1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/Utils/Local.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/InstrTypes.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Use.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/GenericDomTree.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/Cloning.h" 50 #include "llvm/Transforms/Utils/LoopUtils.h" 51 #include "llvm/Transforms/Utils/ValueMapper.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <iterator> 55 #include <numeric> 56 #include <utility> 57 58 #define DEBUG_TYPE "simple-loop-unswitch" 59 60 using namespace llvm; 61 62 STATISTIC(NumBranches, "Number of branches unswitched"); 63 STATISTIC(NumSwitches, "Number of switches unswitched"); 64 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 65 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 66 STATISTIC( 67 NumCostMultiplierSkipped, 68 "Number of unswitch candidates that had their cost multiplier skipped"); 69 70 static cl::opt<bool> EnableNonTrivialUnswitch( 71 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 72 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 73 "following the configuration passed into the pass.")); 74 75 static cl::opt<int> 76 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 77 cl::desc("The cost threshold for unswitching a loop.")); 78 79 static cl::opt<bool> EnableUnswitchCostMultiplier( 80 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 81 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 82 "explosion in nontrivial unswitch.")); 83 static cl::opt<int> UnswitchSiblingsToplevelDiv( 84 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 85 cl::desc("Toplevel siblings divisor for cost multiplier.")); 86 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 87 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 88 cl::desc("Number of unswitch candidates that are ignored when calculating " 89 "cost multiplier.")); 90 static cl::opt<bool> UnswitchGuards( 91 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 92 cl::desc("If enabled, simple loop unswitching will also consider " 93 "llvm.experimental.guard intrinsics as unswitch candidates.")); 94 95 /// Collect all of the loop invariant input values transitively used by the 96 /// homogeneous instruction graph from a given root. 97 /// 98 /// This essentially walks from a root recursively through loop variant operands 99 /// which have the exact same opcode and finds all inputs which are loop 100 /// invariant. For some operations these can be re-associated and unswitched out 101 /// of the loop entirely. 102 static TinyPtrVector<Value *> 103 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 104 LoopInfo &LI) { 105 assert(!L.isLoopInvariant(&Root) && 106 "Only need to walk the graph if root itself is not invariant."); 107 TinyPtrVector<Value *> Invariants; 108 109 // Build a worklist and recurse through operators collecting invariants. 110 SmallVector<Instruction *, 4> Worklist; 111 SmallPtrSet<Instruction *, 8> Visited; 112 Worklist.push_back(&Root); 113 Visited.insert(&Root); 114 do { 115 Instruction &I = *Worklist.pop_back_val(); 116 for (Value *OpV : I.operand_values()) { 117 // Skip constants as unswitching isn't interesting for them. 118 if (isa<Constant>(OpV)) 119 continue; 120 121 // Add it to our result if loop invariant. 122 if (L.isLoopInvariant(OpV)) { 123 Invariants.push_back(OpV); 124 continue; 125 } 126 127 // If not an instruction with the same opcode, nothing we can do. 128 Instruction *OpI = dyn_cast<Instruction>(OpV); 129 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 130 continue; 131 132 // Visit this operand. 133 if (Visited.insert(OpI).second) 134 Worklist.push_back(OpI); 135 } 136 } while (!Worklist.empty()); 137 138 return Invariants; 139 } 140 141 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 142 Constant &Replacement) { 143 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 144 145 // Replace uses of LIC in the loop with the given constant. 146 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 147 // Grab the use and walk past it so we can clobber it in the use list. 148 Use *U = &*UI++; 149 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 150 151 // Replace this use within the loop body. 152 if (UserI && L.contains(UserI)) 153 U->set(&Replacement); 154 } 155 } 156 157 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 158 /// incoming values along this edge. 159 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 160 BasicBlock &ExitBB) { 161 for (Instruction &I : ExitBB) { 162 auto *PN = dyn_cast<PHINode>(&I); 163 if (!PN) 164 // No more PHIs to check. 165 return true; 166 167 // If the incoming value for this edge isn't loop invariant the unswitch 168 // won't be trivial. 169 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 170 return false; 171 } 172 llvm_unreachable("Basic blocks should never be empty!"); 173 } 174 175 /// Insert code to test a set of loop invariant values, and conditionally branch 176 /// on them. 177 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 178 ArrayRef<Value *> Invariants, 179 bool Direction, 180 BasicBlock &UnswitchedSucc, 181 BasicBlock &NormalSucc) { 182 IRBuilder<> IRB(&BB); 183 Value *Cond = Invariants.front(); 184 for (Value *Invariant : 185 make_range(std::next(Invariants.begin()), Invariants.end())) 186 if (Direction) 187 Cond = IRB.CreateOr(Cond, Invariant); 188 else 189 Cond = IRB.CreateAnd(Cond, Invariant); 190 191 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 192 Direction ? &NormalSucc : &UnswitchedSucc); 193 } 194 195 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 196 /// 197 /// Requires that the loop exit and unswitched basic block are the same, and 198 /// that the exiting block was a unique predecessor of that block. Rewrites the 199 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 200 /// PHI nodes from the old preheader that now contains the unswitched 201 /// terminator. 202 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 203 BasicBlock &OldExitingBB, 204 BasicBlock &OldPH) { 205 for (PHINode &PN : UnswitchedBB.phis()) { 206 // When the loop exit is directly unswitched we just need to update the 207 // incoming basic block. We loop to handle weird cases with repeated 208 // incoming blocks, but expect to typically only have one operand here. 209 for (auto i : seq<int>(0, PN.getNumOperands())) { 210 assert(PN.getIncomingBlock(i) == &OldExitingBB && 211 "Found incoming block different from unique predecessor!"); 212 PN.setIncomingBlock(i, &OldPH); 213 } 214 } 215 } 216 217 /// Rewrite the PHI nodes in the loop exit basic block and the split off 218 /// unswitched block. 219 /// 220 /// Because the exit block remains an exit from the loop, this rewrites the 221 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 222 /// nodes into the unswitched basic block to select between the value in the 223 /// old preheader and the loop exit. 224 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 225 BasicBlock &UnswitchedBB, 226 BasicBlock &OldExitingBB, 227 BasicBlock &OldPH, 228 bool FullUnswitch) { 229 assert(&ExitBB != &UnswitchedBB && 230 "Must have different loop exit and unswitched blocks!"); 231 Instruction *InsertPt = &*UnswitchedBB.begin(); 232 for (PHINode &PN : ExitBB.phis()) { 233 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 234 PN.getName() + ".split", InsertPt); 235 236 // Walk backwards over the old PHI node's inputs to minimize the cost of 237 // removing each one. We have to do this weird loop manually so that we 238 // create the same number of new incoming edges in the new PHI as we expect 239 // each case-based edge to be included in the unswitched switch in some 240 // cases. 241 // FIXME: This is really, really gross. It would be much cleaner if LLVM 242 // allowed us to create a single entry for a predecessor block without 243 // having separate entries for each "edge" even though these edges are 244 // required to produce identical results. 245 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 246 if (PN.getIncomingBlock(i) != &OldExitingBB) 247 continue; 248 249 Value *Incoming = PN.getIncomingValue(i); 250 if (FullUnswitch) 251 // No more edge from the old exiting block to the exit block. 252 PN.removeIncomingValue(i); 253 254 NewPN->addIncoming(Incoming, &OldPH); 255 } 256 257 // Now replace the old PHI with the new one and wire the old one in as an 258 // input to the new one. 259 PN.replaceAllUsesWith(NewPN); 260 NewPN->addIncoming(&PN, &ExitBB); 261 } 262 } 263 264 /// Hoist the current loop up to the innermost loop containing a remaining exit. 265 /// 266 /// Because we've removed an exit from the loop, we may have changed the set of 267 /// loops reachable and need to move the current loop up the loop nest or even 268 /// to an entirely separate nest. 269 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 270 DominatorTree &DT, LoopInfo &LI) { 271 // If the loop is already at the top level, we can't hoist it anywhere. 272 Loop *OldParentL = L.getParentLoop(); 273 if (!OldParentL) 274 return; 275 276 SmallVector<BasicBlock *, 4> Exits; 277 L.getExitBlocks(Exits); 278 Loop *NewParentL = nullptr; 279 for (auto *ExitBB : Exits) 280 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 281 if (!NewParentL || NewParentL->contains(ExitL)) 282 NewParentL = ExitL; 283 284 if (NewParentL == OldParentL) 285 return; 286 287 // The new parent loop (if different) should always contain the old one. 288 if (NewParentL) 289 assert(NewParentL->contains(OldParentL) && 290 "Can only hoist this loop up the nest!"); 291 292 // The preheader will need to move with the body of this loop. However, 293 // because it isn't in this loop we also need to update the primary loop map. 294 assert(OldParentL == LI.getLoopFor(&Preheader) && 295 "Parent loop of this loop should contain this loop's preheader!"); 296 LI.changeLoopFor(&Preheader, NewParentL); 297 298 // Remove this loop from its old parent. 299 OldParentL->removeChildLoop(&L); 300 301 // Add the loop either to the new parent or as a top-level loop. 302 if (NewParentL) 303 NewParentL->addChildLoop(&L); 304 else 305 LI.addTopLevelLoop(&L); 306 307 // Remove this loops blocks from the old parent and every other loop up the 308 // nest until reaching the new parent. Also update all of these 309 // no-longer-containing loops to reflect the nesting change. 310 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 311 OldContainingL = OldContainingL->getParentLoop()) { 312 llvm::erase_if(OldContainingL->getBlocksVector(), 313 [&](const BasicBlock *BB) { 314 return BB == &Preheader || L.contains(BB); 315 }); 316 317 OldContainingL->getBlocksSet().erase(&Preheader); 318 for (BasicBlock *BB : L.blocks()) 319 OldContainingL->getBlocksSet().erase(BB); 320 321 // Because we just hoisted a loop out of this one, we have essentially 322 // created new exit paths from it. That means we need to form LCSSA PHI 323 // nodes for values used in the no-longer-nested loop. 324 formLCSSA(*OldContainingL, DT, &LI, nullptr); 325 326 // We shouldn't need to form dedicated exits because the exit introduced 327 // here is the (just split by unswitching) preheader. However, after trivial 328 // unswitching it is possible to get new non-dedicated exits out of parent 329 // loop so let's conservatively form dedicated exit blocks and figure out 330 // if we can optimize later. 331 formDedicatedExitBlocks(OldContainingL, &DT, &LI, /*PreserveLCSSA*/ true); 332 } 333 } 334 335 /// Unswitch a trivial branch if the condition is loop invariant. 336 /// 337 /// This routine should only be called when loop code leading to the branch has 338 /// been validated as trivial (no side effects). This routine checks if the 339 /// condition is invariant and one of the successors is a loop exit. This 340 /// allows us to unswitch without duplicating the loop, making it trivial. 341 /// 342 /// If this routine fails to unswitch the branch it returns false. 343 /// 344 /// If the branch can be unswitched, this routine splits the preheader and 345 /// hoists the branch above that split. Preserves loop simplified form 346 /// (splitting the exit block as necessary). It simplifies the branch within 347 /// the loop to an unconditional branch but doesn't remove it entirely. Further 348 /// cleanup can be done with some simplify-cfg like pass. 349 /// 350 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 351 /// invalidated by this. 352 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 353 LoopInfo &LI, ScalarEvolution *SE, 354 MemorySSAUpdater *MSSAU) { 355 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 356 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 357 358 // The loop invariant values that we want to unswitch. 359 TinyPtrVector<Value *> Invariants; 360 361 // When true, we're fully unswitching the branch rather than just unswitching 362 // some input conditions to the branch. 363 bool FullUnswitch = false; 364 365 if (L.isLoopInvariant(BI.getCondition())) { 366 Invariants.push_back(BI.getCondition()); 367 FullUnswitch = true; 368 } else { 369 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 370 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 371 if (Invariants.empty()) 372 // Couldn't find invariant inputs! 373 return false; 374 } 375 376 // Check that one of the branch's successors exits, and which one. 377 bool ExitDirection = true; 378 int LoopExitSuccIdx = 0; 379 auto *LoopExitBB = BI.getSuccessor(0); 380 if (L.contains(LoopExitBB)) { 381 ExitDirection = false; 382 LoopExitSuccIdx = 1; 383 LoopExitBB = BI.getSuccessor(1); 384 if (L.contains(LoopExitBB)) 385 return false; 386 } 387 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 388 auto *ParentBB = BI.getParent(); 389 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 390 return false; 391 392 // When unswitching only part of the branch's condition, we need the exit 393 // block to be reached directly from the partially unswitched input. This can 394 // be done when the exit block is along the true edge and the branch condition 395 // is a graph of `or` operations, or the exit block is along the false edge 396 // and the condition is a graph of `and` operations. 397 if (!FullUnswitch) { 398 if (ExitDirection) { 399 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 400 return false; 401 } else { 402 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 403 return false; 404 } 405 } 406 407 LLVM_DEBUG({ 408 dbgs() << " unswitching trivial invariant conditions for: " << BI 409 << "\n"; 410 for (Value *Invariant : Invariants) { 411 dbgs() << " " << *Invariant << " == true"; 412 if (Invariant != Invariants.back()) 413 dbgs() << " ||"; 414 dbgs() << "\n"; 415 } 416 }); 417 418 // If we have scalar evolutions, we need to invalidate them including this 419 // loop and the loop containing the exit block. 420 if (SE) { 421 if (Loop *ExitL = LI.getLoopFor(LoopExitBB)) 422 SE->forgetLoop(ExitL); 423 else 424 // Forget the entire nest as this exits the entire nest. 425 SE->forgetTopmostLoop(&L); 426 } 427 428 if (MSSAU && VerifyMemorySSA) 429 MSSAU->getMemorySSA()->verifyMemorySSA(); 430 431 // Split the preheader, so that we know that there is a safe place to insert 432 // the conditional branch. We will change the preheader to have a conditional 433 // branch on LoopCond. 434 BasicBlock *OldPH = L.getLoopPreheader(); 435 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 436 437 // Now that we have a place to insert the conditional branch, create a place 438 // to branch to: this is the exit block out of the loop that we are 439 // unswitching. We need to split this if there are other loop predecessors. 440 // Because the loop is in simplified form, *any* other predecessor is enough. 441 BasicBlock *UnswitchedBB; 442 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 443 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 444 "A branch's parent isn't a predecessor!"); 445 UnswitchedBB = LoopExitBB; 446 } else { 447 UnswitchedBB = 448 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 449 } 450 451 if (MSSAU && VerifyMemorySSA) 452 MSSAU->getMemorySSA()->verifyMemorySSA(); 453 454 // Actually move the invariant uses into the unswitched position. If possible, 455 // we do this by moving the instructions, but when doing partial unswitching 456 // we do it by building a new merge of the values in the unswitched position. 457 OldPH->getTerminator()->eraseFromParent(); 458 if (FullUnswitch) { 459 // If fully unswitching, we can use the existing branch instruction. 460 // Splice it into the old PH to gate reaching the new preheader and re-point 461 // its successors. 462 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 463 BI); 464 if (MSSAU) { 465 // Temporarily clone the terminator, to make MSSA update cheaper by 466 // separating "insert edge" updates from "remove edge" ones. 467 ParentBB->getInstList().push_back(BI.clone()); 468 } else { 469 // Create a new unconditional branch that will continue the loop as a new 470 // terminator. 471 BranchInst::Create(ContinueBB, ParentBB); 472 } 473 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 474 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 475 } else { 476 // Only unswitching a subset of inputs to the condition, so we will need to 477 // build a new branch that merges the invariant inputs. 478 if (ExitDirection) 479 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 480 Instruction::Or && 481 "Must have an `or` of `i1`s for the condition!"); 482 else 483 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 484 Instruction::And && 485 "Must have an `and` of `i1`s for the condition!"); 486 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 487 *UnswitchedBB, *NewPH); 488 } 489 490 // Update the dominator tree with the added edge. 491 DT.insertEdge(OldPH, UnswitchedBB); 492 493 // After the dominator tree was updated with the added edge, update MemorySSA 494 // if available. 495 if (MSSAU) { 496 SmallVector<CFGUpdate, 1> Updates; 497 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 498 MSSAU->applyInsertUpdates(Updates, DT); 499 } 500 501 // Finish updating dominator tree and memory ssa for full unswitch. 502 if (FullUnswitch) { 503 if (MSSAU) { 504 // Remove the cloned branch instruction. 505 ParentBB->getTerminator()->eraseFromParent(); 506 // Create unconditional branch now. 507 BranchInst::Create(ContinueBB, ParentBB); 508 MSSAU->removeEdge(ParentBB, LoopExitBB); 509 } 510 DT.deleteEdge(ParentBB, LoopExitBB); 511 } 512 513 if (MSSAU && VerifyMemorySSA) 514 MSSAU->getMemorySSA()->verifyMemorySSA(); 515 516 // Rewrite the relevant PHI nodes. 517 if (UnswitchedBB == LoopExitBB) 518 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 519 else 520 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 521 *ParentBB, *OldPH, FullUnswitch); 522 523 // The constant we can replace all of our invariants with inside the loop 524 // body. If any of the invariants have a value other than this the loop won't 525 // be entered. 526 ConstantInt *Replacement = ExitDirection 527 ? ConstantInt::getFalse(BI.getContext()) 528 : ConstantInt::getTrue(BI.getContext()); 529 530 // Since this is an i1 condition we can also trivially replace uses of it 531 // within the loop with a constant. 532 for (Value *Invariant : Invariants) 533 replaceLoopInvariantUses(L, Invariant, *Replacement); 534 535 // If this was full unswitching, we may have changed the nesting relationship 536 // for this loop so hoist it to its correct parent if needed. 537 if (FullUnswitch) 538 hoistLoopToNewParent(L, *NewPH, DT, LI); 539 540 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 541 ++NumTrivial; 542 ++NumBranches; 543 return true; 544 } 545 546 /// Unswitch a trivial switch if the condition is loop invariant. 547 /// 548 /// This routine should only be called when loop code leading to the switch has 549 /// been validated as trivial (no side effects). This routine checks if the 550 /// condition is invariant and that at least one of the successors is a loop 551 /// exit. This allows us to unswitch without duplicating the loop, making it 552 /// trivial. 553 /// 554 /// If this routine fails to unswitch the switch it returns false. 555 /// 556 /// If the switch can be unswitched, this routine splits the preheader and 557 /// copies the switch above that split. If the default case is one of the 558 /// exiting cases, it copies the non-exiting cases and points them at the new 559 /// preheader. If the default case is not exiting, it copies the exiting cases 560 /// and points the default at the preheader. It preserves loop simplified form 561 /// (splitting the exit blocks as necessary). It simplifies the switch within 562 /// the loop by removing now-dead cases. If the default case is one of those 563 /// unswitched, it replaces its destination with a new basic block containing 564 /// only unreachable. Such basic blocks, while technically loop exits, are not 565 /// considered for unswitching so this is a stable transform and the same 566 /// switch will not be revisited. If after unswitching there is only a single 567 /// in-loop successor, the switch is further simplified to an unconditional 568 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 569 /// 570 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 571 /// invalidated by this. 572 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 573 LoopInfo &LI, ScalarEvolution *SE, 574 MemorySSAUpdater *MSSAU) { 575 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 576 Value *LoopCond = SI.getCondition(); 577 578 // If this isn't switching on an invariant condition, we can't unswitch it. 579 if (!L.isLoopInvariant(LoopCond)) 580 return false; 581 582 auto *ParentBB = SI.getParent(); 583 584 SmallVector<int, 4> ExitCaseIndices; 585 for (auto Case : SI.cases()) { 586 auto *SuccBB = Case.getCaseSuccessor(); 587 if (!L.contains(SuccBB) && 588 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 589 ExitCaseIndices.push_back(Case.getCaseIndex()); 590 } 591 BasicBlock *DefaultExitBB = nullptr; 592 if (!L.contains(SI.getDefaultDest()) && 593 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 594 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 595 DefaultExitBB = SI.getDefaultDest(); 596 else if (ExitCaseIndices.empty()) 597 return false; 598 599 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 600 601 if (MSSAU && VerifyMemorySSA) 602 MSSAU->getMemorySSA()->verifyMemorySSA(); 603 604 // We may need to invalidate SCEVs for the outermost loop reached by any of 605 // the exits. 606 Loop *OuterL = &L; 607 608 if (DefaultExitBB) { 609 // Clear out the default destination temporarily to allow accurate 610 // predecessor lists to be examined below. 611 SI.setDefaultDest(nullptr); 612 // Check the loop containing this exit. 613 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 614 if (!ExitL || ExitL->contains(OuterL)) 615 OuterL = ExitL; 616 } 617 618 // Store the exit cases into a separate data structure and remove them from 619 // the switch. 620 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 621 ExitCases.reserve(ExitCaseIndices.size()); 622 // We walk the case indices backwards so that we remove the last case first 623 // and don't disrupt the earlier indices. 624 for (unsigned Index : reverse(ExitCaseIndices)) { 625 auto CaseI = SI.case_begin() + Index; 626 // Compute the outer loop from this exit. 627 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 628 if (!ExitL || ExitL->contains(OuterL)) 629 OuterL = ExitL; 630 // Save the value of this case. 631 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 632 // Delete the unswitched cases. 633 SI.removeCase(CaseI); 634 } 635 636 if (SE) { 637 if (OuterL) 638 SE->forgetLoop(OuterL); 639 else 640 SE->forgetTopmostLoop(&L); 641 } 642 643 // Check if after this all of the remaining cases point at the same 644 // successor. 645 BasicBlock *CommonSuccBB = nullptr; 646 if (SI.getNumCases() > 0 && 647 std::all_of(std::next(SI.case_begin()), SI.case_end(), 648 [&SI](const SwitchInst::CaseHandle &Case) { 649 return Case.getCaseSuccessor() == 650 SI.case_begin()->getCaseSuccessor(); 651 })) 652 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 653 if (!DefaultExitBB) { 654 // If we're not unswitching the default, we need it to match any cases to 655 // have a common successor or if we have no cases it is the common 656 // successor. 657 if (SI.getNumCases() == 0) 658 CommonSuccBB = SI.getDefaultDest(); 659 else if (SI.getDefaultDest() != CommonSuccBB) 660 CommonSuccBB = nullptr; 661 } 662 663 // Split the preheader, so that we know that there is a safe place to insert 664 // the switch. 665 BasicBlock *OldPH = L.getLoopPreheader(); 666 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 667 OldPH->getTerminator()->eraseFromParent(); 668 669 // Now add the unswitched switch. 670 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 671 672 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 673 // First, we split any exit blocks with remaining in-loop predecessors. Then 674 // we update the PHIs in one of two ways depending on if there was a split. 675 // We walk in reverse so that we split in the same order as the cases 676 // appeared. This is purely for convenience of reading the resulting IR, but 677 // it doesn't cost anything really. 678 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 679 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 680 // Handle the default exit if necessary. 681 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 682 // ranges aren't quite powerful enough yet. 683 if (DefaultExitBB) { 684 if (pred_empty(DefaultExitBB)) { 685 UnswitchedExitBBs.insert(DefaultExitBB); 686 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 687 } else { 688 auto *SplitBB = 689 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 690 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 691 *ParentBB, *OldPH, 692 /*FullUnswitch*/ true); 693 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 694 } 695 } 696 // Note that we must use a reference in the for loop so that we update the 697 // container. 698 for (auto &CasePair : reverse(ExitCases)) { 699 // Grab a reference to the exit block in the pair so that we can update it. 700 BasicBlock *ExitBB = CasePair.second; 701 702 // If this case is the last edge into the exit block, we can simply reuse it 703 // as it will no longer be a loop exit. No mapping necessary. 704 if (pred_empty(ExitBB)) { 705 // Only rewrite once. 706 if (UnswitchedExitBBs.insert(ExitBB).second) 707 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 708 continue; 709 } 710 711 // Otherwise we need to split the exit block so that we retain an exit 712 // block from the loop and a target for the unswitched condition. 713 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 714 if (!SplitExitBB) { 715 // If this is the first time we see this, do the split and remember it. 716 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 717 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 718 *ParentBB, *OldPH, 719 /*FullUnswitch*/ true); 720 } 721 // Update the case pair to point to the split block. 722 CasePair.second = SplitExitBB; 723 } 724 725 // Now add the unswitched cases. We do this in reverse order as we built them 726 // in reverse order. 727 for (auto CasePair : reverse(ExitCases)) { 728 ConstantInt *CaseVal = CasePair.first; 729 BasicBlock *UnswitchedBB = CasePair.second; 730 731 NewSI->addCase(CaseVal, UnswitchedBB); 732 } 733 734 // If the default was unswitched, re-point it and add explicit cases for 735 // entering the loop. 736 if (DefaultExitBB) { 737 NewSI->setDefaultDest(DefaultExitBB); 738 739 // We removed all the exit cases, so we just copy the cases to the 740 // unswitched switch. 741 for (auto Case : SI.cases()) 742 NewSI->addCase(Case.getCaseValue(), NewPH); 743 } 744 745 // If we ended up with a common successor for every path through the switch 746 // after unswitching, rewrite it to an unconditional branch to make it easy 747 // to recognize. Otherwise we potentially have to recognize the default case 748 // pointing at unreachable and other complexity. 749 if (CommonSuccBB) { 750 BasicBlock *BB = SI.getParent(); 751 // We may have had multiple edges to this common successor block, so remove 752 // them as predecessors. We skip the first one, either the default or the 753 // actual first case. 754 bool SkippedFirst = DefaultExitBB == nullptr; 755 for (auto Case : SI.cases()) { 756 assert(Case.getCaseSuccessor() == CommonSuccBB && 757 "Non-common successor!"); 758 (void)Case; 759 if (!SkippedFirst) { 760 SkippedFirst = true; 761 continue; 762 } 763 CommonSuccBB->removePredecessor(BB, 764 /*DontDeleteUselessPHIs*/ true); 765 } 766 // Now nuke the switch and replace it with a direct branch. 767 SI.eraseFromParent(); 768 BranchInst::Create(CommonSuccBB, BB); 769 } else if (DefaultExitBB) { 770 assert(SI.getNumCases() > 0 && 771 "If we had no cases we'd have a common successor!"); 772 // Move the last case to the default successor. This is valid as if the 773 // default got unswitched it cannot be reached. This has the advantage of 774 // being simple and keeping the number of edges from this switch to 775 // successors the same, and avoiding any PHI update complexity. 776 auto LastCaseI = std::prev(SI.case_end()); 777 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 778 SI.removeCase(LastCaseI); 779 } 780 781 // Walk the unswitched exit blocks and the unswitched split blocks and update 782 // the dominator tree based on the CFG edits. While we are walking unordered 783 // containers here, the API for applyUpdates takes an unordered list of 784 // updates and requires them to not contain duplicates. 785 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 786 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 787 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 788 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 789 } 790 for (auto SplitUnswitchedPair : SplitExitBBMap) { 791 auto *UnswitchedBB = SplitUnswitchedPair.second; 792 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); 793 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 794 } 795 DT.applyUpdates(DTUpdates); 796 797 if (MSSAU) { 798 MSSAU->applyUpdates(DTUpdates, DT); 799 if (VerifyMemorySSA) 800 MSSAU->getMemorySSA()->verifyMemorySSA(); 801 } 802 803 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 804 805 // We may have changed the nesting relationship for this loop so hoist it to 806 // its correct parent if needed. 807 hoistLoopToNewParent(L, *NewPH, DT, LI); 808 809 ++NumTrivial; 810 ++NumSwitches; 811 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 812 return true; 813 } 814 815 /// This routine scans the loop to find a branch or switch which occurs before 816 /// any side effects occur. These can potentially be unswitched without 817 /// duplicating the loop. If a branch or switch is successfully unswitched the 818 /// scanning continues to see if subsequent branches or switches have become 819 /// trivial. Once all trivial candidates have been unswitched, this routine 820 /// returns. 821 /// 822 /// The return value indicates whether anything was unswitched (and therefore 823 /// changed). 824 /// 825 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 826 /// invalidated by this. 827 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 828 LoopInfo &LI, ScalarEvolution *SE, 829 MemorySSAUpdater *MSSAU) { 830 bool Changed = false; 831 832 // If loop header has only one reachable successor we should keep looking for 833 // trivial condition candidates in the successor as well. An alternative is 834 // to constant fold conditions and merge successors into loop header (then we 835 // only need to check header's terminator). The reason for not doing this in 836 // LoopUnswitch pass is that it could potentially break LoopPassManager's 837 // invariants. Folding dead branches could either eliminate the current loop 838 // or make other loops unreachable. LCSSA form might also not be preserved 839 // after deleting branches. The following code keeps traversing loop header's 840 // successors until it finds the trivial condition candidate (condition that 841 // is not a constant). Since unswitching generates branches with constant 842 // conditions, this scenario could be very common in practice. 843 BasicBlock *CurrentBB = L.getHeader(); 844 SmallPtrSet<BasicBlock *, 8> Visited; 845 Visited.insert(CurrentBB); 846 do { 847 // Check if there are any side-effecting instructions (e.g. stores, calls, 848 // volatile loads) in the part of the loop that the code *would* execute 849 // without unswitching. 850 if (llvm::any_of(*CurrentBB, 851 [](Instruction &I) { return I.mayHaveSideEffects(); })) 852 return Changed; 853 854 Instruction *CurrentTerm = CurrentBB->getTerminator(); 855 856 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 857 // Don't bother trying to unswitch past a switch with a constant 858 // condition. This should be removed prior to running this pass by 859 // simplify-cfg. 860 if (isa<Constant>(SI->getCondition())) 861 return Changed; 862 863 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 864 // Couldn't unswitch this one so we're done. 865 return Changed; 866 867 // Mark that we managed to unswitch something. 868 Changed = true; 869 870 // If unswitching turned the terminator into an unconditional branch then 871 // we can continue. The unswitching logic specifically works to fold any 872 // cases it can into an unconditional branch to make it easier to 873 // recognize here. 874 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 875 if (!BI || BI->isConditional()) 876 return Changed; 877 878 CurrentBB = BI->getSuccessor(0); 879 continue; 880 } 881 882 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 883 if (!BI) 884 // We do not understand other terminator instructions. 885 return Changed; 886 887 // Don't bother trying to unswitch past an unconditional branch or a branch 888 // with a constant value. These should be removed by simplify-cfg prior to 889 // running this pass. 890 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 891 return Changed; 892 893 // Found a trivial condition candidate: non-foldable conditional branch. If 894 // we fail to unswitch this, we can't do anything else that is trivial. 895 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 896 return Changed; 897 898 // Mark that we managed to unswitch something. 899 Changed = true; 900 901 // If we only unswitched some of the conditions feeding the branch, we won't 902 // have collapsed it to a single successor. 903 BI = cast<BranchInst>(CurrentBB->getTerminator()); 904 if (BI->isConditional()) 905 return Changed; 906 907 // Follow the newly unconditional branch into its successor. 908 CurrentBB = BI->getSuccessor(0); 909 910 // When continuing, if we exit the loop or reach a previous visited block, 911 // then we can not reach any trivial condition candidates (unfoldable 912 // branch instructions or switch instructions) and no unswitch can happen. 913 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 914 915 return Changed; 916 } 917 918 /// Build the cloned blocks for an unswitched copy of the given loop. 919 /// 920 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 921 /// after the split block (`SplitBB`) that will be used to select between the 922 /// cloned and original loop. 923 /// 924 /// This routine handles cloning all of the necessary loop blocks and exit 925 /// blocks including rewriting their instructions and the relevant PHI nodes. 926 /// Any loop blocks or exit blocks which are dominated by a different successor 927 /// than the one for this clone of the loop blocks can be trivially skipped. We 928 /// use the `DominatingSucc` map to determine whether a block satisfies that 929 /// property with a simple map lookup. 930 /// 931 /// It also correctly creates the unconditional branch in the cloned 932 /// unswitched parent block to only point at the unswitched successor. 933 /// 934 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 935 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 936 /// the cloned blocks (and their loops) are left without full `LoopInfo` 937 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 938 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 939 /// instead the caller must recompute an accurate DT. It *does* correctly 940 /// update the `AssumptionCache` provided in `AC`. 941 static BasicBlock *buildClonedLoopBlocks( 942 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 943 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 944 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 945 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 946 ValueToValueMapTy &VMap, 947 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 948 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 949 SmallVector<BasicBlock *, 4> NewBlocks; 950 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 951 952 // We will need to clone a bunch of blocks, wrap up the clone operation in 953 // a helper. 954 auto CloneBlock = [&](BasicBlock *OldBB) { 955 // Clone the basic block and insert it before the new preheader. 956 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 957 NewBB->moveBefore(LoopPH); 958 959 // Record this block and the mapping. 960 NewBlocks.push_back(NewBB); 961 VMap[OldBB] = NewBB; 962 963 return NewBB; 964 }; 965 966 // We skip cloning blocks when they have a dominating succ that is not the 967 // succ we are cloning for. 968 auto SkipBlock = [&](BasicBlock *BB) { 969 auto It = DominatingSucc.find(BB); 970 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 971 }; 972 973 // First, clone the preheader. 974 auto *ClonedPH = CloneBlock(LoopPH); 975 976 // Then clone all the loop blocks, skipping the ones that aren't necessary. 977 for (auto *LoopBB : L.blocks()) 978 if (!SkipBlock(LoopBB)) 979 CloneBlock(LoopBB); 980 981 // Split all the loop exit edges so that when we clone the exit blocks, if 982 // any of the exit blocks are *also* a preheader for some other loop, we 983 // don't create multiple predecessors entering the loop header. 984 for (auto *ExitBB : ExitBlocks) { 985 if (SkipBlock(ExitBB)) 986 continue; 987 988 // When we are going to clone an exit, we don't need to clone all the 989 // instructions in the exit block and we want to ensure we have an easy 990 // place to merge the CFG, so split the exit first. This is always safe to 991 // do because there cannot be any non-loop predecessors of a loop exit in 992 // loop simplified form. 993 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 994 995 // Rearrange the names to make it easier to write test cases by having the 996 // exit block carry the suffix rather than the merge block carrying the 997 // suffix. 998 MergeBB->takeName(ExitBB); 999 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1000 1001 // Now clone the original exit block. 1002 auto *ClonedExitBB = CloneBlock(ExitBB); 1003 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1004 "Exit block should have been split to have one successor!"); 1005 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1006 "Cloned exit block has the wrong successor!"); 1007 1008 // Remap any cloned instructions and create a merge phi node for them. 1009 for (auto ZippedInsts : llvm::zip_first( 1010 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1011 llvm::make_range(ClonedExitBB->begin(), 1012 std::prev(ClonedExitBB->end())))) { 1013 Instruction &I = std::get<0>(ZippedInsts); 1014 Instruction &ClonedI = std::get<1>(ZippedInsts); 1015 1016 // The only instructions in the exit block should be PHI nodes and 1017 // potentially a landing pad. 1018 assert( 1019 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1020 "Bad instruction in exit block!"); 1021 // We should have a value map between the instruction and its clone. 1022 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1023 1024 auto *MergePN = 1025 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1026 &*MergeBB->getFirstInsertionPt()); 1027 I.replaceAllUsesWith(MergePN); 1028 MergePN->addIncoming(&I, ExitBB); 1029 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1030 } 1031 } 1032 1033 // Rewrite the instructions in the cloned blocks to refer to the instructions 1034 // in the cloned blocks. We have to do this as a second pass so that we have 1035 // everything available. Also, we have inserted new instructions which may 1036 // include assume intrinsics, so we update the assumption cache while 1037 // processing this. 1038 for (auto *ClonedBB : NewBlocks) 1039 for (Instruction &I : *ClonedBB) { 1040 RemapInstruction(&I, VMap, 1041 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1042 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1043 if (II->getIntrinsicID() == Intrinsic::assume) 1044 AC.registerAssumption(II); 1045 } 1046 1047 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1048 // have spurious incoming values. 1049 for (auto *LoopBB : L.blocks()) 1050 if (SkipBlock(LoopBB)) 1051 for (auto *SuccBB : successors(LoopBB)) 1052 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1053 for (PHINode &PN : ClonedSuccBB->phis()) 1054 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1055 1056 // Remove the cloned parent as a predecessor of any successor we ended up 1057 // cloning other than the unswitched one. 1058 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1059 for (auto *SuccBB : successors(ParentBB)) { 1060 if (SuccBB == UnswitchedSuccBB) 1061 continue; 1062 1063 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1064 if (!ClonedSuccBB) 1065 continue; 1066 1067 ClonedSuccBB->removePredecessor(ClonedParentBB, 1068 /*DontDeleteUselessPHIs*/ true); 1069 } 1070 1071 // Replace the cloned branch with an unconditional branch to the cloned 1072 // unswitched successor. 1073 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1074 ClonedParentBB->getTerminator()->eraseFromParent(); 1075 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1076 1077 // If there are duplicate entries in the PHI nodes because of multiple edges 1078 // to the unswitched successor, we need to nuke all but one as we replaced it 1079 // with a direct branch. 1080 for (PHINode &PN : ClonedSuccBB->phis()) { 1081 bool Found = false; 1082 // Loop over the incoming operands backwards so we can easily delete as we 1083 // go without invalidating the index. 1084 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1085 if (PN.getIncomingBlock(i) != ClonedParentBB) 1086 continue; 1087 if (!Found) { 1088 Found = true; 1089 continue; 1090 } 1091 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1092 } 1093 } 1094 1095 // Record the domtree updates for the new blocks. 1096 SmallPtrSet<BasicBlock *, 4> SuccSet; 1097 for (auto *ClonedBB : NewBlocks) { 1098 for (auto *SuccBB : successors(ClonedBB)) 1099 if (SuccSet.insert(SuccBB).second) 1100 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1101 SuccSet.clear(); 1102 } 1103 1104 return ClonedPH; 1105 } 1106 1107 /// Recursively clone the specified loop and all of its children. 1108 /// 1109 /// The target parent loop for the clone should be provided, or can be null if 1110 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1111 /// with the provided value map. The entire original loop must be present in 1112 /// the value map. The cloned loop is returned. 1113 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1114 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1115 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1116 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1117 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1118 for (auto *BB : OrigL.blocks()) { 1119 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1120 ClonedL.addBlockEntry(ClonedBB); 1121 if (LI.getLoopFor(BB) == &OrigL) 1122 LI.changeLoopFor(ClonedBB, &ClonedL); 1123 } 1124 }; 1125 1126 // We specially handle the first loop because it may get cloned into 1127 // a different parent and because we most commonly are cloning leaf loops. 1128 Loop *ClonedRootL = LI.AllocateLoop(); 1129 if (RootParentL) 1130 RootParentL->addChildLoop(ClonedRootL); 1131 else 1132 LI.addTopLevelLoop(ClonedRootL); 1133 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1134 1135 if (OrigRootL.empty()) 1136 return ClonedRootL; 1137 1138 // If we have a nest, we can quickly clone the entire loop nest using an 1139 // iterative approach because it is a tree. We keep the cloned parent in the 1140 // data structure to avoid repeatedly querying through a map to find it. 1141 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1142 // Build up the loops to clone in reverse order as we'll clone them from the 1143 // back. 1144 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1145 LoopsToClone.push_back({ClonedRootL, ChildL}); 1146 do { 1147 Loop *ClonedParentL, *L; 1148 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1149 Loop *ClonedL = LI.AllocateLoop(); 1150 ClonedParentL->addChildLoop(ClonedL); 1151 AddClonedBlocksToLoop(*L, *ClonedL); 1152 for (Loop *ChildL : llvm::reverse(*L)) 1153 LoopsToClone.push_back({ClonedL, ChildL}); 1154 } while (!LoopsToClone.empty()); 1155 1156 return ClonedRootL; 1157 } 1158 1159 /// Build the cloned loops of an original loop from unswitching. 1160 /// 1161 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1162 /// operation. We need to re-verify that there even is a loop (as the backedge 1163 /// may not have been cloned), and even if there are remaining backedges the 1164 /// backedge set may be different. However, we know that each child loop is 1165 /// undisturbed, we only need to find where to place each child loop within 1166 /// either any parent loop or within a cloned version of the original loop. 1167 /// 1168 /// Because child loops may end up cloned outside of any cloned version of the 1169 /// original loop, multiple cloned sibling loops may be created. All of them 1170 /// are returned so that the newly introduced loop nest roots can be 1171 /// identified. 1172 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1173 const ValueToValueMapTy &VMap, LoopInfo &LI, 1174 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1175 Loop *ClonedL = nullptr; 1176 1177 auto *OrigPH = OrigL.getLoopPreheader(); 1178 auto *OrigHeader = OrigL.getHeader(); 1179 1180 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1181 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1182 1183 // We need to know the loops of the cloned exit blocks to even compute the 1184 // accurate parent loop. If we only clone exits to some parent of the 1185 // original parent, we want to clone into that outer loop. We also keep track 1186 // of the loops that our cloned exit blocks participate in. 1187 Loop *ParentL = nullptr; 1188 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1189 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1190 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1191 for (auto *ExitBB : ExitBlocks) 1192 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1193 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1194 ExitLoopMap[ClonedExitBB] = ExitL; 1195 ClonedExitsInLoops.push_back(ClonedExitBB); 1196 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1197 ParentL = ExitL; 1198 } 1199 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1200 ParentL->contains(OrigL.getParentLoop())) && 1201 "The computed parent loop should always contain (or be) the parent of " 1202 "the original loop."); 1203 1204 // We build the set of blocks dominated by the cloned header from the set of 1205 // cloned blocks out of the original loop. While not all of these will 1206 // necessarily be in the cloned loop, it is enough to establish that they 1207 // aren't in unreachable cycles, etc. 1208 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1209 for (auto *BB : OrigL.blocks()) 1210 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1211 ClonedLoopBlocks.insert(ClonedBB); 1212 1213 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1214 // skipped cloning some region of this loop which can in turn skip some of 1215 // the backedges so we have to rebuild the blocks in the loop based on the 1216 // backedges that remain after cloning. 1217 SmallVector<BasicBlock *, 16> Worklist; 1218 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1219 for (auto *Pred : predecessors(ClonedHeader)) { 1220 // The only possible non-loop header predecessor is the preheader because 1221 // we know we cloned the loop in simplified form. 1222 if (Pred == ClonedPH) 1223 continue; 1224 1225 // Because the loop was in simplified form, the only non-loop predecessor 1226 // should be the preheader. 1227 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1228 "header other than the preheader " 1229 "that is not part of the loop!"); 1230 1231 // Insert this block into the loop set and on the first visit (and if it 1232 // isn't the header we're currently walking) put it into the worklist to 1233 // recurse through. 1234 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1235 Worklist.push_back(Pred); 1236 } 1237 1238 // If we had any backedges then there *is* a cloned loop. Put the header into 1239 // the loop set and then walk the worklist backwards to find all the blocks 1240 // that remain within the loop after cloning. 1241 if (!BlocksInClonedLoop.empty()) { 1242 BlocksInClonedLoop.insert(ClonedHeader); 1243 1244 while (!Worklist.empty()) { 1245 BasicBlock *BB = Worklist.pop_back_val(); 1246 assert(BlocksInClonedLoop.count(BB) && 1247 "Didn't put block into the loop set!"); 1248 1249 // Insert any predecessors that are in the possible set into the cloned 1250 // set, and if the insert is successful, add them to the worklist. Note 1251 // that we filter on the blocks that are definitely reachable via the 1252 // backedge to the loop header so we may prune out dead code within the 1253 // cloned loop. 1254 for (auto *Pred : predecessors(BB)) 1255 if (ClonedLoopBlocks.count(Pred) && 1256 BlocksInClonedLoop.insert(Pred).second) 1257 Worklist.push_back(Pred); 1258 } 1259 1260 ClonedL = LI.AllocateLoop(); 1261 if (ParentL) { 1262 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1263 ParentL->addChildLoop(ClonedL); 1264 } else { 1265 LI.addTopLevelLoop(ClonedL); 1266 } 1267 NonChildClonedLoops.push_back(ClonedL); 1268 1269 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1270 // We don't want to just add the cloned loop blocks based on how we 1271 // discovered them. The original order of blocks was carefully built in 1272 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1273 // that logic, we just re-walk the original blocks (and those of the child 1274 // loops) and filter them as we add them into the cloned loop. 1275 for (auto *BB : OrigL.blocks()) { 1276 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1277 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1278 continue; 1279 1280 // Directly add the blocks that are only in this loop. 1281 if (LI.getLoopFor(BB) == &OrigL) { 1282 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1283 continue; 1284 } 1285 1286 // We want to manually add it to this loop and parents. 1287 // Registering it with LoopInfo will happen when we clone the top 1288 // loop for this block. 1289 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1290 PL->addBlockEntry(ClonedBB); 1291 } 1292 1293 // Now add each child loop whose header remains within the cloned loop. All 1294 // of the blocks within the loop must satisfy the same constraints as the 1295 // header so once we pass the header checks we can just clone the entire 1296 // child loop nest. 1297 for (Loop *ChildL : OrigL) { 1298 auto *ClonedChildHeader = 1299 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1300 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1301 continue; 1302 1303 #ifndef NDEBUG 1304 // We should never have a cloned child loop header but fail to have 1305 // all of the blocks for that child loop. 1306 for (auto *ChildLoopBB : ChildL->blocks()) 1307 assert(BlocksInClonedLoop.count( 1308 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1309 "Child cloned loop has a header within the cloned outer " 1310 "loop but not all of its blocks!"); 1311 #endif 1312 1313 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1314 } 1315 } 1316 1317 // Now that we've handled all the components of the original loop that were 1318 // cloned into a new loop, we still need to handle anything from the original 1319 // loop that wasn't in a cloned loop. 1320 1321 // Figure out what blocks are left to place within any loop nest containing 1322 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1323 // them. 1324 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1325 if (BlocksInClonedLoop.empty()) 1326 UnloopedBlockSet.insert(ClonedPH); 1327 for (auto *ClonedBB : ClonedLoopBlocks) 1328 if (!BlocksInClonedLoop.count(ClonedBB)) 1329 UnloopedBlockSet.insert(ClonedBB); 1330 1331 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1332 // backwards across these to process them inside out. The order shouldn't 1333 // matter as we're just trying to build up the map from inside-out; we use 1334 // the map in a more stably ordered way below. 1335 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1336 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1337 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1338 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1339 }); 1340 1341 // Populate the existing ExitLoopMap with everything reachable from each 1342 // exit, starting from the inner most exit. 1343 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1344 assert(Worklist.empty() && "Didn't clear worklist!"); 1345 1346 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1347 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1348 1349 // Walk the CFG back until we hit the cloned PH adding everything reachable 1350 // and in the unlooped set to this exit block's loop. 1351 Worklist.push_back(ExitBB); 1352 do { 1353 BasicBlock *BB = Worklist.pop_back_val(); 1354 // We can stop recursing at the cloned preheader (if we get there). 1355 if (BB == ClonedPH) 1356 continue; 1357 1358 for (BasicBlock *PredBB : predecessors(BB)) { 1359 // If this pred has already been moved to our set or is part of some 1360 // (inner) loop, no update needed. 1361 if (!UnloopedBlockSet.erase(PredBB)) { 1362 assert( 1363 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1364 "Predecessor not mapped to a loop!"); 1365 continue; 1366 } 1367 1368 // We just insert into the loop set here. We'll add these blocks to the 1369 // exit loop after we build up the set in an order that doesn't rely on 1370 // predecessor order (which in turn relies on use list order). 1371 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1372 (void)Inserted; 1373 assert(Inserted && "Should only visit an unlooped block once!"); 1374 1375 // And recurse through to its predecessors. 1376 Worklist.push_back(PredBB); 1377 } 1378 } while (!Worklist.empty()); 1379 } 1380 1381 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1382 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1383 // in their original order adding them to the correct loop. 1384 1385 // We need a stable insertion order. We use the order of the original loop 1386 // order and map into the correct parent loop. 1387 for (auto *BB : llvm::concat<BasicBlock *const>( 1388 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1389 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1390 OuterL->addBasicBlockToLoop(BB, LI); 1391 1392 #ifndef NDEBUG 1393 for (auto &BBAndL : ExitLoopMap) { 1394 auto *BB = BBAndL.first; 1395 auto *OuterL = BBAndL.second; 1396 assert(LI.getLoopFor(BB) == OuterL && 1397 "Failed to put all blocks into outer loops!"); 1398 } 1399 #endif 1400 1401 // Now that all the blocks are placed into the correct containing loop in the 1402 // absence of child loops, find all the potentially cloned child loops and 1403 // clone them into whatever outer loop we placed their header into. 1404 for (Loop *ChildL : OrigL) { 1405 auto *ClonedChildHeader = 1406 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1407 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1408 continue; 1409 1410 #ifndef NDEBUG 1411 for (auto *ChildLoopBB : ChildL->blocks()) 1412 assert(VMap.count(ChildLoopBB) && 1413 "Cloned a child loop header but not all of that loops blocks!"); 1414 #endif 1415 1416 NonChildClonedLoops.push_back(cloneLoopNest( 1417 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1418 } 1419 } 1420 1421 static void 1422 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1423 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1424 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1425 // Find all the dead clones, and remove them from their successors. 1426 SmallVector<BasicBlock *, 16> DeadBlocks; 1427 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1428 for (auto &VMap : VMaps) 1429 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1430 if (!DT.isReachableFromEntry(ClonedBB)) { 1431 for (BasicBlock *SuccBB : successors(ClonedBB)) 1432 SuccBB->removePredecessor(ClonedBB); 1433 DeadBlocks.push_back(ClonedBB); 1434 } 1435 1436 // Remove all MemorySSA in the dead blocks 1437 if (MSSAU) { 1438 SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(), 1439 DeadBlocks.end()); 1440 MSSAU->removeBlocks(DeadBlockSet); 1441 } 1442 1443 // Drop any remaining references to break cycles. 1444 for (BasicBlock *BB : DeadBlocks) 1445 BB->dropAllReferences(); 1446 // Erase them from the IR. 1447 for (BasicBlock *BB : DeadBlocks) 1448 BB->eraseFromParent(); 1449 } 1450 1451 static void deleteDeadBlocksFromLoop(Loop &L, 1452 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1453 DominatorTree &DT, LoopInfo &LI, 1454 MemorySSAUpdater *MSSAU) { 1455 // Find all the dead blocks tied to this loop, and remove them from their 1456 // successors. 1457 SmallPtrSet<BasicBlock *, 16> DeadBlockSet; 1458 1459 // Start with loop/exit blocks and get a transitive closure of reachable dead 1460 // blocks. 1461 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1462 ExitBlocks.end()); 1463 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1464 while (!DeathCandidates.empty()) { 1465 auto *BB = DeathCandidates.pop_back_val(); 1466 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1467 for (BasicBlock *SuccBB : successors(BB)) { 1468 SuccBB->removePredecessor(BB); 1469 DeathCandidates.push_back(SuccBB); 1470 } 1471 DeadBlockSet.insert(BB); 1472 } 1473 } 1474 1475 // Remove all MemorySSA in the dead blocks 1476 if (MSSAU) 1477 MSSAU->removeBlocks(DeadBlockSet); 1478 1479 // Filter out the dead blocks from the exit blocks list so that it can be 1480 // used in the caller. 1481 llvm::erase_if(ExitBlocks, 1482 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1483 1484 // Walk from this loop up through its parents removing all of the dead blocks. 1485 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1486 for (auto *BB : DeadBlockSet) 1487 ParentL->getBlocksSet().erase(BB); 1488 llvm::erase_if(ParentL->getBlocksVector(), 1489 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1490 } 1491 1492 // Now delete the dead child loops. This raw delete will clear them 1493 // recursively. 1494 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1495 if (!DeadBlockSet.count(ChildL->getHeader())) 1496 return false; 1497 1498 assert(llvm::all_of(ChildL->blocks(), 1499 [&](BasicBlock *ChildBB) { 1500 return DeadBlockSet.count(ChildBB); 1501 }) && 1502 "If the child loop header is dead all blocks in the child loop must " 1503 "be dead as well!"); 1504 LI.destroy(ChildL); 1505 return true; 1506 }); 1507 1508 // Remove the loop mappings for the dead blocks and drop all the references 1509 // from these blocks to others to handle cyclic references as we start 1510 // deleting the blocks themselves. 1511 for (auto *BB : DeadBlockSet) { 1512 // Check that the dominator tree has already been updated. 1513 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1514 LI.changeLoopFor(BB, nullptr); 1515 BB->dropAllReferences(); 1516 } 1517 1518 // Actually delete the blocks now that they've been fully unhooked from the 1519 // IR. 1520 for (auto *BB : DeadBlockSet) 1521 BB->eraseFromParent(); 1522 } 1523 1524 /// Recompute the set of blocks in a loop after unswitching. 1525 /// 1526 /// This walks from the original headers predecessors to rebuild the loop. We 1527 /// take advantage of the fact that new blocks can't have been added, and so we 1528 /// filter by the original loop's blocks. This also handles potentially 1529 /// unreachable code that we don't want to explore but might be found examining 1530 /// the predecessors of the header. 1531 /// 1532 /// If the original loop is no longer a loop, this will return an empty set. If 1533 /// it remains a loop, all the blocks within it will be added to the set 1534 /// (including those blocks in inner loops). 1535 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1536 LoopInfo &LI) { 1537 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1538 1539 auto *PH = L.getLoopPreheader(); 1540 auto *Header = L.getHeader(); 1541 1542 // A worklist to use while walking backwards from the header. 1543 SmallVector<BasicBlock *, 16> Worklist; 1544 1545 // First walk the predecessors of the header to find the backedges. This will 1546 // form the basis of our walk. 1547 for (auto *Pred : predecessors(Header)) { 1548 // Skip the preheader. 1549 if (Pred == PH) 1550 continue; 1551 1552 // Because the loop was in simplified form, the only non-loop predecessor 1553 // is the preheader. 1554 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1555 "than the preheader that is not part of the " 1556 "loop!"); 1557 1558 // Insert this block into the loop set and on the first visit and, if it 1559 // isn't the header we're currently walking, put it into the worklist to 1560 // recurse through. 1561 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1562 Worklist.push_back(Pred); 1563 } 1564 1565 // If no backedges were found, we're done. 1566 if (LoopBlockSet.empty()) 1567 return LoopBlockSet; 1568 1569 // We found backedges, recurse through them to identify the loop blocks. 1570 while (!Worklist.empty()) { 1571 BasicBlock *BB = Worklist.pop_back_val(); 1572 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1573 1574 // No need to walk past the header. 1575 if (BB == Header) 1576 continue; 1577 1578 // Because we know the inner loop structure remains valid we can use the 1579 // loop structure to jump immediately across the entire nested loop. 1580 // Further, because it is in loop simplified form, we can directly jump 1581 // to its preheader afterward. 1582 if (Loop *InnerL = LI.getLoopFor(BB)) 1583 if (InnerL != &L) { 1584 assert(L.contains(InnerL) && 1585 "Should not reach a loop *outside* this loop!"); 1586 // The preheader is the only possible predecessor of the loop so 1587 // insert it into the set and check whether it was already handled. 1588 auto *InnerPH = InnerL->getLoopPreheader(); 1589 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1590 "but not contain the inner loop " 1591 "preheader!"); 1592 if (!LoopBlockSet.insert(InnerPH).second) 1593 // The only way to reach the preheader is through the loop body 1594 // itself so if it has been visited the loop is already handled. 1595 continue; 1596 1597 // Insert all of the blocks (other than those already present) into 1598 // the loop set. We expect at least the block that led us to find the 1599 // inner loop to be in the block set, but we may also have other loop 1600 // blocks if they were already enqueued as predecessors of some other 1601 // outer loop block. 1602 for (auto *InnerBB : InnerL->blocks()) { 1603 if (InnerBB == BB) { 1604 assert(LoopBlockSet.count(InnerBB) && 1605 "Block should already be in the set!"); 1606 continue; 1607 } 1608 1609 LoopBlockSet.insert(InnerBB); 1610 } 1611 1612 // Add the preheader to the worklist so we will continue past the 1613 // loop body. 1614 Worklist.push_back(InnerPH); 1615 continue; 1616 } 1617 1618 // Insert any predecessors that were in the original loop into the new 1619 // set, and if the insert is successful, add them to the worklist. 1620 for (auto *Pred : predecessors(BB)) 1621 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1622 Worklist.push_back(Pred); 1623 } 1624 1625 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1626 1627 // We've found all the blocks participating in the loop, return our completed 1628 // set. 1629 return LoopBlockSet; 1630 } 1631 1632 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1633 /// 1634 /// The removal may have removed some child loops entirely but cannot have 1635 /// disturbed any remaining child loops. However, they may need to be hoisted 1636 /// to the parent loop (or to be top-level loops). The original loop may be 1637 /// completely removed. 1638 /// 1639 /// The sibling loops resulting from this update are returned. If the original 1640 /// loop remains a valid loop, it will be the first entry in this list with all 1641 /// of the newly sibling loops following it. 1642 /// 1643 /// Returns true if the loop remains a loop after unswitching, and false if it 1644 /// is no longer a loop after unswitching (and should not continue to be 1645 /// referenced). 1646 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1647 LoopInfo &LI, 1648 SmallVectorImpl<Loop *> &HoistedLoops) { 1649 auto *PH = L.getLoopPreheader(); 1650 1651 // Compute the actual parent loop from the exit blocks. Because we may have 1652 // pruned some exits the loop may be different from the original parent. 1653 Loop *ParentL = nullptr; 1654 SmallVector<Loop *, 4> ExitLoops; 1655 SmallVector<BasicBlock *, 4> ExitsInLoops; 1656 ExitsInLoops.reserve(ExitBlocks.size()); 1657 for (auto *ExitBB : ExitBlocks) 1658 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1659 ExitLoops.push_back(ExitL); 1660 ExitsInLoops.push_back(ExitBB); 1661 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1662 ParentL = ExitL; 1663 } 1664 1665 // Recompute the blocks participating in this loop. This may be empty if it 1666 // is no longer a loop. 1667 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1668 1669 // If we still have a loop, we need to re-set the loop's parent as the exit 1670 // block set changing may have moved it within the loop nest. Note that this 1671 // can only happen when this loop has a parent as it can only hoist the loop 1672 // *up* the nest. 1673 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1674 // Remove this loop's (original) blocks from all of the intervening loops. 1675 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1676 IL = IL->getParentLoop()) { 1677 IL->getBlocksSet().erase(PH); 1678 for (auto *BB : L.blocks()) 1679 IL->getBlocksSet().erase(BB); 1680 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1681 return BB == PH || L.contains(BB); 1682 }); 1683 } 1684 1685 LI.changeLoopFor(PH, ParentL); 1686 L.getParentLoop()->removeChildLoop(&L); 1687 if (ParentL) 1688 ParentL->addChildLoop(&L); 1689 else 1690 LI.addTopLevelLoop(&L); 1691 } 1692 1693 // Now we update all the blocks which are no longer within the loop. 1694 auto &Blocks = L.getBlocksVector(); 1695 auto BlocksSplitI = 1696 LoopBlockSet.empty() 1697 ? Blocks.begin() 1698 : std::stable_partition( 1699 Blocks.begin(), Blocks.end(), 1700 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1701 1702 // Before we erase the list of unlooped blocks, build a set of them. 1703 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1704 if (LoopBlockSet.empty()) 1705 UnloopedBlocks.insert(PH); 1706 1707 // Now erase these blocks from the loop. 1708 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1709 L.getBlocksSet().erase(BB); 1710 Blocks.erase(BlocksSplitI, Blocks.end()); 1711 1712 // Sort the exits in ascending loop depth, we'll work backwards across these 1713 // to process them inside out. 1714 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1715 [&](BasicBlock *LHS, BasicBlock *RHS) { 1716 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1717 }); 1718 1719 // We'll build up a set for each exit loop. 1720 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1721 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1722 1723 auto RemoveUnloopedBlocksFromLoop = 1724 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1725 for (auto *BB : UnloopedBlocks) 1726 L.getBlocksSet().erase(BB); 1727 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1728 return UnloopedBlocks.count(BB); 1729 }); 1730 }; 1731 1732 SmallVector<BasicBlock *, 16> Worklist; 1733 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1734 assert(Worklist.empty() && "Didn't clear worklist!"); 1735 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1736 1737 // Grab the next exit block, in decreasing loop depth order. 1738 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1739 Loop &ExitL = *LI.getLoopFor(ExitBB); 1740 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1741 1742 // Erase all of the unlooped blocks from the loops between the previous 1743 // exit loop and this exit loop. This works because the ExitInLoops list is 1744 // sorted in increasing order of loop depth and thus we visit loops in 1745 // decreasing order of loop depth. 1746 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1747 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1748 1749 // Walk the CFG back until we hit the cloned PH adding everything reachable 1750 // and in the unlooped set to this exit block's loop. 1751 Worklist.push_back(ExitBB); 1752 do { 1753 BasicBlock *BB = Worklist.pop_back_val(); 1754 // We can stop recursing at the cloned preheader (if we get there). 1755 if (BB == PH) 1756 continue; 1757 1758 for (BasicBlock *PredBB : predecessors(BB)) { 1759 // If this pred has already been moved to our set or is part of some 1760 // (inner) loop, no update needed. 1761 if (!UnloopedBlocks.erase(PredBB)) { 1762 assert((NewExitLoopBlocks.count(PredBB) || 1763 ExitL.contains(LI.getLoopFor(PredBB))) && 1764 "Predecessor not in a nested loop (or already visited)!"); 1765 continue; 1766 } 1767 1768 // We just insert into the loop set here. We'll add these blocks to the 1769 // exit loop after we build up the set in a deterministic order rather 1770 // than the predecessor-influenced visit order. 1771 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1772 (void)Inserted; 1773 assert(Inserted && "Should only visit an unlooped block once!"); 1774 1775 // And recurse through to its predecessors. 1776 Worklist.push_back(PredBB); 1777 } 1778 } while (!Worklist.empty()); 1779 1780 // If blocks in this exit loop were directly part of the original loop (as 1781 // opposed to a child loop) update the map to point to this exit loop. This 1782 // just updates a map and so the fact that the order is unstable is fine. 1783 for (auto *BB : NewExitLoopBlocks) 1784 if (Loop *BBL = LI.getLoopFor(BB)) 1785 if (BBL == &L || !L.contains(BBL)) 1786 LI.changeLoopFor(BB, &ExitL); 1787 1788 // We will remove the remaining unlooped blocks from this loop in the next 1789 // iteration or below. 1790 NewExitLoopBlocks.clear(); 1791 } 1792 1793 // Any remaining unlooped blocks are no longer part of any loop unless they 1794 // are part of some child loop. 1795 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1796 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1797 for (auto *BB : UnloopedBlocks) 1798 if (Loop *BBL = LI.getLoopFor(BB)) 1799 if (BBL == &L || !L.contains(BBL)) 1800 LI.changeLoopFor(BB, nullptr); 1801 1802 // Sink all the child loops whose headers are no longer in the loop set to 1803 // the parent (or to be top level loops). We reach into the loop and directly 1804 // update its subloop vector to make this batch update efficient. 1805 auto &SubLoops = L.getSubLoopsVector(); 1806 auto SubLoopsSplitI = 1807 LoopBlockSet.empty() 1808 ? SubLoops.begin() 1809 : std::stable_partition( 1810 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1811 return LoopBlockSet.count(SubL->getHeader()); 1812 }); 1813 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1814 HoistedLoops.push_back(HoistedL); 1815 HoistedL->setParentLoop(nullptr); 1816 1817 // To compute the new parent of this hoisted loop we look at where we 1818 // placed the preheader above. We can't lookup the header itself because we 1819 // retained the mapping from the header to the hoisted loop. But the 1820 // preheader and header should have the exact same new parent computed 1821 // based on the set of exit blocks from the original loop as the preheader 1822 // is a predecessor of the header and so reached in the reverse walk. And 1823 // because the loops were all in simplified form the preheader of the 1824 // hoisted loop can't be part of some *other* loop. 1825 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1826 NewParentL->addChildLoop(HoistedL); 1827 else 1828 LI.addTopLevelLoop(HoistedL); 1829 } 1830 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1831 1832 // Actually delete the loop if nothing remained within it. 1833 if (Blocks.empty()) { 1834 assert(SubLoops.empty() && 1835 "Failed to remove all subloops from the original loop!"); 1836 if (Loop *ParentL = L.getParentLoop()) 1837 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1838 else 1839 LI.removeLoop(llvm::find(LI, &L)); 1840 LI.destroy(&L); 1841 return false; 1842 } 1843 1844 return true; 1845 } 1846 1847 /// Helper to visit a dominator subtree, invoking a callable on each node. 1848 /// 1849 /// Returning false at any point will stop walking past that node of the tree. 1850 template <typename CallableT> 1851 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1852 SmallVector<DomTreeNode *, 4> DomWorklist; 1853 DomWorklist.push_back(DT[BB]); 1854 #ifndef NDEBUG 1855 SmallPtrSet<DomTreeNode *, 4> Visited; 1856 Visited.insert(DT[BB]); 1857 #endif 1858 do { 1859 DomTreeNode *N = DomWorklist.pop_back_val(); 1860 1861 // Visit this node. 1862 if (!Callable(N->getBlock())) 1863 continue; 1864 1865 // Accumulate the child nodes. 1866 for (DomTreeNode *ChildN : *N) { 1867 assert(Visited.insert(ChildN).second && 1868 "Cannot visit a node twice when walking a tree!"); 1869 DomWorklist.push_back(ChildN); 1870 } 1871 } while (!DomWorklist.empty()); 1872 } 1873 1874 static void unswitchNontrivialInvariants( 1875 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1876 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1877 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1878 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 1879 auto *ParentBB = TI.getParent(); 1880 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1881 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1882 1883 // We can only unswitch switches, conditional branches with an invariant 1884 // condition, or combining invariant conditions with an instruction. 1885 assert((SI || BI->isConditional()) && 1886 "Can only unswitch switches and conditional branch!"); 1887 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1888 if (FullUnswitch) 1889 assert(Invariants.size() == 1 && 1890 "Cannot have other invariants with full unswitching!"); 1891 else 1892 assert(isa<Instruction>(BI->getCondition()) && 1893 "Partial unswitching requires an instruction as the condition!"); 1894 1895 if (MSSAU && VerifyMemorySSA) 1896 MSSAU->getMemorySSA()->verifyMemorySSA(); 1897 1898 // Constant and BBs tracking the cloned and continuing successor. When we are 1899 // unswitching the entire condition, this can just be trivially chosen to 1900 // unswitch towards `true`. However, when we are unswitching a set of 1901 // invariants combined with `and` or `or`, the combining operation determines 1902 // the best direction to unswitch: we want to unswitch the direction that will 1903 // collapse the branch. 1904 bool Direction = true; 1905 int ClonedSucc = 0; 1906 if (!FullUnswitch) { 1907 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1908 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1909 Instruction::And && 1910 "Only `or` and `and` instructions can combine invariants being " 1911 "unswitched."); 1912 Direction = false; 1913 ClonedSucc = 1; 1914 } 1915 } 1916 1917 BasicBlock *RetainedSuccBB = 1918 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1919 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1920 if (BI) 1921 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1922 else 1923 for (auto Case : SI->cases()) 1924 if (Case.getCaseSuccessor() != RetainedSuccBB) 1925 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1926 1927 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 1928 "Should not unswitch the same successor we are retaining!"); 1929 1930 // The branch should be in this exact loop. Any inner loop's invariant branch 1931 // should be handled by unswitching that inner loop. The caller of this 1932 // routine should filter out any candidates that remain (but were skipped for 1933 // whatever reason). 1934 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1935 1936 // Compute the parent loop now before we start hacking on things. 1937 Loop *ParentL = L.getParentLoop(); 1938 // Get blocks in RPO order for MSSA update, before changing the CFG. 1939 LoopBlocksRPO LBRPO(&L); 1940 if (MSSAU) 1941 LBRPO.perform(&LI); 1942 1943 // Compute the outer-most loop containing one of our exit blocks. This is the 1944 // furthest up our loopnest which can be mutated, which we will use below to 1945 // update things. 1946 Loop *OuterExitL = &L; 1947 for (auto *ExitBB : ExitBlocks) { 1948 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1949 if (!NewOuterExitL) { 1950 // We exited the entire nest with this block, so we're done. 1951 OuterExitL = nullptr; 1952 break; 1953 } 1954 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1955 OuterExitL = NewOuterExitL; 1956 } 1957 1958 // At this point, we're definitely going to unswitch something so invalidate 1959 // any cached information in ScalarEvolution for the outer most loop 1960 // containing an exit block and all nested loops. 1961 if (SE) { 1962 if (OuterExitL) 1963 SE->forgetLoop(OuterExitL); 1964 else 1965 SE->forgetTopmostLoop(&L); 1966 } 1967 1968 // If the edge from this terminator to a successor dominates that successor, 1969 // store a map from each block in its dominator subtree to it. This lets us 1970 // tell when cloning for a particular successor if a block is dominated by 1971 // some *other* successor with a single data structure. We use this to 1972 // significantly reduce cloning. 1973 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 1974 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 1975 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 1976 if (SuccBB->getUniquePredecessor() || 1977 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 1978 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 1979 })) 1980 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 1981 DominatingSucc[BB] = SuccBB; 1982 return true; 1983 }); 1984 1985 // Split the preheader, so that we know that there is a safe place to insert 1986 // the conditional branch. We will change the preheader to have a conditional 1987 // branch on LoopCond. The original preheader will become the split point 1988 // between the unswitched versions, and we will have a new preheader for the 1989 // original loop. 1990 BasicBlock *SplitBB = L.getLoopPreheader(); 1991 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 1992 1993 // Keep track of the dominator tree updates needed. 1994 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1995 1996 // Clone the loop for each unswitched successor. 1997 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 1998 VMaps.reserve(UnswitchedSuccBBs.size()); 1999 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2000 for (auto *SuccBB : UnswitchedSuccBBs) { 2001 VMaps.emplace_back(new ValueToValueMapTy()); 2002 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2003 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2004 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2005 } 2006 2007 // The stitching of the branched code back together depends on whether we're 2008 // doing full unswitching or not with the exception that we always want to 2009 // nuke the initial terminator placed in the split block. 2010 SplitBB->getTerminator()->eraseFromParent(); 2011 if (FullUnswitch) { 2012 // Splice the terminator from the original loop and rewrite its 2013 // successors. 2014 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2015 2016 // Keep a clone of the terminator for MSSA updates. 2017 Instruction *NewTI = TI.clone(); 2018 ParentBB->getInstList().push_back(NewTI); 2019 2020 // First wire up the moved terminator to the preheaders. 2021 if (BI) { 2022 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2023 BI->setSuccessor(ClonedSucc, ClonedPH); 2024 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2025 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2026 } else { 2027 assert(SI && "Must either be a branch or switch!"); 2028 2029 // Walk the cases and directly update their successors. 2030 assert(SI->getDefaultDest() == RetainedSuccBB && 2031 "Not retaining default successor!"); 2032 SI->setDefaultDest(LoopPH); 2033 for (auto &Case : SI->cases()) 2034 if (Case.getCaseSuccessor() == RetainedSuccBB) 2035 Case.setSuccessor(LoopPH); 2036 else 2037 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2038 2039 // We need to use the set to populate domtree updates as even when there 2040 // are multiple cases pointing at the same successor we only want to 2041 // remove and insert one edge in the domtree. 2042 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2043 DTUpdates.push_back( 2044 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2045 } 2046 2047 if (MSSAU) { 2048 DT.applyUpdates(DTUpdates); 2049 DTUpdates.clear(); 2050 2051 // Remove all but one edge to the retained block and all unswitched 2052 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2053 // when we know we only keep a single edge for each case. 2054 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2055 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2056 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2057 2058 for (auto &VMap : VMaps) 2059 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2060 /*IgnoreIncomingWithNoClones=*/true); 2061 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2062 2063 // Remove all edges to unswitched blocks. 2064 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2065 MSSAU->removeEdge(ParentBB, SuccBB); 2066 } 2067 2068 // Now unhook the successor relationship as we'll be replacing 2069 // the terminator with a direct branch. This is much simpler for branches 2070 // than switches so we handle those first. 2071 if (BI) { 2072 // Remove the parent as a predecessor of the unswitched successor. 2073 assert(UnswitchedSuccBBs.size() == 1 && 2074 "Only one possible unswitched block for a branch!"); 2075 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2076 UnswitchedSuccBB->removePredecessor(ParentBB, 2077 /*DontDeleteUselessPHIs*/ true); 2078 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2079 } else { 2080 // Note that we actually want to remove the parent block as a predecessor 2081 // of *every* case successor. The case successor is either unswitched, 2082 // completely eliminating an edge from the parent to that successor, or it 2083 // is a duplicate edge to the retained successor as the retained successor 2084 // is always the default successor and as we'll replace this with a direct 2085 // branch we no longer need the duplicate entries in the PHI nodes. 2086 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2087 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2088 "Not retaining default successor!"); 2089 for (auto &Case : NewSI->cases()) 2090 Case.getCaseSuccessor()->removePredecessor( 2091 ParentBB, 2092 /*DontDeleteUselessPHIs*/ true); 2093 2094 // We need to use the set to populate domtree updates as even when there 2095 // are multiple cases pointing at the same successor we only want to 2096 // remove and insert one edge in the domtree. 2097 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2098 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2099 } 2100 2101 // After MSSAU update, remove the cloned terminator instruction NewTI. 2102 ParentBB->getTerminator()->eraseFromParent(); 2103 2104 // Create a new unconditional branch to the continuing block (as opposed to 2105 // the one cloned). 2106 BranchInst::Create(RetainedSuccBB, ParentBB); 2107 } else { 2108 assert(BI && "Only branches have partial unswitching."); 2109 assert(UnswitchedSuccBBs.size() == 1 && 2110 "Only one possible unswitched block for a branch!"); 2111 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2112 // When doing a partial unswitch, we have to do a bit more work to build up 2113 // the branch in the split block. 2114 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2115 *ClonedPH, *LoopPH); 2116 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2117 } 2118 2119 // Apply the updates accumulated above to get an up-to-date dominator tree. 2120 DT.applyUpdates(DTUpdates); 2121 if (!FullUnswitch && MSSAU) { 2122 // Update MSSA for partial unswitch, after DT update. 2123 SmallVector<CFGUpdate, 1> Updates; 2124 Updates.push_back( 2125 {cfg::UpdateKind::Insert, SplitBB, ClonedPHs.begin()->second}); 2126 MSSAU->applyInsertUpdates(Updates, DT); 2127 } 2128 2129 // Now that we have an accurate dominator tree, first delete the dead cloned 2130 // blocks so that we can accurately build any cloned loops. It is important to 2131 // not delete the blocks from the original loop yet because we still want to 2132 // reference the original loop to understand the cloned loop's structure. 2133 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2134 2135 // Build the cloned loop structure itself. This may be substantially 2136 // different from the original structure due to the simplified CFG. This also 2137 // handles inserting all the cloned blocks into the correct loops. 2138 SmallVector<Loop *, 4> NonChildClonedLoops; 2139 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2140 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2141 2142 // Now that our cloned loops have been built, we can update the original loop. 2143 // First we delete the dead blocks from it and then we rebuild the loop 2144 // structure taking these deletions into account. 2145 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2146 2147 if (MSSAU && VerifyMemorySSA) 2148 MSSAU->getMemorySSA()->verifyMemorySSA(); 2149 2150 SmallVector<Loop *, 4> HoistedLoops; 2151 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2152 2153 if (MSSAU && VerifyMemorySSA) 2154 MSSAU->getMemorySSA()->verifyMemorySSA(); 2155 2156 // This transformation has a high risk of corrupting the dominator tree, and 2157 // the below steps to rebuild loop structures will result in hard to debug 2158 // errors in that case so verify that the dominator tree is sane first. 2159 // FIXME: Remove this when the bugs stop showing up and rely on existing 2160 // verification steps. 2161 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2162 2163 if (BI) { 2164 // If we unswitched a branch which collapses the condition to a known 2165 // constant we want to replace all the uses of the invariants within both 2166 // the original and cloned blocks. We do this here so that we can use the 2167 // now updated dominator tree to identify which side the users are on. 2168 assert(UnswitchedSuccBBs.size() == 1 && 2169 "Only one possible unswitched block for a branch!"); 2170 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2171 2172 // When considering multiple partially-unswitched invariants 2173 // we cant just go replace them with constants in both branches. 2174 // 2175 // For 'AND' we infer that true branch ("continue") means true 2176 // for each invariant operand. 2177 // For 'OR' we can infer that false branch ("continue") means false 2178 // for each invariant operand. 2179 // So it happens that for multiple-partial case we dont replace 2180 // in the unswitched branch. 2181 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2182 2183 ConstantInt *UnswitchedReplacement = 2184 Direction ? ConstantInt::getTrue(BI->getContext()) 2185 : ConstantInt::getFalse(BI->getContext()); 2186 ConstantInt *ContinueReplacement = 2187 Direction ? ConstantInt::getFalse(BI->getContext()) 2188 : ConstantInt::getTrue(BI->getContext()); 2189 for (Value *Invariant : Invariants) 2190 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2191 UI != UE;) { 2192 // Grab the use and walk past it so we can clobber it in the use list. 2193 Use *U = &*UI++; 2194 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2195 if (!UserI) 2196 continue; 2197 2198 // Replace it with the 'continue' side if in the main loop body, and the 2199 // unswitched if in the cloned blocks. 2200 if (DT.dominates(LoopPH, UserI->getParent())) 2201 U->set(ContinueReplacement); 2202 else if (ReplaceUnswitched && 2203 DT.dominates(ClonedPH, UserI->getParent())) 2204 U->set(UnswitchedReplacement); 2205 } 2206 } 2207 2208 // We can change which blocks are exit blocks of all the cloned sibling 2209 // loops, the current loop, and any parent loops which shared exit blocks 2210 // with the current loop. As a consequence, we need to re-form LCSSA for 2211 // them. But we shouldn't need to re-form LCSSA for any child loops. 2212 // FIXME: This could be made more efficient by tracking which exit blocks are 2213 // new, and focusing on them, but that isn't likely to be necessary. 2214 // 2215 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2216 // loop nest and update every loop that could have had its exits changed. We 2217 // also need to cover any intervening loops. We add all of these loops to 2218 // a list and sort them by loop depth to achieve this without updating 2219 // unnecessary loops. 2220 auto UpdateLoop = [&](Loop &UpdateL) { 2221 #ifndef NDEBUG 2222 UpdateL.verifyLoop(); 2223 for (Loop *ChildL : UpdateL) { 2224 ChildL->verifyLoop(); 2225 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2226 "Perturbed a child loop's LCSSA form!"); 2227 } 2228 #endif 2229 // First build LCSSA for this loop so that we can preserve it when 2230 // forming dedicated exits. We don't want to perturb some other loop's 2231 // LCSSA while doing that CFG edit. 2232 formLCSSA(UpdateL, DT, &LI, nullptr); 2233 2234 // For loops reached by this loop's original exit blocks we may 2235 // introduced new, non-dedicated exits. At least try to re-form dedicated 2236 // exits for these loops. This may fail if they couldn't have dedicated 2237 // exits to start with. 2238 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); 2239 }; 2240 2241 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2242 // and we can do it in any order as they don't nest relative to each other. 2243 // 2244 // Also check if any of the loops we have updated have become top-level loops 2245 // as that will necessitate widening the outer loop scope. 2246 for (Loop *UpdatedL : 2247 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2248 UpdateLoop(*UpdatedL); 2249 if (!UpdatedL->getParentLoop()) 2250 OuterExitL = nullptr; 2251 } 2252 if (IsStillLoop) { 2253 UpdateLoop(L); 2254 if (!L.getParentLoop()) 2255 OuterExitL = nullptr; 2256 } 2257 2258 // If the original loop had exit blocks, walk up through the outer most loop 2259 // of those exit blocks to update LCSSA and form updated dedicated exits. 2260 if (OuterExitL != &L) 2261 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2262 OuterL = OuterL->getParentLoop()) 2263 UpdateLoop(*OuterL); 2264 2265 #ifndef NDEBUG 2266 // Verify the entire loop structure to catch any incorrect updates before we 2267 // progress in the pass pipeline. 2268 LI.verify(DT); 2269 #endif 2270 2271 // Now that we've unswitched something, make callbacks to report the changes. 2272 // For that we need to merge together the updated loops and the cloned loops 2273 // and check whether the original loop survived. 2274 SmallVector<Loop *, 4> SibLoops; 2275 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2276 if (UpdatedL->getParentLoop() == ParentL) 2277 SibLoops.push_back(UpdatedL); 2278 UnswitchCB(IsStillLoop, SibLoops); 2279 2280 if (MSSAU && VerifyMemorySSA) 2281 MSSAU->getMemorySSA()->verifyMemorySSA(); 2282 2283 if (BI) 2284 ++NumBranches; 2285 else 2286 ++NumSwitches; 2287 } 2288 2289 /// Recursively compute the cost of a dominator subtree based on the per-block 2290 /// cost map provided. 2291 /// 2292 /// The recursive computation is memozied into the provided DT-indexed cost map 2293 /// to allow querying it for most nodes in the domtree without it becoming 2294 /// quadratic. 2295 static int 2296 computeDomSubtreeCost(DomTreeNode &N, 2297 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2298 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2299 // Don't accumulate cost (or recurse through) blocks not in our block cost 2300 // map and thus not part of the duplication cost being considered. 2301 auto BBCostIt = BBCostMap.find(N.getBlock()); 2302 if (BBCostIt == BBCostMap.end()) 2303 return 0; 2304 2305 // Lookup this node to see if we already computed its cost. 2306 auto DTCostIt = DTCostMap.find(&N); 2307 if (DTCostIt != DTCostMap.end()) 2308 return DTCostIt->second; 2309 2310 // If not, we have to compute it. We can't use insert above and update 2311 // because computing the cost may insert more things into the map. 2312 int Cost = std::accumulate( 2313 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2314 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2315 }); 2316 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2317 (void)Inserted; 2318 assert(Inserted && "Should not insert a node while visiting children!"); 2319 return Cost; 2320 } 2321 2322 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2323 /// making the following replacement: 2324 /// 2325 /// --code before guard-- 2326 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2327 /// --code after guard-- 2328 /// 2329 /// into 2330 /// 2331 /// --code before guard-- 2332 /// br i1 %cond, label %guarded, label %deopt 2333 /// 2334 /// guarded: 2335 /// --code after guard-- 2336 /// 2337 /// deopt: 2338 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2339 /// unreachable 2340 /// 2341 /// It also makes all relevant DT and LI updates, so that all structures are in 2342 /// valid state after this transform. 2343 static BranchInst * 2344 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2345 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2346 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2347 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2348 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2349 BasicBlock *CheckBB = GI->getParent(); 2350 2351 if (MSSAU && VerifyMemorySSA) 2352 MSSAU->getMemorySSA()->verifyMemorySSA(); 2353 2354 // Remove all CheckBB's successors from DomTree. A block can be seen among 2355 // successors more than once, but for DomTree it should be added only once. 2356 SmallPtrSet<BasicBlock *, 4> Successors; 2357 for (auto *Succ : successors(CheckBB)) 2358 if (Successors.insert(Succ).second) 2359 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2360 2361 Instruction *DeoptBlockTerm = 2362 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2363 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2364 // SplitBlockAndInsertIfThen inserts control flow that branches to 2365 // DeoptBlockTerm if the condition is true. We want the opposite. 2366 CheckBI->swapSuccessors(); 2367 2368 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2369 GuardedBlock->setName("guarded"); 2370 CheckBI->getSuccessor(1)->setName("deopt"); 2371 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2372 2373 // We now have a new exit block. 2374 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2375 2376 if (MSSAU) 2377 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2378 2379 GI->moveBefore(DeoptBlockTerm); 2380 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2381 2382 // Add new successors of CheckBB into DomTree. 2383 for (auto *Succ : successors(CheckBB)) 2384 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2385 2386 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2387 // successors. 2388 for (auto *Succ : Successors) 2389 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2390 2391 // Make proper changes to DT. 2392 DT.applyUpdates(DTUpdates); 2393 // Inform LI of a new loop block. 2394 L.addBasicBlockToLoop(GuardedBlock, LI); 2395 2396 if (MSSAU) { 2397 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2398 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End); 2399 if (VerifyMemorySSA) 2400 MSSAU->getMemorySSA()->verifyMemorySSA(); 2401 } 2402 2403 ++NumGuards; 2404 return CheckBI; 2405 } 2406 2407 /// Cost multiplier is a way to limit potentially exponential behavior 2408 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2409 /// candidates available. Also accounting for the number of "sibling" loops with 2410 /// the idea to account for previous unswitches that already happened on this 2411 /// cluster of loops. There was an attempt to keep this formula simple, 2412 /// just enough to limit the worst case behavior. Even if it is not that simple 2413 /// now it is still not an attempt to provide a detailed heuristic size 2414 /// prediction. 2415 /// 2416 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2417 /// unswitch candidates, making adequate predictions instead of wild guesses. 2418 /// That requires knowing not just the number of "remaining" candidates but 2419 /// also costs of unswitching for each of these candidates. 2420 static int calculateUnswitchCostMultiplier( 2421 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2422 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2423 UnswitchCandidates) { 2424 2425 // Guards and other exiting conditions do not contribute to exponential 2426 // explosion as soon as they dominate the latch (otherwise there might be 2427 // another path to the latch remaining that does not allow to eliminate the 2428 // loop copy on unswitch). 2429 BasicBlock *Latch = L.getLoopLatch(); 2430 BasicBlock *CondBlock = TI.getParent(); 2431 if (DT.dominates(CondBlock, Latch) && 2432 (isGuard(&TI) || 2433 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2434 return L.contains(SuccBB); 2435 }) <= 1)) { 2436 NumCostMultiplierSkipped++; 2437 return 1; 2438 } 2439 2440 auto *ParentL = L.getParentLoop(); 2441 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2442 : std::distance(LI.begin(), LI.end())); 2443 // Count amount of clones that all the candidates might cause during 2444 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2445 int UnswitchedClones = 0; 2446 for (auto Candidate : UnswitchCandidates) { 2447 Instruction *CI = Candidate.first; 2448 BasicBlock *CondBlock = CI->getParent(); 2449 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2450 if (isGuard(CI)) { 2451 if (!SkipExitingSuccessors) 2452 UnswitchedClones++; 2453 continue; 2454 } 2455 int NonExitingSuccessors = llvm::count_if( 2456 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2457 return !SkipExitingSuccessors || L.contains(SuccBB); 2458 }); 2459 UnswitchedClones += Log2_32(NonExitingSuccessors); 2460 } 2461 2462 // Ignore up to the "unscaled candidates" number of unswitch candidates 2463 // when calculating the power-of-two scaling of the cost. The main idea 2464 // with this control is to allow a small number of unswitches to happen 2465 // and rely more on siblings multiplier (see below) when the number 2466 // of candidates is small. 2467 unsigned ClonesPower = 2468 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2469 2470 // Allowing top-level loops to spread a bit more than nested ones. 2471 int SiblingsMultiplier = 2472 std::max((ParentL ? SiblingsCount 2473 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2474 1); 2475 // Compute the cost multiplier in a way that won't overflow by saturating 2476 // at an upper bound. 2477 int CostMultiplier; 2478 if (ClonesPower > Log2_32(UnswitchThreshold) || 2479 SiblingsMultiplier > UnswitchThreshold) 2480 CostMultiplier = UnswitchThreshold; 2481 else 2482 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2483 (int)UnswitchThreshold); 2484 2485 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2486 << " (siblings " << SiblingsMultiplier << " * clones " 2487 << (1 << ClonesPower) << ")" 2488 << " for unswitch candidate: " << TI << "\n"); 2489 return CostMultiplier; 2490 } 2491 2492 static bool 2493 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2494 AssumptionCache &AC, TargetTransformInfo &TTI, 2495 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2496 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2497 // Collect all invariant conditions within this loop (as opposed to an inner 2498 // loop which would be handled when visiting that inner loop). 2499 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2500 UnswitchCandidates; 2501 2502 // Whether or not we should also collect guards in the loop. 2503 bool CollectGuards = false; 2504 if (UnswitchGuards) { 2505 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2506 Intrinsic::getName(Intrinsic::experimental_guard)); 2507 if (GuardDecl && !GuardDecl->use_empty()) 2508 CollectGuards = true; 2509 } 2510 2511 for (auto *BB : L.blocks()) { 2512 if (LI.getLoopFor(BB) != &L) 2513 continue; 2514 2515 if (CollectGuards) 2516 for (auto &I : *BB) 2517 if (isGuard(&I)) { 2518 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2519 // TODO: Support AND, OR conditions and partial unswitching. 2520 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2521 UnswitchCandidates.push_back({&I, {Cond}}); 2522 } 2523 2524 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2525 // We can only consider fully loop-invariant switch conditions as we need 2526 // to completely eliminate the switch after unswitching. 2527 if (!isa<Constant>(SI->getCondition()) && 2528 L.isLoopInvariant(SI->getCondition())) 2529 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2530 continue; 2531 } 2532 2533 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2534 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2535 BI->getSuccessor(0) == BI->getSuccessor(1)) 2536 continue; 2537 2538 if (L.isLoopInvariant(BI->getCondition())) { 2539 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2540 continue; 2541 } 2542 2543 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2544 if (CondI.getOpcode() != Instruction::And && 2545 CondI.getOpcode() != Instruction::Or) 2546 continue; 2547 2548 TinyPtrVector<Value *> Invariants = 2549 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2550 if (Invariants.empty()) 2551 continue; 2552 2553 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2554 } 2555 2556 // If we didn't find any candidates, we're done. 2557 if (UnswitchCandidates.empty()) 2558 return false; 2559 2560 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2561 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2562 // irreducible control flow into reducible control flow and introduce new 2563 // loops "out of thin air". If we ever discover important use cases for doing 2564 // this, we can add support to loop unswitch, but it is a lot of complexity 2565 // for what seems little or no real world benefit. 2566 LoopBlocksRPO RPOT(&L); 2567 RPOT.perform(&LI); 2568 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2569 return false; 2570 2571 SmallVector<BasicBlock *, 4> ExitBlocks; 2572 L.getUniqueExitBlocks(ExitBlocks); 2573 2574 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2575 // don't know how to split those exit blocks. 2576 // FIXME: We should teach SplitBlock to handle this and remove this 2577 // restriction. 2578 for (auto *ExitBB : ExitBlocks) 2579 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2580 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2581 return false; 2582 } 2583 2584 LLVM_DEBUG( 2585 dbgs() << "Considering " << UnswitchCandidates.size() 2586 << " non-trivial loop invariant conditions for unswitching.\n"); 2587 2588 // Given that unswitching these terminators will require duplicating parts of 2589 // the loop, so we need to be able to model that cost. Compute the ephemeral 2590 // values and set up a data structure to hold per-BB costs. We cache each 2591 // block's cost so that we don't recompute this when considering different 2592 // subsets of the loop for duplication during unswitching. 2593 SmallPtrSet<const Value *, 4> EphValues; 2594 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2595 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2596 2597 // Compute the cost of each block, as well as the total loop cost. Also, bail 2598 // out if we see instructions which are incompatible with loop unswitching 2599 // (convergent, noduplicate, or cross-basic-block tokens). 2600 // FIXME: We might be able to safely handle some of these in non-duplicated 2601 // regions. 2602 int LoopCost = 0; 2603 for (auto *BB : L.blocks()) { 2604 int Cost = 0; 2605 for (auto &I : *BB) { 2606 if (EphValues.count(&I)) 2607 continue; 2608 2609 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2610 return false; 2611 if (auto CS = CallSite(&I)) 2612 if (CS.isConvergent() || CS.cannotDuplicate()) 2613 return false; 2614 2615 Cost += TTI.getUserCost(&I); 2616 } 2617 assert(Cost >= 0 && "Must not have negative costs!"); 2618 LoopCost += Cost; 2619 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2620 BBCostMap[BB] = Cost; 2621 } 2622 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2623 2624 // Now we find the best candidate by searching for the one with the following 2625 // properties in order: 2626 // 2627 // 1) An unswitching cost below the threshold 2628 // 2) The smallest number of duplicated unswitch candidates (to avoid 2629 // creating redundant subsequent unswitching) 2630 // 3) The smallest cost after unswitching. 2631 // 2632 // We prioritize reducing fanout of unswitch candidates provided the cost 2633 // remains below the threshold because this has a multiplicative effect. 2634 // 2635 // This requires memoizing each dominator subtree to avoid redundant work. 2636 // 2637 // FIXME: Need to actually do the number of candidates part above. 2638 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2639 // Given a terminator which might be unswitched, computes the non-duplicated 2640 // cost for that terminator. 2641 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2642 BasicBlock &BB = *TI.getParent(); 2643 SmallPtrSet<BasicBlock *, 4> Visited; 2644 2645 int Cost = LoopCost; 2646 for (BasicBlock *SuccBB : successors(&BB)) { 2647 // Don't count successors more than once. 2648 if (!Visited.insert(SuccBB).second) 2649 continue; 2650 2651 // If this is a partial unswitch candidate, then it must be a conditional 2652 // branch with a condition of either `or` or `and`. In that case, one of 2653 // the successors is necessarily duplicated, so don't even try to remove 2654 // its cost. 2655 if (!FullUnswitch) { 2656 auto &BI = cast<BranchInst>(TI); 2657 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2658 Instruction::And) { 2659 if (SuccBB == BI.getSuccessor(1)) 2660 continue; 2661 } else { 2662 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2663 Instruction::Or && 2664 "Only `and` and `or` conditions can result in a partial " 2665 "unswitch!"); 2666 if (SuccBB == BI.getSuccessor(0)) 2667 continue; 2668 } 2669 } 2670 2671 // This successor's domtree will not need to be duplicated after 2672 // unswitching if the edge to the successor dominates it (and thus the 2673 // entire tree). This essentially means there is no other path into this 2674 // subtree and so it will end up live in only one clone of the loop. 2675 if (SuccBB->getUniquePredecessor() || 2676 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2677 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2678 })) { 2679 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2680 assert(Cost >= 0 && 2681 "Non-duplicated cost should never exceed total loop cost!"); 2682 } 2683 } 2684 2685 // Now scale the cost by the number of unique successors minus one. We 2686 // subtract one because there is already at least one copy of the entire 2687 // loop. This is computing the new cost of unswitching a condition. 2688 // Note that guards always have 2 unique successors that are implicit and 2689 // will be materialized if we decide to unswitch it. 2690 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2691 assert(SuccessorsCount > 1 && 2692 "Cannot unswitch a condition without multiple distinct successors!"); 2693 return Cost * (SuccessorsCount - 1); 2694 }; 2695 Instruction *BestUnswitchTI = nullptr; 2696 int BestUnswitchCost; 2697 ArrayRef<Value *> BestUnswitchInvariants; 2698 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2699 Instruction &TI = *TerminatorAndInvariants.first; 2700 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2701 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2702 int CandidateCost = ComputeUnswitchedCost( 2703 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2704 Invariants[0] == BI->getCondition())); 2705 // Calculate cost multiplier which is a tool to limit potentially 2706 // exponential behavior of loop-unswitch. 2707 if (EnableUnswitchCostMultiplier) { 2708 int CostMultiplier = 2709 calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2710 assert( 2711 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2712 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2713 CandidateCost *= CostMultiplier; 2714 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2715 << " (multiplier: " << CostMultiplier << ")" 2716 << " for unswitch candidate: " << TI << "\n"); 2717 } else { 2718 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2719 << " for unswitch candidate: " << TI << "\n"); 2720 } 2721 2722 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2723 BestUnswitchTI = &TI; 2724 BestUnswitchCost = CandidateCost; 2725 BestUnswitchInvariants = Invariants; 2726 } 2727 } 2728 2729 if (BestUnswitchCost >= UnswitchThreshold) { 2730 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2731 << BestUnswitchCost << "\n"); 2732 return false; 2733 } 2734 2735 // If the best candidate is a guard, turn it into a branch. 2736 if (isGuard(BestUnswitchTI)) 2737 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2738 ExitBlocks, DT, LI, MSSAU); 2739 2740 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2741 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2742 << "\n"); 2743 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2744 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2745 return true; 2746 } 2747 2748 /// Unswitch control flow predicated on loop invariant conditions. 2749 /// 2750 /// This first hoists all branches or switches which are trivial (IE, do not 2751 /// require duplicating any part of the loop) out of the loop body. It then 2752 /// looks at other loop invariant control flows and tries to unswitch those as 2753 /// well by cloning the loop if the result is small enough. 2754 /// 2755 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2756 /// updated based on the unswitch. 2757 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 2758 /// 2759 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2760 /// true, we will attempt to do non-trivial unswitching as well as trivial 2761 /// unswitching. 2762 /// 2763 /// The `UnswitchCB` callback provided will be run after unswitching is 2764 /// complete, with the first parameter set to `true` if the provided loop 2765 /// remains a loop, and a list of new sibling loops created. 2766 /// 2767 /// If `SE` is non-null, we will update that analysis based on the unswitching 2768 /// done. 2769 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2770 AssumptionCache &AC, TargetTransformInfo &TTI, 2771 bool NonTrivial, 2772 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2773 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2774 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2775 "Loops must be in LCSSA form before unswitching."); 2776 bool Changed = false; 2777 2778 // Must be in loop simplified form: we need a preheader and dedicated exits. 2779 if (!L.isLoopSimplifyForm()) 2780 return false; 2781 2782 // Try trivial unswitch first before loop over other basic blocks in the loop. 2783 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2784 // If we unswitched successfully we will want to clean up the loop before 2785 // processing it further so just mark it as unswitched and return. 2786 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2787 return true; 2788 } 2789 2790 // If we're not doing non-trivial unswitching, we're done. We both accept 2791 // a parameter but also check a local flag that can be used for testing 2792 // a debugging. 2793 if (!NonTrivial && !EnableNonTrivialUnswitch) 2794 return false; 2795 2796 // For non-trivial unswitching, because it often creates new loops, we rely on 2797 // the pass manager to iterate on the loops rather than trying to immediately 2798 // reach a fixed point. There is no substantial advantage to iterating 2799 // internally, and if any of the new loops are simplified enough to contain 2800 // trivial unswitching we want to prefer those. 2801 2802 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2803 // a partial unswitch when possible below the threshold. 2804 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2805 return true; 2806 2807 // No other opportunities to unswitch. 2808 return Changed; 2809 } 2810 2811 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2812 LoopStandardAnalysisResults &AR, 2813 LPMUpdater &U) { 2814 Function &F = *L.getHeader()->getParent(); 2815 (void)F; 2816 2817 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2818 << "\n"); 2819 2820 // Save the current loop name in a variable so that we can report it even 2821 // after it has been deleted. 2822 std::string LoopName = L.getName(); 2823 2824 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2825 ArrayRef<Loop *> NewLoops) { 2826 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2827 if (!NewLoops.empty()) 2828 U.addSiblingLoops(NewLoops); 2829 2830 // If the current loop remains valid, we should revisit it to catch any 2831 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2832 if (CurrentLoopValid) 2833 U.revisitCurrentLoop(); 2834 else 2835 U.markLoopAsDeleted(L, LoopName); 2836 }; 2837 2838 Optional<MemorySSAUpdater> MSSAU; 2839 if (AR.MSSA) { 2840 MSSAU = MemorySSAUpdater(AR.MSSA); 2841 if (VerifyMemorySSA) 2842 AR.MSSA->verifyMemorySSA(); 2843 } 2844 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2845 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 2846 return PreservedAnalyses::all(); 2847 2848 if (AR.MSSA && VerifyMemorySSA) 2849 AR.MSSA->verifyMemorySSA(); 2850 2851 // Historically this pass has had issues with the dominator tree so verify it 2852 // in asserts builds. 2853 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2854 return getLoopPassPreservedAnalyses(); 2855 } 2856 2857 namespace { 2858 2859 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2860 bool NonTrivial; 2861 2862 public: 2863 static char ID; // Pass ID, replacement for typeid 2864 2865 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2866 : LoopPass(ID), NonTrivial(NonTrivial) { 2867 initializeSimpleLoopUnswitchLegacyPassPass( 2868 *PassRegistry::getPassRegistry()); 2869 } 2870 2871 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2872 2873 void getAnalysisUsage(AnalysisUsage &AU) const override { 2874 AU.addRequired<AssumptionCacheTracker>(); 2875 AU.addRequired<TargetTransformInfoWrapperPass>(); 2876 if (EnableMSSALoopDependency) { 2877 AU.addRequired<MemorySSAWrapperPass>(); 2878 AU.addPreserved<MemorySSAWrapperPass>(); 2879 } 2880 getLoopAnalysisUsage(AU); 2881 } 2882 }; 2883 2884 } // end anonymous namespace 2885 2886 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2887 if (skipLoop(L)) 2888 return false; 2889 2890 Function &F = *L->getHeader()->getParent(); 2891 2892 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2893 << "\n"); 2894 2895 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2896 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2897 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2898 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2899 MemorySSA *MSSA = nullptr; 2900 Optional<MemorySSAUpdater> MSSAU; 2901 if (EnableMSSALoopDependency) { 2902 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2903 MSSAU = MemorySSAUpdater(MSSA); 2904 } 2905 2906 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 2907 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 2908 2909 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2910 ArrayRef<Loop *> NewLoops) { 2911 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2912 for (auto *NewL : NewLoops) 2913 LPM.addLoop(*NewL); 2914 2915 // If the current loop remains valid, re-add it to the queue. This is 2916 // a little wasteful as we'll finish processing the current loop as well, 2917 // but it is the best we can do in the old PM. 2918 if (CurrentLoopValid) 2919 LPM.addLoop(*L); 2920 else 2921 LPM.markLoopAsDeleted(*L); 2922 }; 2923 2924 if (MSSA && VerifyMemorySSA) 2925 MSSA->verifyMemorySSA(); 2926 2927 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 2928 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 2929 2930 if (MSSA && VerifyMemorySSA) 2931 MSSA->verifyMemorySSA(); 2932 2933 // If anything was unswitched, also clear any cached information about this 2934 // loop. 2935 LPM.deleteSimpleAnalysisLoop(L); 2936 2937 // Historically this pass has had issues with the dominator tree so verify it 2938 // in asserts builds. 2939 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2940 2941 return Changed; 2942 } 2943 2944 char SimpleLoopUnswitchLegacyPass::ID = 0; 2945 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2946 "Simple unswitch loops", false, false) 2947 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2948 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2949 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2950 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2951 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 2952 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2953 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2954 "Simple unswitch loops", false, false) 2955 2956 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2957 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2958 } 2959