1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/Utils/Local.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Use.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/GenericDomTree.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Cloning.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include "llvm/Transforms/Utils/ValueMapper.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <numeric> 54 #include <utility> 55 56 #define DEBUG_TYPE "simple-loop-unswitch" 57 58 using namespace llvm; 59 60 STATISTIC(NumBranches, "Number of branches unswitched"); 61 STATISTIC(NumSwitches, "Number of switches unswitched"); 62 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 63 64 static cl::opt<bool> EnableNonTrivialUnswitch( 65 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 66 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 67 "following the configuration passed into the pass.")); 68 69 static cl::opt<int> 70 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 71 cl::desc("The cost threshold for unswitching a loop.")); 72 73 /// Collect all of the loop invariant input values transitively used by the 74 /// homogeneous instruction graph from a given root. 75 /// 76 /// This essentially walks from a root recursively through loop variant operands 77 /// which have the exact same opcode and finds all inputs which are loop 78 /// invariant. For some operations these can be re-associated and unswitched out 79 /// of the loop entirely. 80 static TinyPtrVector<Value *> 81 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 82 LoopInfo &LI) { 83 assert(!L.isLoopInvariant(&Root) && 84 "Only need to walk the graph if root itself is not invariant."); 85 TinyPtrVector<Value *> Invariants; 86 87 // Build a worklist and recurse through operators collecting invariants. 88 SmallVector<Instruction *, 4> Worklist; 89 SmallPtrSet<Instruction *, 8> Visited; 90 Worklist.push_back(&Root); 91 Visited.insert(&Root); 92 do { 93 Instruction &I = *Worklist.pop_back_val(); 94 for (Value *OpV : I.operand_values()) { 95 // Skip constants as unswitching isn't interesting for them. 96 if (isa<Constant>(OpV)) 97 continue; 98 99 // Add it to our result if loop invariant. 100 if (L.isLoopInvariant(OpV)) { 101 Invariants.push_back(OpV); 102 continue; 103 } 104 105 // If not an instruction with the same opcode, nothing we can do. 106 Instruction *OpI = dyn_cast<Instruction>(OpV); 107 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 108 continue; 109 110 // Visit this operand. 111 if (Visited.insert(OpI).second) 112 Worklist.push_back(OpI); 113 } 114 } while (!Worklist.empty()); 115 116 return Invariants; 117 } 118 119 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 120 Constant &Replacement) { 121 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 122 123 // Replace uses of LIC in the loop with the given constant. 124 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 125 // Grab the use and walk past it so we can clobber it in the use list. 126 Use *U = &*UI++; 127 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 128 129 // Replace this use within the loop body. 130 if (UserI && L.contains(UserI)) 131 U->set(&Replacement); 132 } 133 } 134 135 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 136 /// incoming values along this edge. 137 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 138 BasicBlock &ExitBB) { 139 for (Instruction &I : ExitBB) { 140 auto *PN = dyn_cast<PHINode>(&I); 141 if (!PN) 142 // No more PHIs to check. 143 return true; 144 145 // If the incoming value for this edge isn't loop invariant the unswitch 146 // won't be trivial. 147 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 148 return false; 149 } 150 llvm_unreachable("Basic blocks should never be empty!"); 151 } 152 153 /// Insert code to test a set of loop invariant values, and conditionally branch 154 /// on them. 155 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 156 ArrayRef<Value *> Invariants, 157 bool Direction, 158 BasicBlock &UnswitchedSucc, 159 BasicBlock &NormalSucc) { 160 IRBuilder<> IRB(&BB); 161 Value *Cond = Invariants.front(); 162 for (Value *Invariant : 163 make_range(std::next(Invariants.begin()), Invariants.end())) 164 if (Direction) 165 Cond = IRB.CreateOr(Cond, Invariant); 166 else 167 Cond = IRB.CreateAnd(Cond, Invariant); 168 169 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 170 Direction ? &NormalSucc : &UnswitchedSucc); 171 } 172 173 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 174 /// 175 /// Requires that the loop exit and unswitched basic block are the same, and 176 /// that the exiting block was a unique predecessor of that block. Rewrites the 177 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 178 /// PHI nodes from the old preheader that now contains the unswitched 179 /// terminator. 180 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 181 BasicBlock &OldExitingBB, 182 BasicBlock &OldPH) { 183 for (PHINode &PN : UnswitchedBB.phis()) { 184 // When the loop exit is directly unswitched we just need to update the 185 // incoming basic block. We loop to handle weird cases with repeated 186 // incoming blocks, but expect to typically only have one operand here. 187 for (auto i : seq<int>(0, PN.getNumOperands())) { 188 assert(PN.getIncomingBlock(i) == &OldExitingBB && 189 "Found incoming block different from unique predecessor!"); 190 PN.setIncomingBlock(i, &OldPH); 191 } 192 } 193 } 194 195 /// Rewrite the PHI nodes in the loop exit basic block and the split off 196 /// unswitched block. 197 /// 198 /// Because the exit block remains an exit from the loop, this rewrites the 199 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 200 /// nodes into the unswitched basic block to select between the value in the 201 /// old preheader and the loop exit. 202 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 203 BasicBlock &UnswitchedBB, 204 BasicBlock &OldExitingBB, 205 BasicBlock &OldPH, 206 bool FullUnswitch) { 207 assert(&ExitBB != &UnswitchedBB && 208 "Must have different loop exit and unswitched blocks!"); 209 Instruction *InsertPt = &*UnswitchedBB.begin(); 210 for (PHINode &PN : ExitBB.phis()) { 211 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 212 PN.getName() + ".split", InsertPt); 213 214 // Walk backwards over the old PHI node's inputs to minimize the cost of 215 // removing each one. We have to do this weird loop manually so that we 216 // create the same number of new incoming edges in the new PHI as we expect 217 // each case-based edge to be included in the unswitched switch in some 218 // cases. 219 // FIXME: This is really, really gross. It would be much cleaner if LLVM 220 // allowed us to create a single entry for a predecessor block without 221 // having separate entries for each "edge" even though these edges are 222 // required to produce identical results. 223 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 224 if (PN.getIncomingBlock(i) != &OldExitingBB) 225 continue; 226 227 Value *Incoming = PN.getIncomingValue(i); 228 if (FullUnswitch) 229 // No more edge from the old exiting block to the exit block. 230 PN.removeIncomingValue(i); 231 232 NewPN->addIncoming(Incoming, &OldPH); 233 } 234 235 // Now replace the old PHI with the new one and wire the old one in as an 236 // input to the new one. 237 PN.replaceAllUsesWith(NewPN); 238 NewPN->addIncoming(&PN, &ExitBB); 239 } 240 } 241 242 /// Hoist the current loop up to the innermost loop containing a remaining exit. 243 /// 244 /// Because we've removed an exit from the loop, we may have changed the set of 245 /// loops reachable and need to move the current loop up the loop nest or even 246 /// to an entirely separate nest. 247 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 248 DominatorTree &DT, LoopInfo &LI) { 249 // If the loop is already at the top level, we can't hoist it anywhere. 250 Loop *OldParentL = L.getParentLoop(); 251 if (!OldParentL) 252 return; 253 254 SmallVector<BasicBlock *, 4> Exits; 255 L.getExitBlocks(Exits); 256 Loop *NewParentL = nullptr; 257 for (auto *ExitBB : Exits) 258 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 259 if (!NewParentL || NewParentL->contains(ExitL)) 260 NewParentL = ExitL; 261 262 if (NewParentL == OldParentL) 263 return; 264 265 // The new parent loop (if different) should always contain the old one. 266 if (NewParentL) 267 assert(NewParentL->contains(OldParentL) && 268 "Can only hoist this loop up the nest!"); 269 270 // The preheader will need to move with the body of this loop. However, 271 // because it isn't in this loop we also need to update the primary loop map. 272 assert(OldParentL == LI.getLoopFor(&Preheader) && 273 "Parent loop of this loop should contain this loop's preheader!"); 274 LI.changeLoopFor(&Preheader, NewParentL); 275 276 // Remove this loop from its old parent. 277 OldParentL->removeChildLoop(&L); 278 279 // Add the loop either to the new parent or as a top-level loop. 280 if (NewParentL) 281 NewParentL->addChildLoop(&L); 282 else 283 LI.addTopLevelLoop(&L); 284 285 // Remove this loops blocks from the old parent and every other loop up the 286 // nest until reaching the new parent. Also update all of these 287 // no-longer-containing loops to reflect the nesting change. 288 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 289 OldContainingL = OldContainingL->getParentLoop()) { 290 llvm::erase_if(OldContainingL->getBlocksVector(), 291 [&](const BasicBlock *BB) { 292 return BB == &Preheader || L.contains(BB); 293 }); 294 295 OldContainingL->getBlocksSet().erase(&Preheader); 296 for (BasicBlock *BB : L.blocks()) 297 OldContainingL->getBlocksSet().erase(BB); 298 299 // Because we just hoisted a loop out of this one, we have essentially 300 // created new exit paths from it. That means we need to form LCSSA PHI 301 // nodes for values used in the no-longer-nested loop. 302 formLCSSA(*OldContainingL, DT, &LI, nullptr); 303 304 // We shouldn't need to form dedicated exits because the exit introduced 305 // here is the (just split by unswitching) preheader. As such, it is 306 // necessarily dedicated. 307 assert(OldContainingL->hasDedicatedExits() && 308 "Unexpected predecessor of hoisted loop preheader!"); 309 } 310 } 311 312 /// Unswitch a trivial branch if the condition is loop invariant. 313 /// 314 /// This routine should only be called when loop code leading to the branch has 315 /// been validated as trivial (no side effects). This routine checks if the 316 /// condition is invariant and one of the successors is a loop exit. This 317 /// allows us to unswitch without duplicating the loop, making it trivial. 318 /// 319 /// If this routine fails to unswitch the branch it returns false. 320 /// 321 /// If the branch can be unswitched, this routine splits the preheader and 322 /// hoists the branch above that split. Preserves loop simplified form 323 /// (splitting the exit block as necessary). It simplifies the branch within 324 /// the loop to an unconditional branch but doesn't remove it entirely. Further 325 /// cleanup can be done with some simplify-cfg like pass. 326 /// 327 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 328 /// invalidated by this. 329 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 330 LoopInfo &LI, ScalarEvolution *SE) { 331 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 332 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 333 334 // The loop invariant values that we want to unswitch. 335 TinyPtrVector<Value *> Invariants; 336 337 // When true, we're fully unswitching the branch rather than just unswitching 338 // some input conditions to the branch. 339 bool FullUnswitch = false; 340 341 if (L.isLoopInvariant(BI.getCondition())) { 342 Invariants.push_back(BI.getCondition()); 343 FullUnswitch = true; 344 } else { 345 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 346 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 347 if (Invariants.empty()) 348 // Couldn't find invariant inputs! 349 return false; 350 } 351 352 // Check that one of the branch's successors exits, and which one. 353 bool ExitDirection = true; 354 int LoopExitSuccIdx = 0; 355 auto *LoopExitBB = BI.getSuccessor(0); 356 if (L.contains(LoopExitBB)) { 357 ExitDirection = false; 358 LoopExitSuccIdx = 1; 359 LoopExitBB = BI.getSuccessor(1); 360 if (L.contains(LoopExitBB)) 361 return false; 362 } 363 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 364 auto *ParentBB = BI.getParent(); 365 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 366 return false; 367 368 // When unswitching only part of the branch's condition, we need the exit 369 // block to be reached directly from the partially unswitched input. This can 370 // be done when the exit block is along the true edge and the branch condition 371 // is a graph of `or` operations, or the exit block is along the false edge 372 // and the condition is a graph of `and` operations. 373 if (!FullUnswitch) { 374 if (ExitDirection) { 375 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 376 return false; 377 } else { 378 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 379 return false; 380 } 381 } 382 383 LLVM_DEBUG({ 384 dbgs() << " unswitching trivial invariant conditions for: " << BI 385 << "\n"; 386 for (Value *Invariant : Invariants) { 387 dbgs() << " " << *Invariant << " == true"; 388 if (Invariant != Invariants.back()) 389 dbgs() << " ||"; 390 dbgs() << "\n"; 391 } 392 }); 393 394 // If we have scalar evolutions, we need to invalidate them including this 395 // loop and the loop containing the exit block. 396 if (SE) { 397 if (Loop *ExitL = LI.getLoopFor(LoopExitBB)) 398 SE->forgetLoop(ExitL); 399 else 400 // Forget the entire nest as this exits the entire nest. 401 SE->forgetTopmostLoop(&L); 402 } 403 404 // Split the preheader, so that we know that there is a safe place to insert 405 // the conditional branch. We will change the preheader to have a conditional 406 // branch on LoopCond. 407 BasicBlock *OldPH = L.getLoopPreheader(); 408 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 409 410 // Now that we have a place to insert the conditional branch, create a place 411 // to branch to: this is the exit block out of the loop that we are 412 // unswitching. We need to split this if there are other loop predecessors. 413 // Because the loop is in simplified form, *any* other predecessor is enough. 414 BasicBlock *UnswitchedBB; 415 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 416 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 417 "A branch's parent isn't a predecessor!"); 418 UnswitchedBB = LoopExitBB; 419 } else { 420 UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI); 421 } 422 423 // Actually move the invariant uses into the unswitched position. If possible, 424 // we do this by moving the instructions, but when doing partial unswitching 425 // we do it by building a new merge of the values in the unswitched position. 426 OldPH->getTerminator()->eraseFromParent(); 427 if (FullUnswitch) { 428 // If fully unswitching, we can use the existing branch instruction. 429 // Splice it into the old PH to gate reaching the new preheader and re-point 430 // its successors. 431 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 432 BI); 433 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 434 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 435 436 // Create a new unconditional branch that will continue the loop as a new 437 // terminator. 438 BranchInst::Create(ContinueBB, ParentBB); 439 } else { 440 // Only unswitching a subset of inputs to the condition, so we will need to 441 // build a new branch that merges the invariant inputs. 442 if (ExitDirection) 443 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 444 Instruction::Or && 445 "Must have an `or` of `i1`s for the condition!"); 446 else 447 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 448 Instruction::And && 449 "Must have an `and` of `i1`s for the condition!"); 450 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 451 *UnswitchedBB, *NewPH); 452 } 453 454 // Rewrite the relevant PHI nodes. 455 if (UnswitchedBB == LoopExitBB) 456 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 457 else 458 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 459 *ParentBB, *OldPH, FullUnswitch); 460 461 // Now we need to update the dominator tree. 462 DT.insertEdge(OldPH, UnswitchedBB); 463 if (FullUnswitch) 464 DT.deleteEdge(ParentBB, UnswitchedBB); 465 466 // The constant we can replace all of our invariants with inside the loop 467 // body. If any of the invariants have a value other than this the loop won't 468 // be entered. 469 ConstantInt *Replacement = ExitDirection 470 ? ConstantInt::getFalse(BI.getContext()) 471 : ConstantInt::getTrue(BI.getContext()); 472 473 // Since this is an i1 condition we can also trivially replace uses of it 474 // within the loop with a constant. 475 for (Value *Invariant : Invariants) 476 replaceLoopInvariantUses(L, Invariant, *Replacement); 477 478 // If this was full unswitching, we may have changed the nesting relationship 479 // for this loop so hoist it to its correct parent if needed. 480 if (FullUnswitch) 481 hoistLoopToNewParent(L, *NewPH, DT, LI); 482 483 ++NumTrivial; 484 ++NumBranches; 485 return true; 486 } 487 488 /// Unswitch a trivial switch if the condition is loop invariant. 489 /// 490 /// This routine should only be called when loop code leading to the switch has 491 /// been validated as trivial (no side effects). This routine checks if the 492 /// condition is invariant and that at least one of the successors is a loop 493 /// exit. This allows us to unswitch without duplicating the loop, making it 494 /// trivial. 495 /// 496 /// If this routine fails to unswitch the switch it returns false. 497 /// 498 /// If the switch can be unswitched, this routine splits the preheader and 499 /// copies the switch above that split. If the default case is one of the 500 /// exiting cases, it copies the non-exiting cases and points them at the new 501 /// preheader. If the default case is not exiting, it copies the exiting cases 502 /// and points the default at the preheader. It preserves loop simplified form 503 /// (splitting the exit blocks as necessary). It simplifies the switch within 504 /// the loop by removing now-dead cases. If the default case is one of those 505 /// unswitched, it replaces its destination with a new basic block containing 506 /// only unreachable. Such basic blocks, while technically loop exits, are not 507 /// considered for unswitching so this is a stable transform and the same 508 /// switch will not be revisited. If after unswitching there is only a single 509 /// in-loop successor, the switch is further simplified to an unconditional 510 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 511 /// 512 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 513 /// invalidated by this. 514 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 515 LoopInfo &LI, ScalarEvolution *SE) { 516 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 517 Value *LoopCond = SI.getCondition(); 518 519 // If this isn't switching on an invariant condition, we can't unswitch it. 520 if (!L.isLoopInvariant(LoopCond)) 521 return false; 522 523 auto *ParentBB = SI.getParent(); 524 525 SmallVector<int, 4> ExitCaseIndices; 526 for (auto Case : SI.cases()) { 527 auto *SuccBB = Case.getCaseSuccessor(); 528 if (!L.contains(SuccBB) && 529 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 530 ExitCaseIndices.push_back(Case.getCaseIndex()); 531 } 532 BasicBlock *DefaultExitBB = nullptr; 533 if (!L.contains(SI.getDefaultDest()) && 534 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 535 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 536 DefaultExitBB = SI.getDefaultDest(); 537 else if (ExitCaseIndices.empty()) 538 return false; 539 540 LLVM_DEBUG(dbgs() << " unswitching trivial cases...\n"); 541 542 // We may need to invalidate SCEVs for the outermost loop reached by any of 543 // the exits. 544 Loop *OuterL = &L; 545 546 if (DefaultExitBB) { 547 // Clear out the default destination temporarily to allow accurate 548 // predecessor lists to be examined below. 549 SI.setDefaultDest(nullptr); 550 // Check the loop containing this exit. 551 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 552 if (!ExitL || ExitL->contains(OuterL)) 553 OuterL = ExitL; 554 } 555 556 // Store the exit cases into a separate data structure and remove them from 557 // the switch. 558 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 559 ExitCases.reserve(ExitCaseIndices.size()); 560 // We walk the case indices backwards so that we remove the last case first 561 // and don't disrupt the earlier indices. 562 for (unsigned Index : reverse(ExitCaseIndices)) { 563 auto CaseI = SI.case_begin() + Index; 564 // Compute the outer loop from this exit. 565 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 566 if (!ExitL || ExitL->contains(OuterL)) 567 OuterL = ExitL; 568 // Save the value of this case. 569 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 570 // Delete the unswitched cases. 571 SI.removeCase(CaseI); 572 } 573 574 if (SE) { 575 if (OuterL) 576 SE->forgetLoop(OuterL); 577 else 578 SE->forgetTopmostLoop(&L); 579 } 580 581 // Check if after this all of the remaining cases point at the same 582 // successor. 583 BasicBlock *CommonSuccBB = nullptr; 584 if (SI.getNumCases() > 0 && 585 std::all_of(std::next(SI.case_begin()), SI.case_end(), 586 [&SI](const SwitchInst::CaseHandle &Case) { 587 return Case.getCaseSuccessor() == 588 SI.case_begin()->getCaseSuccessor(); 589 })) 590 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 591 if (!DefaultExitBB) { 592 // If we're not unswitching the default, we need it to match any cases to 593 // have a common successor or if we have no cases it is the common 594 // successor. 595 if (SI.getNumCases() == 0) 596 CommonSuccBB = SI.getDefaultDest(); 597 else if (SI.getDefaultDest() != CommonSuccBB) 598 CommonSuccBB = nullptr; 599 } 600 601 // Split the preheader, so that we know that there is a safe place to insert 602 // the switch. 603 BasicBlock *OldPH = L.getLoopPreheader(); 604 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 605 OldPH->getTerminator()->eraseFromParent(); 606 607 // Now add the unswitched switch. 608 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 609 610 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 611 // First, we split any exit blocks with remaining in-loop predecessors. Then 612 // we update the PHIs in one of two ways depending on if there was a split. 613 // We walk in reverse so that we split in the same order as the cases 614 // appeared. This is purely for convenience of reading the resulting IR, but 615 // it doesn't cost anything really. 616 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 617 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 618 // Handle the default exit if necessary. 619 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 620 // ranges aren't quite powerful enough yet. 621 if (DefaultExitBB) { 622 if (pred_empty(DefaultExitBB)) { 623 UnswitchedExitBBs.insert(DefaultExitBB); 624 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 625 } else { 626 auto *SplitBB = 627 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI); 628 rewritePHINodesForExitAndUnswitchedBlocks( 629 *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 630 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 631 } 632 } 633 // Note that we must use a reference in the for loop so that we update the 634 // container. 635 for (auto &CasePair : reverse(ExitCases)) { 636 // Grab a reference to the exit block in the pair so that we can update it. 637 BasicBlock *ExitBB = CasePair.second; 638 639 // If this case is the last edge into the exit block, we can simply reuse it 640 // as it will no longer be a loop exit. No mapping necessary. 641 if (pred_empty(ExitBB)) { 642 // Only rewrite once. 643 if (UnswitchedExitBBs.insert(ExitBB).second) 644 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 645 continue; 646 } 647 648 // Otherwise we need to split the exit block so that we retain an exit 649 // block from the loop and a target for the unswitched condition. 650 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 651 if (!SplitExitBB) { 652 // If this is the first time we see this, do the split and remember it. 653 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 654 rewritePHINodesForExitAndUnswitchedBlocks( 655 *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 656 } 657 // Update the case pair to point to the split block. 658 CasePair.second = SplitExitBB; 659 } 660 661 // Now add the unswitched cases. We do this in reverse order as we built them 662 // in reverse order. 663 for (auto CasePair : reverse(ExitCases)) { 664 ConstantInt *CaseVal = CasePair.first; 665 BasicBlock *UnswitchedBB = CasePair.second; 666 667 NewSI->addCase(CaseVal, UnswitchedBB); 668 } 669 670 // If the default was unswitched, re-point it and add explicit cases for 671 // entering the loop. 672 if (DefaultExitBB) { 673 NewSI->setDefaultDest(DefaultExitBB); 674 675 // We removed all the exit cases, so we just copy the cases to the 676 // unswitched switch. 677 for (auto Case : SI.cases()) 678 NewSI->addCase(Case.getCaseValue(), NewPH); 679 } 680 681 // If we ended up with a common successor for every path through the switch 682 // after unswitching, rewrite it to an unconditional branch to make it easy 683 // to recognize. Otherwise we potentially have to recognize the default case 684 // pointing at unreachable and other complexity. 685 if (CommonSuccBB) { 686 BasicBlock *BB = SI.getParent(); 687 // We may have had multiple edges to this common successor block, so remove 688 // them as predecessors. We skip the first one, either the default or the 689 // actual first case. 690 bool SkippedFirst = DefaultExitBB == nullptr; 691 for (auto Case : SI.cases()) { 692 assert(Case.getCaseSuccessor() == CommonSuccBB && 693 "Non-common successor!"); 694 (void)Case; 695 if (!SkippedFirst) { 696 SkippedFirst = true; 697 continue; 698 } 699 CommonSuccBB->removePredecessor(BB, 700 /*DontDeleteUselessPHIs*/ true); 701 } 702 // Now nuke the switch and replace it with a direct branch. 703 SI.eraseFromParent(); 704 BranchInst::Create(CommonSuccBB, BB); 705 } else if (DefaultExitBB) { 706 assert(SI.getNumCases() > 0 && 707 "If we had no cases we'd have a common successor!"); 708 // Move the last case to the default successor. This is valid as if the 709 // default got unswitched it cannot be reached. This has the advantage of 710 // being simple and keeping the number of edges from this switch to 711 // successors the same, and avoiding any PHI update complexity. 712 auto LastCaseI = std::prev(SI.case_end()); 713 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 714 SI.removeCase(LastCaseI); 715 } 716 717 // Walk the unswitched exit blocks and the unswitched split blocks and update 718 // the dominator tree based on the CFG edits. While we are walking unordered 719 // containers here, the API for applyUpdates takes an unordered list of 720 // updates and requires them to not contain duplicates. 721 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 722 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 723 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 724 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 725 } 726 for (auto SplitUnswitchedPair : SplitExitBBMap) { 727 auto *UnswitchedBB = SplitUnswitchedPair.second; 728 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); 729 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 730 } 731 DT.applyUpdates(DTUpdates); 732 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 733 734 // We may have changed the nesting relationship for this loop so hoist it to 735 // its correct parent if needed. 736 hoistLoopToNewParent(L, *NewPH, DT, LI); 737 738 ++NumTrivial; 739 ++NumSwitches; 740 return true; 741 } 742 743 /// This routine scans the loop to find a branch or switch which occurs before 744 /// any side effects occur. These can potentially be unswitched without 745 /// duplicating the loop. If a branch or switch is successfully unswitched the 746 /// scanning continues to see if subsequent branches or switches have become 747 /// trivial. Once all trivial candidates have been unswitched, this routine 748 /// returns. 749 /// 750 /// The return value indicates whether anything was unswitched (and therefore 751 /// changed). 752 /// 753 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 754 /// invalidated by this. 755 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 756 LoopInfo &LI, ScalarEvolution *SE) { 757 bool Changed = false; 758 759 // If loop header has only one reachable successor we should keep looking for 760 // trivial condition candidates in the successor as well. An alternative is 761 // to constant fold conditions and merge successors into loop header (then we 762 // only need to check header's terminator). The reason for not doing this in 763 // LoopUnswitch pass is that it could potentially break LoopPassManager's 764 // invariants. Folding dead branches could either eliminate the current loop 765 // or make other loops unreachable. LCSSA form might also not be preserved 766 // after deleting branches. The following code keeps traversing loop header's 767 // successors until it finds the trivial condition candidate (condition that 768 // is not a constant). Since unswitching generates branches with constant 769 // conditions, this scenario could be very common in practice. 770 BasicBlock *CurrentBB = L.getHeader(); 771 SmallPtrSet<BasicBlock *, 8> Visited; 772 Visited.insert(CurrentBB); 773 do { 774 // Check if there are any side-effecting instructions (e.g. stores, calls, 775 // volatile loads) in the part of the loop that the code *would* execute 776 // without unswitching. 777 if (llvm::any_of(*CurrentBB, 778 [](Instruction &I) { return I.mayHaveSideEffects(); })) 779 return Changed; 780 781 TerminatorInst *CurrentTerm = CurrentBB->getTerminator(); 782 783 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 784 // Don't bother trying to unswitch past a switch with a constant 785 // condition. This should be removed prior to running this pass by 786 // simplify-cfg. 787 if (isa<Constant>(SI->getCondition())) 788 return Changed; 789 790 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE)) 791 // Couldn't unswitch this one so we're done. 792 return Changed; 793 794 // Mark that we managed to unswitch something. 795 Changed = true; 796 797 // If unswitching turned the terminator into an unconditional branch then 798 // we can continue. The unswitching logic specifically works to fold any 799 // cases it can into an unconditional branch to make it easier to 800 // recognize here. 801 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 802 if (!BI || BI->isConditional()) 803 return Changed; 804 805 CurrentBB = BI->getSuccessor(0); 806 continue; 807 } 808 809 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 810 if (!BI) 811 // We do not understand other terminator instructions. 812 return Changed; 813 814 // Don't bother trying to unswitch past an unconditional branch or a branch 815 // with a constant value. These should be removed by simplify-cfg prior to 816 // running this pass. 817 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 818 return Changed; 819 820 // Found a trivial condition candidate: non-foldable conditional branch. If 821 // we fail to unswitch this, we can't do anything else that is trivial. 822 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE)) 823 return Changed; 824 825 // Mark that we managed to unswitch something. 826 Changed = true; 827 828 // If we only unswitched some of the conditions feeding the branch, we won't 829 // have collapsed it to a single successor. 830 BI = cast<BranchInst>(CurrentBB->getTerminator()); 831 if (BI->isConditional()) 832 return Changed; 833 834 // Follow the newly unconditional branch into its successor. 835 CurrentBB = BI->getSuccessor(0); 836 837 // When continuing, if we exit the loop or reach a previous visited block, 838 // then we can not reach any trivial condition candidates (unfoldable 839 // branch instructions or switch instructions) and no unswitch can happen. 840 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 841 842 return Changed; 843 } 844 845 /// Build the cloned blocks for an unswitched copy of the given loop. 846 /// 847 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 848 /// after the split block (`SplitBB`) that will be used to select between the 849 /// cloned and original loop. 850 /// 851 /// This routine handles cloning all of the necessary loop blocks and exit 852 /// blocks including rewriting their instructions and the relevant PHI nodes. 853 /// Any loop blocks or exit blocks which are dominated by a different successor 854 /// than the one for this clone of the loop blocks can be trivially skipped. We 855 /// use the `DominatingSucc` map to determine whether a block satisfies that 856 /// property with a simple map lookup. 857 /// 858 /// It also correctly creates the unconditional branch in the cloned 859 /// unswitched parent block to only point at the unswitched successor. 860 /// 861 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 862 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 863 /// the cloned blocks (and their loops) are left without full `LoopInfo` 864 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 865 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 866 /// instead the caller must recompute an accurate DT. It *does* correctly 867 /// update the `AssumptionCache` provided in `AC`. 868 static BasicBlock *buildClonedLoopBlocks( 869 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 870 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 871 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 872 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 873 ValueToValueMapTy &VMap, 874 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 875 DominatorTree &DT, LoopInfo &LI) { 876 SmallVector<BasicBlock *, 4> NewBlocks; 877 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 878 879 // We will need to clone a bunch of blocks, wrap up the clone operation in 880 // a helper. 881 auto CloneBlock = [&](BasicBlock *OldBB) { 882 // Clone the basic block and insert it before the new preheader. 883 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 884 NewBB->moveBefore(LoopPH); 885 886 // Record this block and the mapping. 887 NewBlocks.push_back(NewBB); 888 VMap[OldBB] = NewBB; 889 890 return NewBB; 891 }; 892 893 // We skip cloning blocks when they have a dominating succ that is not the 894 // succ we are cloning for. 895 auto SkipBlock = [&](BasicBlock *BB) { 896 auto It = DominatingSucc.find(BB); 897 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 898 }; 899 900 // First, clone the preheader. 901 auto *ClonedPH = CloneBlock(LoopPH); 902 903 // Then clone all the loop blocks, skipping the ones that aren't necessary. 904 for (auto *LoopBB : L.blocks()) 905 if (!SkipBlock(LoopBB)) 906 CloneBlock(LoopBB); 907 908 // Split all the loop exit edges so that when we clone the exit blocks, if 909 // any of the exit blocks are *also* a preheader for some other loop, we 910 // don't create multiple predecessors entering the loop header. 911 for (auto *ExitBB : ExitBlocks) { 912 if (SkipBlock(ExitBB)) 913 continue; 914 915 // When we are going to clone an exit, we don't need to clone all the 916 // instructions in the exit block and we want to ensure we have an easy 917 // place to merge the CFG, so split the exit first. This is always safe to 918 // do because there cannot be any non-loop predecessors of a loop exit in 919 // loop simplified form. 920 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 921 922 // Rearrange the names to make it easier to write test cases by having the 923 // exit block carry the suffix rather than the merge block carrying the 924 // suffix. 925 MergeBB->takeName(ExitBB); 926 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 927 928 // Now clone the original exit block. 929 auto *ClonedExitBB = CloneBlock(ExitBB); 930 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 931 "Exit block should have been split to have one successor!"); 932 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 933 "Cloned exit block has the wrong successor!"); 934 935 // Remap any cloned instructions and create a merge phi node for them. 936 for (auto ZippedInsts : llvm::zip_first( 937 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 938 llvm::make_range(ClonedExitBB->begin(), 939 std::prev(ClonedExitBB->end())))) { 940 Instruction &I = std::get<0>(ZippedInsts); 941 Instruction &ClonedI = std::get<1>(ZippedInsts); 942 943 // The only instructions in the exit block should be PHI nodes and 944 // potentially a landing pad. 945 assert( 946 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 947 "Bad instruction in exit block!"); 948 // We should have a value map between the instruction and its clone. 949 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 950 951 auto *MergePN = 952 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 953 &*MergeBB->getFirstInsertionPt()); 954 I.replaceAllUsesWith(MergePN); 955 MergePN->addIncoming(&I, ExitBB); 956 MergePN->addIncoming(&ClonedI, ClonedExitBB); 957 } 958 } 959 960 // Rewrite the instructions in the cloned blocks to refer to the instructions 961 // in the cloned blocks. We have to do this as a second pass so that we have 962 // everything available. Also, we have inserted new instructions which may 963 // include assume intrinsics, so we update the assumption cache while 964 // processing this. 965 for (auto *ClonedBB : NewBlocks) 966 for (Instruction &I : *ClonedBB) { 967 RemapInstruction(&I, VMap, 968 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 969 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 970 if (II->getIntrinsicID() == Intrinsic::assume) 971 AC.registerAssumption(II); 972 } 973 974 // Update any PHI nodes in the cloned successors of the skipped blocks to not 975 // have spurious incoming values. 976 for (auto *LoopBB : L.blocks()) 977 if (SkipBlock(LoopBB)) 978 for (auto *SuccBB : successors(LoopBB)) 979 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 980 for (PHINode &PN : ClonedSuccBB->phis()) 981 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 982 983 // Remove the cloned parent as a predecessor of any successor we ended up 984 // cloning other than the unswitched one. 985 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 986 for (auto *SuccBB : successors(ParentBB)) { 987 if (SuccBB == UnswitchedSuccBB) 988 continue; 989 990 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 991 if (!ClonedSuccBB) 992 continue; 993 994 ClonedSuccBB->removePredecessor(ClonedParentBB, 995 /*DontDeleteUselessPHIs*/ true); 996 } 997 998 // Replace the cloned branch with an unconditional branch to the cloned 999 // unswitched successor. 1000 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1001 ClonedParentBB->getTerminator()->eraseFromParent(); 1002 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1003 1004 // If there are duplicate entries in the PHI nodes because of multiple edges 1005 // to the unswitched successor, we need to nuke all but one as we replaced it 1006 // with a direct branch. 1007 for (PHINode &PN : ClonedSuccBB->phis()) { 1008 bool Found = false; 1009 // Loop over the incoming operands backwards so we can easily delete as we 1010 // go without invalidating the index. 1011 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1012 if (PN.getIncomingBlock(i) != ClonedParentBB) 1013 continue; 1014 if (!Found) { 1015 Found = true; 1016 continue; 1017 } 1018 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1019 } 1020 } 1021 1022 // Record the domtree updates for the new blocks. 1023 SmallPtrSet<BasicBlock *, 4> SuccSet; 1024 for (auto *ClonedBB : NewBlocks) { 1025 for (auto *SuccBB : successors(ClonedBB)) 1026 if (SuccSet.insert(SuccBB).second) 1027 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1028 SuccSet.clear(); 1029 } 1030 1031 return ClonedPH; 1032 } 1033 1034 /// Recursively clone the specified loop and all of its children. 1035 /// 1036 /// The target parent loop for the clone should be provided, or can be null if 1037 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1038 /// with the provided value map. The entire original loop must be present in 1039 /// the value map. The cloned loop is returned. 1040 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1041 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1042 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1043 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1044 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1045 for (auto *BB : OrigL.blocks()) { 1046 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1047 ClonedL.addBlockEntry(ClonedBB); 1048 if (LI.getLoopFor(BB) == &OrigL) 1049 LI.changeLoopFor(ClonedBB, &ClonedL); 1050 } 1051 }; 1052 1053 // We specially handle the first loop because it may get cloned into 1054 // a different parent and because we most commonly are cloning leaf loops. 1055 Loop *ClonedRootL = LI.AllocateLoop(); 1056 if (RootParentL) 1057 RootParentL->addChildLoop(ClonedRootL); 1058 else 1059 LI.addTopLevelLoop(ClonedRootL); 1060 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1061 1062 if (OrigRootL.empty()) 1063 return ClonedRootL; 1064 1065 // If we have a nest, we can quickly clone the entire loop nest using an 1066 // iterative approach because it is a tree. We keep the cloned parent in the 1067 // data structure to avoid repeatedly querying through a map to find it. 1068 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1069 // Build up the loops to clone in reverse order as we'll clone them from the 1070 // back. 1071 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1072 LoopsToClone.push_back({ClonedRootL, ChildL}); 1073 do { 1074 Loop *ClonedParentL, *L; 1075 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1076 Loop *ClonedL = LI.AllocateLoop(); 1077 ClonedParentL->addChildLoop(ClonedL); 1078 AddClonedBlocksToLoop(*L, *ClonedL); 1079 for (Loop *ChildL : llvm::reverse(*L)) 1080 LoopsToClone.push_back({ClonedL, ChildL}); 1081 } while (!LoopsToClone.empty()); 1082 1083 return ClonedRootL; 1084 } 1085 1086 /// Build the cloned loops of an original loop from unswitching. 1087 /// 1088 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1089 /// operation. We need to re-verify that there even is a loop (as the backedge 1090 /// may not have been cloned), and even if there are remaining backedges the 1091 /// backedge set may be different. However, we know that each child loop is 1092 /// undisturbed, we only need to find where to place each child loop within 1093 /// either any parent loop or within a cloned version of the original loop. 1094 /// 1095 /// Because child loops may end up cloned outside of any cloned version of the 1096 /// original loop, multiple cloned sibling loops may be created. All of them 1097 /// are returned so that the newly introduced loop nest roots can be 1098 /// identified. 1099 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1100 const ValueToValueMapTy &VMap, LoopInfo &LI, 1101 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1102 Loop *ClonedL = nullptr; 1103 1104 auto *OrigPH = OrigL.getLoopPreheader(); 1105 auto *OrigHeader = OrigL.getHeader(); 1106 1107 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1108 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1109 1110 // We need to know the loops of the cloned exit blocks to even compute the 1111 // accurate parent loop. If we only clone exits to some parent of the 1112 // original parent, we want to clone into that outer loop. We also keep track 1113 // of the loops that our cloned exit blocks participate in. 1114 Loop *ParentL = nullptr; 1115 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1116 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1117 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1118 for (auto *ExitBB : ExitBlocks) 1119 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1120 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1121 ExitLoopMap[ClonedExitBB] = ExitL; 1122 ClonedExitsInLoops.push_back(ClonedExitBB); 1123 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1124 ParentL = ExitL; 1125 } 1126 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1127 ParentL->contains(OrigL.getParentLoop())) && 1128 "The computed parent loop should always contain (or be) the parent of " 1129 "the original loop."); 1130 1131 // We build the set of blocks dominated by the cloned header from the set of 1132 // cloned blocks out of the original loop. While not all of these will 1133 // necessarily be in the cloned loop, it is enough to establish that they 1134 // aren't in unreachable cycles, etc. 1135 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1136 for (auto *BB : OrigL.blocks()) 1137 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1138 ClonedLoopBlocks.insert(ClonedBB); 1139 1140 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1141 // skipped cloning some region of this loop which can in turn skip some of 1142 // the backedges so we have to rebuild the blocks in the loop based on the 1143 // backedges that remain after cloning. 1144 SmallVector<BasicBlock *, 16> Worklist; 1145 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1146 for (auto *Pred : predecessors(ClonedHeader)) { 1147 // The only possible non-loop header predecessor is the preheader because 1148 // we know we cloned the loop in simplified form. 1149 if (Pred == ClonedPH) 1150 continue; 1151 1152 // Because the loop was in simplified form, the only non-loop predecessor 1153 // should be the preheader. 1154 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1155 "header other than the preheader " 1156 "that is not part of the loop!"); 1157 1158 // Insert this block into the loop set and on the first visit (and if it 1159 // isn't the header we're currently walking) put it into the worklist to 1160 // recurse through. 1161 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1162 Worklist.push_back(Pred); 1163 } 1164 1165 // If we had any backedges then there *is* a cloned loop. Put the header into 1166 // the loop set and then walk the worklist backwards to find all the blocks 1167 // that remain within the loop after cloning. 1168 if (!BlocksInClonedLoop.empty()) { 1169 BlocksInClonedLoop.insert(ClonedHeader); 1170 1171 while (!Worklist.empty()) { 1172 BasicBlock *BB = Worklist.pop_back_val(); 1173 assert(BlocksInClonedLoop.count(BB) && 1174 "Didn't put block into the loop set!"); 1175 1176 // Insert any predecessors that are in the possible set into the cloned 1177 // set, and if the insert is successful, add them to the worklist. Note 1178 // that we filter on the blocks that are definitely reachable via the 1179 // backedge to the loop header so we may prune out dead code within the 1180 // cloned loop. 1181 for (auto *Pred : predecessors(BB)) 1182 if (ClonedLoopBlocks.count(Pred) && 1183 BlocksInClonedLoop.insert(Pred).second) 1184 Worklist.push_back(Pred); 1185 } 1186 1187 ClonedL = LI.AllocateLoop(); 1188 if (ParentL) { 1189 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1190 ParentL->addChildLoop(ClonedL); 1191 } else { 1192 LI.addTopLevelLoop(ClonedL); 1193 } 1194 NonChildClonedLoops.push_back(ClonedL); 1195 1196 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1197 // We don't want to just add the cloned loop blocks based on how we 1198 // discovered them. The original order of blocks was carefully built in 1199 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1200 // that logic, we just re-walk the original blocks (and those of the child 1201 // loops) and filter them as we add them into the cloned loop. 1202 for (auto *BB : OrigL.blocks()) { 1203 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1204 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1205 continue; 1206 1207 // Directly add the blocks that are only in this loop. 1208 if (LI.getLoopFor(BB) == &OrigL) { 1209 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1210 continue; 1211 } 1212 1213 // We want to manually add it to this loop and parents. 1214 // Registering it with LoopInfo will happen when we clone the top 1215 // loop for this block. 1216 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1217 PL->addBlockEntry(ClonedBB); 1218 } 1219 1220 // Now add each child loop whose header remains within the cloned loop. All 1221 // of the blocks within the loop must satisfy the same constraints as the 1222 // header so once we pass the header checks we can just clone the entire 1223 // child loop nest. 1224 for (Loop *ChildL : OrigL) { 1225 auto *ClonedChildHeader = 1226 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1227 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1228 continue; 1229 1230 #ifndef NDEBUG 1231 // We should never have a cloned child loop header but fail to have 1232 // all of the blocks for that child loop. 1233 for (auto *ChildLoopBB : ChildL->blocks()) 1234 assert(BlocksInClonedLoop.count( 1235 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1236 "Child cloned loop has a header within the cloned outer " 1237 "loop but not all of its blocks!"); 1238 #endif 1239 1240 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1241 } 1242 } 1243 1244 // Now that we've handled all the components of the original loop that were 1245 // cloned into a new loop, we still need to handle anything from the original 1246 // loop that wasn't in a cloned loop. 1247 1248 // Figure out what blocks are left to place within any loop nest containing 1249 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1250 // them. 1251 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1252 if (BlocksInClonedLoop.empty()) 1253 UnloopedBlockSet.insert(ClonedPH); 1254 for (auto *ClonedBB : ClonedLoopBlocks) 1255 if (!BlocksInClonedLoop.count(ClonedBB)) 1256 UnloopedBlockSet.insert(ClonedBB); 1257 1258 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1259 // backwards across these to process them inside out. The order shouldn't 1260 // matter as we're just trying to build up the map from inside-out; we use 1261 // the map in a more stably ordered way below. 1262 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1263 llvm::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(), 1264 [&](BasicBlock *LHS, BasicBlock *RHS) { 1265 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1266 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1267 }); 1268 1269 // Populate the existing ExitLoopMap with everything reachable from each 1270 // exit, starting from the inner most exit. 1271 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1272 assert(Worklist.empty() && "Didn't clear worklist!"); 1273 1274 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1275 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1276 1277 // Walk the CFG back until we hit the cloned PH adding everything reachable 1278 // and in the unlooped set to this exit block's loop. 1279 Worklist.push_back(ExitBB); 1280 do { 1281 BasicBlock *BB = Worklist.pop_back_val(); 1282 // We can stop recursing at the cloned preheader (if we get there). 1283 if (BB == ClonedPH) 1284 continue; 1285 1286 for (BasicBlock *PredBB : predecessors(BB)) { 1287 // If this pred has already been moved to our set or is part of some 1288 // (inner) loop, no update needed. 1289 if (!UnloopedBlockSet.erase(PredBB)) { 1290 assert( 1291 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1292 "Predecessor not mapped to a loop!"); 1293 continue; 1294 } 1295 1296 // We just insert into the loop set here. We'll add these blocks to the 1297 // exit loop after we build up the set in an order that doesn't rely on 1298 // predecessor order (which in turn relies on use list order). 1299 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1300 (void)Inserted; 1301 assert(Inserted && "Should only visit an unlooped block once!"); 1302 1303 // And recurse through to its predecessors. 1304 Worklist.push_back(PredBB); 1305 } 1306 } while (!Worklist.empty()); 1307 } 1308 1309 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1310 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1311 // in their original order adding them to the correct loop. 1312 1313 // We need a stable insertion order. We use the order of the original loop 1314 // order and map into the correct parent loop. 1315 for (auto *BB : llvm::concat<BasicBlock *const>( 1316 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1317 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1318 OuterL->addBasicBlockToLoop(BB, LI); 1319 1320 #ifndef NDEBUG 1321 for (auto &BBAndL : ExitLoopMap) { 1322 auto *BB = BBAndL.first; 1323 auto *OuterL = BBAndL.second; 1324 assert(LI.getLoopFor(BB) == OuterL && 1325 "Failed to put all blocks into outer loops!"); 1326 } 1327 #endif 1328 1329 // Now that all the blocks are placed into the correct containing loop in the 1330 // absence of child loops, find all the potentially cloned child loops and 1331 // clone them into whatever outer loop we placed their header into. 1332 for (Loop *ChildL : OrigL) { 1333 auto *ClonedChildHeader = 1334 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1335 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1336 continue; 1337 1338 #ifndef NDEBUG 1339 for (auto *ChildLoopBB : ChildL->blocks()) 1340 assert(VMap.count(ChildLoopBB) && 1341 "Cloned a child loop header but not all of that loops blocks!"); 1342 #endif 1343 1344 NonChildClonedLoops.push_back(cloneLoopNest( 1345 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1346 } 1347 } 1348 1349 static void 1350 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1351 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1352 DominatorTree &DT) { 1353 // Find all the dead clones, and remove them from their successors. 1354 SmallVector<BasicBlock *, 16> DeadBlocks; 1355 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1356 for (auto &VMap : VMaps) 1357 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1358 if (!DT.isReachableFromEntry(ClonedBB)) { 1359 for (BasicBlock *SuccBB : successors(ClonedBB)) 1360 SuccBB->removePredecessor(ClonedBB); 1361 DeadBlocks.push_back(ClonedBB); 1362 } 1363 1364 // Drop any remaining references to break cycles. 1365 for (BasicBlock *BB : DeadBlocks) 1366 BB->dropAllReferences(); 1367 // Erase them from the IR. 1368 for (BasicBlock *BB : DeadBlocks) 1369 BB->eraseFromParent(); 1370 } 1371 1372 static void 1373 deleteDeadBlocksFromLoop(Loop &L, 1374 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1375 DominatorTree &DT, LoopInfo &LI) { 1376 // Find all the dead blocks, and remove them from their successors. 1377 SmallVector<BasicBlock *, 16> DeadBlocks; 1378 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1379 if (!DT.isReachableFromEntry(BB)) { 1380 for (BasicBlock *SuccBB : successors(BB)) 1381 SuccBB->removePredecessor(BB); 1382 DeadBlocks.push_back(BB); 1383 } 1384 1385 SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(), 1386 DeadBlocks.end()); 1387 1388 // Filter out the dead blocks from the exit blocks list so that it can be 1389 // used in the caller. 1390 llvm::erase_if(ExitBlocks, 1391 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1392 1393 // Walk from this loop up through its parents removing all of the dead blocks. 1394 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1395 for (auto *BB : DeadBlocks) 1396 ParentL->getBlocksSet().erase(BB); 1397 llvm::erase_if(ParentL->getBlocksVector(), 1398 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1399 } 1400 1401 // Now delete the dead child loops. This raw delete will clear them 1402 // recursively. 1403 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1404 if (!DeadBlockSet.count(ChildL->getHeader())) 1405 return false; 1406 1407 assert(llvm::all_of(ChildL->blocks(), 1408 [&](BasicBlock *ChildBB) { 1409 return DeadBlockSet.count(ChildBB); 1410 }) && 1411 "If the child loop header is dead all blocks in the child loop must " 1412 "be dead as well!"); 1413 LI.destroy(ChildL); 1414 return true; 1415 }); 1416 1417 // Remove the loop mappings for the dead blocks and drop all the references 1418 // from these blocks to others to handle cyclic references as we start 1419 // deleting the blocks themselves. 1420 for (auto *BB : DeadBlocks) { 1421 // Check that the dominator tree has already been updated. 1422 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1423 LI.changeLoopFor(BB, nullptr); 1424 BB->dropAllReferences(); 1425 } 1426 1427 // Actually delete the blocks now that they've been fully unhooked from the 1428 // IR. 1429 for (auto *BB : DeadBlocks) 1430 BB->eraseFromParent(); 1431 } 1432 1433 /// Recompute the set of blocks in a loop after unswitching. 1434 /// 1435 /// This walks from the original headers predecessors to rebuild the loop. We 1436 /// take advantage of the fact that new blocks can't have been added, and so we 1437 /// filter by the original loop's blocks. This also handles potentially 1438 /// unreachable code that we don't want to explore but might be found examining 1439 /// the predecessors of the header. 1440 /// 1441 /// If the original loop is no longer a loop, this will return an empty set. If 1442 /// it remains a loop, all the blocks within it will be added to the set 1443 /// (including those blocks in inner loops). 1444 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1445 LoopInfo &LI) { 1446 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1447 1448 auto *PH = L.getLoopPreheader(); 1449 auto *Header = L.getHeader(); 1450 1451 // A worklist to use while walking backwards from the header. 1452 SmallVector<BasicBlock *, 16> Worklist; 1453 1454 // First walk the predecessors of the header to find the backedges. This will 1455 // form the basis of our walk. 1456 for (auto *Pred : predecessors(Header)) { 1457 // Skip the preheader. 1458 if (Pred == PH) 1459 continue; 1460 1461 // Because the loop was in simplified form, the only non-loop predecessor 1462 // is the preheader. 1463 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1464 "than the preheader that is not part of the " 1465 "loop!"); 1466 1467 // Insert this block into the loop set and on the first visit and, if it 1468 // isn't the header we're currently walking, put it into the worklist to 1469 // recurse through. 1470 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1471 Worklist.push_back(Pred); 1472 } 1473 1474 // If no backedges were found, we're done. 1475 if (LoopBlockSet.empty()) 1476 return LoopBlockSet; 1477 1478 // We found backedges, recurse through them to identify the loop blocks. 1479 while (!Worklist.empty()) { 1480 BasicBlock *BB = Worklist.pop_back_val(); 1481 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1482 1483 // No need to walk past the header. 1484 if (BB == Header) 1485 continue; 1486 1487 // Because we know the inner loop structure remains valid we can use the 1488 // loop structure to jump immediately across the entire nested loop. 1489 // Further, because it is in loop simplified form, we can directly jump 1490 // to its preheader afterward. 1491 if (Loop *InnerL = LI.getLoopFor(BB)) 1492 if (InnerL != &L) { 1493 assert(L.contains(InnerL) && 1494 "Should not reach a loop *outside* this loop!"); 1495 // The preheader is the only possible predecessor of the loop so 1496 // insert it into the set and check whether it was already handled. 1497 auto *InnerPH = InnerL->getLoopPreheader(); 1498 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1499 "but not contain the inner loop " 1500 "preheader!"); 1501 if (!LoopBlockSet.insert(InnerPH).second) 1502 // The only way to reach the preheader is through the loop body 1503 // itself so if it has been visited the loop is already handled. 1504 continue; 1505 1506 // Insert all of the blocks (other than those already present) into 1507 // the loop set. We expect at least the block that led us to find the 1508 // inner loop to be in the block set, but we may also have other loop 1509 // blocks if they were already enqueued as predecessors of some other 1510 // outer loop block. 1511 for (auto *InnerBB : InnerL->blocks()) { 1512 if (InnerBB == BB) { 1513 assert(LoopBlockSet.count(InnerBB) && 1514 "Block should already be in the set!"); 1515 continue; 1516 } 1517 1518 LoopBlockSet.insert(InnerBB); 1519 } 1520 1521 // Add the preheader to the worklist so we will continue past the 1522 // loop body. 1523 Worklist.push_back(InnerPH); 1524 continue; 1525 } 1526 1527 // Insert any predecessors that were in the original loop into the new 1528 // set, and if the insert is successful, add them to the worklist. 1529 for (auto *Pred : predecessors(BB)) 1530 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1531 Worklist.push_back(Pred); 1532 } 1533 1534 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1535 1536 // We've found all the blocks participating in the loop, return our completed 1537 // set. 1538 return LoopBlockSet; 1539 } 1540 1541 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1542 /// 1543 /// The removal may have removed some child loops entirely but cannot have 1544 /// disturbed any remaining child loops. However, they may need to be hoisted 1545 /// to the parent loop (or to be top-level loops). The original loop may be 1546 /// completely removed. 1547 /// 1548 /// The sibling loops resulting from this update are returned. If the original 1549 /// loop remains a valid loop, it will be the first entry in this list with all 1550 /// of the newly sibling loops following it. 1551 /// 1552 /// Returns true if the loop remains a loop after unswitching, and false if it 1553 /// is no longer a loop after unswitching (and should not continue to be 1554 /// referenced). 1555 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1556 LoopInfo &LI, 1557 SmallVectorImpl<Loop *> &HoistedLoops) { 1558 auto *PH = L.getLoopPreheader(); 1559 1560 // Compute the actual parent loop from the exit blocks. Because we may have 1561 // pruned some exits the loop may be different from the original parent. 1562 Loop *ParentL = nullptr; 1563 SmallVector<Loop *, 4> ExitLoops; 1564 SmallVector<BasicBlock *, 4> ExitsInLoops; 1565 ExitsInLoops.reserve(ExitBlocks.size()); 1566 for (auto *ExitBB : ExitBlocks) 1567 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1568 ExitLoops.push_back(ExitL); 1569 ExitsInLoops.push_back(ExitBB); 1570 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1571 ParentL = ExitL; 1572 } 1573 1574 // Recompute the blocks participating in this loop. This may be empty if it 1575 // is no longer a loop. 1576 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1577 1578 // If we still have a loop, we need to re-set the loop's parent as the exit 1579 // block set changing may have moved it within the loop nest. Note that this 1580 // can only happen when this loop has a parent as it can only hoist the loop 1581 // *up* the nest. 1582 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1583 // Remove this loop's (original) blocks from all of the intervening loops. 1584 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1585 IL = IL->getParentLoop()) { 1586 IL->getBlocksSet().erase(PH); 1587 for (auto *BB : L.blocks()) 1588 IL->getBlocksSet().erase(BB); 1589 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1590 return BB == PH || L.contains(BB); 1591 }); 1592 } 1593 1594 LI.changeLoopFor(PH, ParentL); 1595 L.getParentLoop()->removeChildLoop(&L); 1596 if (ParentL) 1597 ParentL->addChildLoop(&L); 1598 else 1599 LI.addTopLevelLoop(&L); 1600 } 1601 1602 // Now we update all the blocks which are no longer within the loop. 1603 auto &Blocks = L.getBlocksVector(); 1604 auto BlocksSplitI = 1605 LoopBlockSet.empty() 1606 ? Blocks.begin() 1607 : std::stable_partition( 1608 Blocks.begin(), Blocks.end(), 1609 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1610 1611 // Before we erase the list of unlooped blocks, build a set of them. 1612 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1613 if (LoopBlockSet.empty()) 1614 UnloopedBlocks.insert(PH); 1615 1616 // Now erase these blocks from the loop. 1617 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1618 L.getBlocksSet().erase(BB); 1619 Blocks.erase(BlocksSplitI, Blocks.end()); 1620 1621 // Sort the exits in ascending loop depth, we'll work backwards across these 1622 // to process them inside out. 1623 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1624 [&](BasicBlock *LHS, BasicBlock *RHS) { 1625 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1626 }); 1627 1628 // We'll build up a set for each exit loop. 1629 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1630 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1631 1632 auto RemoveUnloopedBlocksFromLoop = 1633 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1634 for (auto *BB : UnloopedBlocks) 1635 L.getBlocksSet().erase(BB); 1636 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1637 return UnloopedBlocks.count(BB); 1638 }); 1639 }; 1640 1641 SmallVector<BasicBlock *, 16> Worklist; 1642 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1643 assert(Worklist.empty() && "Didn't clear worklist!"); 1644 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1645 1646 // Grab the next exit block, in decreasing loop depth order. 1647 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1648 Loop &ExitL = *LI.getLoopFor(ExitBB); 1649 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1650 1651 // Erase all of the unlooped blocks from the loops between the previous 1652 // exit loop and this exit loop. This works because the ExitInLoops list is 1653 // sorted in increasing order of loop depth and thus we visit loops in 1654 // decreasing order of loop depth. 1655 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1656 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1657 1658 // Walk the CFG back until we hit the cloned PH adding everything reachable 1659 // and in the unlooped set to this exit block's loop. 1660 Worklist.push_back(ExitBB); 1661 do { 1662 BasicBlock *BB = Worklist.pop_back_val(); 1663 // We can stop recursing at the cloned preheader (if we get there). 1664 if (BB == PH) 1665 continue; 1666 1667 for (BasicBlock *PredBB : predecessors(BB)) { 1668 // If this pred has already been moved to our set or is part of some 1669 // (inner) loop, no update needed. 1670 if (!UnloopedBlocks.erase(PredBB)) { 1671 assert((NewExitLoopBlocks.count(PredBB) || 1672 ExitL.contains(LI.getLoopFor(PredBB))) && 1673 "Predecessor not in a nested loop (or already visited)!"); 1674 continue; 1675 } 1676 1677 // We just insert into the loop set here. We'll add these blocks to the 1678 // exit loop after we build up the set in a deterministic order rather 1679 // than the predecessor-influenced visit order. 1680 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1681 (void)Inserted; 1682 assert(Inserted && "Should only visit an unlooped block once!"); 1683 1684 // And recurse through to its predecessors. 1685 Worklist.push_back(PredBB); 1686 } 1687 } while (!Worklist.empty()); 1688 1689 // If blocks in this exit loop were directly part of the original loop (as 1690 // opposed to a child loop) update the map to point to this exit loop. This 1691 // just updates a map and so the fact that the order is unstable is fine. 1692 for (auto *BB : NewExitLoopBlocks) 1693 if (Loop *BBL = LI.getLoopFor(BB)) 1694 if (BBL == &L || !L.contains(BBL)) 1695 LI.changeLoopFor(BB, &ExitL); 1696 1697 // We will remove the remaining unlooped blocks from this loop in the next 1698 // iteration or below. 1699 NewExitLoopBlocks.clear(); 1700 } 1701 1702 // Any remaining unlooped blocks are no longer part of any loop unless they 1703 // are part of some child loop. 1704 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1705 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1706 for (auto *BB : UnloopedBlocks) 1707 if (Loop *BBL = LI.getLoopFor(BB)) 1708 if (BBL == &L || !L.contains(BBL)) 1709 LI.changeLoopFor(BB, nullptr); 1710 1711 // Sink all the child loops whose headers are no longer in the loop set to 1712 // the parent (or to be top level loops). We reach into the loop and directly 1713 // update its subloop vector to make this batch update efficient. 1714 auto &SubLoops = L.getSubLoopsVector(); 1715 auto SubLoopsSplitI = 1716 LoopBlockSet.empty() 1717 ? SubLoops.begin() 1718 : std::stable_partition( 1719 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1720 return LoopBlockSet.count(SubL->getHeader()); 1721 }); 1722 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1723 HoistedLoops.push_back(HoistedL); 1724 HoistedL->setParentLoop(nullptr); 1725 1726 // To compute the new parent of this hoisted loop we look at where we 1727 // placed the preheader above. We can't lookup the header itself because we 1728 // retained the mapping from the header to the hoisted loop. But the 1729 // preheader and header should have the exact same new parent computed 1730 // based on the set of exit blocks from the original loop as the preheader 1731 // is a predecessor of the header and so reached in the reverse walk. And 1732 // because the loops were all in simplified form the preheader of the 1733 // hoisted loop can't be part of some *other* loop. 1734 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1735 NewParentL->addChildLoop(HoistedL); 1736 else 1737 LI.addTopLevelLoop(HoistedL); 1738 } 1739 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1740 1741 // Actually delete the loop if nothing remained within it. 1742 if (Blocks.empty()) { 1743 assert(SubLoops.empty() && 1744 "Failed to remove all subloops from the original loop!"); 1745 if (Loop *ParentL = L.getParentLoop()) 1746 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1747 else 1748 LI.removeLoop(llvm::find(LI, &L)); 1749 LI.destroy(&L); 1750 return false; 1751 } 1752 1753 return true; 1754 } 1755 1756 /// Helper to visit a dominator subtree, invoking a callable on each node. 1757 /// 1758 /// Returning false at any point will stop walking past that node of the tree. 1759 template <typename CallableT> 1760 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1761 SmallVector<DomTreeNode *, 4> DomWorklist; 1762 DomWorklist.push_back(DT[BB]); 1763 #ifndef NDEBUG 1764 SmallPtrSet<DomTreeNode *, 4> Visited; 1765 Visited.insert(DT[BB]); 1766 #endif 1767 do { 1768 DomTreeNode *N = DomWorklist.pop_back_val(); 1769 1770 // Visit this node. 1771 if (!Callable(N->getBlock())) 1772 continue; 1773 1774 // Accumulate the child nodes. 1775 for (DomTreeNode *ChildN : *N) { 1776 assert(Visited.insert(ChildN).second && 1777 "Cannot visit a node twice when walking a tree!"); 1778 DomWorklist.push_back(ChildN); 1779 } 1780 } while (!DomWorklist.empty()); 1781 } 1782 1783 static bool unswitchNontrivialInvariants( 1784 Loop &L, TerminatorInst &TI, ArrayRef<Value *> Invariants, 1785 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 1786 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1787 ScalarEvolution *SE) { 1788 auto *ParentBB = TI.getParent(); 1789 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1790 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1791 1792 // We can only unswitch switches, conditional branches with an invariant 1793 // condition, or combining invariant conditions with an instruction. 1794 assert((SI || BI->isConditional()) && 1795 "Can only unswitch switches and conditional branch!"); 1796 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1797 if (FullUnswitch) 1798 assert(Invariants.size() == 1 && 1799 "Cannot have other invariants with full unswitching!"); 1800 else 1801 assert(isa<Instruction>(BI->getCondition()) && 1802 "Partial unswitching requires an instruction as the condition!"); 1803 1804 // Constant and BBs tracking the cloned and continuing successor. When we are 1805 // unswitching the entire condition, this can just be trivially chosen to 1806 // unswitch towards `true`. However, when we are unswitching a set of 1807 // invariants combined with `and` or `or`, the combining operation determines 1808 // the best direction to unswitch: we want to unswitch the direction that will 1809 // collapse the branch. 1810 bool Direction = true; 1811 int ClonedSucc = 0; 1812 if (!FullUnswitch) { 1813 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1814 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1815 Instruction::And && 1816 "Only `or` and `and` instructions can combine invariants being " 1817 "unswitched."); 1818 Direction = false; 1819 ClonedSucc = 1; 1820 } 1821 } 1822 1823 BasicBlock *RetainedSuccBB = 1824 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1825 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1826 if (BI) 1827 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1828 else 1829 for (auto Case : SI->cases()) 1830 if (Case.getCaseSuccessor() != RetainedSuccBB) 1831 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1832 1833 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 1834 "Should not unswitch the same successor we are retaining!"); 1835 1836 // The branch should be in this exact loop. Any inner loop's invariant branch 1837 // should be handled by unswitching that inner loop. The caller of this 1838 // routine should filter out any candidates that remain (but were skipped for 1839 // whatever reason). 1840 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1841 1842 SmallVector<BasicBlock *, 4> ExitBlocks; 1843 L.getUniqueExitBlocks(ExitBlocks); 1844 1845 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 1846 // don't know how to split those exit blocks. 1847 // FIXME: We should teach SplitBlock to handle this and remove this 1848 // restriction. 1849 for (auto *ExitBB : ExitBlocks) 1850 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) 1851 return false; 1852 1853 // Compute the parent loop now before we start hacking on things. 1854 Loop *ParentL = L.getParentLoop(); 1855 1856 // Compute the outer-most loop containing one of our exit blocks. This is the 1857 // furthest up our loopnest which can be mutated, which we will use below to 1858 // update things. 1859 Loop *OuterExitL = &L; 1860 for (auto *ExitBB : ExitBlocks) { 1861 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1862 if (!NewOuterExitL) { 1863 // We exited the entire nest with this block, so we're done. 1864 OuterExitL = nullptr; 1865 break; 1866 } 1867 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1868 OuterExitL = NewOuterExitL; 1869 } 1870 1871 // At this point, we're definitely going to unswitch something so invalidate 1872 // any cached information in ScalarEvolution for the outer most loop 1873 // containing an exit block and all nested loops. 1874 if (SE) { 1875 if (OuterExitL) 1876 SE->forgetLoop(OuterExitL); 1877 else 1878 SE->forgetTopmostLoop(&L); 1879 } 1880 1881 // If the edge from this terminator to a successor dominates that successor, 1882 // store a map from each block in its dominator subtree to it. This lets us 1883 // tell when cloning for a particular successor if a block is dominated by 1884 // some *other* successor with a single data structure. We use this to 1885 // significantly reduce cloning. 1886 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 1887 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 1888 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 1889 if (SuccBB->getUniquePredecessor() || 1890 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 1891 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 1892 })) 1893 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 1894 DominatingSucc[BB] = SuccBB; 1895 return true; 1896 }); 1897 1898 // Split the preheader, so that we know that there is a safe place to insert 1899 // the conditional branch. We will change the preheader to have a conditional 1900 // branch on LoopCond. The original preheader will become the split point 1901 // between the unswitched versions, and we will have a new preheader for the 1902 // original loop. 1903 BasicBlock *SplitBB = L.getLoopPreheader(); 1904 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI); 1905 1906 // Keep track of the dominator tree updates needed. 1907 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1908 1909 // Clone the loop for each unswitched successor. 1910 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 1911 VMaps.reserve(UnswitchedSuccBBs.size()); 1912 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 1913 for (auto *SuccBB : UnswitchedSuccBBs) { 1914 VMaps.emplace_back(new ValueToValueMapTy()); 1915 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 1916 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 1917 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI); 1918 } 1919 1920 // The stitching of the branched code back together depends on whether we're 1921 // doing full unswitching or not with the exception that we always want to 1922 // nuke the initial terminator placed in the split block. 1923 SplitBB->getTerminator()->eraseFromParent(); 1924 if (FullUnswitch) { 1925 // First we need to unhook the successor relationship as we'll be replacing 1926 // the terminator with a direct branch. This is much simpler for branches 1927 // than switches so we handle those first. 1928 if (BI) { 1929 // Remove the parent as a predecessor of the unswitched successor. 1930 assert(UnswitchedSuccBBs.size() == 1 && 1931 "Only one possible unswitched block for a branch!"); 1932 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 1933 UnswitchedSuccBB->removePredecessor(ParentBB, 1934 /*DontDeleteUselessPHIs*/ true); 1935 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 1936 } else { 1937 // Note that we actually want to remove the parent block as a predecessor 1938 // of *every* case successor. The case successor is either unswitched, 1939 // completely eliminating an edge from the parent to that successor, or it 1940 // is a duplicate edge to the retained successor as the retained successor 1941 // is always the default successor and as we'll replace this with a direct 1942 // branch we no longer need the duplicate entries in the PHI nodes. 1943 assert(SI->getDefaultDest() == RetainedSuccBB && 1944 "Not retaining default successor!"); 1945 for (auto &Case : SI->cases()) 1946 Case.getCaseSuccessor()->removePredecessor( 1947 ParentBB, 1948 /*DontDeleteUselessPHIs*/ true); 1949 1950 // We need to use the set to populate domtree updates as even when there 1951 // are multiple cases pointing at the same successor we only want to 1952 // remove and insert one edge in the domtree. 1953 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 1954 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 1955 } 1956 1957 // Now that we've unhooked the successor relationship, splice the terminator 1958 // from the original loop to the split. 1959 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 1960 1961 // Now wire up the terminator to the preheaders. 1962 if (BI) { 1963 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 1964 BI->setSuccessor(ClonedSucc, ClonedPH); 1965 BI->setSuccessor(1 - ClonedSucc, LoopPH); 1966 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 1967 } else { 1968 assert(SI && "Must either be a branch or switch!"); 1969 1970 // Walk the cases and directly update their successors. 1971 SI->setDefaultDest(LoopPH); 1972 for (auto &Case : SI->cases()) 1973 if (Case.getCaseSuccessor() == RetainedSuccBB) 1974 Case.setSuccessor(LoopPH); 1975 else 1976 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 1977 1978 // We need to use the set to populate domtree updates as even when there 1979 // are multiple cases pointing at the same successor we only want to 1980 // remove and insert one edge in the domtree. 1981 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 1982 DTUpdates.push_back( 1983 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 1984 } 1985 1986 // Create a new unconditional branch to the continuing block (as opposed to 1987 // the one cloned). 1988 BranchInst::Create(RetainedSuccBB, ParentBB); 1989 } else { 1990 assert(BI && "Only branches have partial unswitching."); 1991 assert(UnswitchedSuccBBs.size() == 1 && 1992 "Only one possible unswitched block for a branch!"); 1993 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 1994 // When doing a partial unswitch, we have to do a bit more work to build up 1995 // the branch in the split block. 1996 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 1997 *ClonedPH, *LoopPH); 1998 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 1999 } 2000 2001 // Apply the updates accumulated above to get an up-to-date dominator tree. 2002 DT.applyUpdates(DTUpdates); 2003 2004 // Now that we have an accurate dominator tree, first delete the dead cloned 2005 // blocks so that we can accurately build any cloned loops. It is important to 2006 // not delete the blocks from the original loop yet because we still want to 2007 // reference the original loop to understand the cloned loop's structure. 2008 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT); 2009 2010 // Build the cloned loop structure itself. This may be substantially 2011 // different from the original structure due to the simplified CFG. This also 2012 // handles inserting all the cloned blocks into the correct loops. 2013 SmallVector<Loop *, 4> NonChildClonedLoops; 2014 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2015 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2016 2017 // Now that our cloned loops have been built, we can update the original loop. 2018 // First we delete the dead blocks from it and then we rebuild the loop 2019 // structure taking these deletions into account. 2020 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI); 2021 SmallVector<Loop *, 4> HoistedLoops; 2022 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2023 2024 // This transformation has a high risk of corrupting the dominator tree, and 2025 // the below steps to rebuild loop structures will result in hard to debug 2026 // errors in that case so verify that the dominator tree is sane first. 2027 // FIXME: Remove this when the bugs stop showing up and rely on existing 2028 // verification steps. 2029 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2030 2031 if (BI) { 2032 // If we unswitched a branch which collapses the condition to a known 2033 // constant we want to replace all the uses of the invariants within both 2034 // the original and cloned blocks. We do this here so that we can use the 2035 // now updated dominator tree to identify which side the users are on. 2036 assert(UnswitchedSuccBBs.size() == 1 && 2037 "Only one possible unswitched block for a branch!"); 2038 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2039 ConstantInt *UnswitchedReplacement = 2040 Direction ? ConstantInt::getTrue(BI->getContext()) 2041 : ConstantInt::getFalse(BI->getContext()); 2042 ConstantInt *ContinueReplacement = 2043 Direction ? ConstantInt::getFalse(BI->getContext()) 2044 : ConstantInt::getTrue(BI->getContext()); 2045 for (Value *Invariant : Invariants) 2046 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2047 UI != UE;) { 2048 // Grab the use and walk past it so we can clobber it in the use list. 2049 Use *U = &*UI++; 2050 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2051 if (!UserI) 2052 continue; 2053 2054 // Replace it with the 'continue' side if in the main loop body, and the 2055 // unswitched if in the cloned blocks. 2056 if (DT.dominates(LoopPH, UserI->getParent())) 2057 U->set(ContinueReplacement); 2058 else if (DT.dominates(ClonedPH, UserI->getParent())) 2059 U->set(UnswitchedReplacement); 2060 } 2061 } 2062 2063 // We can change which blocks are exit blocks of all the cloned sibling 2064 // loops, the current loop, and any parent loops which shared exit blocks 2065 // with the current loop. As a consequence, we need to re-form LCSSA for 2066 // them. But we shouldn't need to re-form LCSSA for any child loops. 2067 // FIXME: This could be made more efficient by tracking which exit blocks are 2068 // new, and focusing on them, but that isn't likely to be necessary. 2069 // 2070 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2071 // loop nest and update every loop that could have had its exits changed. We 2072 // also need to cover any intervening loops. We add all of these loops to 2073 // a list and sort them by loop depth to achieve this without updating 2074 // unnecessary loops. 2075 auto UpdateLoop = [&](Loop &UpdateL) { 2076 #ifndef NDEBUG 2077 UpdateL.verifyLoop(); 2078 for (Loop *ChildL : UpdateL) { 2079 ChildL->verifyLoop(); 2080 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2081 "Perturbed a child loop's LCSSA form!"); 2082 } 2083 #endif 2084 // First build LCSSA for this loop so that we can preserve it when 2085 // forming dedicated exits. We don't want to perturb some other loop's 2086 // LCSSA while doing that CFG edit. 2087 formLCSSA(UpdateL, DT, &LI, nullptr); 2088 2089 // For loops reached by this loop's original exit blocks we may 2090 // introduced new, non-dedicated exits. At least try to re-form dedicated 2091 // exits for these loops. This may fail if they couldn't have dedicated 2092 // exits to start with. 2093 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); 2094 }; 2095 2096 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2097 // and we can do it in any order as they don't nest relative to each other. 2098 // 2099 // Also check if any of the loops we have updated have become top-level loops 2100 // as that will necessitate widening the outer loop scope. 2101 for (Loop *UpdatedL : 2102 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2103 UpdateLoop(*UpdatedL); 2104 if (!UpdatedL->getParentLoop()) 2105 OuterExitL = nullptr; 2106 } 2107 if (IsStillLoop) { 2108 UpdateLoop(L); 2109 if (!L.getParentLoop()) 2110 OuterExitL = nullptr; 2111 } 2112 2113 // If the original loop had exit blocks, walk up through the outer most loop 2114 // of those exit blocks to update LCSSA and form updated dedicated exits. 2115 if (OuterExitL != &L) 2116 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2117 OuterL = OuterL->getParentLoop()) 2118 UpdateLoop(*OuterL); 2119 2120 #ifndef NDEBUG 2121 // Verify the entire loop structure to catch any incorrect updates before we 2122 // progress in the pass pipeline. 2123 LI.verify(DT); 2124 #endif 2125 2126 // Now that we've unswitched something, make callbacks to report the changes. 2127 // For that we need to merge together the updated loops and the cloned loops 2128 // and check whether the original loop survived. 2129 SmallVector<Loop *, 4> SibLoops; 2130 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2131 if (UpdatedL->getParentLoop() == ParentL) 2132 SibLoops.push_back(UpdatedL); 2133 UnswitchCB(IsStillLoop, SibLoops); 2134 2135 ++NumBranches; 2136 return true; 2137 } 2138 2139 /// Recursively compute the cost of a dominator subtree based on the per-block 2140 /// cost map provided. 2141 /// 2142 /// The recursive computation is memozied into the provided DT-indexed cost map 2143 /// to allow querying it for most nodes in the domtree without it becoming 2144 /// quadratic. 2145 static int 2146 computeDomSubtreeCost(DomTreeNode &N, 2147 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2148 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2149 // Don't accumulate cost (or recurse through) blocks not in our block cost 2150 // map and thus not part of the duplication cost being considered. 2151 auto BBCostIt = BBCostMap.find(N.getBlock()); 2152 if (BBCostIt == BBCostMap.end()) 2153 return 0; 2154 2155 // Lookup this node to see if we already computed its cost. 2156 auto DTCostIt = DTCostMap.find(&N); 2157 if (DTCostIt != DTCostMap.end()) 2158 return DTCostIt->second; 2159 2160 // If not, we have to compute it. We can't use insert above and update 2161 // because computing the cost may insert more things into the map. 2162 int Cost = std::accumulate( 2163 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2164 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2165 }); 2166 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2167 (void)Inserted; 2168 assert(Inserted && "Should not insert a node while visiting children!"); 2169 return Cost; 2170 } 2171 2172 static bool 2173 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2174 AssumptionCache &AC, TargetTransformInfo &TTI, 2175 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2176 ScalarEvolution *SE) { 2177 // Collect all invariant conditions within this loop (as opposed to an inner 2178 // loop which would be handled when visiting that inner loop). 2179 SmallVector<std::pair<TerminatorInst *, TinyPtrVector<Value *>>, 4> 2180 UnswitchCandidates; 2181 for (auto *BB : L.blocks()) { 2182 if (LI.getLoopFor(BB) != &L) 2183 continue; 2184 2185 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2186 // We can only consider fully loop-invariant switch conditions as we need 2187 // to completely eliminate the switch after unswitching. 2188 if (!isa<Constant>(SI->getCondition()) && 2189 L.isLoopInvariant(SI->getCondition())) 2190 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2191 continue; 2192 } 2193 2194 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2195 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2196 BI->getSuccessor(0) == BI->getSuccessor(1)) 2197 continue; 2198 2199 if (L.isLoopInvariant(BI->getCondition())) { 2200 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2201 continue; 2202 } 2203 2204 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2205 if (CondI.getOpcode() != Instruction::And && 2206 CondI.getOpcode() != Instruction::Or) 2207 continue; 2208 2209 TinyPtrVector<Value *> Invariants = 2210 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2211 if (Invariants.empty()) 2212 continue; 2213 2214 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2215 } 2216 2217 // If we didn't find any candidates, we're done. 2218 if (UnswitchCandidates.empty()) 2219 return false; 2220 2221 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2222 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2223 // irreducible control flow into reducible control flow and introduce new 2224 // loops "out of thin air". If we ever discover important use cases for doing 2225 // this, we can add support to loop unswitch, but it is a lot of complexity 2226 // for what seems little or no real world benefit. 2227 LoopBlocksRPO RPOT(&L); 2228 RPOT.perform(&LI); 2229 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2230 return false; 2231 2232 LLVM_DEBUG( 2233 dbgs() << "Considering " << UnswitchCandidates.size() 2234 << " non-trivial loop invariant conditions for unswitching.\n"); 2235 2236 // Given that unswitching these terminators will require duplicating parts of 2237 // the loop, so we need to be able to model that cost. Compute the ephemeral 2238 // values and set up a data structure to hold per-BB costs. We cache each 2239 // block's cost so that we don't recompute this when considering different 2240 // subsets of the loop for duplication during unswitching. 2241 SmallPtrSet<const Value *, 4> EphValues; 2242 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2243 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2244 2245 // Compute the cost of each block, as well as the total loop cost. Also, bail 2246 // out if we see instructions which are incompatible with loop unswitching 2247 // (convergent, noduplicate, or cross-basic-block tokens). 2248 // FIXME: We might be able to safely handle some of these in non-duplicated 2249 // regions. 2250 int LoopCost = 0; 2251 for (auto *BB : L.blocks()) { 2252 int Cost = 0; 2253 for (auto &I : *BB) { 2254 if (EphValues.count(&I)) 2255 continue; 2256 2257 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2258 return false; 2259 if (auto CS = CallSite(&I)) 2260 if (CS.isConvergent() || CS.cannotDuplicate()) 2261 return false; 2262 2263 Cost += TTI.getUserCost(&I); 2264 } 2265 assert(Cost >= 0 && "Must not have negative costs!"); 2266 LoopCost += Cost; 2267 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2268 BBCostMap[BB] = Cost; 2269 } 2270 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2271 2272 // Now we find the best candidate by searching for the one with the following 2273 // properties in order: 2274 // 2275 // 1) An unswitching cost below the threshold 2276 // 2) The smallest number of duplicated unswitch candidates (to avoid 2277 // creating redundant subsequent unswitching) 2278 // 3) The smallest cost after unswitching. 2279 // 2280 // We prioritize reducing fanout of unswitch candidates provided the cost 2281 // remains below the threshold because this has a multiplicative effect. 2282 // 2283 // This requires memoizing each dominator subtree to avoid redundant work. 2284 // 2285 // FIXME: Need to actually do the number of candidates part above. 2286 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2287 // Given a terminator which might be unswitched, computes the non-duplicated 2288 // cost for that terminator. 2289 auto ComputeUnswitchedCost = [&](TerminatorInst &TI, bool FullUnswitch) { 2290 BasicBlock &BB = *TI.getParent(); 2291 SmallPtrSet<BasicBlock *, 4> Visited; 2292 2293 int Cost = LoopCost; 2294 for (BasicBlock *SuccBB : successors(&BB)) { 2295 // Don't count successors more than once. 2296 if (!Visited.insert(SuccBB).second) 2297 continue; 2298 2299 // If this is a partial unswitch candidate, then it must be a conditional 2300 // branch with a condition of either `or` or `and`. In that case, one of 2301 // the successors is necessarily duplicated, so don't even try to remove 2302 // its cost. 2303 if (!FullUnswitch) { 2304 auto &BI = cast<BranchInst>(TI); 2305 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2306 Instruction::And) { 2307 if (SuccBB == BI.getSuccessor(1)) 2308 continue; 2309 } else { 2310 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2311 Instruction::Or && 2312 "Only `and` and `or` conditions can result in a partial " 2313 "unswitch!"); 2314 if (SuccBB == BI.getSuccessor(0)) 2315 continue; 2316 } 2317 } 2318 2319 // This successor's domtree will not need to be duplicated after 2320 // unswitching if the edge to the successor dominates it (and thus the 2321 // entire tree). This essentially means there is no other path into this 2322 // subtree and so it will end up live in only one clone of the loop. 2323 if (SuccBB->getUniquePredecessor() || 2324 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2325 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2326 })) { 2327 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2328 assert(Cost >= 0 && 2329 "Non-duplicated cost should never exceed total loop cost!"); 2330 } 2331 } 2332 2333 // Now scale the cost by the number of unique successors minus one. We 2334 // subtract one because there is already at least one copy of the entire 2335 // loop. This is computing the new cost of unswitching a condition. 2336 assert(Visited.size() > 1 && 2337 "Cannot unswitch a condition without multiple distinct successors!"); 2338 return Cost * (Visited.size() - 1); 2339 }; 2340 TerminatorInst *BestUnswitchTI = nullptr; 2341 int BestUnswitchCost; 2342 ArrayRef<Value *> BestUnswitchInvariants; 2343 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2344 TerminatorInst &TI = *TerminatorAndInvariants.first; 2345 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2346 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2347 int CandidateCost = ComputeUnswitchedCost( 2348 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2349 Invariants[0] == BI->getCondition())); 2350 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2351 << " for unswitch candidate: " << TI << "\n"); 2352 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2353 BestUnswitchTI = &TI; 2354 BestUnswitchCost = CandidateCost; 2355 BestUnswitchInvariants = Invariants; 2356 } 2357 } 2358 2359 if (BestUnswitchCost >= UnswitchThreshold) { 2360 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2361 << BestUnswitchCost << "\n"); 2362 return false; 2363 } 2364 2365 LLVM_DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = " 2366 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2367 << "\n"); 2368 return unswitchNontrivialInvariants( 2369 L, *BestUnswitchTI, BestUnswitchInvariants, DT, LI, AC, UnswitchCB, SE); 2370 } 2371 2372 /// Unswitch control flow predicated on loop invariant conditions. 2373 /// 2374 /// This first hoists all branches or switches which are trivial (IE, do not 2375 /// require duplicating any part of the loop) out of the loop body. It then 2376 /// looks at other loop invariant control flows and tries to unswitch those as 2377 /// well by cloning the loop if the result is small enough. 2378 /// 2379 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2380 /// updated based on the unswitch. 2381 /// 2382 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2383 /// true, we will attempt to do non-trivial unswitching as well as trivial 2384 /// unswitching. 2385 /// 2386 /// The `UnswitchCB` callback provided will be run after unswitching is 2387 /// complete, with the first parameter set to `true` if the provided loop 2388 /// remains a loop, and a list of new sibling loops created. 2389 /// 2390 /// If `SE` is non-null, we will update that analysis based on the unswitching 2391 /// done. 2392 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2393 AssumptionCache &AC, TargetTransformInfo &TTI, 2394 bool NonTrivial, 2395 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2396 ScalarEvolution *SE) { 2397 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2398 "Loops must be in LCSSA form before unswitching."); 2399 bool Changed = false; 2400 2401 // Must be in loop simplified form: we need a preheader and dedicated exits. 2402 if (!L.isLoopSimplifyForm()) 2403 return false; 2404 2405 // Try trivial unswitch first before loop over other basic blocks in the loop. 2406 if (unswitchAllTrivialConditions(L, DT, LI, SE)) { 2407 // If we unswitched successfully we will want to clean up the loop before 2408 // processing it further so just mark it as unswitched and return. 2409 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2410 return true; 2411 } 2412 2413 // If we're not doing non-trivial unswitching, we're done. We both accept 2414 // a parameter but also check a local flag that can be used for testing 2415 // a debugging. 2416 if (!NonTrivial && !EnableNonTrivialUnswitch) 2417 return false; 2418 2419 // For non-trivial unswitching, because it often creates new loops, we rely on 2420 // the pass manager to iterate on the loops rather than trying to immediately 2421 // reach a fixed point. There is no substantial advantage to iterating 2422 // internally, and if any of the new loops are simplified enough to contain 2423 // trivial unswitching we want to prefer those. 2424 2425 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2426 // a partial unswitch when possible below the threshold. 2427 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE)) 2428 return true; 2429 2430 // No other opportunities to unswitch. 2431 return Changed; 2432 } 2433 2434 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2435 LoopStandardAnalysisResults &AR, 2436 LPMUpdater &U) { 2437 Function &F = *L.getHeader()->getParent(); 2438 (void)F; 2439 2440 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2441 << "\n"); 2442 2443 // Save the current loop name in a variable so that we can report it even 2444 // after it has been deleted. 2445 std::string LoopName = L.getName(); 2446 2447 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2448 ArrayRef<Loop *> NewLoops) { 2449 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2450 if (!NewLoops.empty()) 2451 U.addSiblingLoops(NewLoops); 2452 2453 // If the current loop remains valid, we should revisit it to catch any 2454 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2455 if (CurrentLoopValid) 2456 U.revisitCurrentLoop(); 2457 else 2458 U.markLoopAsDeleted(L, LoopName); 2459 }; 2460 2461 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2462 &AR.SE)) 2463 return PreservedAnalyses::all(); 2464 2465 // Historically this pass has had issues with the dominator tree so verify it 2466 // in asserts builds. 2467 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2468 return getLoopPassPreservedAnalyses(); 2469 } 2470 2471 namespace { 2472 2473 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2474 bool NonTrivial; 2475 2476 public: 2477 static char ID; // Pass ID, replacement for typeid 2478 2479 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2480 : LoopPass(ID), NonTrivial(NonTrivial) { 2481 initializeSimpleLoopUnswitchLegacyPassPass( 2482 *PassRegistry::getPassRegistry()); 2483 } 2484 2485 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2486 2487 void getAnalysisUsage(AnalysisUsage &AU) const override { 2488 AU.addRequired<AssumptionCacheTracker>(); 2489 AU.addRequired<TargetTransformInfoWrapperPass>(); 2490 getLoopAnalysisUsage(AU); 2491 } 2492 }; 2493 2494 } // end anonymous namespace 2495 2496 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2497 if (skipLoop(L)) 2498 return false; 2499 2500 Function &F = *L->getHeader()->getParent(); 2501 2502 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2503 << "\n"); 2504 2505 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2506 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2507 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2508 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2509 2510 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 2511 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 2512 2513 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2514 ArrayRef<Loop *> NewLoops) { 2515 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2516 for (auto *NewL : NewLoops) 2517 LPM.addLoop(*NewL); 2518 2519 // If the current loop remains valid, re-add it to the queue. This is 2520 // a little wasteful as we'll finish processing the current loop as well, 2521 // but it is the best we can do in the old PM. 2522 if (CurrentLoopValid) 2523 LPM.addLoop(*L); 2524 else 2525 LPM.markLoopAsDeleted(*L); 2526 }; 2527 2528 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE); 2529 2530 // If anything was unswitched, also clear any cached information about this 2531 // loop. 2532 LPM.deleteSimpleAnalysisLoop(L); 2533 2534 // Historically this pass has had issues with the dominator tree so verify it 2535 // in asserts builds. 2536 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2537 2538 return Changed; 2539 } 2540 2541 char SimpleLoopUnswitchLegacyPass::ID = 0; 2542 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2543 "Simple unswitch loops", false, false) 2544 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2545 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2546 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2547 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2548 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2549 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2550 "Simple unswitch loops", false, false) 2551 2552 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2553 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2554 } 2555