacking on things. 1726 Loop *ParentL = L.getParentLoop(); 1727 1728 // Compute the outer-most loop containing one of our exit blocks. This is the 1729 // furthest up our loopnest which can be mutated, which we will use below to 1730 // update things. 1731 Loop *OuterExitL = &L; 1732 for (auto *ExitBB : ExitBlocks) { 1733 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1734 if (!NewOuterExitL) { 1735 // We exited the entire nest with this block, so we're done. 1736 OuterExitL = nullptr; 1737 break; 1738 } 1739 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1740 OuterExitL = NewOuterExitL; 1741 } 1742 1743 // At this point, we're definitely going to unswitch something so invalidate 1744 // any cached information in ScalarEvolution for the outer most loop 1745 // containing an exit block and all nested loops. 1746 if (SE) { 1747 if (OuterExitL) 1748 SE->forgetLoop(OuterExitL); 1749 else 1750 SE->forgetTopmostLoop(&L); 1751 } 1752 1753 // If the edge from this terminator to a successor dominates that successor, 1754 // store a map from each block in its dominator subtree to it. This lets us 1755 // tell when cloning for a particular successor if a block is dominated by 1756 // some *other* successor with a single data structure. We use this to 1757 // significantly reduce cloning. 1758 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 1759 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 1760 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 1761 if (SuccBB->getUniquePredecessor() || 1762 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 1763 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 1764 })) 1765 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 1766 DominatingSucc[BB] = SuccBB; 1767 return true; 1768 }); 1769 1770 // Split the preheader, so that we know that there is a safe place to insert 1771 // the conditional branch. We will change the preheader to have a conditional 1772 // branch on LoopCond. The original preheader will become the split point 1773 // between the unswitched versions, and we will have a new preheader for the 1774 // original loop. 1775 BasicBlock *SplitBB = L.getLoopPreheader(); 1776 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI); 1777 1778 // Keep track of the dominator tree updates needed. 1779 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1780 1781 // Clone the loop for each unswitched successor. 1782 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 1783 VMaps.reserve(UnswitchedSuccBBs.size()); 1784 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 1785 for (auto *SuccBB : UnswitchedSuccBBs) { 1786 VMaps.emplace_back(new ValueToValueMapTy()); 1787 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 1788 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 1789 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI); 1790 } 1791 1792 // The stitching of the branched code back together depends on whether we're 1793 // doing full unswitching or not with the exception that we always want to 1794 // nuke the initial terminator placed in the split block. 1795 SplitBB->getTerminator()->eraseFromParent(); 1796 if (FullUnswitch) { 1797 for (BasicBlock *SuccBB : UnswitchedSuccBBs) { 1798 // Remove the parent as a predecessor of the unswitched successor. 1799 SuccBB->removePredecessor(ParentBB, 1800 /*DontDeleteUselessPHIs*/ true); 1801 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 1802 } 1803 1804 // Now splice the terminator from the original loop and rewrite its 1805 // successors. 1806 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 1807 if (BI) { 1808 assert(UnswitchedSuccBBs.size() == 1 && 1809 "Only one possible unswitched block for a branch!"); 1810 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 1811 BI->setSuccessor(ClonedSucc, ClonedPH); 1812 BI->setSuccessor(1 - ClonedSucc, LoopPH); 1813 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 1814 } else { 1815 assert(SI && "Must either be a branch or switch!"); 1816 1817 // Walk the cases and directly update their successors. 1818 for (auto &Case : SI->cases()) 1819 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 1820 // We need to use the set to populate domtree updates as even when there 1821 // are multiple cases pointing at the same successor we only want to 1822 // insert one edge in the domtree. 1823 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 1824 DTUpdates.push_back( 1825 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 1826 1827 SI->setDefaultDest(LoopPH); 1828 } 1829 1830 // Create a new unconditional branch to the continuing block (as opposed to 1831 // the one cloned). 1832 BranchInst::Create(RetainedSuccBB, ParentBB); 1833 } else { 1834 assert(BI && "Only branches have partial unswitching."); 1835 assert(UnswitchedSuccBBs.size() == 1 && 1836 "Only one possible unswitched block for a branch!"); 1837 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 1838 // When doing a partial unswitch, we have to do a bit more work to build up 1839 // the branch in the split block. 1840 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 1841 *ClonedPH, *LoopPH); 1842 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 1843 } 1844 1845 // Apply the updates accumulated above to get an up-to-date dominator tree. 1846 DT.applyUpdates(DTUpdates); 1847 1848 // Now that we have an accurate dominator tree, first delete the dead cloned 1849 // blocks so that we can accurately build any cloned loops. It is important to 1850 // not delete the blocks from the original loop yet because we still want to 1851 // reference the original loop to understand the cloned loop's structure. 1852 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT); 1853 1854 // Build the cloned loop structure itself. This may be substantially 1855 // different from the original structure due to the simplified CFG. This also 1856 // handles inserting all the cloned blocks into the correct loops. 1857 SmallVector<Loop *, 4> NonChildClonedLoops; 1858 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 1859 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 1860 1861 // Now that our cloned loops have been built, we can update the original loop. 1862 // First we delete the dead blocks from it and then we rebuild the loop 1863 // structure taking these deletions into account. 1864 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI); 1865 SmallVector<Loop *, 4> HoistedLoops; 1866 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 1867 1868 // This transformation has a high risk of corrupting the dominator tree, and 1869 // the below steps to rebuild loop structures will result in hard to debug 1870 // errors in that case so verify that the dominator tree is sane first. 1871 // FIXME: Remove this when the bugs stop showing up and rely on existing 1872 // verification steps. 1873 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1874 1875 if (BI) { 1876 // If we unswitched a branch which collapses the condition to a known 1877 // constant we want to replace all the uses of the invariants within both 1878 // the original and cloned blocks. We do this here so that we can use the 1879 // now updated dominator tree to identify which side the users are on. 1880 assert(UnswitchedSuccBBs.size() == 1 && 1881 "Only one possible unswitched block for a branch!"); 1882 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 1883 ConstantInt *UnswitchedReplacement = 1884 Direction ? ConstantInt::getTrue(BI->getContext()) 1885 : ConstantInt::getFalse(BI->getContext()); 1886 ConstantInt *ContinueReplacement = 1887 Direction ? ConstantInt::getFalse(BI->getContext()) 1888 : ConstantInt::getTrue(BI->getContext()); 1889 for (Value *Invariant : Invariants) 1890 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 1891 UI != UE;) { 1892 // Grab the use and walk past it so we can clobber it in the use list. 1893 Use *U = &*UI++; 1894 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 1895 if (!UserI) 1896 continue; 1897 1898 // Replace it with the 'continue' side if in the main loop body, and the 1899 // unswitched if in the cloned blocks. 1900 if (DT.dominates(LoopPH, UserI->getParent())) 1901 U->set(ContinueReplacement); 1902 else if (DT.dominates(ClonedPH, UserI->getParent())) 1903 U->set(UnswitchedReplacement); 1904 } 1905 } 1906 1907 // We can change which blocks are exit blocks of all the cloned sibling 1908 // loops, the current loop, and any parent loops which shared exit blocks 1909 // with the current loop. As a consequence, we need to re-form LCSSA for 1910 // them. But we shouldn't need to re-form LCSSA for any child loops. 1911 // FIXME: This could be made more efficient by tracking which exit blocks are 1912 // new, and focusing on them, but that isn't likely to be necessary. 1913 // 1914 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 1915 // loop nest and update every loop that could have had its exits changed. We 1916 // also need to cover any intervening loops. We add all of these loops to 1917 // a list and sort them by loop depth to achieve this without updating 1918 // unnecessary loops. 1919 auto UpdateLoop = [&](Loop &UpdateL) { 1920 #ifndef NDEBUG 1921 UpdateL.verifyLoop(); 1922 for (Loop *ChildL : UpdateL) { 1923 ChildL->verifyLoop(); 1924 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 1925 "Perturbed a child loop's LCSSA form!"); 1926 } 1927 #endif 1928 // First build LCSSA for this loop so that we can preserve it when 1929 // forming dedicated exits. We don't want to perturb some other loop's 1930 // LCSSA while doing that CFG edit. 1931 formLCSSA(UpdateL, DT, &LI, nullptr); 1932 1933 // For loops reached by this loop's original exit blocks we may 1934 // introduced new, non-dedicated exits. At least try to re-form dedicated 1935 // exits for these loops. This may fail if they couldn't have dedicated 1936 // exits to start with. 1937 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); 1938 }; 1939 1940 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 1941 // and we can do it in any order as they don't nest relative to each other. 1942 // 1943 // Also check if any of the loops we have updated have become top-level loops 1944 // as that will necessitate widening the outer loop scope. 1945 for (Loop *UpdatedL : 1946 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 1947 UpdateLoop(*UpdatedL); 1948 if (!UpdatedL->getParentLoop()) 1949 OuterExitL = nullptr; 1950 } 1951 if (IsStillLoop) { 1952 UpdateLoop(L); 1953 if (!L.getParentLoop()) 1954 OuterExitL = nullptr; 1955 } 1956 1957 // If the original loop had exit blocks, walk up through the outer most loop 1958 // of those exit blocks to update LCSSA and form updated dedicated exits. 1959 if (OuterExitL != &L) 1960 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 1961 OuterL = OuterL->getParentLoop()) 1962 UpdateLoop(*OuterL); 1963 1964 #ifndef NDEBUG 1965 // Verify the entire loop structure to catch any incorrect updates before we 1966 // progress in the pass pipeline. 1967 LI.verify(DT); 1968 #endif 1969 1970 // Now that we've unswitched something, make callbacks to report the changes. 1971 // For that we need to merge together the updated loops and the cloned loops 1972 // and check whether the original loop survived. 1973 SmallVector<Loop *, 4> SibLoops; 1974 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 1975 if (UpdatedL->getParentLoop() == ParentL) 1976 SibLoops.push_back(UpdatedL); 1977 UnswitchCB(IsStillLoop, SibLoops); 1978 1979 ++NumBranches; 1980 return true; 1981 } 1982 1983 /// Recursively compute the cost of a dominator subtree based on the per-block 1984 /// cost map provided. 1985 /// 1986 /// The recursive computation is memozied into the provided DT-indexed cost map 1987 /// to allow querying it for most nodes in the domtree without it becoming 1988 /// quadratic. 1989 static int 1990 computeDomSubtreeCost(DomTreeNode &N, 1991 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 1992 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 1993 // Don't accumulate cost (or recurse through) blocks not in our block cost 1994 // map and thus not part of the duplication cost being considered. 1995 auto BBCostIt = BBCostMap.find(N.getBlock()); 1996 if (BBCostIt == BBCostMap.end()) 1997 return 0; 1998 1999 // Lookup this node to see if we already computed its cost. 2000 auto DTCostIt = DTCostMap.find(&N); 2001 if (DTCostIt != DTCostMap.end()) 2002 return DTCostIt->second; 2003 2004 // If not, we have to compute it. We can't use insert above and update 2005 // because computing the cost may insert more things into the map. 2006 int Cost = std::accumulate( 2007 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2008 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2009 }); 2010 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2011 (void)Inserted; 2012 assert(Inserted && "Should not insert a node while visiting children!"); 2013 return Cost; 2014 } 2015 2016 static bool 2017 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2018 AssumptionCache &AC, TargetTransformInfo &TTI, 2019 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2020 ScalarEvolution *SE) { 2021 // Collect all invariant conditions within this loop (as opposed to an inner 2022 // loop which would be handled when visiting that inner loop). 2023 SmallVector<std::pair<TerminatorInst *, TinyPtrVector<Value *>>, 4> 2024 UnswitchCandidates; 2025 for (auto *BB : L.blocks()) { 2026 if (LI.getLoopFor(BB) != &L) 2027 continue; 2028 2029 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2030 // We can only consider fully loop-invariant switch conditions as we need 2031 // to completely eliminate the switch after unswitching. 2032 if (!isa<Constant>(SI->getCondition()) && 2033 L.isLoopInvariant(SI->getCondition())) 2034 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2035 continue; 2036 } 2037 2038 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2039 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2040 BI->getSuccessor(0) == BI->getSuccessor(1)) 2041 continue; 2042 2043 if (L.isLoopInvariant(BI->getCondition())) { 2044 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2045 continue; 2046 } 2047 2048 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2049 if (CondI.getOpcode() != Instruction::And && 2050 CondI.getOpcode() != Instruction::Or) 2051 continue; 2052 2053 TinyPtrVector<Value *> Invariants = 2054 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2055 if (Invariants.empty()) 2056 continue; 2057 2058 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2059 } 2060 2061 // If we didn't find any candidates, we're done. 2062 if (UnswitchCandidates.empty()) 2063 return false; 2064 2065 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2066 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2067 // irreducible control flow into reducible control flow and introduce new 2068 // loops "out of thin air". If we ever discover important use cases for doing 2069 // this, we can add support to loop unswitch, but it is a lot of complexity 2070 // for what seems little or no real world benefit. 2071 LoopBlocksRPO RPOT(&L); 2072 RPOT.perform(&LI); 2073 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2074 return false; 2075 2076 LLVM_DEBUG( 2077 dbgs() << "Considering " << UnswitchCandidates.size() 2078 << " non-trivial loop invariant conditions for unswitching.\n"); 2079 2080 // Given that unswitching these terminators will require duplicating parts of 2081 // the loop, so we need to be able to model that cost. Compute the ephemeral 2082 // values and set up a data structure to hold per-BB costs. We cache each 2083 // block's cost so that we don't recompute this when considering different 2084 // subsets of the loop for duplication during unswitching. 2085 SmallPtrSet<const Value *, 4> EphValues; 2086 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2087 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2088 2089 // Compute the cost of each block, as well as the total loop cost. Also, bail 2090 // out if we see instructions which are incompatible with loop unswitching 2091 // (convergent, noduplicate, or cross-basic-block tokens). 2092 // FIXME: We might be able to safely handle some of these in non-duplicated 2093 // regions. 2094 int LoopCost = 0; 2095 for (auto *BB : L.blocks()) { 2096 int Cost = 0; 2097 for (auto &I : *BB) { 2098 if (EphValues.count(&I)) 2099 continue; 2100 2101 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2102 return false; 2103 if (auto CS = CallSite(&I)) 2104 if (CS.isConvergent() || CS.cannotDuplicate()) 2105 return false; 2106 2107 Cost += TTI.getUserCost(&I); 2108 } 2109 assert(Cost >= 0 && "Must not have negative costs!"); 2110 LoopCost += Cost; 2111 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2112 BBCostMap[BB] = Cost; 2113 } 2114 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2115 2116 // Now we find the best candidate by searching for the one with the following 2117 // properties in order: 2118 // 2119 // 1) An unswitching cost below the threshold 2120 // 2) The smallest number of duplicated unswitch candidates (to avoid 2121 // creating redundant subsequent unswitching) 2122 // 3) The smallest cost after unswitching. 2123 // 2124 // We prioritize reducing fanout of unswitch candidates provided the cost 2125 // remains below the threshold because this has a multiplicative effect. 2126 // 2127 // This requires memoizing each dominator subtree to avoid redundant work. 2128 // 2129 // FIXME: Need to actually do the number of candidates part above. 2130 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2131 // Given a terminator which might be unswitched, computes the non-duplicated 2132 // cost for that terminator. 2133 auto ComputeUnswitchedCost = [&](TerminatorInst &TI, bool FullUnswitch) { 2134 BasicBlock &BB = *TI.getParent(); 2135 SmallPtrSet<BasicBlock *, 4> Visited; 2136 2137 int Cost = LoopCost; 2138 for (BasicBlock *SuccBB : successors(&BB)) { 2139 // Don't count successors more than once. 2140 if (!Visited.insert(SuccBB).second) 2141 continue; 2142 2143 // If this is a partial unswitch candidate, then it must be a conditional 2144 // branch with a condition of either `or` or `and`. In that case, one of 2145 // the successors is necessarily duplicated, so don't even try to remove 2146 // its cost. 2147 if (!FullUnswitch) { 2148 auto &BI = cast<BranchInst>(TI); 2149 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2150 Instruction::And) { 2151 if (SuccBB == BI.getSuccessor(1)) 2152 continue; 2153 } else { 2154 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2155 Instruction::Or && 2156 "Only `and` and `or` conditions can result in a partial " 2157 "unswitch!"); 2158 if (SuccBB == BI.getSuccessor(0)) 2159 continue; 2160 } 2161 } 2162 2163 // This successor's domtree will not need to be duplicated after 2164 // unswitching if the edge to the successor dominates it (and thus the 2165 // entire tree). This essentially means there is no other path into this 2166 // subtree and so it will end up live in only one clone of the loop. 2167 if (SuccBB->getUniquePredecessor() || 2168 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2169 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2170 })) { 2171 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2172 assert(Cost >= 0 && 2173 "Non-duplicated cost should never exceed total loop cost!"); 2174 } 2175 } 2176 2177 // Now scale the cost by the number of unique successors minus one. We 2178 // subtract one because there is already at least one copy of the entire 2179 // loop. This is computing the new cost of unswitching a condition. 2180 assert(Visited.size() > 1 && 2181 "Cannot unswitch a condition without multiple distinct successors!"); 2182 return Cost * (Visited.size() - 1); 2183 }; 2184 TerminatorInst *BestUnswitchTI = nullptr; 2185 int BestUnswitchCost; 2186 ArrayRef<Value *> BestUnswitchInvariants; 2187 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2188 TerminatorInst &TI = *TerminatorAndInvariants.first; 2189 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2190 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2191 int CandidateCost = ComputeUnswitchedCost( 2192 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2193 Invariants[0] == BI->getCondition())); 2194 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2195 << " for unswitch candidate: " << TI << "\n"); 2196 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2197 BestUnswitchTI = &TI; 2198 BestUnswitchCost = CandidateCost; 2199 BestUnswitchInvariants = Invariants; 2200 } 2201 } 2202 2203 if (BestUnswitchCost >= UnswitchThreshold) { 2204 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2205 << BestUnswitchCost << "\n"); 2206 return false; 2207 } 2208 2209 LLVM_DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = " 2210 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2211 << "\n"); 2212 return unswitchNontrivialInvariants( 2213 L, *BestUnswitchTI, BestUnswitchInvariants, DT, LI, AC, UnswitchCB, SE); 2214 } 2215 2216 /// Unswitch control flow predicated on loop invariant conditions. 2217 /// 2218 /// This first hoists all branches or switches which are trivial (IE, do not 2219 /// require duplicating any part of the loop) out of the loop body. It then 2220 /// looks at other loop invariant control flows and tries to unswitch those as 2221 /// well by cloning the loop if the result is small enough. 2222 /// 2223 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2224 /// updated based on the unswitch. 2225 /// 2226 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2227 /// true, we will attempt to do non-trivial unswitching as well as trivial 2228 /// unswitching. 2229 /// 2230 /// The `UnswitchCB` callback provided will be run after unswitching is 2231 /// complete, with the first parameter set to `true` if the provided loop 2232 /// remains a loop, and a list of new sibling loops created. 2233 /// 2234 /// If `SE` is non-null, we will update that analysis based on the unswitching 2235 /// done. 2236 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2237 AssumptionCache &AC, TargetTransformInfo &TTI, 2238 bool NonTrivial, 2239 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2240 ScalarEvolution *SE) { 2241 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2242 "Loops must be in LCSSA form before unswitching."); 2243 bool Changed = false; 2244 2245 // Must be in loop simplified form: we need a preheader and dedicated exits. 2246 if (!L.isLoopSimplifyForm()) 2247 return false; 2248 2249 // Try trivial unswitch first before loop over other basic blocks in the loop. 2250 if (unswitchAllTrivialConditions(L, DT, LI, SE)) { 2251 // If we unswitched successfully we will want to clean up the loop before 2252 // processing it further so just mark it as unswitched and return. 2253 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2254 return true; 2255 } 2256 2257 // If we're not doing non-trivial unswitching, we're done. We both accept 2258 // a parameter but also check a local flag that can be used for testing 2259 // a debugging. 2260 if (!NonTrivial && !EnableNonTrivialUnswitch) 2261 return false; 2262 2263 // For non-trivial unswitching, because it often creates new loops, we rely on 2264 // the pass manager to iterate on the loops rather than trying to immediately 2265 // reach a fixed point. There is no substantial advantage to iterating 2266 // internally, and if any of the new loops are simplified enough to contain 2267 // trivial unswitching we want to prefer those. 2268 2269 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2270 // a partial unswitch when possible below the threshold. 2271 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE)) 2272 return true; 2273 2274 // No other opportunities to unswitch. 2275 return Changed; 2276 } 2277 2278 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2279 LoopStandardAnalysisResults &AR, 2280 LPMUpdater &U) { 2281 Function &F = *L.getHeader()->getParent(); 2282 (void)F; 2283 2284 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2285 << "\n"); 2286 2287 // Save the current loop name in a variable so that we can report it even 2288 // after it has been deleted. 2289 std::string LoopName = L.getName(); 2290 2291 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2292 ArrayRef<Loop *> NewLoops) { 2293 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2294 if (!NewLoops.empty()) 2295 U.addSiblingLoops(NewLoops); 2296 2297 // If the current loop remains valid, we should revisit it to catch any 2298 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2299 if (CurrentLoopValid) 2300 U.revisitCurrentLoop(); 2301 else 2302 U.markLoopAsDeleted(L, LoopName); 2303 }; 2304 2305 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2306 &AR.SE)) 2307 return PreservedAnalyses::all(); 2308 2309 // Historically this pass has had issues with the dominator tree so verify it 2310 // in asserts builds. 2311 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2312 return getLoopPassPreservedAnalyses(); 2313 } 2314 2315 namespace { 2316 2317 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2318 bool NonTrivial; 2319 2320 public: 2321 static char ID; // Pass ID, replacement for typeid 2322 2323 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2324 : LoopPass(ID), NonTrivial(NonTrivial) { 2325 initializeSimpleLoopUnswitchLegacyPassPass( 2326 *PassRegistry::getPassRegistry()); 2327 } 2328 2329 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2330 2331 void getAnalysisUsage(AnalysisUsage &AU) const override { 2332 AU.addRequired<AssumptionCacheTracker>(); 2333 AU.addRequired<TargetTransformInfoWrapperPass>(); 2334 getLoopAnalysisUsage(AU); 2335 } 2336 }; 2337 2338 } // end anonymous namespace 2339 2340 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2341 if (skipLoop(L)) 2342 return false; 2343 2344 Function &F = *L->getHeader()->getParent(); 2345 2346 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2347 << "\n"); 2348 2349 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2350 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2351 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2352 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2353 2354 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 2355 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 2356 2357 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2358 ArrayRef<Loop *> NewLoops) { 2359 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2360 for (auto *NewL : NewLoops) 2361 LPM.addLoop(*NewL); 2362 2363 // If the current loop remains valid, re-add it to the queue. This is 2364 // a little wasteful as we'll finish processing the current loop as well, 2365 // but it is the best we can do in the old PM. 2366 if (CurrentLoopValid) 2367 LPM.addLoop(*L); 2368 else 2369 LPM.markLoopAsDeleted(*L); 2370 }; 2371 2372 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE); 2373 2374 // If anything was unswitched, also clear any cached information about this 2375 // loop. 2376 LPM.deleteSimpleAnalysisLoop(L); 2377 2378 // Historically this pass has had issues with the dominator tree so verify it 2379 // in asserts builds. 2380 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2381 2382 return Changed; 2383 } 2384 2385 char SimpleLoopUnswitchLegacyPass::ID = 0; 2386 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2387 "Simple unswitch loops", false, false) 2388 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2389 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2390 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2391 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2392 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2393 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2394 "Simple unswitch loops", false, false) 2395 2396 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2397 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2398 } 2399