xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision 0aeb37324dbb83d442b9222f465cece691fe29e0)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/PatternMatch.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/GenericDomTree.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
54 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
55 #include "llvm/Transforms/Utils/Cloning.h"
56 #include "llvm/Transforms/Utils/Local.h"
57 #include "llvm/Transforms/Utils/LoopUtils.h"
58 #include "llvm/Transforms/Utils/ValueMapper.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <iterator>
62 #include <numeric>
63 #include <utility>
64 
65 #define DEBUG_TYPE "simple-loop-unswitch"
66 
67 using namespace llvm;
68 using namespace llvm::PatternMatch;
69 
70 STATISTIC(NumBranches, "Number of branches unswitched");
71 STATISTIC(NumSwitches, "Number of switches unswitched");
72 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
73 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
74 STATISTIC(
75     NumCostMultiplierSkipped,
76     "Number of unswitch candidates that had their cost multiplier skipped");
77 
78 static cl::opt<bool> EnableNonTrivialUnswitch(
79     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
80     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
81              "following the configuration passed into the pass."));
82 
83 static cl::opt<int>
84     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
85                       cl::ZeroOrMore,
86                       cl::desc("The cost threshold for unswitching a loop."));
87 
88 static cl::opt<bool> EnableUnswitchCostMultiplier(
89     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
90     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
91              "explosion in nontrivial unswitch."));
92 static cl::opt<int> UnswitchSiblingsToplevelDiv(
93     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
94     cl::desc("Toplevel siblings divisor for cost multiplier."));
95 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
96     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
97     cl::desc("Number of unswitch candidates that are ignored when calculating "
98              "cost multiplier."));
99 static cl::opt<bool> UnswitchGuards(
100     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
101     cl::desc("If enabled, simple loop unswitching will also consider "
102              "llvm.experimental.guard intrinsics as unswitch candidates."));
103 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
104     "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
105     cl::init(false), cl::Hidden,
106     cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
107              "null checks to save time analyzing if we can keep it."));
108 static cl::opt<unsigned>
109     MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
110                   cl::desc("Max number of memory uses to explore during "
111                            "partial unswitching analysis"),
112                   cl::init(100), cl::Hidden);
113 static cl::opt<bool> FreezeLoopUnswitchCond(
114     "freeze-loop-unswitch-cond", cl::init(false), cl::Hidden,
115     cl::desc("If enabled, the freeze instruction will be added to condition "
116              "of loop unswitch to prevent miscompilation."));
117 
118 /// Collect all of the loop invariant input values transitively used by the
119 /// homogeneous instruction graph from a given root.
120 ///
121 /// This essentially walks from a root recursively through loop variant operands
122 /// which have the exact same opcode and finds all inputs which are loop
123 /// invariant. For some operations these can be re-associated and unswitched out
124 /// of the loop entirely.
125 static TinyPtrVector<Value *>
126 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
127                                          LoopInfo &LI) {
128   assert(!L.isLoopInvariant(&Root) &&
129          "Only need to walk the graph if root itself is not invariant.");
130   TinyPtrVector<Value *> Invariants;
131 
132   bool IsRootAnd = match(&Root, m_LogicalAnd());
133   bool IsRootOr  = match(&Root, m_LogicalOr());
134 
135   // Build a worklist and recurse through operators collecting invariants.
136   SmallVector<Instruction *, 4> Worklist;
137   SmallPtrSet<Instruction *, 8> Visited;
138   Worklist.push_back(&Root);
139   Visited.insert(&Root);
140   do {
141     Instruction &I = *Worklist.pop_back_val();
142     for (Value *OpV : I.operand_values()) {
143       // Skip constants as unswitching isn't interesting for them.
144       if (isa<Constant>(OpV))
145         continue;
146 
147       // Add it to our result if loop invariant.
148       if (L.isLoopInvariant(OpV)) {
149         Invariants.push_back(OpV);
150         continue;
151       }
152 
153       // If not an instruction with the same opcode, nothing we can do.
154       Instruction *OpI = dyn_cast<Instruction>(OpV);
155 
156       if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
157                   (IsRootOr  && match(OpI, m_LogicalOr())))) {
158         // Visit this operand.
159         if (Visited.insert(OpI).second)
160           Worklist.push_back(OpI);
161       }
162     }
163   } while (!Worklist.empty());
164 
165   return Invariants;
166 }
167 
168 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
169                                      Constant &Replacement) {
170   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
171 
172   // Replace uses of LIC in the loop with the given constant.
173   // We use make_early_inc_range as set invalidates the iterator.
174   for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
175     Instruction *UserI = dyn_cast<Instruction>(U.getUser());
176 
177     // Replace this use within the loop body.
178     if (UserI && L.contains(UserI))
179       U.set(&Replacement);
180   }
181 }
182 
183 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
184 /// incoming values along this edge.
185 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
186                                          BasicBlock &ExitBB) {
187   for (Instruction &I : ExitBB) {
188     auto *PN = dyn_cast<PHINode>(&I);
189     if (!PN)
190       // No more PHIs to check.
191       return true;
192 
193     // If the incoming value for this edge isn't loop invariant the unswitch
194     // won't be trivial.
195     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
196       return false;
197   }
198   llvm_unreachable("Basic blocks should never be empty!");
199 }
200 
201 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
202 /// end of \p BB and conditionally branch on the copied condition. We only
203 /// branch on a single value.
204 static void buildPartialUnswitchConditionalBranch(
205     BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
206     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze) {
207   IRBuilder<> IRB(&BB);
208 
209   Value *Cond = Direction ? IRB.CreateOr(Invariants) :
210     IRB.CreateAnd(Invariants);
211   if (InsertFreeze)
212     Cond = IRB.CreateFreeze(Cond, Cond->getName() + ".fr");
213   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
214                    Direction ? &NormalSucc : &UnswitchedSucc);
215 }
216 
217 /// Copy a set of loop invariant values, and conditionally branch on them.
218 static void buildPartialInvariantUnswitchConditionalBranch(
219     BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
220     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
221     MemorySSAUpdater *MSSAU) {
222   ValueToValueMapTy VMap;
223   for (auto *Val : reverse(ToDuplicate)) {
224     Instruction *Inst = cast<Instruction>(Val);
225     Instruction *NewInst = Inst->clone();
226     BB.getInstList().insert(BB.end(), NewInst);
227     RemapInstruction(NewInst, VMap,
228                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
229     VMap[Val] = NewInst;
230 
231     if (!MSSAU)
232       continue;
233 
234     MemorySSA *MSSA = MSSAU->getMemorySSA();
235     if (auto *MemUse =
236             dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
237       auto *DefiningAccess = MemUse->getDefiningAccess();
238       // Get the first defining access before the loop.
239       while (L.contains(DefiningAccess->getBlock())) {
240         // If the defining access is a MemoryPhi, get the incoming
241         // value for the pre-header as defining access.
242         if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
243           DefiningAccess =
244               MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
245         else
246           DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
247       }
248       MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
249                                     NewInst->getParent(),
250                                     MemorySSA::BeforeTerminator);
251     }
252   }
253 
254   IRBuilder<> IRB(&BB);
255   Value *Cond = VMap[ToDuplicate[0]];
256   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
257                    Direction ? &NormalSucc : &UnswitchedSucc);
258 }
259 
260 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
261 ///
262 /// Requires that the loop exit and unswitched basic block are the same, and
263 /// that the exiting block was a unique predecessor of that block. Rewrites the
264 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
265 /// PHI nodes from the old preheader that now contains the unswitched
266 /// terminator.
267 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
268                                                   BasicBlock &OldExitingBB,
269                                                   BasicBlock &OldPH) {
270   for (PHINode &PN : UnswitchedBB.phis()) {
271     // When the loop exit is directly unswitched we just need to update the
272     // incoming basic block. We loop to handle weird cases with repeated
273     // incoming blocks, but expect to typically only have one operand here.
274     for (auto i : seq<int>(0, PN.getNumOperands())) {
275       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
276              "Found incoming block different from unique predecessor!");
277       PN.setIncomingBlock(i, &OldPH);
278     }
279   }
280 }
281 
282 /// Rewrite the PHI nodes in the loop exit basic block and the split off
283 /// unswitched block.
284 ///
285 /// Because the exit block remains an exit from the loop, this rewrites the
286 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
287 /// nodes into the unswitched basic block to select between the value in the
288 /// old preheader and the loop exit.
289 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
290                                                       BasicBlock &UnswitchedBB,
291                                                       BasicBlock &OldExitingBB,
292                                                       BasicBlock &OldPH,
293                                                       bool FullUnswitch) {
294   assert(&ExitBB != &UnswitchedBB &&
295          "Must have different loop exit and unswitched blocks!");
296   Instruction *InsertPt = &*UnswitchedBB.begin();
297   for (PHINode &PN : ExitBB.phis()) {
298     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
299                                   PN.getName() + ".split", InsertPt);
300 
301     // Walk backwards over the old PHI node's inputs to minimize the cost of
302     // removing each one. We have to do this weird loop manually so that we
303     // create the same number of new incoming edges in the new PHI as we expect
304     // each case-based edge to be included in the unswitched switch in some
305     // cases.
306     // FIXME: This is really, really gross. It would be much cleaner if LLVM
307     // allowed us to create a single entry for a predecessor block without
308     // having separate entries for each "edge" even though these edges are
309     // required to produce identical results.
310     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
311       if (PN.getIncomingBlock(i) != &OldExitingBB)
312         continue;
313 
314       Value *Incoming = PN.getIncomingValue(i);
315       if (FullUnswitch)
316         // No more edge from the old exiting block to the exit block.
317         PN.removeIncomingValue(i);
318 
319       NewPN->addIncoming(Incoming, &OldPH);
320     }
321 
322     // Now replace the old PHI with the new one and wire the old one in as an
323     // input to the new one.
324     PN.replaceAllUsesWith(NewPN);
325     NewPN->addIncoming(&PN, &ExitBB);
326   }
327 }
328 
329 /// Hoist the current loop up to the innermost loop containing a remaining exit.
330 ///
331 /// Because we've removed an exit from the loop, we may have changed the set of
332 /// loops reachable and need to move the current loop up the loop nest or even
333 /// to an entirely separate nest.
334 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
335                                  DominatorTree &DT, LoopInfo &LI,
336                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
337   // If the loop is already at the top level, we can't hoist it anywhere.
338   Loop *OldParentL = L.getParentLoop();
339   if (!OldParentL)
340     return;
341 
342   SmallVector<BasicBlock *, 4> Exits;
343   L.getExitBlocks(Exits);
344   Loop *NewParentL = nullptr;
345   for (auto *ExitBB : Exits)
346     if (Loop *ExitL = LI.getLoopFor(ExitBB))
347       if (!NewParentL || NewParentL->contains(ExitL))
348         NewParentL = ExitL;
349 
350   if (NewParentL == OldParentL)
351     return;
352 
353   // The new parent loop (if different) should always contain the old one.
354   if (NewParentL)
355     assert(NewParentL->contains(OldParentL) &&
356            "Can only hoist this loop up the nest!");
357 
358   // The preheader will need to move with the body of this loop. However,
359   // because it isn't in this loop we also need to update the primary loop map.
360   assert(OldParentL == LI.getLoopFor(&Preheader) &&
361          "Parent loop of this loop should contain this loop's preheader!");
362   LI.changeLoopFor(&Preheader, NewParentL);
363 
364   // Remove this loop from its old parent.
365   OldParentL->removeChildLoop(&L);
366 
367   // Add the loop either to the new parent or as a top-level loop.
368   if (NewParentL)
369     NewParentL->addChildLoop(&L);
370   else
371     LI.addTopLevelLoop(&L);
372 
373   // Remove this loops blocks from the old parent and every other loop up the
374   // nest until reaching the new parent. Also update all of these
375   // no-longer-containing loops to reflect the nesting change.
376   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
377        OldContainingL = OldContainingL->getParentLoop()) {
378     llvm::erase_if(OldContainingL->getBlocksVector(),
379                    [&](const BasicBlock *BB) {
380                      return BB == &Preheader || L.contains(BB);
381                    });
382 
383     OldContainingL->getBlocksSet().erase(&Preheader);
384     for (BasicBlock *BB : L.blocks())
385       OldContainingL->getBlocksSet().erase(BB);
386 
387     // Because we just hoisted a loop out of this one, we have essentially
388     // created new exit paths from it. That means we need to form LCSSA PHI
389     // nodes for values used in the no-longer-nested loop.
390     formLCSSA(*OldContainingL, DT, &LI, SE);
391 
392     // We shouldn't need to form dedicated exits because the exit introduced
393     // here is the (just split by unswitching) preheader. However, after trivial
394     // unswitching it is possible to get new non-dedicated exits out of parent
395     // loop so let's conservatively form dedicated exit blocks and figure out
396     // if we can optimize later.
397     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
398                             /*PreserveLCSSA*/ true);
399   }
400 }
401 
402 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
403 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
404 // as exiting block.
405 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
406   Loop *TopMost = LI.getLoopFor(ExitBB);
407   Loop *Current = TopMost;
408   while (Current) {
409     if (Current->isLoopExiting(ExitBB))
410       TopMost = Current;
411     Current = Current->getParentLoop();
412   }
413   return TopMost;
414 }
415 
416 /// Unswitch a trivial branch if the condition is loop invariant.
417 ///
418 /// This routine should only be called when loop code leading to the branch has
419 /// been validated as trivial (no side effects). This routine checks if the
420 /// condition is invariant and one of the successors is a loop exit. This
421 /// allows us to unswitch without duplicating the loop, making it trivial.
422 ///
423 /// If this routine fails to unswitch the branch it returns false.
424 ///
425 /// If the branch can be unswitched, this routine splits the preheader and
426 /// hoists the branch above that split. Preserves loop simplified form
427 /// (splitting the exit block as necessary). It simplifies the branch within
428 /// the loop to an unconditional branch but doesn't remove it entirely. Further
429 /// cleanup can be done with some simplifycfg like pass.
430 ///
431 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
432 /// invalidated by this.
433 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
434                                   LoopInfo &LI, ScalarEvolution *SE,
435                                   MemorySSAUpdater *MSSAU) {
436   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
437   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
438 
439   // The loop invariant values that we want to unswitch.
440   TinyPtrVector<Value *> Invariants;
441 
442   // When true, we're fully unswitching the branch rather than just unswitching
443   // some input conditions to the branch.
444   bool FullUnswitch = false;
445 
446   if (L.isLoopInvariant(BI.getCondition())) {
447     Invariants.push_back(BI.getCondition());
448     FullUnswitch = true;
449   } else {
450     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
451       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
452     if (Invariants.empty()) {
453       LLVM_DEBUG(dbgs() << "   Couldn't find invariant inputs!\n");
454       return false;
455     }
456   }
457 
458   // Check that one of the branch's successors exits, and which one.
459   bool ExitDirection = true;
460   int LoopExitSuccIdx = 0;
461   auto *LoopExitBB = BI.getSuccessor(0);
462   if (L.contains(LoopExitBB)) {
463     ExitDirection = false;
464     LoopExitSuccIdx = 1;
465     LoopExitBB = BI.getSuccessor(1);
466     if (L.contains(LoopExitBB)) {
467       LLVM_DEBUG(dbgs() << "   Branch doesn't exit the loop!\n");
468       return false;
469     }
470   }
471   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
472   auto *ParentBB = BI.getParent();
473   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
474     LLVM_DEBUG(dbgs() << "   Loop exit PHI's aren't loop-invariant!\n");
475     return false;
476   }
477 
478   // When unswitching only part of the branch's condition, we need the exit
479   // block to be reached directly from the partially unswitched input. This can
480   // be done when the exit block is along the true edge and the branch condition
481   // is a graph of `or` operations, or the exit block is along the false edge
482   // and the condition is a graph of `and` operations.
483   if (!FullUnswitch) {
484     if (ExitDirection ? !match(BI.getCondition(), m_LogicalOr())
485                       : !match(BI.getCondition(), m_LogicalAnd())) {
486       LLVM_DEBUG(dbgs() << "   Branch condition is in improper form for "
487                            "non-full unswitch!\n");
488       return false;
489     }
490   }
491 
492   LLVM_DEBUG({
493     dbgs() << "    unswitching trivial invariant conditions for: " << BI
494            << "\n";
495     for (Value *Invariant : Invariants) {
496       dbgs() << "      " << *Invariant << " == true";
497       if (Invariant != Invariants.back())
498         dbgs() << " ||";
499       dbgs() << "\n";
500     }
501   });
502 
503   // If we have scalar evolutions, we need to invalidate them including this
504   // loop, the loop containing the exit block and the topmost parent loop
505   // exiting via LoopExitBB.
506   if (SE) {
507     if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
508       SE->forgetLoop(ExitL);
509     else
510       // Forget the entire nest as this exits the entire nest.
511       SE->forgetTopmostLoop(&L);
512   }
513 
514   if (MSSAU && VerifyMemorySSA)
515     MSSAU->getMemorySSA()->verifyMemorySSA();
516 
517   // Split the preheader, so that we know that there is a safe place to insert
518   // the conditional branch. We will change the preheader to have a conditional
519   // branch on LoopCond.
520   BasicBlock *OldPH = L.getLoopPreheader();
521   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
522 
523   // Now that we have a place to insert the conditional branch, create a place
524   // to branch to: this is the exit block out of the loop that we are
525   // unswitching. We need to split this if there are other loop predecessors.
526   // Because the loop is in simplified form, *any* other predecessor is enough.
527   BasicBlock *UnswitchedBB;
528   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
529     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
530            "A branch's parent isn't a predecessor!");
531     UnswitchedBB = LoopExitBB;
532   } else {
533     UnswitchedBB =
534         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
535   }
536 
537   if (MSSAU && VerifyMemorySSA)
538     MSSAU->getMemorySSA()->verifyMemorySSA();
539 
540   // Actually move the invariant uses into the unswitched position. If possible,
541   // we do this by moving the instructions, but when doing partial unswitching
542   // we do it by building a new merge of the values in the unswitched position.
543   OldPH->getTerminator()->eraseFromParent();
544   if (FullUnswitch) {
545     // If fully unswitching, we can use the existing branch instruction.
546     // Splice it into the old PH to gate reaching the new preheader and re-point
547     // its successors.
548     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
549                                 BI);
550     if (MSSAU) {
551       // Temporarily clone the terminator, to make MSSA update cheaper by
552       // separating "insert edge" updates from "remove edge" ones.
553       ParentBB->getInstList().push_back(BI.clone());
554     } else {
555       // Create a new unconditional branch that will continue the loop as a new
556       // terminator.
557       BranchInst::Create(ContinueBB, ParentBB);
558     }
559     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
560     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
561   } else {
562     // Only unswitching a subset of inputs to the condition, so we will need to
563     // build a new branch that merges the invariant inputs.
564     if (ExitDirection)
565       assert(match(BI.getCondition(), m_LogicalOr()) &&
566              "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
567              "condition!");
568     else
569       assert(match(BI.getCondition(), m_LogicalAnd()) &&
570              "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
571              " condition!");
572     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
573                                           *UnswitchedBB, *NewPH, false);
574   }
575 
576   // Update the dominator tree with the added edge.
577   DT.insertEdge(OldPH, UnswitchedBB);
578 
579   // After the dominator tree was updated with the added edge, update MemorySSA
580   // if available.
581   if (MSSAU) {
582     SmallVector<CFGUpdate, 1> Updates;
583     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
584     MSSAU->applyInsertUpdates(Updates, DT);
585   }
586 
587   // Finish updating dominator tree and memory ssa for full unswitch.
588   if (FullUnswitch) {
589     if (MSSAU) {
590       // Remove the cloned branch instruction.
591       ParentBB->getTerminator()->eraseFromParent();
592       // Create unconditional branch now.
593       BranchInst::Create(ContinueBB, ParentBB);
594       MSSAU->removeEdge(ParentBB, LoopExitBB);
595     }
596     DT.deleteEdge(ParentBB, LoopExitBB);
597   }
598 
599   if (MSSAU && VerifyMemorySSA)
600     MSSAU->getMemorySSA()->verifyMemorySSA();
601 
602   // Rewrite the relevant PHI nodes.
603   if (UnswitchedBB == LoopExitBB)
604     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
605   else
606     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
607                                               *ParentBB, *OldPH, FullUnswitch);
608 
609   // The constant we can replace all of our invariants with inside the loop
610   // body. If any of the invariants have a value other than this the loop won't
611   // be entered.
612   ConstantInt *Replacement = ExitDirection
613                                  ? ConstantInt::getFalse(BI.getContext())
614                                  : ConstantInt::getTrue(BI.getContext());
615 
616   // Since this is an i1 condition we can also trivially replace uses of it
617   // within the loop with a constant.
618   for (Value *Invariant : Invariants)
619     replaceLoopInvariantUses(L, Invariant, *Replacement);
620 
621   // If this was full unswitching, we may have changed the nesting relationship
622   // for this loop so hoist it to its correct parent if needed.
623   if (FullUnswitch)
624     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
625 
626   if (MSSAU && VerifyMemorySSA)
627     MSSAU->getMemorySSA()->verifyMemorySSA();
628 
629   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
630   ++NumTrivial;
631   ++NumBranches;
632   return true;
633 }
634 
635 /// Unswitch a trivial switch if the condition is loop invariant.
636 ///
637 /// This routine should only be called when loop code leading to the switch has
638 /// been validated as trivial (no side effects). This routine checks if the
639 /// condition is invariant and that at least one of the successors is a loop
640 /// exit. This allows us to unswitch without duplicating the loop, making it
641 /// trivial.
642 ///
643 /// If this routine fails to unswitch the switch it returns false.
644 ///
645 /// If the switch can be unswitched, this routine splits the preheader and
646 /// copies the switch above that split. If the default case is one of the
647 /// exiting cases, it copies the non-exiting cases and points them at the new
648 /// preheader. If the default case is not exiting, it copies the exiting cases
649 /// and points the default at the preheader. It preserves loop simplified form
650 /// (splitting the exit blocks as necessary). It simplifies the switch within
651 /// the loop by removing now-dead cases. If the default case is one of those
652 /// unswitched, it replaces its destination with a new basic block containing
653 /// only unreachable. Such basic blocks, while technically loop exits, are not
654 /// considered for unswitching so this is a stable transform and the same
655 /// switch will not be revisited. If after unswitching there is only a single
656 /// in-loop successor, the switch is further simplified to an unconditional
657 /// branch. Still more cleanup can be done with some simplifycfg like pass.
658 ///
659 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
660 /// invalidated by this.
661 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
662                                   LoopInfo &LI, ScalarEvolution *SE,
663                                   MemorySSAUpdater *MSSAU) {
664   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
665   Value *LoopCond = SI.getCondition();
666 
667   // If this isn't switching on an invariant condition, we can't unswitch it.
668   if (!L.isLoopInvariant(LoopCond))
669     return false;
670 
671   auto *ParentBB = SI.getParent();
672 
673   // The same check must be used both for the default and the exit cases. We
674   // should never leave edges from the switch instruction to a basic block that
675   // we are unswitching, hence the condition used to determine the default case
676   // needs to also be used to populate ExitCaseIndices, which is then used to
677   // remove cases from the switch.
678   auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
679     // BBToCheck is not an exit block if it is inside loop L.
680     if (L.contains(&BBToCheck))
681       return false;
682     // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
683     if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
684       return false;
685     // We do not unswitch a block that only has an unreachable statement, as
686     // it's possible this is a previously unswitched block. Only unswitch if
687     // either the terminator is not unreachable, or, if it is, it's not the only
688     // instruction in the block.
689     auto *TI = BBToCheck.getTerminator();
690     bool isUnreachable = isa<UnreachableInst>(TI);
691     return !isUnreachable ||
692            (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
693   };
694 
695   SmallVector<int, 4> ExitCaseIndices;
696   for (auto Case : SI.cases())
697     if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
698       ExitCaseIndices.push_back(Case.getCaseIndex());
699   BasicBlock *DefaultExitBB = nullptr;
700   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
701       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
702   if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
703     DefaultExitBB = SI.getDefaultDest();
704   } else if (ExitCaseIndices.empty())
705     return false;
706 
707   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
708 
709   if (MSSAU && VerifyMemorySSA)
710     MSSAU->getMemorySSA()->verifyMemorySSA();
711 
712   // We may need to invalidate SCEVs for the outermost loop reached by any of
713   // the exits.
714   Loop *OuterL = &L;
715 
716   if (DefaultExitBB) {
717     // Clear out the default destination temporarily to allow accurate
718     // predecessor lists to be examined below.
719     SI.setDefaultDest(nullptr);
720     // Check the loop containing this exit.
721     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
722     if (!ExitL || ExitL->contains(OuterL))
723       OuterL = ExitL;
724   }
725 
726   // Store the exit cases into a separate data structure and remove them from
727   // the switch.
728   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
729                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
730               4> ExitCases;
731   ExitCases.reserve(ExitCaseIndices.size());
732   SwitchInstProfUpdateWrapper SIW(SI);
733   // We walk the case indices backwards so that we remove the last case first
734   // and don't disrupt the earlier indices.
735   for (unsigned Index : reverse(ExitCaseIndices)) {
736     auto CaseI = SI.case_begin() + Index;
737     // Compute the outer loop from this exit.
738     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
739     if (!ExitL || ExitL->contains(OuterL))
740       OuterL = ExitL;
741     // Save the value of this case.
742     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
743     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
744     // Delete the unswitched cases.
745     SIW.removeCase(CaseI);
746   }
747 
748   if (SE) {
749     if (OuterL)
750       SE->forgetLoop(OuterL);
751     else
752       SE->forgetTopmostLoop(&L);
753   }
754 
755   // Check if after this all of the remaining cases point at the same
756   // successor.
757   BasicBlock *CommonSuccBB = nullptr;
758   if (SI.getNumCases() > 0 &&
759       all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
760         return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
761       }))
762     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
763   if (!DefaultExitBB) {
764     // If we're not unswitching the default, we need it to match any cases to
765     // have a common successor or if we have no cases it is the common
766     // successor.
767     if (SI.getNumCases() == 0)
768       CommonSuccBB = SI.getDefaultDest();
769     else if (SI.getDefaultDest() != CommonSuccBB)
770       CommonSuccBB = nullptr;
771   }
772 
773   // Split the preheader, so that we know that there is a safe place to insert
774   // the switch.
775   BasicBlock *OldPH = L.getLoopPreheader();
776   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
777   OldPH->getTerminator()->eraseFromParent();
778 
779   // Now add the unswitched switch.
780   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
781   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
782 
783   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
784   // First, we split any exit blocks with remaining in-loop predecessors. Then
785   // we update the PHIs in one of two ways depending on if there was a split.
786   // We walk in reverse so that we split in the same order as the cases
787   // appeared. This is purely for convenience of reading the resulting IR, but
788   // it doesn't cost anything really.
789   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
790   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
791   // Handle the default exit if necessary.
792   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
793   // ranges aren't quite powerful enough yet.
794   if (DefaultExitBB) {
795     if (pred_empty(DefaultExitBB)) {
796       UnswitchedExitBBs.insert(DefaultExitBB);
797       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
798     } else {
799       auto *SplitBB =
800           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
801       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
802                                                 *ParentBB, *OldPH,
803                                                 /*FullUnswitch*/ true);
804       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
805     }
806   }
807   // Note that we must use a reference in the for loop so that we update the
808   // container.
809   for (auto &ExitCase : reverse(ExitCases)) {
810     // Grab a reference to the exit block in the pair so that we can update it.
811     BasicBlock *ExitBB = std::get<1>(ExitCase);
812 
813     // If this case is the last edge into the exit block, we can simply reuse it
814     // as it will no longer be a loop exit. No mapping necessary.
815     if (pred_empty(ExitBB)) {
816       // Only rewrite once.
817       if (UnswitchedExitBBs.insert(ExitBB).second)
818         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
819       continue;
820     }
821 
822     // Otherwise we need to split the exit block so that we retain an exit
823     // block from the loop and a target for the unswitched condition.
824     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
825     if (!SplitExitBB) {
826       // If this is the first time we see this, do the split and remember it.
827       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
828       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
829                                                 *ParentBB, *OldPH,
830                                                 /*FullUnswitch*/ true);
831     }
832     // Update the case pair to point to the split block.
833     std::get<1>(ExitCase) = SplitExitBB;
834   }
835 
836   // Now add the unswitched cases. We do this in reverse order as we built them
837   // in reverse order.
838   for (auto &ExitCase : reverse(ExitCases)) {
839     ConstantInt *CaseVal = std::get<0>(ExitCase);
840     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
841 
842     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
843   }
844 
845   // If the default was unswitched, re-point it and add explicit cases for
846   // entering the loop.
847   if (DefaultExitBB) {
848     NewSIW->setDefaultDest(DefaultExitBB);
849     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
850 
851     // We removed all the exit cases, so we just copy the cases to the
852     // unswitched switch.
853     for (const auto &Case : SI.cases())
854       NewSIW.addCase(Case.getCaseValue(), NewPH,
855                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
856   } else if (DefaultCaseWeight) {
857     // We have to set branch weight of the default case.
858     uint64_t SW = *DefaultCaseWeight;
859     for (const auto &Case : SI.cases()) {
860       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
861       assert(W &&
862              "case weight must be defined as default case weight is defined");
863       SW += *W;
864     }
865     NewSIW.setSuccessorWeight(0, SW);
866   }
867 
868   // If we ended up with a common successor for every path through the switch
869   // after unswitching, rewrite it to an unconditional branch to make it easy
870   // to recognize. Otherwise we potentially have to recognize the default case
871   // pointing at unreachable and other complexity.
872   if (CommonSuccBB) {
873     BasicBlock *BB = SI.getParent();
874     // We may have had multiple edges to this common successor block, so remove
875     // them as predecessors. We skip the first one, either the default or the
876     // actual first case.
877     bool SkippedFirst = DefaultExitBB == nullptr;
878     for (auto Case : SI.cases()) {
879       assert(Case.getCaseSuccessor() == CommonSuccBB &&
880              "Non-common successor!");
881       (void)Case;
882       if (!SkippedFirst) {
883         SkippedFirst = true;
884         continue;
885       }
886       CommonSuccBB->removePredecessor(BB,
887                                       /*KeepOneInputPHIs*/ true);
888     }
889     // Now nuke the switch and replace it with a direct branch.
890     SIW.eraseFromParent();
891     BranchInst::Create(CommonSuccBB, BB);
892   } else if (DefaultExitBB) {
893     assert(SI.getNumCases() > 0 &&
894            "If we had no cases we'd have a common successor!");
895     // Move the last case to the default successor. This is valid as if the
896     // default got unswitched it cannot be reached. This has the advantage of
897     // being simple and keeping the number of edges from this switch to
898     // successors the same, and avoiding any PHI update complexity.
899     auto LastCaseI = std::prev(SI.case_end());
900 
901     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
902     SIW.setSuccessorWeight(
903         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
904     SIW.removeCase(LastCaseI);
905   }
906 
907   // Walk the unswitched exit blocks and the unswitched split blocks and update
908   // the dominator tree based on the CFG edits. While we are walking unordered
909   // containers here, the API for applyUpdates takes an unordered list of
910   // updates and requires them to not contain duplicates.
911   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
912   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
913     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
914     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
915   }
916   for (auto SplitUnswitchedPair : SplitExitBBMap) {
917     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
918     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
919   }
920 
921   if (MSSAU) {
922     MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
923     if (VerifyMemorySSA)
924       MSSAU->getMemorySSA()->verifyMemorySSA();
925   } else {
926     DT.applyUpdates(DTUpdates);
927   }
928 
929   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
930 
931   // We may have changed the nesting relationship for this loop so hoist it to
932   // its correct parent if needed.
933   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
934 
935   if (MSSAU && VerifyMemorySSA)
936     MSSAU->getMemorySSA()->verifyMemorySSA();
937 
938   ++NumTrivial;
939   ++NumSwitches;
940   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
941   return true;
942 }
943 
944 /// This routine scans the loop to find a branch or switch which occurs before
945 /// any side effects occur. These can potentially be unswitched without
946 /// duplicating the loop. If a branch or switch is successfully unswitched the
947 /// scanning continues to see if subsequent branches or switches have become
948 /// trivial. Once all trivial candidates have been unswitched, this routine
949 /// returns.
950 ///
951 /// The return value indicates whether anything was unswitched (and therefore
952 /// changed).
953 ///
954 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
955 /// invalidated by this.
956 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
957                                          LoopInfo &LI, ScalarEvolution *SE,
958                                          MemorySSAUpdater *MSSAU) {
959   bool Changed = false;
960 
961   // If loop header has only one reachable successor we should keep looking for
962   // trivial condition candidates in the successor as well. An alternative is
963   // to constant fold conditions and merge successors into loop header (then we
964   // only need to check header's terminator). The reason for not doing this in
965   // LoopUnswitch pass is that it could potentially break LoopPassManager's
966   // invariants. Folding dead branches could either eliminate the current loop
967   // or make other loops unreachable. LCSSA form might also not be preserved
968   // after deleting branches. The following code keeps traversing loop header's
969   // successors until it finds the trivial condition candidate (condition that
970   // is not a constant). Since unswitching generates branches with constant
971   // conditions, this scenario could be very common in practice.
972   BasicBlock *CurrentBB = L.getHeader();
973   SmallPtrSet<BasicBlock *, 8> Visited;
974   Visited.insert(CurrentBB);
975   do {
976     // Check if there are any side-effecting instructions (e.g. stores, calls,
977     // volatile loads) in the part of the loop that the code *would* execute
978     // without unswitching.
979     if (MSSAU) // Possible early exit with MSSA
980       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
981         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
982           return Changed;
983     if (llvm::any_of(*CurrentBB,
984                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
985       return Changed;
986 
987     Instruction *CurrentTerm = CurrentBB->getTerminator();
988 
989     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
990       // Don't bother trying to unswitch past a switch with a constant
991       // condition. This should be removed prior to running this pass by
992       // simplifycfg.
993       if (isa<Constant>(SI->getCondition()))
994         return Changed;
995 
996       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
997         // Couldn't unswitch this one so we're done.
998         return Changed;
999 
1000       // Mark that we managed to unswitch something.
1001       Changed = true;
1002 
1003       // If unswitching turned the terminator into an unconditional branch then
1004       // we can continue. The unswitching logic specifically works to fold any
1005       // cases it can into an unconditional branch to make it easier to
1006       // recognize here.
1007       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1008       if (!BI || BI->isConditional())
1009         return Changed;
1010 
1011       CurrentBB = BI->getSuccessor(0);
1012       continue;
1013     }
1014 
1015     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1016     if (!BI)
1017       // We do not understand other terminator instructions.
1018       return Changed;
1019 
1020     // Don't bother trying to unswitch past an unconditional branch or a branch
1021     // with a constant value. These should be removed by simplifycfg prior to
1022     // running this pass.
1023     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1024       return Changed;
1025 
1026     // Found a trivial condition candidate: non-foldable conditional branch. If
1027     // we fail to unswitch this, we can't do anything else that is trivial.
1028     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1029       return Changed;
1030 
1031     // Mark that we managed to unswitch something.
1032     Changed = true;
1033 
1034     // If we only unswitched some of the conditions feeding the branch, we won't
1035     // have collapsed it to a single successor.
1036     BI = cast<BranchInst>(CurrentBB->getTerminator());
1037     if (BI->isConditional())
1038       return Changed;
1039 
1040     // Follow the newly unconditional branch into its successor.
1041     CurrentBB = BI->getSuccessor(0);
1042 
1043     // When continuing, if we exit the loop or reach a previous visited block,
1044     // then we can not reach any trivial condition candidates (unfoldable
1045     // branch instructions or switch instructions) and no unswitch can happen.
1046   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1047 
1048   return Changed;
1049 }
1050 
1051 /// Build the cloned blocks for an unswitched copy of the given loop.
1052 ///
1053 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1054 /// after the split block (`SplitBB`) that will be used to select between the
1055 /// cloned and original loop.
1056 ///
1057 /// This routine handles cloning all of the necessary loop blocks and exit
1058 /// blocks including rewriting their instructions and the relevant PHI nodes.
1059 /// Any loop blocks or exit blocks which are dominated by a different successor
1060 /// than the one for this clone of the loop blocks can be trivially skipped. We
1061 /// use the `DominatingSucc` map to determine whether a block satisfies that
1062 /// property with a simple map lookup.
1063 ///
1064 /// It also correctly creates the unconditional branch in the cloned
1065 /// unswitched parent block to only point at the unswitched successor.
1066 ///
1067 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1068 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1069 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1070 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1071 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1072 /// instead the caller must recompute an accurate DT. It *does* correctly
1073 /// update the `AssumptionCache` provided in `AC`.
1074 static BasicBlock *buildClonedLoopBlocks(
1075     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1076     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1077     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1078     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1079     ValueToValueMapTy &VMap,
1080     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1081     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1082   SmallVector<BasicBlock *, 4> NewBlocks;
1083   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1084 
1085   // We will need to clone a bunch of blocks, wrap up the clone operation in
1086   // a helper.
1087   auto CloneBlock = [&](BasicBlock *OldBB) {
1088     // Clone the basic block and insert it before the new preheader.
1089     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1090     NewBB->moveBefore(LoopPH);
1091 
1092     // Record this block and the mapping.
1093     NewBlocks.push_back(NewBB);
1094     VMap[OldBB] = NewBB;
1095 
1096     return NewBB;
1097   };
1098 
1099   // We skip cloning blocks when they have a dominating succ that is not the
1100   // succ we are cloning for.
1101   auto SkipBlock = [&](BasicBlock *BB) {
1102     auto It = DominatingSucc.find(BB);
1103     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1104   };
1105 
1106   // First, clone the preheader.
1107   auto *ClonedPH = CloneBlock(LoopPH);
1108 
1109   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1110   for (auto *LoopBB : L.blocks())
1111     if (!SkipBlock(LoopBB))
1112       CloneBlock(LoopBB);
1113 
1114   // Split all the loop exit edges so that when we clone the exit blocks, if
1115   // any of the exit blocks are *also* a preheader for some other loop, we
1116   // don't create multiple predecessors entering the loop header.
1117   for (auto *ExitBB : ExitBlocks) {
1118     if (SkipBlock(ExitBB))
1119       continue;
1120 
1121     // When we are going to clone an exit, we don't need to clone all the
1122     // instructions in the exit block and we want to ensure we have an easy
1123     // place to merge the CFG, so split the exit first. This is always safe to
1124     // do because there cannot be any non-loop predecessors of a loop exit in
1125     // loop simplified form.
1126     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1127 
1128     // Rearrange the names to make it easier to write test cases by having the
1129     // exit block carry the suffix rather than the merge block carrying the
1130     // suffix.
1131     MergeBB->takeName(ExitBB);
1132     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1133 
1134     // Now clone the original exit block.
1135     auto *ClonedExitBB = CloneBlock(ExitBB);
1136     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1137            "Exit block should have been split to have one successor!");
1138     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1139            "Cloned exit block has the wrong successor!");
1140 
1141     // Remap any cloned instructions and create a merge phi node for them.
1142     for (auto ZippedInsts : llvm::zip_first(
1143              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1144              llvm::make_range(ClonedExitBB->begin(),
1145                               std::prev(ClonedExitBB->end())))) {
1146       Instruction &I = std::get<0>(ZippedInsts);
1147       Instruction &ClonedI = std::get<1>(ZippedInsts);
1148 
1149       // The only instructions in the exit block should be PHI nodes and
1150       // potentially a landing pad.
1151       assert(
1152           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1153           "Bad instruction in exit block!");
1154       // We should have a value map between the instruction and its clone.
1155       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1156 
1157       auto *MergePN =
1158           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1159                           &*MergeBB->getFirstInsertionPt());
1160       I.replaceAllUsesWith(MergePN);
1161       MergePN->addIncoming(&I, ExitBB);
1162       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1163     }
1164   }
1165 
1166   // Rewrite the instructions in the cloned blocks to refer to the instructions
1167   // in the cloned blocks. We have to do this as a second pass so that we have
1168   // everything available. Also, we have inserted new instructions which may
1169   // include assume intrinsics, so we update the assumption cache while
1170   // processing this.
1171   for (auto *ClonedBB : NewBlocks)
1172     for (Instruction &I : *ClonedBB) {
1173       RemapInstruction(&I, VMap,
1174                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1175       if (auto *II = dyn_cast<AssumeInst>(&I))
1176         AC.registerAssumption(II);
1177     }
1178 
1179   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1180   // have spurious incoming values.
1181   for (auto *LoopBB : L.blocks())
1182     if (SkipBlock(LoopBB))
1183       for (auto *SuccBB : successors(LoopBB))
1184         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1185           for (PHINode &PN : ClonedSuccBB->phis())
1186             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1187 
1188   // Remove the cloned parent as a predecessor of any successor we ended up
1189   // cloning other than the unswitched one.
1190   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1191   for (auto *SuccBB : successors(ParentBB)) {
1192     if (SuccBB == UnswitchedSuccBB)
1193       continue;
1194 
1195     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1196     if (!ClonedSuccBB)
1197       continue;
1198 
1199     ClonedSuccBB->removePredecessor(ClonedParentBB,
1200                                     /*KeepOneInputPHIs*/ true);
1201   }
1202 
1203   // Replace the cloned branch with an unconditional branch to the cloned
1204   // unswitched successor.
1205   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1206   Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1207   // Trivial Simplification. If Terminator is a conditional branch and
1208   // condition becomes dead - erase it.
1209   Value *ClonedConditionToErase = nullptr;
1210   if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1211     ClonedConditionToErase = BI->getCondition();
1212   else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1213     ClonedConditionToErase = SI->getCondition();
1214 
1215   ClonedTerminator->eraseFromParent();
1216   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1217 
1218   if (ClonedConditionToErase)
1219     RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1220                                                MSSAU);
1221 
1222   // If there are duplicate entries in the PHI nodes because of multiple edges
1223   // to the unswitched successor, we need to nuke all but one as we replaced it
1224   // with a direct branch.
1225   for (PHINode &PN : ClonedSuccBB->phis()) {
1226     bool Found = false;
1227     // Loop over the incoming operands backwards so we can easily delete as we
1228     // go without invalidating the index.
1229     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1230       if (PN.getIncomingBlock(i) != ClonedParentBB)
1231         continue;
1232       if (!Found) {
1233         Found = true;
1234         continue;
1235       }
1236       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1237     }
1238   }
1239 
1240   // Record the domtree updates for the new blocks.
1241   SmallPtrSet<BasicBlock *, 4> SuccSet;
1242   for (auto *ClonedBB : NewBlocks) {
1243     for (auto *SuccBB : successors(ClonedBB))
1244       if (SuccSet.insert(SuccBB).second)
1245         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1246     SuccSet.clear();
1247   }
1248 
1249   return ClonedPH;
1250 }
1251 
1252 /// Recursively clone the specified loop and all of its children.
1253 ///
1254 /// The target parent loop for the clone should be provided, or can be null if
1255 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1256 /// with the provided value map. The entire original loop must be present in
1257 /// the value map. The cloned loop is returned.
1258 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1259                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1260   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1261     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1262     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1263     for (auto *BB : OrigL.blocks()) {
1264       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1265       ClonedL.addBlockEntry(ClonedBB);
1266       if (LI.getLoopFor(BB) == &OrigL)
1267         LI.changeLoopFor(ClonedBB, &ClonedL);
1268     }
1269   };
1270 
1271   // We specially handle the first loop because it may get cloned into
1272   // a different parent and because we most commonly are cloning leaf loops.
1273   Loop *ClonedRootL = LI.AllocateLoop();
1274   if (RootParentL)
1275     RootParentL->addChildLoop(ClonedRootL);
1276   else
1277     LI.addTopLevelLoop(ClonedRootL);
1278   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1279 
1280   if (OrigRootL.isInnermost())
1281     return ClonedRootL;
1282 
1283   // If we have a nest, we can quickly clone the entire loop nest using an
1284   // iterative approach because it is a tree. We keep the cloned parent in the
1285   // data structure to avoid repeatedly querying through a map to find it.
1286   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1287   // Build up the loops to clone in reverse order as we'll clone them from the
1288   // back.
1289   for (Loop *ChildL : llvm::reverse(OrigRootL))
1290     LoopsToClone.push_back({ClonedRootL, ChildL});
1291   do {
1292     Loop *ClonedParentL, *L;
1293     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1294     Loop *ClonedL = LI.AllocateLoop();
1295     ClonedParentL->addChildLoop(ClonedL);
1296     AddClonedBlocksToLoop(*L, *ClonedL);
1297     for (Loop *ChildL : llvm::reverse(*L))
1298       LoopsToClone.push_back({ClonedL, ChildL});
1299   } while (!LoopsToClone.empty());
1300 
1301   return ClonedRootL;
1302 }
1303 
1304 /// Build the cloned loops of an original loop from unswitching.
1305 ///
1306 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1307 /// operation. We need to re-verify that there even is a loop (as the backedge
1308 /// may not have been cloned), and even if there are remaining backedges the
1309 /// backedge set may be different. However, we know that each child loop is
1310 /// undisturbed, we only need to find where to place each child loop within
1311 /// either any parent loop or within a cloned version of the original loop.
1312 ///
1313 /// Because child loops may end up cloned outside of any cloned version of the
1314 /// original loop, multiple cloned sibling loops may be created. All of them
1315 /// are returned so that the newly introduced loop nest roots can be
1316 /// identified.
1317 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1318                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1319                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1320   Loop *ClonedL = nullptr;
1321 
1322   auto *OrigPH = OrigL.getLoopPreheader();
1323   auto *OrigHeader = OrigL.getHeader();
1324 
1325   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1326   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1327 
1328   // We need to know the loops of the cloned exit blocks to even compute the
1329   // accurate parent loop. If we only clone exits to some parent of the
1330   // original parent, we want to clone into that outer loop. We also keep track
1331   // of the loops that our cloned exit blocks participate in.
1332   Loop *ParentL = nullptr;
1333   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1334   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1335   ClonedExitsInLoops.reserve(ExitBlocks.size());
1336   for (auto *ExitBB : ExitBlocks)
1337     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1338       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1339         ExitLoopMap[ClonedExitBB] = ExitL;
1340         ClonedExitsInLoops.push_back(ClonedExitBB);
1341         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1342           ParentL = ExitL;
1343       }
1344   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1345           ParentL->contains(OrigL.getParentLoop())) &&
1346          "The computed parent loop should always contain (or be) the parent of "
1347          "the original loop.");
1348 
1349   // We build the set of blocks dominated by the cloned header from the set of
1350   // cloned blocks out of the original loop. While not all of these will
1351   // necessarily be in the cloned loop, it is enough to establish that they
1352   // aren't in unreachable cycles, etc.
1353   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1354   for (auto *BB : OrigL.blocks())
1355     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1356       ClonedLoopBlocks.insert(ClonedBB);
1357 
1358   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1359   // skipped cloning some region of this loop which can in turn skip some of
1360   // the backedges so we have to rebuild the blocks in the loop based on the
1361   // backedges that remain after cloning.
1362   SmallVector<BasicBlock *, 16> Worklist;
1363   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1364   for (auto *Pred : predecessors(ClonedHeader)) {
1365     // The only possible non-loop header predecessor is the preheader because
1366     // we know we cloned the loop in simplified form.
1367     if (Pred == ClonedPH)
1368       continue;
1369 
1370     // Because the loop was in simplified form, the only non-loop predecessor
1371     // should be the preheader.
1372     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1373                                            "header other than the preheader "
1374                                            "that is not part of the loop!");
1375 
1376     // Insert this block into the loop set and on the first visit (and if it
1377     // isn't the header we're currently walking) put it into the worklist to
1378     // recurse through.
1379     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1380       Worklist.push_back(Pred);
1381   }
1382 
1383   // If we had any backedges then there *is* a cloned loop. Put the header into
1384   // the loop set and then walk the worklist backwards to find all the blocks
1385   // that remain within the loop after cloning.
1386   if (!BlocksInClonedLoop.empty()) {
1387     BlocksInClonedLoop.insert(ClonedHeader);
1388 
1389     while (!Worklist.empty()) {
1390       BasicBlock *BB = Worklist.pop_back_val();
1391       assert(BlocksInClonedLoop.count(BB) &&
1392              "Didn't put block into the loop set!");
1393 
1394       // Insert any predecessors that are in the possible set into the cloned
1395       // set, and if the insert is successful, add them to the worklist. Note
1396       // that we filter on the blocks that are definitely reachable via the
1397       // backedge to the loop header so we may prune out dead code within the
1398       // cloned loop.
1399       for (auto *Pred : predecessors(BB))
1400         if (ClonedLoopBlocks.count(Pred) &&
1401             BlocksInClonedLoop.insert(Pred).second)
1402           Worklist.push_back(Pred);
1403     }
1404 
1405     ClonedL = LI.AllocateLoop();
1406     if (ParentL) {
1407       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1408       ParentL->addChildLoop(ClonedL);
1409     } else {
1410       LI.addTopLevelLoop(ClonedL);
1411     }
1412     NonChildClonedLoops.push_back(ClonedL);
1413 
1414     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1415     // We don't want to just add the cloned loop blocks based on how we
1416     // discovered them. The original order of blocks was carefully built in
1417     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1418     // that logic, we just re-walk the original blocks (and those of the child
1419     // loops) and filter them as we add them into the cloned loop.
1420     for (auto *BB : OrigL.blocks()) {
1421       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1422       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1423         continue;
1424 
1425       // Directly add the blocks that are only in this loop.
1426       if (LI.getLoopFor(BB) == &OrigL) {
1427         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1428         continue;
1429       }
1430 
1431       // We want to manually add it to this loop and parents.
1432       // Registering it with LoopInfo will happen when we clone the top
1433       // loop for this block.
1434       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1435         PL->addBlockEntry(ClonedBB);
1436     }
1437 
1438     // Now add each child loop whose header remains within the cloned loop. All
1439     // of the blocks within the loop must satisfy the same constraints as the
1440     // header so once we pass the header checks we can just clone the entire
1441     // child loop nest.
1442     for (Loop *ChildL : OrigL) {
1443       auto *ClonedChildHeader =
1444           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1445       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1446         continue;
1447 
1448 #ifndef NDEBUG
1449       // We should never have a cloned child loop header but fail to have
1450       // all of the blocks for that child loop.
1451       for (auto *ChildLoopBB : ChildL->blocks())
1452         assert(BlocksInClonedLoop.count(
1453                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1454                "Child cloned loop has a header within the cloned outer "
1455                "loop but not all of its blocks!");
1456 #endif
1457 
1458       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1459     }
1460   }
1461 
1462   // Now that we've handled all the components of the original loop that were
1463   // cloned into a new loop, we still need to handle anything from the original
1464   // loop that wasn't in a cloned loop.
1465 
1466   // Figure out what blocks are left to place within any loop nest containing
1467   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1468   // them.
1469   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1470   if (BlocksInClonedLoop.empty())
1471     UnloopedBlockSet.insert(ClonedPH);
1472   for (auto *ClonedBB : ClonedLoopBlocks)
1473     if (!BlocksInClonedLoop.count(ClonedBB))
1474       UnloopedBlockSet.insert(ClonedBB);
1475 
1476   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1477   // backwards across these to process them inside out. The order shouldn't
1478   // matter as we're just trying to build up the map from inside-out; we use
1479   // the map in a more stably ordered way below.
1480   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1481   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1482     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1483            ExitLoopMap.lookup(RHS)->getLoopDepth();
1484   });
1485 
1486   // Populate the existing ExitLoopMap with everything reachable from each
1487   // exit, starting from the inner most exit.
1488   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1489     assert(Worklist.empty() && "Didn't clear worklist!");
1490 
1491     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1492     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1493 
1494     // Walk the CFG back until we hit the cloned PH adding everything reachable
1495     // and in the unlooped set to this exit block's loop.
1496     Worklist.push_back(ExitBB);
1497     do {
1498       BasicBlock *BB = Worklist.pop_back_val();
1499       // We can stop recursing at the cloned preheader (if we get there).
1500       if (BB == ClonedPH)
1501         continue;
1502 
1503       for (BasicBlock *PredBB : predecessors(BB)) {
1504         // If this pred has already been moved to our set or is part of some
1505         // (inner) loop, no update needed.
1506         if (!UnloopedBlockSet.erase(PredBB)) {
1507           assert(
1508               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1509               "Predecessor not mapped to a loop!");
1510           continue;
1511         }
1512 
1513         // We just insert into the loop set here. We'll add these blocks to the
1514         // exit loop after we build up the set in an order that doesn't rely on
1515         // predecessor order (which in turn relies on use list order).
1516         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1517         (void)Inserted;
1518         assert(Inserted && "Should only visit an unlooped block once!");
1519 
1520         // And recurse through to its predecessors.
1521         Worklist.push_back(PredBB);
1522       }
1523     } while (!Worklist.empty());
1524   }
1525 
1526   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1527   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1528   // in their original order adding them to the correct loop.
1529 
1530   // We need a stable insertion order. We use the order of the original loop
1531   // order and map into the correct parent loop.
1532   for (auto *BB : llvm::concat<BasicBlock *const>(
1533            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1534     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1535       OuterL->addBasicBlockToLoop(BB, LI);
1536 
1537 #ifndef NDEBUG
1538   for (auto &BBAndL : ExitLoopMap) {
1539     auto *BB = BBAndL.first;
1540     auto *OuterL = BBAndL.second;
1541     assert(LI.getLoopFor(BB) == OuterL &&
1542            "Failed to put all blocks into outer loops!");
1543   }
1544 #endif
1545 
1546   // Now that all the blocks are placed into the correct containing loop in the
1547   // absence of child loops, find all the potentially cloned child loops and
1548   // clone them into whatever outer loop we placed their header into.
1549   for (Loop *ChildL : OrigL) {
1550     auto *ClonedChildHeader =
1551         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1552     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1553       continue;
1554 
1555 #ifndef NDEBUG
1556     for (auto *ChildLoopBB : ChildL->blocks())
1557       assert(VMap.count(ChildLoopBB) &&
1558              "Cloned a child loop header but not all of that loops blocks!");
1559 #endif
1560 
1561     NonChildClonedLoops.push_back(cloneLoopNest(
1562         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1563   }
1564 }
1565 
1566 static void
1567 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1568                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1569                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1570   // Find all the dead clones, and remove them from their successors.
1571   SmallVector<BasicBlock *, 16> DeadBlocks;
1572   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1573     for (auto &VMap : VMaps)
1574       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1575         if (!DT.isReachableFromEntry(ClonedBB)) {
1576           for (BasicBlock *SuccBB : successors(ClonedBB))
1577             SuccBB->removePredecessor(ClonedBB);
1578           DeadBlocks.push_back(ClonedBB);
1579         }
1580 
1581   // Remove all MemorySSA in the dead blocks
1582   if (MSSAU) {
1583     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1584                                                  DeadBlocks.end());
1585     MSSAU->removeBlocks(DeadBlockSet);
1586   }
1587 
1588   // Drop any remaining references to break cycles.
1589   for (BasicBlock *BB : DeadBlocks)
1590     BB->dropAllReferences();
1591   // Erase them from the IR.
1592   for (BasicBlock *BB : DeadBlocks)
1593     BB->eraseFromParent();
1594 }
1595 
1596 static void
1597 deleteDeadBlocksFromLoop(Loop &L,
1598                          SmallVectorImpl<BasicBlock *> &ExitBlocks,
1599                          DominatorTree &DT, LoopInfo &LI,
1600                          MemorySSAUpdater *MSSAU,
1601                          function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
1602   // Find all the dead blocks tied to this loop, and remove them from their
1603   // successors.
1604   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1605 
1606   // Start with loop/exit blocks and get a transitive closure of reachable dead
1607   // blocks.
1608   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1609                                                 ExitBlocks.end());
1610   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1611   while (!DeathCandidates.empty()) {
1612     auto *BB = DeathCandidates.pop_back_val();
1613     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1614       for (BasicBlock *SuccBB : successors(BB)) {
1615         SuccBB->removePredecessor(BB);
1616         DeathCandidates.push_back(SuccBB);
1617       }
1618       DeadBlockSet.insert(BB);
1619     }
1620   }
1621 
1622   // Remove all MemorySSA in the dead blocks
1623   if (MSSAU)
1624     MSSAU->removeBlocks(DeadBlockSet);
1625 
1626   // Filter out the dead blocks from the exit blocks list so that it can be
1627   // used in the caller.
1628   llvm::erase_if(ExitBlocks,
1629                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1630 
1631   // Walk from this loop up through its parents removing all of the dead blocks.
1632   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1633     for (auto *BB : DeadBlockSet)
1634       ParentL->getBlocksSet().erase(BB);
1635     llvm::erase_if(ParentL->getBlocksVector(),
1636                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1637   }
1638 
1639   // Now delete the dead child loops. This raw delete will clear them
1640   // recursively.
1641   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1642     if (!DeadBlockSet.count(ChildL->getHeader()))
1643       return false;
1644 
1645     assert(llvm::all_of(ChildL->blocks(),
1646                         [&](BasicBlock *ChildBB) {
1647                           return DeadBlockSet.count(ChildBB);
1648                         }) &&
1649            "If the child loop header is dead all blocks in the child loop must "
1650            "be dead as well!");
1651     DestroyLoopCB(*ChildL, ChildL->getName());
1652     LI.destroy(ChildL);
1653     return true;
1654   });
1655 
1656   // Remove the loop mappings for the dead blocks and drop all the references
1657   // from these blocks to others to handle cyclic references as we start
1658   // deleting the blocks themselves.
1659   for (auto *BB : DeadBlockSet) {
1660     // Check that the dominator tree has already been updated.
1661     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1662     LI.changeLoopFor(BB, nullptr);
1663     // Drop all uses of the instructions to make sure we won't have dangling
1664     // uses in other blocks.
1665     for (auto &I : *BB)
1666       if (!I.use_empty())
1667         I.replaceAllUsesWith(UndefValue::get(I.getType()));
1668     BB->dropAllReferences();
1669   }
1670 
1671   // Actually delete the blocks now that they've been fully unhooked from the
1672   // IR.
1673   for (auto *BB : DeadBlockSet)
1674     BB->eraseFromParent();
1675 }
1676 
1677 /// Recompute the set of blocks in a loop after unswitching.
1678 ///
1679 /// This walks from the original headers predecessors to rebuild the loop. We
1680 /// take advantage of the fact that new blocks can't have been added, and so we
1681 /// filter by the original loop's blocks. This also handles potentially
1682 /// unreachable code that we don't want to explore but might be found examining
1683 /// the predecessors of the header.
1684 ///
1685 /// If the original loop is no longer a loop, this will return an empty set. If
1686 /// it remains a loop, all the blocks within it will be added to the set
1687 /// (including those blocks in inner loops).
1688 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1689                                                                  LoopInfo &LI) {
1690   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1691 
1692   auto *PH = L.getLoopPreheader();
1693   auto *Header = L.getHeader();
1694 
1695   // A worklist to use while walking backwards from the header.
1696   SmallVector<BasicBlock *, 16> Worklist;
1697 
1698   // First walk the predecessors of the header to find the backedges. This will
1699   // form the basis of our walk.
1700   for (auto *Pred : predecessors(Header)) {
1701     // Skip the preheader.
1702     if (Pred == PH)
1703       continue;
1704 
1705     // Because the loop was in simplified form, the only non-loop predecessor
1706     // is the preheader.
1707     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1708                                "than the preheader that is not part of the "
1709                                "loop!");
1710 
1711     // Insert this block into the loop set and on the first visit and, if it
1712     // isn't the header we're currently walking, put it into the worklist to
1713     // recurse through.
1714     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1715       Worklist.push_back(Pred);
1716   }
1717 
1718   // If no backedges were found, we're done.
1719   if (LoopBlockSet.empty())
1720     return LoopBlockSet;
1721 
1722   // We found backedges, recurse through them to identify the loop blocks.
1723   while (!Worklist.empty()) {
1724     BasicBlock *BB = Worklist.pop_back_val();
1725     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1726 
1727     // No need to walk past the header.
1728     if (BB == Header)
1729       continue;
1730 
1731     // Because we know the inner loop structure remains valid we can use the
1732     // loop structure to jump immediately across the entire nested loop.
1733     // Further, because it is in loop simplified form, we can directly jump
1734     // to its preheader afterward.
1735     if (Loop *InnerL = LI.getLoopFor(BB))
1736       if (InnerL != &L) {
1737         assert(L.contains(InnerL) &&
1738                "Should not reach a loop *outside* this loop!");
1739         // The preheader is the only possible predecessor of the loop so
1740         // insert it into the set and check whether it was already handled.
1741         auto *InnerPH = InnerL->getLoopPreheader();
1742         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1743                                       "but not contain the inner loop "
1744                                       "preheader!");
1745         if (!LoopBlockSet.insert(InnerPH).second)
1746           // The only way to reach the preheader is through the loop body
1747           // itself so if it has been visited the loop is already handled.
1748           continue;
1749 
1750         // Insert all of the blocks (other than those already present) into
1751         // the loop set. We expect at least the block that led us to find the
1752         // inner loop to be in the block set, but we may also have other loop
1753         // blocks if they were already enqueued as predecessors of some other
1754         // outer loop block.
1755         for (auto *InnerBB : InnerL->blocks()) {
1756           if (InnerBB == BB) {
1757             assert(LoopBlockSet.count(InnerBB) &&
1758                    "Block should already be in the set!");
1759             continue;
1760           }
1761 
1762           LoopBlockSet.insert(InnerBB);
1763         }
1764 
1765         // Add the preheader to the worklist so we will continue past the
1766         // loop body.
1767         Worklist.push_back(InnerPH);
1768         continue;
1769       }
1770 
1771     // Insert any predecessors that were in the original loop into the new
1772     // set, and if the insert is successful, add them to the worklist.
1773     for (auto *Pred : predecessors(BB))
1774       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1775         Worklist.push_back(Pred);
1776   }
1777 
1778   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1779 
1780   // We've found all the blocks participating in the loop, return our completed
1781   // set.
1782   return LoopBlockSet;
1783 }
1784 
1785 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1786 ///
1787 /// The removal may have removed some child loops entirely but cannot have
1788 /// disturbed any remaining child loops. However, they may need to be hoisted
1789 /// to the parent loop (or to be top-level loops). The original loop may be
1790 /// completely removed.
1791 ///
1792 /// The sibling loops resulting from this update are returned. If the original
1793 /// loop remains a valid loop, it will be the first entry in this list with all
1794 /// of the newly sibling loops following it.
1795 ///
1796 /// Returns true if the loop remains a loop after unswitching, and false if it
1797 /// is no longer a loop after unswitching (and should not continue to be
1798 /// referenced).
1799 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1800                                      LoopInfo &LI,
1801                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1802   auto *PH = L.getLoopPreheader();
1803 
1804   // Compute the actual parent loop from the exit blocks. Because we may have
1805   // pruned some exits the loop may be different from the original parent.
1806   Loop *ParentL = nullptr;
1807   SmallVector<Loop *, 4> ExitLoops;
1808   SmallVector<BasicBlock *, 4> ExitsInLoops;
1809   ExitsInLoops.reserve(ExitBlocks.size());
1810   for (auto *ExitBB : ExitBlocks)
1811     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1812       ExitLoops.push_back(ExitL);
1813       ExitsInLoops.push_back(ExitBB);
1814       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1815         ParentL = ExitL;
1816     }
1817 
1818   // Recompute the blocks participating in this loop. This may be empty if it
1819   // is no longer a loop.
1820   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1821 
1822   // If we still have a loop, we need to re-set the loop's parent as the exit
1823   // block set changing may have moved it within the loop nest. Note that this
1824   // can only happen when this loop has a parent as it can only hoist the loop
1825   // *up* the nest.
1826   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1827     // Remove this loop's (original) blocks from all of the intervening loops.
1828     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1829          IL = IL->getParentLoop()) {
1830       IL->getBlocksSet().erase(PH);
1831       for (auto *BB : L.blocks())
1832         IL->getBlocksSet().erase(BB);
1833       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1834         return BB == PH || L.contains(BB);
1835       });
1836     }
1837 
1838     LI.changeLoopFor(PH, ParentL);
1839     L.getParentLoop()->removeChildLoop(&L);
1840     if (ParentL)
1841       ParentL->addChildLoop(&L);
1842     else
1843       LI.addTopLevelLoop(&L);
1844   }
1845 
1846   // Now we update all the blocks which are no longer within the loop.
1847   auto &Blocks = L.getBlocksVector();
1848   auto BlocksSplitI =
1849       LoopBlockSet.empty()
1850           ? Blocks.begin()
1851           : std::stable_partition(
1852                 Blocks.begin(), Blocks.end(),
1853                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1854 
1855   // Before we erase the list of unlooped blocks, build a set of them.
1856   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1857   if (LoopBlockSet.empty())
1858     UnloopedBlocks.insert(PH);
1859 
1860   // Now erase these blocks from the loop.
1861   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1862     L.getBlocksSet().erase(BB);
1863   Blocks.erase(BlocksSplitI, Blocks.end());
1864 
1865   // Sort the exits in ascending loop depth, we'll work backwards across these
1866   // to process them inside out.
1867   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1868     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1869   });
1870 
1871   // We'll build up a set for each exit loop.
1872   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1873   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1874 
1875   auto RemoveUnloopedBlocksFromLoop =
1876       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1877         for (auto *BB : UnloopedBlocks)
1878           L.getBlocksSet().erase(BB);
1879         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1880           return UnloopedBlocks.count(BB);
1881         });
1882       };
1883 
1884   SmallVector<BasicBlock *, 16> Worklist;
1885   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1886     assert(Worklist.empty() && "Didn't clear worklist!");
1887     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1888 
1889     // Grab the next exit block, in decreasing loop depth order.
1890     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1891     Loop &ExitL = *LI.getLoopFor(ExitBB);
1892     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1893 
1894     // Erase all of the unlooped blocks from the loops between the previous
1895     // exit loop and this exit loop. This works because the ExitInLoops list is
1896     // sorted in increasing order of loop depth and thus we visit loops in
1897     // decreasing order of loop depth.
1898     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1899       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1900 
1901     // Walk the CFG back until we hit the cloned PH adding everything reachable
1902     // and in the unlooped set to this exit block's loop.
1903     Worklist.push_back(ExitBB);
1904     do {
1905       BasicBlock *BB = Worklist.pop_back_val();
1906       // We can stop recursing at the cloned preheader (if we get there).
1907       if (BB == PH)
1908         continue;
1909 
1910       for (BasicBlock *PredBB : predecessors(BB)) {
1911         // If this pred has already been moved to our set or is part of some
1912         // (inner) loop, no update needed.
1913         if (!UnloopedBlocks.erase(PredBB)) {
1914           assert((NewExitLoopBlocks.count(PredBB) ||
1915                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1916                  "Predecessor not in a nested loop (or already visited)!");
1917           continue;
1918         }
1919 
1920         // We just insert into the loop set here. We'll add these blocks to the
1921         // exit loop after we build up the set in a deterministic order rather
1922         // than the predecessor-influenced visit order.
1923         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1924         (void)Inserted;
1925         assert(Inserted && "Should only visit an unlooped block once!");
1926 
1927         // And recurse through to its predecessors.
1928         Worklist.push_back(PredBB);
1929       }
1930     } while (!Worklist.empty());
1931 
1932     // If blocks in this exit loop were directly part of the original loop (as
1933     // opposed to a child loop) update the map to point to this exit loop. This
1934     // just updates a map and so the fact that the order is unstable is fine.
1935     for (auto *BB : NewExitLoopBlocks)
1936       if (Loop *BBL = LI.getLoopFor(BB))
1937         if (BBL == &L || !L.contains(BBL))
1938           LI.changeLoopFor(BB, &ExitL);
1939 
1940     // We will remove the remaining unlooped blocks from this loop in the next
1941     // iteration or below.
1942     NewExitLoopBlocks.clear();
1943   }
1944 
1945   // Any remaining unlooped blocks are no longer part of any loop unless they
1946   // are part of some child loop.
1947   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1948     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1949   for (auto *BB : UnloopedBlocks)
1950     if (Loop *BBL = LI.getLoopFor(BB))
1951       if (BBL == &L || !L.contains(BBL))
1952         LI.changeLoopFor(BB, nullptr);
1953 
1954   // Sink all the child loops whose headers are no longer in the loop set to
1955   // the parent (or to be top level loops). We reach into the loop and directly
1956   // update its subloop vector to make this batch update efficient.
1957   auto &SubLoops = L.getSubLoopsVector();
1958   auto SubLoopsSplitI =
1959       LoopBlockSet.empty()
1960           ? SubLoops.begin()
1961           : std::stable_partition(
1962                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1963                   return LoopBlockSet.count(SubL->getHeader());
1964                 });
1965   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1966     HoistedLoops.push_back(HoistedL);
1967     HoistedL->setParentLoop(nullptr);
1968 
1969     // To compute the new parent of this hoisted loop we look at where we
1970     // placed the preheader above. We can't lookup the header itself because we
1971     // retained the mapping from the header to the hoisted loop. But the
1972     // preheader and header should have the exact same new parent computed
1973     // based on the set of exit blocks from the original loop as the preheader
1974     // is a predecessor of the header and so reached in the reverse walk. And
1975     // because the loops were all in simplified form the preheader of the
1976     // hoisted loop can't be part of some *other* loop.
1977     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1978       NewParentL->addChildLoop(HoistedL);
1979     else
1980       LI.addTopLevelLoop(HoistedL);
1981   }
1982   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1983 
1984   // Actually delete the loop if nothing remained within it.
1985   if (Blocks.empty()) {
1986     assert(SubLoops.empty() &&
1987            "Failed to remove all subloops from the original loop!");
1988     if (Loop *ParentL = L.getParentLoop())
1989       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1990     else
1991       LI.removeLoop(llvm::find(LI, &L));
1992     // markLoopAsDeleted for L should be triggered by the caller (it is typically
1993     // done by using the UnswitchCB callback).
1994     LI.destroy(&L);
1995     return false;
1996   }
1997 
1998   return true;
1999 }
2000 
2001 /// Helper to visit a dominator subtree, invoking a callable on each node.
2002 ///
2003 /// Returning false at any point will stop walking past that node of the tree.
2004 template <typename CallableT>
2005 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2006   SmallVector<DomTreeNode *, 4> DomWorklist;
2007   DomWorklist.push_back(DT[BB]);
2008 #ifndef NDEBUG
2009   SmallPtrSet<DomTreeNode *, 4> Visited;
2010   Visited.insert(DT[BB]);
2011 #endif
2012   do {
2013     DomTreeNode *N = DomWorklist.pop_back_val();
2014 
2015     // Visit this node.
2016     if (!Callable(N->getBlock()))
2017       continue;
2018 
2019     // Accumulate the child nodes.
2020     for (DomTreeNode *ChildN : *N) {
2021       assert(Visited.insert(ChildN).second &&
2022              "Cannot visit a node twice when walking a tree!");
2023       DomWorklist.push_back(ChildN);
2024     }
2025   } while (!DomWorklist.empty());
2026 }
2027 
2028 static void unswitchNontrivialInvariants(
2029     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2030     SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo,
2031     DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2032     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2033     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2034     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2035   auto *ParentBB = TI.getParent();
2036   BranchInst *BI = dyn_cast<BranchInst>(&TI);
2037   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2038 
2039   // We can only unswitch switches, conditional branches with an invariant
2040   // condition, or combining invariant conditions with an instruction or
2041   // partially invariant instructions.
2042   assert((SI || (BI && BI->isConditional())) &&
2043          "Can only unswitch switches and conditional branch!");
2044   bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2045   bool FullUnswitch =
2046       SI || (BI->getCondition() == Invariants[0] && !PartiallyInvariant);
2047   if (FullUnswitch)
2048     assert(Invariants.size() == 1 &&
2049            "Cannot have other invariants with full unswitching!");
2050   else
2051     assert(isa<Instruction>(BI->getCondition()) &&
2052            "Partial unswitching requires an instruction as the condition!");
2053 
2054   if (MSSAU && VerifyMemorySSA)
2055     MSSAU->getMemorySSA()->verifyMemorySSA();
2056 
2057   // Constant and BBs tracking the cloned and continuing successor. When we are
2058   // unswitching the entire condition, this can just be trivially chosen to
2059   // unswitch towards `true`. However, when we are unswitching a set of
2060   // invariants combined with `and` or `or` or partially invariant instructions,
2061   // the combining operation determines the best direction to unswitch: we want
2062   // to unswitch the direction that will collapse the branch.
2063   bool Direction = true;
2064   int ClonedSucc = 0;
2065   if (!FullUnswitch) {
2066     Value *Cond = BI->getCondition();
2067     (void)Cond;
2068     assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2069             PartiallyInvariant) &&
2070            "Only `or`, `and`, an `select`, partially invariant instructions "
2071            "can combine invariants being unswitched.");
2072     if (!match(BI->getCondition(), m_LogicalOr())) {
2073       if (match(BI->getCondition(), m_LogicalAnd()) ||
2074           (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2075         Direction = false;
2076         ClonedSucc = 1;
2077       }
2078     }
2079   }
2080 
2081   BasicBlock *RetainedSuccBB =
2082       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2083   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2084   if (BI)
2085     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2086   else
2087     for (auto Case : SI->cases())
2088       if (Case.getCaseSuccessor() != RetainedSuccBB)
2089         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2090 
2091   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2092          "Should not unswitch the same successor we are retaining!");
2093 
2094   // The branch should be in this exact loop. Any inner loop's invariant branch
2095   // should be handled by unswitching that inner loop. The caller of this
2096   // routine should filter out any candidates that remain (but were skipped for
2097   // whatever reason).
2098   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2099 
2100   // Compute the parent loop now before we start hacking on things.
2101   Loop *ParentL = L.getParentLoop();
2102   // Get blocks in RPO order for MSSA update, before changing the CFG.
2103   LoopBlocksRPO LBRPO(&L);
2104   if (MSSAU)
2105     LBRPO.perform(&LI);
2106 
2107   // Compute the outer-most loop containing one of our exit blocks. This is the
2108   // furthest up our loopnest which can be mutated, which we will use below to
2109   // update things.
2110   Loop *OuterExitL = &L;
2111   for (auto *ExitBB : ExitBlocks) {
2112     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2113     if (!NewOuterExitL) {
2114       // We exited the entire nest with this block, so we're done.
2115       OuterExitL = nullptr;
2116       break;
2117     }
2118     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2119       OuterExitL = NewOuterExitL;
2120   }
2121 
2122   // At this point, we're definitely going to unswitch something so invalidate
2123   // any cached information in ScalarEvolution for the outer most loop
2124   // containing an exit block and all nested loops.
2125   if (SE) {
2126     if (OuterExitL)
2127       SE->forgetLoop(OuterExitL);
2128     else
2129       SE->forgetTopmostLoop(&L);
2130   }
2131 
2132   bool InsertFreeze = false;
2133   if (FreezeLoopUnswitchCond) {
2134     ICFLoopSafetyInfo SafetyInfo;
2135     SafetyInfo.computeLoopSafetyInfo(&L);
2136     InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L);
2137   }
2138 
2139   // If the edge from this terminator to a successor dominates that successor,
2140   // store a map from each block in its dominator subtree to it. This lets us
2141   // tell when cloning for a particular successor if a block is dominated by
2142   // some *other* successor with a single data structure. We use this to
2143   // significantly reduce cloning.
2144   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2145   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2146            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2147     if (SuccBB->getUniquePredecessor() ||
2148         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2149           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2150         }))
2151       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2152         DominatingSucc[BB] = SuccBB;
2153         return true;
2154       });
2155 
2156   // Split the preheader, so that we know that there is a safe place to insert
2157   // the conditional branch. We will change the preheader to have a conditional
2158   // branch on LoopCond. The original preheader will become the split point
2159   // between the unswitched versions, and we will have a new preheader for the
2160   // original loop.
2161   BasicBlock *SplitBB = L.getLoopPreheader();
2162   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2163 
2164   // Keep track of the dominator tree updates needed.
2165   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2166 
2167   // Clone the loop for each unswitched successor.
2168   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2169   VMaps.reserve(UnswitchedSuccBBs.size());
2170   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2171   for (auto *SuccBB : UnswitchedSuccBBs) {
2172     VMaps.emplace_back(new ValueToValueMapTy());
2173     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2174         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2175         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2176   }
2177 
2178   // Drop metadata if we may break its semantics by moving this instr into the
2179   // split block.
2180   if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2181     if (DropNonTrivialImplicitNullChecks)
2182       // Do not spend time trying to understand if we can keep it, just drop it
2183       // to save compile time.
2184       TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2185     else {
2186       // It is only legal to preserve make.implicit metadata if we are
2187       // guaranteed no reach implicit null check after following this branch.
2188       ICFLoopSafetyInfo SafetyInfo;
2189       SafetyInfo.computeLoopSafetyInfo(&L);
2190       if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2191         TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2192     }
2193   }
2194 
2195   // The stitching of the branched code back together depends on whether we're
2196   // doing full unswitching or not with the exception that we always want to
2197   // nuke the initial terminator placed in the split block.
2198   SplitBB->getTerminator()->eraseFromParent();
2199   if (FullUnswitch) {
2200     // Splice the terminator from the original loop and rewrite its
2201     // successors.
2202     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2203 
2204     // Keep a clone of the terminator for MSSA updates.
2205     Instruction *NewTI = TI.clone();
2206     ParentBB->getInstList().push_back(NewTI);
2207 
2208     // First wire up the moved terminator to the preheaders.
2209     if (BI) {
2210       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2211       BI->setSuccessor(ClonedSucc, ClonedPH);
2212       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2213       if (InsertFreeze) {
2214         auto Cond = BI->getCondition();
2215         if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, BI, &DT))
2216           BI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", BI));
2217       }
2218       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2219     } else {
2220       assert(SI && "Must either be a branch or switch!");
2221 
2222       // Walk the cases and directly update their successors.
2223       assert(SI->getDefaultDest() == RetainedSuccBB &&
2224              "Not retaining default successor!");
2225       SI->setDefaultDest(LoopPH);
2226       for (auto &Case : SI->cases())
2227         if (Case.getCaseSuccessor() == RetainedSuccBB)
2228           Case.setSuccessor(LoopPH);
2229         else
2230           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2231 
2232       if (InsertFreeze) {
2233         auto Cond = SI->getCondition();
2234         if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, SI, &DT))
2235           SI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", SI));
2236       }
2237       // We need to use the set to populate domtree updates as even when there
2238       // are multiple cases pointing at the same successor we only want to
2239       // remove and insert one edge in the domtree.
2240       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2241         DTUpdates.push_back(
2242             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2243     }
2244 
2245     if (MSSAU) {
2246       DT.applyUpdates(DTUpdates);
2247       DTUpdates.clear();
2248 
2249       // Remove all but one edge to the retained block and all unswitched
2250       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2251       // when we know we only keep a single edge for each case.
2252       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2253       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2254         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2255 
2256       for (auto &VMap : VMaps)
2257         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2258                                    /*IgnoreIncomingWithNoClones=*/true);
2259       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2260 
2261       // Remove all edges to unswitched blocks.
2262       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2263         MSSAU->removeEdge(ParentBB, SuccBB);
2264     }
2265 
2266     // Now unhook the successor relationship as we'll be replacing
2267     // the terminator with a direct branch. This is much simpler for branches
2268     // than switches so we handle those first.
2269     if (BI) {
2270       // Remove the parent as a predecessor of the unswitched successor.
2271       assert(UnswitchedSuccBBs.size() == 1 &&
2272              "Only one possible unswitched block for a branch!");
2273       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2274       UnswitchedSuccBB->removePredecessor(ParentBB,
2275                                           /*KeepOneInputPHIs*/ true);
2276       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2277     } else {
2278       // Note that we actually want to remove the parent block as a predecessor
2279       // of *every* case successor. The case successor is either unswitched,
2280       // completely eliminating an edge from the parent to that successor, or it
2281       // is a duplicate edge to the retained successor as the retained successor
2282       // is always the default successor and as we'll replace this with a direct
2283       // branch we no longer need the duplicate entries in the PHI nodes.
2284       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2285       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2286              "Not retaining default successor!");
2287       for (auto &Case : NewSI->cases())
2288         Case.getCaseSuccessor()->removePredecessor(
2289             ParentBB,
2290             /*KeepOneInputPHIs*/ true);
2291 
2292       // We need to use the set to populate domtree updates as even when there
2293       // are multiple cases pointing at the same successor we only want to
2294       // remove and insert one edge in the domtree.
2295       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2296         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2297     }
2298 
2299     // After MSSAU update, remove the cloned terminator instruction NewTI.
2300     ParentBB->getTerminator()->eraseFromParent();
2301 
2302     // Create a new unconditional branch to the continuing block (as opposed to
2303     // the one cloned).
2304     BranchInst::Create(RetainedSuccBB, ParentBB);
2305   } else {
2306     assert(BI && "Only branches have partial unswitching.");
2307     assert(UnswitchedSuccBBs.size() == 1 &&
2308            "Only one possible unswitched block for a branch!");
2309     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2310     // When doing a partial unswitch, we have to do a bit more work to build up
2311     // the branch in the split block.
2312     if (PartiallyInvariant)
2313       buildPartialInvariantUnswitchConditionalBranch(
2314           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2315     else
2316       buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2317                                             *ClonedPH, *LoopPH, InsertFreeze);
2318     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2319 
2320     if (MSSAU) {
2321       DT.applyUpdates(DTUpdates);
2322       DTUpdates.clear();
2323 
2324       // Perform MSSA cloning updates.
2325       for (auto &VMap : VMaps)
2326         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2327                                    /*IgnoreIncomingWithNoClones=*/true);
2328       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2329     }
2330   }
2331 
2332   // Apply the updates accumulated above to get an up-to-date dominator tree.
2333   DT.applyUpdates(DTUpdates);
2334 
2335   // Now that we have an accurate dominator tree, first delete the dead cloned
2336   // blocks so that we can accurately build any cloned loops. It is important to
2337   // not delete the blocks from the original loop yet because we still want to
2338   // reference the original loop to understand the cloned loop's structure.
2339   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2340 
2341   // Build the cloned loop structure itself. This may be substantially
2342   // different from the original structure due to the simplified CFG. This also
2343   // handles inserting all the cloned blocks into the correct loops.
2344   SmallVector<Loop *, 4> NonChildClonedLoops;
2345   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2346     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2347 
2348   // Now that our cloned loops have been built, we can update the original loop.
2349   // First we delete the dead blocks from it and then we rebuild the loop
2350   // structure taking these deletions into account.
2351   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, DestroyLoopCB);
2352 
2353   if (MSSAU && VerifyMemorySSA)
2354     MSSAU->getMemorySSA()->verifyMemorySSA();
2355 
2356   SmallVector<Loop *, 4> HoistedLoops;
2357   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2358 
2359   if (MSSAU && VerifyMemorySSA)
2360     MSSAU->getMemorySSA()->verifyMemorySSA();
2361 
2362   // This transformation has a high risk of corrupting the dominator tree, and
2363   // the below steps to rebuild loop structures will result in hard to debug
2364   // errors in that case so verify that the dominator tree is sane first.
2365   // FIXME: Remove this when the bugs stop showing up and rely on existing
2366   // verification steps.
2367   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2368 
2369   if (BI && !PartiallyInvariant) {
2370     // If we unswitched a branch which collapses the condition to a known
2371     // constant we want to replace all the uses of the invariants within both
2372     // the original and cloned blocks. We do this here so that we can use the
2373     // now updated dominator tree to identify which side the users are on.
2374     assert(UnswitchedSuccBBs.size() == 1 &&
2375            "Only one possible unswitched block for a branch!");
2376     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2377 
2378     // When considering multiple partially-unswitched invariants
2379     // we cant just go replace them with constants in both branches.
2380     //
2381     // For 'AND' we infer that true branch ("continue") means true
2382     // for each invariant operand.
2383     // For 'OR' we can infer that false branch ("continue") means false
2384     // for each invariant operand.
2385     // So it happens that for multiple-partial case we dont replace
2386     // in the unswitched branch.
2387     bool ReplaceUnswitched =
2388         FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2389 
2390     ConstantInt *UnswitchedReplacement =
2391         Direction ? ConstantInt::getTrue(BI->getContext())
2392                   : ConstantInt::getFalse(BI->getContext());
2393     ConstantInt *ContinueReplacement =
2394         Direction ? ConstantInt::getFalse(BI->getContext())
2395                   : ConstantInt::getTrue(BI->getContext());
2396     for (Value *Invariant : Invariants) {
2397       assert(!isa<Constant>(Invariant) &&
2398              "Should not be replacing constant values!");
2399       // Use make_early_inc_range here as set invalidates the iterator.
2400       for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2401         Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2402         if (!UserI)
2403           continue;
2404 
2405         // Replace it with the 'continue' side if in the main loop body, and the
2406         // unswitched if in the cloned blocks.
2407         if (DT.dominates(LoopPH, UserI->getParent()))
2408           U.set(ContinueReplacement);
2409         else if (ReplaceUnswitched &&
2410                  DT.dominates(ClonedPH, UserI->getParent()))
2411           U.set(UnswitchedReplacement);
2412       }
2413     }
2414   }
2415 
2416   // We can change which blocks are exit blocks of all the cloned sibling
2417   // loops, the current loop, and any parent loops which shared exit blocks
2418   // with the current loop. As a consequence, we need to re-form LCSSA for
2419   // them. But we shouldn't need to re-form LCSSA for any child loops.
2420   // FIXME: This could be made more efficient by tracking which exit blocks are
2421   // new, and focusing on them, but that isn't likely to be necessary.
2422   //
2423   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2424   // loop nest and update every loop that could have had its exits changed. We
2425   // also need to cover any intervening loops. We add all of these loops to
2426   // a list and sort them by loop depth to achieve this without updating
2427   // unnecessary loops.
2428   auto UpdateLoop = [&](Loop &UpdateL) {
2429 #ifndef NDEBUG
2430     UpdateL.verifyLoop();
2431     for (Loop *ChildL : UpdateL) {
2432       ChildL->verifyLoop();
2433       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2434              "Perturbed a child loop's LCSSA form!");
2435     }
2436 #endif
2437     // First build LCSSA for this loop so that we can preserve it when
2438     // forming dedicated exits. We don't want to perturb some other loop's
2439     // LCSSA while doing that CFG edit.
2440     formLCSSA(UpdateL, DT, &LI, SE);
2441 
2442     // For loops reached by this loop's original exit blocks we may
2443     // introduced new, non-dedicated exits. At least try to re-form dedicated
2444     // exits for these loops. This may fail if they couldn't have dedicated
2445     // exits to start with.
2446     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2447   };
2448 
2449   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2450   // and we can do it in any order as they don't nest relative to each other.
2451   //
2452   // Also check if any of the loops we have updated have become top-level loops
2453   // as that will necessitate widening the outer loop scope.
2454   for (Loop *UpdatedL :
2455        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2456     UpdateLoop(*UpdatedL);
2457     if (UpdatedL->isOutermost())
2458       OuterExitL = nullptr;
2459   }
2460   if (IsStillLoop) {
2461     UpdateLoop(L);
2462     if (L.isOutermost())
2463       OuterExitL = nullptr;
2464   }
2465 
2466   // If the original loop had exit blocks, walk up through the outer most loop
2467   // of those exit blocks to update LCSSA and form updated dedicated exits.
2468   if (OuterExitL != &L)
2469     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2470          OuterL = OuterL->getParentLoop())
2471       UpdateLoop(*OuterL);
2472 
2473 #ifndef NDEBUG
2474   // Verify the entire loop structure to catch any incorrect updates before we
2475   // progress in the pass pipeline.
2476   LI.verify(DT);
2477 #endif
2478 
2479   // Now that we've unswitched something, make callbacks to report the changes.
2480   // For that we need to merge together the updated loops and the cloned loops
2481   // and check whether the original loop survived.
2482   SmallVector<Loop *, 4> SibLoops;
2483   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2484     if (UpdatedL->getParentLoop() == ParentL)
2485       SibLoops.push_back(UpdatedL);
2486   UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2487 
2488   if (MSSAU && VerifyMemorySSA)
2489     MSSAU->getMemorySSA()->verifyMemorySSA();
2490 
2491   if (BI)
2492     ++NumBranches;
2493   else
2494     ++NumSwitches;
2495 }
2496 
2497 /// Recursively compute the cost of a dominator subtree based on the per-block
2498 /// cost map provided.
2499 ///
2500 /// The recursive computation is memozied into the provided DT-indexed cost map
2501 /// to allow querying it for most nodes in the domtree without it becoming
2502 /// quadratic.
2503 static InstructionCost computeDomSubtreeCost(
2504     DomTreeNode &N,
2505     const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2506     SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2507   // Don't accumulate cost (or recurse through) blocks not in our block cost
2508   // map and thus not part of the duplication cost being considered.
2509   auto BBCostIt = BBCostMap.find(N.getBlock());
2510   if (BBCostIt == BBCostMap.end())
2511     return 0;
2512 
2513   // Lookup this node to see if we already computed its cost.
2514   auto DTCostIt = DTCostMap.find(&N);
2515   if (DTCostIt != DTCostMap.end())
2516     return DTCostIt->second;
2517 
2518   // If not, we have to compute it. We can't use insert above and update
2519   // because computing the cost may insert more things into the map.
2520   InstructionCost Cost = std::accumulate(
2521       N.begin(), N.end(), BBCostIt->second,
2522       [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2523         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2524       });
2525   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2526   (void)Inserted;
2527   assert(Inserted && "Should not insert a node while visiting children!");
2528   return Cost;
2529 }
2530 
2531 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2532 /// making the following replacement:
2533 ///
2534 ///   --code before guard--
2535 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2536 ///   --code after guard--
2537 ///
2538 /// into
2539 ///
2540 ///   --code before guard--
2541 ///   br i1 %cond, label %guarded, label %deopt
2542 ///
2543 /// guarded:
2544 ///   --code after guard--
2545 ///
2546 /// deopt:
2547 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2548 ///   unreachable
2549 ///
2550 /// It also makes all relevant DT and LI updates, so that all structures are in
2551 /// valid state after this transform.
2552 static BranchInst *
2553 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2554                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2555                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2556   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2557   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2558   BasicBlock *CheckBB = GI->getParent();
2559 
2560   if (MSSAU && VerifyMemorySSA)
2561      MSSAU->getMemorySSA()->verifyMemorySSA();
2562 
2563   // Remove all CheckBB's successors from DomTree. A block can be seen among
2564   // successors more than once, but for DomTree it should be added only once.
2565   SmallPtrSet<BasicBlock *, 4> Successors;
2566   for (auto *Succ : successors(CheckBB))
2567     if (Successors.insert(Succ).second)
2568       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2569 
2570   Instruction *DeoptBlockTerm =
2571       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2572   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2573   // SplitBlockAndInsertIfThen inserts control flow that branches to
2574   // DeoptBlockTerm if the condition is true.  We want the opposite.
2575   CheckBI->swapSuccessors();
2576 
2577   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2578   GuardedBlock->setName("guarded");
2579   CheckBI->getSuccessor(1)->setName("deopt");
2580   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2581 
2582   // We now have a new exit block.
2583   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2584 
2585   if (MSSAU)
2586     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2587 
2588   GI->moveBefore(DeoptBlockTerm);
2589   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2590 
2591   // Add new successors of CheckBB into DomTree.
2592   for (auto *Succ : successors(CheckBB))
2593     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2594 
2595   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2596   // successors.
2597   for (auto *Succ : Successors)
2598     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2599 
2600   // Make proper changes to DT.
2601   DT.applyUpdates(DTUpdates);
2602   // Inform LI of a new loop block.
2603   L.addBasicBlockToLoop(GuardedBlock, LI);
2604 
2605   if (MSSAU) {
2606     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2607     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2608     if (VerifyMemorySSA)
2609       MSSAU->getMemorySSA()->verifyMemorySSA();
2610   }
2611 
2612   ++NumGuards;
2613   return CheckBI;
2614 }
2615 
2616 /// Cost multiplier is a way to limit potentially exponential behavior
2617 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2618 /// candidates available. Also accounting for the number of "sibling" loops with
2619 /// the idea to account for previous unswitches that already happened on this
2620 /// cluster of loops. There was an attempt to keep this formula simple,
2621 /// just enough to limit the worst case behavior. Even if it is not that simple
2622 /// now it is still not an attempt to provide a detailed heuristic size
2623 /// prediction.
2624 ///
2625 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2626 /// unswitch candidates, making adequate predictions instead of wild guesses.
2627 /// That requires knowing not just the number of "remaining" candidates but
2628 /// also costs of unswitching for each of these candidates.
2629 static int CalculateUnswitchCostMultiplier(
2630     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2631     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2632         UnswitchCandidates) {
2633 
2634   // Guards and other exiting conditions do not contribute to exponential
2635   // explosion as soon as they dominate the latch (otherwise there might be
2636   // another path to the latch remaining that does not allow to eliminate the
2637   // loop copy on unswitch).
2638   BasicBlock *Latch = L.getLoopLatch();
2639   BasicBlock *CondBlock = TI.getParent();
2640   if (DT.dominates(CondBlock, Latch) &&
2641       (isGuard(&TI) ||
2642        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2643          return L.contains(SuccBB);
2644        }) <= 1)) {
2645     NumCostMultiplierSkipped++;
2646     return 1;
2647   }
2648 
2649   auto *ParentL = L.getParentLoop();
2650   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2651                                : std::distance(LI.begin(), LI.end()));
2652   // Count amount of clones that all the candidates might cause during
2653   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2654   int UnswitchedClones = 0;
2655   for (auto Candidate : UnswitchCandidates) {
2656     Instruction *CI = Candidate.first;
2657     BasicBlock *CondBlock = CI->getParent();
2658     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2659     if (isGuard(CI)) {
2660       if (!SkipExitingSuccessors)
2661         UnswitchedClones++;
2662       continue;
2663     }
2664     int NonExitingSuccessors = llvm::count_if(
2665         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2666           return !SkipExitingSuccessors || L.contains(SuccBB);
2667         });
2668     UnswitchedClones += Log2_32(NonExitingSuccessors);
2669   }
2670 
2671   // Ignore up to the "unscaled candidates" number of unswitch candidates
2672   // when calculating the power-of-two scaling of the cost. The main idea
2673   // with this control is to allow a small number of unswitches to happen
2674   // and rely more on siblings multiplier (see below) when the number
2675   // of candidates is small.
2676   unsigned ClonesPower =
2677       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2678 
2679   // Allowing top-level loops to spread a bit more than nested ones.
2680   int SiblingsMultiplier =
2681       std::max((ParentL ? SiblingsCount
2682                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2683                1);
2684   // Compute the cost multiplier in a way that won't overflow by saturating
2685   // at an upper bound.
2686   int CostMultiplier;
2687   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2688       SiblingsMultiplier > UnswitchThreshold)
2689     CostMultiplier = UnswitchThreshold;
2690   else
2691     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2692                               (int)UnswitchThreshold);
2693 
2694   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2695                     << " (siblings " << SiblingsMultiplier << " * clones "
2696                     << (1 << ClonesPower) << ")"
2697                     << " for unswitch candidate: " << TI << "\n");
2698   return CostMultiplier;
2699 }
2700 
2701 static bool unswitchBestCondition(
2702     Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2703     AAResults &AA, TargetTransformInfo &TTI,
2704     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2705     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2706     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2707   // Collect all invariant conditions within this loop (as opposed to an inner
2708   // loop which would be handled when visiting that inner loop).
2709   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2710       UnswitchCandidates;
2711 
2712   // Whether or not we should also collect guards in the loop.
2713   bool CollectGuards = false;
2714   if (UnswitchGuards) {
2715     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2716         Intrinsic::getName(Intrinsic::experimental_guard));
2717     if (GuardDecl && !GuardDecl->use_empty())
2718       CollectGuards = true;
2719   }
2720 
2721   IVConditionInfo PartialIVInfo;
2722   for (auto *BB : L.blocks()) {
2723     if (LI.getLoopFor(BB) != &L)
2724       continue;
2725 
2726     if (CollectGuards)
2727       for (auto &I : *BB)
2728         if (isGuard(&I)) {
2729           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2730           // TODO: Support AND, OR conditions and partial unswitching.
2731           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2732             UnswitchCandidates.push_back({&I, {Cond}});
2733         }
2734 
2735     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2736       // We can only consider fully loop-invariant switch conditions as we need
2737       // to completely eliminate the switch after unswitching.
2738       if (!isa<Constant>(SI->getCondition()) &&
2739           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2740         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2741       continue;
2742     }
2743 
2744     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2745     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2746         BI->getSuccessor(0) == BI->getSuccessor(1))
2747       continue;
2748 
2749     // If BI's condition is 'select _, true, false', simplify it to confuse
2750     // matchers
2751     Value *Cond = BI->getCondition(), *CondNext;
2752     while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
2753       Cond = CondNext;
2754     BI->setCondition(Cond);
2755 
2756     if (isa<Constant>(Cond))
2757       continue;
2758 
2759     if (L.isLoopInvariant(BI->getCondition())) {
2760       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2761       continue;
2762     }
2763 
2764     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2765     if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2766       TinyPtrVector<Value *> Invariants =
2767           collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2768       if (Invariants.empty())
2769         continue;
2770 
2771       UnswitchCandidates.push_back({BI, std::move(Invariants)});
2772       continue;
2773     }
2774   }
2775 
2776   Instruction *PartialIVCondBranch = nullptr;
2777   if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2778       !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2779         return TerminatorAndInvariants.first == L.getHeader()->getTerminator();
2780       })) {
2781     MemorySSA *MSSA = MSSAU->getMemorySSA();
2782     if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2783       LLVM_DEBUG(
2784           dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2785                  << *Info->InstToDuplicate[0] << "\n");
2786       PartialIVInfo = *Info;
2787       PartialIVCondBranch = L.getHeader()->getTerminator();
2788       TinyPtrVector<Value *> ValsToDuplicate;
2789       for (auto *Inst : Info->InstToDuplicate)
2790         ValsToDuplicate.push_back(Inst);
2791       UnswitchCandidates.push_back(
2792           {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2793     }
2794   }
2795 
2796   // If we didn't find any candidates, we're done.
2797   if (UnswitchCandidates.empty())
2798     return false;
2799 
2800   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2801   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2802   // irreducible control flow into reducible control flow and introduce new
2803   // loops "out of thin air". If we ever discover important use cases for doing
2804   // this, we can add support to loop unswitch, but it is a lot of complexity
2805   // for what seems little or no real world benefit.
2806   LoopBlocksRPO RPOT(&L);
2807   RPOT.perform(&LI);
2808   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2809     return false;
2810 
2811   SmallVector<BasicBlock *, 4> ExitBlocks;
2812   L.getUniqueExitBlocks(ExitBlocks);
2813 
2814   // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
2815   // instruction as we don't know how to split those exit blocks.
2816   // FIXME: We should teach SplitBlock to handle this and remove this
2817   // restriction.
2818   for (auto *ExitBB : ExitBlocks) {
2819     auto *I = ExitBB->getFirstNonPHI();
2820     if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
2821       LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
2822                            "in exit block\n");
2823       return false;
2824     }
2825   }
2826 
2827   LLVM_DEBUG(
2828       dbgs() << "Considering " << UnswitchCandidates.size()
2829              << " non-trivial loop invariant conditions for unswitching.\n");
2830 
2831   // Given that unswitching these terminators will require duplicating parts of
2832   // the loop, so we need to be able to model that cost. Compute the ephemeral
2833   // values and set up a data structure to hold per-BB costs. We cache each
2834   // block's cost so that we don't recompute this when considering different
2835   // subsets of the loop for duplication during unswitching.
2836   SmallPtrSet<const Value *, 4> EphValues;
2837   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2838   SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2839 
2840   // Compute the cost of each block, as well as the total loop cost. Also, bail
2841   // out if we see instructions which are incompatible with loop unswitching
2842   // (convergent, noduplicate, or cross-basic-block tokens).
2843   // FIXME: We might be able to safely handle some of these in non-duplicated
2844   // regions.
2845   TargetTransformInfo::TargetCostKind CostKind =
2846       L.getHeader()->getParent()->hasMinSize()
2847       ? TargetTransformInfo::TCK_CodeSize
2848       : TargetTransformInfo::TCK_SizeAndLatency;
2849   InstructionCost LoopCost = 0;
2850   for (auto *BB : L.blocks()) {
2851     InstructionCost Cost = 0;
2852     for (auto &I : *BB) {
2853       if (EphValues.count(&I))
2854         continue;
2855 
2856       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2857         return false;
2858       if (auto *CB = dyn_cast<CallBase>(&I))
2859         if (CB->isConvergent() || CB->cannotDuplicate())
2860           return false;
2861 
2862       Cost += TTI.getUserCost(&I, CostKind);
2863     }
2864     assert(Cost >= 0 && "Must not have negative costs!");
2865     LoopCost += Cost;
2866     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2867     BBCostMap[BB] = Cost;
2868   }
2869   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2870 
2871   // Now we find the best candidate by searching for the one with the following
2872   // properties in order:
2873   //
2874   // 1) An unswitching cost below the threshold
2875   // 2) The smallest number of duplicated unswitch candidates (to avoid
2876   //    creating redundant subsequent unswitching)
2877   // 3) The smallest cost after unswitching.
2878   //
2879   // We prioritize reducing fanout of unswitch candidates provided the cost
2880   // remains below the threshold because this has a multiplicative effect.
2881   //
2882   // This requires memoizing each dominator subtree to avoid redundant work.
2883   //
2884   // FIXME: Need to actually do the number of candidates part above.
2885   SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2886   // Given a terminator which might be unswitched, computes the non-duplicated
2887   // cost for that terminator.
2888   auto ComputeUnswitchedCost = [&](Instruction &TI,
2889                                    bool FullUnswitch) -> InstructionCost {
2890     BasicBlock &BB = *TI.getParent();
2891     SmallPtrSet<BasicBlock *, 4> Visited;
2892 
2893     InstructionCost Cost = 0;
2894     for (BasicBlock *SuccBB : successors(&BB)) {
2895       // Don't count successors more than once.
2896       if (!Visited.insert(SuccBB).second)
2897         continue;
2898 
2899       // If this is a partial unswitch candidate, then it must be a conditional
2900       // branch with a condition of either `or`, `and`, their corresponding
2901       // select forms or partially invariant instructions. In that case, one of
2902       // the successors is necessarily duplicated, so don't even try to remove
2903       // its cost.
2904       if (!FullUnswitch) {
2905         auto &BI = cast<BranchInst>(TI);
2906         if (match(BI.getCondition(), m_LogicalAnd())) {
2907           if (SuccBB == BI.getSuccessor(1))
2908             continue;
2909         } else if (match(BI.getCondition(), m_LogicalOr())) {
2910           if (SuccBB == BI.getSuccessor(0))
2911             continue;
2912         } else if ((PartialIVInfo.KnownValue->isOneValue() &&
2913                     SuccBB == BI.getSuccessor(0)) ||
2914                    (!PartialIVInfo.KnownValue->isOneValue() &&
2915                     SuccBB == BI.getSuccessor(1)))
2916           continue;
2917       }
2918 
2919       // This successor's domtree will not need to be duplicated after
2920       // unswitching if the edge to the successor dominates it (and thus the
2921       // entire tree). This essentially means there is no other path into this
2922       // subtree and so it will end up live in only one clone of the loop.
2923       if (SuccBB->getUniquePredecessor() ||
2924           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2925             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2926           })) {
2927         Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2928         assert(Cost <= LoopCost &&
2929                "Non-duplicated cost should never exceed total loop cost!");
2930       }
2931     }
2932 
2933     // Now scale the cost by the number of unique successors minus one. We
2934     // subtract one because there is already at least one copy of the entire
2935     // loop. This is computing the new cost of unswitching a condition.
2936     // Note that guards always have 2 unique successors that are implicit and
2937     // will be materialized if we decide to unswitch it.
2938     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2939     assert(SuccessorsCount > 1 &&
2940            "Cannot unswitch a condition without multiple distinct successors!");
2941     return (LoopCost - Cost) * (SuccessorsCount - 1);
2942   };
2943   Instruction *BestUnswitchTI = nullptr;
2944   InstructionCost BestUnswitchCost = 0;
2945   ArrayRef<Value *> BestUnswitchInvariants;
2946   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2947     Instruction &TI = *TerminatorAndInvariants.first;
2948     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2949     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2950     InstructionCost CandidateCost = ComputeUnswitchedCost(
2951         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2952                                      Invariants[0] == BI->getCondition()));
2953     // Calculate cost multiplier which is a tool to limit potentially
2954     // exponential behavior of loop-unswitch.
2955     if (EnableUnswitchCostMultiplier) {
2956       int CostMultiplier =
2957           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2958       assert(
2959           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2960           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2961       CandidateCost *= CostMultiplier;
2962       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2963                         << " (multiplier: " << CostMultiplier << ")"
2964                         << " for unswitch candidate: " << TI << "\n");
2965     } else {
2966       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2967                         << " for unswitch candidate: " << TI << "\n");
2968     }
2969 
2970     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2971       BestUnswitchTI = &TI;
2972       BestUnswitchCost = CandidateCost;
2973       BestUnswitchInvariants = Invariants;
2974     }
2975   }
2976   assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2977 
2978   if (BestUnswitchCost >= UnswitchThreshold) {
2979     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2980                       << BestUnswitchCost << "\n");
2981     return false;
2982   }
2983 
2984   if (BestUnswitchTI != PartialIVCondBranch)
2985     PartialIVInfo.InstToDuplicate.clear();
2986 
2987   // If the best candidate is a guard, turn it into a branch.
2988   if (isGuard(BestUnswitchTI))
2989     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2990                                          ExitBlocks, DT, LI, MSSAU);
2991 
2992   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2993                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2994                     << "\n");
2995   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2996                                ExitBlocks, PartialIVInfo, DT, LI, AC,
2997                                UnswitchCB, SE, MSSAU, DestroyLoopCB);
2998   return true;
2999 }
3000 
3001 /// Unswitch control flow predicated on loop invariant conditions.
3002 ///
3003 /// This first hoists all branches or switches which are trivial (IE, do not
3004 /// require duplicating any part of the loop) out of the loop body. It then
3005 /// looks at other loop invariant control flows and tries to unswitch those as
3006 /// well by cloning the loop if the result is small enough.
3007 ///
3008 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3009 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
3010 /// valid (i.e. its use is enabled).
3011 ///
3012 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3013 /// true, we will attempt to do non-trivial unswitching as well as trivial
3014 /// unswitching.
3015 ///
3016 /// The `UnswitchCB` callback provided will be run after unswitching is
3017 /// complete, with the first parameter set to `true` if the provided loop
3018 /// remains a loop, and a list of new sibling loops created.
3019 ///
3020 /// If `SE` is non-null, we will update that analysis based on the unswitching
3021 /// done.
3022 static bool
3023 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
3024              AAResults &AA, TargetTransformInfo &TTI, bool Trivial,
3025              bool NonTrivial,
3026              function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
3027              ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
3028              function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3029   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3030          "Loops must be in LCSSA form before unswitching.");
3031 
3032   // Must be in loop simplified form: we need a preheader and dedicated exits.
3033   if (!L.isLoopSimplifyForm())
3034     return false;
3035 
3036   // Try trivial unswitch first before loop over other basic blocks in the loop.
3037   if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3038     // If we unswitched successfully we will want to clean up the loop before
3039     // processing it further so just mark it as unswitched and return.
3040     UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3041     return true;
3042   }
3043 
3044   // Check whether we should continue with non-trivial conditions.
3045   // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3046   //                           unswitching for testing and debugging.
3047   // NonTrivial: Parameter that enables non-trivial unswitching for this
3048   //             invocation of the transform. But this should be allowed only
3049   //             for targets without branch divergence.
3050   //
3051   // FIXME: If divergence analysis becomes available to a loop
3052   // transform, we should allow unswitching for non-trivial uniform
3053   // branches even on targets that have divergence.
3054   // https://bugs.llvm.org/show_bug.cgi?id=48819
3055   bool ContinueWithNonTrivial =
3056       EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3057   if (!ContinueWithNonTrivial)
3058     return false;
3059 
3060   // Skip non-trivial unswitching for optsize functions.
3061   if (L.getHeader()->getParent()->hasOptSize())
3062     return false;
3063 
3064   // Skip non-trivial unswitching for loops that cannot be cloned.
3065   if (!L.isSafeToClone())
3066     return false;
3067 
3068   // For non-trivial unswitching, because it often creates new loops, we rely on
3069   // the pass manager to iterate on the loops rather than trying to immediately
3070   // reach a fixed point. There is no substantial advantage to iterating
3071   // internally, and if any of the new loops are simplified enough to contain
3072   // trivial unswitching we want to prefer those.
3073 
3074   // Try to unswitch the best invariant condition. We prefer this full unswitch to
3075   // a partial unswitch when possible below the threshold.
3076   if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU,
3077                             DestroyLoopCB))
3078     return true;
3079 
3080   // No other opportunities to unswitch.
3081   return false;
3082 }
3083 
3084 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3085                                               LoopStandardAnalysisResults &AR,
3086                                               LPMUpdater &U) {
3087   Function &F = *L.getHeader()->getParent();
3088   (void)F;
3089 
3090   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3091                     << "\n");
3092 
3093   // Save the current loop name in a variable so that we can report it even
3094   // after it has been deleted.
3095   std::string LoopName = std::string(L.getName());
3096 
3097   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3098                                         bool PartiallyInvariant,
3099                                         ArrayRef<Loop *> NewLoops) {
3100     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3101     if (!NewLoops.empty())
3102       U.addSiblingLoops(NewLoops);
3103 
3104     // If the current loop remains valid, we should revisit it to catch any
3105     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3106     if (CurrentLoopValid) {
3107       if (PartiallyInvariant) {
3108         // Mark the new loop as partially unswitched, to avoid unswitching on
3109         // the same condition again.
3110         auto &Context = L.getHeader()->getContext();
3111         MDNode *DisableUnswitchMD = MDNode::get(
3112             Context,
3113             MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
3114         MDNode *NewLoopID = makePostTransformationMetadata(
3115             Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
3116             {DisableUnswitchMD});
3117         L.setLoopID(NewLoopID);
3118       } else
3119         U.revisitCurrentLoop();
3120     } else
3121       U.markLoopAsDeleted(L, LoopName);
3122   };
3123 
3124   auto DestroyLoopCB = [&U](Loop &L, StringRef Name) {
3125     U.markLoopAsDeleted(L, Name);
3126   };
3127 
3128   Optional<MemorySSAUpdater> MSSAU;
3129   if (AR.MSSA) {
3130     MSSAU = MemorySSAUpdater(AR.MSSA);
3131     if (VerifyMemorySSA)
3132       AR.MSSA->verifyMemorySSA();
3133   }
3134   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3135                     UnswitchCB, &AR.SE,
3136                     MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
3137                     DestroyLoopCB))
3138     return PreservedAnalyses::all();
3139 
3140   if (AR.MSSA && VerifyMemorySSA)
3141     AR.MSSA->verifyMemorySSA();
3142 
3143   // Historically this pass has had issues with the dominator tree so verify it
3144   // in asserts builds.
3145   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3146 
3147   auto PA = getLoopPassPreservedAnalyses();
3148   if (AR.MSSA)
3149     PA.preserve<MemorySSAAnalysis>();
3150   return PA;
3151 }
3152 
3153 void SimpleLoopUnswitchPass::printPipeline(
3154     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3155   static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
3156       OS, MapClassName2PassName);
3157 
3158   OS << "<";
3159   OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3160   OS << (Trivial ? "" : "no-") << "trivial";
3161   OS << ">";
3162 }
3163 
3164 namespace {
3165 
3166 class SimpleLoopUnswitchLegacyPass : public LoopPass {
3167   bool NonTrivial;
3168 
3169 public:
3170   static char ID; // Pass ID, replacement for typeid
3171 
3172   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3173       : LoopPass(ID), NonTrivial(NonTrivial) {
3174     initializeSimpleLoopUnswitchLegacyPassPass(
3175         *PassRegistry::getPassRegistry());
3176   }
3177 
3178   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3179 
3180   void getAnalysisUsage(AnalysisUsage &AU) const override {
3181     AU.addRequired<AssumptionCacheTracker>();
3182     AU.addRequired<TargetTransformInfoWrapperPass>();
3183     AU.addRequired<MemorySSAWrapperPass>();
3184     AU.addPreserved<MemorySSAWrapperPass>();
3185     getLoopAnalysisUsage(AU);
3186   }
3187 };
3188 
3189 } // end anonymous namespace
3190 
3191 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3192   if (skipLoop(L))
3193     return false;
3194 
3195   Function &F = *L->getHeader()->getParent();
3196 
3197   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3198                     << "\n");
3199 
3200   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3201   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3202   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3203   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3204   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3205   MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3206   MemorySSAUpdater MSSAU(MSSA);
3207 
3208   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3209   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3210 
3211   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3212                                ArrayRef<Loop *> NewLoops) {
3213     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3214     for (auto *NewL : NewLoops)
3215       LPM.addLoop(*NewL);
3216 
3217     // If the current loop remains valid, re-add it to the queue. This is
3218     // a little wasteful as we'll finish processing the current loop as well,
3219     // but it is the best we can do in the old PM.
3220     if (CurrentLoopValid) {
3221       // If the current loop has been unswitched using a partially invariant
3222       // condition, we should not re-add the current loop to avoid unswitching
3223       // on the same condition again.
3224       if (!PartiallyInvariant)
3225         LPM.addLoop(*L);
3226     } else
3227       LPM.markLoopAsDeleted(*L);
3228   };
3229 
3230   auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) {
3231     LPM.markLoopAsDeleted(L);
3232   };
3233 
3234   if (VerifyMemorySSA)
3235     MSSA->verifyMemorySSA();
3236 
3237   bool Changed = unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial,
3238                               UnswitchCB, SE, &MSSAU, DestroyLoopCB);
3239 
3240   if (VerifyMemorySSA)
3241     MSSA->verifyMemorySSA();
3242 
3243   // Historically this pass has had issues with the dominator tree so verify it
3244   // in asserts builds.
3245   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3246 
3247   return Changed;
3248 }
3249 
3250 char SimpleLoopUnswitchLegacyPass::ID = 0;
3251 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3252                       "Simple unswitch loops", false, false)
3253 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3254 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3255 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3256 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3257 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3258 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3259 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3260                     "Simple unswitch loops", false, false)
3261 
3262 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3263   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3264 }
3265