xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision 33bdb87adc16e2890beeeb64a980317e7c4292d7)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GuardUtils.h"
24 #include "llvm/Analysis/LoopAnalysisManager.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/ProfDataUtils.h"
47 #include "llvm/IR/Use.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/GenericDomTree.h"
54 #include "llvm/Support/InstructionCost.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar/LoopPassManager.h"
57 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
58 #include "llvm/Transforms/Utils/Cloning.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 #include "llvm/Transforms/Utils/ValueMapper.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <iterator>
65 #include <numeric>
66 #include <optional>
67 #include <utility>
68 
69 #define DEBUG_TYPE "simple-loop-unswitch"
70 
71 using namespace llvm;
72 using namespace llvm::PatternMatch;
73 
74 STATISTIC(NumBranches, "Number of branches unswitched");
75 STATISTIC(NumSwitches, "Number of switches unswitched");
76 STATISTIC(NumSelects, "Number of selects turned into branches for unswitching");
77 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
78 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
79 STATISTIC(
80     NumCostMultiplierSkipped,
81     "Number of unswitch candidates that had their cost multiplier skipped");
82 STATISTIC(NumInvariantConditionsInjected,
83           "Number of invariant conditions injected and unswitched");
84 
85 static cl::opt<bool> EnableNonTrivialUnswitch(
86     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
87     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
88              "following the configuration passed into the pass."));
89 
90 static cl::opt<int>
91     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
92                       cl::desc("The cost threshold for unswitching a loop."));
93 
94 static cl::opt<bool> EnableUnswitchCostMultiplier(
95     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
96     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
97              "explosion in nontrivial unswitch."));
98 static cl::opt<int> UnswitchSiblingsToplevelDiv(
99     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
100     cl::desc("Toplevel siblings divisor for cost multiplier."));
101 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
102     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
103     cl::desc("Number of unswitch candidates that are ignored when calculating "
104              "cost multiplier."));
105 static cl::opt<bool> UnswitchGuards(
106     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
107     cl::desc("If enabled, simple loop unswitching will also consider "
108              "llvm.experimental.guard intrinsics as unswitch candidates."));
109 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
110     "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
111     cl::init(false), cl::Hidden,
112     cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
113              "null checks to save time analyzing if we can keep it."));
114 static cl::opt<unsigned>
115     MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
116                   cl::desc("Max number of memory uses to explore during "
117                            "partial unswitching analysis"),
118                   cl::init(100), cl::Hidden);
119 static cl::opt<bool> FreezeLoopUnswitchCond(
120     "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden,
121     cl::desc("If enabled, the freeze instruction will be added to condition "
122              "of loop unswitch to prevent miscompilation."));
123 
124 static cl::opt<bool> InjectInvariantConditions(
125     "simple-loop-unswitch-inject-invariant-conditions", cl::Hidden,
126     cl::desc("Whether we should inject new invariants and unswitch them to "
127              "eliminate some existing (non-invariant) conditions."),
128     cl::init(true));
129 
130 static cl::opt<unsigned> InjectInvariantConditionHotnesThreshold(
131     "simple-loop-unswitch-inject-invariant-condition-hotness-threshold",
132     cl::Hidden, cl::desc("Only try to inject loop invariant conditions and "
133                          "unswitch on them to eliminate branches that are "
134                          "not-taken 1/<this option> times or less."),
135     cl::init(16));
136 
137 AnalysisKey ShouldRunExtraSimpleLoopUnswitch::Key;
138 namespace {
139 struct CompareDesc {
140   BranchInst *Term;
141   Value *Invariant;
142   BasicBlock *InLoopSucc;
143 
144   CompareDesc(BranchInst *Term, Value *Invariant, BasicBlock *InLoopSucc)
145       : Term(Term), Invariant(Invariant), InLoopSucc(InLoopSucc) {}
146 };
147 
148 struct InjectedInvariant {
149   ICmpInst::Predicate Pred;
150   Value *LHS;
151   Value *RHS;
152   BasicBlock *InLoopSucc;
153 
154   InjectedInvariant(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
155                     BasicBlock *InLoopSucc)
156       : Pred(Pred), LHS(LHS), RHS(RHS), InLoopSucc(InLoopSucc) {}
157 };
158 
159 struct NonTrivialUnswitchCandidate {
160   Instruction *TI = nullptr;
161   TinyPtrVector<Value *> Invariants;
162   std::optional<InstructionCost> Cost;
163   std::optional<InjectedInvariant> PendingInjection;
164   NonTrivialUnswitchCandidate(
165       Instruction *TI, ArrayRef<Value *> Invariants,
166       std::optional<InstructionCost> Cost = std::nullopt,
167       std::optional<InjectedInvariant> PendingInjection = std::nullopt)
168       : TI(TI), Invariants(Invariants), Cost(Cost),
169         PendingInjection(PendingInjection) {};
170 
171   bool hasPendingInjection() const { return PendingInjection.has_value(); }
172 };
173 } // end anonymous namespace.
174 
175 // Helper to skip (select x, true, false), which matches both a logical AND and
176 // OR and can confuse code that tries to determine if \p Cond is either a
177 // logical AND or OR but not both.
178 static Value *skipTrivialSelect(Value *Cond) {
179   Value *CondNext;
180   while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
181     Cond = CondNext;
182   return Cond;
183 }
184 
185 /// Collect all of the loop invariant input values transitively used by the
186 /// homogeneous instruction graph from a given root.
187 ///
188 /// This essentially walks from a root recursively through loop variant operands
189 /// which have perform the same logical operation (AND or OR) and finds all
190 /// inputs which are loop invariant. For some operations these can be
191 /// re-associated and unswitched out of the loop entirely.
192 static TinyPtrVector<Value *>
193 collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root,
194                                          const LoopInfo &LI) {
195   assert(!L.isLoopInvariant(&Root) &&
196          "Only need to walk the graph if root itself is not invariant.");
197   TinyPtrVector<Value *> Invariants;
198 
199   bool IsRootAnd = match(&Root, m_LogicalAnd());
200   bool IsRootOr  = match(&Root, m_LogicalOr());
201 
202   // Build a worklist and recurse through operators collecting invariants.
203   SmallVector<Instruction *, 4> Worklist;
204   SmallPtrSet<Instruction *, 8> Visited;
205   Worklist.push_back(&Root);
206   Visited.insert(&Root);
207   do {
208     Instruction &I = *Worklist.pop_back_val();
209     for (Value *OpV : I.operand_values()) {
210       // Skip constants as unswitching isn't interesting for them.
211       if (isa<Constant>(OpV))
212         continue;
213 
214       // Add it to our result if loop invariant.
215       if (L.isLoopInvariant(OpV)) {
216         Invariants.push_back(OpV);
217         continue;
218       }
219 
220       // If not an instruction with the same opcode, nothing we can do.
221       Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV));
222 
223       if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
224                   (IsRootOr  && match(OpI, m_LogicalOr())))) {
225         // Visit this operand.
226         if (Visited.insert(OpI).second)
227           Worklist.push_back(OpI);
228       }
229     }
230   } while (!Worklist.empty());
231 
232   return Invariants;
233 }
234 
235 static void replaceLoopInvariantUses(const Loop &L, Value *Invariant,
236                                      Constant &Replacement) {
237   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
238 
239   // Replace uses of LIC in the loop with the given constant.
240   // We use make_early_inc_range as set invalidates the iterator.
241   for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
242     Instruction *UserI = dyn_cast<Instruction>(U.getUser());
243 
244     // Replace this use within the loop body.
245     if (UserI && L.contains(UserI))
246       U.set(&Replacement);
247   }
248 }
249 
250 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
251 /// incoming values along this edge.
252 static bool areLoopExitPHIsLoopInvariant(const Loop &L,
253                                          const BasicBlock &ExitingBB,
254                                          const BasicBlock &ExitBB) {
255   for (const Instruction &I : ExitBB) {
256     auto *PN = dyn_cast<PHINode>(&I);
257     if (!PN)
258       // No more PHIs to check.
259       return true;
260 
261     // If the incoming value for this edge isn't loop invariant the unswitch
262     // won't be trivial.
263     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
264       return false;
265   }
266   llvm_unreachable("Basic blocks should never be empty!");
267 }
268 
269 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
270 /// end of \p BB and conditionally branch on the copied condition. We only
271 /// branch on a single value.
272 static void buildPartialUnswitchConditionalBranch(
273     BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
274     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze,
275     const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) {
276   IRBuilder<> IRB(&BB);
277 
278   SmallVector<Value *> FrozenInvariants;
279   for (Value *Inv : Invariants) {
280     if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT))
281       Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr");
282     FrozenInvariants.push_back(Inv);
283   }
284 
285   Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants)
286                           : IRB.CreateAnd(FrozenInvariants);
287   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
288                    Direction ? &NormalSucc : &UnswitchedSucc);
289 }
290 
291 /// Copy a set of loop invariant values, and conditionally branch on them.
292 static void buildPartialInvariantUnswitchConditionalBranch(
293     BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
294     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
295     MemorySSAUpdater *MSSAU) {
296   ValueToValueMapTy VMap;
297   for (auto *Val : reverse(ToDuplicate)) {
298     Instruction *Inst = cast<Instruction>(Val);
299     Instruction *NewInst = Inst->clone();
300     NewInst->insertInto(&BB, BB.end());
301     RemapInstruction(NewInst, VMap,
302                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
303     VMap[Val] = NewInst;
304 
305     if (!MSSAU)
306       continue;
307 
308     MemorySSA *MSSA = MSSAU->getMemorySSA();
309     if (auto *MemUse =
310             dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
311       auto *DefiningAccess = MemUse->getDefiningAccess();
312       // Get the first defining access before the loop.
313       while (L.contains(DefiningAccess->getBlock())) {
314         // If the defining access is a MemoryPhi, get the incoming
315         // value for the pre-header as defining access.
316         if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
317           DefiningAccess =
318               MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
319         else
320           DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
321       }
322       MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
323                                     NewInst->getParent(),
324                                     MemorySSA::BeforeTerminator);
325     }
326   }
327 
328   IRBuilder<> IRB(&BB);
329   Value *Cond = VMap[ToDuplicate[0]];
330   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
331                    Direction ? &NormalSucc : &UnswitchedSucc);
332 }
333 
334 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
335 ///
336 /// Requires that the loop exit and unswitched basic block are the same, and
337 /// that the exiting block was a unique predecessor of that block. Rewrites the
338 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
339 /// PHI nodes from the old preheader that now contains the unswitched
340 /// terminator.
341 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
342                                                   BasicBlock &OldExitingBB,
343                                                   BasicBlock &OldPH) {
344   for (PHINode &PN : UnswitchedBB.phis()) {
345     // When the loop exit is directly unswitched we just need to update the
346     // incoming basic block. We loop to handle weird cases with repeated
347     // incoming blocks, but expect to typically only have one operand here.
348     for (auto i : seq<int>(0, PN.getNumOperands())) {
349       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
350              "Found incoming block different from unique predecessor!");
351       PN.setIncomingBlock(i, &OldPH);
352     }
353   }
354 }
355 
356 /// Rewrite the PHI nodes in the loop exit basic block and the split off
357 /// unswitched block.
358 ///
359 /// Because the exit block remains an exit from the loop, this rewrites the
360 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
361 /// nodes into the unswitched basic block to select between the value in the
362 /// old preheader and the loop exit.
363 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
364                                                       BasicBlock &UnswitchedBB,
365                                                       BasicBlock &OldExitingBB,
366                                                       BasicBlock &OldPH,
367                                                       bool FullUnswitch) {
368   assert(&ExitBB != &UnswitchedBB &&
369          "Must have different loop exit and unswitched blocks!");
370   BasicBlock::iterator InsertPt = UnswitchedBB.begin();
371   for (PHINode &PN : ExitBB.phis()) {
372     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
373                                   PN.getName() + ".split");
374     NewPN->insertBefore(InsertPt);
375 
376     // Walk backwards over the old PHI node's inputs to minimize the cost of
377     // removing each one. We have to do this weird loop manually so that we
378     // create the same number of new incoming edges in the new PHI as we expect
379     // each case-based edge to be included in the unswitched switch in some
380     // cases.
381     // FIXME: This is really, really gross. It would be much cleaner if LLVM
382     // allowed us to create a single entry for a predecessor block without
383     // having separate entries for each "edge" even though these edges are
384     // required to produce identical results.
385     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
386       if (PN.getIncomingBlock(i) != &OldExitingBB)
387         continue;
388 
389       Value *Incoming = PN.getIncomingValue(i);
390       if (FullUnswitch)
391         // No more edge from the old exiting block to the exit block.
392         PN.removeIncomingValue(i);
393 
394       NewPN->addIncoming(Incoming, &OldPH);
395     }
396 
397     // Now replace the old PHI with the new one and wire the old one in as an
398     // input to the new one.
399     PN.replaceAllUsesWith(NewPN);
400     NewPN->addIncoming(&PN, &ExitBB);
401   }
402 }
403 
404 /// Hoist the current loop up to the innermost loop containing a remaining exit.
405 ///
406 /// Because we've removed an exit from the loop, we may have changed the set of
407 /// loops reachable and need to move the current loop up the loop nest or even
408 /// to an entirely separate nest.
409 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
410                                  DominatorTree &DT, LoopInfo &LI,
411                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
412   // If the loop is already at the top level, we can't hoist it anywhere.
413   Loop *OldParentL = L.getParentLoop();
414   if (!OldParentL)
415     return;
416 
417   SmallVector<BasicBlock *, 4> Exits;
418   L.getExitBlocks(Exits);
419   Loop *NewParentL = nullptr;
420   for (auto *ExitBB : Exits)
421     if (Loop *ExitL = LI.getLoopFor(ExitBB))
422       if (!NewParentL || NewParentL->contains(ExitL))
423         NewParentL = ExitL;
424 
425   if (NewParentL == OldParentL)
426     return;
427 
428   // The new parent loop (if different) should always contain the old one.
429   if (NewParentL)
430     assert(NewParentL->contains(OldParentL) &&
431            "Can only hoist this loop up the nest!");
432 
433   // The preheader will need to move with the body of this loop. However,
434   // because it isn't in this loop we also need to update the primary loop map.
435   assert(OldParentL == LI.getLoopFor(&Preheader) &&
436          "Parent loop of this loop should contain this loop's preheader!");
437   LI.changeLoopFor(&Preheader, NewParentL);
438 
439   // Remove this loop from its old parent.
440   OldParentL->removeChildLoop(&L);
441 
442   // Add the loop either to the new parent or as a top-level loop.
443   if (NewParentL)
444     NewParentL->addChildLoop(&L);
445   else
446     LI.addTopLevelLoop(&L);
447 
448   // Remove this loops blocks from the old parent and every other loop up the
449   // nest until reaching the new parent. Also update all of these
450   // no-longer-containing loops to reflect the nesting change.
451   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
452        OldContainingL = OldContainingL->getParentLoop()) {
453     llvm::erase_if(OldContainingL->getBlocksVector(),
454                    [&](const BasicBlock *BB) {
455                      return BB == &Preheader || L.contains(BB);
456                    });
457 
458     OldContainingL->getBlocksSet().erase(&Preheader);
459     for (BasicBlock *BB : L.blocks())
460       OldContainingL->getBlocksSet().erase(BB);
461 
462     // Because we just hoisted a loop out of this one, we have essentially
463     // created new exit paths from it. That means we need to form LCSSA PHI
464     // nodes for values used in the no-longer-nested loop.
465     formLCSSA(*OldContainingL, DT, &LI, SE);
466 
467     // We shouldn't need to form dedicated exits because the exit introduced
468     // here is the (just split by unswitching) preheader. However, after trivial
469     // unswitching it is possible to get new non-dedicated exits out of parent
470     // loop so let's conservatively form dedicated exit blocks and figure out
471     // if we can optimize later.
472     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
473                             /*PreserveLCSSA*/ true);
474   }
475 }
476 
477 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
478 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
479 // as exiting block.
480 static Loop *getTopMostExitingLoop(const BasicBlock *ExitBB,
481                                    const LoopInfo &LI) {
482   Loop *TopMost = LI.getLoopFor(ExitBB);
483   Loop *Current = TopMost;
484   while (Current) {
485     if (Current->isLoopExiting(ExitBB))
486       TopMost = Current;
487     Current = Current->getParentLoop();
488   }
489   return TopMost;
490 }
491 
492 /// Unswitch a trivial branch if the condition is loop invariant.
493 ///
494 /// This routine should only be called when loop code leading to the branch has
495 /// been validated as trivial (no side effects). This routine checks if the
496 /// condition is invariant and one of the successors is a loop exit. This
497 /// allows us to unswitch without duplicating the loop, making it trivial.
498 ///
499 /// If this routine fails to unswitch the branch it returns false.
500 ///
501 /// If the branch can be unswitched, this routine splits the preheader and
502 /// hoists the branch above that split. Preserves loop simplified form
503 /// (splitting the exit block as necessary). It simplifies the branch within
504 /// the loop to an unconditional branch but doesn't remove it entirely. Further
505 /// cleanup can be done with some simplifycfg like pass.
506 ///
507 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
508 /// invalidated by this.
509 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
510                                   LoopInfo &LI, ScalarEvolution *SE,
511                                   MemorySSAUpdater *MSSAU) {
512   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
513   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
514 
515   // The loop invariant values that we want to unswitch.
516   TinyPtrVector<Value *> Invariants;
517 
518   // When true, we're fully unswitching the branch rather than just unswitching
519   // some input conditions to the branch.
520   bool FullUnswitch = false;
521 
522   Value *Cond = skipTrivialSelect(BI.getCondition());
523   if (L.isLoopInvariant(Cond)) {
524     Invariants.push_back(Cond);
525     FullUnswitch = true;
526   } else {
527     if (auto *CondInst = dyn_cast<Instruction>(Cond))
528       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
529     if (Invariants.empty()) {
530       LLVM_DEBUG(dbgs() << "   Couldn't find invariant inputs!\n");
531       return false;
532     }
533   }
534 
535   // Check that one of the branch's successors exits, and which one.
536   bool ExitDirection = true;
537   int LoopExitSuccIdx = 0;
538   auto *LoopExitBB = BI.getSuccessor(0);
539   if (L.contains(LoopExitBB)) {
540     ExitDirection = false;
541     LoopExitSuccIdx = 1;
542     LoopExitBB = BI.getSuccessor(1);
543     if (L.contains(LoopExitBB)) {
544       LLVM_DEBUG(dbgs() << "   Branch doesn't exit the loop!\n");
545       return false;
546     }
547   }
548   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
549   auto *ParentBB = BI.getParent();
550   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
551     LLVM_DEBUG(dbgs() << "   Loop exit PHI's aren't loop-invariant!\n");
552     return false;
553   }
554 
555   // When unswitching only part of the branch's condition, we need the exit
556   // block to be reached directly from the partially unswitched input. This can
557   // be done when the exit block is along the true edge and the branch condition
558   // is a graph of `or` operations, or the exit block is along the false edge
559   // and the condition is a graph of `and` operations.
560   if (!FullUnswitch) {
561     if (ExitDirection ? !match(Cond, m_LogicalOr())
562                       : !match(Cond, m_LogicalAnd())) {
563       LLVM_DEBUG(dbgs() << "   Branch condition is in improper form for "
564                            "non-full unswitch!\n");
565       return false;
566     }
567   }
568 
569   LLVM_DEBUG({
570     dbgs() << "    unswitching trivial invariant conditions for: " << BI
571            << "\n";
572     for (Value *Invariant : Invariants) {
573       dbgs() << "      " << *Invariant << " == true";
574       if (Invariant != Invariants.back())
575         dbgs() << " ||";
576       dbgs() << "\n";
577     }
578   });
579 
580   // If we have scalar evolutions, we need to invalidate them including this
581   // loop, the loop containing the exit block and the topmost parent loop
582   // exiting via LoopExitBB.
583   if (SE) {
584     if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
585       SE->forgetLoop(ExitL);
586     else
587       // Forget the entire nest as this exits the entire nest.
588       SE->forgetTopmostLoop(&L);
589     SE->forgetBlockAndLoopDispositions();
590   }
591 
592   if (MSSAU && VerifyMemorySSA)
593     MSSAU->getMemorySSA()->verifyMemorySSA();
594 
595   // Split the preheader, so that we know that there is a safe place to insert
596   // the conditional branch. We will change the preheader to have a conditional
597   // branch on LoopCond.
598   BasicBlock *OldPH = L.getLoopPreheader();
599   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
600 
601   // Now that we have a place to insert the conditional branch, create a place
602   // to branch to: this is the exit block out of the loop that we are
603   // unswitching. We need to split this if there are other loop predecessors.
604   // Because the loop is in simplified form, *any* other predecessor is enough.
605   BasicBlock *UnswitchedBB;
606   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
607     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
608            "A branch's parent isn't a predecessor!");
609     UnswitchedBB = LoopExitBB;
610   } else {
611     UnswitchedBB =
612         SplitBlock(LoopExitBB, LoopExitBB->begin(), &DT, &LI, MSSAU, "", false);
613   }
614 
615   if (MSSAU && VerifyMemorySSA)
616     MSSAU->getMemorySSA()->verifyMemorySSA();
617 
618   // Actually move the invariant uses into the unswitched position. If possible,
619   // we do this by moving the instructions, but when doing partial unswitching
620   // we do it by building a new merge of the values in the unswitched position.
621   OldPH->getTerminator()->eraseFromParent();
622   if (FullUnswitch) {
623     // If fully unswitching, we can use the existing branch instruction.
624     // Splice it into the old PH to gate reaching the new preheader and re-point
625     // its successors.
626     BI.moveBefore(*OldPH, OldPH->end());
627     BI.setCondition(Cond);
628     if (MSSAU) {
629       // Temporarily clone the terminator, to make MSSA update cheaper by
630       // separating "insert edge" updates from "remove edge" ones.
631       BI.clone()->insertInto(ParentBB, ParentBB->end());
632     } else {
633       // Create a new unconditional branch that will continue the loop as a new
634       // terminator.
635       BranchInst::Create(ContinueBB, ParentBB);
636     }
637     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
638     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
639   } else {
640     // Only unswitching a subset of inputs to the condition, so we will need to
641     // build a new branch that merges the invariant inputs.
642     if (ExitDirection)
643       assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) &&
644              "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
645              "condition!");
646     else
647       assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) &&
648              "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
649              " condition!");
650     buildPartialUnswitchConditionalBranch(
651         *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH,
652         FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT);
653   }
654 
655   // Update the dominator tree with the added edge.
656   DT.insertEdge(OldPH, UnswitchedBB);
657 
658   // After the dominator tree was updated with the added edge, update MemorySSA
659   // if available.
660   if (MSSAU) {
661     SmallVector<CFGUpdate, 1> Updates;
662     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
663     MSSAU->applyInsertUpdates(Updates, DT);
664   }
665 
666   // Finish updating dominator tree and memory ssa for full unswitch.
667   if (FullUnswitch) {
668     if (MSSAU) {
669       // Remove the cloned branch instruction.
670       ParentBB->getTerminator()->eraseFromParent();
671       // Create unconditional branch now.
672       BranchInst::Create(ContinueBB, ParentBB);
673       MSSAU->removeEdge(ParentBB, LoopExitBB);
674     }
675     DT.deleteEdge(ParentBB, LoopExitBB);
676   }
677 
678   if (MSSAU && VerifyMemorySSA)
679     MSSAU->getMemorySSA()->verifyMemorySSA();
680 
681   // Rewrite the relevant PHI nodes.
682   if (UnswitchedBB == LoopExitBB)
683     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
684   else
685     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
686                                               *ParentBB, *OldPH, FullUnswitch);
687 
688   // The constant we can replace all of our invariants with inside the loop
689   // body. If any of the invariants have a value other than this the loop won't
690   // be entered.
691   ConstantInt *Replacement = ExitDirection
692                                  ? ConstantInt::getFalse(BI.getContext())
693                                  : ConstantInt::getTrue(BI.getContext());
694 
695   // Since this is an i1 condition we can also trivially replace uses of it
696   // within the loop with a constant.
697   for (Value *Invariant : Invariants)
698     replaceLoopInvariantUses(L, Invariant, *Replacement);
699 
700   // If this was full unswitching, we may have changed the nesting relationship
701   // for this loop so hoist it to its correct parent if needed.
702   if (FullUnswitch)
703     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
704 
705   if (MSSAU && VerifyMemorySSA)
706     MSSAU->getMemorySSA()->verifyMemorySSA();
707 
708   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
709   ++NumTrivial;
710   ++NumBranches;
711   return true;
712 }
713 
714 /// Unswitch a trivial switch if the condition is loop invariant.
715 ///
716 /// This routine should only be called when loop code leading to the switch has
717 /// been validated as trivial (no side effects). This routine checks if the
718 /// condition is invariant and that at least one of the successors is a loop
719 /// exit. This allows us to unswitch without duplicating the loop, making it
720 /// trivial.
721 ///
722 /// If this routine fails to unswitch the switch it returns false.
723 ///
724 /// If the switch can be unswitched, this routine splits the preheader and
725 /// copies the switch above that split. If the default case is one of the
726 /// exiting cases, it copies the non-exiting cases and points them at the new
727 /// preheader. If the default case is not exiting, it copies the exiting cases
728 /// and points the default at the preheader. It preserves loop simplified form
729 /// (splitting the exit blocks as necessary). It simplifies the switch within
730 /// the loop by removing now-dead cases. If the default case is one of those
731 /// unswitched, it replaces its destination with a new basic block containing
732 /// only unreachable. Such basic blocks, while technically loop exits, are not
733 /// considered for unswitching so this is a stable transform and the same
734 /// switch will not be revisited. If after unswitching there is only a single
735 /// in-loop successor, the switch is further simplified to an unconditional
736 /// branch. Still more cleanup can be done with some simplifycfg like pass.
737 ///
738 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
739 /// invalidated by this.
740 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
741                                   LoopInfo &LI, ScalarEvolution *SE,
742                                   MemorySSAUpdater *MSSAU) {
743   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
744   Value *LoopCond = SI.getCondition();
745 
746   // If this isn't switching on an invariant condition, we can't unswitch it.
747   if (!L.isLoopInvariant(LoopCond))
748     return false;
749 
750   auto *ParentBB = SI.getParent();
751 
752   // The same check must be used both for the default and the exit cases. We
753   // should never leave edges from the switch instruction to a basic block that
754   // we are unswitching, hence the condition used to determine the default case
755   // needs to also be used to populate ExitCaseIndices, which is then used to
756   // remove cases from the switch.
757   auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
758     // BBToCheck is not an exit block if it is inside loop L.
759     if (L.contains(&BBToCheck))
760       return false;
761     // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
762     if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
763       return false;
764     // We do not unswitch a block that only has an unreachable statement, as
765     // it's possible this is a previously unswitched block. Only unswitch if
766     // either the terminator is not unreachable, or, if it is, it's not the only
767     // instruction in the block.
768     auto *TI = BBToCheck.getTerminator();
769     bool isUnreachable = isa<UnreachableInst>(TI);
770     return !isUnreachable ||
771            (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
772   };
773 
774   SmallVector<int, 4> ExitCaseIndices;
775   for (auto Case : SI.cases())
776     if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
777       ExitCaseIndices.push_back(Case.getCaseIndex());
778   BasicBlock *DefaultExitBB = nullptr;
779   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
780       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
781   if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
782     DefaultExitBB = SI.getDefaultDest();
783   } else if (ExitCaseIndices.empty())
784     return false;
785 
786   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
787 
788   if (MSSAU && VerifyMemorySSA)
789     MSSAU->getMemorySSA()->verifyMemorySSA();
790 
791   // We may need to invalidate SCEVs for the outermost loop reached by any of
792   // the exits.
793   Loop *OuterL = &L;
794 
795   if (DefaultExitBB) {
796     // Check the loop containing this exit.
797     Loop *ExitL = getTopMostExitingLoop(DefaultExitBB, LI);
798     if (!ExitL || ExitL->contains(OuterL))
799       OuterL = ExitL;
800   }
801   for (unsigned Index : ExitCaseIndices) {
802     auto CaseI = SI.case_begin() + Index;
803     // Compute the outer loop from this exit.
804     Loop *ExitL = getTopMostExitingLoop(CaseI->getCaseSuccessor(), LI);
805     if (!ExitL || ExitL->contains(OuterL))
806       OuterL = ExitL;
807   }
808 
809   if (SE) {
810     if (OuterL)
811       SE->forgetLoop(OuterL);
812     else
813       SE->forgetTopmostLoop(&L);
814   }
815 
816   if (DefaultExitBB) {
817     // Clear out the default destination temporarily to allow accurate
818     // predecessor lists to be examined below.
819     SI.setDefaultDest(nullptr);
820   }
821 
822   // Store the exit cases into a separate data structure and remove them from
823   // the switch.
824   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
825                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
826               4> ExitCases;
827   ExitCases.reserve(ExitCaseIndices.size());
828   SwitchInstProfUpdateWrapper SIW(SI);
829   // We walk the case indices backwards so that we remove the last case first
830   // and don't disrupt the earlier indices.
831   for (unsigned Index : reverse(ExitCaseIndices)) {
832     auto CaseI = SI.case_begin() + Index;
833     // Save the value of this case.
834     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
835     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
836     // Delete the unswitched cases.
837     SIW.removeCase(CaseI);
838   }
839 
840   // Check if after this all of the remaining cases point at the same
841   // successor.
842   BasicBlock *CommonSuccBB = nullptr;
843   if (SI.getNumCases() > 0 &&
844       all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
845         return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
846       }))
847     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
848   if (!DefaultExitBB) {
849     // If we're not unswitching the default, we need it to match any cases to
850     // have a common successor or if we have no cases it is the common
851     // successor.
852     if (SI.getNumCases() == 0)
853       CommonSuccBB = SI.getDefaultDest();
854     else if (SI.getDefaultDest() != CommonSuccBB)
855       CommonSuccBB = nullptr;
856   }
857 
858   // Split the preheader, so that we know that there is a safe place to insert
859   // the switch.
860   BasicBlock *OldPH = L.getLoopPreheader();
861   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
862   OldPH->getTerminator()->eraseFromParent();
863 
864   // Now add the unswitched switch.
865   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
866   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
867 
868   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
869   // First, we split any exit blocks with remaining in-loop predecessors. Then
870   // we update the PHIs in one of two ways depending on if there was a split.
871   // We walk in reverse so that we split in the same order as the cases
872   // appeared. This is purely for convenience of reading the resulting IR, but
873   // it doesn't cost anything really.
874   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
875   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
876   // Handle the default exit if necessary.
877   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
878   // ranges aren't quite powerful enough yet.
879   if (DefaultExitBB) {
880     if (pred_empty(DefaultExitBB)) {
881       UnswitchedExitBBs.insert(DefaultExitBB);
882       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
883     } else {
884       auto *SplitBB =
885           SplitBlock(DefaultExitBB, DefaultExitBB->begin(), &DT, &LI, MSSAU);
886       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
887                                                 *ParentBB, *OldPH,
888                                                 /*FullUnswitch*/ true);
889       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
890     }
891   }
892   // Note that we must use a reference in the for loop so that we update the
893   // container.
894   for (auto &ExitCase : reverse(ExitCases)) {
895     // Grab a reference to the exit block in the pair so that we can update it.
896     BasicBlock *ExitBB = std::get<1>(ExitCase);
897 
898     // If this case is the last edge into the exit block, we can simply reuse it
899     // as it will no longer be a loop exit. No mapping necessary.
900     if (pred_empty(ExitBB)) {
901       // Only rewrite once.
902       if (UnswitchedExitBBs.insert(ExitBB).second)
903         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
904       continue;
905     }
906 
907     // Otherwise we need to split the exit block so that we retain an exit
908     // block from the loop and a target for the unswitched condition.
909     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
910     if (!SplitExitBB) {
911       // If this is the first time we see this, do the split and remember it.
912       SplitExitBB = SplitBlock(ExitBB, ExitBB->begin(), &DT, &LI, MSSAU);
913       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
914                                                 *ParentBB, *OldPH,
915                                                 /*FullUnswitch*/ true);
916     }
917     // Update the case pair to point to the split block.
918     std::get<1>(ExitCase) = SplitExitBB;
919   }
920 
921   // Now add the unswitched cases. We do this in reverse order as we built them
922   // in reverse order.
923   for (auto &ExitCase : reverse(ExitCases)) {
924     ConstantInt *CaseVal = std::get<0>(ExitCase);
925     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
926 
927     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
928   }
929 
930   // If the default was unswitched, re-point it and add explicit cases for
931   // entering the loop.
932   if (DefaultExitBB) {
933     NewSIW->setDefaultDest(DefaultExitBB);
934     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
935 
936     // We removed all the exit cases, so we just copy the cases to the
937     // unswitched switch.
938     for (const auto &Case : SI.cases())
939       NewSIW.addCase(Case.getCaseValue(), NewPH,
940                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
941   } else if (DefaultCaseWeight) {
942     // We have to set branch weight of the default case.
943     uint64_t SW = *DefaultCaseWeight;
944     for (const auto &Case : SI.cases()) {
945       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
946       assert(W &&
947              "case weight must be defined as default case weight is defined");
948       SW += *W;
949     }
950     NewSIW.setSuccessorWeight(0, SW);
951   }
952 
953   // If we ended up with a common successor for every path through the switch
954   // after unswitching, rewrite it to an unconditional branch to make it easy
955   // to recognize. Otherwise we potentially have to recognize the default case
956   // pointing at unreachable and other complexity.
957   if (CommonSuccBB) {
958     BasicBlock *BB = SI.getParent();
959     // We may have had multiple edges to this common successor block, so remove
960     // them as predecessors. We skip the first one, either the default or the
961     // actual first case.
962     bool SkippedFirst = DefaultExitBB == nullptr;
963     for (auto Case : SI.cases()) {
964       assert(Case.getCaseSuccessor() == CommonSuccBB &&
965              "Non-common successor!");
966       (void)Case;
967       if (!SkippedFirst) {
968         SkippedFirst = true;
969         continue;
970       }
971       CommonSuccBB->removePredecessor(BB,
972                                       /*KeepOneInputPHIs*/ true);
973     }
974     // Now nuke the switch and replace it with a direct branch.
975     SIW.eraseFromParent();
976     BranchInst::Create(CommonSuccBB, BB);
977   } else if (DefaultExitBB) {
978     assert(SI.getNumCases() > 0 &&
979            "If we had no cases we'd have a common successor!");
980     // Move the last case to the default successor. This is valid as if the
981     // default got unswitched it cannot be reached. This has the advantage of
982     // being simple and keeping the number of edges from this switch to
983     // successors the same, and avoiding any PHI update complexity.
984     auto LastCaseI = std::prev(SI.case_end());
985 
986     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
987     SIW.setSuccessorWeight(
988         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
989     SIW.removeCase(LastCaseI);
990   }
991 
992   // Walk the unswitched exit blocks and the unswitched split blocks and update
993   // the dominator tree based on the CFG edits. While we are walking unordered
994   // containers here, the API for applyUpdates takes an unordered list of
995   // updates and requires them to not contain duplicates.
996   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
997   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
998     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
999     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
1000   }
1001   for (auto SplitUnswitchedPair : SplitExitBBMap) {
1002     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
1003     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
1004   }
1005 
1006   if (MSSAU) {
1007     MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
1008     if (VerifyMemorySSA)
1009       MSSAU->getMemorySSA()->verifyMemorySSA();
1010   } else {
1011     DT.applyUpdates(DTUpdates);
1012   }
1013 
1014   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1015 
1016   // We may have changed the nesting relationship for this loop so hoist it to
1017   // its correct parent if needed.
1018   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
1019 
1020   if (MSSAU && VerifyMemorySSA)
1021     MSSAU->getMemorySSA()->verifyMemorySSA();
1022 
1023   ++NumTrivial;
1024   ++NumSwitches;
1025   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
1026   return true;
1027 }
1028 
1029 /// This routine scans the loop to find a branch or switch which occurs before
1030 /// any side effects occur. These can potentially be unswitched without
1031 /// duplicating the loop. If a branch or switch is successfully unswitched the
1032 /// scanning continues to see if subsequent branches or switches have become
1033 /// trivial. Once all trivial candidates have been unswitched, this routine
1034 /// returns.
1035 ///
1036 /// The return value indicates whether anything was unswitched (and therefore
1037 /// changed).
1038 ///
1039 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
1040 /// invalidated by this.
1041 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
1042                                          LoopInfo &LI, ScalarEvolution *SE,
1043                                          MemorySSAUpdater *MSSAU) {
1044   bool Changed = false;
1045 
1046   // If loop header has only one reachable successor we should keep looking for
1047   // trivial condition candidates in the successor as well. An alternative is
1048   // to constant fold conditions and merge successors into loop header (then we
1049   // only need to check header's terminator). The reason for not doing this in
1050   // LoopUnswitch pass is that it could potentially break LoopPassManager's
1051   // invariants. Folding dead branches could either eliminate the current loop
1052   // or make other loops unreachable. LCSSA form might also not be preserved
1053   // after deleting branches. The following code keeps traversing loop header's
1054   // successors until it finds the trivial condition candidate (condition that
1055   // is not a constant). Since unswitching generates branches with constant
1056   // conditions, this scenario could be very common in practice.
1057   BasicBlock *CurrentBB = L.getHeader();
1058   SmallPtrSet<BasicBlock *, 8> Visited;
1059   Visited.insert(CurrentBB);
1060   do {
1061     // Check if there are any side-effecting instructions (e.g. stores, calls,
1062     // volatile loads) in the part of the loop that the code *would* execute
1063     // without unswitching.
1064     if (MSSAU) // Possible early exit with MSSA
1065       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
1066         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
1067           return Changed;
1068     if (llvm::any_of(*CurrentBB,
1069                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
1070       return Changed;
1071 
1072     Instruction *CurrentTerm = CurrentBB->getTerminator();
1073 
1074     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1075       // Don't bother trying to unswitch past a switch with a constant
1076       // condition. This should be removed prior to running this pass by
1077       // simplifycfg.
1078       if (isa<Constant>(SI->getCondition()))
1079         return Changed;
1080 
1081       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
1082         // Couldn't unswitch this one so we're done.
1083         return Changed;
1084 
1085       // Mark that we managed to unswitch something.
1086       Changed = true;
1087 
1088       // If unswitching turned the terminator into an unconditional branch then
1089       // we can continue. The unswitching logic specifically works to fold any
1090       // cases it can into an unconditional branch to make it easier to
1091       // recognize here.
1092       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1093       if (!BI || BI->isConditional())
1094         return Changed;
1095 
1096       CurrentBB = BI->getSuccessor(0);
1097       continue;
1098     }
1099 
1100     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1101     if (!BI)
1102       // We do not understand other terminator instructions.
1103       return Changed;
1104 
1105     // Don't bother trying to unswitch past an unconditional branch or a branch
1106     // with a constant value. These should be removed by simplifycfg prior to
1107     // running this pass.
1108     if (!BI->isConditional() ||
1109         isa<Constant>(skipTrivialSelect(BI->getCondition())))
1110       return Changed;
1111 
1112     // Found a trivial condition candidate: non-foldable conditional branch. If
1113     // we fail to unswitch this, we can't do anything else that is trivial.
1114     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1115       return Changed;
1116 
1117     // Mark that we managed to unswitch something.
1118     Changed = true;
1119 
1120     // If we only unswitched some of the conditions feeding the branch, we won't
1121     // have collapsed it to a single successor.
1122     BI = cast<BranchInst>(CurrentBB->getTerminator());
1123     if (BI->isConditional())
1124       return Changed;
1125 
1126     // Follow the newly unconditional branch into its successor.
1127     CurrentBB = BI->getSuccessor(0);
1128 
1129     // When continuing, if we exit the loop or reach a previous visited block,
1130     // then we can not reach any trivial condition candidates (unfoldable
1131     // branch instructions or switch instructions) and no unswitch can happen.
1132   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1133 
1134   return Changed;
1135 }
1136 
1137 /// Build the cloned blocks for an unswitched copy of the given loop.
1138 ///
1139 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1140 /// after the split block (`SplitBB`) that will be used to select between the
1141 /// cloned and original loop.
1142 ///
1143 /// This routine handles cloning all of the necessary loop blocks and exit
1144 /// blocks including rewriting their instructions and the relevant PHI nodes.
1145 /// Any loop blocks or exit blocks which are dominated by a different successor
1146 /// than the one for this clone of the loop blocks can be trivially skipped. We
1147 /// use the `DominatingSucc` map to determine whether a block satisfies that
1148 /// property with a simple map lookup.
1149 ///
1150 /// It also correctly creates the unconditional branch in the cloned
1151 /// unswitched parent block to only point at the unswitched successor.
1152 ///
1153 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1154 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1155 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1156 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1157 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1158 /// instead the caller must recompute an accurate DT. It *does* correctly
1159 /// update the `AssumptionCache` provided in `AC`.
1160 static BasicBlock *buildClonedLoopBlocks(
1161     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1162     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1163     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1164     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1165     ValueToValueMapTy &VMap,
1166     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1167     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU,
1168     ScalarEvolution *SE) {
1169   SmallVector<BasicBlock *, 4> NewBlocks;
1170   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1171 
1172   // We will need to clone a bunch of blocks, wrap up the clone operation in
1173   // a helper.
1174   auto CloneBlock = [&](BasicBlock *OldBB) {
1175     // Clone the basic block and insert it before the new preheader.
1176     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1177     NewBB->moveBefore(LoopPH);
1178 
1179     // Record this block and the mapping.
1180     NewBlocks.push_back(NewBB);
1181     VMap[OldBB] = NewBB;
1182 
1183     return NewBB;
1184   };
1185 
1186   // We skip cloning blocks when they have a dominating succ that is not the
1187   // succ we are cloning for.
1188   auto SkipBlock = [&](BasicBlock *BB) {
1189     auto It = DominatingSucc.find(BB);
1190     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1191   };
1192 
1193   // First, clone the preheader.
1194   auto *ClonedPH = CloneBlock(LoopPH);
1195 
1196   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1197   for (auto *LoopBB : L.blocks())
1198     if (!SkipBlock(LoopBB))
1199       CloneBlock(LoopBB);
1200 
1201   // Split all the loop exit edges so that when we clone the exit blocks, if
1202   // any of the exit blocks are *also* a preheader for some other loop, we
1203   // don't create multiple predecessors entering the loop header.
1204   for (auto *ExitBB : ExitBlocks) {
1205     if (SkipBlock(ExitBB))
1206       continue;
1207 
1208     // When we are going to clone an exit, we don't need to clone all the
1209     // instructions in the exit block and we want to ensure we have an easy
1210     // place to merge the CFG, so split the exit first. This is always safe to
1211     // do because there cannot be any non-loop predecessors of a loop exit in
1212     // loop simplified form.
1213     auto *MergeBB = SplitBlock(ExitBB, ExitBB->begin(), &DT, &LI, MSSAU);
1214 
1215     // Rearrange the names to make it easier to write test cases by having the
1216     // exit block carry the suffix rather than the merge block carrying the
1217     // suffix.
1218     MergeBB->takeName(ExitBB);
1219     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1220 
1221     // Now clone the original exit block.
1222     auto *ClonedExitBB = CloneBlock(ExitBB);
1223     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1224            "Exit block should have been split to have one successor!");
1225     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1226            "Cloned exit block has the wrong successor!");
1227 
1228     // Remap any cloned instructions and create a merge phi node for them.
1229     for (auto ZippedInsts : llvm::zip_first(
1230              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1231              llvm::make_range(ClonedExitBB->begin(),
1232                               std::prev(ClonedExitBB->end())))) {
1233       Instruction &I = std::get<0>(ZippedInsts);
1234       Instruction &ClonedI = std::get<1>(ZippedInsts);
1235 
1236       // The only instructions in the exit block should be PHI nodes and
1237       // potentially a landing pad.
1238       assert(
1239           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1240           "Bad instruction in exit block!");
1241       // We should have a value map between the instruction and its clone.
1242       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1243 
1244       // Forget SCEVs based on exit phis in case SCEV looked through the phi.
1245       if (SE && isa<PHINode>(I))
1246         SE->forgetValue(&I);
1247 
1248       BasicBlock::iterator InsertPt = MergeBB->getFirstInsertionPt();
1249 
1250       auto *MergePN =
1251           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi");
1252       MergePN->insertBefore(InsertPt);
1253       MergePN->setDebugLoc(InsertPt->getDebugLoc());
1254       I.replaceAllUsesWith(MergePN);
1255       MergePN->addIncoming(&I, ExitBB);
1256       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1257     }
1258   }
1259 
1260   // Rewrite the instructions in the cloned blocks to refer to the instructions
1261   // in the cloned blocks. We have to do this as a second pass so that we have
1262   // everything available. Also, we have inserted new instructions which may
1263   // include assume intrinsics, so we update the assumption cache while
1264   // processing this.
1265   Module *M = ClonedPH->getParent()->getParent();
1266   for (auto *ClonedBB : NewBlocks)
1267     for (Instruction &I : *ClonedBB) {
1268       RemapDbgRecordRange(M, I.getDbgRecordRange(), VMap,
1269                           RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1270       RemapInstruction(&I, VMap,
1271                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1272       if (auto *II = dyn_cast<AssumeInst>(&I))
1273         AC.registerAssumption(II);
1274     }
1275 
1276   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1277   // have spurious incoming values.
1278   for (auto *LoopBB : L.blocks())
1279     if (SkipBlock(LoopBB))
1280       for (auto *SuccBB : successors(LoopBB))
1281         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1282           for (PHINode &PN : ClonedSuccBB->phis())
1283             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1284 
1285   // Remove the cloned parent as a predecessor of any successor we ended up
1286   // cloning other than the unswitched one.
1287   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1288   for (auto *SuccBB : successors(ParentBB)) {
1289     if (SuccBB == UnswitchedSuccBB)
1290       continue;
1291 
1292     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1293     if (!ClonedSuccBB)
1294       continue;
1295 
1296     ClonedSuccBB->removePredecessor(ClonedParentBB,
1297                                     /*KeepOneInputPHIs*/ true);
1298   }
1299 
1300   // Replace the cloned branch with an unconditional branch to the cloned
1301   // unswitched successor.
1302   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1303   Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1304   // Trivial Simplification. If Terminator is a conditional branch and
1305   // condition becomes dead - erase it.
1306   Value *ClonedConditionToErase = nullptr;
1307   if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1308     ClonedConditionToErase = BI->getCondition();
1309   else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1310     ClonedConditionToErase = SI->getCondition();
1311 
1312   Instruction *BI = BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1313   BI->setDebugLoc(ClonedTerminator->getDebugLoc());
1314   ClonedTerminator->eraseFromParent();
1315 
1316   if (ClonedConditionToErase)
1317     RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1318                                                MSSAU);
1319 
1320   // If there are duplicate entries in the PHI nodes because of multiple edges
1321   // to the unswitched successor, we need to nuke all but one as we replaced it
1322   // with a direct branch.
1323   for (PHINode &PN : ClonedSuccBB->phis()) {
1324     bool Found = false;
1325     // Loop over the incoming operands backwards so we can easily delete as we
1326     // go without invalidating the index.
1327     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1328       if (PN.getIncomingBlock(i) != ClonedParentBB)
1329         continue;
1330       if (!Found) {
1331         Found = true;
1332         continue;
1333       }
1334       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1335     }
1336   }
1337 
1338   // Record the domtree updates for the new blocks.
1339   SmallPtrSet<BasicBlock *, 4> SuccSet;
1340   for (auto *ClonedBB : NewBlocks) {
1341     for (auto *SuccBB : successors(ClonedBB))
1342       if (SuccSet.insert(SuccBB).second)
1343         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1344     SuccSet.clear();
1345   }
1346 
1347   return ClonedPH;
1348 }
1349 
1350 /// Recursively clone the specified loop and all of its children.
1351 ///
1352 /// The target parent loop for the clone should be provided, or can be null if
1353 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1354 /// with the provided value map. The entire original loop must be present in
1355 /// the value map. The cloned loop is returned.
1356 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1357                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1358   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1359     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1360     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1361     for (auto *BB : OrigL.blocks()) {
1362       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1363       ClonedL.addBlockEntry(ClonedBB);
1364       if (LI.getLoopFor(BB) == &OrigL)
1365         LI.changeLoopFor(ClonedBB, &ClonedL);
1366     }
1367   };
1368 
1369   // We specially handle the first loop because it may get cloned into
1370   // a different parent and because we most commonly are cloning leaf loops.
1371   Loop *ClonedRootL = LI.AllocateLoop();
1372   if (RootParentL)
1373     RootParentL->addChildLoop(ClonedRootL);
1374   else
1375     LI.addTopLevelLoop(ClonedRootL);
1376   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1377 
1378   if (OrigRootL.isInnermost())
1379     return ClonedRootL;
1380 
1381   // If we have a nest, we can quickly clone the entire loop nest using an
1382   // iterative approach because it is a tree. We keep the cloned parent in the
1383   // data structure to avoid repeatedly querying through a map to find it.
1384   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1385   // Build up the loops to clone in reverse order as we'll clone them from the
1386   // back.
1387   for (Loop *ChildL : llvm::reverse(OrigRootL))
1388     LoopsToClone.push_back({ClonedRootL, ChildL});
1389   do {
1390     Loop *ClonedParentL, *L;
1391     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1392     Loop *ClonedL = LI.AllocateLoop();
1393     ClonedParentL->addChildLoop(ClonedL);
1394     AddClonedBlocksToLoop(*L, *ClonedL);
1395     for (Loop *ChildL : llvm::reverse(*L))
1396       LoopsToClone.push_back({ClonedL, ChildL});
1397   } while (!LoopsToClone.empty());
1398 
1399   return ClonedRootL;
1400 }
1401 
1402 /// Build the cloned loops of an original loop from unswitching.
1403 ///
1404 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1405 /// operation. We need to re-verify that there even is a loop (as the backedge
1406 /// may not have been cloned), and even if there are remaining backedges the
1407 /// backedge set may be different. However, we know that each child loop is
1408 /// undisturbed, we only need to find where to place each child loop within
1409 /// either any parent loop or within a cloned version of the original loop.
1410 ///
1411 /// Because child loops may end up cloned outside of any cloned version of the
1412 /// original loop, multiple cloned sibling loops may be created. All of them
1413 /// are returned so that the newly introduced loop nest roots can be
1414 /// identified.
1415 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1416                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1417                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1418   Loop *ClonedL = nullptr;
1419 
1420   auto *OrigPH = OrigL.getLoopPreheader();
1421   auto *OrigHeader = OrigL.getHeader();
1422 
1423   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1424   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1425 
1426   // We need to know the loops of the cloned exit blocks to even compute the
1427   // accurate parent loop. If we only clone exits to some parent of the
1428   // original parent, we want to clone into that outer loop. We also keep track
1429   // of the loops that our cloned exit blocks participate in.
1430   Loop *ParentL = nullptr;
1431   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1432   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1433   ClonedExitsInLoops.reserve(ExitBlocks.size());
1434   for (auto *ExitBB : ExitBlocks)
1435     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1436       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1437         ExitLoopMap[ClonedExitBB] = ExitL;
1438         ClonedExitsInLoops.push_back(ClonedExitBB);
1439         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1440           ParentL = ExitL;
1441       }
1442   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1443           ParentL->contains(OrigL.getParentLoop())) &&
1444          "The computed parent loop should always contain (or be) the parent of "
1445          "the original loop.");
1446 
1447   // We build the set of blocks dominated by the cloned header from the set of
1448   // cloned blocks out of the original loop. While not all of these will
1449   // necessarily be in the cloned loop, it is enough to establish that they
1450   // aren't in unreachable cycles, etc.
1451   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1452   for (auto *BB : OrigL.blocks())
1453     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1454       ClonedLoopBlocks.insert(ClonedBB);
1455 
1456   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1457   // skipped cloning some region of this loop which can in turn skip some of
1458   // the backedges so we have to rebuild the blocks in the loop based on the
1459   // backedges that remain after cloning.
1460   SmallVector<BasicBlock *, 16> Worklist;
1461   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1462   for (auto *Pred : predecessors(ClonedHeader)) {
1463     // The only possible non-loop header predecessor is the preheader because
1464     // we know we cloned the loop in simplified form.
1465     if (Pred == ClonedPH)
1466       continue;
1467 
1468     // Because the loop was in simplified form, the only non-loop predecessor
1469     // should be the preheader.
1470     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1471                                            "header other than the preheader "
1472                                            "that is not part of the loop!");
1473 
1474     // Insert this block into the loop set and on the first visit (and if it
1475     // isn't the header we're currently walking) put it into the worklist to
1476     // recurse through.
1477     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1478       Worklist.push_back(Pred);
1479   }
1480 
1481   // If we had any backedges then there *is* a cloned loop. Put the header into
1482   // the loop set and then walk the worklist backwards to find all the blocks
1483   // that remain within the loop after cloning.
1484   if (!BlocksInClonedLoop.empty()) {
1485     BlocksInClonedLoop.insert(ClonedHeader);
1486 
1487     while (!Worklist.empty()) {
1488       BasicBlock *BB = Worklist.pop_back_val();
1489       assert(BlocksInClonedLoop.count(BB) &&
1490              "Didn't put block into the loop set!");
1491 
1492       // Insert any predecessors that are in the possible set into the cloned
1493       // set, and if the insert is successful, add them to the worklist. Note
1494       // that we filter on the blocks that are definitely reachable via the
1495       // backedge to the loop header so we may prune out dead code within the
1496       // cloned loop.
1497       for (auto *Pred : predecessors(BB))
1498         if (ClonedLoopBlocks.count(Pred) &&
1499             BlocksInClonedLoop.insert(Pred).second)
1500           Worklist.push_back(Pred);
1501     }
1502 
1503     ClonedL = LI.AllocateLoop();
1504     if (ParentL) {
1505       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1506       ParentL->addChildLoop(ClonedL);
1507     } else {
1508       LI.addTopLevelLoop(ClonedL);
1509     }
1510     NonChildClonedLoops.push_back(ClonedL);
1511 
1512     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1513     // We don't want to just add the cloned loop blocks based on how we
1514     // discovered them. The original order of blocks was carefully built in
1515     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1516     // that logic, we just re-walk the original blocks (and those of the child
1517     // loops) and filter them as we add them into the cloned loop.
1518     for (auto *BB : OrigL.blocks()) {
1519       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1520       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1521         continue;
1522 
1523       // Directly add the blocks that are only in this loop.
1524       if (LI.getLoopFor(BB) == &OrigL) {
1525         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1526         continue;
1527       }
1528 
1529       // We want to manually add it to this loop and parents.
1530       // Registering it with LoopInfo will happen when we clone the top
1531       // loop for this block.
1532       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1533         PL->addBlockEntry(ClonedBB);
1534     }
1535 
1536     // Now add each child loop whose header remains within the cloned loop. All
1537     // of the blocks within the loop must satisfy the same constraints as the
1538     // header so once we pass the header checks we can just clone the entire
1539     // child loop nest.
1540     for (Loop *ChildL : OrigL) {
1541       auto *ClonedChildHeader =
1542           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1543       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1544         continue;
1545 
1546 #ifndef NDEBUG
1547       // We should never have a cloned child loop header but fail to have
1548       // all of the blocks for that child loop.
1549       for (auto *ChildLoopBB : ChildL->blocks())
1550         assert(BlocksInClonedLoop.count(
1551                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1552                "Child cloned loop has a header within the cloned outer "
1553                "loop but not all of its blocks!");
1554 #endif
1555 
1556       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1557     }
1558   }
1559 
1560   // Now that we've handled all the components of the original loop that were
1561   // cloned into a new loop, we still need to handle anything from the original
1562   // loop that wasn't in a cloned loop.
1563 
1564   // Figure out what blocks are left to place within any loop nest containing
1565   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1566   // them.
1567   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1568   if (BlocksInClonedLoop.empty())
1569     UnloopedBlockSet.insert(ClonedPH);
1570   for (auto *ClonedBB : ClonedLoopBlocks)
1571     if (!BlocksInClonedLoop.count(ClonedBB))
1572       UnloopedBlockSet.insert(ClonedBB);
1573 
1574   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1575   // backwards across these to process them inside out. The order shouldn't
1576   // matter as we're just trying to build up the map from inside-out; we use
1577   // the map in a more stably ordered way below.
1578   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1579   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1580     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1581            ExitLoopMap.lookup(RHS)->getLoopDepth();
1582   });
1583 
1584   // Populate the existing ExitLoopMap with everything reachable from each
1585   // exit, starting from the inner most exit.
1586   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1587     assert(Worklist.empty() && "Didn't clear worklist!");
1588 
1589     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1590     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1591 
1592     // Walk the CFG back until we hit the cloned PH adding everything reachable
1593     // and in the unlooped set to this exit block's loop.
1594     Worklist.push_back(ExitBB);
1595     do {
1596       BasicBlock *BB = Worklist.pop_back_val();
1597       // We can stop recursing at the cloned preheader (if we get there).
1598       if (BB == ClonedPH)
1599         continue;
1600 
1601       for (BasicBlock *PredBB : predecessors(BB)) {
1602         // If this pred has already been moved to our set or is part of some
1603         // (inner) loop, no update needed.
1604         if (!UnloopedBlockSet.erase(PredBB)) {
1605           assert(
1606               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1607               "Predecessor not mapped to a loop!");
1608           continue;
1609         }
1610 
1611         // We just insert into the loop set here. We'll add these blocks to the
1612         // exit loop after we build up the set in an order that doesn't rely on
1613         // predecessor order (which in turn relies on use list order).
1614         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1615         (void)Inserted;
1616         assert(Inserted && "Should only visit an unlooped block once!");
1617 
1618         // And recurse through to its predecessors.
1619         Worklist.push_back(PredBB);
1620       }
1621     } while (!Worklist.empty());
1622   }
1623 
1624   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1625   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1626   // in their original order adding them to the correct loop.
1627 
1628   // We need a stable insertion order. We use the order of the original loop
1629   // order and map into the correct parent loop.
1630   for (auto *BB : llvm::concat<BasicBlock *const>(
1631            ArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1632     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1633       OuterL->addBasicBlockToLoop(BB, LI);
1634 
1635 #ifndef NDEBUG
1636   for (auto &BBAndL : ExitLoopMap) {
1637     auto *BB = BBAndL.first;
1638     auto *OuterL = BBAndL.second;
1639     assert(LI.getLoopFor(BB) == OuterL &&
1640            "Failed to put all blocks into outer loops!");
1641   }
1642 #endif
1643 
1644   // Now that all the blocks are placed into the correct containing loop in the
1645   // absence of child loops, find all the potentially cloned child loops and
1646   // clone them into whatever outer loop we placed their header into.
1647   for (Loop *ChildL : OrigL) {
1648     auto *ClonedChildHeader =
1649         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1650     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1651       continue;
1652 
1653 #ifndef NDEBUG
1654     for (auto *ChildLoopBB : ChildL->blocks())
1655       assert(VMap.count(ChildLoopBB) &&
1656              "Cloned a child loop header but not all of that loops blocks!");
1657 #endif
1658 
1659     NonChildClonedLoops.push_back(cloneLoopNest(
1660         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1661   }
1662 }
1663 
1664 static void
1665 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1666                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1667                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1668   // Find all the dead clones, and remove them from their successors.
1669   SmallVector<BasicBlock *, 16> DeadBlocks;
1670   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1671     for (const auto &VMap : VMaps)
1672       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1673         if (!DT.isReachableFromEntry(ClonedBB)) {
1674           for (BasicBlock *SuccBB : successors(ClonedBB))
1675             SuccBB->removePredecessor(ClonedBB);
1676           DeadBlocks.push_back(ClonedBB);
1677         }
1678 
1679   // Remove all MemorySSA in the dead blocks
1680   if (MSSAU) {
1681     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1682                                                  DeadBlocks.end());
1683     MSSAU->removeBlocks(DeadBlockSet);
1684   }
1685 
1686   // Drop any remaining references to break cycles.
1687   for (BasicBlock *BB : DeadBlocks)
1688     BB->dropAllReferences();
1689   // Erase them from the IR.
1690   for (BasicBlock *BB : DeadBlocks)
1691     BB->eraseFromParent();
1692 }
1693 
1694 static void deleteDeadBlocksFromLoop(Loop &L,
1695                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1696                                      DominatorTree &DT, LoopInfo &LI,
1697                                      MemorySSAUpdater *MSSAU,
1698                                      ScalarEvolution *SE,
1699                                      LPMUpdater &LoopUpdater) {
1700   // Find all the dead blocks tied to this loop, and remove them from their
1701   // successors.
1702   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1703 
1704   // Start with loop/exit blocks and get a transitive closure of reachable dead
1705   // blocks.
1706   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1707                                                 ExitBlocks.end());
1708   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1709   while (!DeathCandidates.empty()) {
1710     auto *BB = DeathCandidates.pop_back_val();
1711     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1712       for (BasicBlock *SuccBB : successors(BB)) {
1713         SuccBB->removePredecessor(BB);
1714         DeathCandidates.push_back(SuccBB);
1715       }
1716       DeadBlockSet.insert(BB);
1717     }
1718   }
1719 
1720   // Remove all MemorySSA in the dead blocks
1721   if (MSSAU)
1722     MSSAU->removeBlocks(DeadBlockSet);
1723 
1724   // Filter out the dead blocks from the exit blocks list so that it can be
1725   // used in the caller.
1726   llvm::erase_if(ExitBlocks,
1727                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1728 
1729   // Walk from this loop up through its parents removing all of the dead blocks.
1730   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1731     for (auto *BB : DeadBlockSet)
1732       ParentL->getBlocksSet().erase(BB);
1733     llvm::erase_if(ParentL->getBlocksVector(),
1734                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1735   }
1736 
1737   // Now delete the dead child loops. This raw delete will clear them
1738   // recursively.
1739   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1740     if (!DeadBlockSet.count(ChildL->getHeader()))
1741       return false;
1742 
1743     assert(llvm::all_of(ChildL->blocks(),
1744                         [&](BasicBlock *ChildBB) {
1745                           return DeadBlockSet.count(ChildBB);
1746                         }) &&
1747            "If the child loop header is dead all blocks in the child loop must "
1748            "be dead as well!");
1749     LoopUpdater.markLoopAsDeleted(*ChildL, ChildL->getName());
1750     if (SE)
1751       SE->forgetBlockAndLoopDispositions();
1752     LI.destroy(ChildL);
1753     return true;
1754   });
1755 
1756   // Remove the loop mappings for the dead blocks and drop all the references
1757   // from these blocks to others to handle cyclic references as we start
1758   // deleting the blocks themselves.
1759   for (auto *BB : DeadBlockSet) {
1760     // Check that the dominator tree has already been updated.
1761     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1762     LI.changeLoopFor(BB, nullptr);
1763     // Drop all uses of the instructions to make sure we won't have dangling
1764     // uses in other blocks.
1765     for (auto &I : *BB)
1766       if (!I.use_empty())
1767         I.replaceAllUsesWith(PoisonValue::get(I.getType()));
1768     BB->dropAllReferences();
1769   }
1770 
1771   // Actually delete the blocks now that they've been fully unhooked from the
1772   // IR.
1773   for (auto *BB : DeadBlockSet)
1774     BB->eraseFromParent();
1775 }
1776 
1777 /// Recompute the set of blocks in a loop after unswitching.
1778 ///
1779 /// This walks from the original headers predecessors to rebuild the loop. We
1780 /// take advantage of the fact that new blocks can't have been added, and so we
1781 /// filter by the original loop's blocks. This also handles potentially
1782 /// unreachable code that we don't want to explore but might be found examining
1783 /// the predecessors of the header.
1784 ///
1785 /// If the original loop is no longer a loop, this will return an empty set. If
1786 /// it remains a loop, all the blocks within it will be added to the set
1787 /// (including those blocks in inner loops).
1788 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1789                                                                  LoopInfo &LI) {
1790   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1791 
1792   auto *PH = L.getLoopPreheader();
1793   auto *Header = L.getHeader();
1794 
1795   // A worklist to use while walking backwards from the header.
1796   SmallVector<BasicBlock *, 16> Worklist;
1797 
1798   // First walk the predecessors of the header to find the backedges. This will
1799   // form the basis of our walk.
1800   for (auto *Pred : predecessors(Header)) {
1801     // Skip the preheader.
1802     if (Pred == PH)
1803       continue;
1804 
1805     // Because the loop was in simplified form, the only non-loop predecessor
1806     // is the preheader.
1807     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1808                                "than the preheader that is not part of the "
1809                                "loop!");
1810 
1811     // Insert this block into the loop set and on the first visit and, if it
1812     // isn't the header we're currently walking, put it into the worklist to
1813     // recurse through.
1814     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1815       Worklist.push_back(Pred);
1816   }
1817 
1818   // If no backedges were found, we're done.
1819   if (LoopBlockSet.empty())
1820     return LoopBlockSet;
1821 
1822   // We found backedges, recurse through them to identify the loop blocks.
1823   while (!Worklist.empty()) {
1824     BasicBlock *BB = Worklist.pop_back_val();
1825     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1826 
1827     // No need to walk past the header.
1828     if (BB == Header)
1829       continue;
1830 
1831     // Because we know the inner loop structure remains valid we can use the
1832     // loop structure to jump immediately across the entire nested loop.
1833     // Further, because it is in loop simplified form, we can directly jump
1834     // to its preheader afterward.
1835     if (Loop *InnerL = LI.getLoopFor(BB))
1836       if (InnerL != &L) {
1837         assert(L.contains(InnerL) &&
1838                "Should not reach a loop *outside* this loop!");
1839         // The preheader is the only possible predecessor of the loop so
1840         // insert it into the set and check whether it was already handled.
1841         auto *InnerPH = InnerL->getLoopPreheader();
1842         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1843                                       "but not contain the inner loop "
1844                                       "preheader!");
1845         if (!LoopBlockSet.insert(InnerPH).second)
1846           // The only way to reach the preheader is through the loop body
1847           // itself so if it has been visited the loop is already handled.
1848           continue;
1849 
1850         // Insert all of the blocks (other than those already present) into
1851         // the loop set. We expect at least the block that led us to find the
1852         // inner loop to be in the block set, but we may also have other loop
1853         // blocks if they were already enqueued as predecessors of some other
1854         // outer loop block.
1855         for (auto *InnerBB : InnerL->blocks()) {
1856           if (InnerBB == BB) {
1857             assert(LoopBlockSet.count(InnerBB) &&
1858                    "Block should already be in the set!");
1859             continue;
1860           }
1861 
1862           LoopBlockSet.insert(InnerBB);
1863         }
1864 
1865         // Add the preheader to the worklist so we will continue past the
1866         // loop body.
1867         Worklist.push_back(InnerPH);
1868         continue;
1869       }
1870 
1871     // Insert any predecessors that were in the original loop into the new
1872     // set, and if the insert is successful, add them to the worklist.
1873     for (auto *Pred : predecessors(BB))
1874       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1875         Worklist.push_back(Pred);
1876   }
1877 
1878   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1879 
1880   // We've found all the blocks participating in the loop, return our completed
1881   // set.
1882   return LoopBlockSet;
1883 }
1884 
1885 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1886 ///
1887 /// The removal may have removed some child loops entirely but cannot have
1888 /// disturbed any remaining child loops. However, they may need to be hoisted
1889 /// to the parent loop (or to be top-level loops). The original loop may be
1890 /// completely removed.
1891 ///
1892 /// The sibling loops resulting from this update are returned. If the original
1893 /// loop remains a valid loop, it will be the first entry in this list with all
1894 /// of the newly sibling loops following it.
1895 ///
1896 /// Returns true if the loop remains a loop after unswitching, and false if it
1897 /// is no longer a loop after unswitching (and should not continue to be
1898 /// referenced).
1899 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1900                                      LoopInfo &LI,
1901                                      SmallVectorImpl<Loop *> &HoistedLoops,
1902                                      ScalarEvolution *SE) {
1903   auto *PH = L.getLoopPreheader();
1904 
1905   // Compute the actual parent loop from the exit blocks. Because we may have
1906   // pruned some exits the loop may be different from the original parent.
1907   Loop *ParentL = nullptr;
1908   SmallVector<Loop *, 4> ExitLoops;
1909   SmallVector<BasicBlock *, 4> ExitsInLoops;
1910   ExitsInLoops.reserve(ExitBlocks.size());
1911   for (auto *ExitBB : ExitBlocks)
1912     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1913       ExitLoops.push_back(ExitL);
1914       ExitsInLoops.push_back(ExitBB);
1915       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1916         ParentL = ExitL;
1917     }
1918 
1919   // Recompute the blocks participating in this loop. This may be empty if it
1920   // is no longer a loop.
1921   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1922 
1923   // If we still have a loop, we need to re-set the loop's parent as the exit
1924   // block set changing may have moved it within the loop nest. Note that this
1925   // can only happen when this loop has a parent as it can only hoist the loop
1926   // *up* the nest.
1927   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1928     // Remove this loop's (original) blocks from all of the intervening loops.
1929     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1930          IL = IL->getParentLoop()) {
1931       IL->getBlocksSet().erase(PH);
1932       for (auto *BB : L.blocks())
1933         IL->getBlocksSet().erase(BB);
1934       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1935         return BB == PH || L.contains(BB);
1936       });
1937     }
1938 
1939     LI.changeLoopFor(PH, ParentL);
1940     L.getParentLoop()->removeChildLoop(&L);
1941     if (ParentL)
1942       ParentL->addChildLoop(&L);
1943     else
1944       LI.addTopLevelLoop(&L);
1945   }
1946 
1947   // Now we update all the blocks which are no longer within the loop.
1948   auto &Blocks = L.getBlocksVector();
1949   auto BlocksSplitI =
1950       LoopBlockSet.empty()
1951           ? Blocks.begin()
1952           : std::stable_partition(
1953                 Blocks.begin(), Blocks.end(),
1954                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1955 
1956   // Before we erase the list of unlooped blocks, build a set of them.
1957   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1958   if (LoopBlockSet.empty())
1959     UnloopedBlocks.insert(PH);
1960 
1961   // Now erase these blocks from the loop.
1962   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1963     L.getBlocksSet().erase(BB);
1964   Blocks.erase(BlocksSplitI, Blocks.end());
1965 
1966   // Sort the exits in ascending loop depth, we'll work backwards across these
1967   // to process them inside out.
1968   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1969     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1970   });
1971 
1972   // We'll build up a set for each exit loop.
1973   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1974   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1975 
1976   auto RemoveUnloopedBlocksFromLoop =
1977       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1978         for (auto *BB : UnloopedBlocks)
1979           L.getBlocksSet().erase(BB);
1980         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1981           return UnloopedBlocks.count(BB);
1982         });
1983       };
1984 
1985   SmallVector<BasicBlock *, 16> Worklist;
1986   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1987     assert(Worklist.empty() && "Didn't clear worklist!");
1988     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1989 
1990     // Grab the next exit block, in decreasing loop depth order.
1991     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1992     Loop &ExitL = *LI.getLoopFor(ExitBB);
1993     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1994 
1995     // Erase all of the unlooped blocks from the loops between the previous
1996     // exit loop and this exit loop. This works because the ExitInLoops list is
1997     // sorted in increasing order of loop depth and thus we visit loops in
1998     // decreasing order of loop depth.
1999     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
2000       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
2001 
2002     // Walk the CFG back until we hit the cloned PH adding everything reachable
2003     // and in the unlooped set to this exit block's loop.
2004     Worklist.push_back(ExitBB);
2005     do {
2006       BasicBlock *BB = Worklist.pop_back_val();
2007       // We can stop recursing at the cloned preheader (if we get there).
2008       if (BB == PH)
2009         continue;
2010 
2011       for (BasicBlock *PredBB : predecessors(BB)) {
2012         // If this pred has already been moved to our set or is part of some
2013         // (inner) loop, no update needed.
2014         if (!UnloopedBlocks.erase(PredBB)) {
2015           assert((NewExitLoopBlocks.count(PredBB) ||
2016                   ExitL.contains(LI.getLoopFor(PredBB))) &&
2017                  "Predecessor not in a nested loop (or already visited)!");
2018           continue;
2019         }
2020 
2021         // We just insert into the loop set here. We'll add these blocks to the
2022         // exit loop after we build up the set in a deterministic order rather
2023         // than the predecessor-influenced visit order.
2024         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
2025         (void)Inserted;
2026         assert(Inserted && "Should only visit an unlooped block once!");
2027 
2028         // And recurse through to its predecessors.
2029         Worklist.push_back(PredBB);
2030       }
2031     } while (!Worklist.empty());
2032 
2033     // If blocks in this exit loop were directly part of the original loop (as
2034     // opposed to a child loop) update the map to point to this exit loop. This
2035     // just updates a map and so the fact that the order is unstable is fine.
2036     for (auto *BB : NewExitLoopBlocks)
2037       if (Loop *BBL = LI.getLoopFor(BB))
2038         if (BBL == &L || !L.contains(BBL))
2039           LI.changeLoopFor(BB, &ExitL);
2040 
2041     // We will remove the remaining unlooped blocks from this loop in the next
2042     // iteration or below.
2043     NewExitLoopBlocks.clear();
2044   }
2045 
2046   // Any remaining unlooped blocks are no longer part of any loop unless they
2047   // are part of some child loop.
2048   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
2049     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
2050   for (auto *BB : UnloopedBlocks)
2051     if (Loop *BBL = LI.getLoopFor(BB))
2052       if (BBL == &L || !L.contains(BBL))
2053         LI.changeLoopFor(BB, nullptr);
2054 
2055   // Sink all the child loops whose headers are no longer in the loop set to
2056   // the parent (or to be top level loops). We reach into the loop and directly
2057   // update its subloop vector to make this batch update efficient.
2058   auto &SubLoops = L.getSubLoopsVector();
2059   auto SubLoopsSplitI =
2060       LoopBlockSet.empty()
2061           ? SubLoops.begin()
2062           : std::stable_partition(
2063                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
2064                   return LoopBlockSet.count(SubL->getHeader());
2065                 });
2066   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
2067     HoistedLoops.push_back(HoistedL);
2068     HoistedL->setParentLoop(nullptr);
2069 
2070     // To compute the new parent of this hoisted loop we look at where we
2071     // placed the preheader above. We can't lookup the header itself because we
2072     // retained the mapping from the header to the hoisted loop. But the
2073     // preheader and header should have the exact same new parent computed
2074     // based on the set of exit blocks from the original loop as the preheader
2075     // is a predecessor of the header and so reached in the reverse walk. And
2076     // because the loops were all in simplified form the preheader of the
2077     // hoisted loop can't be part of some *other* loop.
2078     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
2079       NewParentL->addChildLoop(HoistedL);
2080     else
2081       LI.addTopLevelLoop(HoistedL);
2082   }
2083   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
2084 
2085   // Actually delete the loop if nothing remained within it.
2086   if (Blocks.empty()) {
2087     assert(SubLoops.empty() &&
2088            "Failed to remove all subloops from the original loop!");
2089     if (Loop *ParentL = L.getParentLoop())
2090       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
2091     else
2092       LI.removeLoop(llvm::find(LI, &L));
2093     // markLoopAsDeleted for L should be triggered by the caller (it is
2094     // typically done within postUnswitch).
2095     if (SE)
2096       SE->forgetBlockAndLoopDispositions();
2097     LI.destroy(&L);
2098     return false;
2099   }
2100 
2101   return true;
2102 }
2103 
2104 /// Helper to visit a dominator subtree, invoking a callable on each node.
2105 ///
2106 /// Returning false at any point will stop walking past that node of the tree.
2107 template <typename CallableT>
2108 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2109   SmallVector<DomTreeNode *, 4> DomWorklist;
2110   DomWorklist.push_back(DT[BB]);
2111 #ifndef NDEBUG
2112   SmallPtrSet<DomTreeNode *, 4> Visited;
2113   Visited.insert(DT[BB]);
2114 #endif
2115   do {
2116     DomTreeNode *N = DomWorklist.pop_back_val();
2117 
2118     // Visit this node.
2119     if (!Callable(N->getBlock()))
2120       continue;
2121 
2122     // Accumulate the child nodes.
2123     for (DomTreeNode *ChildN : *N) {
2124       assert(Visited.insert(ChildN).second &&
2125              "Cannot visit a node twice when walking a tree!");
2126       DomWorklist.push_back(ChildN);
2127     }
2128   } while (!DomWorklist.empty());
2129 }
2130 
2131 void postUnswitch(Loop &L, LPMUpdater &U, StringRef LoopName,
2132                   bool CurrentLoopValid, bool PartiallyInvariant,
2133                   bool InjectedCondition, ArrayRef<Loop *> NewLoops) {
2134   // If we did a non-trivial unswitch, we have added new (cloned) loops.
2135   if (!NewLoops.empty())
2136     U.addSiblingLoops(NewLoops);
2137 
2138   // If the current loop remains valid, we should revisit it to catch any
2139   // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2140   if (CurrentLoopValid) {
2141     if (PartiallyInvariant) {
2142       // Mark the new loop as partially unswitched, to avoid unswitching on
2143       // the same condition again.
2144       auto &Context = L.getHeader()->getContext();
2145       MDNode *DisableUnswitchMD = MDNode::get(
2146           Context,
2147           MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
2148       MDNode *NewLoopID = makePostTransformationMetadata(
2149           Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
2150           {DisableUnswitchMD});
2151       L.setLoopID(NewLoopID);
2152     } else if (InjectedCondition) {
2153       // Do the same for injection of invariant conditions.
2154       auto &Context = L.getHeader()->getContext();
2155       MDNode *DisableUnswitchMD = MDNode::get(
2156           Context,
2157           MDString::get(Context, "llvm.loop.unswitch.injection.disable"));
2158       MDNode *NewLoopID = makePostTransformationMetadata(
2159           Context, L.getLoopID(), {"llvm.loop.unswitch.injection"},
2160           {DisableUnswitchMD});
2161       L.setLoopID(NewLoopID);
2162     } else
2163       U.revisitCurrentLoop();
2164   } else
2165     U.markLoopAsDeleted(L, LoopName);
2166 }
2167 
2168 static void unswitchNontrivialInvariants(
2169     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2170     IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI,
2171     AssumptionCache &AC, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2172     LPMUpdater &LoopUpdater, bool InsertFreeze, bool InjectedCondition) {
2173   auto *ParentBB = TI.getParent();
2174   BranchInst *BI = dyn_cast<BranchInst>(&TI);
2175   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2176 
2177   // Save the current loop name in a variable so that we can report it even
2178   // after it has been deleted.
2179   std::string LoopName(L.getName());
2180 
2181   // We can only unswitch switches, conditional branches with an invariant
2182   // condition, or combining invariant conditions with an instruction or
2183   // partially invariant instructions.
2184   assert((SI || (BI && BI->isConditional())) &&
2185          "Can only unswitch switches and conditional branch!");
2186   bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2187   bool FullUnswitch =
2188       SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] &&
2189              !PartiallyInvariant);
2190   if (FullUnswitch)
2191     assert(Invariants.size() == 1 &&
2192            "Cannot have other invariants with full unswitching!");
2193   else
2194     assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) &&
2195            "Partial unswitching requires an instruction as the condition!");
2196 
2197   if (MSSAU && VerifyMemorySSA)
2198     MSSAU->getMemorySSA()->verifyMemorySSA();
2199 
2200   // Constant and BBs tracking the cloned and continuing successor. When we are
2201   // unswitching the entire condition, this can just be trivially chosen to
2202   // unswitch towards `true`. However, when we are unswitching a set of
2203   // invariants combined with `and` or `or` or partially invariant instructions,
2204   // the combining operation determines the best direction to unswitch: we want
2205   // to unswitch the direction that will collapse the branch.
2206   bool Direction = true;
2207   int ClonedSucc = 0;
2208   if (!FullUnswitch) {
2209     Value *Cond = skipTrivialSelect(BI->getCondition());
2210     (void)Cond;
2211     assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2212             PartiallyInvariant) &&
2213            "Only `or`, `and`, an `select`, partially invariant instructions "
2214            "can combine invariants being unswitched.");
2215     if (!match(Cond, m_LogicalOr())) {
2216       if (match(Cond, m_LogicalAnd()) ||
2217           (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2218         Direction = false;
2219         ClonedSucc = 1;
2220       }
2221     }
2222   }
2223 
2224   BasicBlock *RetainedSuccBB =
2225       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2226   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2227   if (BI)
2228     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2229   else
2230     for (auto Case : SI->cases())
2231       if (Case.getCaseSuccessor() != RetainedSuccBB)
2232         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2233 
2234   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2235          "Should not unswitch the same successor we are retaining!");
2236 
2237   // The branch should be in this exact loop. Any inner loop's invariant branch
2238   // should be handled by unswitching that inner loop. The caller of this
2239   // routine should filter out any candidates that remain (but were skipped for
2240   // whatever reason).
2241   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2242 
2243   // Compute the parent loop now before we start hacking on things.
2244   Loop *ParentL = L.getParentLoop();
2245   // Get blocks in RPO order for MSSA update, before changing the CFG.
2246   LoopBlocksRPO LBRPO(&L);
2247   if (MSSAU)
2248     LBRPO.perform(&LI);
2249 
2250   // Compute the outer-most loop containing one of our exit blocks. This is the
2251   // furthest up our loopnest which can be mutated, which we will use below to
2252   // update things.
2253   Loop *OuterExitL = &L;
2254   SmallVector<BasicBlock *, 4> ExitBlocks;
2255   L.getUniqueExitBlocks(ExitBlocks);
2256   for (auto *ExitBB : ExitBlocks) {
2257     // ExitBB can be an exit block for several levels in the loop nest. Make
2258     // sure we find the top most.
2259     Loop *NewOuterExitL = getTopMostExitingLoop(ExitBB, LI);
2260     if (!NewOuterExitL) {
2261       // We exited the entire nest with this block, so we're done.
2262       OuterExitL = nullptr;
2263       break;
2264     }
2265     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2266       OuterExitL = NewOuterExitL;
2267   }
2268 
2269   // At this point, we're definitely going to unswitch something so invalidate
2270   // any cached information in ScalarEvolution for the outer most loop
2271   // containing an exit block and all nested loops.
2272   if (SE) {
2273     if (OuterExitL)
2274       SE->forgetLoop(OuterExitL);
2275     else
2276       SE->forgetTopmostLoop(&L);
2277     SE->forgetBlockAndLoopDispositions();
2278   }
2279 
2280   // If the edge from this terminator to a successor dominates that successor,
2281   // store a map from each block in its dominator subtree to it. This lets us
2282   // tell when cloning for a particular successor if a block is dominated by
2283   // some *other* successor with a single data structure. We use this to
2284   // significantly reduce cloning.
2285   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2286   for (auto *SuccBB : llvm::concat<BasicBlock *const>(ArrayRef(RetainedSuccBB),
2287                                                       UnswitchedSuccBBs))
2288     if (SuccBB->getUniquePredecessor() ||
2289         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2290           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2291         }))
2292       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2293         DominatingSucc[BB] = SuccBB;
2294         return true;
2295       });
2296 
2297   // Split the preheader, so that we know that there is a safe place to insert
2298   // the conditional branch. We will change the preheader to have a conditional
2299   // branch on LoopCond. The original preheader will become the split point
2300   // between the unswitched versions, and we will have a new preheader for the
2301   // original loop.
2302   BasicBlock *SplitBB = L.getLoopPreheader();
2303   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2304 
2305   // Keep track of the dominator tree updates needed.
2306   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2307 
2308   // Clone the loop for each unswitched successor.
2309   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2310   VMaps.reserve(UnswitchedSuccBBs.size());
2311   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2312   for (auto *SuccBB : UnswitchedSuccBBs) {
2313     VMaps.emplace_back(new ValueToValueMapTy());
2314     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2315         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2316         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE);
2317   }
2318 
2319   // Drop metadata if we may break its semantics by moving this instr into the
2320   // split block.
2321   if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2322     if (DropNonTrivialImplicitNullChecks)
2323       // Do not spend time trying to understand if we can keep it, just drop it
2324       // to save compile time.
2325       TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2326     else {
2327       // It is only legal to preserve make.implicit metadata if we are
2328       // guaranteed no reach implicit null check after following this branch.
2329       ICFLoopSafetyInfo SafetyInfo;
2330       SafetyInfo.computeLoopSafetyInfo(&L);
2331       if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2332         TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2333     }
2334   }
2335 
2336   // The stitching of the branched code back together depends on whether we're
2337   // doing full unswitching or not with the exception that we always want to
2338   // nuke the initial terminator placed in the split block.
2339   SplitBB->getTerminator()->eraseFromParent();
2340   if (FullUnswitch) {
2341     // Keep a clone of the terminator for MSSA updates.
2342     Instruction *NewTI = TI.clone();
2343     NewTI->insertInto(ParentBB, ParentBB->end());
2344 
2345     // Splice the terminator from the original loop and rewrite its
2346     // successors.
2347     TI.moveBefore(*SplitBB, SplitBB->end());
2348     TI.dropLocation();
2349 
2350     // First wire up the moved terminator to the preheaders.
2351     if (BI) {
2352       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2353       BI->setSuccessor(ClonedSucc, ClonedPH);
2354       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2355       Value *Cond = skipTrivialSelect(BI->getCondition());
2356       if (InsertFreeze) {
2357         // We don't give any debug location to the new freeze, because the
2358         // BI (`dyn_cast<BranchInst>(TI)`) is an in-loop instruction hoisted
2359         // out of the loop.
2360         Cond = new FreezeInst(Cond, Cond->getName() + ".fr", BI->getIterator());
2361       }
2362       BI->setCondition(Cond);
2363       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2364     } else {
2365       assert(SI && "Must either be a branch or switch!");
2366 
2367       // Walk the cases and directly update their successors.
2368       assert(SI->getDefaultDest() == RetainedSuccBB &&
2369              "Not retaining default successor!");
2370       SI->setDefaultDest(LoopPH);
2371       for (const auto &Case : SI->cases())
2372         if (Case.getCaseSuccessor() == RetainedSuccBB)
2373           Case.setSuccessor(LoopPH);
2374         else
2375           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2376 
2377       if (InsertFreeze)
2378         SI->setCondition(new FreezeInst(SI->getCondition(),
2379                                         SI->getCondition()->getName() + ".fr",
2380                                         SI->getIterator()));
2381 
2382       // We need to use the set to populate domtree updates as even when there
2383       // are multiple cases pointing at the same successor we only want to
2384       // remove and insert one edge in the domtree.
2385       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2386         DTUpdates.push_back(
2387             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2388     }
2389 
2390     if (MSSAU) {
2391       DT.applyUpdates(DTUpdates);
2392       DTUpdates.clear();
2393 
2394       // Remove all but one edge to the retained block and all unswitched
2395       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2396       // when we know we only keep a single edge for each case.
2397       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2398       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2399         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2400 
2401       for (auto &VMap : VMaps)
2402         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2403                                    /*IgnoreIncomingWithNoClones=*/true);
2404       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2405 
2406       // Remove all edges to unswitched blocks.
2407       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2408         MSSAU->removeEdge(ParentBB, SuccBB);
2409     }
2410 
2411     // Now unhook the successor relationship as we'll be replacing
2412     // the terminator with a direct branch. This is much simpler for branches
2413     // than switches so we handle those first.
2414     if (BI) {
2415       // Remove the parent as a predecessor of the unswitched successor.
2416       assert(UnswitchedSuccBBs.size() == 1 &&
2417              "Only one possible unswitched block for a branch!");
2418       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2419       UnswitchedSuccBB->removePredecessor(ParentBB,
2420                                           /*KeepOneInputPHIs*/ true);
2421       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2422     } else {
2423       // Note that we actually want to remove the parent block as a predecessor
2424       // of *every* case successor. The case successor is either unswitched,
2425       // completely eliminating an edge from the parent to that successor, or it
2426       // is a duplicate edge to the retained successor as the retained successor
2427       // is always the default successor and as we'll replace this with a direct
2428       // branch we no longer need the duplicate entries in the PHI nodes.
2429       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2430       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2431              "Not retaining default successor!");
2432       for (const auto &Case : NewSI->cases())
2433         Case.getCaseSuccessor()->removePredecessor(
2434             ParentBB,
2435             /*KeepOneInputPHIs*/ true);
2436 
2437       // We need to use the set to populate domtree updates as even when there
2438       // are multiple cases pointing at the same successor we only want to
2439       // remove and insert one edge in the domtree.
2440       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2441         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2442     }
2443 
2444     // Create a new unconditional branch to the continuing block (as opposed to
2445     // the one cloned).
2446     Instruction *NewBI = BranchInst::Create(RetainedSuccBB, ParentBB);
2447     NewBI->setDebugLoc(NewTI->getDebugLoc());
2448 
2449     // After MSSAU update, remove the cloned terminator instruction NewTI.
2450     NewTI->eraseFromParent();
2451   } else {
2452     assert(BI && "Only branches have partial unswitching.");
2453     assert(UnswitchedSuccBBs.size() == 1 &&
2454            "Only one possible unswitched block for a branch!");
2455     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2456     // When doing a partial unswitch, we have to do a bit more work to build up
2457     // the branch in the split block.
2458     if (PartiallyInvariant)
2459       buildPartialInvariantUnswitchConditionalBranch(
2460           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2461     else {
2462       buildPartialUnswitchConditionalBranch(
2463           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH,
2464           FreezeLoopUnswitchCond, BI, &AC, DT);
2465     }
2466     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2467 
2468     if (MSSAU) {
2469       DT.applyUpdates(DTUpdates);
2470       DTUpdates.clear();
2471 
2472       // Perform MSSA cloning updates.
2473       for (auto &VMap : VMaps)
2474         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2475                                    /*IgnoreIncomingWithNoClones=*/true);
2476       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2477     }
2478   }
2479 
2480   // Apply the updates accumulated above to get an up-to-date dominator tree.
2481   DT.applyUpdates(DTUpdates);
2482 
2483   // Now that we have an accurate dominator tree, first delete the dead cloned
2484   // blocks so that we can accurately build any cloned loops. It is important to
2485   // not delete the blocks from the original loop yet because we still want to
2486   // reference the original loop to understand the cloned loop's structure.
2487   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2488 
2489   // Build the cloned loop structure itself. This may be substantially
2490   // different from the original structure due to the simplified CFG. This also
2491   // handles inserting all the cloned blocks into the correct loops.
2492   SmallVector<Loop *, 4> NonChildClonedLoops;
2493   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2494     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2495 
2496   // Now that our cloned loops have been built, we can update the original loop.
2497   // First we delete the dead blocks from it and then we rebuild the loop
2498   // structure taking these deletions into account.
2499   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE, LoopUpdater);
2500 
2501   if (MSSAU && VerifyMemorySSA)
2502     MSSAU->getMemorySSA()->verifyMemorySSA();
2503 
2504   SmallVector<Loop *, 4> HoistedLoops;
2505   bool IsStillLoop =
2506       rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE);
2507 
2508   if (MSSAU && VerifyMemorySSA)
2509     MSSAU->getMemorySSA()->verifyMemorySSA();
2510 
2511   // This transformation has a high risk of corrupting the dominator tree, and
2512   // the below steps to rebuild loop structures will result in hard to debug
2513   // errors in that case so verify that the dominator tree is sane first.
2514   // FIXME: Remove this when the bugs stop showing up and rely on existing
2515   // verification steps.
2516   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2517 
2518   if (BI && !PartiallyInvariant) {
2519     // If we unswitched a branch which collapses the condition to a known
2520     // constant we want to replace all the uses of the invariants within both
2521     // the original and cloned blocks. We do this here so that we can use the
2522     // now updated dominator tree to identify which side the users are on.
2523     assert(UnswitchedSuccBBs.size() == 1 &&
2524            "Only one possible unswitched block for a branch!");
2525     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2526 
2527     // When considering multiple partially-unswitched invariants
2528     // we cant just go replace them with constants in both branches.
2529     //
2530     // For 'AND' we infer that true branch ("continue") means true
2531     // for each invariant operand.
2532     // For 'OR' we can infer that false branch ("continue") means false
2533     // for each invariant operand.
2534     // So it happens that for multiple-partial case we dont replace
2535     // in the unswitched branch.
2536     bool ReplaceUnswitched =
2537         FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2538 
2539     ConstantInt *UnswitchedReplacement =
2540         Direction ? ConstantInt::getTrue(BI->getContext())
2541                   : ConstantInt::getFalse(BI->getContext());
2542     ConstantInt *ContinueReplacement =
2543         Direction ? ConstantInt::getFalse(BI->getContext())
2544                   : ConstantInt::getTrue(BI->getContext());
2545     for (Value *Invariant : Invariants) {
2546       assert(!isa<Constant>(Invariant) &&
2547              "Should not be replacing constant values!");
2548       // Use make_early_inc_range here as set invalidates the iterator.
2549       for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2550         Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2551         if (!UserI)
2552           continue;
2553 
2554         // Replace it with the 'continue' side if in the main loop body, and the
2555         // unswitched if in the cloned blocks.
2556         if (DT.dominates(LoopPH, UserI->getParent()))
2557           U.set(ContinueReplacement);
2558         else if (ReplaceUnswitched &&
2559                  DT.dominates(ClonedPH, UserI->getParent()))
2560           U.set(UnswitchedReplacement);
2561       }
2562     }
2563   }
2564 
2565   // We can change which blocks are exit blocks of all the cloned sibling
2566   // loops, the current loop, and any parent loops which shared exit blocks
2567   // with the current loop. As a consequence, we need to re-form LCSSA for
2568   // them. But we shouldn't need to re-form LCSSA for any child loops.
2569   // FIXME: This could be made more efficient by tracking which exit blocks are
2570   // new, and focusing on them, but that isn't likely to be necessary.
2571   //
2572   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2573   // loop nest and update every loop that could have had its exits changed. We
2574   // also need to cover any intervening loops. We add all of these loops to
2575   // a list and sort them by loop depth to achieve this without updating
2576   // unnecessary loops.
2577   auto UpdateLoop = [&](Loop &UpdateL) {
2578 #ifndef NDEBUG
2579     UpdateL.verifyLoop();
2580     for (Loop *ChildL : UpdateL) {
2581       ChildL->verifyLoop();
2582       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2583              "Perturbed a child loop's LCSSA form!");
2584     }
2585 #endif
2586     // First build LCSSA for this loop so that we can preserve it when
2587     // forming dedicated exits. We don't want to perturb some other loop's
2588     // LCSSA while doing that CFG edit.
2589     formLCSSA(UpdateL, DT, &LI, SE);
2590 
2591     // For loops reached by this loop's original exit blocks we may
2592     // introduced new, non-dedicated exits. At least try to re-form dedicated
2593     // exits for these loops. This may fail if they couldn't have dedicated
2594     // exits to start with.
2595     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2596   };
2597 
2598   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2599   // and we can do it in any order as they don't nest relative to each other.
2600   //
2601   // Also check if any of the loops we have updated have become top-level loops
2602   // as that will necessitate widening the outer loop scope.
2603   for (Loop *UpdatedL :
2604        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2605     UpdateLoop(*UpdatedL);
2606     if (UpdatedL->isOutermost())
2607       OuterExitL = nullptr;
2608   }
2609   if (IsStillLoop) {
2610     UpdateLoop(L);
2611     if (L.isOutermost())
2612       OuterExitL = nullptr;
2613   }
2614 
2615   // If the original loop had exit blocks, walk up through the outer most loop
2616   // of those exit blocks to update LCSSA and form updated dedicated exits.
2617   if (OuterExitL != &L)
2618     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2619          OuterL = OuterL->getParentLoop())
2620       UpdateLoop(*OuterL);
2621 
2622 #ifndef NDEBUG
2623   // Verify the entire loop structure to catch any incorrect updates before we
2624   // progress in the pass pipeline.
2625   LI.verify(DT);
2626 #endif
2627 
2628   // Now that we've unswitched something, make callbacks to report the changes.
2629   // For that we need to merge together the updated loops and the cloned loops
2630   // and check whether the original loop survived.
2631   SmallVector<Loop *, 4> SibLoops;
2632   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2633     if (UpdatedL->getParentLoop() == ParentL)
2634       SibLoops.push_back(UpdatedL);
2635   postUnswitch(L, LoopUpdater, LoopName, IsStillLoop, PartiallyInvariant,
2636                InjectedCondition, SibLoops);
2637 
2638   if (MSSAU && VerifyMemorySSA)
2639     MSSAU->getMemorySSA()->verifyMemorySSA();
2640 
2641   if (BI)
2642     ++NumBranches;
2643   else
2644     ++NumSwitches;
2645 }
2646 
2647 /// Recursively compute the cost of a dominator subtree based on the per-block
2648 /// cost map provided.
2649 ///
2650 /// The recursive computation is memozied into the provided DT-indexed cost map
2651 /// to allow querying it for most nodes in the domtree without it becoming
2652 /// quadratic.
2653 static InstructionCost computeDomSubtreeCost(
2654     DomTreeNode &N,
2655     const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2656     SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2657   // Don't accumulate cost (or recurse through) blocks not in our block cost
2658   // map and thus not part of the duplication cost being considered.
2659   auto BBCostIt = BBCostMap.find(N.getBlock());
2660   if (BBCostIt == BBCostMap.end())
2661     return 0;
2662 
2663   // Lookup this node to see if we already computed its cost.
2664   auto DTCostIt = DTCostMap.find(&N);
2665   if (DTCostIt != DTCostMap.end())
2666     return DTCostIt->second;
2667 
2668   // If not, we have to compute it. We can't use insert above and update
2669   // because computing the cost may insert more things into the map.
2670   InstructionCost Cost = std::accumulate(
2671       N.begin(), N.end(), BBCostIt->second,
2672       [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2673         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2674       });
2675   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2676   (void)Inserted;
2677   assert(Inserted && "Should not insert a node while visiting children!");
2678   return Cost;
2679 }
2680 
2681 /// Turns a select instruction into implicit control flow branch,
2682 /// making the following replacement:
2683 ///
2684 /// head:
2685 ///   --code before select--
2686 ///   select %cond, %trueval, %falseval
2687 ///   --code after select--
2688 ///
2689 /// into
2690 ///
2691 /// head:
2692 ///   --code before select--
2693 ///   br i1 %cond, label %then, label %tail
2694 ///
2695 /// then:
2696 ///   br %tail
2697 ///
2698 /// tail:
2699 ///   phi [ %trueval, %then ], [ %falseval, %head]
2700 ///   unreachable
2701 ///
2702 /// It also makes all relevant DT and LI updates, so that all structures are in
2703 /// valid state after this transform.
2704 static BranchInst *turnSelectIntoBranch(SelectInst *SI, DominatorTree &DT,
2705                                         LoopInfo &LI, MemorySSAUpdater *MSSAU,
2706                                         AssumptionCache *AC) {
2707   LLVM_DEBUG(dbgs() << "Turning " << *SI << " into a branch.\n");
2708   BasicBlock *HeadBB = SI->getParent();
2709 
2710   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2711   SplitBlockAndInsertIfThen(SI->getCondition(), SI, false,
2712                             SI->getMetadata(LLVMContext::MD_prof), &DTU, &LI);
2713   auto *CondBr = cast<BranchInst>(HeadBB->getTerminator());
2714   BasicBlock *ThenBB = CondBr->getSuccessor(0),
2715              *TailBB = CondBr->getSuccessor(1);
2716   if (MSSAU)
2717     MSSAU->moveAllAfterSpliceBlocks(HeadBB, TailBB, SI);
2718 
2719   PHINode *Phi =
2720       PHINode::Create(SI->getType(), 2, "unswitched.select", SI->getIterator());
2721   Phi->addIncoming(SI->getTrueValue(), ThenBB);
2722   Phi->addIncoming(SI->getFalseValue(), HeadBB);
2723   Phi->setDebugLoc(SI->getDebugLoc());
2724   SI->replaceAllUsesWith(Phi);
2725   SI->eraseFromParent();
2726 
2727   if (MSSAU && VerifyMemorySSA)
2728     MSSAU->getMemorySSA()->verifyMemorySSA();
2729 
2730   ++NumSelects;
2731   return CondBr;
2732 }
2733 
2734 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2735 /// making the following replacement:
2736 ///
2737 ///   --code before guard--
2738 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2739 ///   --code after guard--
2740 ///
2741 /// into
2742 ///
2743 ///   --code before guard--
2744 ///   br i1 %cond, label %guarded, label %deopt
2745 ///
2746 /// guarded:
2747 ///   --code after guard--
2748 ///
2749 /// deopt:
2750 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2751 ///   unreachable
2752 ///
2753 /// It also makes all relevant DT and LI updates, so that all structures are in
2754 /// valid state after this transform.
2755 static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2756                                        DominatorTree &DT, LoopInfo &LI,
2757                                        MemorySSAUpdater *MSSAU) {
2758   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2759   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2760   BasicBlock *CheckBB = GI->getParent();
2761 
2762   if (MSSAU && VerifyMemorySSA)
2763      MSSAU->getMemorySSA()->verifyMemorySSA();
2764 
2765   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2766   Instruction *DeoptBlockTerm =
2767       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true,
2768                                 GI->getMetadata(LLVMContext::MD_prof), &DTU, &LI);
2769   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2770   // SplitBlockAndInsertIfThen inserts control flow that branches to
2771   // DeoptBlockTerm if the condition is true.  We want the opposite.
2772   CheckBI->swapSuccessors();
2773 
2774   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2775   GuardedBlock->setName("guarded");
2776   CheckBI->getSuccessor(1)->setName("deopt");
2777   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2778 
2779   if (MSSAU)
2780     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2781 
2782   GI->moveBefore(DeoptBlockTerm);
2783   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2784 
2785   if (MSSAU) {
2786     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2787     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2788     if (VerifyMemorySSA)
2789       MSSAU->getMemorySSA()->verifyMemorySSA();
2790   }
2791 
2792   if (VerifyLoopInfo)
2793     LI.verify(DT);
2794   ++NumGuards;
2795   return CheckBI;
2796 }
2797 
2798 /// Cost multiplier is a way to limit potentially exponential behavior
2799 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2800 /// candidates available. Also accounting for the number of "sibling" loops with
2801 /// the idea to account for previous unswitches that already happened on this
2802 /// cluster of loops. There was an attempt to keep this formula simple,
2803 /// just enough to limit the worst case behavior. Even if it is not that simple
2804 /// now it is still not an attempt to provide a detailed heuristic size
2805 /// prediction.
2806 ///
2807 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2808 /// unswitch candidates, making adequate predictions instead of wild guesses.
2809 /// That requires knowing not just the number of "remaining" candidates but
2810 /// also costs of unswitching for each of these candidates.
2811 static int CalculateUnswitchCostMultiplier(
2812     const Instruction &TI, const Loop &L, const LoopInfo &LI,
2813     const DominatorTree &DT,
2814     ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) {
2815 
2816   // Guards and other exiting conditions do not contribute to exponential
2817   // explosion as soon as they dominate the latch (otherwise there might be
2818   // another path to the latch remaining that does not allow to eliminate the
2819   // loop copy on unswitch).
2820   const BasicBlock *Latch = L.getLoopLatch();
2821   const BasicBlock *CondBlock = TI.getParent();
2822   if (DT.dominates(CondBlock, Latch) &&
2823       (isGuard(&TI) ||
2824        (TI.isTerminator() &&
2825         llvm::count_if(successors(&TI), [&L](const BasicBlock *SuccBB) {
2826           return L.contains(SuccBB);
2827         }) <= 1))) {
2828     NumCostMultiplierSkipped++;
2829     return 1;
2830   }
2831 
2832   auto *ParentL = L.getParentLoop();
2833   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2834                                : std::distance(LI.begin(), LI.end()));
2835   // Count amount of clones that all the candidates might cause during
2836   // unswitching. Branch/guard/select counts as 1, switch counts as log2 of its
2837   // cases.
2838   int UnswitchedClones = 0;
2839   for (const auto &Candidate : UnswitchCandidates) {
2840     const Instruction *CI = Candidate.TI;
2841     const BasicBlock *CondBlock = CI->getParent();
2842     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2843     if (isa<SelectInst>(CI)) {
2844       UnswitchedClones++;
2845       continue;
2846     }
2847     if (isGuard(CI)) {
2848       if (!SkipExitingSuccessors)
2849         UnswitchedClones++;
2850       continue;
2851     }
2852     int NonExitingSuccessors =
2853         llvm::count_if(successors(CondBlock),
2854                        [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) {
2855           return !SkipExitingSuccessors || L.contains(SuccBB);
2856         });
2857     UnswitchedClones += Log2_32(NonExitingSuccessors);
2858   }
2859 
2860   // Ignore up to the "unscaled candidates" number of unswitch candidates
2861   // when calculating the power-of-two scaling of the cost. The main idea
2862   // with this control is to allow a small number of unswitches to happen
2863   // and rely more on siblings multiplier (see below) when the number
2864   // of candidates is small.
2865   unsigned ClonesPower =
2866       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2867 
2868   // Allowing top-level loops to spread a bit more than nested ones.
2869   int SiblingsMultiplier =
2870       std::max((ParentL ? SiblingsCount
2871                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2872                1);
2873   // Compute the cost multiplier in a way that won't overflow by saturating
2874   // at an upper bound.
2875   int CostMultiplier;
2876   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2877       SiblingsMultiplier > UnswitchThreshold)
2878     CostMultiplier = UnswitchThreshold;
2879   else
2880     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2881                               (int)UnswitchThreshold);
2882 
2883   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2884                     << " (siblings " << SiblingsMultiplier << " * clones "
2885                     << (1 << ClonesPower) << ")"
2886                     << " for unswitch candidate: " << TI << "\n");
2887   return CostMultiplier;
2888 }
2889 
2890 static bool collectUnswitchCandidates(
2891     SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates,
2892     IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch,
2893     const Loop &L, const LoopInfo &LI, AAResults &AA,
2894     const MemorySSAUpdater *MSSAU) {
2895   assert(UnswitchCandidates.empty() && "Should be!");
2896 
2897   auto AddUnswitchCandidatesForInst = [&](Instruction *I, Value *Cond) {
2898     Cond = skipTrivialSelect(Cond);
2899     if (isa<Constant>(Cond))
2900       return;
2901     if (L.isLoopInvariant(Cond)) {
2902       UnswitchCandidates.push_back({I, {Cond}});
2903       return;
2904     }
2905     if (match(Cond, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2906       TinyPtrVector<Value *> Invariants =
2907           collectHomogenousInstGraphLoopInvariants(
2908               L, *static_cast<Instruction *>(Cond), LI);
2909       if (!Invariants.empty())
2910         UnswitchCandidates.push_back({I, std::move(Invariants)});
2911     }
2912   };
2913 
2914   // Whether or not we should also collect guards in the loop.
2915   bool CollectGuards = false;
2916   if (UnswitchGuards) {
2917     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2918         Intrinsic::getName(Intrinsic::experimental_guard));
2919     if (GuardDecl && !GuardDecl->use_empty())
2920       CollectGuards = true;
2921   }
2922 
2923   for (auto *BB : L.blocks()) {
2924     if (LI.getLoopFor(BB) != &L)
2925       continue;
2926 
2927     for (auto &I : *BB) {
2928       if (auto *SI = dyn_cast<SelectInst>(&I)) {
2929         auto *Cond = SI->getCondition();
2930         // Do not unswitch vector selects and logical and/or selects
2931         if (Cond->getType()->isIntegerTy(1) && !SI->getType()->isIntegerTy(1))
2932           AddUnswitchCandidatesForInst(SI, Cond);
2933       } else if (CollectGuards && isGuard(&I)) {
2934         auto *Cond =
2935             skipTrivialSelect(cast<IntrinsicInst>(&I)->getArgOperand(0));
2936         // TODO: Support AND, OR conditions and partial unswitching.
2937         if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2938           UnswitchCandidates.push_back({&I, {Cond}});
2939       }
2940     }
2941 
2942     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2943       // We can only consider fully loop-invariant switch conditions as we need
2944       // to completely eliminate the switch after unswitching.
2945       if (!isa<Constant>(SI->getCondition()) &&
2946           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2947         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2948       continue;
2949     }
2950 
2951     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2952     if (!BI || !BI->isConditional() ||
2953         BI->getSuccessor(0) == BI->getSuccessor(1))
2954       continue;
2955 
2956     AddUnswitchCandidatesForInst(BI, BI->getCondition());
2957   }
2958 
2959   if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2960       !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2961          return TerminatorAndInvariants.TI == L.getHeader()->getTerminator();
2962        })) {
2963     MemorySSA *MSSA = MSSAU->getMemorySSA();
2964     if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2965       LLVM_DEBUG(
2966           dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2967                  << *Info->InstToDuplicate[0] << "\n");
2968       PartialIVInfo = *Info;
2969       PartialIVCondBranch = L.getHeader()->getTerminator();
2970       TinyPtrVector<Value *> ValsToDuplicate;
2971       llvm::append_range(ValsToDuplicate, Info->InstToDuplicate);
2972       UnswitchCandidates.push_back(
2973           {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2974     }
2975   }
2976   return !UnswitchCandidates.empty();
2977 }
2978 
2979 /// Tries to canonicalize condition described by:
2980 ///
2981 ///   br (LHS pred RHS), label IfTrue, label IfFalse
2982 ///
2983 /// into its equivalent where `Pred` is something that we support for injected
2984 /// invariants (so far it is limited to ult), LHS in canonicalized form is
2985 /// non-invariant and RHS is an invariant.
2986 static void canonicalizeForInvariantConditionInjection(
2987     ICmpInst::Predicate &Pred, Value *&LHS, Value *&RHS, BasicBlock *&IfTrue,
2988     BasicBlock *&IfFalse, const Loop &L) {
2989   if (!L.contains(IfTrue)) {
2990     Pred = ICmpInst::getInversePredicate(Pred);
2991     std::swap(IfTrue, IfFalse);
2992   }
2993 
2994   // Move loop-invariant argument to RHS position.
2995   if (L.isLoopInvariant(LHS)) {
2996     Pred = ICmpInst::getSwappedPredicate(Pred);
2997     std::swap(LHS, RHS);
2998   }
2999 
3000   if (Pred == ICmpInst::ICMP_SGE && match(RHS, m_Zero())) {
3001     // Turn "x >=s 0" into "x <u UMIN_INT"
3002     Pred = ICmpInst::ICMP_ULT;
3003     RHS = ConstantInt::get(
3004         RHS->getContext(),
3005         APInt::getSignedMinValue(RHS->getType()->getIntegerBitWidth()));
3006   }
3007 }
3008 
3009 /// Returns true, if predicate described by ( \p Pred, \p LHS, \p RHS )
3010 /// succeeding into blocks ( \p IfTrue, \p IfFalse) can be optimized by
3011 /// injecting a loop-invariant condition.
3012 static bool shouldTryInjectInvariantCondition(
3013     const ICmpInst::Predicate Pred, const Value *LHS, const Value *RHS,
3014     const BasicBlock *IfTrue, const BasicBlock *IfFalse, const Loop &L) {
3015   if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS))
3016     return false;
3017   // TODO: Support other predicates.
3018   if (Pred != ICmpInst::ICMP_ULT)
3019     return false;
3020   // TODO: Support non-loop-exiting branches?
3021   if (!L.contains(IfTrue) || L.contains(IfFalse))
3022     return false;
3023   // FIXME: For some reason this causes problems with MSSA updates, need to
3024   // investigate why. So far, just don't unswitch latch.
3025   if (L.getHeader() == IfTrue)
3026     return false;
3027   return true;
3028 }
3029 
3030 /// Returns true, if metadata on \p BI allows us to optimize branching into \p
3031 /// TakenSucc via injection of invariant conditions. The branch should be not
3032 /// enough and not previously unswitched, the information about this comes from
3033 /// the metadata.
3034 bool shouldTryInjectBasingOnMetadata(const BranchInst *BI,
3035                                      const BasicBlock *TakenSucc) {
3036   SmallVector<uint32_t> Weights;
3037   if (!extractBranchWeights(*BI, Weights))
3038     return false;
3039   unsigned T = InjectInvariantConditionHotnesThreshold;
3040   BranchProbability LikelyTaken(T - 1, T);
3041 
3042   assert(Weights.size() == 2 && "Unexpected profile data!");
3043   size_t Idx = BI->getSuccessor(0) == TakenSucc ? 0 : 1;
3044   auto Num = Weights[Idx];
3045   auto Denom = Weights[0] + Weights[1];
3046   // Degenerate or overflowed metadata.
3047   if (Denom == 0 || Num > Denom)
3048     return false;
3049   BranchProbability ActualTaken(Num, Denom);
3050   if (LikelyTaken > ActualTaken)
3051     return false;
3052   return true;
3053 }
3054 
3055 /// Materialize pending invariant condition of the given candidate into IR. The
3056 /// injected loop-invariant condition implies the original loop-variant branch
3057 /// condition, so the materialization turns
3058 ///
3059 /// loop_block:
3060 ///   ...
3061 ///   br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
3062 ///
3063 /// into
3064 ///
3065 /// preheader:
3066 ///   %invariant_cond = LHS pred RHS
3067 /// ...
3068 /// loop_block:
3069 ///   br i1 %invariant_cond, label InLoopSucc, label OriginalCheck
3070 /// OriginalCheck:
3071 ///   br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
3072 /// ...
3073 static NonTrivialUnswitchCandidate
3074 injectPendingInvariantConditions(NonTrivialUnswitchCandidate Candidate, Loop &L,
3075                                  DominatorTree &DT, LoopInfo &LI,
3076                                  AssumptionCache &AC, MemorySSAUpdater *MSSAU) {
3077   assert(Candidate.hasPendingInjection() && "Nothing to inject!");
3078   BasicBlock *Preheader = L.getLoopPreheader();
3079   assert(Preheader && "Loop is not in simplified form?");
3080   assert(LI.getLoopFor(Candidate.TI->getParent()) == &L &&
3081          "Unswitching branch of inner loop!");
3082 
3083   auto Pred = Candidate.PendingInjection->Pred;
3084   auto *LHS = Candidate.PendingInjection->LHS;
3085   auto *RHS = Candidate.PendingInjection->RHS;
3086   auto *InLoopSucc = Candidate.PendingInjection->InLoopSucc;
3087   auto *TI = cast<BranchInst>(Candidate.TI);
3088   auto *BB = Candidate.TI->getParent();
3089   auto *OutOfLoopSucc = InLoopSucc == TI->getSuccessor(0) ? TI->getSuccessor(1)
3090                                                           : TI->getSuccessor(0);
3091   // FIXME: Remove this once limitation on successors is lifted.
3092   assert(L.contains(InLoopSucc) && "Not supported yet!");
3093   assert(!L.contains(OutOfLoopSucc) && "Not supported yet!");
3094   auto &Ctx = BB->getContext();
3095 
3096   IRBuilder<> Builder(Preheader->getTerminator());
3097   assert(ICmpInst::isUnsigned(Pred) && "Not supported yet!");
3098   if (LHS->getType() != RHS->getType()) {
3099     if (LHS->getType()->getIntegerBitWidth() <
3100         RHS->getType()->getIntegerBitWidth())
3101       LHS = Builder.CreateZExt(LHS, RHS->getType(), LHS->getName() + ".wide");
3102     else
3103       RHS = Builder.CreateZExt(RHS, LHS->getType(), RHS->getName() + ".wide");
3104   }
3105   // Do not use builder here: CreateICmp may simplify this into a constant and
3106   // unswitching will break. Better optimize it away later.
3107   auto *InjectedCond =
3108       ICmpInst::Create(Instruction::ICmp, Pred, LHS, RHS, "injected.cond",
3109                        Preheader->getTerminator()->getIterator());
3110 
3111   BasicBlock *CheckBlock = BasicBlock::Create(Ctx, BB->getName() + ".check",
3112                                               BB->getParent(), InLoopSucc);
3113   Builder.SetInsertPoint(TI);
3114   auto *InvariantBr =
3115       Builder.CreateCondBr(InjectedCond, InLoopSucc, CheckBlock);
3116 
3117   Builder.SetInsertPoint(CheckBlock);
3118   Builder.CreateCondBr(TI->getCondition(), TI->getSuccessor(0),
3119                        TI->getSuccessor(1));
3120   TI->eraseFromParent();
3121 
3122   // Fixup phis.
3123   for (auto &I : *InLoopSucc) {
3124     auto *PN = dyn_cast<PHINode>(&I);
3125     if (!PN)
3126       break;
3127     auto *Inc = PN->getIncomingValueForBlock(BB);
3128     PN->addIncoming(Inc, CheckBlock);
3129   }
3130   OutOfLoopSucc->replacePhiUsesWith(BB, CheckBlock);
3131 
3132   SmallVector<DominatorTree::UpdateType, 4> DTUpdates = {
3133     { DominatorTree::Insert, BB, CheckBlock },
3134     { DominatorTree::Insert, CheckBlock, InLoopSucc },
3135     { DominatorTree::Insert, CheckBlock, OutOfLoopSucc },
3136     { DominatorTree::Delete, BB, OutOfLoopSucc }
3137   };
3138 
3139   DT.applyUpdates(DTUpdates);
3140   if (MSSAU)
3141     MSSAU->applyUpdates(DTUpdates, DT);
3142   L.addBasicBlockToLoop(CheckBlock, LI);
3143 
3144 #ifndef NDEBUG
3145   DT.verify();
3146   LI.verify(DT);
3147   if (MSSAU && VerifyMemorySSA)
3148     MSSAU->getMemorySSA()->verifyMemorySSA();
3149 #endif
3150 
3151   // TODO: In fact, cost of unswitching a new invariant candidate is *slightly*
3152   // higher because we have just inserted a new block. Need to think how to
3153   // adjust the cost of injected candidates when it was first computed.
3154   LLVM_DEBUG(dbgs() << "Injected a new loop-invariant branch " << *InvariantBr
3155                     << " and considering it for unswitching.");
3156   ++NumInvariantConditionsInjected;
3157   return NonTrivialUnswitchCandidate(InvariantBr, { InjectedCond },
3158                                      Candidate.Cost);
3159 }
3160 
3161 /// Given chain of loop branch conditions looking like:
3162 ///   br (Variant < Invariant1)
3163 ///   br (Variant < Invariant2)
3164 ///   br (Variant < Invariant3)
3165 ///   ...
3166 /// collect set of invariant conditions on which we want to unswitch, which
3167 /// look like:
3168 ///   Invariant1 <= Invariant2
3169 ///   Invariant2 <= Invariant3
3170 ///   ...
3171 /// Though they might not immediately exist in the IR, we can still inject them.
3172 static bool insertCandidatesWithPendingInjections(
3173     SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, Loop &L,
3174     ICmpInst::Predicate Pred, ArrayRef<CompareDesc> Compares,
3175     const DominatorTree &DT) {
3176 
3177   assert(ICmpInst::isRelational(Pred));
3178   assert(ICmpInst::isStrictPredicate(Pred));
3179   if (Compares.size() < 2)
3180     return false;
3181   ICmpInst::Predicate NonStrictPred = ICmpInst::getNonStrictPredicate(Pred);
3182   for (auto Prev = Compares.begin(), Next = Compares.begin() + 1;
3183        Next != Compares.end(); ++Prev, ++Next) {
3184     Value *LHS = Next->Invariant;
3185     Value *RHS = Prev->Invariant;
3186     BasicBlock *InLoopSucc = Prev->InLoopSucc;
3187     InjectedInvariant ToInject(NonStrictPred, LHS, RHS, InLoopSucc);
3188     NonTrivialUnswitchCandidate Candidate(Prev->Term, { LHS, RHS },
3189                                           std::nullopt, std::move(ToInject));
3190     UnswitchCandidates.push_back(std::move(Candidate));
3191   }
3192   return true;
3193 }
3194 
3195 /// Collect unswitch candidates by invariant conditions that are not immediately
3196 /// present in the loop. However, they can be injected into the code if we
3197 /// decide it's profitable.
3198 /// An example of such conditions is following:
3199 ///
3200 ///   for (...) {
3201 ///     x = load ...
3202 ///     if (! x <u C1) break;
3203 ///     if (! x <u C2) break;
3204 ///     <do something>
3205 ///   }
3206 ///
3207 /// We can unswitch by condition "C1 <=u C2". If that is true, then "x <u C1 <=
3208 /// C2" automatically implies "x <u C2", so we can get rid of one of
3209 /// loop-variant checks in unswitched loop version.
3210 static bool collectUnswitchCandidatesWithInjections(
3211     SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates,
3212     IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, Loop &L,
3213     const DominatorTree &DT, const LoopInfo &LI, AAResults &AA,
3214     const MemorySSAUpdater *MSSAU) {
3215   if (!InjectInvariantConditions)
3216     return false;
3217 
3218   if (!DT.isReachableFromEntry(L.getHeader()))
3219     return false;
3220   auto *Latch = L.getLoopLatch();
3221   // Need to have a single latch and a preheader.
3222   if (!Latch)
3223     return false;
3224   assert(L.getLoopPreheader() && "Must have a preheader!");
3225 
3226   DenseMap<Value *, SmallVector<CompareDesc, 4> > CandidatesULT;
3227   // Traverse the conditions that dominate latch (and therefore dominate each
3228   // other).
3229   for (auto *DTN = DT.getNode(Latch); L.contains(DTN->getBlock());
3230        DTN = DTN->getIDom()) {
3231     ICmpInst::Predicate Pred;
3232     Value *LHS = nullptr, *RHS = nullptr;
3233     BasicBlock *IfTrue = nullptr, *IfFalse = nullptr;
3234     auto *BB = DTN->getBlock();
3235     // Ignore inner loops.
3236     if (LI.getLoopFor(BB) != &L)
3237       continue;
3238     auto *Term = BB->getTerminator();
3239     if (!match(Term, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
3240                           m_BasicBlock(IfTrue), m_BasicBlock(IfFalse))))
3241       continue;
3242     if (!LHS->getType()->isIntegerTy())
3243       continue;
3244     canonicalizeForInvariantConditionInjection(Pred, LHS, RHS, IfTrue, IfFalse,
3245                                                L);
3246     if (!shouldTryInjectInvariantCondition(Pred, LHS, RHS, IfTrue, IfFalse, L))
3247       continue;
3248     if (!shouldTryInjectBasingOnMetadata(cast<BranchInst>(Term), IfTrue))
3249       continue;
3250     // Strip ZEXT for unsigned predicate.
3251     // TODO: once signed predicates are supported, also strip SEXT.
3252     CompareDesc Desc(cast<BranchInst>(Term), RHS, IfTrue);
3253     while (auto *Zext = dyn_cast<ZExtInst>(LHS))
3254       LHS = Zext->getOperand(0);
3255     CandidatesULT[LHS].push_back(Desc);
3256   }
3257 
3258   bool Found = false;
3259   for (auto &It : CandidatesULT)
3260     Found |= insertCandidatesWithPendingInjections(
3261         UnswitchCandidates, L, ICmpInst::ICMP_ULT, It.second, DT);
3262   return Found;
3263 }
3264 
3265 static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) {
3266   if (!L.isSafeToClone())
3267     return false;
3268   for (auto *BB : L.blocks())
3269     for (auto &I : *BB) {
3270       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
3271         return false;
3272       if (auto *CB = dyn_cast<CallBase>(&I)) {
3273         assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone().");
3274         if (CB->isConvergent())
3275           return false;
3276       }
3277     }
3278 
3279   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
3280   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
3281   // irreducible control flow into reducible control flow and introduce new
3282   // loops "out of thin air". If we ever discover important use cases for doing
3283   // this, we can add support to loop unswitch, but it is a lot of complexity
3284   // for what seems little or no real world benefit.
3285   LoopBlocksRPO RPOT(&L);
3286   RPOT.perform(&LI);
3287   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
3288     return false;
3289 
3290   SmallVector<BasicBlock *, 4> ExitBlocks;
3291   L.getUniqueExitBlocks(ExitBlocks);
3292   // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
3293   // instruction as we don't know how to split those exit blocks.
3294   // FIXME: We should teach SplitBlock to handle this and remove this
3295   // restriction.
3296   for (auto *ExitBB : ExitBlocks) {
3297     auto *I = ExitBB->getFirstNonPHI();
3298     if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
3299       LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
3300                            "in exit block\n");
3301       return false;
3302     }
3303   }
3304 
3305   return true;
3306 }
3307 
3308 static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate(
3309     ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L,
3310     const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC,
3311     const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) {
3312   // Given that unswitching these terminators will require duplicating parts of
3313   // the loop, so we need to be able to model that cost. Compute the ephemeral
3314   // values and set up a data structure to hold per-BB costs. We cache each
3315   // block's cost so that we don't recompute this when considering different
3316   // subsets of the loop for duplication during unswitching.
3317   SmallPtrSet<const Value *, 4> EphValues;
3318   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
3319   SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
3320 
3321   // Compute the cost of each block, as well as the total loop cost. Also, bail
3322   // out if we see instructions which are incompatible with loop unswitching
3323   // (convergent, noduplicate, or cross-basic-block tokens).
3324   // FIXME: We might be able to safely handle some of these in non-duplicated
3325   // regions.
3326   TargetTransformInfo::TargetCostKind CostKind =
3327       L.getHeader()->getParent()->hasMinSize()
3328       ? TargetTransformInfo::TCK_CodeSize
3329       : TargetTransformInfo::TCK_SizeAndLatency;
3330   InstructionCost LoopCost = 0;
3331   for (auto *BB : L.blocks()) {
3332     InstructionCost Cost = 0;
3333     for (auto &I : *BB) {
3334       if (EphValues.count(&I))
3335         continue;
3336       Cost += TTI.getInstructionCost(&I, CostKind);
3337     }
3338     assert(Cost >= 0 && "Must not have negative costs!");
3339     LoopCost += Cost;
3340     assert(LoopCost >= 0 && "Must not have negative loop costs!");
3341     BBCostMap[BB] = Cost;
3342   }
3343   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
3344 
3345   // Now we find the best candidate by searching for the one with the following
3346   // properties in order:
3347   //
3348   // 1) An unswitching cost below the threshold
3349   // 2) The smallest number of duplicated unswitch candidates (to avoid
3350   //    creating redundant subsequent unswitching)
3351   // 3) The smallest cost after unswitching.
3352   //
3353   // We prioritize reducing fanout of unswitch candidates provided the cost
3354   // remains below the threshold because this has a multiplicative effect.
3355   //
3356   // This requires memoizing each dominator subtree to avoid redundant work.
3357   //
3358   // FIXME: Need to actually do the number of candidates part above.
3359   SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
3360   // Given a terminator which might be unswitched, computes the non-duplicated
3361   // cost for that terminator.
3362   auto ComputeUnswitchedCost = [&](Instruction &TI,
3363                                    bool FullUnswitch) -> InstructionCost {
3364     // Unswitching selects unswitches the entire loop.
3365     if (isa<SelectInst>(TI))
3366       return LoopCost;
3367 
3368     BasicBlock &BB = *TI.getParent();
3369     SmallPtrSet<BasicBlock *, 4> Visited;
3370 
3371     InstructionCost Cost = 0;
3372     for (BasicBlock *SuccBB : successors(&BB)) {
3373       // Don't count successors more than once.
3374       if (!Visited.insert(SuccBB).second)
3375         continue;
3376 
3377       // If this is a partial unswitch candidate, then it must be a conditional
3378       // branch with a condition of either `or`, `and`, their corresponding
3379       // select forms or partially invariant instructions. In that case, one of
3380       // the successors is necessarily duplicated, so don't even try to remove
3381       // its cost.
3382       if (!FullUnswitch) {
3383         auto &BI = cast<BranchInst>(TI);
3384         Value *Cond = skipTrivialSelect(BI.getCondition());
3385         if (match(Cond, m_LogicalAnd())) {
3386           if (SuccBB == BI.getSuccessor(1))
3387             continue;
3388         } else if (match(Cond, m_LogicalOr())) {
3389           if (SuccBB == BI.getSuccessor(0))
3390             continue;
3391         } else if ((PartialIVInfo.KnownValue->isOneValue() &&
3392                     SuccBB == BI.getSuccessor(0)) ||
3393                    (!PartialIVInfo.KnownValue->isOneValue() &&
3394                     SuccBB == BI.getSuccessor(1)))
3395           continue;
3396       }
3397 
3398       // This successor's domtree will not need to be duplicated after
3399       // unswitching if the edge to the successor dominates it (and thus the
3400       // entire tree). This essentially means there is no other path into this
3401       // subtree and so it will end up live in only one clone of the loop.
3402       if (SuccBB->getUniquePredecessor() ||
3403           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
3404             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
3405           })) {
3406         Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
3407         assert(Cost <= LoopCost &&
3408                "Non-duplicated cost should never exceed total loop cost!");
3409       }
3410     }
3411 
3412     // Now scale the cost by the number of unique successors minus one. We
3413     // subtract one because there is already at least one copy of the entire
3414     // loop. This is computing the new cost of unswitching a condition.
3415     // Note that guards always have 2 unique successors that are implicit and
3416     // will be materialized if we decide to unswitch it.
3417     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
3418     assert(SuccessorsCount > 1 &&
3419            "Cannot unswitch a condition without multiple distinct successors!");
3420     return (LoopCost - Cost) * (SuccessorsCount - 1);
3421   };
3422 
3423   std::optional<NonTrivialUnswitchCandidate> Best;
3424   for (auto &Candidate : UnswitchCandidates) {
3425     Instruction &TI = *Candidate.TI;
3426     ArrayRef<Value *> Invariants = Candidate.Invariants;
3427     BranchInst *BI = dyn_cast<BranchInst>(&TI);
3428     bool FullUnswitch =
3429         !BI || Candidate.hasPendingInjection() ||
3430         (Invariants.size() == 1 &&
3431          Invariants[0] == skipTrivialSelect(BI->getCondition()));
3432     InstructionCost CandidateCost = ComputeUnswitchedCost(TI, FullUnswitch);
3433     // Calculate cost multiplier which is a tool to limit potentially
3434     // exponential behavior of loop-unswitch.
3435     if (EnableUnswitchCostMultiplier) {
3436       int CostMultiplier =
3437           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
3438       assert(
3439           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
3440           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
3441       CandidateCost *= CostMultiplier;
3442       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
3443                         << " (multiplier: " << CostMultiplier << ")"
3444                         << " for unswitch candidate: " << TI << "\n");
3445     } else {
3446       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
3447                         << " for unswitch candidate: " << TI << "\n");
3448     }
3449 
3450     if (!Best || CandidateCost < Best->Cost) {
3451       Best = Candidate;
3452       Best->Cost = CandidateCost;
3453     }
3454   }
3455   assert(Best && "Must be!");
3456   return *Best;
3457 }
3458 
3459 // Insert a freeze on an unswitched branch if all is true:
3460 // 1. freeze-loop-unswitch-cond option is true
3461 // 2. The branch may not execute in the loop pre-transformation. If a branch may
3462 // not execute and could cause UB, it would always cause UB if it is hoisted outside
3463 // of the loop. Insert a freeze to prevent this case.
3464 // 3. The branch condition may be poison or undef
3465 static bool shouldInsertFreeze(Loop &L, Instruction &TI, DominatorTree &DT,
3466                                AssumptionCache &AC) {
3467   assert(isa<BranchInst>(TI) || isa<SwitchInst>(TI));
3468   if (!FreezeLoopUnswitchCond)
3469     return false;
3470 
3471   ICFLoopSafetyInfo SafetyInfo;
3472   SafetyInfo.computeLoopSafetyInfo(&L);
3473   if (SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
3474     return false;
3475 
3476   Value *Cond;
3477   if (BranchInst *BI = dyn_cast<BranchInst>(&TI))
3478     Cond = skipTrivialSelect(BI->getCondition());
3479   else
3480     Cond = skipTrivialSelect(cast<SwitchInst>(&TI)->getCondition());
3481   return !isGuaranteedNotToBeUndefOrPoison(
3482       Cond, &AC, L.getLoopPreheader()->getTerminator(), &DT);
3483 }
3484 
3485 static bool unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
3486                                   AssumptionCache &AC, AAResults &AA,
3487                                   TargetTransformInfo &TTI, ScalarEvolution *SE,
3488                                   MemorySSAUpdater *MSSAU,
3489                                   LPMUpdater &LoopUpdater) {
3490   // Collect all invariant conditions within this loop (as opposed to an inner
3491   // loop which would be handled when visiting that inner loop).
3492   SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates;
3493   IVConditionInfo PartialIVInfo;
3494   Instruction *PartialIVCondBranch = nullptr;
3495   collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo,
3496                             PartialIVCondBranch, L, LI, AA, MSSAU);
3497   if (!findOptionMDForLoop(&L, "llvm.loop.unswitch.injection.disable"))
3498     collectUnswitchCandidatesWithInjections(UnswitchCandidates, PartialIVInfo,
3499                                             PartialIVCondBranch, L, DT, LI, AA,
3500                                             MSSAU);
3501   // If we didn't find any candidates, we're done.
3502   if (UnswitchCandidates.empty())
3503     return false;
3504 
3505   LLVM_DEBUG(
3506       dbgs() << "Considering " << UnswitchCandidates.size()
3507              << " non-trivial loop invariant conditions for unswitching.\n");
3508 
3509   NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate(
3510       UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo);
3511 
3512   assert(Best.TI && "Failed to find loop unswitch candidate");
3513   assert(Best.Cost && "Failed to compute cost");
3514 
3515   if (*Best.Cost >= UnswitchThreshold) {
3516     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost
3517                       << "\n");
3518     return false;
3519   }
3520 
3521   bool InjectedCondition = false;
3522   if (Best.hasPendingInjection()) {
3523     Best = injectPendingInvariantConditions(Best, L, DT, LI, AC, MSSAU);
3524     InjectedCondition = true;
3525   }
3526   assert(!Best.hasPendingInjection() &&
3527          "All injections should have been done by now!");
3528 
3529   if (Best.TI != PartialIVCondBranch)
3530     PartialIVInfo.InstToDuplicate.clear();
3531 
3532   bool InsertFreeze;
3533   if (auto *SI = dyn_cast<SelectInst>(Best.TI)) {
3534     // If the best candidate is a select, turn it into a branch. Select
3535     // instructions with a poison conditional do not propagate poison, but
3536     // branching on poison causes UB. Insert a freeze on the select
3537     // conditional to prevent UB after turning the select into a branch.
3538     InsertFreeze = !isGuaranteedNotToBeUndefOrPoison(
3539         SI->getCondition(), &AC, L.getLoopPreheader()->getTerminator(), &DT);
3540     Best.TI = turnSelectIntoBranch(SI, DT, LI, MSSAU, &AC);
3541   } else {
3542     // If the best candidate is a guard, turn it into a branch.
3543     if (isGuard(Best.TI))
3544       Best.TI =
3545           turnGuardIntoBranch(cast<IntrinsicInst>(Best.TI), L, DT, LI, MSSAU);
3546     InsertFreeze = shouldInsertFreeze(L, *Best.TI, DT, AC);
3547   }
3548 
3549   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = " << Best.Cost
3550                     << ") terminator: " << *Best.TI << "\n");
3551   unswitchNontrivialInvariants(L, *Best.TI, Best.Invariants, PartialIVInfo, DT,
3552                                LI, AC, SE, MSSAU, LoopUpdater, InsertFreeze,
3553                                InjectedCondition);
3554   return true;
3555 }
3556 
3557 /// Unswitch control flow predicated on loop invariant conditions.
3558 ///
3559 /// This first hoists all branches or switches which are trivial (IE, do not
3560 /// require duplicating any part of the loop) out of the loop body. It then
3561 /// looks at other loop invariant control flows and tries to unswitch those as
3562 /// well by cloning the loop if the result is small enough.
3563 ///
3564 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3565 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
3566 /// valid (i.e. its use is enabled).
3567 ///
3568 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3569 /// true, we will attempt to do non-trivial unswitching as well as trivial
3570 /// unswitching.
3571 ///
3572 /// The `postUnswitch` function will be run after unswitching is complete
3573 /// with information on whether or not the provided loop remains a loop and
3574 /// a list of new sibling loops created.
3575 ///
3576 /// If `SE` is non-null, we will update that analysis based on the unswitching
3577 /// done.
3578 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
3579                          AssumptionCache &AC, AAResults &AA,
3580                          TargetTransformInfo &TTI, bool Trivial,
3581                          bool NonTrivial, ScalarEvolution *SE,
3582                          MemorySSAUpdater *MSSAU, ProfileSummaryInfo *PSI,
3583                          BlockFrequencyInfo *BFI, LPMUpdater &LoopUpdater) {
3584   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3585          "Loops must be in LCSSA form before unswitching.");
3586 
3587   // Must be in loop simplified form: we need a preheader and dedicated exits.
3588   if (!L.isLoopSimplifyForm())
3589     return false;
3590 
3591   // Try trivial unswitch first before loop over other basic blocks in the loop.
3592   if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3593     // If we unswitched successfully we will want to clean up the loop before
3594     // processing it further so just mark it as unswitched and return.
3595     postUnswitch(L, LoopUpdater, L.getName(),
3596                  /*CurrentLoopValid*/ true, /*PartiallyInvariant*/ false,
3597                  /*InjectedCondition*/ false, {});
3598     return true;
3599   }
3600 
3601   const Function *F = L.getHeader()->getParent();
3602 
3603   // Check whether we should continue with non-trivial conditions.
3604   // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3605   //                           unswitching for testing and debugging.
3606   // NonTrivial: Parameter that enables non-trivial unswitching for this
3607   //             invocation of the transform. But this should be allowed only
3608   //             for targets without branch divergence.
3609   //
3610   // FIXME: If divergence analysis becomes available to a loop
3611   // transform, we should allow unswitching for non-trivial uniform
3612   // branches even on targets that have divergence.
3613   // https://bugs.llvm.org/show_bug.cgi?id=48819
3614   bool ContinueWithNonTrivial =
3615       EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence(F));
3616   if (!ContinueWithNonTrivial)
3617     return false;
3618 
3619   // Skip non-trivial unswitching for optsize functions.
3620   if (F->hasOptSize())
3621     return false;
3622 
3623   // Returns true if Loop L's loop nest is cold, i.e. if the headers of L,
3624   // of the loops L is nested in, and of the loops nested in L are all cold.
3625   auto IsLoopNestCold = [&](const Loop *L) {
3626     // Check L and all of its parent loops.
3627     auto *Parent = L;
3628     while (Parent) {
3629       if (!PSI->isColdBlock(Parent->getHeader(), BFI))
3630         return false;
3631       Parent = Parent->getParentLoop();
3632     }
3633     // Next check all loops nested within L.
3634     SmallVector<const Loop *, 4> Worklist;
3635     Worklist.insert(Worklist.end(), L->getSubLoops().begin(),
3636                     L->getSubLoops().end());
3637     while (!Worklist.empty()) {
3638       auto *CurLoop = Worklist.pop_back_val();
3639       if (!PSI->isColdBlock(CurLoop->getHeader(), BFI))
3640         return false;
3641       Worklist.insert(Worklist.end(), CurLoop->getSubLoops().begin(),
3642                       CurLoop->getSubLoops().end());
3643     }
3644     return true;
3645   };
3646 
3647   // Skip cold loops in cold loop nests, as unswitching them brings little
3648   // benefit but increases the code size
3649   if (PSI && PSI->hasProfileSummary() && BFI && IsLoopNestCold(&L)) {
3650     LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n");
3651     return false;
3652   }
3653 
3654   // Perform legality checks.
3655   if (!isSafeForNoNTrivialUnswitching(L, LI))
3656     return false;
3657 
3658   // For non-trivial unswitching, because it often creates new loops, we rely on
3659   // the pass manager to iterate on the loops rather than trying to immediately
3660   // reach a fixed point. There is no substantial advantage to iterating
3661   // internally, and if any of the new loops are simplified enough to contain
3662   // trivial unswitching we want to prefer those.
3663 
3664   // Try to unswitch the best invariant condition. We prefer this full unswitch to
3665   // a partial unswitch when possible below the threshold.
3666   if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, SE, MSSAU, LoopUpdater))
3667     return true;
3668 
3669   // No other opportunities to unswitch.
3670   return false;
3671 }
3672 
3673 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3674                                               LoopStandardAnalysisResults &AR,
3675                                               LPMUpdater &U) {
3676   Function &F = *L.getHeader()->getParent();
3677   (void)F;
3678   ProfileSummaryInfo *PSI = nullptr;
3679   if (auto OuterProxy =
3680           AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR)
3681               .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F))
3682     PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3683   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3684                     << "\n");
3685 
3686   std::optional<MemorySSAUpdater> MSSAU;
3687   if (AR.MSSA) {
3688     MSSAU = MemorySSAUpdater(AR.MSSA);
3689     if (VerifyMemorySSA)
3690       AR.MSSA->verifyMemorySSA();
3691   }
3692   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3693                     &AR.SE, MSSAU ? &*MSSAU : nullptr, PSI, AR.BFI, U))
3694     return PreservedAnalyses::all();
3695 
3696   if (AR.MSSA && VerifyMemorySSA)
3697     AR.MSSA->verifyMemorySSA();
3698 
3699   // Historically this pass has had issues with the dominator tree so verify it
3700   // in asserts builds.
3701   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3702 
3703   auto PA = getLoopPassPreservedAnalyses();
3704   if (AR.MSSA)
3705     PA.preserve<MemorySSAAnalysis>();
3706   return PA;
3707 }
3708 
3709 void SimpleLoopUnswitchPass::printPipeline(
3710     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3711   static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
3712       OS, MapClassName2PassName);
3713 
3714   OS << '<';
3715   OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3716   OS << (Trivial ? "" : "no-") << "trivial";
3717   OS << '>';
3718 }
3719