1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/GuardUtils.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopAnalysisManager.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/Utils/Local.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Use.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/GenericDomTree.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/Cloning.h" 49 #include "llvm/Transforms/Utils/LoopUtils.h" 50 #include "llvm/Transforms/Utils/ValueMapper.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <iterator> 54 #include <numeric> 55 #include <utility> 56 57 #define DEBUG_TYPE "simple-loop-unswitch" 58 59 using namespace llvm; 60 61 STATISTIC(NumBranches, "Number of branches unswitched"); 62 STATISTIC(NumSwitches, "Number of switches unswitched"); 63 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 64 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 65 STATISTIC( 66 NumCostMultiplierSkipped, 67 "Number of unswitch candidates that had their cost multiplier skipped"); 68 69 static cl::opt<bool> EnableNonTrivialUnswitch( 70 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 71 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 72 "following the configuration passed into the pass.")); 73 74 static cl::opt<int> 75 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 76 cl::desc("The cost threshold for unswitching a loop.")); 77 78 static cl::opt<bool> EnableUnswitchCostMultiplier( 79 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 80 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 81 "explosion in nontrivial unswitch.")); 82 static cl::opt<int> UnswitchSiblingsToplevelDiv( 83 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 84 cl::desc("Toplevel siblings divisor for cost multiplier.")); 85 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 86 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 87 cl::desc("Number of unswitch candidates that are ignored when calculating " 88 "cost multiplier.")); 89 static cl::opt<bool> UnswitchGuards( 90 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 91 cl::desc("If enabled, simple loop unswitching will also consider " 92 "llvm.experimental.guard intrinsics as unswitch candidates.")); 93 94 /// Collect all of the loop invariant input values transitively used by the 95 /// homogeneous instruction graph from a given root. 96 /// 97 /// This essentially walks from a root recursively through loop variant operands 98 /// which have the exact same opcode and finds all inputs which are loop 99 /// invariant. For some operations these can be re-associated and unswitched out 100 /// of the loop entirely. 101 static TinyPtrVector<Value *> 102 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 103 LoopInfo &LI) { 104 assert(!L.isLoopInvariant(&Root) && 105 "Only need to walk the graph if root itself is not invariant."); 106 TinyPtrVector<Value *> Invariants; 107 108 // Build a worklist and recurse through operators collecting invariants. 109 SmallVector<Instruction *, 4> Worklist; 110 SmallPtrSet<Instruction *, 8> Visited; 111 Worklist.push_back(&Root); 112 Visited.insert(&Root); 113 do { 114 Instruction &I = *Worklist.pop_back_val(); 115 for (Value *OpV : I.operand_values()) { 116 // Skip constants as unswitching isn't interesting for them. 117 if (isa<Constant>(OpV)) 118 continue; 119 120 // Add it to our result if loop invariant. 121 if (L.isLoopInvariant(OpV)) { 122 Invariants.push_back(OpV); 123 continue; 124 } 125 126 // If not an instruction with the same opcode, nothing we can do. 127 Instruction *OpI = dyn_cast<Instruction>(OpV); 128 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 129 continue; 130 131 // Visit this operand. 132 if (Visited.insert(OpI).second) 133 Worklist.push_back(OpI); 134 } 135 } while (!Worklist.empty()); 136 137 return Invariants; 138 } 139 140 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 141 Constant &Replacement) { 142 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 143 144 // Replace uses of LIC in the loop with the given constant. 145 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 146 // Grab the use and walk past it so we can clobber it in the use list. 147 Use *U = &*UI++; 148 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 149 150 // Replace this use within the loop body. 151 if (UserI && L.contains(UserI)) 152 U->set(&Replacement); 153 } 154 } 155 156 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 157 /// incoming values along this edge. 158 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 159 BasicBlock &ExitBB) { 160 for (Instruction &I : ExitBB) { 161 auto *PN = dyn_cast<PHINode>(&I); 162 if (!PN) 163 // No more PHIs to check. 164 return true; 165 166 // If the incoming value for this edge isn't loop invariant the unswitch 167 // won't be trivial. 168 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 169 return false; 170 } 171 llvm_unreachable("Basic blocks should never be empty!"); 172 } 173 174 /// Insert code to test a set of loop invariant values, and conditionally branch 175 /// on them. 176 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 177 ArrayRef<Value *> Invariants, 178 bool Direction, 179 BasicBlock &UnswitchedSucc, 180 BasicBlock &NormalSucc) { 181 IRBuilder<> IRB(&BB); 182 Value *Cond = Invariants.front(); 183 for (Value *Invariant : 184 make_range(std::next(Invariants.begin()), Invariants.end())) 185 if (Direction) 186 Cond = IRB.CreateOr(Cond, Invariant); 187 else 188 Cond = IRB.CreateAnd(Cond, Invariant); 189 190 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 191 Direction ? &NormalSucc : &UnswitchedSucc); 192 } 193 194 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 195 /// 196 /// Requires that the loop exit and unswitched basic block are the same, and 197 /// that the exiting block was a unique predecessor of that block. Rewrites the 198 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 199 /// PHI nodes from the old preheader that now contains the unswitched 200 /// terminator. 201 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 202 BasicBlock &OldExitingBB, 203 BasicBlock &OldPH) { 204 for (PHINode &PN : UnswitchedBB.phis()) { 205 // When the loop exit is directly unswitched we just need to update the 206 // incoming basic block. We loop to handle weird cases with repeated 207 // incoming blocks, but expect to typically only have one operand here. 208 for (auto i : seq<int>(0, PN.getNumOperands())) { 209 assert(PN.getIncomingBlock(i) == &OldExitingBB && 210 "Found incoming block different from unique predecessor!"); 211 PN.setIncomingBlock(i, &OldPH); 212 } 213 } 214 } 215 216 /// Rewrite the PHI nodes in the loop exit basic block and the split off 217 /// unswitched block. 218 /// 219 /// Because the exit block remains an exit from the loop, this rewrites the 220 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 221 /// nodes into the unswitched basic block to select between the value in the 222 /// old preheader and the loop exit. 223 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 224 BasicBlock &UnswitchedBB, 225 BasicBlock &OldExitingBB, 226 BasicBlock &OldPH, 227 bool FullUnswitch) { 228 assert(&ExitBB != &UnswitchedBB && 229 "Must have different loop exit and unswitched blocks!"); 230 Instruction *InsertPt = &*UnswitchedBB.begin(); 231 for (PHINode &PN : ExitBB.phis()) { 232 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 233 PN.getName() + ".split", InsertPt); 234 235 // Walk backwards over the old PHI node's inputs to minimize the cost of 236 // removing each one. We have to do this weird loop manually so that we 237 // create the same number of new incoming edges in the new PHI as we expect 238 // each case-based edge to be included in the unswitched switch in some 239 // cases. 240 // FIXME: This is really, really gross. It would be much cleaner if LLVM 241 // allowed us to create a single entry for a predecessor block without 242 // having separate entries for each "edge" even though these edges are 243 // required to produce identical results. 244 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 245 if (PN.getIncomingBlock(i) != &OldExitingBB) 246 continue; 247 248 Value *Incoming = PN.getIncomingValue(i); 249 if (FullUnswitch) 250 // No more edge from the old exiting block to the exit block. 251 PN.removeIncomingValue(i); 252 253 NewPN->addIncoming(Incoming, &OldPH); 254 } 255 256 // Now replace the old PHI with the new one and wire the old one in as an 257 // input to the new one. 258 PN.replaceAllUsesWith(NewPN); 259 NewPN->addIncoming(&PN, &ExitBB); 260 } 261 } 262 263 /// Hoist the current loop up to the innermost loop containing a remaining exit. 264 /// 265 /// Because we've removed an exit from the loop, we may have changed the set of 266 /// loops reachable and need to move the current loop up the loop nest or even 267 /// to an entirely separate nest. 268 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 269 DominatorTree &DT, LoopInfo &LI) { 270 // If the loop is already at the top level, we can't hoist it anywhere. 271 Loop *OldParentL = L.getParentLoop(); 272 if (!OldParentL) 273 return; 274 275 SmallVector<BasicBlock *, 4> Exits; 276 L.getExitBlocks(Exits); 277 Loop *NewParentL = nullptr; 278 for (auto *ExitBB : Exits) 279 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 280 if (!NewParentL || NewParentL->contains(ExitL)) 281 NewParentL = ExitL; 282 283 if (NewParentL == OldParentL) 284 return; 285 286 // The new parent loop (if different) should always contain the old one. 287 if (NewParentL) 288 assert(NewParentL->contains(OldParentL) && 289 "Can only hoist this loop up the nest!"); 290 291 // The preheader will need to move with the body of this loop. However, 292 // because it isn't in this loop we also need to update the primary loop map. 293 assert(OldParentL == LI.getLoopFor(&Preheader) && 294 "Parent loop of this loop should contain this loop's preheader!"); 295 LI.changeLoopFor(&Preheader, NewParentL); 296 297 // Remove this loop from its old parent. 298 OldParentL->removeChildLoop(&L); 299 300 // Add the loop either to the new parent or as a top-level loop. 301 if (NewParentL) 302 NewParentL->addChildLoop(&L); 303 else 304 LI.addTopLevelLoop(&L); 305 306 // Remove this loops blocks from the old parent and every other loop up the 307 // nest until reaching the new parent. Also update all of these 308 // no-longer-containing loops to reflect the nesting change. 309 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 310 OldContainingL = OldContainingL->getParentLoop()) { 311 llvm::erase_if(OldContainingL->getBlocksVector(), 312 [&](const BasicBlock *BB) { 313 return BB == &Preheader || L.contains(BB); 314 }); 315 316 OldContainingL->getBlocksSet().erase(&Preheader); 317 for (BasicBlock *BB : L.blocks()) 318 OldContainingL->getBlocksSet().erase(BB); 319 320 // Because we just hoisted a loop out of this one, we have essentially 321 // created new exit paths from it. That means we need to form LCSSA PHI 322 // nodes for values used in the no-longer-nested loop. 323 formLCSSA(*OldContainingL, DT, &LI, nullptr); 324 325 // We shouldn't need to form dedicated exits because the exit introduced 326 // here is the (just split by unswitching) preheader. However, after trivial 327 // unswitching it is possible to get new non-dedicated exits out of parent 328 // loop so let's conservatively form dedicated exit blocks and figure out 329 // if we can optimize later. 330 formDedicatedExitBlocks(OldContainingL, &DT, &LI, /*PreserveLCSSA*/ true); 331 } 332 } 333 334 /// Unswitch a trivial branch if the condition is loop invariant. 335 /// 336 /// This routine should only be called when loop code leading to the branch has 337 /// been validated as trivial (no side effects). This routine checks if the 338 /// condition is invariant and one of the successors is a loop exit. This 339 /// allows us to unswitch without duplicating the loop, making it trivial. 340 /// 341 /// If this routine fails to unswitch the branch it returns false. 342 /// 343 /// If the branch can be unswitched, this routine splits the preheader and 344 /// hoists the branch above that split. Preserves loop simplified form 345 /// (splitting the exit block as necessary). It simplifies the branch within 346 /// the loop to an unconditional branch but doesn't remove it entirely. Further 347 /// cleanup can be done with some simplify-cfg like pass. 348 /// 349 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 350 /// invalidated by this. 351 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 352 LoopInfo &LI, ScalarEvolution *SE) { 353 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 354 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 355 356 // The loop invariant values that we want to unswitch. 357 TinyPtrVector<Value *> Invariants; 358 359 // When true, we're fully unswitching the branch rather than just unswitching 360 // some input conditions to the branch. 361 bool FullUnswitch = false; 362 363 if (L.isLoopInvariant(BI.getCondition())) { 364 Invariants.push_back(BI.getCondition()); 365 FullUnswitch = true; 366 } else { 367 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 368 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 369 if (Invariants.empty()) 370 // Couldn't find invariant inputs! 371 return false; 372 } 373 374 // Check that one of the branch's successors exits, and which one. 375 bool ExitDirection = true; 376 int LoopExitSuccIdx = 0; 377 auto *LoopExitBB = BI.getSuccessor(0); 378 if (L.contains(LoopExitBB)) { 379 ExitDirection = false; 380 LoopExitSuccIdx = 1; 381 LoopExitBB = BI.getSuccessor(1); 382 if (L.contains(LoopExitBB)) 383 return false; 384 } 385 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 386 auto *ParentBB = BI.getParent(); 387 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 388 return false; 389 390 // When unswitching only part of the branch's condition, we need the exit 391 // block to be reached directly from the partially unswitched input. This can 392 // be done when the exit block is along the true edge and the branch condition 393 // is a graph of `or` operations, or the exit block is along the false edge 394 // and the condition is a graph of `and` operations. 395 if (!FullUnswitch) { 396 if (ExitDirection) { 397 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 398 return false; 399 } else { 400 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 401 return false; 402 } 403 } 404 405 LLVM_DEBUG({ 406 dbgs() << " unswitching trivial invariant conditions for: " << BI 407 << "\n"; 408 for (Value *Invariant : Invariants) { 409 dbgs() << " " << *Invariant << " == true"; 410 if (Invariant != Invariants.back()) 411 dbgs() << " ||"; 412 dbgs() << "\n"; 413 } 414 }); 415 416 // If we have scalar evolutions, we need to invalidate them including this 417 // loop and the loop containing the exit block. 418 if (SE) { 419 if (Loop *ExitL = LI.getLoopFor(LoopExitBB)) 420 SE->forgetLoop(ExitL); 421 else 422 // Forget the entire nest as this exits the entire nest. 423 SE->forgetTopmostLoop(&L); 424 } 425 426 // Split the preheader, so that we know that there is a safe place to insert 427 // the conditional branch. We will change the preheader to have a conditional 428 // branch on LoopCond. 429 BasicBlock *OldPH = L.getLoopPreheader(); 430 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 431 432 // Now that we have a place to insert the conditional branch, create a place 433 // to branch to: this is the exit block out of the loop that we are 434 // unswitching. We need to split this if there are other loop predecessors. 435 // Because the loop is in simplified form, *any* other predecessor is enough. 436 BasicBlock *UnswitchedBB; 437 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 438 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 439 "A branch's parent isn't a predecessor!"); 440 UnswitchedBB = LoopExitBB; 441 } else { 442 UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI); 443 } 444 445 // Actually move the invariant uses into the unswitched position. If possible, 446 // we do this by moving the instructions, but when doing partial unswitching 447 // we do it by building a new merge of the values in the unswitched position. 448 OldPH->getTerminator()->eraseFromParent(); 449 if (FullUnswitch) { 450 // If fully unswitching, we can use the existing branch instruction. 451 // Splice it into the old PH to gate reaching the new preheader and re-point 452 // its successors. 453 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 454 BI); 455 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 456 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 457 458 // Create a new unconditional branch that will continue the loop as a new 459 // terminator. 460 BranchInst::Create(ContinueBB, ParentBB); 461 } else { 462 // Only unswitching a subset of inputs to the condition, so we will need to 463 // build a new branch that merges the invariant inputs. 464 if (ExitDirection) 465 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 466 Instruction::Or && 467 "Must have an `or` of `i1`s for the condition!"); 468 else 469 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 470 Instruction::And && 471 "Must have an `and` of `i1`s for the condition!"); 472 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 473 *UnswitchedBB, *NewPH); 474 } 475 476 // Rewrite the relevant PHI nodes. 477 if (UnswitchedBB == LoopExitBB) 478 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 479 else 480 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 481 *ParentBB, *OldPH, FullUnswitch); 482 483 // Now we need to update the dominator tree. 484 SmallVector<DominatorTree::UpdateType, 2> DTUpdates; 485 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 486 if (FullUnswitch) 487 DTUpdates.push_back({DT.Delete, ParentBB, LoopExitBB}); 488 DT.applyUpdates(DTUpdates); 489 490 // The constant we can replace all of our invariants with inside the loop 491 // body. If any of the invariants have a value other than this the loop won't 492 // be entered. 493 ConstantInt *Replacement = ExitDirection 494 ? ConstantInt::getFalse(BI.getContext()) 495 : ConstantInt::getTrue(BI.getContext()); 496 497 // Since this is an i1 condition we can also trivially replace uses of it 498 // within the loop with a constant. 499 for (Value *Invariant : Invariants) 500 replaceLoopInvariantUses(L, Invariant, *Replacement); 501 502 // If this was full unswitching, we may have changed the nesting relationship 503 // for this loop so hoist it to its correct parent if needed. 504 if (FullUnswitch) 505 hoistLoopToNewParent(L, *NewPH, DT, LI); 506 507 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 508 ++NumTrivial; 509 ++NumBranches; 510 return true; 511 } 512 513 /// Unswitch a trivial switch if the condition is loop invariant. 514 /// 515 /// This routine should only be called when loop code leading to the switch has 516 /// been validated as trivial (no side effects). This routine checks if the 517 /// condition is invariant and that at least one of the successors is a loop 518 /// exit. This allows us to unswitch without duplicating the loop, making it 519 /// trivial. 520 /// 521 /// If this routine fails to unswitch the switch it returns false. 522 /// 523 /// If the switch can be unswitched, this routine splits the preheader and 524 /// copies the switch above that split. If the default case is one of the 525 /// exiting cases, it copies the non-exiting cases and points them at the new 526 /// preheader. If the default case is not exiting, it copies the exiting cases 527 /// and points the default at the preheader. It preserves loop simplified form 528 /// (splitting the exit blocks as necessary). It simplifies the switch within 529 /// the loop by removing now-dead cases. If the default case is one of those 530 /// unswitched, it replaces its destination with a new basic block containing 531 /// only unreachable. Such basic blocks, while technically loop exits, are not 532 /// considered for unswitching so this is a stable transform and the same 533 /// switch will not be revisited. If after unswitching there is only a single 534 /// in-loop successor, the switch is further simplified to an unconditional 535 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 536 /// 537 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 538 /// invalidated by this. 539 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 540 LoopInfo &LI, ScalarEvolution *SE) { 541 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 542 Value *LoopCond = SI.getCondition(); 543 544 // If this isn't switching on an invariant condition, we can't unswitch it. 545 if (!L.isLoopInvariant(LoopCond)) 546 return false; 547 548 auto *ParentBB = SI.getParent(); 549 550 SmallVector<int, 4> ExitCaseIndices; 551 for (auto Case : SI.cases()) { 552 auto *SuccBB = Case.getCaseSuccessor(); 553 if (!L.contains(SuccBB) && 554 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 555 ExitCaseIndices.push_back(Case.getCaseIndex()); 556 } 557 BasicBlock *DefaultExitBB = nullptr; 558 if (!L.contains(SI.getDefaultDest()) && 559 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 560 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 561 DefaultExitBB = SI.getDefaultDest(); 562 else if (ExitCaseIndices.empty()) 563 return false; 564 565 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 566 567 // We may need to invalidate SCEVs for the outermost loop reached by any of 568 // the exits. 569 Loop *OuterL = &L; 570 571 if (DefaultExitBB) { 572 // Clear out the default destination temporarily to allow accurate 573 // predecessor lists to be examined below. 574 SI.setDefaultDest(nullptr); 575 // Check the loop containing this exit. 576 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 577 if (!ExitL || ExitL->contains(OuterL)) 578 OuterL = ExitL; 579 } 580 581 // Store the exit cases into a separate data structure and remove them from 582 // the switch. 583 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 584 ExitCases.reserve(ExitCaseIndices.size()); 585 // We walk the case indices backwards so that we remove the last case first 586 // and don't disrupt the earlier indices. 587 for (unsigned Index : reverse(ExitCaseIndices)) { 588 auto CaseI = SI.case_begin() + Index; 589 // Compute the outer loop from this exit. 590 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 591 if (!ExitL || ExitL->contains(OuterL)) 592 OuterL = ExitL; 593 // Save the value of this case. 594 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 595 // Delete the unswitched cases. 596 SI.removeCase(CaseI); 597 } 598 599 if (SE) { 600 if (OuterL) 601 SE->forgetLoop(OuterL); 602 else 603 SE->forgetTopmostLoop(&L); 604 } 605 606 // Check if after this all of the remaining cases point at the same 607 // successor. 608 BasicBlock *CommonSuccBB = nullptr; 609 if (SI.getNumCases() > 0 && 610 std::all_of(std::next(SI.case_begin()), SI.case_end(), 611 [&SI](const SwitchInst::CaseHandle &Case) { 612 return Case.getCaseSuccessor() == 613 SI.case_begin()->getCaseSuccessor(); 614 })) 615 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 616 if (!DefaultExitBB) { 617 // If we're not unswitching the default, we need it to match any cases to 618 // have a common successor or if we have no cases it is the common 619 // successor. 620 if (SI.getNumCases() == 0) 621 CommonSuccBB = SI.getDefaultDest(); 622 else if (SI.getDefaultDest() != CommonSuccBB) 623 CommonSuccBB = nullptr; 624 } 625 626 // Split the preheader, so that we know that there is a safe place to insert 627 // the switch. 628 BasicBlock *OldPH = L.getLoopPreheader(); 629 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 630 OldPH->getTerminator()->eraseFromParent(); 631 632 // Now add the unswitched switch. 633 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 634 635 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 636 // First, we split any exit blocks with remaining in-loop predecessors. Then 637 // we update the PHIs in one of two ways depending on if there was a split. 638 // We walk in reverse so that we split in the same order as the cases 639 // appeared. This is purely for convenience of reading the resulting IR, but 640 // it doesn't cost anything really. 641 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 642 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 643 // Handle the default exit if necessary. 644 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 645 // ranges aren't quite powerful enough yet. 646 if (DefaultExitBB) { 647 if (pred_empty(DefaultExitBB)) { 648 UnswitchedExitBBs.insert(DefaultExitBB); 649 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 650 } else { 651 auto *SplitBB = 652 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI); 653 rewritePHINodesForExitAndUnswitchedBlocks( 654 *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 655 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 656 } 657 } 658 // Note that we must use a reference in the for loop so that we update the 659 // container. 660 for (auto &CasePair : reverse(ExitCases)) { 661 // Grab a reference to the exit block in the pair so that we can update it. 662 BasicBlock *ExitBB = CasePair.second; 663 664 // If this case is the last edge into the exit block, we can simply reuse it 665 // as it will no longer be a loop exit. No mapping necessary. 666 if (pred_empty(ExitBB)) { 667 // Only rewrite once. 668 if (UnswitchedExitBBs.insert(ExitBB).second) 669 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 670 continue; 671 } 672 673 // Otherwise we need to split the exit block so that we retain an exit 674 // block from the loop and a target for the unswitched condition. 675 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 676 if (!SplitExitBB) { 677 // If this is the first time we see this, do the split and remember it. 678 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 679 rewritePHINodesForExitAndUnswitchedBlocks( 680 *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 681 } 682 // Update the case pair to point to the split block. 683 CasePair.second = SplitExitBB; 684 } 685 686 // Now add the unswitched cases. We do this in reverse order as we built them 687 // in reverse order. 688 for (auto CasePair : reverse(ExitCases)) { 689 ConstantInt *CaseVal = CasePair.first; 690 BasicBlock *UnswitchedBB = CasePair.second; 691 692 NewSI->addCase(CaseVal, UnswitchedBB); 693 } 694 695 // If the default was unswitched, re-point it and add explicit cases for 696 // entering the loop. 697 if (DefaultExitBB) { 698 NewSI->setDefaultDest(DefaultExitBB); 699 700 // We removed all the exit cases, so we just copy the cases to the 701 // unswitched switch. 702 for (auto Case : SI.cases()) 703 NewSI->addCase(Case.getCaseValue(), NewPH); 704 } 705 706 // If we ended up with a common successor for every path through the switch 707 // after unswitching, rewrite it to an unconditional branch to make it easy 708 // to recognize. Otherwise we potentially have to recognize the default case 709 // pointing at unreachable and other complexity. 710 if (CommonSuccBB) { 711 BasicBlock *BB = SI.getParent(); 712 // We may have had multiple edges to this common successor block, so remove 713 // them as predecessors. We skip the first one, either the default or the 714 // actual first case. 715 bool SkippedFirst = DefaultExitBB == nullptr; 716 for (auto Case : SI.cases()) { 717 assert(Case.getCaseSuccessor() == CommonSuccBB && 718 "Non-common successor!"); 719 (void)Case; 720 if (!SkippedFirst) { 721 SkippedFirst = true; 722 continue; 723 } 724 CommonSuccBB->removePredecessor(BB, 725 /*DontDeleteUselessPHIs*/ true); 726 } 727 // Now nuke the switch and replace it with a direct branch. 728 SI.eraseFromParent(); 729 BranchInst::Create(CommonSuccBB, BB); 730 } else if (DefaultExitBB) { 731 assert(SI.getNumCases() > 0 && 732 "If we had no cases we'd have a common successor!"); 733 // Move the last case to the default successor. This is valid as if the 734 // default got unswitched it cannot be reached. This has the advantage of 735 // being simple and keeping the number of edges from this switch to 736 // successors the same, and avoiding any PHI update complexity. 737 auto LastCaseI = std::prev(SI.case_end()); 738 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 739 SI.removeCase(LastCaseI); 740 } 741 742 // Walk the unswitched exit blocks and the unswitched split blocks and update 743 // the dominator tree based on the CFG edits. While we are walking unordered 744 // containers here, the API for applyUpdates takes an unordered list of 745 // updates and requires them to not contain duplicates. 746 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 747 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 748 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 749 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 750 } 751 for (auto SplitUnswitchedPair : SplitExitBBMap) { 752 auto *UnswitchedBB = SplitUnswitchedPair.second; 753 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); 754 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 755 } 756 DT.applyUpdates(DTUpdates); 757 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 758 759 // We may have changed the nesting relationship for this loop so hoist it to 760 // its correct parent if needed. 761 hoistLoopToNewParent(L, *NewPH, DT, LI); 762 763 ++NumTrivial; 764 ++NumSwitches; 765 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 766 return true; 767 } 768 769 /// This routine scans the loop to find a branch or switch which occurs before 770 /// any side effects occur. These can potentially be unswitched without 771 /// duplicating the loop. If a branch or switch is successfully unswitched the 772 /// scanning continues to see if subsequent branches or switches have become 773 /// trivial. Once all trivial candidates have been unswitched, this routine 774 /// returns. 775 /// 776 /// The return value indicates whether anything was unswitched (and therefore 777 /// changed). 778 /// 779 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 780 /// invalidated by this. 781 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 782 LoopInfo &LI, ScalarEvolution *SE) { 783 bool Changed = false; 784 785 // If loop header has only one reachable successor we should keep looking for 786 // trivial condition candidates in the successor as well. An alternative is 787 // to constant fold conditions and merge successors into loop header (then we 788 // only need to check header's terminator). The reason for not doing this in 789 // LoopUnswitch pass is that it could potentially break LoopPassManager's 790 // invariants. Folding dead branches could either eliminate the current loop 791 // or make other loops unreachable. LCSSA form might also not be preserved 792 // after deleting branches. The following code keeps traversing loop header's 793 // successors until it finds the trivial condition candidate (condition that 794 // is not a constant). Since unswitching generates branches with constant 795 // conditions, this scenario could be very common in practice. 796 BasicBlock *CurrentBB = L.getHeader(); 797 SmallPtrSet<BasicBlock *, 8> Visited; 798 Visited.insert(CurrentBB); 799 do { 800 // Check if there are any side-effecting instructions (e.g. stores, calls, 801 // volatile loads) in the part of the loop that the code *would* execute 802 // without unswitching. 803 if (llvm::any_of(*CurrentBB, 804 [](Instruction &I) { return I.mayHaveSideEffects(); })) 805 return Changed; 806 807 Instruction *CurrentTerm = CurrentBB->getTerminator(); 808 809 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 810 // Don't bother trying to unswitch past a switch with a constant 811 // condition. This should be removed prior to running this pass by 812 // simplify-cfg. 813 if (isa<Constant>(SI->getCondition())) 814 return Changed; 815 816 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE)) 817 // Couldn't unswitch this one so we're done. 818 return Changed; 819 820 // Mark that we managed to unswitch something. 821 Changed = true; 822 823 // If unswitching turned the terminator into an unconditional branch then 824 // we can continue. The unswitching logic specifically works to fold any 825 // cases it can into an unconditional branch to make it easier to 826 // recognize here. 827 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 828 if (!BI || BI->isConditional()) 829 return Changed; 830 831 CurrentBB = BI->getSuccessor(0); 832 continue; 833 } 834 835 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 836 if (!BI) 837 // We do not understand other terminator instructions. 838 return Changed; 839 840 // Don't bother trying to unswitch past an unconditional branch or a branch 841 // with a constant value. These should be removed by simplify-cfg prior to 842 // running this pass. 843 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 844 return Changed; 845 846 // Found a trivial condition candidate: non-foldable conditional branch. If 847 // we fail to unswitch this, we can't do anything else that is trivial. 848 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE)) 849 return Changed; 850 851 // Mark that we managed to unswitch something. 852 Changed = true; 853 854 // If we only unswitched some of the conditions feeding the branch, we won't 855 // have collapsed it to a single successor. 856 BI = cast<BranchInst>(CurrentBB->getTerminator()); 857 if (BI->isConditional()) 858 return Changed; 859 860 // Follow the newly unconditional branch into its successor. 861 CurrentBB = BI->getSuccessor(0); 862 863 // When continuing, if we exit the loop or reach a previous visited block, 864 // then we can not reach any trivial condition candidates (unfoldable 865 // branch instructions or switch instructions) and no unswitch can happen. 866 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 867 868 return Changed; 869 } 870 871 /// Build the cloned blocks for an unswitched copy of the given loop. 872 /// 873 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 874 /// after the split block (`SplitBB`) that will be used to select between the 875 /// cloned and original loop. 876 /// 877 /// This routine handles cloning all of the necessary loop blocks and exit 878 /// blocks including rewriting their instructions and the relevant PHI nodes. 879 /// Any loop blocks or exit blocks which are dominated by a different successor 880 /// than the one for this clone of the loop blocks can be trivially skipped. We 881 /// use the `DominatingSucc` map to determine whether a block satisfies that 882 /// property with a simple map lookup. 883 /// 884 /// It also correctly creates the unconditional branch in the cloned 885 /// unswitched parent block to only point at the unswitched successor. 886 /// 887 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 888 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 889 /// the cloned blocks (and their loops) are left without full `LoopInfo` 890 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 891 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 892 /// instead the caller must recompute an accurate DT. It *does* correctly 893 /// update the `AssumptionCache` provided in `AC`. 894 static BasicBlock *buildClonedLoopBlocks( 895 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 896 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 897 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 898 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 899 ValueToValueMapTy &VMap, 900 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 901 DominatorTree &DT, LoopInfo &LI) { 902 SmallVector<BasicBlock *, 4> NewBlocks; 903 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 904 905 // We will need to clone a bunch of blocks, wrap up the clone operation in 906 // a helper. 907 auto CloneBlock = [&](BasicBlock *OldBB) { 908 // Clone the basic block and insert it before the new preheader. 909 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 910 NewBB->moveBefore(LoopPH); 911 912 // Record this block and the mapping. 913 NewBlocks.push_back(NewBB); 914 VMap[OldBB] = NewBB; 915 916 return NewBB; 917 }; 918 919 // We skip cloning blocks when they have a dominating succ that is not the 920 // succ we are cloning for. 921 auto SkipBlock = [&](BasicBlock *BB) { 922 auto It = DominatingSucc.find(BB); 923 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 924 }; 925 926 // First, clone the preheader. 927 auto *ClonedPH = CloneBlock(LoopPH); 928 929 // Then clone all the loop blocks, skipping the ones that aren't necessary. 930 for (auto *LoopBB : L.blocks()) 931 if (!SkipBlock(LoopBB)) 932 CloneBlock(LoopBB); 933 934 // Split all the loop exit edges so that when we clone the exit blocks, if 935 // any of the exit blocks are *also* a preheader for some other loop, we 936 // don't create multiple predecessors entering the loop header. 937 for (auto *ExitBB : ExitBlocks) { 938 if (SkipBlock(ExitBB)) 939 continue; 940 941 // When we are going to clone an exit, we don't need to clone all the 942 // instructions in the exit block and we want to ensure we have an easy 943 // place to merge the CFG, so split the exit first. This is always safe to 944 // do because there cannot be any non-loop predecessors of a loop exit in 945 // loop simplified form. 946 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 947 948 // Rearrange the names to make it easier to write test cases by having the 949 // exit block carry the suffix rather than the merge block carrying the 950 // suffix. 951 MergeBB->takeName(ExitBB); 952 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 953 954 // Now clone the original exit block. 955 auto *ClonedExitBB = CloneBlock(ExitBB); 956 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 957 "Exit block should have been split to have one successor!"); 958 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 959 "Cloned exit block has the wrong successor!"); 960 961 // Remap any cloned instructions and create a merge phi node for them. 962 for (auto ZippedInsts : llvm::zip_first( 963 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 964 llvm::make_range(ClonedExitBB->begin(), 965 std::prev(ClonedExitBB->end())))) { 966 Instruction &I = std::get<0>(ZippedInsts); 967 Instruction &ClonedI = std::get<1>(ZippedInsts); 968 969 // The only instructions in the exit block should be PHI nodes and 970 // potentially a landing pad. 971 assert( 972 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 973 "Bad instruction in exit block!"); 974 // We should have a value map between the instruction and its clone. 975 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 976 977 auto *MergePN = 978 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 979 &*MergeBB->getFirstInsertionPt()); 980 I.replaceAllUsesWith(MergePN); 981 MergePN->addIncoming(&I, ExitBB); 982 MergePN->addIncoming(&ClonedI, ClonedExitBB); 983 } 984 } 985 986 // Rewrite the instructions in the cloned blocks to refer to the instructions 987 // in the cloned blocks. We have to do this as a second pass so that we have 988 // everything available. Also, we have inserted new instructions which may 989 // include assume intrinsics, so we update the assumption cache while 990 // processing this. 991 for (auto *ClonedBB : NewBlocks) 992 for (Instruction &I : *ClonedBB) { 993 RemapInstruction(&I, VMap, 994 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 995 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 996 if (II->getIntrinsicID() == Intrinsic::assume) 997 AC.registerAssumption(II); 998 } 999 1000 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1001 // have spurious incoming values. 1002 for (auto *LoopBB : L.blocks()) 1003 if (SkipBlock(LoopBB)) 1004 for (auto *SuccBB : successors(LoopBB)) 1005 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1006 for (PHINode &PN : ClonedSuccBB->phis()) 1007 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1008 1009 // Remove the cloned parent as a predecessor of any successor we ended up 1010 // cloning other than the unswitched one. 1011 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1012 for (auto *SuccBB : successors(ParentBB)) { 1013 if (SuccBB == UnswitchedSuccBB) 1014 continue; 1015 1016 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1017 if (!ClonedSuccBB) 1018 continue; 1019 1020 ClonedSuccBB->removePredecessor(ClonedParentBB, 1021 /*DontDeleteUselessPHIs*/ true); 1022 } 1023 1024 // Replace the cloned branch with an unconditional branch to the cloned 1025 // unswitched successor. 1026 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1027 ClonedParentBB->getTerminator()->eraseFromParent(); 1028 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1029 1030 // If there are duplicate entries in the PHI nodes because of multiple edges 1031 // to the unswitched successor, we need to nuke all but one as we replaced it 1032 // with a direct branch. 1033 for (PHINode &PN : ClonedSuccBB->phis()) { 1034 bool Found = false; 1035 // Loop over the incoming operands backwards so we can easily delete as we 1036 // go without invalidating the index. 1037 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1038 if (PN.getIncomingBlock(i) != ClonedParentBB) 1039 continue; 1040 if (!Found) { 1041 Found = true; 1042 continue; 1043 } 1044 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1045 } 1046 } 1047 1048 // Record the domtree updates for the new blocks. 1049 SmallPtrSet<BasicBlock *, 4> SuccSet; 1050 for (auto *ClonedBB : NewBlocks) { 1051 for (auto *SuccBB : successors(ClonedBB)) 1052 if (SuccSet.insert(SuccBB).second) 1053 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1054 SuccSet.clear(); 1055 } 1056 1057 return ClonedPH; 1058 } 1059 1060 /// Recursively clone the specified loop and all of its children. 1061 /// 1062 /// The target parent loop for the clone should be provided, or can be null if 1063 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1064 /// with the provided value map. The entire original loop must be present in 1065 /// the value map. The cloned loop is returned. 1066 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1067 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1068 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1069 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1070 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1071 for (auto *BB : OrigL.blocks()) { 1072 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1073 ClonedL.addBlockEntry(ClonedBB); 1074 if (LI.getLoopFor(BB) == &OrigL) 1075 LI.changeLoopFor(ClonedBB, &ClonedL); 1076 } 1077 }; 1078 1079 // We specially handle the first loop because it may get cloned into 1080 // a different parent and because we most commonly are cloning leaf loops. 1081 Loop *ClonedRootL = LI.AllocateLoop(); 1082 if (RootParentL) 1083 RootParentL->addChildLoop(ClonedRootL); 1084 else 1085 LI.addTopLevelLoop(ClonedRootL); 1086 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1087 1088 if (OrigRootL.empty()) 1089 return ClonedRootL; 1090 1091 // If we have a nest, we can quickly clone the entire loop nest using an 1092 // iterative approach because it is a tree. We keep the cloned parent in the 1093 // data structure to avoid repeatedly querying through a map to find it. 1094 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1095 // Build up the loops to clone in reverse order as we'll clone them from the 1096 // back. 1097 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1098 LoopsToClone.push_back({ClonedRootL, ChildL}); 1099 do { 1100 Loop *ClonedParentL, *L; 1101 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1102 Loop *ClonedL = LI.AllocateLoop(); 1103 ClonedParentL->addChildLoop(ClonedL); 1104 AddClonedBlocksToLoop(*L, *ClonedL); 1105 for (Loop *ChildL : llvm::reverse(*L)) 1106 LoopsToClone.push_back({ClonedL, ChildL}); 1107 } while (!LoopsToClone.empty()); 1108 1109 return ClonedRootL; 1110 } 1111 1112 /// Build the cloned loops of an original loop from unswitching. 1113 /// 1114 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1115 /// operation. We need to re-verify that there even is a loop (as the backedge 1116 /// may not have been cloned), and even if there are remaining backedges the 1117 /// backedge set may be different. However, we know that each child loop is 1118 /// undisturbed, we only need to find where to place each child loop within 1119 /// either any parent loop or within a cloned version of the original loop. 1120 /// 1121 /// Because child loops may end up cloned outside of any cloned version of the 1122 /// original loop, multiple cloned sibling loops may be created. All of them 1123 /// are returned so that the newly introduced loop nest roots can be 1124 /// identified. 1125 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1126 const ValueToValueMapTy &VMap, LoopInfo &LI, 1127 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1128 Loop *ClonedL = nullptr; 1129 1130 auto *OrigPH = OrigL.getLoopPreheader(); 1131 auto *OrigHeader = OrigL.getHeader(); 1132 1133 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1134 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1135 1136 // We need to know the loops of the cloned exit blocks to even compute the 1137 // accurate parent loop. If we only clone exits to some parent of the 1138 // original parent, we want to clone into that outer loop. We also keep track 1139 // of the loops that our cloned exit blocks participate in. 1140 Loop *ParentL = nullptr; 1141 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1142 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1143 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1144 for (auto *ExitBB : ExitBlocks) 1145 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1146 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1147 ExitLoopMap[ClonedExitBB] = ExitL; 1148 ClonedExitsInLoops.push_back(ClonedExitBB); 1149 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1150 ParentL = ExitL; 1151 } 1152 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1153 ParentL->contains(OrigL.getParentLoop())) && 1154 "The computed parent loop should always contain (or be) the parent of " 1155 "the original loop."); 1156 1157 // We build the set of blocks dominated by the cloned header from the set of 1158 // cloned blocks out of the original loop. While not all of these will 1159 // necessarily be in the cloned loop, it is enough to establish that they 1160 // aren't in unreachable cycles, etc. 1161 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1162 for (auto *BB : OrigL.blocks()) 1163 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1164 ClonedLoopBlocks.insert(ClonedBB); 1165 1166 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1167 // skipped cloning some region of this loop which can in turn skip some of 1168 // the backedges so we have to rebuild the blocks in the loop based on the 1169 // backedges that remain after cloning. 1170 SmallVector<BasicBlock *, 16> Worklist; 1171 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1172 for (auto *Pred : predecessors(ClonedHeader)) { 1173 // The only possible non-loop header predecessor is the preheader because 1174 // we know we cloned the loop in simplified form. 1175 if (Pred == ClonedPH) 1176 continue; 1177 1178 // Because the loop was in simplified form, the only non-loop predecessor 1179 // should be the preheader. 1180 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1181 "header other than the preheader " 1182 "that is not part of the loop!"); 1183 1184 // Insert this block into the loop set and on the first visit (and if it 1185 // isn't the header we're currently walking) put it into the worklist to 1186 // recurse through. 1187 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1188 Worklist.push_back(Pred); 1189 } 1190 1191 // If we had any backedges then there *is* a cloned loop. Put the header into 1192 // the loop set and then walk the worklist backwards to find all the blocks 1193 // that remain within the loop after cloning. 1194 if (!BlocksInClonedLoop.empty()) { 1195 BlocksInClonedLoop.insert(ClonedHeader); 1196 1197 while (!Worklist.empty()) { 1198 BasicBlock *BB = Worklist.pop_back_val(); 1199 assert(BlocksInClonedLoop.count(BB) && 1200 "Didn't put block into the loop set!"); 1201 1202 // Insert any predecessors that are in the possible set into the cloned 1203 // set, and if the insert is successful, add them to the worklist. Note 1204 // that we filter on the blocks that are definitely reachable via the 1205 // backedge to the loop header so we may prune out dead code within the 1206 // cloned loop. 1207 for (auto *Pred : predecessors(BB)) 1208 if (ClonedLoopBlocks.count(Pred) && 1209 BlocksInClonedLoop.insert(Pred).second) 1210 Worklist.push_back(Pred); 1211 } 1212 1213 ClonedL = LI.AllocateLoop(); 1214 if (ParentL) { 1215 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1216 ParentL->addChildLoop(ClonedL); 1217 } else { 1218 LI.addTopLevelLoop(ClonedL); 1219 } 1220 NonChildClonedLoops.push_back(ClonedL); 1221 1222 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1223 // We don't want to just add the cloned loop blocks based on how we 1224 // discovered them. The original order of blocks was carefully built in 1225 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1226 // that logic, we just re-walk the original blocks (and those of the child 1227 // loops) and filter them as we add them into the cloned loop. 1228 for (auto *BB : OrigL.blocks()) { 1229 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1230 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1231 continue; 1232 1233 // Directly add the blocks that are only in this loop. 1234 if (LI.getLoopFor(BB) == &OrigL) { 1235 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1236 continue; 1237 } 1238 1239 // We want to manually add it to this loop and parents. 1240 // Registering it with LoopInfo will happen when we clone the top 1241 // loop for this block. 1242 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1243 PL->addBlockEntry(ClonedBB); 1244 } 1245 1246 // Now add each child loop whose header remains within the cloned loop. All 1247 // of the blocks within the loop must satisfy the same constraints as the 1248 // header so once we pass the header checks we can just clone the entire 1249 // child loop nest. 1250 for (Loop *ChildL : OrigL) { 1251 auto *ClonedChildHeader = 1252 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1253 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1254 continue; 1255 1256 #ifndef NDEBUG 1257 // We should never have a cloned child loop header but fail to have 1258 // all of the blocks for that child loop. 1259 for (auto *ChildLoopBB : ChildL->blocks()) 1260 assert(BlocksInClonedLoop.count( 1261 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1262 "Child cloned loop has a header within the cloned outer " 1263 "loop but not all of its blocks!"); 1264 #endif 1265 1266 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1267 } 1268 } 1269 1270 // Now that we've handled all the components of the original loop that were 1271 // cloned into a new loop, we still need to handle anything from the original 1272 // loop that wasn't in a cloned loop. 1273 1274 // Figure out what blocks are left to place within any loop nest containing 1275 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1276 // them. 1277 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1278 if (BlocksInClonedLoop.empty()) 1279 UnloopedBlockSet.insert(ClonedPH); 1280 for (auto *ClonedBB : ClonedLoopBlocks) 1281 if (!BlocksInClonedLoop.count(ClonedBB)) 1282 UnloopedBlockSet.insert(ClonedBB); 1283 1284 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1285 // backwards across these to process them inside out. The order shouldn't 1286 // matter as we're just trying to build up the map from inside-out; we use 1287 // the map in a more stably ordered way below. 1288 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1289 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1290 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1291 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1292 }); 1293 1294 // Populate the existing ExitLoopMap with everything reachable from each 1295 // exit, starting from the inner most exit. 1296 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1297 assert(Worklist.empty() && "Didn't clear worklist!"); 1298 1299 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1300 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1301 1302 // Walk the CFG back until we hit the cloned PH adding everything reachable 1303 // and in the unlooped set to this exit block's loop. 1304 Worklist.push_back(ExitBB); 1305 do { 1306 BasicBlock *BB = Worklist.pop_back_val(); 1307 // We can stop recursing at the cloned preheader (if we get there). 1308 if (BB == ClonedPH) 1309 continue; 1310 1311 for (BasicBlock *PredBB : predecessors(BB)) { 1312 // If this pred has already been moved to our set or is part of some 1313 // (inner) loop, no update needed. 1314 if (!UnloopedBlockSet.erase(PredBB)) { 1315 assert( 1316 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1317 "Predecessor not mapped to a loop!"); 1318 continue; 1319 } 1320 1321 // We just insert into the loop set here. We'll add these blocks to the 1322 // exit loop after we build up the set in an order that doesn't rely on 1323 // predecessor order (which in turn relies on use list order). 1324 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1325 (void)Inserted; 1326 assert(Inserted && "Should only visit an unlooped block once!"); 1327 1328 // And recurse through to its predecessors. 1329 Worklist.push_back(PredBB); 1330 } 1331 } while (!Worklist.empty()); 1332 } 1333 1334 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1335 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1336 // in their original order adding them to the correct loop. 1337 1338 // We need a stable insertion order. We use the order of the original loop 1339 // order and map into the correct parent loop. 1340 for (auto *BB : llvm::concat<BasicBlock *const>( 1341 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1342 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1343 OuterL->addBasicBlockToLoop(BB, LI); 1344 1345 #ifndef NDEBUG 1346 for (auto &BBAndL : ExitLoopMap) { 1347 auto *BB = BBAndL.first; 1348 auto *OuterL = BBAndL.second; 1349 assert(LI.getLoopFor(BB) == OuterL && 1350 "Failed to put all blocks into outer loops!"); 1351 } 1352 #endif 1353 1354 // Now that all the blocks are placed into the correct containing loop in the 1355 // absence of child loops, find all the potentially cloned child loops and 1356 // clone them into whatever outer loop we placed their header into. 1357 for (Loop *ChildL : OrigL) { 1358 auto *ClonedChildHeader = 1359 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1360 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1361 continue; 1362 1363 #ifndef NDEBUG 1364 for (auto *ChildLoopBB : ChildL->blocks()) 1365 assert(VMap.count(ChildLoopBB) && 1366 "Cloned a child loop header but not all of that loops blocks!"); 1367 #endif 1368 1369 NonChildClonedLoops.push_back(cloneLoopNest( 1370 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1371 } 1372 } 1373 1374 static void 1375 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1376 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1377 DominatorTree &DT) { 1378 // Find all the dead clones, and remove them from their successors. 1379 SmallVector<BasicBlock *, 16> DeadBlocks; 1380 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1381 for (auto &VMap : VMaps) 1382 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1383 if (!DT.isReachableFromEntry(ClonedBB)) { 1384 for (BasicBlock *SuccBB : successors(ClonedBB)) 1385 SuccBB->removePredecessor(ClonedBB); 1386 DeadBlocks.push_back(ClonedBB); 1387 } 1388 1389 // Drop any remaining references to break cycles. 1390 for (BasicBlock *BB : DeadBlocks) 1391 BB->dropAllReferences(); 1392 // Erase them from the IR. 1393 for (BasicBlock *BB : DeadBlocks) 1394 BB->eraseFromParent(); 1395 } 1396 1397 static void 1398 deleteDeadBlocksFromLoop(Loop &L, 1399 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1400 DominatorTree &DT, LoopInfo &LI) { 1401 // Find all the dead blocks tied to this loop, and remove them from their 1402 // successors. 1403 SmallPtrSet<BasicBlock *, 16> DeadBlockSet; 1404 1405 // Start with loop/exit blocks and get a transitive closure of reachable dead 1406 // blocks. 1407 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1408 ExitBlocks.end()); 1409 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1410 while (!DeathCandidates.empty()) { 1411 auto *BB = DeathCandidates.pop_back_val(); 1412 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1413 for (BasicBlock *SuccBB : successors(BB)) { 1414 SuccBB->removePredecessor(BB); 1415 DeathCandidates.push_back(SuccBB); 1416 } 1417 DeadBlockSet.insert(BB); 1418 } 1419 } 1420 1421 // Filter out the dead blocks from the exit blocks list so that it can be 1422 // used in the caller. 1423 llvm::erase_if(ExitBlocks, 1424 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1425 1426 // Walk from this loop up through its parents removing all of the dead blocks. 1427 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1428 for (auto *BB : DeadBlockSet) 1429 ParentL->getBlocksSet().erase(BB); 1430 llvm::erase_if(ParentL->getBlocksVector(), 1431 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1432 } 1433 1434 // Now delete the dead child loops. This raw delete will clear them 1435 // recursively. 1436 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1437 if (!DeadBlockSet.count(ChildL->getHeader())) 1438 return false; 1439 1440 assert(llvm::all_of(ChildL->blocks(), 1441 [&](BasicBlock *ChildBB) { 1442 return DeadBlockSet.count(ChildBB); 1443 }) && 1444 "If the child loop header is dead all blocks in the child loop must " 1445 "be dead as well!"); 1446 LI.destroy(ChildL); 1447 return true; 1448 }); 1449 1450 // Remove the loop mappings for the dead blocks and drop all the references 1451 // from these blocks to others to handle cyclic references as we start 1452 // deleting the blocks themselves. 1453 for (auto *BB : DeadBlockSet) { 1454 // Check that the dominator tree has already been updated. 1455 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1456 LI.changeLoopFor(BB, nullptr); 1457 BB->dropAllReferences(); 1458 } 1459 1460 // Actually delete the blocks now that they've been fully unhooked from the 1461 // IR. 1462 for (auto *BB : DeadBlockSet) 1463 BB->eraseFromParent(); 1464 } 1465 1466 /// Recompute the set of blocks in a loop after unswitching. 1467 /// 1468 /// This walks from the original headers predecessors to rebuild the loop. We 1469 /// take advantage of the fact that new blocks can't have been added, and so we 1470 /// filter by the original loop's blocks. This also handles potentially 1471 /// unreachable code that we don't want to explore but might be found examining 1472 /// the predecessors of the header. 1473 /// 1474 /// If the original loop is no longer a loop, this will return an empty set. If 1475 /// it remains a loop, all the blocks within it will be added to the set 1476 /// (including those blocks in inner loops). 1477 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1478 LoopInfo &LI) { 1479 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1480 1481 auto *PH = L.getLoopPreheader(); 1482 auto *Header = L.getHeader(); 1483 1484 // A worklist to use while walking backwards from the header. 1485 SmallVector<BasicBlock *, 16> Worklist; 1486 1487 // First walk the predecessors of the header to find the backedges. This will 1488 // form the basis of our walk. 1489 for (auto *Pred : predecessors(Header)) { 1490 // Skip the preheader. 1491 if (Pred == PH) 1492 continue; 1493 1494 // Because the loop was in simplified form, the only non-loop predecessor 1495 // is the preheader. 1496 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1497 "than the preheader that is not part of the " 1498 "loop!"); 1499 1500 // Insert this block into the loop set and on the first visit and, if it 1501 // isn't the header we're currently walking, put it into the worklist to 1502 // recurse through. 1503 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1504 Worklist.push_back(Pred); 1505 } 1506 1507 // If no backedges were found, we're done. 1508 if (LoopBlockSet.empty()) 1509 return LoopBlockSet; 1510 1511 // We found backedges, recurse through them to identify the loop blocks. 1512 while (!Worklist.empty()) { 1513 BasicBlock *BB = Worklist.pop_back_val(); 1514 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1515 1516 // No need to walk past the header. 1517 if (BB == Header) 1518 continue; 1519 1520 // Because we know the inner loop structure remains valid we can use the 1521 // loop structure to jump immediately across the entire nested loop. 1522 // Further, because it is in loop simplified form, we can directly jump 1523 // to its preheader afterward. 1524 if (Loop *InnerL = LI.getLoopFor(BB)) 1525 if (InnerL != &L) { 1526 assert(L.contains(InnerL) && 1527 "Should not reach a loop *outside* this loop!"); 1528 // The preheader is the only possible predecessor of the loop so 1529 // insert it into the set and check whether it was already handled. 1530 auto *InnerPH = InnerL->getLoopPreheader(); 1531 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1532 "but not contain the inner loop " 1533 "preheader!"); 1534 if (!LoopBlockSet.insert(InnerPH).second) 1535 // The only way to reach the preheader is through the loop body 1536 // itself so if it has been visited the loop is already handled. 1537 continue; 1538 1539 // Insert all of the blocks (other than those already present) into 1540 // the loop set. We expect at least the block that led us to find the 1541 // inner loop to be in the block set, but we may also have other loop 1542 // blocks if they were already enqueued as predecessors of some other 1543 // outer loop block. 1544 for (auto *InnerBB : InnerL->blocks()) { 1545 if (InnerBB == BB) { 1546 assert(LoopBlockSet.count(InnerBB) && 1547 "Block should already be in the set!"); 1548 continue; 1549 } 1550 1551 LoopBlockSet.insert(InnerBB); 1552 } 1553 1554 // Add the preheader to the worklist so we will continue past the 1555 // loop body. 1556 Worklist.push_back(InnerPH); 1557 continue; 1558 } 1559 1560 // Insert any predecessors that were in the original loop into the new 1561 // set, and if the insert is successful, add them to the worklist. 1562 for (auto *Pred : predecessors(BB)) 1563 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1564 Worklist.push_back(Pred); 1565 } 1566 1567 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1568 1569 // We've found all the blocks participating in the loop, return our completed 1570 // set. 1571 return LoopBlockSet; 1572 } 1573 1574 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1575 /// 1576 /// The removal may have removed some child loops entirely but cannot have 1577 /// disturbed any remaining child loops. However, they may need to be hoisted 1578 /// to the parent loop (or to be top-level loops). The original loop may be 1579 /// completely removed. 1580 /// 1581 /// The sibling loops resulting from this update are returned. If the original 1582 /// loop remains a valid loop, it will be the first entry in this list with all 1583 /// of the newly sibling loops following it. 1584 /// 1585 /// Returns true if the loop remains a loop after unswitching, and false if it 1586 /// is no longer a loop after unswitching (and should not continue to be 1587 /// referenced). 1588 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1589 LoopInfo &LI, 1590 SmallVectorImpl<Loop *> &HoistedLoops) { 1591 auto *PH = L.getLoopPreheader(); 1592 1593 // Compute the actual parent loop from the exit blocks. Because we may have 1594 // pruned some exits the loop may be different from the original parent. 1595 Loop *ParentL = nullptr; 1596 SmallVector<Loop *, 4> ExitLoops; 1597 SmallVector<BasicBlock *, 4> ExitsInLoops; 1598 ExitsInLoops.reserve(ExitBlocks.size()); 1599 for (auto *ExitBB : ExitBlocks) 1600 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1601 ExitLoops.push_back(ExitL); 1602 ExitsInLoops.push_back(ExitBB); 1603 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1604 ParentL = ExitL; 1605 } 1606 1607 // Recompute the blocks participating in this loop. This may be empty if it 1608 // is no longer a loop. 1609 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1610 1611 // If we still have a loop, we need to re-set the loop's parent as the exit 1612 // block set changing may have moved it within the loop nest. Note that this 1613 // can only happen when this loop has a parent as it can only hoist the loop 1614 // *up* the nest. 1615 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1616 // Remove this loop's (original) blocks from all of the intervening loops. 1617 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1618 IL = IL->getParentLoop()) { 1619 IL->getBlocksSet().erase(PH); 1620 for (auto *BB : L.blocks()) 1621 IL->getBlocksSet().erase(BB); 1622 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1623 return BB == PH || L.contains(BB); 1624 }); 1625 } 1626 1627 LI.changeLoopFor(PH, ParentL); 1628 L.getParentLoop()->removeChildLoop(&L); 1629 if (ParentL) 1630 ParentL->addChildLoop(&L); 1631 else 1632 LI.addTopLevelLoop(&L); 1633 } 1634 1635 // Now we update all the blocks which are no longer within the loop. 1636 auto &Blocks = L.getBlocksVector(); 1637 auto BlocksSplitI = 1638 LoopBlockSet.empty() 1639 ? Blocks.begin() 1640 : std::stable_partition( 1641 Blocks.begin(), Blocks.end(), 1642 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1643 1644 // Before we erase the list of unlooped blocks, build a set of them. 1645 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1646 if (LoopBlockSet.empty()) 1647 UnloopedBlocks.insert(PH); 1648 1649 // Now erase these blocks from the loop. 1650 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1651 L.getBlocksSet().erase(BB); 1652 Blocks.erase(BlocksSplitI, Blocks.end()); 1653 1654 // Sort the exits in ascending loop depth, we'll work backwards across these 1655 // to process them inside out. 1656 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1657 [&](BasicBlock *LHS, BasicBlock *RHS) { 1658 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1659 }); 1660 1661 // We'll build up a set for each exit loop. 1662 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1663 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1664 1665 auto RemoveUnloopedBlocksFromLoop = 1666 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1667 for (auto *BB : UnloopedBlocks) 1668 L.getBlocksSet().erase(BB); 1669 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1670 return UnloopedBlocks.count(BB); 1671 }); 1672 }; 1673 1674 SmallVector<BasicBlock *, 16> Worklist; 1675 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1676 assert(Worklist.empty() && "Didn't clear worklist!"); 1677 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1678 1679 // Grab the next exit block, in decreasing loop depth order. 1680 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1681 Loop &ExitL = *LI.getLoopFor(ExitBB); 1682 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1683 1684 // Erase all of the unlooped blocks from the loops between the previous 1685 // exit loop and this exit loop. This works because the ExitInLoops list is 1686 // sorted in increasing order of loop depth and thus we visit loops in 1687 // decreasing order of loop depth. 1688 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1689 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1690 1691 // Walk the CFG back until we hit the cloned PH adding everything reachable 1692 // and in the unlooped set to this exit block's loop. 1693 Worklist.push_back(ExitBB); 1694 do { 1695 BasicBlock *BB = Worklist.pop_back_val(); 1696 // We can stop recursing at the cloned preheader (if we get there). 1697 if (BB == PH) 1698 continue; 1699 1700 for (BasicBlock *PredBB : predecessors(BB)) { 1701 // If this pred has already been moved to our set or is part of some 1702 // (inner) loop, no update needed. 1703 if (!UnloopedBlocks.erase(PredBB)) { 1704 assert((NewExitLoopBlocks.count(PredBB) || 1705 ExitL.contains(LI.getLoopFor(PredBB))) && 1706 "Predecessor not in a nested loop (or already visited)!"); 1707 continue; 1708 } 1709 1710 // We just insert into the loop set here. We'll add these blocks to the 1711 // exit loop after we build up the set in a deterministic order rather 1712 // than the predecessor-influenced visit order. 1713 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1714 (void)Inserted; 1715 assert(Inserted && "Should only visit an unlooped block once!"); 1716 1717 // And recurse through to its predecessors. 1718 Worklist.push_back(PredBB); 1719 } 1720 } while (!Worklist.empty()); 1721 1722 // If blocks in this exit loop were directly part of the original loop (as 1723 // opposed to a child loop) update the map to point to this exit loop. This 1724 // just updates a map and so the fact that the order is unstable is fine. 1725 for (auto *BB : NewExitLoopBlocks) 1726 if (Loop *BBL = LI.getLoopFor(BB)) 1727 if (BBL == &L || !L.contains(BBL)) 1728 LI.changeLoopFor(BB, &ExitL); 1729 1730 // We will remove the remaining unlooped blocks from this loop in the next 1731 // iteration or below. 1732 NewExitLoopBlocks.clear(); 1733 } 1734 1735 // Any remaining unlooped blocks are no longer part of any loop unless they 1736 // are part of some child loop. 1737 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1738 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1739 for (auto *BB : UnloopedBlocks) 1740 if (Loop *BBL = LI.getLoopFor(BB)) 1741 if (BBL == &L || !L.contains(BBL)) 1742 LI.changeLoopFor(BB, nullptr); 1743 1744 // Sink all the child loops whose headers are no longer in the loop set to 1745 // the parent (or to be top level loops). We reach into the loop and directly 1746 // update its subloop vector to make this batch update efficient. 1747 auto &SubLoops = L.getSubLoopsVector(); 1748 auto SubLoopsSplitI = 1749 LoopBlockSet.empty() 1750 ? SubLoops.begin() 1751 : std::stable_partition( 1752 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1753 return LoopBlockSet.count(SubL->getHeader()); 1754 }); 1755 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1756 HoistedLoops.push_back(HoistedL); 1757 HoistedL->setParentLoop(nullptr); 1758 1759 // To compute the new parent of this hoisted loop we look at where we 1760 // placed the preheader above. We can't lookup the header itself because we 1761 // retained the mapping from the header to the hoisted loop. But the 1762 // preheader and header should have the exact same new parent computed 1763 // based on the set of exit blocks from the original loop as the preheader 1764 // is a predecessor of the header and so reached in the reverse walk. And 1765 // because the loops were all in simplified form the preheader of the 1766 // hoisted loop can't be part of some *other* loop. 1767 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1768 NewParentL->addChildLoop(HoistedL); 1769 else 1770 LI.addTopLevelLoop(HoistedL); 1771 } 1772 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1773 1774 // Actually delete the loop if nothing remained within it. 1775 if (Blocks.empty()) { 1776 assert(SubLoops.empty() && 1777 "Failed to remove all subloops from the original loop!"); 1778 if (Loop *ParentL = L.getParentLoop()) 1779 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1780 else 1781 LI.removeLoop(llvm::find(LI, &L)); 1782 LI.destroy(&L); 1783 return false; 1784 } 1785 1786 return true; 1787 } 1788 1789 /// Helper to visit a dominator subtree, invoking a callable on each node. 1790 /// 1791 /// Returning false at any point will stop walking past that node of the tree. 1792 template <typename CallableT> 1793 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1794 SmallVector<DomTreeNode *, 4> DomWorklist; 1795 DomWorklist.push_back(DT[BB]); 1796 #ifndef NDEBUG 1797 SmallPtrSet<DomTreeNode *, 4> Visited; 1798 Visited.insert(DT[BB]); 1799 #endif 1800 do { 1801 DomTreeNode *N = DomWorklist.pop_back_val(); 1802 1803 // Visit this node. 1804 if (!Callable(N->getBlock())) 1805 continue; 1806 1807 // Accumulate the child nodes. 1808 for (DomTreeNode *ChildN : *N) { 1809 assert(Visited.insert(ChildN).second && 1810 "Cannot visit a node twice when walking a tree!"); 1811 DomWorklist.push_back(ChildN); 1812 } 1813 } while (!DomWorklist.empty()); 1814 } 1815 1816 static void unswitchNontrivialInvariants( 1817 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1818 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1819 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1820 ScalarEvolution *SE) { 1821 auto *ParentBB = TI.getParent(); 1822 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1823 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1824 1825 // We can only unswitch switches, conditional branches with an invariant 1826 // condition, or combining invariant conditions with an instruction. 1827 assert((SI || BI->isConditional()) && 1828 "Can only unswitch switches and conditional branch!"); 1829 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1830 if (FullUnswitch) 1831 assert(Invariants.size() == 1 && 1832 "Cannot have other invariants with full unswitching!"); 1833 else 1834 assert(isa<Instruction>(BI->getCondition()) && 1835 "Partial unswitching requires an instruction as the condition!"); 1836 1837 // Constant and BBs tracking the cloned and continuing successor. When we are 1838 // unswitching the entire condition, this can just be trivially chosen to 1839 // unswitch towards `true`. However, when we are unswitching a set of 1840 // invariants combined with `and` or `or`, the combining operation determines 1841 // the best direction to unswitch: we want to unswitch the direction that will 1842 // collapse the branch. 1843 bool Direction = true; 1844 int ClonedSucc = 0; 1845 if (!FullUnswitch) { 1846 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1847 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1848 Instruction::And && 1849 "Only `or` and `and` instructions can combine invariants being " 1850 "unswitched."); 1851 Direction = false; 1852 ClonedSucc = 1; 1853 } 1854 } 1855 1856 BasicBlock *RetainedSuccBB = 1857 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1858 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1859 if (BI) 1860 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1861 else 1862 for (auto Case : SI->cases()) 1863 if (Case.getCaseSuccessor() != RetainedSuccBB) 1864 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1865 1866 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 1867 "Should not unswitch the same successor we are retaining!"); 1868 1869 // The branch should be in this exact loop. Any inner loop's invariant branch 1870 // should be handled by unswitching that inner loop. The caller of this 1871 // routine should filter out any candidates that remain (but were skipped for 1872 // whatever reason). 1873 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1874 1875 // Compute the parent loop now before we start hacking on things. 1876 Loop *ParentL = L.getParentLoop(); 1877 1878 // Compute the outer-most loop containing one of our exit blocks. This is the 1879 // furthest up our loopnest which can be mutated, which we will use below to 1880 // update things. 1881 Loop *OuterExitL = &L; 1882 for (auto *ExitBB : ExitBlocks) { 1883 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1884 if (!NewOuterExitL) { 1885 // We exited the entire nest with this block, so we're done. 1886 OuterExitL = nullptr; 1887 break; 1888 } 1889 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1890 OuterExitL = NewOuterExitL; 1891 } 1892 1893 // At this point, we're definitely going to unswitch something so invalidate 1894 // any cached information in ScalarEvolution for the outer most loop 1895 // containing an exit block and all nested loops. 1896 if (SE) { 1897 if (OuterExitL) 1898 SE->forgetLoop(OuterExitL); 1899 else 1900 SE->forgetTopmostLoop(&L); 1901 } 1902 1903 // If the edge from this terminator to a successor dominates that successor, 1904 // store a map from each block in its dominator subtree to it. This lets us 1905 // tell when cloning for a particular successor if a block is dominated by 1906 // some *other* successor with a single data structure. We use this to 1907 // significantly reduce cloning. 1908 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 1909 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 1910 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 1911 if (SuccBB->getUniquePredecessor() || 1912 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 1913 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 1914 })) 1915 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 1916 DominatingSucc[BB] = SuccBB; 1917 return true; 1918 }); 1919 1920 // Split the preheader, so that we know that there is a safe place to insert 1921 // the conditional branch. We will change the preheader to have a conditional 1922 // branch on LoopCond. The original preheader will become the split point 1923 // between the unswitched versions, and we will have a new preheader for the 1924 // original loop. 1925 BasicBlock *SplitBB = L.getLoopPreheader(); 1926 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI); 1927 1928 // Keep track of the dominator tree updates needed. 1929 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1930 1931 // Clone the loop for each unswitched successor. 1932 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 1933 VMaps.reserve(UnswitchedSuccBBs.size()); 1934 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 1935 for (auto *SuccBB : UnswitchedSuccBBs) { 1936 VMaps.emplace_back(new ValueToValueMapTy()); 1937 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 1938 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 1939 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI); 1940 } 1941 1942 // The stitching of the branched code back together depends on whether we're 1943 // doing full unswitching or not with the exception that we always want to 1944 // nuke the initial terminator placed in the split block. 1945 SplitBB->getTerminator()->eraseFromParent(); 1946 if (FullUnswitch) { 1947 // First we need to unhook the successor relationship as we'll be replacing 1948 // the terminator with a direct branch. This is much simpler for branches 1949 // than switches so we handle those first. 1950 if (BI) { 1951 // Remove the parent as a predecessor of the unswitched successor. 1952 assert(UnswitchedSuccBBs.size() == 1 && 1953 "Only one possible unswitched block for a branch!"); 1954 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 1955 UnswitchedSuccBB->removePredecessor(ParentBB, 1956 /*DontDeleteUselessPHIs*/ true); 1957 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 1958 } else { 1959 // Note that we actually want to remove the parent block as a predecessor 1960 // of *every* case successor. The case successor is either unswitched, 1961 // completely eliminating an edge from the parent to that successor, or it 1962 // is a duplicate edge to the retained successor as the retained successor 1963 // is always the default successor and as we'll replace this with a direct 1964 // branch we no longer need the duplicate entries in the PHI nodes. 1965 assert(SI->getDefaultDest() == RetainedSuccBB && 1966 "Not retaining default successor!"); 1967 for (auto &Case : SI->cases()) 1968 Case.getCaseSuccessor()->removePredecessor( 1969 ParentBB, 1970 /*DontDeleteUselessPHIs*/ true); 1971 1972 // We need to use the set to populate domtree updates as even when there 1973 // are multiple cases pointing at the same successor we only want to 1974 // remove and insert one edge in the domtree. 1975 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 1976 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 1977 } 1978 1979 // Now that we've unhooked the successor relationship, splice the terminator 1980 // from the original loop to the split. 1981 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 1982 1983 // Now wire up the terminator to the preheaders. 1984 if (BI) { 1985 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 1986 BI->setSuccessor(ClonedSucc, ClonedPH); 1987 BI->setSuccessor(1 - ClonedSucc, LoopPH); 1988 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 1989 } else { 1990 assert(SI && "Must either be a branch or switch!"); 1991 1992 // Walk the cases and directly update their successors. 1993 SI->setDefaultDest(LoopPH); 1994 for (auto &Case : SI->cases()) 1995 if (Case.getCaseSuccessor() == RetainedSuccBB) 1996 Case.setSuccessor(LoopPH); 1997 else 1998 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 1999 2000 // We need to use the set to populate domtree updates as even when there 2001 // are multiple cases pointing at the same successor we only want to 2002 // remove and insert one edge in the domtree. 2003 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2004 DTUpdates.push_back( 2005 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2006 } 2007 2008 // Create a new unconditional branch to the continuing block (as opposed to 2009 // the one cloned). 2010 BranchInst::Create(RetainedSuccBB, ParentBB); 2011 } else { 2012 assert(BI && "Only branches have partial unswitching."); 2013 assert(UnswitchedSuccBBs.size() == 1 && 2014 "Only one possible unswitched block for a branch!"); 2015 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2016 // When doing a partial unswitch, we have to do a bit more work to build up 2017 // the branch in the split block. 2018 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2019 *ClonedPH, *LoopPH); 2020 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2021 } 2022 2023 // Apply the updates accumulated above to get an up-to-date dominator tree. 2024 DT.applyUpdates(DTUpdates); 2025 2026 // Now that we have an accurate dominator tree, first delete the dead cloned 2027 // blocks so that we can accurately build any cloned loops. It is important to 2028 // not delete the blocks from the original loop yet because we still want to 2029 // reference the original loop to understand the cloned loop's structure. 2030 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT); 2031 2032 // Build the cloned loop structure itself. This may be substantially 2033 // different from the original structure due to the simplified CFG. This also 2034 // handles inserting all the cloned blocks into the correct loops. 2035 SmallVector<Loop *, 4> NonChildClonedLoops; 2036 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2037 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2038 2039 // Now that our cloned loops have been built, we can update the original loop. 2040 // First we delete the dead blocks from it and then we rebuild the loop 2041 // structure taking these deletions into account. 2042 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI); 2043 SmallVector<Loop *, 4> HoistedLoops; 2044 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2045 2046 // This transformation has a high risk of corrupting the dominator tree, and 2047 // the below steps to rebuild loop structures will result in hard to debug 2048 // errors in that case so verify that the dominator tree is sane first. 2049 // FIXME: Remove this when the bugs stop showing up and rely on existing 2050 // verification steps. 2051 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2052 2053 if (BI) { 2054 // If we unswitched a branch which collapses the condition to a known 2055 // constant we want to replace all the uses of the invariants within both 2056 // the original and cloned blocks. We do this here so that we can use the 2057 // now updated dominator tree to identify which side the users are on. 2058 assert(UnswitchedSuccBBs.size() == 1 && 2059 "Only one possible unswitched block for a branch!"); 2060 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2061 2062 // When considering multiple partially-unswitched invariants 2063 // we cant just go replace them with constants in both branches. 2064 // 2065 // For 'AND' we infer that true branch ("continue") means true 2066 // for each invariant operand. 2067 // For 'OR' we can infer that false branch ("continue") means false 2068 // for each invariant operand. 2069 // So it happens that for multiple-partial case we dont replace 2070 // in the unswitched branch. 2071 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2072 2073 ConstantInt *UnswitchedReplacement = 2074 Direction ? ConstantInt::getTrue(BI->getContext()) 2075 : ConstantInt::getFalse(BI->getContext()); 2076 ConstantInt *ContinueReplacement = 2077 Direction ? ConstantInt::getFalse(BI->getContext()) 2078 : ConstantInt::getTrue(BI->getContext()); 2079 for (Value *Invariant : Invariants) 2080 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2081 UI != UE;) { 2082 // Grab the use and walk past it so we can clobber it in the use list. 2083 Use *U = &*UI++; 2084 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2085 if (!UserI) 2086 continue; 2087 2088 // Replace it with the 'continue' side if in the main loop body, and the 2089 // unswitched if in the cloned blocks. 2090 if (DT.dominates(LoopPH, UserI->getParent())) 2091 U->set(ContinueReplacement); 2092 else if (ReplaceUnswitched && 2093 DT.dominates(ClonedPH, UserI->getParent())) 2094 U->set(UnswitchedReplacement); 2095 } 2096 } 2097 2098 // We can change which blocks are exit blocks of all the cloned sibling 2099 // loops, the current loop, and any parent loops which shared exit blocks 2100 // with the current loop. As a consequence, we need to re-form LCSSA for 2101 // them. But we shouldn't need to re-form LCSSA for any child loops. 2102 // FIXME: This could be made more efficient by tracking which exit blocks are 2103 // new, and focusing on them, but that isn't likely to be necessary. 2104 // 2105 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2106 // loop nest and update every loop that could have had its exits changed. We 2107 // also need to cover any intervening loops. We add all of these loops to 2108 // a list and sort them by loop depth to achieve this without updating 2109 // unnecessary loops. 2110 auto UpdateLoop = [&](Loop &UpdateL) { 2111 #ifndef NDEBUG 2112 UpdateL.verifyLoop(); 2113 for (Loop *ChildL : UpdateL) { 2114 ChildL->verifyLoop(); 2115 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2116 "Perturbed a child loop's LCSSA form!"); 2117 } 2118 #endif 2119 // First build LCSSA for this loop so that we can preserve it when 2120 // forming dedicated exits. We don't want to perturb some other loop's 2121 // LCSSA while doing that CFG edit. 2122 formLCSSA(UpdateL, DT, &LI, nullptr); 2123 2124 // For loops reached by this loop's original exit blocks we may 2125 // introduced new, non-dedicated exits. At least try to re-form dedicated 2126 // exits for these loops. This may fail if they couldn't have dedicated 2127 // exits to start with. 2128 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); 2129 }; 2130 2131 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2132 // and we can do it in any order as they don't nest relative to each other. 2133 // 2134 // Also check if any of the loops we have updated have become top-level loops 2135 // as that will necessitate widening the outer loop scope. 2136 for (Loop *UpdatedL : 2137 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2138 UpdateLoop(*UpdatedL); 2139 if (!UpdatedL->getParentLoop()) 2140 OuterExitL = nullptr; 2141 } 2142 if (IsStillLoop) { 2143 UpdateLoop(L); 2144 if (!L.getParentLoop()) 2145 OuterExitL = nullptr; 2146 } 2147 2148 // If the original loop had exit blocks, walk up through the outer most loop 2149 // of those exit blocks to update LCSSA and form updated dedicated exits. 2150 if (OuterExitL != &L) 2151 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2152 OuterL = OuterL->getParentLoop()) 2153 UpdateLoop(*OuterL); 2154 2155 #ifndef NDEBUG 2156 // Verify the entire loop structure to catch any incorrect updates before we 2157 // progress in the pass pipeline. 2158 LI.verify(DT); 2159 #endif 2160 2161 // Now that we've unswitched something, make callbacks to report the changes. 2162 // For that we need to merge together the updated loops and the cloned loops 2163 // and check whether the original loop survived. 2164 SmallVector<Loop *, 4> SibLoops; 2165 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2166 if (UpdatedL->getParentLoop() == ParentL) 2167 SibLoops.push_back(UpdatedL); 2168 UnswitchCB(IsStillLoop, SibLoops); 2169 2170 ++NumBranches; 2171 } 2172 2173 /// Recursively compute the cost of a dominator subtree based on the per-block 2174 /// cost map provided. 2175 /// 2176 /// The recursive computation is memozied into the provided DT-indexed cost map 2177 /// to allow querying it for most nodes in the domtree without it becoming 2178 /// quadratic. 2179 static int 2180 computeDomSubtreeCost(DomTreeNode &N, 2181 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2182 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2183 // Don't accumulate cost (or recurse through) blocks not in our block cost 2184 // map and thus not part of the duplication cost being considered. 2185 auto BBCostIt = BBCostMap.find(N.getBlock()); 2186 if (BBCostIt == BBCostMap.end()) 2187 return 0; 2188 2189 // Lookup this node to see if we already computed its cost. 2190 auto DTCostIt = DTCostMap.find(&N); 2191 if (DTCostIt != DTCostMap.end()) 2192 return DTCostIt->second; 2193 2194 // If not, we have to compute it. We can't use insert above and update 2195 // because computing the cost may insert more things into the map. 2196 int Cost = std::accumulate( 2197 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2198 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2199 }); 2200 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2201 (void)Inserted; 2202 assert(Inserted && "Should not insert a node while visiting children!"); 2203 return Cost; 2204 } 2205 2206 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2207 /// making the following replacement: 2208 /// 2209 /// --code before guard-- 2210 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2211 /// --code after guard-- 2212 /// 2213 /// into 2214 /// 2215 /// --code before guard-- 2216 /// br i1 %cond, label %guarded, label %deopt 2217 /// 2218 /// guarded: 2219 /// --code after guard-- 2220 /// 2221 /// deopt: 2222 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2223 /// unreachable 2224 /// 2225 /// It also makes all relevant DT and LI updates, so that all structures are in 2226 /// valid state after this transform. 2227 static BranchInst * 2228 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2229 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2230 DominatorTree &DT, LoopInfo &LI) { 2231 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2232 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2233 BasicBlock *CheckBB = GI->getParent(); 2234 2235 // Remove all CheckBB's successors from DomTree. A block can be seen among 2236 // successors more than once, but for DomTree it should be added only once. 2237 SmallPtrSet<BasicBlock *, 4> Successors; 2238 for (auto *Succ : successors(CheckBB)) 2239 if (Successors.insert(Succ).second) 2240 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2241 2242 Instruction *DeoptBlockTerm = 2243 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2244 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2245 // SplitBlockAndInsertIfThen inserts control flow that branches to 2246 // DeoptBlockTerm if the condition is true. We want the opposite. 2247 CheckBI->swapSuccessors(); 2248 2249 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2250 GuardedBlock->setName("guarded"); 2251 CheckBI->getSuccessor(1)->setName("deopt"); 2252 2253 // We now have a new exit block. 2254 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2255 2256 GI->moveBefore(DeoptBlockTerm); 2257 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2258 2259 // Add new successors of CheckBB into DomTree. 2260 for (auto *Succ : successors(CheckBB)) 2261 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2262 2263 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2264 // successors. 2265 for (auto *Succ : Successors) 2266 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2267 2268 // Make proper changes to DT. 2269 DT.applyUpdates(DTUpdates); 2270 // Inform LI of a new loop block. 2271 L.addBasicBlockToLoop(GuardedBlock, LI); 2272 2273 ++NumGuards; 2274 return CheckBI; 2275 } 2276 2277 /// Cost multiplier is a way to limit potentially exponential behavior 2278 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2279 /// candidates available. Also accounting for the number of "sibling" loops with 2280 /// the idea to account for previous unswitches that already happened on this 2281 /// cluster of loops. There was an attempt to keep this formula simple, 2282 /// just enough to limit the worst case behavior. Even if it is not that simple 2283 /// now it is still not an attempt to provide a detailed heuristic size 2284 /// prediction. 2285 /// 2286 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2287 /// unswitch candidates, making adequate predictions instead of wild guesses. 2288 /// That requires knowing not just the number of "remaining" candidates but 2289 /// also costs of unswitching for each of these candidates. 2290 static int calculateUnswitchCostMultiplier( 2291 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2292 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2293 UnswitchCandidates) { 2294 2295 // Guards and other exiting conditions do not contribute to exponential 2296 // explosion as soon as they dominate the latch (otherwise there might be 2297 // another path to the latch remaining that does not allow to eliminate the 2298 // loop copy on unswitch). 2299 BasicBlock *Latch = L.getLoopLatch(); 2300 BasicBlock *CondBlock = TI.getParent(); 2301 if (DT.dominates(CondBlock, Latch) && 2302 (isGuard(&TI) || 2303 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2304 return L.contains(SuccBB); 2305 }) <= 1)) { 2306 NumCostMultiplierSkipped++; 2307 return 1; 2308 } 2309 2310 auto *ParentL = L.getParentLoop(); 2311 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2312 : std::distance(LI.begin(), LI.end())); 2313 // Count amount of clones that all the candidates might cause during 2314 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2315 int UnswitchedClones = 0; 2316 for (auto Candidate : UnswitchCandidates) { 2317 Instruction *CI = Candidate.first; 2318 BasicBlock *CondBlock = CI->getParent(); 2319 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2320 if (isGuard(CI)) { 2321 if (!SkipExitingSuccessors) 2322 UnswitchedClones++; 2323 continue; 2324 } 2325 int NonExitingSuccessors = llvm::count_if( 2326 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2327 return !SkipExitingSuccessors || L.contains(SuccBB); 2328 }); 2329 UnswitchedClones += Log2_32(NonExitingSuccessors); 2330 } 2331 2332 // Ignore up to the "unscaled candidates" number of unswitch candidates 2333 // when calculating the power-of-two scaling of the cost. The main idea 2334 // with this control is to allow a small number of unswitches to happen 2335 // and rely more on siblings multiplier (see below) when the number 2336 // of candidates is small. 2337 unsigned ClonesPower = 2338 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2339 2340 // Allowing top-level loops to spread a bit more than nested ones. 2341 int SiblingsMultiplier = 2342 std::max((ParentL ? SiblingsCount 2343 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2344 1); 2345 // Compute the cost multiplier in a way that won't overflow by saturating 2346 // at an upper bound. 2347 int CostMultiplier; 2348 if (ClonesPower > Log2_32(UnswitchThreshold) || 2349 SiblingsMultiplier > UnswitchThreshold) 2350 CostMultiplier = UnswitchThreshold; 2351 else 2352 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2353 (int)UnswitchThreshold); 2354 2355 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2356 << " (siblings " << SiblingsMultiplier << " * clones " 2357 << (1 << ClonesPower) << ")" 2358 << " for unswitch candidate: " << TI << "\n"); 2359 return CostMultiplier; 2360 } 2361 2362 static bool 2363 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2364 AssumptionCache &AC, TargetTransformInfo &TTI, 2365 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2366 ScalarEvolution *SE) { 2367 // Collect all invariant conditions within this loop (as opposed to an inner 2368 // loop which would be handled when visiting that inner loop). 2369 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2370 UnswitchCandidates; 2371 2372 // Whether or not we should also collect guards in the loop. 2373 bool CollectGuards = false; 2374 if (UnswitchGuards) { 2375 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2376 Intrinsic::getName(Intrinsic::experimental_guard)); 2377 if (GuardDecl && !GuardDecl->use_empty()) 2378 CollectGuards = true; 2379 } 2380 2381 for (auto *BB : L.blocks()) { 2382 if (LI.getLoopFor(BB) != &L) 2383 continue; 2384 2385 if (CollectGuards) 2386 for (auto &I : *BB) 2387 if (isGuard(&I)) { 2388 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2389 // TODO: Support AND, OR conditions and partial unswitching. 2390 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2391 UnswitchCandidates.push_back({&I, {Cond}}); 2392 } 2393 2394 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2395 // We can only consider fully loop-invariant switch conditions as we need 2396 // to completely eliminate the switch after unswitching. 2397 if (!isa<Constant>(SI->getCondition()) && 2398 L.isLoopInvariant(SI->getCondition())) 2399 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2400 continue; 2401 } 2402 2403 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2404 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2405 BI->getSuccessor(0) == BI->getSuccessor(1)) 2406 continue; 2407 2408 if (L.isLoopInvariant(BI->getCondition())) { 2409 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2410 continue; 2411 } 2412 2413 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2414 if (CondI.getOpcode() != Instruction::And && 2415 CondI.getOpcode() != Instruction::Or) 2416 continue; 2417 2418 TinyPtrVector<Value *> Invariants = 2419 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2420 if (Invariants.empty()) 2421 continue; 2422 2423 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2424 } 2425 2426 // If we didn't find any candidates, we're done. 2427 if (UnswitchCandidates.empty()) 2428 return false; 2429 2430 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2431 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2432 // irreducible control flow into reducible control flow and introduce new 2433 // loops "out of thin air". If we ever discover important use cases for doing 2434 // this, we can add support to loop unswitch, but it is a lot of complexity 2435 // for what seems little or no real world benefit. 2436 LoopBlocksRPO RPOT(&L); 2437 RPOT.perform(&LI); 2438 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2439 return false; 2440 2441 SmallVector<BasicBlock *, 4> ExitBlocks; 2442 L.getUniqueExitBlocks(ExitBlocks); 2443 2444 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2445 // don't know how to split those exit blocks. 2446 // FIXME: We should teach SplitBlock to handle this and remove this 2447 // restriction. 2448 for (auto *ExitBB : ExitBlocks) 2449 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2450 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2451 return false; 2452 } 2453 2454 LLVM_DEBUG( 2455 dbgs() << "Considering " << UnswitchCandidates.size() 2456 << " non-trivial loop invariant conditions for unswitching.\n"); 2457 2458 // Given that unswitching these terminators will require duplicating parts of 2459 // the loop, so we need to be able to model that cost. Compute the ephemeral 2460 // values and set up a data structure to hold per-BB costs. We cache each 2461 // block's cost so that we don't recompute this when considering different 2462 // subsets of the loop for duplication during unswitching. 2463 SmallPtrSet<const Value *, 4> EphValues; 2464 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2465 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2466 2467 // Compute the cost of each block, as well as the total loop cost. Also, bail 2468 // out if we see instructions which are incompatible with loop unswitching 2469 // (convergent, noduplicate, or cross-basic-block tokens). 2470 // FIXME: We might be able to safely handle some of these in non-duplicated 2471 // regions. 2472 int LoopCost = 0; 2473 for (auto *BB : L.blocks()) { 2474 int Cost = 0; 2475 for (auto &I : *BB) { 2476 if (EphValues.count(&I)) 2477 continue; 2478 2479 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2480 return false; 2481 if (auto CS = CallSite(&I)) 2482 if (CS.isConvergent() || CS.cannotDuplicate()) 2483 return false; 2484 2485 Cost += TTI.getUserCost(&I); 2486 } 2487 assert(Cost >= 0 && "Must not have negative costs!"); 2488 LoopCost += Cost; 2489 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2490 BBCostMap[BB] = Cost; 2491 } 2492 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2493 2494 // Now we find the best candidate by searching for the one with the following 2495 // properties in order: 2496 // 2497 // 1) An unswitching cost below the threshold 2498 // 2) The smallest number of duplicated unswitch candidates (to avoid 2499 // creating redundant subsequent unswitching) 2500 // 3) The smallest cost after unswitching. 2501 // 2502 // We prioritize reducing fanout of unswitch candidates provided the cost 2503 // remains below the threshold because this has a multiplicative effect. 2504 // 2505 // This requires memoizing each dominator subtree to avoid redundant work. 2506 // 2507 // FIXME: Need to actually do the number of candidates part above. 2508 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2509 // Given a terminator which might be unswitched, computes the non-duplicated 2510 // cost for that terminator. 2511 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2512 BasicBlock &BB = *TI.getParent(); 2513 SmallPtrSet<BasicBlock *, 4> Visited; 2514 2515 int Cost = LoopCost; 2516 for (BasicBlock *SuccBB : successors(&BB)) { 2517 // Don't count successors more than once. 2518 if (!Visited.insert(SuccBB).second) 2519 continue; 2520 2521 // If this is a partial unswitch candidate, then it must be a conditional 2522 // branch with a condition of either `or` or `and`. In that case, one of 2523 // the successors is necessarily duplicated, so don't even try to remove 2524 // its cost. 2525 if (!FullUnswitch) { 2526 auto &BI = cast<BranchInst>(TI); 2527 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2528 Instruction::And) { 2529 if (SuccBB == BI.getSuccessor(1)) 2530 continue; 2531 } else { 2532 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2533 Instruction::Or && 2534 "Only `and` and `or` conditions can result in a partial " 2535 "unswitch!"); 2536 if (SuccBB == BI.getSuccessor(0)) 2537 continue; 2538 } 2539 } 2540 2541 // This successor's domtree will not need to be duplicated after 2542 // unswitching if the edge to the successor dominates it (and thus the 2543 // entire tree). This essentially means there is no other path into this 2544 // subtree and so it will end up live in only one clone of the loop. 2545 if (SuccBB->getUniquePredecessor() || 2546 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2547 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2548 })) { 2549 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2550 assert(Cost >= 0 && 2551 "Non-duplicated cost should never exceed total loop cost!"); 2552 } 2553 } 2554 2555 // Now scale the cost by the number of unique successors minus one. We 2556 // subtract one because there is already at least one copy of the entire 2557 // loop. This is computing the new cost of unswitching a condition. 2558 // Note that guards always have 2 unique successors that are implicit and 2559 // will be materialized if we decide to unswitch it. 2560 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2561 assert(SuccessorsCount > 1 && 2562 "Cannot unswitch a condition without multiple distinct successors!"); 2563 return Cost * (SuccessorsCount - 1); 2564 }; 2565 Instruction *BestUnswitchTI = nullptr; 2566 int BestUnswitchCost; 2567 ArrayRef<Value *> BestUnswitchInvariants; 2568 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2569 Instruction &TI = *TerminatorAndInvariants.first; 2570 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2571 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2572 int CandidateCost = ComputeUnswitchedCost( 2573 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2574 Invariants[0] == BI->getCondition())); 2575 // Calculate cost multiplier which is a tool to limit potentially 2576 // exponential behavior of loop-unswitch. 2577 if (EnableUnswitchCostMultiplier) { 2578 int CostMultiplier = 2579 calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2580 assert( 2581 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2582 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2583 CandidateCost *= CostMultiplier; 2584 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2585 << " (multiplier: " << CostMultiplier << ")" 2586 << " for unswitch candidate: " << TI << "\n"); 2587 } else { 2588 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2589 << " for unswitch candidate: " << TI << "\n"); 2590 } 2591 2592 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2593 BestUnswitchTI = &TI; 2594 BestUnswitchCost = CandidateCost; 2595 BestUnswitchInvariants = Invariants; 2596 } 2597 } 2598 2599 if (BestUnswitchCost >= UnswitchThreshold) { 2600 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2601 << BestUnswitchCost << "\n"); 2602 return false; 2603 } 2604 2605 // If the best candidate is a guard, turn it into a branch. 2606 if (isGuard(BestUnswitchTI)) 2607 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2608 ExitBlocks, DT, LI); 2609 2610 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2611 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2612 << "\n"); 2613 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2614 ExitBlocks, DT, LI, AC, UnswitchCB, SE); 2615 return true; 2616 } 2617 2618 /// Unswitch control flow predicated on loop invariant conditions. 2619 /// 2620 /// This first hoists all branches or switches which are trivial (IE, do not 2621 /// require duplicating any part of the loop) out of the loop body. It then 2622 /// looks at other loop invariant control flows and tries to unswitch those as 2623 /// well by cloning the loop if the result is small enough. 2624 /// 2625 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2626 /// updated based on the unswitch. 2627 /// 2628 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2629 /// true, we will attempt to do non-trivial unswitching as well as trivial 2630 /// unswitching. 2631 /// 2632 /// The `UnswitchCB` callback provided will be run after unswitching is 2633 /// complete, with the first parameter set to `true` if the provided loop 2634 /// remains a loop, and a list of new sibling loops created. 2635 /// 2636 /// If `SE` is non-null, we will update that analysis based on the unswitching 2637 /// done. 2638 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2639 AssumptionCache &AC, TargetTransformInfo &TTI, 2640 bool NonTrivial, 2641 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2642 ScalarEvolution *SE) { 2643 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2644 "Loops must be in LCSSA form before unswitching."); 2645 bool Changed = false; 2646 2647 // Must be in loop simplified form: we need a preheader and dedicated exits. 2648 if (!L.isLoopSimplifyForm()) 2649 return false; 2650 2651 // Try trivial unswitch first before loop over other basic blocks in the loop. 2652 if (unswitchAllTrivialConditions(L, DT, LI, SE)) { 2653 // If we unswitched successfully we will want to clean up the loop before 2654 // processing it further so just mark it as unswitched and return. 2655 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2656 return true; 2657 } 2658 2659 // If we're not doing non-trivial unswitching, we're done. We both accept 2660 // a parameter but also check a local flag that can be used for testing 2661 // a debugging. 2662 if (!NonTrivial && !EnableNonTrivialUnswitch) 2663 return false; 2664 2665 // For non-trivial unswitching, because it often creates new loops, we rely on 2666 // the pass manager to iterate on the loops rather than trying to immediately 2667 // reach a fixed point. There is no substantial advantage to iterating 2668 // internally, and if any of the new loops are simplified enough to contain 2669 // trivial unswitching we want to prefer those. 2670 2671 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2672 // a partial unswitch when possible below the threshold. 2673 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE)) 2674 return true; 2675 2676 // No other opportunities to unswitch. 2677 return Changed; 2678 } 2679 2680 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2681 LoopStandardAnalysisResults &AR, 2682 LPMUpdater &U) { 2683 Function &F = *L.getHeader()->getParent(); 2684 (void)F; 2685 2686 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2687 << "\n"); 2688 2689 // Save the current loop name in a variable so that we can report it even 2690 // after it has been deleted. 2691 std::string LoopName = L.getName(); 2692 2693 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2694 ArrayRef<Loop *> NewLoops) { 2695 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2696 if (!NewLoops.empty()) 2697 U.addSiblingLoops(NewLoops); 2698 2699 // If the current loop remains valid, we should revisit it to catch any 2700 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2701 if (CurrentLoopValid) 2702 U.revisitCurrentLoop(); 2703 else 2704 U.markLoopAsDeleted(L, LoopName); 2705 }; 2706 2707 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2708 &AR.SE)) 2709 return PreservedAnalyses::all(); 2710 2711 // Historically this pass has had issues with the dominator tree so verify it 2712 // in asserts builds. 2713 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2714 return getLoopPassPreservedAnalyses(); 2715 } 2716 2717 namespace { 2718 2719 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2720 bool NonTrivial; 2721 2722 public: 2723 static char ID; // Pass ID, replacement for typeid 2724 2725 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2726 : LoopPass(ID), NonTrivial(NonTrivial) { 2727 initializeSimpleLoopUnswitchLegacyPassPass( 2728 *PassRegistry::getPassRegistry()); 2729 } 2730 2731 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2732 2733 void getAnalysisUsage(AnalysisUsage &AU) const override { 2734 AU.addRequired<AssumptionCacheTracker>(); 2735 AU.addRequired<TargetTransformInfoWrapperPass>(); 2736 getLoopAnalysisUsage(AU); 2737 } 2738 }; 2739 2740 } // end anonymous namespace 2741 2742 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2743 if (skipLoop(L)) 2744 return false; 2745 2746 Function &F = *L->getHeader()->getParent(); 2747 2748 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2749 << "\n"); 2750 2751 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2752 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2753 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2754 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2755 2756 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 2757 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 2758 2759 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2760 ArrayRef<Loop *> NewLoops) { 2761 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2762 for (auto *NewL : NewLoops) 2763 LPM.addLoop(*NewL); 2764 2765 // If the current loop remains valid, re-add it to the queue. This is 2766 // a little wasteful as we'll finish processing the current loop as well, 2767 // but it is the best we can do in the old PM. 2768 if (CurrentLoopValid) 2769 LPM.addLoop(*L); 2770 else 2771 LPM.markLoopAsDeleted(*L); 2772 }; 2773 2774 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE); 2775 2776 // If anything was unswitched, also clear any cached information about this 2777 // loop. 2778 LPM.deleteSimpleAnalysisLoop(L); 2779 2780 // Historically this pass has had issues with the dominator tree so verify it 2781 // in asserts builds. 2782 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2783 2784 return Changed; 2785 } 2786 2787 char SimpleLoopUnswitchLegacyPass::ID = 0; 2788 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2789 "Simple unswitch loops", false, false) 2790 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2791 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2792 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2793 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2794 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2795 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2796 "Simple unswitch loops", false, false) 2797 2798 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2799 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2800 } 2801