1 //===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/Utils/Local.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Use.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/GenericDomTree.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Cloning.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include "llvm/Transforms/Utils/ValueMapper.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <numeric> 54 #include <utility> 55 56 #define DEBUG_TYPE "simple-loop-unswitch" 57 58 using namespace llvm; 59 60 STATISTIC(NumBranches, "Number of branches unswitched"); 61 STATISTIC(NumSwitches, "Number of switches unswitched"); 62 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 63 64 static cl::opt<bool> EnableNonTrivialUnswitch( 65 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 66 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 67 "following the configuration passed into the pass.")); 68 69 static cl::opt<int> 70 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 71 cl::desc("The cost threshold for unswitching a loop.")); 72 73 /// Collect all of the loop invariant input values transitively used by the 74 /// homogeneous instruction graph from a given root. 75 /// 76 /// This essentially walks from a root recursively through loop variant operands 77 /// which have the exact same opcode and finds all inputs which are loop 78 /// invariant. For some operations these can be re-associated and unswitched out 79 /// of the loop entirely. 80 static TinyPtrVector<Value *> 81 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 82 LoopInfo &LI) { 83 assert(!L.isLoopInvariant(&Root) && 84 "Only need to walk the graph if root itself is not invariant."); 85 TinyPtrVector<Value *> Invariants; 86 87 // Build a worklist and recurse through operators collecting invariants. 88 SmallVector<Instruction *, 4> Worklist; 89 SmallPtrSet<Instruction *, 8> Visited; 90 Worklist.push_back(&Root); 91 Visited.insert(&Root); 92 do { 93 Instruction &I = *Worklist.pop_back_val(); 94 for (Value *OpV : I.operand_values()) { 95 // Skip constants as unswitching isn't interesting for them. 96 if (isa<Constant>(OpV)) 97 continue; 98 99 // Add it to our result if loop invariant. 100 if (L.isLoopInvariant(OpV)) { 101 Invariants.push_back(OpV); 102 continue; 103 } 104 105 // If not an instruction with the same opcode, nothing we can do. 106 Instruction *OpI = dyn_cast<Instruction>(OpV); 107 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 108 continue; 109 110 // Visit this operand. 111 if (Visited.insert(OpI).second) 112 Worklist.push_back(OpI); 113 } 114 } while (!Worklist.empty()); 115 116 return Invariants; 117 } 118 119 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 120 Constant &Replacement) { 121 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 122 123 // Replace uses of LIC in the loop with the given constant. 124 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 125 // Grab the use and walk past it so we can clobber it in the use list. 126 Use *U = &*UI++; 127 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 128 129 // Replace this use within the loop body. 130 if (UserI && L.contains(UserI)) 131 U->set(&Replacement); 132 } 133 } 134 135 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 136 /// incoming values along this edge. 137 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 138 BasicBlock &ExitBB) { 139 for (Instruction &I : ExitBB) { 140 auto *PN = dyn_cast<PHINode>(&I); 141 if (!PN) 142 // No more PHIs to check. 143 return true; 144 145 // If the incoming value for this edge isn't loop invariant the unswitch 146 // won't be trivial. 147 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 148 return false; 149 } 150 llvm_unreachable("Basic blocks should never be empty!"); 151 } 152 153 /// Insert code to test a set of loop invariant values, and conditionally branch 154 /// on them. 155 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 156 ArrayRef<Value *> Invariants, 157 bool Direction, 158 BasicBlock &UnswitchedSucc, 159 BasicBlock &NormalSucc) { 160 IRBuilder<> IRB(&BB); 161 Value *Cond = Invariants.front(); 162 for (Value *Invariant : 163 make_range(std::next(Invariants.begin()), Invariants.end())) 164 if (Direction) 165 Cond = IRB.CreateOr(Cond, Invariant); 166 else 167 Cond = IRB.CreateAnd(Cond, Invariant); 168 169 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 170 Direction ? &NormalSucc : &UnswitchedSucc); 171 } 172 173 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 174 /// 175 /// Requires that the loop exit and unswitched basic block are the same, and 176 /// that the exiting block was a unique predecessor of that block. Rewrites the 177 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 178 /// PHI nodes from the old preheader that now contains the unswitched 179 /// terminator. 180 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 181 BasicBlock &OldExitingBB, 182 BasicBlock &OldPH) { 183 for (PHINode &PN : UnswitchedBB.phis()) { 184 // When the loop exit is directly unswitched we just need to update the 185 // incoming basic block. We loop to handle weird cases with repeated 186 // incoming blocks, but expect to typically only have one operand here. 187 for (auto i : seq<int>(0, PN.getNumOperands())) { 188 assert(PN.getIncomingBlock(i) == &OldExitingBB && 189 "Found incoming block different from unique predecessor!"); 190 PN.setIncomingBlock(i, &OldPH); 191 } 192 } 193 } 194 195 /// Rewrite the PHI nodes in the loop exit basic block and the split off 196 /// unswitched block. 197 /// 198 /// Because the exit block remains an exit from the loop, this rewrites the 199 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 200 /// nodes into the unswitched basic block to select between the value in the 201 /// old preheader and the loop exit. 202 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 203 BasicBlock &UnswitchedBB, 204 BasicBlock &OldExitingBB, 205 BasicBlock &OldPH, 206 bool FullUnswitch) { 207 assert(&ExitBB != &UnswitchedBB && 208 "Must have different loop exit and unswitched blocks!"); 209 Instruction *InsertPt = &*UnswitchedBB.begin(); 210 for (PHINode &PN : ExitBB.phis()) { 211 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 212 PN.getName() + ".split", InsertPt); 213 214 // Walk backwards over the old PHI node's inputs to minimize the cost of 215 // removing each one. We have to do this weird loop manually so that we 216 // create the same number of new incoming edges in the new PHI as we expect 217 // each case-based edge to be included in the unswitched switch in some 218 // cases. 219 // FIXME: This is really, really gross. It would be much cleaner if LLVM 220 // allowed us to create a single entry for a predecessor block without 221 // having separate entries for each "edge" even though these edges are 222 // required to produce identical results. 223 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 224 if (PN.getIncomingBlock(i) != &OldExitingBB) 225 continue; 226 227 Value *Incoming = PN.getIncomingValue(i); 228 if (FullUnswitch) 229 // No more edge from the old exiting block to the exit block. 230 PN.removeIncomingValue(i); 231 232 NewPN->addIncoming(Incoming, &OldPH); 233 } 234 235 // Now replace the old PHI with the new one and wire the old one in as an 236 // input to the new one. 237 PN.replaceAllUsesWith(NewPN); 238 NewPN->addIncoming(&PN, &ExitBB); 239 } 240 } 241 242 /// Unswitch a trivial branch if the condition is loop invariant. 243 /// 244 /// This routine should only be called when loop code leading to the branch has 245 /// been validated as trivial (no side effects). This routine checks if the 246 /// condition is invariant and one of the successors is a loop exit. This 247 /// allows us to unswitch without duplicating the loop, making it trivial. 248 /// 249 /// If this routine fails to unswitch the branch it returns false. 250 /// 251 /// If the branch can be unswitched, this routine splits the preheader and 252 /// hoists the branch above that split. Preserves loop simplified form 253 /// (splitting the exit block as necessary). It simplifies the branch within 254 /// the loop to an unconditional branch but doesn't remove it entirely. Further 255 /// cleanup can be done with some simplify-cfg like pass. 256 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 257 LoopInfo &LI) { 258 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 259 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 260 261 // The loop invariant values that we want to unswitch. 262 TinyPtrVector<Value *> Invariants; 263 264 // When true, we're fully unswitching the branch rather than just unswitching 265 // some input conditions to the branch. 266 bool FullUnswitch = false; 267 268 if (L.isLoopInvariant(BI.getCondition())) { 269 Invariants.push_back(BI.getCondition()); 270 FullUnswitch = true; 271 } else { 272 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 273 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 274 if (Invariants.empty()) 275 // Couldn't find invariant inputs! 276 return false; 277 } 278 279 // Check that one of the branch's successors exits, and which one. 280 bool ExitDirection = true; 281 int LoopExitSuccIdx = 0; 282 auto *LoopExitBB = BI.getSuccessor(0); 283 if (L.contains(LoopExitBB)) { 284 ExitDirection = false; 285 LoopExitSuccIdx = 1; 286 LoopExitBB = BI.getSuccessor(1); 287 if (L.contains(LoopExitBB)) 288 return false; 289 } 290 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 291 auto *ParentBB = BI.getParent(); 292 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 293 return false; 294 295 // When unswitching only part of the branch's condition, we need the exit 296 // block to be reached directly from the partially unswitched input. This can 297 // be done when the exit block is along the true edge and the branch condition 298 // is a graph of `or` operations, or the exit block is along the false edge 299 // and the condition is a graph of `and` operations. 300 if (!FullUnswitch) { 301 if (ExitDirection) { 302 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 303 return false; 304 } else { 305 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 306 return false; 307 } 308 } 309 310 LLVM_DEBUG({ 311 dbgs() << " unswitching trivial invariant conditions for: " << BI 312 << "\n"; 313 for (Value *Invariant : Invariants) { 314 dbgs() << " " << *Invariant << " == true"; 315 if (Invariant != Invariants.back()) 316 dbgs() << " ||"; 317 dbgs() << "\n"; 318 } 319 }); 320 321 // Split the preheader, so that we know that there is a safe place to insert 322 // the conditional branch. We will change the preheader to have a conditional 323 // branch on LoopCond. 324 BasicBlock *OldPH = L.getLoopPreheader(); 325 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 326 327 // Now that we have a place to insert the conditional branch, create a place 328 // to branch to: this is the exit block out of the loop that we are 329 // unswitching. We need to split this if there are other loop predecessors. 330 // Because the loop is in simplified form, *any* other predecessor is enough. 331 BasicBlock *UnswitchedBB; 332 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 333 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 334 "A branch's parent isn't a predecessor!"); 335 UnswitchedBB = LoopExitBB; 336 } else { 337 UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI); 338 } 339 340 // Actually move the invariant uses into the unswitched position. If possible, 341 // we do this by moving the instructions, but when doing partial unswitching 342 // we do it by building a new merge of the values in the unswitched position. 343 OldPH->getTerminator()->eraseFromParent(); 344 if (FullUnswitch) { 345 // If fully unswitching, we can use the existing branch instruction. 346 // Splice it into the old PH to gate reaching the new preheader and re-point 347 // its successors. 348 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 349 BI); 350 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 351 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 352 353 // Create a new unconditional branch that will continue the loop as a new 354 // terminator. 355 BranchInst::Create(ContinueBB, ParentBB); 356 } else { 357 // Only unswitching a subset of inputs to the condition, so we will need to 358 // build a new branch that merges the invariant inputs. 359 if (ExitDirection) 360 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 361 Instruction::Or && 362 "Must have an `or` of `i1`s for the condition!"); 363 else 364 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 365 Instruction::And && 366 "Must have an `and` of `i1`s for the condition!"); 367 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 368 *UnswitchedBB, *NewPH); 369 } 370 371 // Rewrite the relevant PHI nodes. 372 if (UnswitchedBB == LoopExitBB) 373 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 374 else 375 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 376 *ParentBB, *OldPH, FullUnswitch); 377 378 // Now we need to update the dominator tree. 379 DT.insertEdge(OldPH, UnswitchedBB); 380 if (FullUnswitch) 381 DT.deleteEdge(ParentBB, UnswitchedBB); 382 383 // The constant we can replace all of our invariants with inside the loop 384 // body. If any of the invariants have a value other than this the loop won't 385 // be entered. 386 ConstantInt *Replacement = ExitDirection 387 ? ConstantInt::getFalse(BI.getContext()) 388 : ConstantInt::getTrue(BI.getContext()); 389 390 // Since this is an i1 condition we can also trivially replace uses of it 391 // within the loop with a constant. 392 for (Value *Invariant : Invariants) 393 replaceLoopInvariantUses(L, Invariant, *Replacement); 394 395 ++NumTrivial; 396 ++NumBranches; 397 return true; 398 } 399 400 /// Unswitch a trivial switch if the condition is loop invariant. 401 /// 402 /// This routine should only be called when loop code leading to the switch has 403 /// been validated as trivial (no side effects). This routine checks if the 404 /// condition is invariant and that at least one of the successors is a loop 405 /// exit. This allows us to unswitch without duplicating the loop, making it 406 /// trivial. 407 /// 408 /// If this routine fails to unswitch the switch it returns false. 409 /// 410 /// If the switch can be unswitched, this routine splits the preheader and 411 /// copies the switch above that split. If the default case is one of the 412 /// exiting cases, it copies the non-exiting cases and points them at the new 413 /// preheader. If the default case is not exiting, it copies the exiting cases 414 /// and points the default at the preheader. It preserves loop simplified form 415 /// (splitting the exit blocks as necessary). It simplifies the switch within 416 /// the loop by removing now-dead cases. If the default case is one of those 417 /// unswitched, it replaces its destination with a new basic block containing 418 /// only unreachable. Such basic blocks, while technically loop exits, are not 419 /// considered for unswitching so this is a stable transform and the same 420 /// switch will not be revisited. If after unswitching there is only a single 421 /// in-loop successor, the switch is further simplified to an unconditional 422 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 423 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 424 LoopInfo &LI) { 425 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 426 Value *LoopCond = SI.getCondition(); 427 428 // If this isn't switching on an invariant condition, we can't unswitch it. 429 if (!L.isLoopInvariant(LoopCond)) 430 return false; 431 432 auto *ParentBB = SI.getParent(); 433 434 SmallVector<int, 4> ExitCaseIndices; 435 for (auto Case : SI.cases()) { 436 auto *SuccBB = Case.getCaseSuccessor(); 437 if (!L.contains(SuccBB) && 438 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 439 ExitCaseIndices.push_back(Case.getCaseIndex()); 440 } 441 BasicBlock *DefaultExitBB = nullptr; 442 if (!L.contains(SI.getDefaultDest()) && 443 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 444 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 445 DefaultExitBB = SI.getDefaultDest(); 446 else if (ExitCaseIndices.empty()) 447 return false; 448 449 LLVM_DEBUG(dbgs() << " unswitching trivial cases...\n"); 450 451 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 452 ExitCases.reserve(ExitCaseIndices.size()); 453 // We walk the case indices backwards so that we remove the last case first 454 // and don't disrupt the earlier indices. 455 for (unsigned Index : reverse(ExitCaseIndices)) { 456 auto CaseI = SI.case_begin() + Index; 457 // Save the value of this case. 458 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 459 // Delete the unswitched cases. 460 SI.removeCase(CaseI); 461 } 462 463 // Check if after this all of the remaining cases point at the same 464 // successor. 465 BasicBlock *CommonSuccBB = nullptr; 466 if (SI.getNumCases() > 0 && 467 std::all_of(std::next(SI.case_begin()), SI.case_end(), 468 [&SI](const SwitchInst::CaseHandle &Case) { 469 return Case.getCaseSuccessor() == 470 SI.case_begin()->getCaseSuccessor(); 471 })) 472 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 473 474 if (DefaultExitBB) { 475 // We can't remove the default edge so replace it with an edge to either 476 // the single common remaining successor (if we have one) or an unreachable 477 // block. 478 if (CommonSuccBB) { 479 SI.setDefaultDest(CommonSuccBB); 480 } else { 481 BasicBlock *UnreachableBB = BasicBlock::Create( 482 ParentBB->getContext(), 483 Twine(ParentBB->getName()) + ".unreachable_default", 484 ParentBB->getParent()); 485 new UnreachableInst(ParentBB->getContext(), UnreachableBB); 486 SI.setDefaultDest(UnreachableBB); 487 DT.addNewBlock(UnreachableBB, ParentBB); 488 } 489 } else { 490 // If we're not unswitching the default, we need it to match any cases to 491 // have a common successor or if we have no cases it is the common 492 // successor. 493 if (SI.getNumCases() == 0) 494 CommonSuccBB = SI.getDefaultDest(); 495 else if (SI.getDefaultDest() != CommonSuccBB) 496 CommonSuccBB = nullptr; 497 } 498 499 // Split the preheader, so that we know that there is a safe place to insert 500 // the switch. 501 BasicBlock *OldPH = L.getLoopPreheader(); 502 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 503 OldPH->getTerminator()->eraseFromParent(); 504 505 // Now add the unswitched switch. 506 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 507 508 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 509 // First, we split any exit blocks with remaining in-loop predecessors. Then 510 // we update the PHIs in one of two ways depending on if there was a split. 511 // We walk in reverse so that we split in the same order as the cases 512 // appeared. This is purely for convenience of reading the resulting IR, but 513 // it doesn't cost anything really. 514 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 515 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 516 // Handle the default exit if necessary. 517 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 518 // ranges aren't quite powerful enough yet. 519 if (DefaultExitBB) { 520 if (pred_empty(DefaultExitBB)) { 521 UnswitchedExitBBs.insert(DefaultExitBB); 522 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 523 } else { 524 auto *SplitBB = 525 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI); 526 rewritePHINodesForExitAndUnswitchedBlocks( 527 *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 528 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 529 } 530 } 531 // Note that we must use a reference in the for loop so that we update the 532 // container. 533 for (auto &CasePair : reverse(ExitCases)) { 534 // Grab a reference to the exit block in the pair so that we can update it. 535 BasicBlock *ExitBB = CasePair.second; 536 537 // If this case is the last edge into the exit block, we can simply reuse it 538 // as it will no longer be a loop exit. No mapping necessary. 539 if (pred_empty(ExitBB)) { 540 // Only rewrite once. 541 if (UnswitchedExitBBs.insert(ExitBB).second) 542 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 543 continue; 544 } 545 546 // Otherwise we need to split the exit block so that we retain an exit 547 // block from the loop and a target for the unswitched condition. 548 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 549 if (!SplitExitBB) { 550 // If this is the first time we see this, do the split and remember it. 551 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 552 rewritePHINodesForExitAndUnswitchedBlocks( 553 *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 554 } 555 // Update the case pair to point to the split block. 556 CasePair.second = SplitExitBB; 557 } 558 559 // Now add the unswitched cases. We do this in reverse order as we built them 560 // in reverse order. 561 for (auto CasePair : reverse(ExitCases)) { 562 ConstantInt *CaseVal = CasePair.first; 563 BasicBlock *UnswitchedBB = CasePair.second; 564 565 NewSI->addCase(CaseVal, UnswitchedBB); 566 } 567 568 // If the default was unswitched, re-point it and add explicit cases for 569 // entering the loop. 570 if (DefaultExitBB) { 571 NewSI->setDefaultDest(DefaultExitBB); 572 573 // We removed all the exit cases, so we just copy the cases to the 574 // unswitched switch. 575 for (auto Case : SI.cases()) 576 NewSI->addCase(Case.getCaseValue(), NewPH); 577 } 578 579 // If we ended up with a common successor for every path through the switch 580 // after unswitching, rewrite it to an unconditional branch to make it easy 581 // to recognize. Otherwise we potentially have to recognize the default case 582 // pointing at unreachable and other complexity. 583 if (CommonSuccBB) { 584 BasicBlock *BB = SI.getParent(); 585 SI.eraseFromParent(); 586 BranchInst::Create(CommonSuccBB, BB); 587 } 588 589 // Walk the unswitched exit blocks and the unswitched split blocks and update 590 // the dominator tree based on the CFG edits. While we are walking unordered 591 // containers here, the API for applyUpdates takes an unordered list of 592 // updates and requires them to not contain duplicates. 593 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 594 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 595 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 596 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 597 } 598 for (auto SplitUnswitchedPair : SplitExitBBMap) { 599 auto *UnswitchedBB = SplitUnswitchedPair.second; 600 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); 601 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 602 } 603 DT.applyUpdates(DTUpdates); 604 605 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 606 ++NumTrivial; 607 ++NumSwitches; 608 return true; 609 } 610 611 /// This routine scans the loop to find a branch or switch which occurs before 612 /// any side effects occur. These can potentially be unswitched without 613 /// duplicating the loop. If a branch or switch is successfully unswitched the 614 /// scanning continues to see if subsequent branches or switches have become 615 /// trivial. Once all trivial candidates have been unswitched, this routine 616 /// returns. 617 /// 618 /// The return value indicates whether anything was unswitched (and therefore 619 /// changed). 620 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 621 LoopInfo &LI) { 622 bool Changed = false; 623 624 // If loop header has only one reachable successor we should keep looking for 625 // trivial condition candidates in the successor as well. An alternative is 626 // to constant fold conditions and merge successors into loop header (then we 627 // only need to check header's terminator). The reason for not doing this in 628 // LoopUnswitch pass is that it could potentially break LoopPassManager's 629 // invariants. Folding dead branches could either eliminate the current loop 630 // or make other loops unreachable. LCSSA form might also not be preserved 631 // after deleting branches. The following code keeps traversing loop header's 632 // successors until it finds the trivial condition candidate (condition that 633 // is not a constant). Since unswitching generates branches with constant 634 // conditions, this scenario could be very common in practice. 635 BasicBlock *CurrentBB = L.getHeader(); 636 SmallPtrSet<BasicBlock *, 8> Visited; 637 Visited.insert(CurrentBB); 638 do { 639 // Check if there are any side-effecting instructions (e.g. stores, calls, 640 // volatile loads) in the part of the loop that the code *would* execute 641 // without unswitching. 642 if (llvm::any_of(*CurrentBB, 643 [](Instruction &I) { return I.mayHaveSideEffects(); })) 644 return Changed; 645 646 TerminatorInst *CurrentTerm = CurrentBB->getTerminator(); 647 648 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 649 // Don't bother trying to unswitch past a switch with a constant 650 // condition. This should be removed prior to running this pass by 651 // simplify-cfg. 652 if (isa<Constant>(SI->getCondition())) 653 return Changed; 654 655 if (!unswitchTrivialSwitch(L, *SI, DT, LI)) 656 // Couldn't unswitch this one so we're done. 657 return Changed; 658 659 // Mark that we managed to unswitch something. 660 Changed = true; 661 662 // If unswitching turned the terminator into an unconditional branch then 663 // we can continue. The unswitching logic specifically works to fold any 664 // cases it can into an unconditional branch to make it easier to 665 // recognize here. 666 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 667 if (!BI || BI->isConditional()) 668 return Changed; 669 670 CurrentBB = BI->getSuccessor(0); 671 continue; 672 } 673 674 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 675 if (!BI) 676 // We do not understand other terminator instructions. 677 return Changed; 678 679 // Don't bother trying to unswitch past an unconditional branch or a branch 680 // with a constant value. These should be removed by simplify-cfg prior to 681 // running this pass. 682 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 683 return Changed; 684 685 // Found a trivial condition candidate: non-foldable conditional branch. If 686 // we fail to unswitch this, we can't do anything else that is trivial. 687 if (!unswitchTrivialBranch(L, *BI, DT, LI)) 688 return Changed; 689 690 // Mark that we managed to unswitch something. 691 Changed = true; 692 693 // If we only unswitched some of the conditions feeding the branch, we won't 694 // have collapsed it to a single successor. 695 BI = cast<BranchInst>(CurrentBB->getTerminator()); 696 if (BI->isConditional()) 697 return Changed; 698 699 // Follow the newly unconditional branch into its successor. 700 CurrentBB = BI->getSuccessor(0); 701 702 // When continuing, if we exit the loop or reach a previous visited block, 703 // then we can not reach any trivial condition candidates (unfoldable 704 // branch instructions or switch instructions) and no unswitch can happen. 705 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 706 707 return Changed; 708 } 709 710 /// Build the cloned blocks for an unswitched copy of the given loop. 711 /// 712 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 713 /// after the split block (`SplitBB`) that will be used to select between the 714 /// cloned and original loop. 715 /// 716 /// This routine handles cloning all of the necessary loop blocks and exit 717 /// blocks including rewriting their instructions and the relevant PHI nodes. 718 /// Any loop blocks or exit blocks which are dominated by a different successor 719 /// than the one for this clone of the loop blocks can be trivially skipped. We 720 /// use the `DominatingSucc` map to determine whether a block satisfies that 721 /// property with a simple map lookup. 722 /// 723 /// It also correctly creates the unconditional branch in the cloned 724 /// unswitched parent block to only point at the unswitched successor. 725 /// 726 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 727 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 728 /// the cloned blocks (and their loops) are left without full `LoopInfo` 729 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 730 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 731 /// instead the caller must recompute an accurate DT. It *does* correctly 732 /// update the `AssumptionCache` provided in `AC`. 733 static BasicBlock *buildClonedLoopBlocks( 734 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 735 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 736 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 737 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 738 ValueToValueMapTy &VMap, 739 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 740 DominatorTree &DT, LoopInfo &LI) { 741 SmallVector<BasicBlock *, 4> NewBlocks; 742 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 743 744 // We will need to clone a bunch of blocks, wrap up the clone operation in 745 // a helper. 746 auto CloneBlock = [&](BasicBlock *OldBB) { 747 // Clone the basic block and insert it before the new preheader. 748 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 749 NewBB->moveBefore(LoopPH); 750 751 // Record this block and the mapping. 752 NewBlocks.push_back(NewBB); 753 VMap[OldBB] = NewBB; 754 755 return NewBB; 756 }; 757 758 // We skip cloning blocks when they have a dominating succ that is not the 759 // succ we are cloning for. 760 auto SkipBlock = [&](BasicBlock *BB) { 761 auto It = DominatingSucc.find(BB); 762 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 763 }; 764 765 // First, clone the preheader. 766 auto *ClonedPH = CloneBlock(LoopPH); 767 768 // Then clone all the loop blocks, skipping the ones that aren't necessary. 769 for (auto *LoopBB : L.blocks()) 770 if (!SkipBlock(LoopBB)) 771 CloneBlock(LoopBB); 772 773 // Split all the loop exit edges so that when we clone the exit blocks, if 774 // any of the exit blocks are *also* a preheader for some other loop, we 775 // don't create multiple predecessors entering the loop header. 776 for (auto *ExitBB : ExitBlocks) { 777 if (SkipBlock(ExitBB)) 778 continue; 779 780 // When we are going to clone an exit, we don't need to clone all the 781 // instructions in the exit block and we want to ensure we have an easy 782 // place to merge the CFG, so split the exit first. This is always safe to 783 // do because there cannot be any non-loop predecessors of a loop exit in 784 // loop simplified form. 785 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 786 787 // Rearrange the names to make it easier to write test cases by having the 788 // exit block carry the suffix rather than the merge block carrying the 789 // suffix. 790 MergeBB->takeName(ExitBB); 791 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 792 793 // Now clone the original exit block. 794 auto *ClonedExitBB = CloneBlock(ExitBB); 795 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 796 "Exit block should have been split to have one successor!"); 797 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 798 "Cloned exit block has the wrong successor!"); 799 800 // Remap any cloned instructions and create a merge phi node for them. 801 for (auto ZippedInsts : llvm::zip_first( 802 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 803 llvm::make_range(ClonedExitBB->begin(), 804 std::prev(ClonedExitBB->end())))) { 805 Instruction &I = std::get<0>(ZippedInsts); 806 Instruction &ClonedI = std::get<1>(ZippedInsts); 807 808 // The only instructions in the exit block should be PHI nodes and 809 // potentially a landing pad. 810 assert( 811 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 812 "Bad instruction in exit block!"); 813 // We should have a value map between the instruction and its clone. 814 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 815 816 auto *MergePN = 817 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 818 &*MergeBB->getFirstInsertionPt()); 819 I.replaceAllUsesWith(MergePN); 820 MergePN->addIncoming(&I, ExitBB); 821 MergePN->addIncoming(&ClonedI, ClonedExitBB); 822 } 823 } 824 825 // Rewrite the instructions in the cloned blocks to refer to the instructions 826 // in the cloned blocks. We have to do this as a second pass so that we have 827 // everything available. Also, we have inserted new instructions which may 828 // include assume intrinsics, so we update the assumption cache while 829 // processing this. 830 for (auto *ClonedBB : NewBlocks) 831 for (Instruction &I : *ClonedBB) { 832 RemapInstruction(&I, VMap, 833 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 834 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 835 if (II->getIntrinsicID() == Intrinsic::assume) 836 AC.registerAssumption(II); 837 } 838 839 // Remove the cloned parent as a predecessor of the cloned continue successor 840 // if we did in fact clone it. 841 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 842 if (auto *ClonedContinueSuccBB = 843 cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB))) 844 ClonedContinueSuccBB->removePredecessor(ClonedParentBB, 845 /*DontDeleteUselessPHIs*/ true); 846 // Replace the cloned branch with an unconditional branch to the cloned 847 // unswitched successor. 848 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 849 ClonedParentBB->getTerminator()->eraseFromParent(); 850 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 851 852 // Update any PHI nodes in the cloned successors of the skipped blocks to not 853 // have spurious incoming values. 854 for (auto *LoopBB : L.blocks()) 855 if (SkipBlock(LoopBB)) 856 for (auto *SuccBB : successors(LoopBB)) 857 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 858 for (PHINode &PN : ClonedSuccBB->phis()) 859 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 860 861 // Record the domtree updates for the new blocks. 862 SmallPtrSet<BasicBlock *, 4> SuccSet; 863 for (auto *ClonedBB : NewBlocks) { 864 for (auto *SuccBB : successors(ClonedBB)) 865 if (SuccSet.insert(SuccBB).second) 866 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 867 SuccSet.clear(); 868 } 869 870 return ClonedPH; 871 } 872 873 /// Recursively clone the specified loop and all of its children. 874 /// 875 /// The target parent loop for the clone should be provided, or can be null if 876 /// the clone is a top-level loop. While cloning, all the blocks are mapped 877 /// with the provided value map. The entire original loop must be present in 878 /// the value map. The cloned loop is returned. 879 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 880 const ValueToValueMapTy &VMap, LoopInfo &LI) { 881 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 882 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 883 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 884 for (auto *BB : OrigL.blocks()) { 885 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 886 ClonedL.addBlockEntry(ClonedBB); 887 if (LI.getLoopFor(BB) == &OrigL) 888 LI.changeLoopFor(ClonedBB, &ClonedL); 889 } 890 }; 891 892 // We specially handle the first loop because it may get cloned into 893 // a different parent and because we most commonly are cloning leaf loops. 894 Loop *ClonedRootL = LI.AllocateLoop(); 895 if (RootParentL) 896 RootParentL->addChildLoop(ClonedRootL); 897 else 898 LI.addTopLevelLoop(ClonedRootL); 899 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 900 901 if (OrigRootL.empty()) 902 return ClonedRootL; 903 904 // If we have a nest, we can quickly clone the entire loop nest using an 905 // iterative approach because it is a tree. We keep the cloned parent in the 906 // data structure to avoid repeatedly querying through a map to find it. 907 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 908 // Build up the loops to clone in reverse order as we'll clone them from the 909 // back. 910 for (Loop *ChildL : llvm::reverse(OrigRootL)) 911 LoopsToClone.push_back({ClonedRootL, ChildL}); 912 do { 913 Loop *ClonedParentL, *L; 914 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 915 Loop *ClonedL = LI.AllocateLoop(); 916 ClonedParentL->addChildLoop(ClonedL); 917 AddClonedBlocksToLoop(*L, *ClonedL); 918 for (Loop *ChildL : llvm::reverse(*L)) 919 LoopsToClone.push_back({ClonedL, ChildL}); 920 } while (!LoopsToClone.empty()); 921 922 return ClonedRootL; 923 } 924 925 /// Build the cloned loops of an original loop from unswitching. 926 /// 927 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 928 /// operation. We need to re-verify that there even is a loop (as the backedge 929 /// may not have been cloned), and even if there are remaining backedges the 930 /// backedge set may be different. However, we know that each child loop is 931 /// undisturbed, we only need to find where to place each child loop within 932 /// either any parent loop or within a cloned version of the original loop. 933 /// 934 /// Because child loops may end up cloned outside of any cloned version of the 935 /// original loop, multiple cloned sibling loops may be created. All of them 936 /// are returned so that the newly introduced loop nest roots can be 937 /// identified. 938 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 939 const ValueToValueMapTy &VMap, LoopInfo &LI, 940 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 941 Loop *ClonedL = nullptr; 942 943 auto *OrigPH = OrigL.getLoopPreheader(); 944 auto *OrigHeader = OrigL.getHeader(); 945 946 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 947 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 948 949 // We need to know the loops of the cloned exit blocks to even compute the 950 // accurate parent loop. If we only clone exits to some parent of the 951 // original parent, we want to clone into that outer loop. We also keep track 952 // of the loops that our cloned exit blocks participate in. 953 Loop *ParentL = nullptr; 954 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 955 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 956 ClonedExitsInLoops.reserve(ExitBlocks.size()); 957 for (auto *ExitBB : ExitBlocks) 958 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 959 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 960 ExitLoopMap[ClonedExitBB] = ExitL; 961 ClonedExitsInLoops.push_back(ClonedExitBB); 962 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 963 ParentL = ExitL; 964 } 965 assert((!ParentL || ParentL == OrigL.getParentLoop() || 966 ParentL->contains(OrigL.getParentLoop())) && 967 "The computed parent loop should always contain (or be) the parent of " 968 "the original loop."); 969 970 // We build the set of blocks dominated by the cloned header from the set of 971 // cloned blocks out of the original loop. While not all of these will 972 // necessarily be in the cloned loop, it is enough to establish that they 973 // aren't in unreachable cycles, etc. 974 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 975 for (auto *BB : OrigL.blocks()) 976 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 977 ClonedLoopBlocks.insert(ClonedBB); 978 979 // Rebuild the set of blocks that will end up in the cloned loop. We may have 980 // skipped cloning some region of this loop which can in turn skip some of 981 // the backedges so we have to rebuild the blocks in the loop based on the 982 // backedges that remain after cloning. 983 SmallVector<BasicBlock *, 16> Worklist; 984 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 985 for (auto *Pred : predecessors(ClonedHeader)) { 986 // The only possible non-loop header predecessor is the preheader because 987 // we know we cloned the loop in simplified form. 988 if (Pred == ClonedPH) 989 continue; 990 991 // Because the loop was in simplified form, the only non-loop predecessor 992 // should be the preheader. 993 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 994 "header other than the preheader " 995 "that is not part of the loop!"); 996 997 // Insert this block into the loop set and on the first visit (and if it 998 // isn't the header we're currently walking) put it into the worklist to 999 // recurse through. 1000 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1001 Worklist.push_back(Pred); 1002 } 1003 1004 // If we had any backedges then there *is* a cloned loop. Put the header into 1005 // the loop set and then walk the worklist backwards to find all the blocks 1006 // that remain within the loop after cloning. 1007 if (!BlocksInClonedLoop.empty()) { 1008 BlocksInClonedLoop.insert(ClonedHeader); 1009 1010 while (!Worklist.empty()) { 1011 BasicBlock *BB = Worklist.pop_back_val(); 1012 assert(BlocksInClonedLoop.count(BB) && 1013 "Didn't put block into the loop set!"); 1014 1015 // Insert any predecessors that are in the possible set into the cloned 1016 // set, and if the insert is successful, add them to the worklist. Note 1017 // that we filter on the blocks that are definitely reachable via the 1018 // backedge to the loop header so we may prune out dead code within the 1019 // cloned loop. 1020 for (auto *Pred : predecessors(BB)) 1021 if (ClonedLoopBlocks.count(Pred) && 1022 BlocksInClonedLoop.insert(Pred).second) 1023 Worklist.push_back(Pred); 1024 } 1025 1026 ClonedL = LI.AllocateLoop(); 1027 if (ParentL) { 1028 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1029 ParentL->addChildLoop(ClonedL); 1030 } else { 1031 LI.addTopLevelLoop(ClonedL); 1032 } 1033 NonChildClonedLoops.push_back(ClonedL); 1034 1035 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1036 // We don't want to just add the cloned loop blocks based on how we 1037 // discovered them. The original order of blocks was carefully built in 1038 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1039 // that logic, we just re-walk the original blocks (and those of the child 1040 // loops) and filter them as we add them into the cloned loop. 1041 for (auto *BB : OrigL.blocks()) { 1042 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1043 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1044 continue; 1045 1046 // Directly add the blocks that are only in this loop. 1047 if (LI.getLoopFor(BB) == &OrigL) { 1048 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1049 continue; 1050 } 1051 1052 // We want to manually add it to this loop and parents. 1053 // Registering it with LoopInfo will happen when we clone the top 1054 // loop for this block. 1055 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1056 PL->addBlockEntry(ClonedBB); 1057 } 1058 1059 // Now add each child loop whose header remains within the cloned loop. All 1060 // of the blocks within the loop must satisfy the same constraints as the 1061 // header so once we pass the header checks we can just clone the entire 1062 // child loop nest. 1063 for (Loop *ChildL : OrigL) { 1064 auto *ClonedChildHeader = 1065 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1066 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1067 continue; 1068 1069 #ifndef NDEBUG 1070 // We should never have a cloned child loop header but fail to have 1071 // all of the blocks for that child loop. 1072 for (auto *ChildLoopBB : ChildL->blocks()) 1073 assert(BlocksInClonedLoop.count( 1074 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1075 "Child cloned loop has a header within the cloned outer " 1076 "loop but not all of its blocks!"); 1077 #endif 1078 1079 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1080 } 1081 } 1082 1083 // Now that we've handled all the components of the original loop that were 1084 // cloned into a new loop, we still need to handle anything from the original 1085 // loop that wasn't in a cloned loop. 1086 1087 // Figure out what blocks are left to place within any loop nest containing 1088 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1089 // them. 1090 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1091 if (BlocksInClonedLoop.empty()) 1092 UnloopedBlockSet.insert(ClonedPH); 1093 for (auto *ClonedBB : ClonedLoopBlocks) 1094 if (!BlocksInClonedLoop.count(ClonedBB)) 1095 UnloopedBlockSet.insert(ClonedBB); 1096 1097 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1098 // backwards across these to process them inside out. The order shouldn't 1099 // matter as we're just trying to build up the map from inside-out; we use 1100 // the map in a more stably ordered way below. 1101 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1102 llvm::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(), 1103 [&](BasicBlock *LHS, BasicBlock *RHS) { 1104 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1105 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1106 }); 1107 1108 // Populate the existing ExitLoopMap with everything reachable from each 1109 // exit, starting from the inner most exit. 1110 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1111 assert(Worklist.empty() && "Didn't clear worklist!"); 1112 1113 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1114 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1115 1116 // Walk the CFG back until we hit the cloned PH adding everything reachable 1117 // and in the unlooped set to this exit block's loop. 1118 Worklist.push_back(ExitBB); 1119 do { 1120 BasicBlock *BB = Worklist.pop_back_val(); 1121 // We can stop recursing at the cloned preheader (if we get there). 1122 if (BB == ClonedPH) 1123 continue; 1124 1125 for (BasicBlock *PredBB : predecessors(BB)) { 1126 // If this pred has already been moved to our set or is part of some 1127 // (inner) loop, no update needed. 1128 if (!UnloopedBlockSet.erase(PredBB)) { 1129 assert( 1130 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1131 "Predecessor not mapped to a loop!"); 1132 continue; 1133 } 1134 1135 // We just insert into the loop set here. We'll add these blocks to the 1136 // exit loop after we build up the set in an order that doesn't rely on 1137 // predecessor order (which in turn relies on use list order). 1138 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1139 (void)Inserted; 1140 assert(Inserted && "Should only visit an unlooped block once!"); 1141 1142 // And recurse through to its predecessors. 1143 Worklist.push_back(PredBB); 1144 } 1145 } while (!Worklist.empty()); 1146 } 1147 1148 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1149 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1150 // in their original order adding them to the correct loop. 1151 1152 // We need a stable insertion order. We use the order of the original loop 1153 // order and map into the correct parent loop. 1154 for (auto *BB : llvm::concat<BasicBlock *const>( 1155 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1156 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1157 OuterL->addBasicBlockToLoop(BB, LI); 1158 1159 #ifndef NDEBUG 1160 for (auto &BBAndL : ExitLoopMap) { 1161 auto *BB = BBAndL.first; 1162 auto *OuterL = BBAndL.second; 1163 assert(LI.getLoopFor(BB) == OuterL && 1164 "Failed to put all blocks into outer loops!"); 1165 } 1166 #endif 1167 1168 // Now that all the blocks are placed into the correct containing loop in the 1169 // absence of child loops, find all the potentially cloned child loops and 1170 // clone them into whatever outer loop we placed their header into. 1171 for (Loop *ChildL : OrigL) { 1172 auto *ClonedChildHeader = 1173 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1174 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1175 continue; 1176 1177 #ifndef NDEBUG 1178 for (auto *ChildLoopBB : ChildL->blocks()) 1179 assert(VMap.count(ChildLoopBB) && 1180 "Cloned a child loop header but not all of that loops blocks!"); 1181 #endif 1182 1183 NonChildClonedLoops.push_back(cloneLoopNest( 1184 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1185 } 1186 } 1187 1188 static void 1189 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1190 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1191 DominatorTree &DT) { 1192 // Find all the dead clones, and remove them from their successors. 1193 SmallVector<BasicBlock *, 16> DeadBlocks; 1194 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1195 for (auto &VMap : VMaps) 1196 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1197 if (!DT.isReachableFromEntry(ClonedBB)) { 1198 for (BasicBlock *SuccBB : successors(ClonedBB)) 1199 SuccBB->removePredecessor(ClonedBB); 1200 DeadBlocks.push_back(ClonedBB); 1201 } 1202 1203 // Drop any remaining references to break cycles. 1204 for (BasicBlock *BB : DeadBlocks) 1205 BB->dropAllReferences(); 1206 // Erase them from the IR. 1207 for (BasicBlock *BB : DeadBlocks) 1208 BB->eraseFromParent(); 1209 } 1210 1211 static void 1212 deleteDeadBlocksFromLoop(Loop &L, 1213 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1214 DominatorTree &DT, LoopInfo &LI) { 1215 // Find all the dead blocks, and remove them from their successors. 1216 SmallVector<BasicBlock *, 16> DeadBlocks; 1217 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1218 if (!DT.isReachableFromEntry(BB)) { 1219 for (BasicBlock *SuccBB : successors(BB)) 1220 SuccBB->removePredecessor(BB); 1221 DeadBlocks.push_back(BB); 1222 } 1223 1224 SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(), 1225 DeadBlocks.end()); 1226 1227 // Filter out the dead blocks from the exit blocks list so that it can be 1228 // used in the caller. 1229 llvm::erase_if(ExitBlocks, 1230 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1231 1232 // Walk from this loop up through its parents removing all of the dead blocks. 1233 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1234 for (auto *BB : DeadBlocks) 1235 ParentL->getBlocksSet().erase(BB); 1236 llvm::erase_if(ParentL->getBlocksVector(), 1237 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1238 } 1239 1240 // Now delete the dead child loops. This raw delete will clear them 1241 // recursively. 1242 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1243 if (!DeadBlockSet.count(ChildL->getHeader())) 1244 return false; 1245 1246 assert(llvm::all_of(ChildL->blocks(), 1247 [&](BasicBlock *ChildBB) { 1248 return DeadBlockSet.count(ChildBB); 1249 }) && 1250 "If the child loop header is dead all blocks in the child loop must " 1251 "be dead as well!"); 1252 LI.destroy(ChildL); 1253 return true; 1254 }); 1255 1256 // Remove the loop mappings for the dead blocks and drop all the references 1257 // from these blocks to others to handle cyclic references as we start 1258 // deleting the blocks themselves. 1259 for (auto *BB : DeadBlocks) { 1260 // Check that the dominator tree has already been updated. 1261 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1262 LI.changeLoopFor(BB, nullptr); 1263 BB->dropAllReferences(); 1264 } 1265 1266 // Actually delete the blocks now that they've been fully unhooked from the 1267 // IR. 1268 for (auto *BB : DeadBlocks) 1269 BB->eraseFromParent(); 1270 } 1271 1272 /// Recompute the set of blocks in a loop after unswitching. 1273 /// 1274 /// This walks from the original headers predecessors to rebuild the loop. We 1275 /// take advantage of the fact that new blocks can't have been added, and so we 1276 /// filter by the original loop's blocks. This also handles potentially 1277 /// unreachable code that we don't want to explore but might be found examining 1278 /// the predecessors of the header. 1279 /// 1280 /// If the original loop is no longer a loop, this will return an empty set. If 1281 /// it remains a loop, all the blocks within it will be added to the set 1282 /// (including those blocks in inner loops). 1283 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1284 LoopInfo &LI) { 1285 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1286 1287 auto *PH = L.getLoopPreheader(); 1288 auto *Header = L.getHeader(); 1289 1290 // A worklist to use while walking backwards from the header. 1291 SmallVector<BasicBlock *, 16> Worklist; 1292 1293 // First walk the predecessors of the header to find the backedges. This will 1294 // form the basis of our walk. 1295 for (auto *Pred : predecessors(Header)) { 1296 // Skip the preheader. 1297 if (Pred == PH) 1298 continue; 1299 1300 // Because the loop was in simplified form, the only non-loop predecessor 1301 // is the preheader. 1302 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1303 "than the preheader that is not part of the " 1304 "loop!"); 1305 1306 // Insert this block into the loop set and on the first visit and, if it 1307 // isn't the header we're currently walking, put it into the worklist to 1308 // recurse through. 1309 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1310 Worklist.push_back(Pred); 1311 } 1312 1313 // If no backedges were found, we're done. 1314 if (LoopBlockSet.empty()) 1315 return LoopBlockSet; 1316 1317 // We found backedges, recurse through them to identify the loop blocks. 1318 while (!Worklist.empty()) { 1319 BasicBlock *BB = Worklist.pop_back_val(); 1320 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1321 1322 // No need to walk past the header. 1323 if (BB == Header) 1324 continue; 1325 1326 // Because we know the inner loop structure remains valid we can use the 1327 // loop structure to jump immediately across the entire nested loop. 1328 // Further, because it is in loop simplified form, we can directly jump 1329 // to its preheader afterward. 1330 if (Loop *InnerL = LI.getLoopFor(BB)) 1331 if (InnerL != &L) { 1332 assert(L.contains(InnerL) && 1333 "Should not reach a loop *outside* this loop!"); 1334 // The preheader is the only possible predecessor of the loop so 1335 // insert it into the set and check whether it was already handled. 1336 auto *InnerPH = InnerL->getLoopPreheader(); 1337 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1338 "but not contain the inner loop " 1339 "preheader!"); 1340 if (!LoopBlockSet.insert(InnerPH).second) 1341 // The only way to reach the preheader is through the loop body 1342 // itself so if it has been visited the loop is already handled. 1343 continue; 1344 1345 // Insert all of the blocks (other than those already present) into 1346 // the loop set. We expect at least the block that led us to find the 1347 // inner loop to be in the block set, but we may also have other loop 1348 // blocks if they were already enqueued as predecessors of some other 1349 // outer loop block. 1350 for (auto *InnerBB : InnerL->blocks()) { 1351 if (InnerBB == BB) { 1352 assert(LoopBlockSet.count(InnerBB) && 1353 "Block should already be in the set!"); 1354 continue; 1355 } 1356 1357 LoopBlockSet.insert(InnerBB); 1358 } 1359 1360 // Add the preheader to the worklist so we will continue past the 1361 // loop body. 1362 Worklist.push_back(InnerPH); 1363 continue; 1364 } 1365 1366 // Insert any predecessors that were in the original loop into the new 1367 // set, and if the insert is successful, add them to the worklist. 1368 for (auto *Pred : predecessors(BB)) 1369 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1370 Worklist.push_back(Pred); 1371 } 1372 1373 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1374 1375 // We've found all the blocks participating in the loop, return our completed 1376 // set. 1377 return LoopBlockSet; 1378 } 1379 1380 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1381 /// 1382 /// The removal may have removed some child loops entirely but cannot have 1383 /// disturbed any remaining child loops. However, they may need to be hoisted 1384 /// to the parent loop (or to be top-level loops). The original loop may be 1385 /// completely removed. 1386 /// 1387 /// The sibling loops resulting from this update are returned. If the original 1388 /// loop remains a valid loop, it will be the first entry in this list with all 1389 /// of the newly sibling loops following it. 1390 /// 1391 /// Returns true if the loop remains a loop after unswitching, and false if it 1392 /// is no longer a loop after unswitching (and should not continue to be 1393 /// referenced). 1394 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1395 LoopInfo &LI, 1396 SmallVectorImpl<Loop *> &HoistedLoops) { 1397 auto *PH = L.getLoopPreheader(); 1398 1399 // Compute the actual parent loop from the exit blocks. Because we may have 1400 // pruned some exits the loop may be different from the original parent. 1401 Loop *ParentL = nullptr; 1402 SmallVector<Loop *, 4> ExitLoops; 1403 SmallVector<BasicBlock *, 4> ExitsInLoops; 1404 ExitsInLoops.reserve(ExitBlocks.size()); 1405 for (auto *ExitBB : ExitBlocks) 1406 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1407 ExitLoops.push_back(ExitL); 1408 ExitsInLoops.push_back(ExitBB); 1409 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1410 ParentL = ExitL; 1411 } 1412 1413 // Recompute the blocks participating in this loop. This may be empty if it 1414 // is no longer a loop. 1415 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1416 1417 // If we still have a loop, we need to re-set the loop's parent as the exit 1418 // block set changing may have moved it within the loop nest. Note that this 1419 // can only happen when this loop has a parent as it can only hoist the loop 1420 // *up* the nest. 1421 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1422 // Remove this loop's (original) blocks from all of the intervening loops. 1423 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1424 IL = IL->getParentLoop()) { 1425 IL->getBlocksSet().erase(PH); 1426 for (auto *BB : L.blocks()) 1427 IL->getBlocksSet().erase(BB); 1428 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1429 return BB == PH || L.contains(BB); 1430 }); 1431 } 1432 1433 LI.changeLoopFor(PH, ParentL); 1434 L.getParentLoop()->removeChildLoop(&L); 1435 if (ParentL) 1436 ParentL->addChildLoop(&L); 1437 else 1438 LI.addTopLevelLoop(&L); 1439 } 1440 1441 // Now we update all the blocks which are no longer within the loop. 1442 auto &Blocks = L.getBlocksVector(); 1443 auto BlocksSplitI = 1444 LoopBlockSet.empty() 1445 ? Blocks.begin() 1446 : std::stable_partition( 1447 Blocks.begin(), Blocks.end(), 1448 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1449 1450 // Before we erase the list of unlooped blocks, build a set of them. 1451 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1452 if (LoopBlockSet.empty()) 1453 UnloopedBlocks.insert(PH); 1454 1455 // Now erase these blocks from the loop. 1456 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1457 L.getBlocksSet().erase(BB); 1458 Blocks.erase(BlocksSplitI, Blocks.end()); 1459 1460 // Sort the exits in ascending loop depth, we'll work backwards across these 1461 // to process them inside out. 1462 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1463 [&](BasicBlock *LHS, BasicBlock *RHS) { 1464 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1465 }); 1466 1467 // We'll build up a set for each exit loop. 1468 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1469 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1470 1471 auto RemoveUnloopedBlocksFromLoop = 1472 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1473 for (auto *BB : UnloopedBlocks) 1474 L.getBlocksSet().erase(BB); 1475 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1476 return UnloopedBlocks.count(BB); 1477 }); 1478 }; 1479 1480 SmallVector<BasicBlock *, 16> Worklist; 1481 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1482 assert(Worklist.empty() && "Didn't clear worklist!"); 1483 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1484 1485 // Grab the next exit block, in decreasing loop depth order. 1486 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1487 Loop &ExitL = *LI.getLoopFor(ExitBB); 1488 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1489 1490 // Erase all of the unlooped blocks from the loops between the previous 1491 // exit loop and this exit loop. This works because the ExitInLoops list is 1492 // sorted in increasing order of loop depth and thus we visit loops in 1493 // decreasing order of loop depth. 1494 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1495 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1496 1497 // Walk the CFG back until we hit the cloned PH adding everything reachable 1498 // and in the unlooped set to this exit block's loop. 1499 Worklist.push_back(ExitBB); 1500 do { 1501 BasicBlock *BB = Worklist.pop_back_val(); 1502 // We can stop recursing at the cloned preheader (if we get there). 1503 if (BB == PH) 1504 continue; 1505 1506 for (BasicBlock *PredBB : predecessors(BB)) { 1507 // If this pred has already been moved to our set or is part of some 1508 // (inner) loop, no update needed. 1509 if (!UnloopedBlocks.erase(PredBB)) { 1510 assert((NewExitLoopBlocks.count(PredBB) || 1511 ExitL.contains(LI.getLoopFor(PredBB))) && 1512 "Predecessor not in a nested loop (or already visited)!"); 1513 continue; 1514 } 1515 1516 // We just insert into the loop set here. We'll add these blocks to the 1517 // exit loop after we build up the set in a deterministic order rather 1518 // than the predecessor-influenced visit order. 1519 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1520 (void)Inserted; 1521 assert(Inserted && "Should only visit an unlooped block once!"); 1522 1523 // And recurse through to its predecessors. 1524 Worklist.push_back(PredBB); 1525 } 1526 } while (!Worklist.empty()); 1527 1528 // If blocks in this exit loop were directly part of the original loop (as 1529 // opposed to a child loop) update the map to point to this exit loop. This 1530 // just updates a map and so the fact that the order is unstable is fine. 1531 for (auto *BB : NewExitLoopBlocks) 1532 if (Loop *BBL = LI.getLoopFor(BB)) 1533 if (BBL == &L || !L.contains(BBL)) 1534 LI.changeLoopFor(BB, &ExitL); 1535 1536 // We will remove the remaining unlooped blocks from this loop in the next 1537 // iteration or below. 1538 NewExitLoopBlocks.clear(); 1539 } 1540 1541 // Any remaining unlooped blocks are no longer part of any loop unless they 1542 // are part of some child loop. 1543 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1544 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1545 for (auto *BB : UnloopedBlocks) 1546 if (Loop *BBL = LI.getLoopFor(BB)) 1547 if (BBL == &L || !L.contains(BBL)) 1548 LI.changeLoopFor(BB, nullptr); 1549 1550 // Sink all the child loops whose headers are no longer in the loop set to 1551 // the parent (or to be top level loops). We reach into the loop and directly 1552 // update its subloop vector to make this batch update efficient. 1553 auto &SubLoops = L.getSubLoopsVector(); 1554 auto SubLoopsSplitI = 1555 LoopBlockSet.empty() 1556 ? SubLoops.begin() 1557 : std::stable_partition( 1558 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1559 return LoopBlockSet.count(SubL->getHeader()); 1560 }); 1561 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1562 HoistedLoops.push_back(HoistedL); 1563 HoistedL->setParentLoop(nullptr); 1564 1565 // To compute the new parent of this hoisted loop we look at where we 1566 // placed the preheader above. We can't lookup the header itself because we 1567 // retained the mapping from the header to the hoisted loop. But the 1568 // preheader and header should have the exact same new parent computed 1569 // based on the set of exit blocks from the original loop as the preheader 1570 // is a predecessor of the header and so reached in the reverse walk. And 1571 // because the loops were all in simplified form the preheader of the 1572 // hoisted loop can't be part of some *other* loop. 1573 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1574 NewParentL->addChildLoop(HoistedL); 1575 else 1576 LI.addTopLevelLoop(HoistedL); 1577 } 1578 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1579 1580 // Actually delete the loop if nothing remained within it. 1581 if (Blocks.empty()) { 1582 assert(SubLoops.empty() && 1583 "Failed to remove all subloops from the original loop!"); 1584 if (Loop *ParentL = L.getParentLoop()) 1585 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1586 else 1587 LI.removeLoop(llvm::find(LI, &L)); 1588 LI.destroy(&L); 1589 return false; 1590 } 1591 1592 return true; 1593 } 1594 1595 /// Helper to visit a dominator subtree, invoking a callable on each node. 1596 /// 1597 /// Returning false at any point will stop walking past that node of the tree. 1598 template <typename CallableT> 1599 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1600 SmallVector<DomTreeNode *, 4> DomWorklist; 1601 DomWorklist.push_back(DT[BB]); 1602 #ifndef NDEBUG 1603 SmallPtrSet<DomTreeNode *, 4> Visited; 1604 Visited.insert(DT[BB]); 1605 #endif 1606 do { 1607 DomTreeNode *N = DomWorklist.pop_back_val(); 1608 1609 // Visit this node. 1610 if (!Callable(N->getBlock())) 1611 continue; 1612 1613 // Accumulate the child nodes. 1614 for (DomTreeNode *ChildN : *N) { 1615 assert(Visited.insert(ChildN).second && 1616 "Cannot visit a node twice when walking a tree!"); 1617 DomWorklist.push_back(ChildN); 1618 } 1619 } while (!DomWorklist.empty()); 1620 } 1621 1622 static bool unswitchNontrivialInvariants( 1623 Loop &L, TerminatorInst &TI, ArrayRef<Value *> Invariants, 1624 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 1625 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB) { 1626 auto *ParentBB = TI.getParent(); 1627 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1628 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1629 1630 // We can only unswitch switches, conditional branches with an invariant 1631 // condition, or combining invariant conditions with an instruction. 1632 assert((SI || BI->isConditional()) && 1633 "Can only unswitch switches and conditional branch!"); 1634 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1635 if (FullUnswitch) 1636 assert(Invariants.size() == 1 && 1637 "Cannot have other invariants with full unswitching!"); 1638 else 1639 assert(isa<Instruction>(BI->getCondition()) && 1640 "Partial unswitching requires an instruction as the condition!"); 1641 1642 // Constant and BBs tracking the cloned and continuing successor. When we are 1643 // unswitching the entire condition, this can just be trivially chosen to 1644 // unswitch towards `true`. However, when we are unswitching a set of 1645 // invariants combined with `and` or `or`, the combining operation determines 1646 // the best direction to unswitch: we want to unswitch the direction that will 1647 // collapse the branch. 1648 bool Direction = true; 1649 int ClonedSucc = 0; 1650 if (!FullUnswitch) { 1651 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1652 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1653 Instruction::And && 1654 "Only `or` and `and` instructions can combine invariants being " 1655 "unswitched."); 1656 Direction = false; 1657 ClonedSucc = 1; 1658 } 1659 } 1660 1661 BasicBlock *RetainedSuccBB = 1662 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1663 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1664 if (BI) 1665 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1666 else 1667 for (auto Case : SI->cases()) 1668 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1669 1670 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 1671 "Should not unswitch the same successor we are retaining!"); 1672 1673 // The branch should be in this exact loop. Any inner loop's invariant branch 1674 // should be handled by unswitching that inner loop. The caller of this 1675 // routine should filter out any candidates that remain (but were skipped for 1676 // whatever reason). 1677 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1678 1679 SmallVector<BasicBlock *, 4> ExitBlocks; 1680 L.getUniqueExitBlocks(ExitBlocks); 1681 1682 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 1683 // don't know how to split those exit blocks. 1684 // FIXME: We should teach SplitBlock to handle this and remove this 1685 // restriction. 1686 for (auto *ExitBB : ExitBlocks) 1687 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) 1688 return false; 1689 1690 // Compute the parent loop now before we start hacking on things. 1691 Loop *ParentL = L.getParentLoop(); 1692 1693 // Compute the outer-most loop containing one of our exit blocks. This is the 1694 // furthest up our loopnest which can be mutated, which we will use below to 1695 // update things. 1696 Loop *OuterExitL = &L; 1697 for (auto *ExitBB : ExitBlocks) { 1698 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1699 if (!NewOuterExitL) { 1700 // We exited the entire nest with this block, so we're done. 1701 OuterExitL = nullptr; 1702 break; 1703 } 1704 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1705 OuterExitL = NewOuterExitL; 1706 } 1707 1708 // If the edge from this terminator to a successor dominates that successor, 1709 // store a map from each block in its dominator subtree to it. This lets us 1710 // tell when cloning for a particular successor if a block is dominated by 1711 // some *other* successor with a single data structure. We use this to 1712 // significantly reduce cloning. 1713 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 1714 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 1715 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 1716 if (SuccBB->getUniquePredecessor() || 1717 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 1718 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 1719 })) 1720 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 1721 DominatingSucc[BB] = SuccBB; 1722 return true; 1723 }); 1724 1725 // Split the preheader, so that we know that there is a safe place to insert 1726 // the conditional branch. We will change the preheader to have a conditional 1727 // branch on LoopCond. The original preheader will become the split point 1728 // between the unswitched versions, and we will have a new preheader for the 1729 // original loop. 1730 BasicBlock *SplitBB = L.getLoopPreheader(); 1731 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI); 1732 1733 // Keep track of the dominator tree updates needed. 1734 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1735 1736 // Clone the loop for each unswitched successor. 1737 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 1738 VMaps.reserve(UnswitchedSuccBBs.size()); 1739 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 1740 for (auto *SuccBB : UnswitchedSuccBBs) { 1741 VMaps.emplace_back(new ValueToValueMapTy()); 1742 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 1743 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 1744 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI); 1745 } 1746 1747 // The stitching of the branched code back together depends on whether we're 1748 // doing full unswitching or not with the exception that we always want to 1749 // nuke the initial terminator placed in the split block. 1750 SplitBB->getTerminator()->eraseFromParent(); 1751 if (FullUnswitch) { 1752 for (BasicBlock *SuccBB : UnswitchedSuccBBs) { 1753 // Remove the parent as a predecessor of the unswitched successor. 1754 SuccBB->removePredecessor(ParentBB, 1755 /*DontDeleteUselessPHIs*/ true); 1756 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 1757 } 1758 1759 // Now splice the terminator from the original loop and rewrite its 1760 // successors. 1761 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 1762 if (BI) { 1763 assert(UnswitchedSuccBBs.size() == 1 && 1764 "Only one possible unswitched block for a branch!"); 1765 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 1766 BI->setSuccessor(ClonedSucc, ClonedPH); 1767 BI->setSuccessor(1 - ClonedSucc, LoopPH); 1768 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 1769 } else { 1770 assert(SI && "Must either be a branch or switch!"); 1771 1772 // Walk the cases and directly update their successors. 1773 for (auto &Case : SI->cases()) 1774 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 1775 // We need to use the set to populate domtree updates as even when there 1776 // are multiple cases pointing at the same successor we only want to 1777 // insert one edge in the domtree. 1778 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 1779 DTUpdates.push_back( 1780 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 1781 1782 SI->setDefaultDest(LoopPH); 1783 } 1784 1785 // Create a new unconditional branch to the continuing block (as opposed to 1786 // the one cloned). 1787 BranchInst::Create(RetainedSuccBB, ParentBB); 1788 } else { 1789 assert(BI && "Only branches have partial unswitching."); 1790 assert(UnswitchedSuccBBs.size() == 1 && 1791 "Only one possible unswitched block for a branch!"); 1792 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 1793 // When doing a partial unswitch, we have to do a bit more work to build up 1794 // the branch in the split block. 1795 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 1796 *ClonedPH, *LoopPH); 1797 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 1798 } 1799 1800 // Apply the updates accumulated above to get an up-to-date dominator tree. 1801 DT.applyUpdates(DTUpdates); 1802 1803 // Now that we have an accurate dominator tree, first delete the dead cloned 1804 // blocks so that we can accurately build any cloned loops. It is important to 1805 // not delete the blocks from the original loop yet because we still want to 1806 // reference the original loop to understand the cloned loop's structure. 1807 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT); 1808 1809 // Build the cloned loop structure itself. This may be substantially 1810 // different from the original structure due to the simplified CFG. This also 1811 // handles inserting all the cloned blocks into the correct loops. 1812 SmallVector<Loop *, 4> NonChildClonedLoops; 1813 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 1814 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 1815 1816 // Now that our cloned loops have been built, we can update the original loop. 1817 // First we delete the dead blocks from it and then we rebuild the loop 1818 // structure taking these deletions into account. 1819 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI); 1820 SmallVector<Loop *, 4> HoistedLoops; 1821 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 1822 1823 // This transformation has a high risk of corrupting the dominator tree, and 1824 // the below steps to rebuild loop structures will result in hard to debug 1825 // errors in that case so verify that the dominator tree is sane first. 1826 // FIXME: Remove this when the bugs stop showing up and rely on existing 1827 // verification steps. 1828 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1829 1830 if (BI) { 1831 // If we unswitched a branch which collapses the condition to a known 1832 // constant we want to replace all the uses of the invariants within both 1833 // the original and cloned blocks. We do this here so that we can use the 1834 // now updated dominator tree to identify which side the users are on. 1835 assert(UnswitchedSuccBBs.size() == 1 && 1836 "Only one possible unswitched block for a branch!"); 1837 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 1838 ConstantInt *UnswitchedReplacement = 1839 Direction ? ConstantInt::getTrue(BI->getContext()) 1840 : ConstantInt::getFalse(BI->getContext()); 1841 ConstantInt *ContinueReplacement = 1842 Direction ? ConstantInt::getFalse(BI->getContext()) 1843 : ConstantInt::getTrue(BI->getContext()); 1844 for (Value *Invariant : Invariants) 1845 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 1846 UI != UE;) { 1847 // Grab the use and walk past it so we can clobber it in the use list. 1848 Use *U = &*UI++; 1849 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 1850 if (!UserI) 1851 continue; 1852 1853 // Replace it with the 'continue' side if in the main loop body, and the 1854 // unswitched if in the cloned blocks. 1855 if (DT.dominates(LoopPH, UserI->getParent())) 1856 U->set(ContinueReplacement); 1857 else if (DT.dominates(ClonedPH, UserI->getParent())) 1858 U->set(UnswitchedReplacement); 1859 } 1860 } 1861 1862 // We can change which blocks are exit blocks of all the cloned sibling 1863 // loops, the current loop, and any parent loops which shared exit blocks 1864 // with the current loop. As a consequence, we need to re-form LCSSA for 1865 // them. But we shouldn't need to re-form LCSSA for any child loops. 1866 // FIXME: This could be made more efficient by tracking which exit blocks are 1867 // new, and focusing on them, but that isn't likely to be necessary. 1868 // 1869 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 1870 // loop nest and update every loop that could have had its exits changed. We 1871 // also need to cover any intervening loops. We add all of these loops to 1872 // a list and sort them by loop depth to achieve this without updating 1873 // unnecessary loops. 1874 auto UpdateLoop = [&](Loop &UpdateL) { 1875 #ifndef NDEBUG 1876 UpdateL.verifyLoop(); 1877 for (Loop *ChildL : UpdateL) { 1878 ChildL->verifyLoop(); 1879 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 1880 "Perturbed a child loop's LCSSA form!"); 1881 } 1882 #endif 1883 // First build LCSSA for this loop so that we can preserve it when 1884 // forming dedicated exits. We don't want to perturb some other loop's 1885 // LCSSA while doing that CFG edit. 1886 formLCSSA(UpdateL, DT, &LI, nullptr); 1887 1888 // For loops reached by this loop's original exit blocks we may 1889 // introduced new, non-dedicated exits. At least try to re-form dedicated 1890 // exits for these loops. This may fail if they couldn't have dedicated 1891 // exits to start with. 1892 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); 1893 }; 1894 1895 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 1896 // and we can do it in any order as they don't nest relative to each other. 1897 // 1898 // Also check if any of the loops we have updated have become top-level loops 1899 // as that will necessitate widening the outer loop scope. 1900 for (Loop *UpdatedL : 1901 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 1902 UpdateLoop(*UpdatedL); 1903 if (!UpdatedL->getParentLoop()) 1904 OuterExitL = nullptr; 1905 } 1906 if (IsStillLoop) { 1907 UpdateLoop(L); 1908 if (!L.getParentLoop()) 1909 OuterExitL = nullptr; 1910 } 1911 1912 // If the original loop had exit blocks, walk up through the outer most loop 1913 // of those exit blocks to update LCSSA and form updated dedicated exits. 1914 if (OuterExitL != &L) 1915 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 1916 OuterL = OuterL->getParentLoop()) 1917 UpdateLoop(*OuterL); 1918 1919 #ifndef NDEBUG 1920 // Verify the entire loop structure to catch any incorrect updates before we 1921 // progress in the pass pipeline. 1922 LI.verify(DT); 1923 #endif 1924 1925 // Now that we've unswitched something, make callbacks to report the changes. 1926 // For that we need to merge together the updated loops and the cloned loops 1927 // and check whether the original loop survived. 1928 SmallVector<Loop *, 4> SibLoops; 1929 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 1930 if (UpdatedL->getParentLoop() == ParentL) 1931 SibLoops.push_back(UpdatedL); 1932 UnswitchCB(IsStillLoop, SibLoops); 1933 1934 ++NumBranches; 1935 return true; 1936 } 1937 1938 /// Recursively compute the cost of a dominator subtree based on the per-block 1939 /// cost map provided. 1940 /// 1941 /// The recursive computation is memozied into the provided DT-indexed cost map 1942 /// to allow querying it for most nodes in the domtree without it becoming 1943 /// quadratic. 1944 static int 1945 computeDomSubtreeCost(DomTreeNode &N, 1946 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 1947 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 1948 // Don't accumulate cost (or recurse through) blocks not in our block cost 1949 // map and thus not part of the duplication cost being considered. 1950 auto BBCostIt = BBCostMap.find(N.getBlock()); 1951 if (BBCostIt == BBCostMap.end()) 1952 return 0; 1953 1954 // Lookup this node to see if we already computed its cost. 1955 auto DTCostIt = DTCostMap.find(&N); 1956 if (DTCostIt != DTCostMap.end()) 1957 return DTCostIt->second; 1958 1959 // If not, we have to compute it. We can't use insert above and update 1960 // because computing the cost may insert more things into the map. 1961 int Cost = std::accumulate( 1962 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 1963 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 1964 }); 1965 bool Inserted = DTCostMap.insert({&N, Cost}).second; 1966 (void)Inserted; 1967 assert(Inserted && "Should not insert a node while visiting children!"); 1968 return Cost; 1969 } 1970 1971 static bool unswitchBestCondition( 1972 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 1973 TargetTransformInfo &TTI, 1974 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB) { 1975 // Collect all invariant conditions within this loop (as opposed to an inner 1976 // loop which would be handled when visiting that inner loop). 1977 SmallVector<std::pair<TerminatorInst *, TinyPtrVector<Value *>>, 4> 1978 UnswitchCandidates; 1979 for (auto *BB : L.blocks()) { 1980 if (LI.getLoopFor(BB) != &L) 1981 continue; 1982 1983 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1984 // We can only consider fully loop-invariant switch conditions as we need 1985 // to completely eliminate the switch after unswitching. 1986 if (!isa<Constant>(SI->getCondition()) && 1987 L.isLoopInvariant(SI->getCondition())) 1988 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 1989 continue; 1990 } 1991 1992 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1993 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 1994 BI->getSuccessor(0) == BI->getSuccessor(1)) 1995 continue; 1996 1997 if (L.isLoopInvariant(BI->getCondition())) { 1998 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 1999 continue; 2000 } 2001 2002 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2003 if (CondI.getOpcode() != Instruction::And && 2004 CondI.getOpcode() != Instruction::Or) 2005 continue; 2006 2007 TinyPtrVector<Value *> Invariants = 2008 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2009 if (Invariants.empty()) 2010 continue; 2011 2012 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2013 } 2014 2015 // If we didn't find any candidates, we're done. 2016 if (UnswitchCandidates.empty()) 2017 return false; 2018 2019 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2020 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2021 // irreducible control flow into reducible control flow and introduce new 2022 // loops "out of thin air". If we ever discover important use cases for doing 2023 // this, we can add support to loop unswitch, but it is a lot of complexity 2024 // for what seems little or no real world benefit. 2025 LoopBlocksRPO RPOT(&L); 2026 RPOT.perform(&LI); 2027 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2028 return false; 2029 2030 LLVM_DEBUG( 2031 dbgs() << "Considering " << UnswitchCandidates.size() 2032 << " non-trivial loop invariant conditions for unswitching.\n"); 2033 2034 // Given that unswitching these terminators will require duplicating parts of 2035 // the loop, so we need to be able to model that cost. Compute the ephemeral 2036 // values and set up a data structure to hold per-BB costs. We cache each 2037 // block's cost so that we don't recompute this when considering different 2038 // subsets of the loop for duplication during unswitching. 2039 SmallPtrSet<const Value *, 4> EphValues; 2040 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2041 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2042 2043 // Compute the cost of each block, as well as the total loop cost. Also, bail 2044 // out if we see instructions which are incompatible with loop unswitching 2045 // (convergent, noduplicate, or cross-basic-block tokens). 2046 // FIXME: We might be able to safely handle some of these in non-duplicated 2047 // regions. 2048 int LoopCost = 0; 2049 for (auto *BB : L.blocks()) { 2050 int Cost = 0; 2051 for (auto &I : *BB) { 2052 if (EphValues.count(&I)) 2053 continue; 2054 2055 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2056 return false; 2057 if (auto CS = CallSite(&I)) 2058 if (CS.isConvergent() || CS.cannotDuplicate()) 2059 return false; 2060 2061 Cost += TTI.getUserCost(&I); 2062 } 2063 assert(Cost >= 0 && "Must not have negative costs!"); 2064 LoopCost += Cost; 2065 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2066 BBCostMap[BB] = Cost; 2067 } 2068 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2069 2070 // Now we find the best candidate by searching for the one with the following 2071 // properties in order: 2072 // 2073 // 1) An unswitching cost below the threshold 2074 // 2) The smallest number of duplicated unswitch candidates (to avoid 2075 // creating redundant subsequent unswitching) 2076 // 3) The smallest cost after unswitching. 2077 // 2078 // We prioritize reducing fanout of unswitch candidates provided the cost 2079 // remains below the threshold because this has a multiplicative effect. 2080 // 2081 // This requires memoizing each dominator subtree to avoid redundant work. 2082 // 2083 // FIXME: Need to actually do the number of candidates part above. 2084 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2085 // Given a terminator which might be unswitched, computes the non-duplicated 2086 // cost for that terminator. 2087 auto ComputeUnswitchedCost = [&](TerminatorInst &TI, bool FullUnswitch) { 2088 BasicBlock &BB = *TI.getParent(); 2089 SmallPtrSet<BasicBlock *, 4> Visited; 2090 2091 int Cost = LoopCost; 2092 for (BasicBlock *SuccBB : successors(&BB)) { 2093 // Don't count successors more than once. 2094 if (!Visited.insert(SuccBB).second) 2095 continue; 2096 2097 // If this is a partial unswitch candidate, then it must be a conditional 2098 // branch with a condition of either `or` or `and`. In that case, one of 2099 // the successors is necessarily duplicated, so don't even try to remove 2100 // its cost. 2101 if (!FullUnswitch) { 2102 auto &BI = cast<BranchInst>(TI); 2103 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2104 Instruction::And) { 2105 if (SuccBB == BI.getSuccessor(1)) 2106 continue; 2107 } else { 2108 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2109 Instruction::Or && 2110 "Only `and` and `or` conditions can result in a partial " 2111 "unswitch!"); 2112 if (SuccBB == BI.getSuccessor(0)) 2113 continue; 2114 } 2115 } 2116 2117 // This successor's domtree will not need to be duplicated after 2118 // unswitching if the edge to the successor dominates it (and thus the 2119 // entire tree). This essentially means there is no other path into this 2120 // subtree and so it will end up live in only one clone of the loop. 2121 if (SuccBB->getUniquePredecessor() || 2122 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2123 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2124 })) { 2125 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2126 assert(Cost >= 0 && 2127 "Non-duplicated cost should never exceed total loop cost!"); 2128 } 2129 } 2130 2131 // Now scale the cost by the number of unique successors minus one. We 2132 // subtract one because there is already at least one copy of the entire 2133 // loop. This is computing the new cost of unswitching a condition. 2134 assert(Visited.size() > 1 && 2135 "Cannot unswitch a condition without multiple distinct successors!"); 2136 return Cost * (Visited.size() - 1); 2137 }; 2138 TerminatorInst *BestUnswitchTI = nullptr; 2139 int BestUnswitchCost; 2140 ArrayRef<Value *> BestUnswitchInvariants; 2141 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2142 TerminatorInst &TI = *TerminatorAndInvariants.first; 2143 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2144 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2145 int CandidateCost = ComputeUnswitchedCost( 2146 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2147 Invariants[0] == BI->getCondition())); 2148 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2149 << " for unswitch candidate: " << TI << "\n"); 2150 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2151 BestUnswitchTI = &TI; 2152 BestUnswitchCost = CandidateCost; 2153 BestUnswitchInvariants = Invariants; 2154 } 2155 } 2156 2157 if (BestUnswitchCost >= UnswitchThreshold) { 2158 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2159 << BestUnswitchCost << "\n"); 2160 return false; 2161 } 2162 2163 LLVM_DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = " 2164 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2165 << "\n"); 2166 return unswitchNontrivialInvariants( 2167 L, *BestUnswitchTI, BestUnswitchInvariants, DT, LI, AC, UnswitchCB); 2168 } 2169 2170 /// Unswitch control flow predicated on loop invariant conditions. 2171 /// 2172 /// This first hoists all branches or switches which are trivial (IE, do not 2173 /// require duplicating any part of the loop) out of the loop body. It then 2174 /// looks at other loop invariant control flows and tries to unswitch those as 2175 /// well by cloning the loop if the result is small enough. 2176 static bool 2177 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2178 TargetTransformInfo &TTI, bool NonTrivial, 2179 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB) { 2180 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2181 "Loops must be in LCSSA form before unswitching."); 2182 bool Changed = false; 2183 2184 // Must be in loop simplified form: we need a preheader and dedicated exits. 2185 if (!L.isLoopSimplifyForm()) 2186 return false; 2187 2188 // Try trivial unswitch first before loop over other basic blocks in the loop. 2189 if (unswitchAllTrivialConditions(L, DT, LI)) { 2190 // If we unswitched successfully we will want to clean up the loop before 2191 // processing it further so just mark it as unswitched and return. 2192 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2193 return true; 2194 } 2195 2196 // If we're not doing non-trivial unswitching, we're done. We both accept 2197 // a parameter but also check a local flag that can be used for testing 2198 // a debugging. 2199 if (!NonTrivial && !EnableNonTrivialUnswitch) 2200 return false; 2201 2202 // For non-trivial unswitching, because it often creates new loops, we rely on 2203 // the pass manager to iterate on the loops rather than trying to immediately 2204 // reach a fixed point. There is no substantial advantage to iterating 2205 // internally, and if any of the new loops are simplified enough to contain 2206 // trivial unswitching we want to prefer those. 2207 2208 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2209 // a partial unswitch when possible below the threshold. 2210 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB)) 2211 return true; 2212 2213 // No other opportunities to unswitch. 2214 return Changed; 2215 } 2216 2217 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2218 LoopStandardAnalysisResults &AR, 2219 LPMUpdater &U) { 2220 Function &F = *L.getHeader()->getParent(); 2221 (void)F; 2222 2223 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2224 << "\n"); 2225 2226 // Save the current loop name in a variable so that we can report it even 2227 // after it has been deleted. 2228 std::string LoopName = L.getName(); 2229 2230 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2231 ArrayRef<Loop *> NewLoops) { 2232 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2233 if (!NewLoops.empty()) 2234 U.addSiblingLoops(NewLoops); 2235 2236 // If the current loop remains valid, we should revisit it to catch any 2237 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2238 if (CurrentLoopValid) 2239 U.revisitCurrentLoop(); 2240 else 2241 U.markLoopAsDeleted(L, LoopName); 2242 }; 2243 2244 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, 2245 UnswitchCB)) 2246 return PreservedAnalyses::all(); 2247 2248 // Historically this pass has had issues with the dominator tree so verify it 2249 // in asserts builds. 2250 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2251 return getLoopPassPreservedAnalyses(); 2252 } 2253 2254 namespace { 2255 2256 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2257 bool NonTrivial; 2258 2259 public: 2260 static char ID; // Pass ID, replacement for typeid 2261 2262 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2263 : LoopPass(ID), NonTrivial(NonTrivial) { 2264 initializeSimpleLoopUnswitchLegacyPassPass( 2265 *PassRegistry::getPassRegistry()); 2266 } 2267 2268 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2269 2270 void getAnalysisUsage(AnalysisUsage &AU) const override { 2271 AU.addRequired<AssumptionCacheTracker>(); 2272 AU.addRequired<TargetTransformInfoWrapperPass>(); 2273 getLoopAnalysisUsage(AU); 2274 } 2275 }; 2276 2277 } // end anonymous namespace 2278 2279 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2280 if (skipLoop(L)) 2281 return false; 2282 2283 Function &F = *L->getHeader()->getParent(); 2284 2285 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2286 << "\n"); 2287 2288 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2289 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2290 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2291 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2292 2293 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2294 ArrayRef<Loop *> NewLoops) { 2295 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2296 for (auto *NewL : NewLoops) 2297 LPM.addLoop(*NewL); 2298 2299 // If the current loop remains valid, re-add it to the queue. This is 2300 // a little wasteful as we'll finish processing the current loop as well, 2301 // but it is the best we can do in the old PM. 2302 if (CurrentLoopValid) 2303 LPM.addLoop(*L); 2304 else 2305 LPM.markLoopAsDeleted(*L); 2306 }; 2307 2308 bool Changed = 2309 unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB); 2310 2311 // If anything was unswitched, also clear any cached information about this 2312 // loop. 2313 LPM.deleteSimpleAnalysisLoop(L); 2314 2315 // Historically this pass has had issues with the dominator tree so verify it 2316 // in asserts builds. 2317 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2318 2319 return Changed; 2320 } 2321 2322 char SimpleLoopUnswitchLegacyPass::ID = 0; 2323 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2324 "Simple unswitch loops", false, false) 2325 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2326 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2327 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2328 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2329 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2330 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2331 "Simple unswitch loops", false, false) 2332 2333 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2334 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2335 } 2336