1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/Utils/Local.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/InstrTypes.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Use.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/GenericDomTree.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/Cloning.h" 50 #include "llvm/Transforms/Utils/LoopUtils.h" 51 #include "llvm/Transforms/Utils/ValueMapper.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <iterator> 55 #include <numeric> 56 #include <utility> 57 58 #define DEBUG_TYPE "simple-loop-unswitch" 59 60 using namespace llvm; 61 62 STATISTIC(NumBranches, "Number of branches unswitched"); 63 STATISTIC(NumSwitches, "Number of switches unswitched"); 64 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 65 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 66 STATISTIC( 67 NumCostMultiplierSkipped, 68 "Number of unswitch candidates that had their cost multiplier skipped"); 69 70 static cl::opt<bool> EnableNonTrivialUnswitch( 71 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 72 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 73 "following the configuration passed into the pass.")); 74 75 static cl::opt<int> 76 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 77 cl::desc("The cost threshold for unswitching a loop.")); 78 79 static cl::opt<bool> EnableUnswitchCostMultiplier( 80 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 81 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 82 "explosion in nontrivial unswitch.")); 83 static cl::opt<int> UnswitchSiblingsToplevelDiv( 84 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 85 cl::desc("Toplevel siblings divisor for cost multiplier.")); 86 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 87 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 88 cl::desc("Number of unswitch candidates that are ignored when calculating " 89 "cost multiplier.")); 90 static cl::opt<bool> UnswitchGuards( 91 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 92 cl::desc("If enabled, simple loop unswitching will also consider " 93 "llvm.experimental.guard intrinsics as unswitch candidates.")); 94 95 /// Collect all of the loop invariant input values transitively used by the 96 /// homogeneous instruction graph from a given root. 97 /// 98 /// This essentially walks from a root recursively through loop variant operands 99 /// which have the exact same opcode and finds all inputs which are loop 100 /// invariant. For some operations these can be re-associated and unswitched out 101 /// of the loop entirely. 102 static TinyPtrVector<Value *> 103 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 104 LoopInfo &LI) { 105 assert(!L.isLoopInvariant(&Root) && 106 "Only need to walk the graph if root itself is not invariant."); 107 TinyPtrVector<Value *> Invariants; 108 109 // Build a worklist and recurse through operators collecting invariants. 110 SmallVector<Instruction *, 4> Worklist; 111 SmallPtrSet<Instruction *, 8> Visited; 112 Worklist.push_back(&Root); 113 Visited.insert(&Root); 114 do { 115 Instruction &I = *Worklist.pop_back_val(); 116 for (Value *OpV : I.operand_values()) { 117 // Skip constants as unswitching isn't interesting for them. 118 if (isa<Constant>(OpV)) 119 continue; 120 121 // Add it to our result if loop invariant. 122 if (L.isLoopInvariant(OpV)) { 123 Invariants.push_back(OpV); 124 continue; 125 } 126 127 // If not an instruction with the same opcode, nothing we can do. 128 Instruction *OpI = dyn_cast<Instruction>(OpV); 129 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 130 continue; 131 132 // Visit this operand. 133 if (Visited.insert(OpI).second) 134 Worklist.push_back(OpI); 135 } 136 } while (!Worklist.empty()); 137 138 return Invariants; 139 } 140 141 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 142 Constant &Replacement) { 143 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 144 145 // Replace uses of LIC in the loop with the given constant. 146 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 147 // Grab the use and walk past it so we can clobber it in the use list. 148 Use *U = &*UI++; 149 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 150 151 // Replace this use within the loop body. 152 if (UserI && L.contains(UserI)) 153 U->set(&Replacement); 154 } 155 } 156 157 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 158 /// incoming values along this edge. 159 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 160 BasicBlock &ExitBB) { 161 for (Instruction &I : ExitBB) { 162 auto *PN = dyn_cast<PHINode>(&I); 163 if (!PN) 164 // No more PHIs to check. 165 return true; 166 167 // If the incoming value for this edge isn't loop invariant the unswitch 168 // won't be trivial. 169 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 170 return false; 171 } 172 llvm_unreachable("Basic blocks should never be empty!"); 173 } 174 175 /// Insert code to test a set of loop invariant values, and conditionally branch 176 /// on them. 177 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 178 ArrayRef<Value *> Invariants, 179 bool Direction, 180 BasicBlock &UnswitchedSucc, 181 BasicBlock &NormalSucc) { 182 IRBuilder<> IRB(&BB); 183 Value *Cond = Invariants.front(); 184 for (Value *Invariant : 185 make_range(std::next(Invariants.begin()), Invariants.end())) 186 if (Direction) 187 Cond = IRB.CreateOr(Cond, Invariant); 188 else 189 Cond = IRB.CreateAnd(Cond, Invariant); 190 191 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 192 Direction ? &NormalSucc : &UnswitchedSucc); 193 } 194 195 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 196 /// 197 /// Requires that the loop exit and unswitched basic block are the same, and 198 /// that the exiting block was a unique predecessor of that block. Rewrites the 199 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 200 /// PHI nodes from the old preheader that now contains the unswitched 201 /// terminator. 202 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 203 BasicBlock &OldExitingBB, 204 BasicBlock &OldPH) { 205 for (PHINode &PN : UnswitchedBB.phis()) { 206 // When the loop exit is directly unswitched we just need to update the 207 // incoming basic block. We loop to handle weird cases with repeated 208 // incoming blocks, but expect to typically only have one operand here. 209 for (auto i : seq<int>(0, PN.getNumOperands())) { 210 assert(PN.getIncomingBlock(i) == &OldExitingBB && 211 "Found incoming block different from unique predecessor!"); 212 PN.setIncomingBlock(i, &OldPH); 213 } 214 } 215 } 216 217 /// Rewrite the PHI nodes in the loop exit basic block and the split off 218 /// unswitched block. 219 /// 220 /// Because the exit block remains an exit from the loop, this rewrites the 221 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 222 /// nodes into the unswitched basic block to select between the value in the 223 /// old preheader and the loop exit. 224 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 225 BasicBlock &UnswitchedBB, 226 BasicBlock &OldExitingBB, 227 BasicBlock &OldPH, 228 bool FullUnswitch) { 229 assert(&ExitBB != &UnswitchedBB && 230 "Must have different loop exit and unswitched blocks!"); 231 Instruction *InsertPt = &*UnswitchedBB.begin(); 232 for (PHINode &PN : ExitBB.phis()) { 233 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 234 PN.getName() + ".split", InsertPt); 235 236 // Walk backwards over the old PHI node's inputs to minimize the cost of 237 // removing each one. We have to do this weird loop manually so that we 238 // create the same number of new incoming edges in the new PHI as we expect 239 // each case-based edge to be included in the unswitched switch in some 240 // cases. 241 // FIXME: This is really, really gross. It would be much cleaner if LLVM 242 // allowed us to create a single entry for a predecessor block without 243 // having separate entries for each "edge" even though these edges are 244 // required to produce identical results. 245 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 246 if (PN.getIncomingBlock(i) != &OldExitingBB) 247 continue; 248 249 Value *Incoming = PN.getIncomingValue(i); 250 if (FullUnswitch) 251 // No more edge from the old exiting block to the exit block. 252 PN.removeIncomingValue(i); 253 254 NewPN->addIncoming(Incoming, &OldPH); 255 } 256 257 // Now replace the old PHI with the new one and wire the old one in as an 258 // input to the new one. 259 PN.replaceAllUsesWith(NewPN); 260 NewPN->addIncoming(&PN, &ExitBB); 261 } 262 } 263 264 /// Hoist the current loop up to the innermost loop containing a remaining exit. 265 /// 266 /// Because we've removed an exit from the loop, we may have changed the set of 267 /// loops reachable and need to move the current loop up the loop nest or even 268 /// to an entirely separate nest. 269 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 270 DominatorTree &DT, LoopInfo &LI) { 271 // If the loop is already at the top level, we can't hoist it anywhere. 272 Loop *OldParentL = L.getParentLoop(); 273 if (!OldParentL) 274 return; 275 276 SmallVector<BasicBlock *, 4> Exits; 277 L.getExitBlocks(Exits); 278 Loop *NewParentL = nullptr; 279 for (auto *ExitBB : Exits) 280 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 281 if (!NewParentL || NewParentL->contains(ExitL)) 282 NewParentL = ExitL; 283 284 if (NewParentL == OldParentL) 285 return; 286 287 // The new parent loop (if different) should always contain the old one. 288 if (NewParentL) 289 assert(NewParentL->contains(OldParentL) && 290 "Can only hoist this loop up the nest!"); 291 292 // The preheader will need to move with the body of this loop. However, 293 // because it isn't in this loop we also need to update the primary loop map. 294 assert(OldParentL == LI.getLoopFor(&Preheader) && 295 "Parent loop of this loop should contain this loop's preheader!"); 296 LI.changeLoopFor(&Preheader, NewParentL); 297 298 // Remove this loop from its old parent. 299 OldParentL->removeChildLoop(&L); 300 301 // Add the loop either to the new parent or as a top-level loop. 302 if (NewParentL) 303 NewParentL->addChildLoop(&L); 304 else 305 LI.addTopLevelLoop(&L); 306 307 // Remove this loops blocks from the old parent and every other loop up the 308 // nest until reaching the new parent. Also update all of these 309 // no-longer-containing loops to reflect the nesting change. 310 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 311 OldContainingL = OldContainingL->getParentLoop()) { 312 llvm::erase_if(OldContainingL->getBlocksVector(), 313 [&](const BasicBlock *BB) { 314 return BB == &Preheader || L.contains(BB); 315 }); 316 317 OldContainingL->getBlocksSet().erase(&Preheader); 318 for (BasicBlock *BB : L.blocks()) 319 OldContainingL->getBlocksSet().erase(BB); 320 321 // Because we just hoisted a loop out of this one, we have essentially 322 // created new exit paths from it. That means we need to form LCSSA PHI 323 // nodes for values used in the no-longer-nested loop. 324 formLCSSA(*OldContainingL, DT, &LI, nullptr); 325 326 // We shouldn't need to form dedicated exits because the exit introduced 327 // here is the (just split by unswitching) preheader. However, after trivial 328 // unswitching it is possible to get new non-dedicated exits out of parent 329 // loop so let's conservatively form dedicated exit blocks and figure out 330 // if we can optimize later. 331 formDedicatedExitBlocks(OldContainingL, &DT, &LI, /*PreserveLCSSA*/ true); 332 } 333 } 334 335 /// Unswitch a trivial branch if the condition is loop invariant. 336 /// 337 /// This routine should only be called when loop code leading to the branch has 338 /// been validated as trivial (no side effects). This routine checks if the 339 /// condition is invariant and one of the successors is a loop exit. This 340 /// allows us to unswitch without duplicating the loop, making it trivial. 341 /// 342 /// If this routine fails to unswitch the branch it returns false. 343 /// 344 /// If the branch can be unswitched, this routine splits the preheader and 345 /// hoists the branch above that split. Preserves loop simplified form 346 /// (splitting the exit block as necessary). It simplifies the branch within 347 /// the loop to an unconditional branch but doesn't remove it entirely. Further 348 /// cleanup can be done with some simplify-cfg like pass. 349 /// 350 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 351 /// invalidated by this. 352 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 353 LoopInfo &LI, ScalarEvolution *SE, 354 MemorySSAUpdater *MSSAU) { 355 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 356 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 357 358 // The loop invariant values that we want to unswitch. 359 TinyPtrVector<Value *> Invariants; 360 361 // When true, we're fully unswitching the branch rather than just unswitching 362 // some input conditions to the branch. 363 bool FullUnswitch = false; 364 365 if (L.isLoopInvariant(BI.getCondition())) { 366 Invariants.push_back(BI.getCondition()); 367 FullUnswitch = true; 368 } else { 369 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 370 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 371 if (Invariants.empty()) 372 // Couldn't find invariant inputs! 373 return false; 374 } 375 376 // Check that one of the branch's successors exits, and which one. 377 bool ExitDirection = true; 378 int LoopExitSuccIdx = 0; 379 auto *LoopExitBB = BI.getSuccessor(0); 380 if (L.contains(LoopExitBB)) { 381 ExitDirection = false; 382 LoopExitSuccIdx = 1; 383 LoopExitBB = BI.getSuccessor(1); 384 if (L.contains(LoopExitBB)) 385 return false; 386 } 387 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 388 auto *ParentBB = BI.getParent(); 389 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 390 return false; 391 392 // When unswitching only part of the branch's condition, we need the exit 393 // block to be reached directly from the partially unswitched input. This can 394 // be done when the exit block is along the true edge and the branch condition 395 // is a graph of `or` operations, or the exit block is along the false edge 396 // and the condition is a graph of `and` operations. 397 if (!FullUnswitch) { 398 if (ExitDirection) { 399 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 400 return false; 401 } else { 402 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 403 return false; 404 } 405 } 406 407 LLVM_DEBUG({ 408 dbgs() << " unswitching trivial invariant conditions for: " << BI 409 << "\n"; 410 for (Value *Invariant : Invariants) { 411 dbgs() << " " << *Invariant << " == true"; 412 if (Invariant != Invariants.back()) 413 dbgs() << " ||"; 414 dbgs() << "\n"; 415 } 416 }); 417 418 // If we have scalar evolutions, we need to invalidate them including this 419 // loop and the loop containing the exit block. 420 if (SE) { 421 if (Loop *ExitL = LI.getLoopFor(LoopExitBB)) 422 SE->forgetLoop(ExitL); 423 else 424 // Forget the entire nest as this exits the entire nest. 425 SE->forgetTopmostLoop(&L); 426 } 427 428 if (MSSAU && VerifyMemorySSA) 429 MSSAU->getMemorySSA()->verifyMemorySSA(); 430 431 // Split the preheader, so that we know that there is a safe place to insert 432 // the conditional branch. We will change the preheader to have a conditional 433 // branch on LoopCond. 434 BasicBlock *OldPH = L.getLoopPreheader(); 435 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 436 437 // Now that we have a place to insert the conditional branch, create a place 438 // to branch to: this is the exit block out of the loop that we are 439 // unswitching. We need to split this if there are other loop predecessors. 440 // Because the loop is in simplified form, *any* other predecessor is enough. 441 BasicBlock *UnswitchedBB; 442 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 443 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 444 "A branch's parent isn't a predecessor!"); 445 UnswitchedBB = LoopExitBB; 446 } else { 447 UnswitchedBB = 448 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 449 } 450 451 if (MSSAU && VerifyMemorySSA) 452 MSSAU->getMemorySSA()->verifyMemorySSA(); 453 454 // Actually move the invariant uses into the unswitched position. If possible, 455 // we do this by moving the instructions, but when doing partial unswitching 456 // we do it by building a new merge of the values in the unswitched position. 457 OldPH->getTerminator()->eraseFromParent(); 458 if (FullUnswitch) { 459 // If fully unswitching, we can use the existing branch instruction. 460 // Splice it into the old PH to gate reaching the new preheader and re-point 461 // its successors. 462 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 463 BI); 464 if (MSSAU) { 465 // Temporarily clone the terminator, to make MSSA update cheaper by 466 // separating "insert edge" updates from "remove edge" ones. 467 ParentBB->getInstList().push_back(BI.clone()); 468 } else { 469 // Create a new unconditional branch that will continue the loop as a new 470 // terminator. 471 BranchInst::Create(ContinueBB, ParentBB); 472 } 473 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 474 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 475 } else { 476 // Only unswitching a subset of inputs to the condition, so we will need to 477 // build a new branch that merges the invariant inputs. 478 if (ExitDirection) 479 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 480 Instruction::Or && 481 "Must have an `or` of `i1`s for the condition!"); 482 else 483 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 484 Instruction::And && 485 "Must have an `and` of `i1`s for the condition!"); 486 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 487 *UnswitchedBB, *NewPH); 488 } 489 490 // Update the dominator tree with the added edge. 491 DT.insertEdge(OldPH, UnswitchedBB); 492 493 // After the dominator tree was updated with the added edge, update MemorySSA 494 // if available. 495 if (MSSAU) { 496 SmallVector<CFGUpdate, 1> Updates; 497 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 498 MSSAU->applyInsertUpdates(Updates, DT); 499 } 500 501 // Finish updating dominator tree and memory ssa for full unswitch. 502 if (FullUnswitch) { 503 if (MSSAU) { 504 // Remove the cloned branch instruction. 505 ParentBB->getTerminator()->eraseFromParent(); 506 // Create unconditional branch now. 507 BranchInst::Create(ContinueBB, ParentBB); 508 MSSAU->removeEdge(ParentBB, LoopExitBB); 509 } 510 DT.deleteEdge(ParentBB, LoopExitBB); 511 } 512 513 if (MSSAU && VerifyMemorySSA) 514 MSSAU->getMemorySSA()->verifyMemorySSA(); 515 516 // Rewrite the relevant PHI nodes. 517 if (UnswitchedBB == LoopExitBB) 518 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 519 else 520 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 521 *ParentBB, *OldPH, FullUnswitch); 522 523 // The constant we can replace all of our invariants with inside the loop 524 // body. If any of the invariants have a value other than this the loop won't 525 // be entered. 526 ConstantInt *Replacement = ExitDirection 527 ? ConstantInt::getFalse(BI.getContext()) 528 : ConstantInt::getTrue(BI.getContext()); 529 530 // Since this is an i1 condition we can also trivially replace uses of it 531 // within the loop with a constant. 532 for (Value *Invariant : Invariants) 533 replaceLoopInvariantUses(L, Invariant, *Replacement); 534 535 // If this was full unswitching, we may have changed the nesting relationship 536 // for this loop so hoist it to its correct parent if needed. 537 if (FullUnswitch) 538 hoistLoopToNewParent(L, *NewPH, DT, LI); 539 540 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 541 ++NumTrivial; 542 ++NumBranches; 543 return true; 544 } 545 546 /// Unswitch a trivial switch if the condition is loop invariant. 547 /// 548 /// This routine should only be called when loop code leading to the switch has 549 /// been validated as trivial (no side effects). This routine checks if the 550 /// condition is invariant and that at least one of the successors is a loop 551 /// exit. This allows us to unswitch without duplicating the loop, making it 552 /// trivial. 553 /// 554 /// If this routine fails to unswitch the switch it returns false. 555 /// 556 /// If the switch can be unswitched, this routine splits the preheader and 557 /// copies the switch above that split. If the default case is one of the 558 /// exiting cases, it copies the non-exiting cases and points them at the new 559 /// preheader. If the default case is not exiting, it copies the exiting cases 560 /// and points the default at the preheader. It preserves loop simplified form 561 /// (splitting the exit blocks as necessary). It simplifies the switch within 562 /// the loop by removing now-dead cases. If the default case is one of those 563 /// unswitched, it replaces its destination with a new basic block containing 564 /// only unreachable. Such basic blocks, while technically loop exits, are not 565 /// considered for unswitching so this is a stable transform and the same 566 /// switch will not be revisited. If after unswitching there is only a single 567 /// in-loop successor, the switch is further simplified to an unconditional 568 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 569 /// 570 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 571 /// invalidated by this. 572 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 573 LoopInfo &LI, ScalarEvolution *SE, 574 MemorySSAUpdater *MSSAU) { 575 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 576 Value *LoopCond = SI.getCondition(); 577 578 // If this isn't switching on an invariant condition, we can't unswitch it. 579 if (!L.isLoopInvariant(LoopCond)) 580 return false; 581 582 auto *ParentBB = SI.getParent(); 583 584 SmallVector<int, 4> ExitCaseIndices; 585 for (auto Case : SI.cases()) { 586 auto *SuccBB = Case.getCaseSuccessor(); 587 if (!L.contains(SuccBB) && 588 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 589 ExitCaseIndices.push_back(Case.getCaseIndex()); 590 } 591 BasicBlock *DefaultExitBB = nullptr; 592 if (!L.contains(SI.getDefaultDest()) && 593 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 594 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 595 DefaultExitBB = SI.getDefaultDest(); 596 else if (ExitCaseIndices.empty()) 597 return false; 598 599 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 600 601 if (MSSAU && VerifyMemorySSA) 602 MSSAU->getMemorySSA()->verifyMemorySSA(); 603 604 // We may need to invalidate SCEVs for the outermost loop reached by any of 605 // the exits. 606 Loop *OuterL = &L; 607 608 if (DefaultExitBB) { 609 // Clear out the default destination temporarily to allow accurate 610 // predecessor lists to be examined below. 611 SI.setDefaultDest(nullptr); 612 // Check the loop containing this exit. 613 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 614 if (!ExitL || ExitL->contains(OuterL)) 615 OuterL = ExitL; 616 } 617 618 // Store the exit cases into a separate data structure and remove them from 619 // the switch. 620 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 621 ExitCases.reserve(ExitCaseIndices.size()); 622 // We walk the case indices backwards so that we remove the last case first 623 // and don't disrupt the earlier indices. 624 for (unsigned Index : reverse(ExitCaseIndices)) { 625 auto CaseI = SI.case_begin() + Index; 626 // Compute the outer loop from this exit. 627 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 628 if (!ExitL || ExitL->contains(OuterL)) 629 OuterL = ExitL; 630 // Save the value of this case. 631 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 632 // Delete the unswitched cases. 633 SI.removeCase(CaseI); 634 } 635 636 if (SE) { 637 if (OuterL) 638 SE->forgetLoop(OuterL); 639 else 640 SE->forgetTopmostLoop(&L); 641 } 642 643 // Check if after this all of the remaining cases point at the same 644 // successor. 645 BasicBlock *CommonSuccBB = nullptr; 646 if (SI.getNumCases() > 0 && 647 std::all_of(std::next(SI.case_begin()), SI.case_end(), 648 [&SI](const SwitchInst::CaseHandle &Case) { 649 return Case.getCaseSuccessor() == 650 SI.case_begin()->getCaseSuccessor(); 651 })) 652 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 653 if (!DefaultExitBB) { 654 // If we're not unswitching the default, we need it to match any cases to 655 // have a common successor or if we have no cases it is the common 656 // successor. 657 if (SI.getNumCases() == 0) 658 CommonSuccBB = SI.getDefaultDest(); 659 else if (SI.getDefaultDest() != CommonSuccBB) 660 CommonSuccBB = nullptr; 661 } 662 663 // Split the preheader, so that we know that there is a safe place to insert 664 // the switch. 665 BasicBlock *OldPH = L.getLoopPreheader(); 666 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 667 OldPH->getTerminator()->eraseFromParent(); 668 669 // Now add the unswitched switch. 670 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 671 672 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 673 // First, we split any exit blocks with remaining in-loop predecessors. Then 674 // we update the PHIs in one of two ways depending on if there was a split. 675 // We walk in reverse so that we split in the same order as the cases 676 // appeared. This is purely for convenience of reading the resulting IR, but 677 // it doesn't cost anything really. 678 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 679 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 680 // Handle the default exit if necessary. 681 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 682 // ranges aren't quite powerful enough yet. 683 if (DefaultExitBB) { 684 if (pred_empty(DefaultExitBB)) { 685 UnswitchedExitBBs.insert(DefaultExitBB); 686 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 687 } else { 688 auto *SplitBB = 689 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 690 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 691 *ParentBB, *OldPH, 692 /*FullUnswitch*/ true); 693 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 694 } 695 } 696 // Note that we must use a reference in the for loop so that we update the 697 // container. 698 for (auto &CasePair : reverse(ExitCases)) { 699 // Grab a reference to the exit block in the pair so that we can update it. 700 BasicBlock *ExitBB = CasePair.second; 701 702 // If this case is the last edge into the exit block, we can simply reuse it 703 // as it will no longer be a loop exit. No mapping necessary. 704 if (pred_empty(ExitBB)) { 705 // Only rewrite once. 706 if (UnswitchedExitBBs.insert(ExitBB).second) 707 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 708 continue; 709 } 710 711 // Otherwise we need to split the exit block so that we retain an exit 712 // block from the loop and a target for the unswitched condition. 713 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 714 if (!SplitExitBB) { 715 // If this is the first time we see this, do the split and remember it. 716 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 717 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 718 *ParentBB, *OldPH, 719 /*FullUnswitch*/ true); 720 } 721 // Update the case pair to point to the split block. 722 CasePair.second = SplitExitBB; 723 } 724 725 // Now add the unswitched cases. We do this in reverse order as we built them 726 // in reverse order. 727 for (auto CasePair : reverse(ExitCases)) { 728 ConstantInt *CaseVal = CasePair.first; 729 BasicBlock *UnswitchedBB = CasePair.second; 730 731 NewSI->addCase(CaseVal, UnswitchedBB); 732 } 733 734 // If the default was unswitched, re-point it and add explicit cases for 735 // entering the loop. 736 if (DefaultExitBB) { 737 NewSI->setDefaultDest(DefaultExitBB); 738 739 // We removed all the exit cases, so we just copy the cases to the 740 // unswitched switch. 741 for (auto Case : SI.cases()) 742 NewSI->addCase(Case.getCaseValue(), NewPH); 743 } 744 745 // If we ended up with a common successor for every path through the switch 746 // after unswitching, rewrite it to an unconditional branch to make it easy 747 // to recognize. Otherwise we potentially have to recognize the default case 748 // pointing at unreachable and other complexity. 749 if (CommonSuccBB) { 750 BasicBlock *BB = SI.getParent(); 751 // We may have had multiple edges to this common successor block, so remove 752 // them as predecessors. We skip the first one, either the default or the 753 // actual first case. 754 bool SkippedFirst = DefaultExitBB == nullptr; 755 for (auto Case : SI.cases()) { 756 assert(Case.getCaseSuccessor() == CommonSuccBB && 757 "Non-common successor!"); 758 (void)Case; 759 if (!SkippedFirst) { 760 SkippedFirst = true; 761 continue; 762 } 763 CommonSuccBB->removePredecessor(BB, 764 /*KeepOneInputPHIs*/ true); 765 } 766 // Now nuke the switch and replace it with a direct branch. 767 SI.eraseFromParent(); 768 BranchInst::Create(CommonSuccBB, BB); 769 } else if (DefaultExitBB) { 770 assert(SI.getNumCases() > 0 && 771 "If we had no cases we'd have a common successor!"); 772 // Move the last case to the default successor. This is valid as if the 773 // default got unswitched it cannot be reached. This has the advantage of 774 // being simple and keeping the number of edges from this switch to 775 // successors the same, and avoiding any PHI update complexity. 776 auto LastCaseI = std::prev(SI.case_end()); 777 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 778 SI.removeCase(LastCaseI); 779 } 780 781 // Walk the unswitched exit blocks and the unswitched split blocks and update 782 // the dominator tree based on the CFG edits. While we are walking unordered 783 // containers here, the API for applyUpdates takes an unordered list of 784 // updates and requires them to not contain duplicates. 785 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 786 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 787 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 788 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 789 } 790 for (auto SplitUnswitchedPair : SplitExitBBMap) { 791 auto *UnswitchedBB = SplitUnswitchedPair.second; 792 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); 793 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 794 } 795 DT.applyUpdates(DTUpdates); 796 797 if (MSSAU) { 798 MSSAU->applyUpdates(DTUpdates, DT); 799 if (VerifyMemorySSA) 800 MSSAU->getMemorySSA()->verifyMemorySSA(); 801 } 802 803 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 804 805 // We may have changed the nesting relationship for this loop so hoist it to 806 // its correct parent if needed. 807 hoistLoopToNewParent(L, *NewPH, DT, LI); 808 809 ++NumTrivial; 810 ++NumSwitches; 811 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 812 return true; 813 } 814 815 /// This routine scans the loop to find a branch or switch which occurs before 816 /// any side effects occur. These can potentially be unswitched without 817 /// duplicating the loop. If a branch or switch is successfully unswitched the 818 /// scanning continues to see if subsequent branches or switches have become 819 /// trivial. Once all trivial candidates have been unswitched, this routine 820 /// returns. 821 /// 822 /// The return value indicates whether anything was unswitched (and therefore 823 /// changed). 824 /// 825 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 826 /// invalidated by this. 827 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 828 LoopInfo &LI, ScalarEvolution *SE, 829 MemorySSAUpdater *MSSAU) { 830 bool Changed = false; 831 832 // If loop header has only one reachable successor we should keep looking for 833 // trivial condition candidates in the successor as well. An alternative is 834 // to constant fold conditions and merge successors into loop header (then we 835 // only need to check header's terminator). The reason for not doing this in 836 // LoopUnswitch pass is that it could potentially break LoopPassManager's 837 // invariants. Folding dead branches could either eliminate the current loop 838 // or make other loops unreachable. LCSSA form might also not be preserved 839 // after deleting branches. The following code keeps traversing loop header's 840 // successors until it finds the trivial condition candidate (condition that 841 // is not a constant). Since unswitching generates branches with constant 842 // conditions, this scenario could be very common in practice. 843 BasicBlock *CurrentBB = L.getHeader(); 844 SmallPtrSet<BasicBlock *, 8> Visited; 845 Visited.insert(CurrentBB); 846 do { 847 // Check if there are any side-effecting instructions (e.g. stores, calls, 848 // volatile loads) in the part of the loop that the code *would* execute 849 // without unswitching. 850 if (MSSAU) // Possible early exit with MSSA 851 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 852 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 853 return Changed; 854 if (llvm::any_of(*CurrentBB, 855 [](Instruction &I) { return I.mayHaveSideEffects(); })) 856 return Changed; 857 858 Instruction *CurrentTerm = CurrentBB->getTerminator(); 859 860 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 861 // Don't bother trying to unswitch past a switch with a constant 862 // condition. This should be removed prior to running this pass by 863 // simplify-cfg. 864 if (isa<Constant>(SI->getCondition())) 865 return Changed; 866 867 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 868 // Couldn't unswitch this one so we're done. 869 return Changed; 870 871 // Mark that we managed to unswitch something. 872 Changed = true; 873 874 // If unswitching turned the terminator into an unconditional branch then 875 // we can continue. The unswitching logic specifically works to fold any 876 // cases it can into an unconditional branch to make it easier to 877 // recognize here. 878 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 879 if (!BI || BI->isConditional()) 880 return Changed; 881 882 CurrentBB = BI->getSuccessor(0); 883 continue; 884 } 885 886 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 887 if (!BI) 888 // We do not understand other terminator instructions. 889 return Changed; 890 891 // Don't bother trying to unswitch past an unconditional branch or a branch 892 // with a constant value. These should be removed by simplify-cfg prior to 893 // running this pass. 894 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 895 return Changed; 896 897 // Found a trivial condition candidate: non-foldable conditional branch. If 898 // we fail to unswitch this, we can't do anything else that is trivial. 899 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 900 return Changed; 901 902 // Mark that we managed to unswitch something. 903 Changed = true; 904 905 // If we only unswitched some of the conditions feeding the branch, we won't 906 // have collapsed it to a single successor. 907 BI = cast<BranchInst>(CurrentBB->getTerminator()); 908 if (BI->isConditional()) 909 return Changed; 910 911 // Follow the newly unconditional branch into its successor. 912 CurrentBB = BI->getSuccessor(0); 913 914 // When continuing, if we exit the loop or reach a previous visited block, 915 // then we can not reach any trivial condition candidates (unfoldable 916 // branch instructions or switch instructions) and no unswitch can happen. 917 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 918 919 return Changed; 920 } 921 922 /// Build the cloned blocks for an unswitched copy of the given loop. 923 /// 924 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 925 /// after the split block (`SplitBB`) that will be used to select between the 926 /// cloned and original loop. 927 /// 928 /// This routine handles cloning all of the necessary loop blocks and exit 929 /// blocks including rewriting their instructions and the relevant PHI nodes. 930 /// Any loop blocks or exit blocks which are dominated by a different successor 931 /// than the one for this clone of the loop blocks can be trivially skipped. We 932 /// use the `DominatingSucc` map to determine whether a block satisfies that 933 /// property with a simple map lookup. 934 /// 935 /// It also correctly creates the unconditional branch in the cloned 936 /// unswitched parent block to only point at the unswitched successor. 937 /// 938 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 939 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 940 /// the cloned blocks (and their loops) are left without full `LoopInfo` 941 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 942 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 943 /// instead the caller must recompute an accurate DT. It *does* correctly 944 /// update the `AssumptionCache` provided in `AC`. 945 static BasicBlock *buildClonedLoopBlocks( 946 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 947 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 948 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 949 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 950 ValueToValueMapTy &VMap, 951 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 952 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 953 SmallVector<BasicBlock *, 4> NewBlocks; 954 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 955 956 // We will need to clone a bunch of blocks, wrap up the clone operation in 957 // a helper. 958 auto CloneBlock = [&](BasicBlock *OldBB) { 959 // Clone the basic block and insert it before the new preheader. 960 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 961 NewBB->moveBefore(LoopPH); 962 963 // Record this block and the mapping. 964 NewBlocks.push_back(NewBB); 965 VMap[OldBB] = NewBB; 966 967 return NewBB; 968 }; 969 970 // We skip cloning blocks when they have a dominating succ that is not the 971 // succ we are cloning for. 972 auto SkipBlock = [&](BasicBlock *BB) { 973 auto It = DominatingSucc.find(BB); 974 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 975 }; 976 977 // First, clone the preheader. 978 auto *ClonedPH = CloneBlock(LoopPH); 979 980 // Then clone all the loop blocks, skipping the ones that aren't necessary. 981 for (auto *LoopBB : L.blocks()) 982 if (!SkipBlock(LoopBB)) 983 CloneBlock(LoopBB); 984 985 // Split all the loop exit edges so that when we clone the exit blocks, if 986 // any of the exit blocks are *also* a preheader for some other loop, we 987 // don't create multiple predecessors entering the loop header. 988 for (auto *ExitBB : ExitBlocks) { 989 if (SkipBlock(ExitBB)) 990 continue; 991 992 // When we are going to clone an exit, we don't need to clone all the 993 // instructions in the exit block and we want to ensure we have an easy 994 // place to merge the CFG, so split the exit first. This is always safe to 995 // do because there cannot be any non-loop predecessors of a loop exit in 996 // loop simplified form. 997 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 998 999 // Rearrange the names to make it easier to write test cases by having the 1000 // exit block carry the suffix rather than the merge block carrying the 1001 // suffix. 1002 MergeBB->takeName(ExitBB); 1003 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1004 1005 // Now clone the original exit block. 1006 auto *ClonedExitBB = CloneBlock(ExitBB); 1007 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1008 "Exit block should have been split to have one successor!"); 1009 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1010 "Cloned exit block has the wrong successor!"); 1011 1012 // Remap any cloned instructions and create a merge phi node for them. 1013 for (auto ZippedInsts : llvm::zip_first( 1014 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1015 llvm::make_range(ClonedExitBB->begin(), 1016 std::prev(ClonedExitBB->end())))) { 1017 Instruction &I = std::get<0>(ZippedInsts); 1018 Instruction &ClonedI = std::get<1>(ZippedInsts); 1019 1020 // The only instructions in the exit block should be PHI nodes and 1021 // potentially a landing pad. 1022 assert( 1023 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1024 "Bad instruction in exit block!"); 1025 // We should have a value map between the instruction and its clone. 1026 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1027 1028 auto *MergePN = 1029 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1030 &*MergeBB->getFirstInsertionPt()); 1031 I.replaceAllUsesWith(MergePN); 1032 MergePN->addIncoming(&I, ExitBB); 1033 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1034 } 1035 } 1036 1037 // Rewrite the instructions in the cloned blocks to refer to the instructions 1038 // in the cloned blocks. We have to do this as a second pass so that we have 1039 // everything available. Also, we have inserted new instructions which may 1040 // include assume intrinsics, so we update the assumption cache while 1041 // processing this. 1042 for (auto *ClonedBB : NewBlocks) 1043 for (Instruction &I : *ClonedBB) { 1044 RemapInstruction(&I, VMap, 1045 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1046 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1047 if (II->getIntrinsicID() == Intrinsic::assume) 1048 AC.registerAssumption(II); 1049 } 1050 1051 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1052 // have spurious incoming values. 1053 for (auto *LoopBB : L.blocks()) 1054 if (SkipBlock(LoopBB)) 1055 for (auto *SuccBB : successors(LoopBB)) 1056 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1057 for (PHINode &PN : ClonedSuccBB->phis()) 1058 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1059 1060 // Remove the cloned parent as a predecessor of any successor we ended up 1061 // cloning other than the unswitched one. 1062 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1063 for (auto *SuccBB : successors(ParentBB)) { 1064 if (SuccBB == UnswitchedSuccBB) 1065 continue; 1066 1067 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1068 if (!ClonedSuccBB) 1069 continue; 1070 1071 ClonedSuccBB->removePredecessor(ClonedParentBB, 1072 /*KeepOneInputPHIs*/ true); 1073 } 1074 1075 // Replace the cloned branch with an unconditional branch to the cloned 1076 // unswitched successor. 1077 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1078 ClonedParentBB->getTerminator()->eraseFromParent(); 1079 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1080 1081 // If there are duplicate entries in the PHI nodes because of multiple edges 1082 // to the unswitched successor, we need to nuke all but one as we replaced it 1083 // with a direct branch. 1084 for (PHINode &PN : ClonedSuccBB->phis()) { 1085 bool Found = false; 1086 // Loop over the incoming operands backwards so we can easily delete as we 1087 // go without invalidating the index. 1088 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1089 if (PN.getIncomingBlock(i) != ClonedParentBB) 1090 continue; 1091 if (!Found) { 1092 Found = true; 1093 continue; 1094 } 1095 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1096 } 1097 } 1098 1099 // Record the domtree updates for the new blocks. 1100 SmallPtrSet<BasicBlock *, 4> SuccSet; 1101 for (auto *ClonedBB : NewBlocks) { 1102 for (auto *SuccBB : successors(ClonedBB)) 1103 if (SuccSet.insert(SuccBB).second) 1104 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1105 SuccSet.clear(); 1106 } 1107 1108 return ClonedPH; 1109 } 1110 1111 /// Recursively clone the specified loop and all of its children. 1112 /// 1113 /// The target parent loop for the clone should be provided, or can be null if 1114 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1115 /// with the provided value map. The entire original loop must be present in 1116 /// the value map. The cloned loop is returned. 1117 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1118 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1119 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1120 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1121 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1122 for (auto *BB : OrigL.blocks()) { 1123 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1124 ClonedL.addBlockEntry(ClonedBB); 1125 if (LI.getLoopFor(BB) == &OrigL) 1126 LI.changeLoopFor(ClonedBB, &ClonedL); 1127 } 1128 }; 1129 1130 // We specially handle the first loop because it may get cloned into 1131 // a different parent and because we most commonly are cloning leaf loops. 1132 Loop *ClonedRootL = LI.AllocateLoop(); 1133 if (RootParentL) 1134 RootParentL->addChildLoop(ClonedRootL); 1135 else 1136 LI.addTopLevelLoop(ClonedRootL); 1137 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1138 1139 if (OrigRootL.empty()) 1140 return ClonedRootL; 1141 1142 // If we have a nest, we can quickly clone the entire loop nest using an 1143 // iterative approach because it is a tree. We keep the cloned parent in the 1144 // data structure to avoid repeatedly querying through a map to find it. 1145 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1146 // Build up the loops to clone in reverse order as we'll clone them from the 1147 // back. 1148 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1149 LoopsToClone.push_back({ClonedRootL, ChildL}); 1150 do { 1151 Loop *ClonedParentL, *L; 1152 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1153 Loop *ClonedL = LI.AllocateLoop(); 1154 ClonedParentL->addChildLoop(ClonedL); 1155 AddClonedBlocksToLoop(*L, *ClonedL); 1156 for (Loop *ChildL : llvm::reverse(*L)) 1157 LoopsToClone.push_back({ClonedL, ChildL}); 1158 } while (!LoopsToClone.empty()); 1159 1160 return ClonedRootL; 1161 } 1162 1163 /// Build the cloned loops of an original loop from unswitching. 1164 /// 1165 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1166 /// operation. We need to re-verify that there even is a loop (as the backedge 1167 /// may not have been cloned), and even if there are remaining backedges the 1168 /// backedge set may be different. However, we know that each child loop is 1169 /// undisturbed, we only need to find where to place each child loop within 1170 /// either any parent loop or within a cloned version of the original loop. 1171 /// 1172 /// Because child loops may end up cloned outside of any cloned version of the 1173 /// original loop, multiple cloned sibling loops may be created. All of them 1174 /// are returned so that the newly introduced loop nest roots can be 1175 /// identified. 1176 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1177 const ValueToValueMapTy &VMap, LoopInfo &LI, 1178 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1179 Loop *ClonedL = nullptr; 1180 1181 auto *OrigPH = OrigL.getLoopPreheader(); 1182 auto *OrigHeader = OrigL.getHeader(); 1183 1184 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1185 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1186 1187 // We need to know the loops of the cloned exit blocks to even compute the 1188 // accurate parent loop. If we only clone exits to some parent of the 1189 // original parent, we want to clone into that outer loop. We also keep track 1190 // of the loops that our cloned exit blocks participate in. 1191 Loop *ParentL = nullptr; 1192 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1193 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1194 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1195 for (auto *ExitBB : ExitBlocks) 1196 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1197 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1198 ExitLoopMap[ClonedExitBB] = ExitL; 1199 ClonedExitsInLoops.push_back(ClonedExitBB); 1200 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1201 ParentL = ExitL; 1202 } 1203 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1204 ParentL->contains(OrigL.getParentLoop())) && 1205 "The computed parent loop should always contain (or be) the parent of " 1206 "the original loop."); 1207 1208 // We build the set of blocks dominated by the cloned header from the set of 1209 // cloned blocks out of the original loop. While not all of these will 1210 // necessarily be in the cloned loop, it is enough to establish that they 1211 // aren't in unreachable cycles, etc. 1212 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1213 for (auto *BB : OrigL.blocks()) 1214 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1215 ClonedLoopBlocks.insert(ClonedBB); 1216 1217 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1218 // skipped cloning some region of this loop which can in turn skip some of 1219 // the backedges so we have to rebuild the blocks in the loop based on the 1220 // backedges that remain after cloning. 1221 SmallVector<BasicBlock *, 16> Worklist; 1222 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1223 for (auto *Pred : predecessors(ClonedHeader)) { 1224 // The only possible non-loop header predecessor is the preheader because 1225 // we know we cloned the loop in simplified form. 1226 if (Pred == ClonedPH) 1227 continue; 1228 1229 // Because the loop was in simplified form, the only non-loop predecessor 1230 // should be the preheader. 1231 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1232 "header other than the preheader " 1233 "that is not part of the loop!"); 1234 1235 // Insert this block into the loop set and on the first visit (and if it 1236 // isn't the header we're currently walking) put it into the worklist to 1237 // recurse through. 1238 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1239 Worklist.push_back(Pred); 1240 } 1241 1242 // If we had any backedges then there *is* a cloned loop. Put the header into 1243 // the loop set and then walk the worklist backwards to find all the blocks 1244 // that remain within the loop after cloning. 1245 if (!BlocksInClonedLoop.empty()) { 1246 BlocksInClonedLoop.insert(ClonedHeader); 1247 1248 while (!Worklist.empty()) { 1249 BasicBlock *BB = Worklist.pop_back_val(); 1250 assert(BlocksInClonedLoop.count(BB) && 1251 "Didn't put block into the loop set!"); 1252 1253 // Insert any predecessors that are in the possible set into the cloned 1254 // set, and if the insert is successful, add them to the worklist. Note 1255 // that we filter on the blocks that are definitely reachable via the 1256 // backedge to the loop header so we may prune out dead code within the 1257 // cloned loop. 1258 for (auto *Pred : predecessors(BB)) 1259 if (ClonedLoopBlocks.count(Pred) && 1260 BlocksInClonedLoop.insert(Pred).second) 1261 Worklist.push_back(Pred); 1262 } 1263 1264 ClonedL = LI.AllocateLoop(); 1265 if (ParentL) { 1266 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1267 ParentL->addChildLoop(ClonedL); 1268 } else { 1269 LI.addTopLevelLoop(ClonedL); 1270 } 1271 NonChildClonedLoops.push_back(ClonedL); 1272 1273 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1274 // We don't want to just add the cloned loop blocks based on how we 1275 // discovered them. The original order of blocks was carefully built in 1276 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1277 // that logic, we just re-walk the original blocks (and those of the child 1278 // loops) and filter them as we add them into the cloned loop. 1279 for (auto *BB : OrigL.blocks()) { 1280 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1281 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1282 continue; 1283 1284 // Directly add the blocks that are only in this loop. 1285 if (LI.getLoopFor(BB) == &OrigL) { 1286 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1287 continue; 1288 } 1289 1290 // We want to manually add it to this loop and parents. 1291 // Registering it with LoopInfo will happen when we clone the top 1292 // loop for this block. 1293 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1294 PL->addBlockEntry(ClonedBB); 1295 } 1296 1297 // Now add each child loop whose header remains within the cloned loop. All 1298 // of the blocks within the loop must satisfy the same constraints as the 1299 // header so once we pass the header checks we can just clone the entire 1300 // child loop nest. 1301 for (Loop *ChildL : OrigL) { 1302 auto *ClonedChildHeader = 1303 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1304 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1305 continue; 1306 1307 #ifndef NDEBUG 1308 // We should never have a cloned child loop header but fail to have 1309 // all of the blocks for that child loop. 1310 for (auto *ChildLoopBB : ChildL->blocks()) 1311 assert(BlocksInClonedLoop.count( 1312 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1313 "Child cloned loop has a header within the cloned outer " 1314 "loop but not all of its blocks!"); 1315 #endif 1316 1317 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1318 } 1319 } 1320 1321 // Now that we've handled all the components of the original loop that were 1322 // cloned into a new loop, we still need to handle anything from the original 1323 // loop that wasn't in a cloned loop. 1324 1325 // Figure out what blocks are left to place within any loop nest containing 1326 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1327 // them. 1328 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1329 if (BlocksInClonedLoop.empty()) 1330 UnloopedBlockSet.insert(ClonedPH); 1331 for (auto *ClonedBB : ClonedLoopBlocks) 1332 if (!BlocksInClonedLoop.count(ClonedBB)) 1333 UnloopedBlockSet.insert(ClonedBB); 1334 1335 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1336 // backwards across these to process them inside out. The order shouldn't 1337 // matter as we're just trying to build up the map from inside-out; we use 1338 // the map in a more stably ordered way below. 1339 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1340 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1341 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1342 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1343 }); 1344 1345 // Populate the existing ExitLoopMap with everything reachable from each 1346 // exit, starting from the inner most exit. 1347 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1348 assert(Worklist.empty() && "Didn't clear worklist!"); 1349 1350 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1351 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1352 1353 // Walk the CFG back until we hit the cloned PH adding everything reachable 1354 // and in the unlooped set to this exit block's loop. 1355 Worklist.push_back(ExitBB); 1356 do { 1357 BasicBlock *BB = Worklist.pop_back_val(); 1358 // We can stop recursing at the cloned preheader (if we get there). 1359 if (BB == ClonedPH) 1360 continue; 1361 1362 for (BasicBlock *PredBB : predecessors(BB)) { 1363 // If this pred has already been moved to our set or is part of some 1364 // (inner) loop, no update needed. 1365 if (!UnloopedBlockSet.erase(PredBB)) { 1366 assert( 1367 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1368 "Predecessor not mapped to a loop!"); 1369 continue; 1370 } 1371 1372 // We just insert into the loop set here. We'll add these blocks to the 1373 // exit loop after we build up the set in an order that doesn't rely on 1374 // predecessor order (which in turn relies on use list order). 1375 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1376 (void)Inserted; 1377 assert(Inserted && "Should only visit an unlooped block once!"); 1378 1379 // And recurse through to its predecessors. 1380 Worklist.push_back(PredBB); 1381 } 1382 } while (!Worklist.empty()); 1383 } 1384 1385 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1386 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1387 // in their original order adding them to the correct loop. 1388 1389 // We need a stable insertion order. We use the order of the original loop 1390 // order and map into the correct parent loop. 1391 for (auto *BB : llvm::concat<BasicBlock *const>( 1392 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1393 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1394 OuterL->addBasicBlockToLoop(BB, LI); 1395 1396 #ifndef NDEBUG 1397 for (auto &BBAndL : ExitLoopMap) { 1398 auto *BB = BBAndL.first; 1399 auto *OuterL = BBAndL.second; 1400 assert(LI.getLoopFor(BB) == OuterL && 1401 "Failed to put all blocks into outer loops!"); 1402 } 1403 #endif 1404 1405 // Now that all the blocks are placed into the correct containing loop in the 1406 // absence of child loops, find all the potentially cloned child loops and 1407 // clone them into whatever outer loop we placed their header into. 1408 for (Loop *ChildL : OrigL) { 1409 auto *ClonedChildHeader = 1410 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1411 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1412 continue; 1413 1414 #ifndef NDEBUG 1415 for (auto *ChildLoopBB : ChildL->blocks()) 1416 assert(VMap.count(ChildLoopBB) && 1417 "Cloned a child loop header but not all of that loops blocks!"); 1418 #endif 1419 1420 NonChildClonedLoops.push_back(cloneLoopNest( 1421 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1422 } 1423 } 1424 1425 static void 1426 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1427 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1428 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1429 // Find all the dead clones, and remove them from their successors. 1430 SmallVector<BasicBlock *, 16> DeadBlocks; 1431 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1432 for (auto &VMap : VMaps) 1433 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1434 if (!DT.isReachableFromEntry(ClonedBB)) { 1435 for (BasicBlock *SuccBB : successors(ClonedBB)) 1436 SuccBB->removePredecessor(ClonedBB); 1437 DeadBlocks.push_back(ClonedBB); 1438 } 1439 1440 // Remove all MemorySSA in the dead blocks 1441 if (MSSAU) { 1442 SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(), 1443 DeadBlocks.end()); 1444 MSSAU->removeBlocks(DeadBlockSet); 1445 } 1446 1447 // Drop any remaining references to break cycles. 1448 for (BasicBlock *BB : DeadBlocks) 1449 BB->dropAllReferences(); 1450 // Erase them from the IR. 1451 for (BasicBlock *BB : DeadBlocks) 1452 BB->eraseFromParent(); 1453 } 1454 1455 static void deleteDeadBlocksFromLoop(Loop &L, 1456 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1457 DominatorTree &DT, LoopInfo &LI, 1458 MemorySSAUpdater *MSSAU) { 1459 // Find all the dead blocks tied to this loop, and remove them from their 1460 // successors. 1461 SmallPtrSet<BasicBlock *, 16> DeadBlockSet; 1462 1463 // Start with loop/exit blocks and get a transitive closure of reachable dead 1464 // blocks. 1465 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1466 ExitBlocks.end()); 1467 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1468 while (!DeathCandidates.empty()) { 1469 auto *BB = DeathCandidates.pop_back_val(); 1470 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1471 for (BasicBlock *SuccBB : successors(BB)) { 1472 SuccBB->removePredecessor(BB); 1473 DeathCandidates.push_back(SuccBB); 1474 } 1475 DeadBlockSet.insert(BB); 1476 } 1477 } 1478 1479 // Remove all MemorySSA in the dead blocks 1480 if (MSSAU) 1481 MSSAU->removeBlocks(DeadBlockSet); 1482 1483 // Filter out the dead blocks from the exit blocks list so that it can be 1484 // used in the caller. 1485 llvm::erase_if(ExitBlocks, 1486 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1487 1488 // Walk from this loop up through its parents removing all of the dead blocks. 1489 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1490 for (auto *BB : DeadBlockSet) 1491 ParentL->getBlocksSet().erase(BB); 1492 llvm::erase_if(ParentL->getBlocksVector(), 1493 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1494 } 1495 1496 // Now delete the dead child loops. This raw delete will clear them 1497 // recursively. 1498 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1499 if (!DeadBlockSet.count(ChildL->getHeader())) 1500 return false; 1501 1502 assert(llvm::all_of(ChildL->blocks(), 1503 [&](BasicBlock *ChildBB) { 1504 return DeadBlockSet.count(ChildBB); 1505 }) && 1506 "If the child loop header is dead all blocks in the child loop must " 1507 "be dead as well!"); 1508 LI.destroy(ChildL); 1509 return true; 1510 }); 1511 1512 // Remove the loop mappings for the dead blocks and drop all the references 1513 // from these blocks to others to handle cyclic references as we start 1514 // deleting the blocks themselves. 1515 for (auto *BB : DeadBlockSet) { 1516 // Check that the dominator tree has already been updated. 1517 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1518 LI.changeLoopFor(BB, nullptr); 1519 BB->dropAllReferences(); 1520 } 1521 1522 // Actually delete the blocks now that they've been fully unhooked from the 1523 // IR. 1524 for (auto *BB : DeadBlockSet) 1525 BB->eraseFromParent(); 1526 } 1527 1528 /// Recompute the set of blocks in a loop after unswitching. 1529 /// 1530 /// This walks from the original headers predecessors to rebuild the loop. We 1531 /// take advantage of the fact that new blocks can't have been added, and so we 1532 /// filter by the original loop's blocks. This also handles potentially 1533 /// unreachable code that we don't want to explore but might be found examining 1534 /// the predecessors of the header. 1535 /// 1536 /// If the original loop is no longer a loop, this will return an empty set. If 1537 /// it remains a loop, all the blocks within it will be added to the set 1538 /// (including those blocks in inner loops). 1539 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1540 LoopInfo &LI) { 1541 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1542 1543 auto *PH = L.getLoopPreheader(); 1544 auto *Header = L.getHeader(); 1545 1546 // A worklist to use while walking backwards from the header. 1547 SmallVector<BasicBlock *, 16> Worklist; 1548 1549 // First walk the predecessors of the header to find the backedges. This will 1550 // form the basis of our walk. 1551 for (auto *Pred : predecessors(Header)) { 1552 // Skip the preheader. 1553 if (Pred == PH) 1554 continue; 1555 1556 // Because the loop was in simplified form, the only non-loop predecessor 1557 // is the preheader. 1558 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1559 "than the preheader that is not part of the " 1560 "loop!"); 1561 1562 // Insert this block into the loop set and on the first visit and, if it 1563 // isn't the header we're currently walking, put it into the worklist to 1564 // recurse through. 1565 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1566 Worklist.push_back(Pred); 1567 } 1568 1569 // If no backedges were found, we're done. 1570 if (LoopBlockSet.empty()) 1571 return LoopBlockSet; 1572 1573 // We found backedges, recurse through them to identify the loop blocks. 1574 while (!Worklist.empty()) { 1575 BasicBlock *BB = Worklist.pop_back_val(); 1576 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1577 1578 // No need to walk past the header. 1579 if (BB == Header) 1580 continue; 1581 1582 // Because we know the inner loop structure remains valid we can use the 1583 // loop structure to jump immediately across the entire nested loop. 1584 // Further, because it is in loop simplified form, we can directly jump 1585 // to its preheader afterward. 1586 if (Loop *InnerL = LI.getLoopFor(BB)) 1587 if (InnerL != &L) { 1588 assert(L.contains(InnerL) && 1589 "Should not reach a loop *outside* this loop!"); 1590 // The preheader is the only possible predecessor of the loop so 1591 // insert it into the set and check whether it was already handled. 1592 auto *InnerPH = InnerL->getLoopPreheader(); 1593 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1594 "but not contain the inner loop " 1595 "preheader!"); 1596 if (!LoopBlockSet.insert(InnerPH).second) 1597 // The only way to reach the preheader is through the loop body 1598 // itself so if it has been visited the loop is already handled. 1599 continue; 1600 1601 // Insert all of the blocks (other than those already present) into 1602 // the loop set. We expect at least the block that led us to find the 1603 // inner loop to be in the block set, but we may also have other loop 1604 // blocks if they were already enqueued as predecessors of some other 1605 // outer loop block. 1606 for (auto *InnerBB : InnerL->blocks()) { 1607 if (InnerBB == BB) { 1608 assert(LoopBlockSet.count(InnerBB) && 1609 "Block should already be in the set!"); 1610 continue; 1611 } 1612 1613 LoopBlockSet.insert(InnerBB); 1614 } 1615 1616 // Add the preheader to the worklist so we will continue past the 1617 // loop body. 1618 Worklist.push_back(InnerPH); 1619 continue; 1620 } 1621 1622 // Insert any predecessors that were in the original loop into the new 1623 // set, and if the insert is successful, add them to the worklist. 1624 for (auto *Pred : predecessors(BB)) 1625 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1626 Worklist.push_back(Pred); 1627 } 1628 1629 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1630 1631 // We've found all the blocks participating in the loop, return our completed 1632 // set. 1633 return LoopBlockSet; 1634 } 1635 1636 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1637 /// 1638 /// The removal may have removed some child loops entirely but cannot have 1639 /// disturbed any remaining child loops. However, they may need to be hoisted 1640 /// to the parent loop (or to be top-level loops). The original loop may be 1641 /// completely removed. 1642 /// 1643 /// The sibling loops resulting from this update are returned. If the original 1644 /// loop remains a valid loop, it will be the first entry in this list with all 1645 /// of the newly sibling loops following it. 1646 /// 1647 /// Returns true if the loop remains a loop after unswitching, and false if it 1648 /// is no longer a loop after unswitching (and should not continue to be 1649 /// referenced). 1650 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1651 LoopInfo &LI, 1652 SmallVectorImpl<Loop *> &HoistedLoops) { 1653 auto *PH = L.getLoopPreheader(); 1654 1655 // Compute the actual parent loop from the exit blocks. Because we may have 1656 // pruned some exits the loop may be different from the original parent. 1657 Loop *ParentL = nullptr; 1658 SmallVector<Loop *, 4> ExitLoops; 1659 SmallVector<BasicBlock *, 4> ExitsInLoops; 1660 ExitsInLoops.reserve(ExitBlocks.size()); 1661 for (auto *ExitBB : ExitBlocks) 1662 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1663 ExitLoops.push_back(ExitL); 1664 ExitsInLoops.push_back(ExitBB); 1665 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1666 ParentL = ExitL; 1667 } 1668 1669 // Recompute the blocks participating in this loop. This may be empty if it 1670 // is no longer a loop. 1671 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1672 1673 // If we still have a loop, we need to re-set the loop's parent as the exit 1674 // block set changing may have moved it within the loop nest. Note that this 1675 // can only happen when this loop has a parent as it can only hoist the loop 1676 // *up* the nest. 1677 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1678 // Remove this loop's (original) blocks from all of the intervening loops. 1679 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1680 IL = IL->getParentLoop()) { 1681 IL->getBlocksSet().erase(PH); 1682 for (auto *BB : L.blocks()) 1683 IL->getBlocksSet().erase(BB); 1684 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1685 return BB == PH || L.contains(BB); 1686 }); 1687 } 1688 1689 LI.changeLoopFor(PH, ParentL); 1690 L.getParentLoop()->removeChildLoop(&L); 1691 if (ParentL) 1692 ParentL->addChildLoop(&L); 1693 else 1694 LI.addTopLevelLoop(&L); 1695 } 1696 1697 // Now we update all the blocks which are no longer within the loop. 1698 auto &Blocks = L.getBlocksVector(); 1699 auto BlocksSplitI = 1700 LoopBlockSet.empty() 1701 ? Blocks.begin() 1702 : std::stable_partition( 1703 Blocks.begin(), Blocks.end(), 1704 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1705 1706 // Before we erase the list of unlooped blocks, build a set of them. 1707 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1708 if (LoopBlockSet.empty()) 1709 UnloopedBlocks.insert(PH); 1710 1711 // Now erase these blocks from the loop. 1712 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1713 L.getBlocksSet().erase(BB); 1714 Blocks.erase(BlocksSplitI, Blocks.end()); 1715 1716 // Sort the exits in ascending loop depth, we'll work backwards across these 1717 // to process them inside out. 1718 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1719 [&](BasicBlock *LHS, BasicBlock *RHS) { 1720 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1721 }); 1722 1723 // We'll build up a set for each exit loop. 1724 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1725 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1726 1727 auto RemoveUnloopedBlocksFromLoop = 1728 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1729 for (auto *BB : UnloopedBlocks) 1730 L.getBlocksSet().erase(BB); 1731 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1732 return UnloopedBlocks.count(BB); 1733 }); 1734 }; 1735 1736 SmallVector<BasicBlock *, 16> Worklist; 1737 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1738 assert(Worklist.empty() && "Didn't clear worklist!"); 1739 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1740 1741 // Grab the next exit block, in decreasing loop depth order. 1742 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1743 Loop &ExitL = *LI.getLoopFor(ExitBB); 1744 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1745 1746 // Erase all of the unlooped blocks from the loops between the previous 1747 // exit loop and this exit loop. This works because the ExitInLoops list is 1748 // sorted in increasing order of loop depth and thus we visit loops in 1749 // decreasing order of loop depth. 1750 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1751 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1752 1753 // Walk the CFG back until we hit the cloned PH adding everything reachable 1754 // and in the unlooped set to this exit block's loop. 1755 Worklist.push_back(ExitBB); 1756 do { 1757 BasicBlock *BB = Worklist.pop_back_val(); 1758 // We can stop recursing at the cloned preheader (if we get there). 1759 if (BB == PH) 1760 continue; 1761 1762 for (BasicBlock *PredBB : predecessors(BB)) { 1763 // If this pred has already been moved to our set or is part of some 1764 // (inner) loop, no update needed. 1765 if (!UnloopedBlocks.erase(PredBB)) { 1766 assert((NewExitLoopBlocks.count(PredBB) || 1767 ExitL.contains(LI.getLoopFor(PredBB))) && 1768 "Predecessor not in a nested loop (or already visited)!"); 1769 continue; 1770 } 1771 1772 // We just insert into the loop set here. We'll add these blocks to the 1773 // exit loop after we build up the set in a deterministic order rather 1774 // than the predecessor-influenced visit order. 1775 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1776 (void)Inserted; 1777 assert(Inserted && "Should only visit an unlooped block once!"); 1778 1779 // And recurse through to its predecessors. 1780 Worklist.push_back(PredBB); 1781 } 1782 } while (!Worklist.empty()); 1783 1784 // If blocks in this exit loop were directly part of the original loop (as 1785 // opposed to a child loop) update the map to point to this exit loop. This 1786 // just updates a map and so the fact that the order is unstable is fine. 1787 for (auto *BB : NewExitLoopBlocks) 1788 if (Loop *BBL = LI.getLoopFor(BB)) 1789 if (BBL == &L || !L.contains(BBL)) 1790 LI.changeLoopFor(BB, &ExitL); 1791 1792 // We will remove the remaining unlooped blocks from this loop in the next 1793 // iteration or below. 1794 NewExitLoopBlocks.clear(); 1795 } 1796 1797 // Any remaining unlooped blocks are no longer part of any loop unless they 1798 // are part of some child loop. 1799 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1800 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1801 for (auto *BB : UnloopedBlocks) 1802 if (Loop *BBL = LI.getLoopFor(BB)) 1803 if (BBL == &L || !L.contains(BBL)) 1804 LI.changeLoopFor(BB, nullptr); 1805 1806 // Sink all the child loops whose headers are no longer in the loop set to 1807 // the parent (or to be top level loops). We reach into the loop and directly 1808 // update its subloop vector to make this batch update efficient. 1809 auto &SubLoops = L.getSubLoopsVector(); 1810 auto SubLoopsSplitI = 1811 LoopBlockSet.empty() 1812 ? SubLoops.begin() 1813 : std::stable_partition( 1814 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1815 return LoopBlockSet.count(SubL->getHeader()); 1816 }); 1817 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1818 HoistedLoops.push_back(HoistedL); 1819 HoistedL->setParentLoop(nullptr); 1820 1821 // To compute the new parent of this hoisted loop we look at where we 1822 // placed the preheader above. We can't lookup the header itself because we 1823 // retained the mapping from the header to the hoisted loop. But the 1824 // preheader and header should have the exact same new parent computed 1825 // based on the set of exit blocks from the original loop as the preheader 1826 // is a predecessor of the header and so reached in the reverse walk. And 1827 // because the loops were all in simplified form the preheader of the 1828 // hoisted loop can't be part of some *other* loop. 1829 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1830 NewParentL->addChildLoop(HoistedL); 1831 else 1832 LI.addTopLevelLoop(HoistedL); 1833 } 1834 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1835 1836 // Actually delete the loop if nothing remained within it. 1837 if (Blocks.empty()) { 1838 assert(SubLoops.empty() && 1839 "Failed to remove all subloops from the original loop!"); 1840 if (Loop *ParentL = L.getParentLoop()) 1841 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1842 else 1843 LI.removeLoop(llvm::find(LI, &L)); 1844 LI.destroy(&L); 1845 return false; 1846 } 1847 1848 return true; 1849 } 1850 1851 /// Helper to visit a dominator subtree, invoking a callable on each node. 1852 /// 1853 /// Returning false at any point will stop walking past that node of the tree. 1854 template <typename CallableT> 1855 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1856 SmallVector<DomTreeNode *, 4> DomWorklist; 1857 DomWorklist.push_back(DT[BB]); 1858 #ifndef NDEBUG 1859 SmallPtrSet<DomTreeNode *, 4> Visited; 1860 Visited.insert(DT[BB]); 1861 #endif 1862 do { 1863 DomTreeNode *N = DomWorklist.pop_back_val(); 1864 1865 // Visit this node. 1866 if (!Callable(N->getBlock())) 1867 continue; 1868 1869 // Accumulate the child nodes. 1870 for (DomTreeNode *ChildN : *N) { 1871 assert(Visited.insert(ChildN).second && 1872 "Cannot visit a node twice when walking a tree!"); 1873 DomWorklist.push_back(ChildN); 1874 } 1875 } while (!DomWorklist.empty()); 1876 } 1877 1878 static void unswitchNontrivialInvariants( 1879 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1880 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1881 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1882 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 1883 auto *ParentBB = TI.getParent(); 1884 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1885 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1886 1887 // We can only unswitch switches, conditional branches with an invariant 1888 // condition, or combining invariant conditions with an instruction. 1889 assert((SI || BI->isConditional()) && 1890 "Can only unswitch switches and conditional branch!"); 1891 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1892 if (FullUnswitch) 1893 assert(Invariants.size() == 1 && 1894 "Cannot have other invariants with full unswitching!"); 1895 else 1896 assert(isa<Instruction>(BI->getCondition()) && 1897 "Partial unswitching requires an instruction as the condition!"); 1898 1899 if (MSSAU && VerifyMemorySSA) 1900 MSSAU->getMemorySSA()->verifyMemorySSA(); 1901 1902 // Constant and BBs tracking the cloned and continuing successor. When we are 1903 // unswitching the entire condition, this can just be trivially chosen to 1904 // unswitch towards `true`. However, when we are unswitching a set of 1905 // invariants combined with `and` or `or`, the combining operation determines 1906 // the best direction to unswitch: we want to unswitch the direction that will 1907 // collapse the branch. 1908 bool Direction = true; 1909 int ClonedSucc = 0; 1910 if (!FullUnswitch) { 1911 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1912 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1913 Instruction::And && 1914 "Only `or` and `and` instructions can combine invariants being " 1915 "unswitched."); 1916 Direction = false; 1917 ClonedSucc = 1; 1918 } 1919 } 1920 1921 BasicBlock *RetainedSuccBB = 1922 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1923 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1924 if (BI) 1925 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1926 else 1927 for (auto Case : SI->cases()) 1928 if (Case.getCaseSuccessor() != RetainedSuccBB) 1929 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1930 1931 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 1932 "Should not unswitch the same successor we are retaining!"); 1933 1934 // The branch should be in this exact loop. Any inner loop's invariant branch 1935 // should be handled by unswitching that inner loop. The caller of this 1936 // routine should filter out any candidates that remain (but were skipped for 1937 // whatever reason). 1938 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1939 1940 // Compute the parent loop now before we start hacking on things. 1941 Loop *ParentL = L.getParentLoop(); 1942 // Get blocks in RPO order for MSSA update, before changing the CFG. 1943 LoopBlocksRPO LBRPO(&L); 1944 if (MSSAU) 1945 LBRPO.perform(&LI); 1946 1947 // Compute the outer-most loop containing one of our exit blocks. This is the 1948 // furthest up our loopnest which can be mutated, which we will use below to 1949 // update things. 1950 Loop *OuterExitL = &L; 1951 for (auto *ExitBB : ExitBlocks) { 1952 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1953 if (!NewOuterExitL) { 1954 // We exited the entire nest with this block, so we're done. 1955 OuterExitL = nullptr; 1956 break; 1957 } 1958 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1959 OuterExitL = NewOuterExitL; 1960 } 1961 1962 // At this point, we're definitely going to unswitch something so invalidate 1963 // any cached information in ScalarEvolution for the outer most loop 1964 // containing an exit block and all nested loops. 1965 if (SE) { 1966 if (OuterExitL) 1967 SE->forgetLoop(OuterExitL); 1968 else 1969 SE->forgetTopmostLoop(&L); 1970 } 1971 1972 // If the edge from this terminator to a successor dominates that successor, 1973 // store a map from each block in its dominator subtree to it. This lets us 1974 // tell when cloning for a particular successor if a block is dominated by 1975 // some *other* successor with a single data structure. We use this to 1976 // significantly reduce cloning. 1977 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 1978 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 1979 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 1980 if (SuccBB->getUniquePredecessor() || 1981 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 1982 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 1983 })) 1984 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 1985 DominatingSucc[BB] = SuccBB; 1986 return true; 1987 }); 1988 1989 // Split the preheader, so that we know that there is a safe place to insert 1990 // the conditional branch. We will change the preheader to have a conditional 1991 // branch on LoopCond. The original preheader will become the split point 1992 // between the unswitched versions, and we will have a new preheader for the 1993 // original loop. 1994 BasicBlock *SplitBB = L.getLoopPreheader(); 1995 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 1996 1997 // Keep track of the dominator tree updates needed. 1998 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1999 2000 // Clone the loop for each unswitched successor. 2001 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2002 VMaps.reserve(UnswitchedSuccBBs.size()); 2003 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2004 for (auto *SuccBB : UnswitchedSuccBBs) { 2005 VMaps.emplace_back(new ValueToValueMapTy()); 2006 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2007 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2008 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2009 } 2010 2011 // The stitching of the branched code back together depends on whether we're 2012 // doing full unswitching or not with the exception that we always want to 2013 // nuke the initial terminator placed in the split block. 2014 SplitBB->getTerminator()->eraseFromParent(); 2015 if (FullUnswitch) { 2016 // Splice the terminator from the original loop and rewrite its 2017 // successors. 2018 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2019 2020 // Keep a clone of the terminator for MSSA updates. 2021 Instruction *NewTI = TI.clone(); 2022 ParentBB->getInstList().push_back(NewTI); 2023 2024 // First wire up the moved terminator to the preheaders. 2025 if (BI) { 2026 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2027 BI->setSuccessor(ClonedSucc, ClonedPH); 2028 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2029 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2030 } else { 2031 assert(SI && "Must either be a branch or switch!"); 2032 2033 // Walk the cases and directly update their successors. 2034 assert(SI->getDefaultDest() == RetainedSuccBB && 2035 "Not retaining default successor!"); 2036 SI->setDefaultDest(LoopPH); 2037 for (auto &Case : SI->cases()) 2038 if (Case.getCaseSuccessor() == RetainedSuccBB) 2039 Case.setSuccessor(LoopPH); 2040 else 2041 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2042 2043 // We need to use the set to populate domtree updates as even when there 2044 // are multiple cases pointing at the same successor we only want to 2045 // remove and insert one edge in the domtree. 2046 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2047 DTUpdates.push_back( 2048 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2049 } 2050 2051 if (MSSAU) { 2052 DT.applyUpdates(DTUpdates); 2053 DTUpdates.clear(); 2054 2055 // Remove all but one edge to the retained block and all unswitched 2056 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2057 // when we know we only keep a single edge for each case. 2058 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2059 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2060 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2061 2062 for (auto &VMap : VMaps) 2063 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2064 /*IgnoreIncomingWithNoClones=*/true); 2065 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2066 2067 // Remove all edges to unswitched blocks. 2068 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2069 MSSAU->removeEdge(ParentBB, SuccBB); 2070 } 2071 2072 // Now unhook the successor relationship as we'll be replacing 2073 // the terminator with a direct branch. This is much simpler for branches 2074 // than switches so we handle those first. 2075 if (BI) { 2076 // Remove the parent as a predecessor of the unswitched successor. 2077 assert(UnswitchedSuccBBs.size() == 1 && 2078 "Only one possible unswitched block for a branch!"); 2079 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2080 UnswitchedSuccBB->removePredecessor(ParentBB, 2081 /*KeepOneInputPHIs*/ true); 2082 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2083 } else { 2084 // Note that we actually want to remove the parent block as a predecessor 2085 // of *every* case successor. The case successor is either unswitched, 2086 // completely eliminating an edge from the parent to that successor, or it 2087 // is a duplicate edge to the retained successor as the retained successor 2088 // is always the default successor and as we'll replace this with a direct 2089 // branch we no longer need the duplicate entries in the PHI nodes. 2090 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2091 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2092 "Not retaining default successor!"); 2093 for (auto &Case : NewSI->cases()) 2094 Case.getCaseSuccessor()->removePredecessor( 2095 ParentBB, 2096 /*KeepOneInputPHIs*/ true); 2097 2098 // We need to use the set to populate domtree updates as even when there 2099 // are multiple cases pointing at the same successor we only want to 2100 // remove and insert one edge in the domtree. 2101 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2102 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2103 } 2104 2105 // After MSSAU update, remove the cloned terminator instruction NewTI. 2106 ParentBB->getTerminator()->eraseFromParent(); 2107 2108 // Create a new unconditional branch to the continuing block (as opposed to 2109 // the one cloned). 2110 BranchInst::Create(RetainedSuccBB, ParentBB); 2111 } else { 2112 assert(BI && "Only branches have partial unswitching."); 2113 assert(UnswitchedSuccBBs.size() == 1 && 2114 "Only one possible unswitched block for a branch!"); 2115 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2116 // When doing a partial unswitch, we have to do a bit more work to build up 2117 // the branch in the split block. 2118 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2119 *ClonedPH, *LoopPH); 2120 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2121 } 2122 2123 // Apply the updates accumulated above to get an up-to-date dominator tree. 2124 DT.applyUpdates(DTUpdates); 2125 if (!FullUnswitch && MSSAU) { 2126 // Update MSSA for partial unswitch, after DT update. 2127 SmallVector<CFGUpdate, 1> Updates; 2128 Updates.push_back( 2129 {cfg::UpdateKind::Insert, SplitBB, ClonedPHs.begin()->second}); 2130 MSSAU->applyInsertUpdates(Updates, DT); 2131 } 2132 2133 // Now that we have an accurate dominator tree, first delete the dead cloned 2134 // blocks so that we can accurately build any cloned loops. It is important to 2135 // not delete the blocks from the original loop yet because we still want to 2136 // reference the original loop to understand the cloned loop's structure. 2137 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2138 2139 // Build the cloned loop structure itself. This may be substantially 2140 // different from the original structure due to the simplified CFG. This also 2141 // handles inserting all the cloned blocks into the correct loops. 2142 SmallVector<Loop *, 4> NonChildClonedLoops; 2143 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2144 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2145 2146 // Now that our cloned loops have been built, we can update the original loop. 2147 // First we delete the dead blocks from it and then we rebuild the loop 2148 // structure taking these deletions into account. 2149 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2150 2151 if (MSSAU && VerifyMemorySSA) 2152 MSSAU->getMemorySSA()->verifyMemorySSA(); 2153 2154 SmallVector<Loop *, 4> HoistedLoops; 2155 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2156 2157 if (MSSAU && VerifyMemorySSA) 2158 MSSAU->getMemorySSA()->verifyMemorySSA(); 2159 2160 // This transformation has a high risk of corrupting the dominator tree, and 2161 // the below steps to rebuild loop structures will result in hard to debug 2162 // errors in that case so verify that the dominator tree is sane first. 2163 // FIXME: Remove this when the bugs stop showing up and rely on existing 2164 // verification steps. 2165 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2166 2167 if (BI) { 2168 // If we unswitched a branch which collapses the condition to a known 2169 // constant we want to replace all the uses of the invariants within both 2170 // the original and cloned blocks. We do this here so that we can use the 2171 // now updated dominator tree to identify which side the users are on. 2172 assert(UnswitchedSuccBBs.size() == 1 && 2173 "Only one possible unswitched block for a branch!"); 2174 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2175 2176 // When considering multiple partially-unswitched invariants 2177 // we cant just go replace them with constants in both branches. 2178 // 2179 // For 'AND' we infer that true branch ("continue") means true 2180 // for each invariant operand. 2181 // For 'OR' we can infer that false branch ("continue") means false 2182 // for each invariant operand. 2183 // So it happens that for multiple-partial case we dont replace 2184 // in the unswitched branch. 2185 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2186 2187 ConstantInt *UnswitchedReplacement = 2188 Direction ? ConstantInt::getTrue(BI->getContext()) 2189 : ConstantInt::getFalse(BI->getContext()); 2190 ConstantInt *ContinueReplacement = 2191 Direction ? ConstantInt::getFalse(BI->getContext()) 2192 : ConstantInt::getTrue(BI->getContext()); 2193 for (Value *Invariant : Invariants) 2194 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2195 UI != UE;) { 2196 // Grab the use and walk past it so we can clobber it in the use list. 2197 Use *U = &*UI++; 2198 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2199 if (!UserI) 2200 continue; 2201 2202 // Replace it with the 'continue' side if in the main loop body, and the 2203 // unswitched if in the cloned blocks. 2204 if (DT.dominates(LoopPH, UserI->getParent())) 2205 U->set(ContinueReplacement); 2206 else if (ReplaceUnswitched && 2207 DT.dominates(ClonedPH, UserI->getParent())) 2208 U->set(UnswitchedReplacement); 2209 } 2210 } 2211 2212 // We can change which blocks are exit blocks of all the cloned sibling 2213 // loops, the current loop, and any parent loops which shared exit blocks 2214 // with the current loop. As a consequence, we need to re-form LCSSA for 2215 // them. But we shouldn't need to re-form LCSSA for any child loops. 2216 // FIXME: This could be made more efficient by tracking which exit blocks are 2217 // new, and focusing on them, but that isn't likely to be necessary. 2218 // 2219 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2220 // loop nest and update every loop that could have had its exits changed. We 2221 // also need to cover any intervening loops. We add all of these loops to 2222 // a list and sort them by loop depth to achieve this without updating 2223 // unnecessary loops. 2224 auto UpdateLoop = [&](Loop &UpdateL) { 2225 #ifndef NDEBUG 2226 UpdateL.verifyLoop(); 2227 for (Loop *ChildL : UpdateL) { 2228 ChildL->verifyLoop(); 2229 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2230 "Perturbed a child loop's LCSSA form!"); 2231 } 2232 #endif 2233 // First build LCSSA for this loop so that we can preserve it when 2234 // forming dedicated exits. We don't want to perturb some other loop's 2235 // LCSSA while doing that CFG edit. 2236 formLCSSA(UpdateL, DT, &LI, nullptr); 2237 2238 // For loops reached by this loop's original exit blocks we may 2239 // introduced new, non-dedicated exits. At least try to re-form dedicated 2240 // exits for these loops. This may fail if they couldn't have dedicated 2241 // exits to start with. 2242 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); 2243 }; 2244 2245 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2246 // and we can do it in any order as they don't nest relative to each other. 2247 // 2248 // Also check if any of the loops we have updated have become top-level loops 2249 // as that will necessitate widening the outer loop scope. 2250 for (Loop *UpdatedL : 2251 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2252 UpdateLoop(*UpdatedL); 2253 if (!UpdatedL->getParentLoop()) 2254 OuterExitL = nullptr; 2255 } 2256 if (IsStillLoop) { 2257 UpdateLoop(L); 2258 if (!L.getParentLoop()) 2259 OuterExitL = nullptr; 2260 } 2261 2262 // If the original loop had exit blocks, walk up through the outer most loop 2263 // of those exit blocks to update LCSSA and form updated dedicated exits. 2264 if (OuterExitL != &L) 2265 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2266 OuterL = OuterL->getParentLoop()) 2267 UpdateLoop(*OuterL); 2268 2269 #ifndef NDEBUG 2270 // Verify the entire loop structure to catch any incorrect updates before we 2271 // progress in the pass pipeline. 2272 LI.verify(DT); 2273 #endif 2274 2275 // Now that we've unswitched something, make callbacks to report the changes. 2276 // For that we need to merge together the updated loops and the cloned loops 2277 // and check whether the original loop survived. 2278 SmallVector<Loop *, 4> SibLoops; 2279 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2280 if (UpdatedL->getParentLoop() == ParentL) 2281 SibLoops.push_back(UpdatedL); 2282 UnswitchCB(IsStillLoop, SibLoops); 2283 2284 if (MSSAU && VerifyMemorySSA) 2285 MSSAU->getMemorySSA()->verifyMemorySSA(); 2286 2287 if (BI) 2288 ++NumBranches; 2289 else 2290 ++NumSwitches; 2291 } 2292 2293 /// Recursively compute the cost of a dominator subtree based on the per-block 2294 /// cost map provided. 2295 /// 2296 /// The recursive computation is memozied into the provided DT-indexed cost map 2297 /// to allow querying it for most nodes in the domtree without it becoming 2298 /// quadratic. 2299 static int 2300 computeDomSubtreeCost(DomTreeNode &N, 2301 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2302 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2303 // Don't accumulate cost (or recurse through) blocks not in our block cost 2304 // map and thus not part of the duplication cost being considered. 2305 auto BBCostIt = BBCostMap.find(N.getBlock()); 2306 if (BBCostIt == BBCostMap.end()) 2307 return 0; 2308 2309 // Lookup this node to see if we already computed its cost. 2310 auto DTCostIt = DTCostMap.find(&N); 2311 if (DTCostIt != DTCostMap.end()) 2312 return DTCostIt->second; 2313 2314 // If not, we have to compute it. We can't use insert above and update 2315 // because computing the cost may insert more things into the map. 2316 int Cost = std::accumulate( 2317 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2318 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2319 }); 2320 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2321 (void)Inserted; 2322 assert(Inserted && "Should not insert a node while visiting children!"); 2323 return Cost; 2324 } 2325 2326 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2327 /// making the following replacement: 2328 /// 2329 /// --code before guard-- 2330 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2331 /// --code after guard-- 2332 /// 2333 /// into 2334 /// 2335 /// --code before guard-- 2336 /// br i1 %cond, label %guarded, label %deopt 2337 /// 2338 /// guarded: 2339 /// --code after guard-- 2340 /// 2341 /// deopt: 2342 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2343 /// unreachable 2344 /// 2345 /// It also makes all relevant DT and LI updates, so that all structures are in 2346 /// valid state after this transform. 2347 static BranchInst * 2348 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2349 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2350 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2351 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2352 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2353 BasicBlock *CheckBB = GI->getParent(); 2354 2355 if (MSSAU && VerifyMemorySSA) 2356 MSSAU->getMemorySSA()->verifyMemorySSA(); 2357 2358 // Remove all CheckBB's successors from DomTree. A block can be seen among 2359 // successors more than once, but for DomTree it should be added only once. 2360 SmallPtrSet<BasicBlock *, 4> Successors; 2361 for (auto *Succ : successors(CheckBB)) 2362 if (Successors.insert(Succ).second) 2363 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2364 2365 Instruction *DeoptBlockTerm = 2366 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2367 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2368 // SplitBlockAndInsertIfThen inserts control flow that branches to 2369 // DeoptBlockTerm if the condition is true. We want the opposite. 2370 CheckBI->swapSuccessors(); 2371 2372 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2373 GuardedBlock->setName("guarded"); 2374 CheckBI->getSuccessor(1)->setName("deopt"); 2375 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2376 2377 // We now have a new exit block. 2378 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2379 2380 if (MSSAU) 2381 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2382 2383 GI->moveBefore(DeoptBlockTerm); 2384 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2385 2386 // Add new successors of CheckBB into DomTree. 2387 for (auto *Succ : successors(CheckBB)) 2388 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2389 2390 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2391 // successors. 2392 for (auto *Succ : Successors) 2393 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2394 2395 // Make proper changes to DT. 2396 DT.applyUpdates(DTUpdates); 2397 // Inform LI of a new loop block. 2398 L.addBasicBlockToLoop(GuardedBlock, LI); 2399 2400 if (MSSAU) { 2401 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2402 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End); 2403 if (VerifyMemorySSA) 2404 MSSAU->getMemorySSA()->verifyMemorySSA(); 2405 } 2406 2407 ++NumGuards; 2408 return CheckBI; 2409 } 2410 2411 /// Cost multiplier is a way to limit potentially exponential behavior 2412 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2413 /// candidates available. Also accounting for the number of "sibling" loops with 2414 /// the idea to account for previous unswitches that already happened on this 2415 /// cluster of loops. There was an attempt to keep this formula simple, 2416 /// just enough to limit the worst case behavior. Even if it is not that simple 2417 /// now it is still not an attempt to provide a detailed heuristic size 2418 /// prediction. 2419 /// 2420 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2421 /// unswitch candidates, making adequate predictions instead of wild guesses. 2422 /// That requires knowing not just the number of "remaining" candidates but 2423 /// also costs of unswitching for each of these candidates. 2424 static int calculateUnswitchCostMultiplier( 2425 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2426 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2427 UnswitchCandidates) { 2428 2429 // Guards and other exiting conditions do not contribute to exponential 2430 // explosion as soon as they dominate the latch (otherwise there might be 2431 // another path to the latch remaining that does not allow to eliminate the 2432 // loop copy on unswitch). 2433 BasicBlock *Latch = L.getLoopLatch(); 2434 BasicBlock *CondBlock = TI.getParent(); 2435 if (DT.dominates(CondBlock, Latch) && 2436 (isGuard(&TI) || 2437 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2438 return L.contains(SuccBB); 2439 }) <= 1)) { 2440 NumCostMultiplierSkipped++; 2441 return 1; 2442 } 2443 2444 auto *ParentL = L.getParentLoop(); 2445 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2446 : std::distance(LI.begin(), LI.end())); 2447 // Count amount of clones that all the candidates might cause during 2448 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2449 int UnswitchedClones = 0; 2450 for (auto Candidate : UnswitchCandidates) { 2451 Instruction *CI = Candidate.first; 2452 BasicBlock *CondBlock = CI->getParent(); 2453 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2454 if (isGuard(CI)) { 2455 if (!SkipExitingSuccessors) 2456 UnswitchedClones++; 2457 continue; 2458 } 2459 int NonExitingSuccessors = llvm::count_if( 2460 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2461 return !SkipExitingSuccessors || L.contains(SuccBB); 2462 }); 2463 UnswitchedClones += Log2_32(NonExitingSuccessors); 2464 } 2465 2466 // Ignore up to the "unscaled candidates" number of unswitch candidates 2467 // when calculating the power-of-two scaling of the cost. The main idea 2468 // with this control is to allow a small number of unswitches to happen 2469 // and rely more on siblings multiplier (see below) when the number 2470 // of candidates is small. 2471 unsigned ClonesPower = 2472 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2473 2474 // Allowing top-level loops to spread a bit more than nested ones. 2475 int SiblingsMultiplier = 2476 std::max((ParentL ? SiblingsCount 2477 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2478 1); 2479 // Compute the cost multiplier in a way that won't overflow by saturating 2480 // at an upper bound. 2481 int CostMultiplier; 2482 if (ClonesPower > Log2_32(UnswitchThreshold) || 2483 SiblingsMultiplier > UnswitchThreshold) 2484 CostMultiplier = UnswitchThreshold; 2485 else 2486 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2487 (int)UnswitchThreshold); 2488 2489 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2490 << " (siblings " << SiblingsMultiplier << " * clones " 2491 << (1 << ClonesPower) << ")" 2492 << " for unswitch candidate: " << TI << "\n"); 2493 return CostMultiplier; 2494 } 2495 2496 static bool 2497 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2498 AssumptionCache &AC, TargetTransformInfo &TTI, 2499 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2500 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2501 // Collect all invariant conditions within this loop (as opposed to an inner 2502 // loop which would be handled when visiting that inner loop). 2503 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2504 UnswitchCandidates; 2505 2506 // Whether or not we should also collect guards in the loop. 2507 bool CollectGuards = false; 2508 if (UnswitchGuards) { 2509 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2510 Intrinsic::getName(Intrinsic::experimental_guard)); 2511 if (GuardDecl && !GuardDecl->use_empty()) 2512 CollectGuards = true; 2513 } 2514 2515 for (auto *BB : L.blocks()) { 2516 if (LI.getLoopFor(BB) != &L) 2517 continue; 2518 2519 if (CollectGuards) 2520 for (auto &I : *BB) 2521 if (isGuard(&I)) { 2522 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2523 // TODO: Support AND, OR conditions and partial unswitching. 2524 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2525 UnswitchCandidates.push_back({&I, {Cond}}); 2526 } 2527 2528 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2529 // We can only consider fully loop-invariant switch conditions as we need 2530 // to completely eliminate the switch after unswitching. 2531 if (!isa<Constant>(SI->getCondition()) && 2532 L.isLoopInvariant(SI->getCondition())) 2533 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2534 continue; 2535 } 2536 2537 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2538 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2539 BI->getSuccessor(0) == BI->getSuccessor(1)) 2540 continue; 2541 2542 if (L.isLoopInvariant(BI->getCondition())) { 2543 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2544 continue; 2545 } 2546 2547 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2548 if (CondI.getOpcode() != Instruction::And && 2549 CondI.getOpcode() != Instruction::Or) 2550 continue; 2551 2552 TinyPtrVector<Value *> Invariants = 2553 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2554 if (Invariants.empty()) 2555 continue; 2556 2557 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2558 } 2559 2560 // If we didn't find any candidates, we're done. 2561 if (UnswitchCandidates.empty()) 2562 return false; 2563 2564 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2565 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2566 // irreducible control flow into reducible control flow and introduce new 2567 // loops "out of thin air". If we ever discover important use cases for doing 2568 // this, we can add support to loop unswitch, but it is a lot of complexity 2569 // for what seems little or no real world benefit. 2570 LoopBlocksRPO RPOT(&L); 2571 RPOT.perform(&LI); 2572 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2573 return false; 2574 2575 SmallVector<BasicBlock *, 4> ExitBlocks; 2576 L.getUniqueExitBlocks(ExitBlocks); 2577 2578 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2579 // don't know how to split those exit blocks. 2580 // FIXME: We should teach SplitBlock to handle this and remove this 2581 // restriction. 2582 for (auto *ExitBB : ExitBlocks) 2583 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2584 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2585 return false; 2586 } 2587 2588 LLVM_DEBUG( 2589 dbgs() << "Considering " << UnswitchCandidates.size() 2590 << " non-trivial loop invariant conditions for unswitching.\n"); 2591 2592 // Given that unswitching these terminators will require duplicating parts of 2593 // the loop, so we need to be able to model that cost. Compute the ephemeral 2594 // values and set up a data structure to hold per-BB costs. We cache each 2595 // block's cost so that we don't recompute this when considering different 2596 // subsets of the loop for duplication during unswitching. 2597 SmallPtrSet<const Value *, 4> EphValues; 2598 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2599 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2600 2601 // Compute the cost of each block, as well as the total loop cost. Also, bail 2602 // out if we see instructions which are incompatible with loop unswitching 2603 // (convergent, noduplicate, or cross-basic-block tokens). 2604 // FIXME: We might be able to safely handle some of these in non-duplicated 2605 // regions. 2606 int LoopCost = 0; 2607 for (auto *BB : L.blocks()) { 2608 int Cost = 0; 2609 for (auto &I : *BB) { 2610 if (EphValues.count(&I)) 2611 continue; 2612 2613 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2614 return false; 2615 if (auto CS = CallSite(&I)) 2616 if (CS.isConvergent() || CS.cannotDuplicate()) 2617 return false; 2618 2619 Cost += TTI.getUserCost(&I); 2620 } 2621 assert(Cost >= 0 && "Must not have negative costs!"); 2622 LoopCost += Cost; 2623 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2624 BBCostMap[BB] = Cost; 2625 } 2626 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2627 2628 // Now we find the best candidate by searching for the one with the following 2629 // properties in order: 2630 // 2631 // 1) An unswitching cost below the threshold 2632 // 2) The smallest number of duplicated unswitch candidates (to avoid 2633 // creating redundant subsequent unswitching) 2634 // 3) The smallest cost after unswitching. 2635 // 2636 // We prioritize reducing fanout of unswitch candidates provided the cost 2637 // remains below the threshold because this has a multiplicative effect. 2638 // 2639 // This requires memoizing each dominator subtree to avoid redundant work. 2640 // 2641 // FIXME: Need to actually do the number of candidates part above. 2642 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2643 // Given a terminator which might be unswitched, computes the non-duplicated 2644 // cost for that terminator. 2645 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2646 BasicBlock &BB = *TI.getParent(); 2647 SmallPtrSet<BasicBlock *, 4> Visited; 2648 2649 int Cost = LoopCost; 2650 for (BasicBlock *SuccBB : successors(&BB)) { 2651 // Don't count successors more than once. 2652 if (!Visited.insert(SuccBB).second) 2653 continue; 2654 2655 // If this is a partial unswitch candidate, then it must be a conditional 2656 // branch with a condition of either `or` or `and`. In that case, one of 2657 // the successors is necessarily duplicated, so don't even try to remove 2658 // its cost. 2659 if (!FullUnswitch) { 2660 auto &BI = cast<BranchInst>(TI); 2661 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2662 Instruction::And) { 2663 if (SuccBB == BI.getSuccessor(1)) 2664 continue; 2665 } else { 2666 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2667 Instruction::Or && 2668 "Only `and` and `or` conditions can result in a partial " 2669 "unswitch!"); 2670 if (SuccBB == BI.getSuccessor(0)) 2671 continue; 2672 } 2673 } 2674 2675 // This successor's domtree will not need to be duplicated after 2676 // unswitching if the edge to the successor dominates it (and thus the 2677 // entire tree). This essentially means there is no other path into this 2678 // subtree and so it will end up live in only one clone of the loop. 2679 if (SuccBB->getUniquePredecessor() || 2680 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2681 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2682 })) { 2683 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2684 assert(Cost >= 0 && 2685 "Non-duplicated cost should never exceed total loop cost!"); 2686 } 2687 } 2688 2689 // Now scale the cost by the number of unique successors minus one. We 2690 // subtract one because there is already at least one copy of the entire 2691 // loop. This is computing the new cost of unswitching a condition. 2692 // Note that guards always have 2 unique successors that are implicit and 2693 // will be materialized if we decide to unswitch it. 2694 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2695 assert(SuccessorsCount > 1 && 2696 "Cannot unswitch a condition without multiple distinct successors!"); 2697 return Cost * (SuccessorsCount - 1); 2698 }; 2699 Instruction *BestUnswitchTI = nullptr; 2700 int BestUnswitchCost; 2701 ArrayRef<Value *> BestUnswitchInvariants; 2702 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2703 Instruction &TI = *TerminatorAndInvariants.first; 2704 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2705 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2706 int CandidateCost = ComputeUnswitchedCost( 2707 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2708 Invariants[0] == BI->getCondition())); 2709 // Calculate cost multiplier which is a tool to limit potentially 2710 // exponential behavior of loop-unswitch. 2711 if (EnableUnswitchCostMultiplier) { 2712 int CostMultiplier = 2713 calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2714 assert( 2715 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2716 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2717 CandidateCost *= CostMultiplier; 2718 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2719 << " (multiplier: " << CostMultiplier << ")" 2720 << " for unswitch candidate: " << TI << "\n"); 2721 } else { 2722 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2723 << " for unswitch candidate: " << TI << "\n"); 2724 } 2725 2726 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2727 BestUnswitchTI = &TI; 2728 BestUnswitchCost = CandidateCost; 2729 BestUnswitchInvariants = Invariants; 2730 } 2731 } 2732 2733 if (BestUnswitchCost >= UnswitchThreshold) { 2734 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2735 << BestUnswitchCost << "\n"); 2736 return false; 2737 } 2738 2739 // If the best candidate is a guard, turn it into a branch. 2740 if (isGuard(BestUnswitchTI)) 2741 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2742 ExitBlocks, DT, LI, MSSAU); 2743 2744 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2745 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2746 << "\n"); 2747 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2748 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2749 return true; 2750 } 2751 2752 /// Unswitch control flow predicated on loop invariant conditions. 2753 /// 2754 /// This first hoists all branches or switches which are trivial (IE, do not 2755 /// require duplicating any part of the loop) out of the loop body. It then 2756 /// looks at other loop invariant control flows and tries to unswitch those as 2757 /// well by cloning the loop if the result is small enough. 2758 /// 2759 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2760 /// updated based on the unswitch. 2761 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 2762 /// 2763 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2764 /// true, we will attempt to do non-trivial unswitching as well as trivial 2765 /// unswitching. 2766 /// 2767 /// The `UnswitchCB` callback provided will be run after unswitching is 2768 /// complete, with the first parameter set to `true` if the provided loop 2769 /// remains a loop, and a list of new sibling loops created. 2770 /// 2771 /// If `SE` is non-null, we will update that analysis based on the unswitching 2772 /// done. 2773 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2774 AssumptionCache &AC, TargetTransformInfo &TTI, 2775 bool NonTrivial, 2776 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2777 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2778 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2779 "Loops must be in LCSSA form before unswitching."); 2780 bool Changed = false; 2781 2782 // Must be in loop simplified form: we need a preheader and dedicated exits. 2783 if (!L.isLoopSimplifyForm()) 2784 return false; 2785 2786 // Try trivial unswitch first before loop over other basic blocks in the loop. 2787 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2788 // If we unswitched successfully we will want to clean up the loop before 2789 // processing it further so just mark it as unswitched and return. 2790 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2791 return true; 2792 } 2793 2794 // If we're not doing non-trivial unswitching, we're done. We both accept 2795 // a parameter but also check a local flag that can be used for testing 2796 // a debugging. 2797 if (!NonTrivial && !EnableNonTrivialUnswitch) 2798 return false; 2799 2800 // For non-trivial unswitching, because it often creates new loops, we rely on 2801 // the pass manager to iterate on the loops rather than trying to immediately 2802 // reach a fixed point. There is no substantial advantage to iterating 2803 // internally, and if any of the new loops are simplified enough to contain 2804 // trivial unswitching we want to prefer those. 2805 2806 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2807 // a partial unswitch when possible below the threshold. 2808 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2809 return true; 2810 2811 // No other opportunities to unswitch. 2812 return Changed; 2813 } 2814 2815 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2816 LoopStandardAnalysisResults &AR, 2817 LPMUpdater &U) { 2818 Function &F = *L.getHeader()->getParent(); 2819 (void)F; 2820 2821 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2822 << "\n"); 2823 2824 // Save the current loop name in a variable so that we can report it even 2825 // after it has been deleted. 2826 std::string LoopName = L.getName(); 2827 2828 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2829 ArrayRef<Loop *> NewLoops) { 2830 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2831 if (!NewLoops.empty()) 2832 U.addSiblingLoops(NewLoops); 2833 2834 // If the current loop remains valid, we should revisit it to catch any 2835 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2836 if (CurrentLoopValid) 2837 U.revisitCurrentLoop(); 2838 else 2839 U.markLoopAsDeleted(L, LoopName); 2840 }; 2841 2842 Optional<MemorySSAUpdater> MSSAU; 2843 if (AR.MSSA) { 2844 MSSAU = MemorySSAUpdater(AR.MSSA); 2845 if (VerifyMemorySSA) 2846 AR.MSSA->verifyMemorySSA(); 2847 } 2848 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2849 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 2850 return PreservedAnalyses::all(); 2851 2852 if (AR.MSSA && VerifyMemorySSA) 2853 AR.MSSA->verifyMemorySSA(); 2854 2855 // Historically this pass has had issues with the dominator tree so verify it 2856 // in asserts builds. 2857 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2858 return getLoopPassPreservedAnalyses(); 2859 } 2860 2861 namespace { 2862 2863 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2864 bool NonTrivial; 2865 2866 public: 2867 static char ID; // Pass ID, replacement for typeid 2868 2869 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2870 : LoopPass(ID), NonTrivial(NonTrivial) { 2871 initializeSimpleLoopUnswitchLegacyPassPass( 2872 *PassRegistry::getPassRegistry()); 2873 } 2874 2875 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2876 2877 void getAnalysisUsage(AnalysisUsage &AU) const override { 2878 AU.addRequired<AssumptionCacheTracker>(); 2879 AU.addRequired<TargetTransformInfoWrapperPass>(); 2880 if (EnableMSSALoopDependency) { 2881 AU.addRequired<MemorySSAWrapperPass>(); 2882 AU.addPreserved<MemorySSAWrapperPass>(); 2883 } 2884 getLoopAnalysisUsage(AU); 2885 } 2886 }; 2887 2888 } // end anonymous namespace 2889 2890 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2891 if (skipLoop(L)) 2892 return false; 2893 2894 Function &F = *L->getHeader()->getParent(); 2895 2896 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2897 << "\n"); 2898 2899 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2900 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2901 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2902 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2903 MemorySSA *MSSA = nullptr; 2904 Optional<MemorySSAUpdater> MSSAU; 2905 if (EnableMSSALoopDependency) { 2906 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2907 MSSAU = MemorySSAUpdater(MSSA); 2908 } 2909 2910 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 2911 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 2912 2913 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2914 ArrayRef<Loop *> NewLoops) { 2915 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2916 for (auto *NewL : NewLoops) 2917 LPM.addLoop(*NewL); 2918 2919 // If the current loop remains valid, re-add it to the queue. This is 2920 // a little wasteful as we'll finish processing the current loop as well, 2921 // but it is the best we can do in the old PM. 2922 if (CurrentLoopValid) 2923 LPM.addLoop(*L); 2924 else 2925 LPM.markLoopAsDeleted(*L); 2926 }; 2927 2928 if (MSSA && VerifyMemorySSA) 2929 MSSA->verifyMemorySSA(); 2930 2931 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 2932 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 2933 2934 if (MSSA && VerifyMemorySSA) 2935 MSSA->verifyMemorySSA(); 2936 2937 // If anything was unswitched, also clear any cached information about this 2938 // loop. 2939 LPM.deleteSimpleAnalysisLoop(L); 2940 2941 // Historically this pass has had issues with the dominator tree so verify it 2942 // in asserts builds. 2943 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2944 2945 return Changed; 2946 } 2947 2948 char SimpleLoopUnswitchLegacyPass::ID = 0; 2949 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2950 "Simple unswitch loops", false, false) 2951 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2952 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2953 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2954 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2955 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 2956 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2957 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2958 "Simple unswitch loops", false, false) 2959 2960 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2961 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2962 } 2963