1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/MustExecute.h" 30 #include "llvm/Analysis/ScalarEvolution.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Use.h" 44 #include "llvm/IR/Value.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/GenericDomTree.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 54 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 55 #include "llvm/Transforms/Utils/Cloning.h" 56 #include "llvm/Transforms/Utils/Local.h" 57 #include "llvm/Transforms/Utils/LoopUtils.h" 58 #include "llvm/Transforms/Utils/ValueMapper.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <iterator> 62 #include <numeric> 63 #include <utility> 64 65 #define DEBUG_TYPE "simple-loop-unswitch" 66 67 using namespace llvm; 68 using namespace llvm::PatternMatch; 69 70 STATISTIC(NumBranches, "Number of branches unswitched"); 71 STATISTIC(NumSwitches, "Number of switches unswitched"); 72 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 73 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 74 STATISTIC( 75 NumCostMultiplierSkipped, 76 "Number of unswitch candidates that had their cost multiplier skipped"); 77 78 static cl::opt<bool> EnableNonTrivialUnswitch( 79 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 80 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 81 "following the configuration passed into the pass.")); 82 83 static cl::opt<int> 84 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 85 cl::ZeroOrMore, 86 cl::desc("The cost threshold for unswitching a loop.")); 87 88 static cl::opt<bool> EnableUnswitchCostMultiplier( 89 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 90 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 91 "explosion in nontrivial unswitch.")); 92 static cl::opt<int> UnswitchSiblingsToplevelDiv( 93 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 94 cl::desc("Toplevel siblings divisor for cost multiplier.")); 95 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 96 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 97 cl::desc("Number of unswitch candidates that are ignored when calculating " 98 "cost multiplier.")); 99 static cl::opt<bool> UnswitchGuards( 100 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 101 cl::desc("If enabled, simple loop unswitching will also consider " 102 "llvm.experimental.guard intrinsics as unswitch candidates.")); 103 static cl::opt<bool> DropNonTrivialImplicitNullChecks( 104 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 105 cl::init(false), cl::Hidden, 106 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 107 "null checks to save time analyzing if we can keep it.")); 108 static cl::opt<unsigned> 109 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", 110 cl::desc("Max number of memory uses to explore during " 111 "partial unswitching analysis"), 112 cl::init(100), cl::Hidden); 113 static cl::opt<bool> FreezeLoopUnswitchCond( 114 "freeze-loop-unswitch-cond", cl::init(false), cl::Hidden, 115 cl::desc("If enabled, the freeze instruction will be added to condition " 116 "of loop unswitch to prevent miscompilation.")); 117 118 /// Collect all of the loop invariant input values transitively used by the 119 /// homogeneous instruction graph from a given root. 120 /// 121 /// This essentially walks from a root recursively through loop variant operands 122 /// which have the exact same opcode and finds all inputs which are loop 123 /// invariant. For some operations these can be re-associated and unswitched out 124 /// of the loop entirely. 125 static TinyPtrVector<Value *> 126 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 127 LoopInfo &LI) { 128 assert(!L.isLoopInvariant(&Root) && 129 "Only need to walk the graph if root itself is not invariant."); 130 TinyPtrVector<Value *> Invariants; 131 132 bool IsRootAnd = match(&Root, m_LogicalAnd()); 133 bool IsRootOr = match(&Root, m_LogicalOr()); 134 135 // Build a worklist and recurse through operators collecting invariants. 136 SmallVector<Instruction *, 4> Worklist; 137 SmallPtrSet<Instruction *, 8> Visited; 138 Worklist.push_back(&Root); 139 Visited.insert(&Root); 140 do { 141 Instruction &I = *Worklist.pop_back_val(); 142 for (Value *OpV : I.operand_values()) { 143 // Skip constants as unswitching isn't interesting for them. 144 if (isa<Constant>(OpV)) 145 continue; 146 147 // Add it to our result if loop invariant. 148 if (L.isLoopInvariant(OpV)) { 149 Invariants.push_back(OpV); 150 continue; 151 } 152 153 // If not an instruction with the same opcode, nothing we can do. 154 Instruction *OpI = dyn_cast<Instruction>(OpV); 155 156 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) || 157 (IsRootOr && match(OpI, m_LogicalOr())))) { 158 // Visit this operand. 159 if (Visited.insert(OpI).second) 160 Worklist.push_back(OpI); 161 } 162 } 163 } while (!Worklist.empty()); 164 165 return Invariants; 166 } 167 168 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 169 Constant &Replacement) { 170 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 171 172 // Replace uses of LIC in the loop with the given constant. 173 // We use make_early_inc_range as set invalidates the iterator. 174 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 175 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 176 177 // Replace this use within the loop body. 178 if (UserI && L.contains(UserI)) 179 U.set(&Replacement); 180 } 181 } 182 183 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 184 /// incoming values along this edge. 185 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 186 BasicBlock &ExitBB) { 187 for (Instruction &I : ExitBB) { 188 auto *PN = dyn_cast<PHINode>(&I); 189 if (!PN) 190 // No more PHIs to check. 191 return true; 192 193 // If the incoming value for this edge isn't loop invariant the unswitch 194 // won't be trivial. 195 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 196 return false; 197 } 198 llvm_unreachable("Basic blocks should never be empty!"); 199 } 200 201 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the 202 /// end of \p BB and conditionally branch on the copied condition. We only 203 /// branch on a single value. 204 static void buildPartialUnswitchConditionalBranch( 205 BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction, 206 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze) { 207 IRBuilder<> IRB(&BB); 208 209 Value *Cond = Direction ? IRB.CreateOr(Invariants) : 210 IRB.CreateAnd(Invariants); 211 if (InsertFreeze) 212 Cond = IRB.CreateFreeze(Cond, Cond->getName() + ".fr"); 213 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 214 Direction ? &NormalSucc : &UnswitchedSucc); 215 } 216 217 /// Copy a set of loop invariant values, and conditionally branch on them. 218 static void buildPartialInvariantUnswitchConditionalBranch( 219 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction, 220 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, 221 MemorySSAUpdater *MSSAU) { 222 ValueToValueMapTy VMap; 223 for (auto *Val : reverse(ToDuplicate)) { 224 Instruction *Inst = cast<Instruction>(Val); 225 Instruction *NewInst = Inst->clone(); 226 BB.getInstList().insert(BB.end(), NewInst); 227 RemapInstruction(NewInst, VMap, 228 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 229 VMap[Val] = NewInst; 230 231 if (!MSSAU) 232 continue; 233 234 MemorySSA *MSSA = MSSAU->getMemorySSA(); 235 if (auto *MemUse = 236 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) { 237 auto *DefiningAccess = MemUse->getDefiningAccess(); 238 // Get the first defining access before the loop. 239 while (L.contains(DefiningAccess->getBlock())) { 240 // If the defining access is a MemoryPhi, get the incoming 241 // value for the pre-header as defining access. 242 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess)) 243 DefiningAccess = 244 MemPhi->getIncomingValueForBlock(L.getLoopPreheader()); 245 else 246 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess(); 247 } 248 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess, 249 NewInst->getParent(), 250 MemorySSA::BeforeTerminator); 251 } 252 } 253 254 IRBuilder<> IRB(&BB); 255 Value *Cond = VMap[ToDuplicate[0]]; 256 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 257 Direction ? &NormalSucc : &UnswitchedSucc); 258 } 259 260 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 261 /// 262 /// Requires that the loop exit and unswitched basic block are the same, and 263 /// that the exiting block was a unique predecessor of that block. Rewrites the 264 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 265 /// PHI nodes from the old preheader that now contains the unswitched 266 /// terminator. 267 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 268 BasicBlock &OldExitingBB, 269 BasicBlock &OldPH) { 270 for (PHINode &PN : UnswitchedBB.phis()) { 271 // When the loop exit is directly unswitched we just need to update the 272 // incoming basic block. We loop to handle weird cases with repeated 273 // incoming blocks, but expect to typically only have one operand here. 274 for (auto i : seq<int>(0, PN.getNumOperands())) { 275 assert(PN.getIncomingBlock(i) == &OldExitingBB && 276 "Found incoming block different from unique predecessor!"); 277 PN.setIncomingBlock(i, &OldPH); 278 } 279 } 280 } 281 282 /// Rewrite the PHI nodes in the loop exit basic block and the split off 283 /// unswitched block. 284 /// 285 /// Because the exit block remains an exit from the loop, this rewrites the 286 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 287 /// nodes into the unswitched basic block to select between the value in the 288 /// old preheader and the loop exit. 289 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 290 BasicBlock &UnswitchedBB, 291 BasicBlock &OldExitingBB, 292 BasicBlock &OldPH, 293 bool FullUnswitch) { 294 assert(&ExitBB != &UnswitchedBB && 295 "Must have different loop exit and unswitched blocks!"); 296 Instruction *InsertPt = &*UnswitchedBB.begin(); 297 for (PHINode &PN : ExitBB.phis()) { 298 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 299 PN.getName() + ".split", InsertPt); 300 301 // Walk backwards over the old PHI node's inputs to minimize the cost of 302 // removing each one. We have to do this weird loop manually so that we 303 // create the same number of new incoming edges in the new PHI as we expect 304 // each case-based edge to be included in the unswitched switch in some 305 // cases. 306 // FIXME: This is really, really gross. It would be much cleaner if LLVM 307 // allowed us to create a single entry for a predecessor block without 308 // having separate entries for each "edge" even though these edges are 309 // required to produce identical results. 310 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 311 if (PN.getIncomingBlock(i) != &OldExitingBB) 312 continue; 313 314 Value *Incoming = PN.getIncomingValue(i); 315 if (FullUnswitch) 316 // No more edge from the old exiting block to the exit block. 317 PN.removeIncomingValue(i); 318 319 NewPN->addIncoming(Incoming, &OldPH); 320 } 321 322 // Now replace the old PHI with the new one and wire the old one in as an 323 // input to the new one. 324 PN.replaceAllUsesWith(NewPN); 325 NewPN->addIncoming(&PN, &ExitBB); 326 } 327 } 328 329 /// Hoist the current loop up to the innermost loop containing a remaining exit. 330 /// 331 /// Because we've removed an exit from the loop, we may have changed the set of 332 /// loops reachable and need to move the current loop up the loop nest or even 333 /// to an entirely separate nest. 334 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 335 DominatorTree &DT, LoopInfo &LI, 336 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 337 // If the loop is already at the top level, we can't hoist it anywhere. 338 Loop *OldParentL = L.getParentLoop(); 339 if (!OldParentL) 340 return; 341 342 SmallVector<BasicBlock *, 4> Exits; 343 L.getExitBlocks(Exits); 344 Loop *NewParentL = nullptr; 345 for (auto *ExitBB : Exits) 346 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 347 if (!NewParentL || NewParentL->contains(ExitL)) 348 NewParentL = ExitL; 349 350 if (NewParentL == OldParentL) 351 return; 352 353 // The new parent loop (if different) should always contain the old one. 354 if (NewParentL) 355 assert(NewParentL->contains(OldParentL) && 356 "Can only hoist this loop up the nest!"); 357 358 // The preheader will need to move with the body of this loop. However, 359 // because it isn't in this loop we also need to update the primary loop map. 360 assert(OldParentL == LI.getLoopFor(&Preheader) && 361 "Parent loop of this loop should contain this loop's preheader!"); 362 LI.changeLoopFor(&Preheader, NewParentL); 363 364 // Remove this loop from its old parent. 365 OldParentL->removeChildLoop(&L); 366 367 // Add the loop either to the new parent or as a top-level loop. 368 if (NewParentL) 369 NewParentL->addChildLoop(&L); 370 else 371 LI.addTopLevelLoop(&L); 372 373 // Remove this loops blocks from the old parent and every other loop up the 374 // nest until reaching the new parent. Also update all of these 375 // no-longer-containing loops to reflect the nesting change. 376 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 377 OldContainingL = OldContainingL->getParentLoop()) { 378 llvm::erase_if(OldContainingL->getBlocksVector(), 379 [&](const BasicBlock *BB) { 380 return BB == &Preheader || L.contains(BB); 381 }); 382 383 OldContainingL->getBlocksSet().erase(&Preheader); 384 for (BasicBlock *BB : L.blocks()) 385 OldContainingL->getBlocksSet().erase(BB); 386 387 // Because we just hoisted a loop out of this one, we have essentially 388 // created new exit paths from it. That means we need to form LCSSA PHI 389 // nodes for values used in the no-longer-nested loop. 390 formLCSSA(*OldContainingL, DT, &LI, SE); 391 392 // We shouldn't need to form dedicated exits because the exit introduced 393 // here is the (just split by unswitching) preheader. However, after trivial 394 // unswitching it is possible to get new non-dedicated exits out of parent 395 // loop so let's conservatively form dedicated exit blocks and figure out 396 // if we can optimize later. 397 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 398 /*PreserveLCSSA*/ true); 399 } 400 } 401 402 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 403 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 404 // as exiting block. 405 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 406 Loop *TopMost = LI.getLoopFor(ExitBB); 407 Loop *Current = TopMost; 408 while (Current) { 409 if (Current->isLoopExiting(ExitBB)) 410 TopMost = Current; 411 Current = Current->getParentLoop(); 412 } 413 return TopMost; 414 } 415 416 /// Unswitch a trivial branch if the condition is loop invariant. 417 /// 418 /// This routine should only be called when loop code leading to the branch has 419 /// been validated as trivial (no side effects). This routine checks if the 420 /// condition is invariant and one of the successors is a loop exit. This 421 /// allows us to unswitch without duplicating the loop, making it trivial. 422 /// 423 /// If this routine fails to unswitch the branch it returns false. 424 /// 425 /// If the branch can be unswitched, this routine splits the preheader and 426 /// hoists the branch above that split. Preserves loop simplified form 427 /// (splitting the exit block as necessary). It simplifies the branch within 428 /// the loop to an unconditional branch but doesn't remove it entirely. Further 429 /// cleanup can be done with some simplifycfg like pass. 430 /// 431 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 432 /// invalidated by this. 433 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 434 LoopInfo &LI, ScalarEvolution *SE, 435 MemorySSAUpdater *MSSAU) { 436 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 437 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 438 439 // The loop invariant values that we want to unswitch. 440 TinyPtrVector<Value *> Invariants; 441 442 // When true, we're fully unswitching the branch rather than just unswitching 443 // some input conditions to the branch. 444 bool FullUnswitch = false; 445 446 if (L.isLoopInvariant(BI.getCondition())) { 447 Invariants.push_back(BI.getCondition()); 448 FullUnswitch = true; 449 } else { 450 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 451 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 452 if (Invariants.empty()) { 453 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n"); 454 return false; 455 } 456 } 457 458 // Check that one of the branch's successors exits, and which one. 459 bool ExitDirection = true; 460 int LoopExitSuccIdx = 0; 461 auto *LoopExitBB = BI.getSuccessor(0); 462 if (L.contains(LoopExitBB)) { 463 ExitDirection = false; 464 LoopExitSuccIdx = 1; 465 LoopExitBB = BI.getSuccessor(1); 466 if (L.contains(LoopExitBB)) { 467 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n"); 468 return false; 469 } 470 } 471 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 472 auto *ParentBB = BI.getParent(); 473 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) { 474 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n"); 475 return false; 476 } 477 478 // When unswitching only part of the branch's condition, we need the exit 479 // block to be reached directly from the partially unswitched input. This can 480 // be done when the exit block is along the true edge and the branch condition 481 // is a graph of `or` operations, or the exit block is along the false edge 482 // and the condition is a graph of `and` operations. 483 if (!FullUnswitch) { 484 if (ExitDirection ? !match(BI.getCondition(), m_LogicalOr()) 485 : !match(BI.getCondition(), m_LogicalAnd())) { 486 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for " 487 "non-full unswitch!\n"); 488 return false; 489 } 490 } 491 492 LLVM_DEBUG({ 493 dbgs() << " unswitching trivial invariant conditions for: " << BI 494 << "\n"; 495 for (Value *Invariant : Invariants) { 496 dbgs() << " " << *Invariant << " == true"; 497 if (Invariant != Invariants.back()) 498 dbgs() << " ||"; 499 dbgs() << "\n"; 500 } 501 }); 502 503 // If we have scalar evolutions, we need to invalidate them including this 504 // loop, the loop containing the exit block and the topmost parent loop 505 // exiting via LoopExitBB. 506 if (SE) { 507 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 508 SE->forgetLoop(ExitL); 509 else 510 // Forget the entire nest as this exits the entire nest. 511 SE->forgetTopmostLoop(&L); 512 } 513 514 if (MSSAU && VerifyMemorySSA) 515 MSSAU->getMemorySSA()->verifyMemorySSA(); 516 517 // Split the preheader, so that we know that there is a safe place to insert 518 // the conditional branch. We will change the preheader to have a conditional 519 // branch on LoopCond. 520 BasicBlock *OldPH = L.getLoopPreheader(); 521 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 522 523 // Now that we have a place to insert the conditional branch, create a place 524 // to branch to: this is the exit block out of the loop that we are 525 // unswitching. We need to split this if there are other loop predecessors. 526 // Because the loop is in simplified form, *any* other predecessor is enough. 527 BasicBlock *UnswitchedBB; 528 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 529 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 530 "A branch's parent isn't a predecessor!"); 531 UnswitchedBB = LoopExitBB; 532 } else { 533 UnswitchedBB = 534 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 535 } 536 537 if (MSSAU && VerifyMemorySSA) 538 MSSAU->getMemorySSA()->verifyMemorySSA(); 539 540 // Actually move the invariant uses into the unswitched position. If possible, 541 // we do this by moving the instructions, but when doing partial unswitching 542 // we do it by building a new merge of the values in the unswitched position. 543 OldPH->getTerminator()->eraseFromParent(); 544 if (FullUnswitch) { 545 // If fully unswitching, we can use the existing branch instruction. 546 // Splice it into the old PH to gate reaching the new preheader and re-point 547 // its successors. 548 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 549 BI); 550 if (MSSAU) { 551 // Temporarily clone the terminator, to make MSSA update cheaper by 552 // separating "insert edge" updates from "remove edge" ones. 553 ParentBB->getInstList().push_back(BI.clone()); 554 } else { 555 // Create a new unconditional branch that will continue the loop as a new 556 // terminator. 557 BranchInst::Create(ContinueBB, ParentBB); 558 } 559 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 560 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 561 } else { 562 // Only unswitching a subset of inputs to the condition, so we will need to 563 // build a new branch that merges the invariant inputs. 564 if (ExitDirection) 565 assert(match(BI.getCondition(), m_LogicalOr()) && 566 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the " 567 "condition!"); 568 else 569 assert(match(BI.getCondition(), m_LogicalAnd()) && 570 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the" 571 " condition!"); 572 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 573 *UnswitchedBB, *NewPH, false); 574 } 575 576 // Update the dominator tree with the added edge. 577 DT.insertEdge(OldPH, UnswitchedBB); 578 579 // After the dominator tree was updated with the added edge, update MemorySSA 580 // if available. 581 if (MSSAU) { 582 SmallVector<CFGUpdate, 1> Updates; 583 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 584 MSSAU->applyInsertUpdates(Updates, DT); 585 } 586 587 // Finish updating dominator tree and memory ssa for full unswitch. 588 if (FullUnswitch) { 589 if (MSSAU) { 590 // Remove the cloned branch instruction. 591 ParentBB->getTerminator()->eraseFromParent(); 592 // Create unconditional branch now. 593 BranchInst::Create(ContinueBB, ParentBB); 594 MSSAU->removeEdge(ParentBB, LoopExitBB); 595 } 596 DT.deleteEdge(ParentBB, LoopExitBB); 597 } 598 599 if (MSSAU && VerifyMemorySSA) 600 MSSAU->getMemorySSA()->verifyMemorySSA(); 601 602 // Rewrite the relevant PHI nodes. 603 if (UnswitchedBB == LoopExitBB) 604 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 605 else 606 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 607 *ParentBB, *OldPH, FullUnswitch); 608 609 // The constant we can replace all of our invariants with inside the loop 610 // body. If any of the invariants have a value other than this the loop won't 611 // be entered. 612 ConstantInt *Replacement = ExitDirection 613 ? ConstantInt::getFalse(BI.getContext()) 614 : ConstantInt::getTrue(BI.getContext()); 615 616 // Since this is an i1 condition we can also trivially replace uses of it 617 // within the loop with a constant. 618 for (Value *Invariant : Invariants) 619 replaceLoopInvariantUses(L, Invariant, *Replacement); 620 621 // If this was full unswitching, we may have changed the nesting relationship 622 // for this loop so hoist it to its correct parent if needed. 623 if (FullUnswitch) 624 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 625 626 if (MSSAU && VerifyMemorySSA) 627 MSSAU->getMemorySSA()->verifyMemorySSA(); 628 629 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 630 ++NumTrivial; 631 ++NumBranches; 632 return true; 633 } 634 635 /// Unswitch a trivial switch if the condition is loop invariant. 636 /// 637 /// This routine should only be called when loop code leading to the switch has 638 /// been validated as trivial (no side effects). This routine checks if the 639 /// condition is invariant and that at least one of the successors is a loop 640 /// exit. This allows us to unswitch without duplicating the loop, making it 641 /// trivial. 642 /// 643 /// If this routine fails to unswitch the switch it returns false. 644 /// 645 /// If the switch can be unswitched, this routine splits the preheader and 646 /// copies the switch above that split. If the default case is one of the 647 /// exiting cases, it copies the non-exiting cases and points them at the new 648 /// preheader. If the default case is not exiting, it copies the exiting cases 649 /// and points the default at the preheader. It preserves loop simplified form 650 /// (splitting the exit blocks as necessary). It simplifies the switch within 651 /// the loop by removing now-dead cases. If the default case is one of those 652 /// unswitched, it replaces its destination with a new basic block containing 653 /// only unreachable. Such basic blocks, while technically loop exits, are not 654 /// considered for unswitching so this is a stable transform and the same 655 /// switch will not be revisited. If after unswitching there is only a single 656 /// in-loop successor, the switch is further simplified to an unconditional 657 /// branch. Still more cleanup can be done with some simplifycfg like pass. 658 /// 659 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 660 /// invalidated by this. 661 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 662 LoopInfo &LI, ScalarEvolution *SE, 663 MemorySSAUpdater *MSSAU) { 664 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 665 Value *LoopCond = SI.getCondition(); 666 667 // If this isn't switching on an invariant condition, we can't unswitch it. 668 if (!L.isLoopInvariant(LoopCond)) 669 return false; 670 671 auto *ParentBB = SI.getParent(); 672 673 // The same check must be used both for the default and the exit cases. We 674 // should never leave edges from the switch instruction to a basic block that 675 // we are unswitching, hence the condition used to determine the default case 676 // needs to also be used to populate ExitCaseIndices, which is then used to 677 // remove cases from the switch. 678 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 679 // BBToCheck is not an exit block if it is inside loop L. 680 if (L.contains(&BBToCheck)) 681 return false; 682 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 683 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 684 return false; 685 // We do not unswitch a block that only has an unreachable statement, as 686 // it's possible this is a previously unswitched block. Only unswitch if 687 // either the terminator is not unreachable, or, if it is, it's not the only 688 // instruction in the block. 689 auto *TI = BBToCheck.getTerminator(); 690 bool isUnreachable = isa<UnreachableInst>(TI); 691 return !isUnreachable || 692 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 693 }; 694 695 SmallVector<int, 4> ExitCaseIndices; 696 for (auto Case : SI.cases()) 697 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 698 ExitCaseIndices.push_back(Case.getCaseIndex()); 699 BasicBlock *DefaultExitBB = nullptr; 700 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 701 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 702 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 703 DefaultExitBB = SI.getDefaultDest(); 704 } else if (ExitCaseIndices.empty()) 705 return false; 706 707 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 708 709 if (MSSAU && VerifyMemorySSA) 710 MSSAU->getMemorySSA()->verifyMemorySSA(); 711 712 // We may need to invalidate SCEVs for the outermost loop reached by any of 713 // the exits. 714 Loop *OuterL = &L; 715 716 if (DefaultExitBB) { 717 // Clear out the default destination temporarily to allow accurate 718 // predecessor lists to be examined below. 719 SI.setDefaultDest(nullptr); 720 // Check the loop containing this exit. 721 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 722 if (!ExitL || ExitL->contains(OuterL)) 723 OuterL = ExitL; 724 } 725 726 // Store the exit cases into a separate data structure and remove them from 727 // the switch. 728 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 729 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 730 4> ExitCases; 731 ExitCases.reserve(ExitCaseIndices.size()); 732 SwitchInstProfUpdateWrapper SIW(SI); 733 // We walk the case indices backwards so that we remove the last case first 734 // and don't disrupt the earlier indices. 735 for (unsigned Index : reverse(ExitCaseIndices)) { 736 auto CaseI = SI.case_begin() + Index; 737 // Compute the outer loop from this exit. 738 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 739 if (!ExitL || ExitL->contains(OuterL)) 740 OuterL = ExitL; 741 // Save the value of this case. 742 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 743 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 744 // Delete the unswitched cases. 745 SIW.removeCase(CaseI); 746 } 747 748 if (SE) { 749 if (OuterL) 750 SE->forgetLoop(OuterL); 751 else 752 SE->forgetTopmostLoop(&L); 753 } 754 755 // Check if after this all of the remaining cases point at the same 756 // successor. 757 BasicBlock *CommonSuccBB = nullptr; 758 if (SI.getNumCases() > 0 && 759 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { 760 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); 761 })) 762 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 763 if (!DefaultExitBB) { 764 // If we're not unswitching the default, we need it to match any cases to 765 // have a common successor or if we have no cases it is the common 766 // successor. 767 if (SI.getNumCases() == 0) 768 CommonSuccBB = SI.getDefaultDest(); 769 else if (SI.getDefaultDest() != CommonSuccBB) 770 CommonSuccBB = nullptr; 771 } 772 773 // Split the preheader, so that we know that there is a safe place to insert 774 // the switch. 775 BasicBlock *OldPH = L.getLoopPreheader(); 776 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 777 OldPH->getTerminator()->eraseFromParent(); 778 779 // Now add the unswitched switch. 780 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 781 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 782 783 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 784 // First, we split any exit blocks with remaining in-loop predecessors. Then 785 // we update the PHIs in one of two ways depending on if there was a split. 786 // We walk in reverse so that we split in the same order as the cases 787 // appeared. This is purely for convenience of reading the resulting IR, but 788 // it doesn't cost anything really. 789 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 790 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 791 // Handle the default exit if necessary. 792 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 793 // ranges aren't quite powerful enough yet. 794 if (DefaultExitBB) { 795 if (pred_empty(DefaultExitBB)) { 796 UnswitchedExitBBs.insert(DefaultExitBB); 797 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 798 } else { 799 auto *SplitBB = 800 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 801 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 802 *ParentBB, *OldPH, 803 /*FullUnswitch*/ true); 804 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 805 } 806 } 807 // Note that we must use a reference in the for loop so that we update the 808 // container. 809 for (auto &ExitCase : reverse(ExitCases)) { 810 // Grab a reference to the exit block in the pair so that we can update it. 811 BasicBlock *ExitBB = std::get<1>(ExitCase); 812 813 // If this case is the last edge into the exit block, we can simply reuse it 814 // as it will no longer be a loop exit. No mapping necessary. 815 if (pred_empty(ExitBB)) { 816 // Only rewrite once. 817 if (UnswitchedExitBBs.insert(ExitBB).second) 818 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 819 continue; 820 } 821 822 // Otherwise we need to split the exit block so that we retain an exit 823 // block from the loop and a target for the unswitched condition. 824 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 825 if (!SplitExitBB) { 826 // If this is the first time we see this, do the split and remember it. 827 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 828 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 829 *ParentBB, *OldPH, 830 /*FullUnswitch*/ true); 831 } 832 // Update the case pair to point to the split block. 833 std::get<1>(ExitCase) = SplitExitBB; 834 } 835 836 // Now add the unswitched cases. We do this in reverse order as we built them 837 // in reverse order. 838 for (auto &ExitCase : reverse(ExitCases)) { 839 ConstantInt *CaseVal = std::get<0>(ExitCase); 840 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 841 842 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 843 } 844 845 // If the default was unswitched, re-point it and add explicit cases for 846 // entering the loop. 847 if (DefaultExitBB) { 848 NewSIW->setDefaultDest(DefaultExitBB); 849 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 850 851 // We removed all the exit cases, so we just copy the cases to the 852 // unswitched switch. 853 for (const auto &Case : SI.cases()) 854 NewSIW.addCase(Case.getCaseValue(), NewPH, 855 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 856 } else if (DefaultCaseWeight) { 857 // We have to set branch weight of the default case. 858 uint64_t SW = *DefaultCaseWeight; 859 for (const auto &Case : SI.cases()) { 860 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 861 assert(W && 862 "case weight must be defined as default case weight is defined"); 863 SW += *W; 864 } 865 NewSIW.setSuccessorWeight(0, SW); 866 } 867 868 // If we ended up with a common successor for every path through the switch 869 // after unswitching, rewrite it to an unconditional branch to make it easy 870 // to recognize. Otherwise we potentially have to recognize the default case 871 // pointing at unreachable and other complexity. 872 if (CommonSuccBB) { 873 BasicBlock *BB = SI.getParent(); 874 // We may have had multiple edges to this common successor block, so remove 875 // them as predecessors. We skip the first one, either the default or the 876 // actual first case. 877 bool SkippedFirst = DefaultExitBB == nullptr; 878 for (auto Case : SI.cases()) { 879 assert(Case.getCaseSuccessor() == CommonSuccBB && 880 "Non-common successor!"); 881 (void)Case; 882 if (!SkippedFirst) { 883 SkippedFirst = true; 884 continue; 885 } 886 CommonSuccBB->removePredecessor(BB, 887 /*KeepOneInputPHIs*/ true); 888 } 889 // Now nuke the switch and replace it with a direct branch. 890 SIW.eraseFromParent(); 891 BranchInst::Create(CommonSuccBB, BB); 892 } else if (DefaultExitBB) { 893 assert(SI.getNumCases() > 0 && 894 "If we had no cases we'd have a common successor!"); 895 // Move the last case to the default successor. This is valid as if the 896 // default got unswitched it cannot be reached. This has the advantage of 897 // being simple and keeping the number of edges from this switch to 898 // successors the same, and avoiding any PHI update complexity. 899 auto LastCaseI = std::prev(SI.case_end()); 900 901 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 902 SIW.setSuccessorWeight( 903 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 904 SIW.removeCase(LastCaseI); 905 } 906 907 // Walk the unswitched exit blocks and the unswitched split blocks and update 908 // the dominator tree based on the CFG edits. While we are walking unordered 909 // containers here, the API for applyUpdates takes an unordered list of 910 // updates and requires them to not contain duplicates. 911 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 912 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 913 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 914 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 915 } 916 for (auto SplitUnswitchedPair : SplitExitBBMap) { 917 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 918 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 919 } 920 921 if (MSSAU) { 922 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 923 if (VerifyMemorySSA) 924 MSSAU->getMemorySSA()->verifyMemorySSA(); 925 } else { 926 DT.applyUpdates(DTUpdates); 927 } 928 929 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 930 931 // We may have changed the nesting relationship for this loop so hoist it to 932 // its correct parent if needed. 933 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 934 935 if (MSSAU && VerifyMemorySSA) 936 MSSAU->getMemorySSA()->verifyMemorySSA(); 937 938 ++NumTrivial; 939 ++NumSwitches; 940 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 941 return true; 942 } 943 944 /// This routine scans the loop to find a branch or switch which occurs before 945 /// any side effects occur. These can potentially be unswitched without 946 /// duplicating the loop. If a branch or switch is successfully unswitched the 947 /// scanning continues to see if subsequent branches or switches have become 948 /// trivial. Once all trivial candidates have been unswitched, this routine 949 /// returns. 950 /// 951 /// The return value indicates whether anything was unswitched (and therefore 952 /// changed). 953 /// 954 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 955 /// invalidated by this. 956 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 957 LoopInfo &LI, ScalarEvolution *SE, 958 MemorySSAUpdater *MSSAU) { 959 bool Changed = false; 960 961 // If loop header has only one reachable successor we should keep looking for 962 // trivial condition candidates in the successor as well. An alternative is 963 // to constant fold conditions and merge successors into loop header (then we 964 // only need to check header's terminator). The reason for not doing this in 965 // LoopUnswitch pass is that it could potentially break LoopPassManager's 966 // invariants. Folding dead branches could either eliminate the current loop 967 // or make other loops unreachable. LCSSA form might also not be preserved 968 // after deleting branches. The following code keeps traversing loop header's 969 // successors until it finds the trivial condition candidate (condition that 970 // is not a constant). Since unswitching generates branches with constant 971 // conditions, this scenario could be very common in practice. 972 BasicBlock *CurrentBB = L.getHeader(); 973 SmallPtrSet<BasicBlock *, 8> Visited; 974 Visited.insert(CurrentBB); 975 do { 976 // Check if there are any side-effecting instructions (e.g. stores, calls, 977 // volatile loads) in the part of the loop that the code *would* execute 978 // without unswitching. 979 if (MSSAU) // Possible early exit with MSSA 980 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 981 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 982 return Changed; 983 if (llvm::any_of(*CurrentBB, 984 [](Instruction &I) { return I.mayHaveSideEffects(); })) 985 return Changed; 986 987 Instruction *CurrentTerm = CurrentBB->getTerminator(); 988 989 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 990 // Don't bother trying to unswitch past a switch with a constant 991 // condition. This should be removed prior to running this pass by 992 // simplifycfg. 993 if (isa<Constant>(SI->getCondition())) 994 return Changed; 995 996 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 997 // Couldn't unswitch this one so we're done. 998 return Changed; 999 1000 // Mark that we managed to unswitch something. 1001 Changed = true; 1002 1003 // If unswitching turned the terminator into an unconditional branch then 1004 // we can continue. The unswitching logic specifically works to fold any 1005 // cases it can into an unconditional branch to make it easier to 1006 // recognize here. 1007 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 1008 if (!BI || BI->isConditional()) 1009 return Changed; 1010 1011 CurrentBB = BI->getSuccessor(0); 1012 continue; 1013 } 1014 1015 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 1016 if (!BI) 1017 // We do not understand other terminator instructions. 1018 return Changed; 1019 1020 // Don't bother trying to unswitch past an unconditional branch or a branch 1021 // with a constant value. These should be removed by simplifycfg prior to 1022 // running this pass. 1023 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 1024 return Changed; 1025 1026 // Found a trivial condition candidate: non-foldable conditional branch. If 1027 // we fail to unswitch this, we can't do anything else that is trivial. 1028 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 1029 return Changed; 1030 1031 // Mark that we managed to unswitch something. 1032 Changed = true; 1033 1034 // If we only unswitched some of the conditions feeding the branch, we won't 1035 // have collapsed it to a single successor. 1036 BI = cast<BranchInst>(CurrentBB->getTerminator()); 1037 if (BI->isConditional()) 1038 return Changed; 1039 1040 // Follow the newly unconditional branch into its successor. 1041 CurrentBB = BI->getSuccessor(0); 1042 1043 // When continuing, if we exit the loop or reach a previous visited block, 1044 // then we can not reach any trivial condition candidates (unfoldable 1045 // branch instructions or switch instructions) and no unswitch can happen. 1046 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 1047 1048 return Changed; 1049 } 1050 1051 /// Build the cloned blocks for an unswitched copy of the given loop. 1052 /// 1053 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 1054 /// after the split block (`SplitBB`) that will be used to select between the 1055 /// cloned and original loop. 1056 /// 1057 /// This routine handles cloning all of the necessary loop blocks and exit 1058 /// blocks including rewriting their instructions and the relevant PHI nodes. 1059 /// Any loop blocks or exit blocks which are dominated by a different successor 1060 /// than the one for this clone of the loop blocks can be trivially skipped. We 1061 /// use the `DominatingSucc` map to determine whether a block satisfies that 1062 /// property with a simple map lookup. 1063 /// 1064 /// It also correctly creates the unconditional branch in the cloned 1065 /// unswitched parent block to only point at the unswitched successor. 1066 /// 1067 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1068 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1069 /// the cloned blocks (and their loops) are left without full `LoopInfo` 1070 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1071 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1072 /// instead the caller must recompute an accurate DT. It *does* correctly 1073 /// update the `AssumptionCache` provided in `AC`. 1074 static BasicBlock *buildClonedLoopBlocks( 1075 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1076 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1077 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1078 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1079 ValueToValueMapTy &VMap, 1080 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1081 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 1082 SmallVector<BasicBlock *, 4> NewBlocks; 1083 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1084 1085 // We will need to clone a bunch of blocks, wrap up the clone operation in 1086 // a helper. 1087 auto CloneBlock = [&](BasicBlock *OldBB) { 1088 // Clone the basic block and insert it before the new preheader. 1089 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1090 NewBB->moveBefore(LoopPH); 1091 1092 // Record this block and the mapping. 1093 NewBlocks.push_back(NewBB); 1094 VMap[OldBB] = NewBB; 1095 1096 return NewBB; 1097 }; 1098 1099 // We skip cloning blocks when they have a dominating succ that is not the 1100 // succ we are cloning for. 1101 auto SkipBlock = [&](BasicBlock *BB) { 1102 auto It = DominatingSucc.find(BB); 1103 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1104 }; 1105 1106 // First, clone the preheader. 1107 auto *ClonedPH = CloneBlock(LoopPH); 1108 1109 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1110 for (auto *LoopBB : L.blocks()) 1111 if (!SkipBlock(LoopBB)) 1112 CloneBlock(LoopBB); 1113 1114 // Split all the loop exit edges so that when we clone the exit blocks, if 1115 // any of the exit blocks are *also* a preheader for some other loop, we 1116 // don't create multiple predecessors entering the loop header. 1117 for (auto *ExitBB : ExitBlocks) { 1118 if (SkipBlock(ExitBB)) 1119 continue; 1120 1121 // When we are going to clone an exit, we don't need to clone all the 1122 // instructions in the exit block and we want to ensure we have an easy 1123 // place to merge the CFG, so split the exit first. This is always safe to 1124 // do because there cannot be any non-loop predecessors of a loop exit in 1125 // loop simplified form. 1126 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1127 1128 // Rearrange the names to make it easier to write test cases by having the 1129 // exit block carry the suffix rather than the merge block carrying the 1130 // suffix. 1131 MergeBB->takeName(ExitBB); 1132 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1133 1134 // Now clone the original exit block. 1135 auto *ClonedExitBB = CloneBlock(ExitBB); 1136 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1137 "Exit block should have been split to have one successor!"); 1138 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1139 "Cloned exit block has the wrong successor!"); 1140 1141 // Remap any cloned instructions and create a merge phi node for them. 1142 for (auto ZippedInsts : llvm::zip_first( 1143 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1144 llvm::make_range(ClonedExitBB->begin(), 1145 std::prev(ClonedExitBB->end())))) { 1146 Instruction &I = std::get<0>(ZippedInsts); 1147 Instruction &ClonedI = std::get<1>(ZippedInsts); 1148 1149 // The only instructions in the exit block should be PHI nodes and 1150 // potentially a landing pad. 1151 assert( 1152 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1153 "Bad instruction in exit block!"); 1154 // We should have a value map between the instruction and its clone. 1155 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1156 1157 auto *MergePN = 1158 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1159 &*MergeBB->getFirstInsertionPt()); 1160 I.replaceAllUsesWith(MergePN); 1161 MergePN->addIncoming(&I, ExitBB); 1162 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1163 } 1164 } 1165 1166 // Rewrite the instructions in the cloned blocks to refer to the instructions 1167 // in the cloned blocks. We have to do this as a second pass so that we have 1168 // everything available. Also, we have inserted new instructions which may 1169 // include assume intrinsics, so we update the assumption cache while 1170 // processing this. 1171 for (auto *ClonedBB : NewBlocks) 1172 for (Instruction &I : *ClonedBB) { 1173 RemapInstruction(&I, VMap, 1174 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1175 if (auto *II = dyn_cast<AssumeInst>(&I)) 1176 AC.registerAssumption(II); 1177 } 1178 1179 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1180 // have spurious incoming values. 1181 for (auto *LoopBB : L.blocks()) 1182 if (SkipBlock(LoopBB)) 1183 for (auto *SuccBB : successors(LoopBB)) 1184 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1185 for (PHINode &PN : ClonedSuccBB->phis()) 1186 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1187 1188 // Remove the cloned parent as a predecessor of any successor we ended up 1189 // cloning other than the unswitched one. 1190 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1191 for (auto *SuccBB : successors(ParentBB)) { 1192 if (SuccBB == UnswitchedSuccBB) 1193 continue; 1194 1195 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1196 if (!ClonedSuccBB) 1197 continue; 1198 1199 ClonedSuccBB->removePredecessor(ClonedParentBB, 1200 /*KeepOneInputPHIs*/ true); 1201 } 1202 1203 // Replace the cloned branch with an unconditional branch to the cloned 1204 // unswitched successor. 1205 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1206 Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 1207 // Trivial Simplification. If Terminator is a conditional branch and 1208 // condition becomes dead - erase it. 1209 Value *ClonedConditionToErase = nullptr; 1210 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 1211 ClonedConditionToErase = BI->getCondition(); 1212 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 1213 ClonedConditionToErase = SI->getCondition(); 1214 1215 ClonedTerminator->eraseFromParent(); 1216 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1217 1218 if (ClonedConditionToErase) 1219 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 1220 MSSAU); 1221 1222 // If there are duplicate entries in the PHI nodes because of multiple edges 1223 // to the unswitched successor, we need to nuke all but one as we replaced it 1224 // with a direct branch. 1225 for (PHINode &PN : ClonedSuccBB->phis()) { 1226 bool Found = false; 1227 // Loop over the incoming operands backwards so we can easily delete as we 1228 // go without invalidating the index. 1229 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1230 if (PN.getIncomingBlock(i) != ClonedParentBB) 1231 continue; 1232 if (!Found) { 1233 Found = true; 1234 continue; 1235 } 1236 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1237 } 1238 } 1239 1240 // Record the domtree updates for the new blocks. 1241 SmallPtrSet<BasicBlock *, 4> SuccSet; 1242 for (auto *ClonedBB : NewBlocks) { 1243 for (auto *SuccBB : successors(ClonedBB)) 1244 if (SuccSet.insert(SuccBB).second) 1245 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1246 SuccSet.clear(); 1247 } 1248 1249 return ClonedPH; 1250 } 1251 1252 /// Recursively clone the specified loop and all of its children. 1253 /// 1254 /// The target parent loop for the clone should be provided, or can be null if 1255 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1256 /// with the provided value map. The entire original loop must be present in 1257 /// the value map. The cloned loop is returned. 1258 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1259 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1260 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1261 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1262 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1263 for (auto *BB : OrigL.blocks()) { 1264 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1265 ClonedL.addBlockEntry(ClonedBB); 1266 if (LI.getLoopFor(BB) == &OrigL) 1267 LI.changeLoopFor(ClonedBB, &ClonedL); 1268 } 1269 }; 1270 1271 // We specially handle the first loop because it may get cloned into 1272 // a different parent and because we most commonly are cloning leaf loops. 1273 Loop *ClonedRootL = LI.AllocateLoop(); 1274 if (RootParentL) 1275 RootParentL->addChildLoop(ClonedRootL); 1276 else 1277 LI.addTopLevelLoop(ClonedRootL); 1278 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1279 1280 if (OrigRootL.isInnermost()) 1281 return ClonedRootL; 1282 1283 // If we have a nest, we can quickly clone the entire loop nest using an 1284 // iterative approach because it is a tree. We keep the cloned parent in the 1285 // data structure to avoid repeatedly querying through a map to find it. 1286 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1287 // Build up the loops to clone in reverse order as we'll clone them from the 1288 // back. 1289 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1290 LoopsToClone.push_back({ClonedRootL, ChildL}); 1291 do { 1292 Loop *ClonedParentL, *L; 1293 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1294 Loop *ClonedL = LI.AllocateLoop(); 1295 ClonedParentL->addChildLoop(ClonedL); 1296 AddClonedBlocksToLoop(*L, *ClonedL); 1297 for (Loop *ChildL : llvm::reverse(*L)) 1298 LoopsToClone.push_back({ClonedL, ChildL}); 1299 } while (!LoopsToClone.empty()); 1300 1301 return ClonedRootL; 1302 } 1303 1304 /// Build the cloned loops of an original loop from unswitching. 1305 /// 1306 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1307 /// operation. We need to re-verify that there even is a loop (as the backedge 1308 /// may not have been cloned), and even if there are remaining backedges the 1309 /// backedge set may be different. However, we know that each child loop is 1310 /// undisturbed, we only need to find where to place each child loop within 1311 /// either any parent loop or within a cloned version of the original loop. 1312 /// 1313 /// Because child loops may end up cloned outside of any cloned version of the 1314 /// original loop, multiple cloned sibling loops may be created. All of them 1315 /// are returned so that the newly introduced loop nest roots can be 1316 /// identified. 1317 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1318 const ValueToValueMapTy &VMap, LoopInfo &LI, 1319 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1320 Loop *ClonedL = nullptr; 1321 1322 auto *OrigPH = OrigL.getLoopPreheader(); 1323 auto *OrigHeader = OrigL.getHeader(); 1324 1325 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1326 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1327 1328 // We need to know the loops of the cloned exit blocks to even compute the 1329 // accurate parent loop. If we only clone exits to some parent of the 1330 // original parent, we want to clone into that outer loop. We also keep track 1331 // of the loops that our cloned exit blocks participate in. 1332 Loop *ParentL = nullptr; 1333 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1334 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1335 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1336 for (auto *ExitBB : ExitBlocks) 1337 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1338 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1339 ExitLoopMap[ClonedExitBB] = ExitL; 1340 ClonedExitsInLoops.push_back(ClonedExitBB); 1341 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1342 ParentL = ExitL; 1343 } 1344 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1345 ParentL->contains(OrigL.getParentLoop())) && 1346 "The computed parent loop should always contain (or be) the parent of " 1347 "the original loop."); 1348 1349 // We build the set of blocks dominated by the cloned header from the set of 1350 // cloned blocks out of the original loop. While not all of these will 1351 // necessarily be in the cloned loop, it is enough to establish that they 1352 // aren't in unreachable cycles, etc. 1353 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1354 for (auto *BB : OrigL.blocks()) 1355 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1356 ClonedLoopBlocks.insert(ClonedBB); 1357 1358 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1359 // skipped cloning some region of this loop which can in turn skip some of 1360 // the backedges so we have to rebuild the blocks in the loop based on the 1361 // backedges that remain after cloning. 1362 SmallVector<BasicBlock *, 16> Worklist; 1363 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1364 for (auto *Pred : predecessors(ClonedHeader)) { 1365 // The only possible non-loop header predecessor is the preheader because 1366 // we know we cloned the loop in simplified form. 1367 if (Pred == ClonedPH) 1368 continue; 1369 1370 // Because the loop was in simplified form, the only non-loop predecessor 1371 // should be the preheader. 1372 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1373 "header other than the preheader " 1374 "that is not part of the loop!"); 1375 1376 // Insert this block into the loop set and on the first visit (and if it 1377 // isn't the header we're currently walking) put it into the worklist to 1378 // recurse through. 1379 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1380 Worklist.push_back(Pred); 1381 } 1382 1383 // If we had any backedges then there *is* a cloned loop. Put the header into 1384 // the loop set and then walk the worklist backwards to find all the blocks 1385 // that remain within the loop after cloning. 1386 if (!BlocksInClonedLoop.empty()) { 1387 BlocksInClonedLoop.insert(ClonedHeader); 1388 1389 while (!Worklist.empty()) { 1390 BasicBlock *BB = Worklist.pop_back_val(); 1391 assert(BlocksInClonedLoop.count(BB) && 1392 "Didn't put block into the loop set!"); 1393 1394 // Insert any predecessors that are in the possible set into the cloned 1395 // set, and if the insert is successful, add them to the worklist. Note 1396 // that we filter on the blocks that are definitely reachable via the 1397 // backedge to the loop header so we may prune out dead code within the 1398 // cloned loop. 1399 for (auto *Pred : predecessors(BB)) 1400 if (ClonedLoopBlocks.count(Pred) && 1401 BlocksInClonedLoop.insert(Pred).second) 1402 Worklist.push_back(Pred); 1403 } 1404 1405 ClonedL = LI.AllocateLoop(); 1406 if (ParentL) { 1407 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1408 ParentL->addChildLoop(ClonedL); 1409 } else { 1410 LI.addTopLevelLoop(ClonedL); 1411 } 1412 NonChildClonedLoops.push_back(ClonedL); 1413 1414 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1415 // We don't want to just add the cloned loop blocks based on how we 1416 // discovered them. The original order of blocks was carefully built in 1417 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1418 // that logic, we just re-walk the original blocks (and those of the child 1419 // loops) and filter them as we add them into the cloned loop. 1420 for (auto *BB : OrigL.blocks()) { 1421 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1422 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1423 continue; 1424 1425 // Directly add the blocks that are only in this loop. 1426 if (LI.getLoopFor(BB) == &OrigL) { 1427 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1428 continue; 1429 } 1430 1431 // We want to manually add it to this loop and parents. 1432 // Registering it with LoopInfo will happen when we clone the top 1433 // loop for this block. 1434 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1435 PL->addBlockEntry(ClonedBB); 1436 } 1437 1438 // Now add each child loop whose header remains within the cloned loop. All 1439 // of the blocks within the loop must satisfy the same constraints as the 1440 // header so once we pass the header checks we can just clone the entire 1441 // child loop nest. 1442 for (Loop *ChildL : OrigL) { 1443 auto *ClonedChildHeader = 1444 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1445 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1446 continue; 1447 1448 #ifndef NDEBUG 1449 // We should never have a cloned child loop header but fail to have 1450 // all of the blocks for that child loop. 1451 for (auto *ChildLoopBB : ChildL->blocks()) 1452 assert(BlocksInClonedLoop.count( 1453 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1454 "Child cloned loop has a header within the cloned outer " 1455 "loop but not all of its blocks!"); 1456 #endif 1457 1458 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1459 } 1460 } 1461 1462 // Now that we've handled all the components of the original loop that were 1463 // cloned into a new loop, we still need to handle anything from the original 1464 // loop that wasn't in a cloned loop. 1465 1466 // Figure out what blocks are left to place within any loop nest containing 1467 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1468 // them. 1469 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1470 if (BlocksInClonedLoop.empty()) 1471 UnloopedBlockSet.insert(ClonedPH); 1472 for (auto *ClonedBB : ClonedLoopBlocks) 1473 if (!BlocksInClonedLoop.count(ClonedBB)) 1474 UnloopedBlockSet.insert(ClonedBB); 1475 1476 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1477 // backwards across these to process them inside out. The order shouldn't 1478 // matter as we're just trying to build up the map from inside-out; we use 1479 // the map in a more stably ordered way below. 1480 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1481 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1482 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1483 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1484 }); 1485 1486 // Populate the existing ExitLoopMap with everything reachable from each 1487 // exit, starting from the inner most exit. 1488 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1489 assert(Worklist.empty() && "Didn't clear worklist!"); 1490 1491 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1492 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1493 1494 // Walk the CFG back until we hit the cloned PH adding everything reachable 1495 // and in the unlooped set to this exit block's loop. 1496 Worklist.push_back(ExitBB); 1497 do { 1498 BasicBlock *BB = Worklist.pop_back_val(); 1499 // We can stop recursing at the cloned preheader (if we get there). 1500 if (BB == ClonedPH) 1501 continue; 1502 1503 for (BasicBlock *PredBB : predecessors(BB)) { 1504 // If this pred has already been moved to our set or is part of some 1505 // (inner) loop, no update needed. 1506 if (!UnloopedBlockSet.erase(PredBB)) { 1507 assert( 1508 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1509 "Predecessor not mapped to a loop!"); 1510 continue; 1511 } 1512 1513 // We just insert into the loop set here. We'll add these blocks to the 1514 // exit loop after we build up the set in an order that doesn't rely on 1515 // predecessor order (which in turn relies on use list order). 1516 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1517 (void)Inserted; 1518 assert(Inserted && "Should only visit an unlooped block once!"); 1519 1520 // And recurse through to its predecessors. 1521 Worklist.push_back(PredBB); 1522 } 1523 } while (!Worklist.empty()); 1524 } 1525 1526 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1527 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1528 // in their original order adding them to the correct loop. 1529 1530 // We need a stable insertion order. We use the order of the original loop 1531 // order and map into the correct parent loop. 1532 for (auto *BB : llvm::concat<BasicBlock *const>( 1533 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1534 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1535 OuterL->addBasicBlockToLoop(BB, LI); 1536 1537 #ifndef NDEBUG 1538 for (auto &BBAndL : ExitLoopMap) { 1539 auto *BB = BBAndL.first; 1540 auto *OuterL = BBAndL.second; 1541 assert(LI.getLoopFor(BB) == OuterL && 1542 "Failed to put all blocks into outer loops!"); 1543 } 1544 #endif 1545 1546 // Now that all the blocks are placed into the correct containing loop in the 1547 // absence of child loops, find all the potentially cloned child loops and 1548 // clone them into whatever outer loop we placed their header into. 1549 for (Loop *ChildL : OrigL) { 1550 auto *ClonedChildHeader = 1551 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1552 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1553 continue; 1554 1555 #ifndef NDEBUG 1556 for (auto *ChildLoopBB : ChildL->blocks()) 1557 assert(VMap.count(ChildLoopBB) && 1558 "Cloned a child loop header but not all of that loops blocks!"); 1559 #endif 1560 1561 NonChildClonedLoops.push_back(cloneLoopNest( 1562 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1563 } 1564 } 1565 1566 static void 1567 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1568 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1569 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1570 // Find all the dead clones, and remove them from their successors. 1571 SmallVector<BasicBlock *, 16> DeadBlocks; 1572 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1573 for (auto &VMap : VMaps) 1574 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1575 if (!DT.isReachableFromEntry(ClonedBB)) { 1576 for (BasicBlock *SuccBB : successors(ClonedBB)) 1577 SuccBB->removePredecessor(ClonedBB); 1578 DeadBlocks.push_back(ClonedBB); 1579 } 1580 1581 // Remove all MemorySSA in the dead blocks 1582 if (MSSAU) { 1583 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1584 DeadBlocks.end()); 1585 MSSAU->removeBlocks(DeadBlockSet); 1586 } 1587 1588 // Drop any remaining references to break cycles. 1589 for (BasicBlock *BB : DeadBlocks) 1590 BB->dropAllReferences(); 1591 // Erase them from the IR. 1592 for (BasicBlock *BB : DeadBlocks) 1593 BB->eraseFromParent(); 1594 } 1595 1596 static void 1597 deleteDeadBlocksFromLoop(Loop &L, 1598 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1599 DominatorTree &DT, LoopInfo &LI, 1600 MemorySSAUpdater *MSSAU, 1601 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 1602 // Find all the dead blocks tied to this loop, and remove them from their 1603 // successors. 1604 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1605 1606 // Start with loop/exit blocks and get a transitive closure of reachable dead 1607 // blocks. 1608 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1609 ExitBlocks.end()); 1610 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1611 while (!DeathCandidates.empty()) { 1612 auto *BB = DeathCandidates.pop_back_val(); 1613 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1614 for (BasicBlock *SuccBB : successors(BB)) { 1615 SuccBB->removePredecessor(BB); 1616 DeathCandidates.push_back(SuccBB); 1617 } 1618 DeadBlockSet.insert(BB); 1619 } 1620 } 1621 1622 // Remove all MemorySSA in the dead blocks 1623 if (MSSAU) 1624 MSSAU->removeBlocks(DeadBlockSet); 1625 1626 // Filter out the dead blocks from the exit blocks list so that it can be 1627 // used in the caller. 1628 llvm::erase_if(ExitBlocks, 1629 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1630 1631 // Walk from this loop up through its parents removing all of the dead blocks. 1632 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1633 for (auto *BB : DeadBlockSet) 1634 ParentL->getBlocksSet().erase(BB); 1635 llvm::erase_if(ParentL->getBlocksVector(), 1636 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1637 } 1638 1639 // Now delete the dead child loops. This raw delete will clear them 1640 // recursively. 1641 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1642 if (!DeadBlockSet.count(ChildL->getHeader())) 1643 return false; 1644 1645 assert(llvm::all_of(ChildL->blocks(), 1646 [&](BasicBlock *ChildBB) { 1647 return DeadBlockSet.count(ChildBB); 1648 }) && 1649 "If the child loop header is dead all blocks in the child loop must " 1650 "be dead as well!"); 1651 DestroyLoopCB(*ChildL, ChildL->getName()); 1652 LI.destroy(ChildL); 1653 return true; 1654 }); 1655 1656 // Remove the loop mappings for the dead blocks and drop all the references 1657 // from these blocks to others to handle cyclic references as we start 1658 // deleting the blocks themselves. 1659 for (auto *BB : DeadBlockSet) { 1660 // Check that the dominator tree has already been updated. 1661 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1662 LI.changeLoopFor(BB, nullptr); 1663 // Drop all uses of the instructions to make sure we won't have dangling 1664 // uses in other blocks. 1665 for (auto &I : *BB) 1666 if (!I.use_empty()) 1667 I.replaceAllUsesWith(UndefValue::get(I.getType())); 1668 BB->dropAllReferences(); 1669 } 1670 1671 // Actually delete the blocks now that they've been fully unhooked from the 1672 // IR. 1673 for (auto *BB : DeadBlockSet) 1674 BB->eraseFromParent(); 1675 } 1676 1677 /// Recompute the set of blocks in a loop after unswitching. 1678 /// 1679 /// This walks from the original headers predecessors to rebuild the loop. We 1680 /// take advantage of the fact that new blocks can't have been added, and so we 1681 /// filter by the original loop's blocks. This also handles potentially 1682 /// unreachable code that we don't want to explore but might be found examining 1683 /// the predecessors of the header. 1684 /// 1685 /// If the original loop is no longer a loop, this will return an empty set. If 1686 /// it remains a loop, all the blocks within it will be added to the set 1687 /// (including those blocks in inner loops). 1688 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1689 LoopInfo &LI) { 1690 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1691 1692 auto *PH = L.getLoopPreheader(); 1693 auto *Header = L.getHeader(); 1694 1695 // A worklist to use while walking backwards from the header. 1696 SmallVector<BasicBlock *, 16> Worklist; 1697 1698 // First walk the predecessors of the header to find the backedges. This will 1699 // form the basis of our walk. 1700 for (auto *Pred : predecessors(Header)) { 1701 // Skip the preheader. 1702 if (Pred == PH) 1703 continue; 1704 1705 // Because the loop was in simplified form, the only non-loop predecessor 1706 // is the preheader. 1707 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1708 "than the preheader that is not part of the " 1709 "loop!"); 1710 1711 // Insert this block into the loop set and on the first visit and, if it 1712 // isn't the header we're currently walking, put it into the worklist to 1713 // recurse through. 1714 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1715 Worklist.push_back(Pred); 1716 } 1717 1718 // If no backedges were found, we're done. 1719 if (LoopBlockSet.empty()) 1720 return LoopBlockSet; 1721 1722 // We found backedges, recurse through them to identify the loop blocks. 1723 while (!Worklist.empty()) { 1724 BasicBlock *BB = Worklist.pop_back_val(); 1725 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1726 1727 // No need to walk past the header. 1728 if (BB == Header) 1729 continue; 1730 1731 // Because we know the inner loop structure remains valid we can use the 1732 // loop structure to jump immediately across the entire nested loop. 1733 // Further, because it is in loop simplified form, we can directly jump 1734 // to its preheader afterward. 1735 if (Loop *InnerL = LI.getLoopFor(BB)) 1736 if (InnerL != &L) { 1737 assert(L.contains(InnerL) && 1738 "Should not reach a loop *outside* this loop!"); 1739 // The preheader is the only possible predecessor of the loop so 1740 // insert it into the set and check whether it was already handled. 1741 auto *InnerPH = InnerL->getLoopPreheader(); 1742 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1743 "but not contain the inner loop " 1744 "preheader!"); 1745 if (!LoopBlockSet.insert(InnerPH).second) 1746 // The only way to reach the preheader is through the loop body 1747 // itself so if it has been visited the loop is already handled. 1748 continue; 1749 1750 // Insert all of the blocks (other than those already present) into 1751 // the loop set. We expect at least the block that led us to find the 1752 // inner loop to be in the block set, but we may also have other loop 1753 // blocks if they were already enqueued as predecessors of some other 1754 // outer loop block. 1755 for (auto *InnerBB : InnerL->blocks()) { 1756 if (InnerBB == BB) { 1757 assert(LoopBlockSet.count(InnerBB) && 1758 "Block should already be in the set!"); 1759 continue; 1760 } 1761 1762 LoopBlockSet.insert(InnerBB); 1763 } 1764 1765 // Add the preheader to the worklist so we will continue past the 1766 // loop body. 1767 Worklist.push_back(InnerPH); 1768 continue; 1769 } 1770 1771 // Insert any predecessors that were in the original loop into the new 1772 // set, and if the insert is successful, add them to the worklist. 1773 for (auto *Pred : predecessors(BB)) 1774 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1775 Worklist.push_back(Pred); 1776 } 1777 1778 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1779 1780 // We've found all the blocks participating in the loop, return our completed 1781 // set. 1782 return LoopBlockSet; 1783 } 1784 1785 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1786 /// 1787 /// The removal may have removed some child loops entirely but cannot have 1788 /// disturbed any remaining child loops. However, they may need to be hoisted 1789 /// to the parent loop (or to be top-level loops). The original loop may be 1790 /// completely removed. 1791 /// 1792 /// The sibling loops resulting from this update are returned. If the original 1793 /// loop remains a valid loop, it will be the first entry in this list with all 1794 /// of the newly sibling loops following it. 1795 /// 1796 /// Returns true if the loop remains a loop after unswitching, and false if it 1797 /// is no longer a loop after unswitching (and should not continue to be 1798 /// referenced). 1799 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1800 LoopInfo &LI, 1801 SmallVectorImpl<Loop *> &HoistedLoops) { 1802 auto *PH = L.getLoopPreheader(); 1803 1804 // Compute the actual parent loop from the exit blocks. Because we may have 1805 // pruned some exits the loop may be different from the original parent. 1806 Loop *ParentL = nullptr; 1807 SmallVector<Loop *, 4> ExitLoops; 1808 SmallVector<BasicBlock *, 4> ExitsInLoops; 1809 ExitsInLoops.reserve(ExitBlocks.size()); 1810 for (auto *ExitBB : ExitBlocks) 1811 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1812 ExitLoops.push_back(ExitL); 1813 ExitsInLoops.push_back(ExitBB); 1814 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1815 ParentL = ExitL; 1816 } 1817 1818 // Recompute the blocks participating in this loop. This may be empty if it 1819 // is no longer a loop. 1820 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1821 1822 // If we still have a loop, we need to re-set the loop's parent as the exit 1823 // block set changing may have moved it within the loop nest. Note that this 1824 // can only happen when this loop has a parent as it can only hoist the loop 1825 // *up* the nest. 1826 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1827 // Remove this loop's (original) blocks from all of the intervening loops. 1828 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1829 IL = IL->getParentLoop()) { 1830 IL->getBlocksSet().erase(PH); 1831 for (auto *BB : L.blocks()) 1832 IL->getBlocksSet().erase(BB); 1833 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1834 return BB == PH || L.contains(BB); 1835 }); 1836 } 1837 1838 LI.changeLoopFor(PH, ParentL); 1839 L.getParentLoop()->removeChildLoop(&L); 1840 if (ParentL) 1841 ParentL->addChildLoop(&L); 1842 else 1843 LI.addTopLevelLoop(&L); 1844 } 1845 1846 // Now we update all the blocks which are no longer within the loop. 1847 auto &Blocks = L.getBlocksVector(); 1848 auto BlocksSplitI = 1849 LoopBlockSet.empty() 1850 ? Blocks.begin() 1851 : std::stable_partition( 1852 Blocks.begin(), Blocks.end(), 1853 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1854 1855 // Before we erase the list of unlooped blocks, build a set of them. 1856 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1857 if (LoopBlockSet.empty()) 1858 UnloopedBlocks.insert(PH); 1859 1860 // Now erase these blocks from the loop. 1861 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1862 L.getBlocksSet().erase(BB); 1863 Blocks.erase(BlocksSplitI, Blocks.end()); 1864 1865 // Sort the exits in ascending loop depth, we'll work backwards across these 1866 // to process them inside out. 1867 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1868 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1869 }); 1870 1871 // We'll build up a set for each exit loop. 1872 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1873 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1874 1875 auto RemoveUnloopedBlocksFromLoop = 1876 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1877 for (auto *BB : UnloopedBlocks) 1878 L.getBlocksSet().erase(BB); 1879 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1880 return UnloopedBlocks.count(BB); 1881 }); 1882 }; 1883 1884 SmallVector<BasicBlock *, 16> Worklist; 1885 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1886 assert(Worklist.empty() && "Didn't clear worklist!"); 1887 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1888 1889 // Grab the next exit block, in decreasing loop depth order. 1890 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1891 Loop &ExitL = *LI.getLoopFor(ExitBB); 1892 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1893 1894 // Erase all of the unlooped blocks from the loops between the previous 1895 // exit loop and this exit loop. This works because the ExitInLoops list is 1896 // sorted in increasing order of loop depth and thus we visit loops in 1897 // decreasing order of loop depth. 1898 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1899 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1900 1901 // Walk the CFG back until we hit the cloned PH adding everything reachable 1902 // and in the unlooped set to this exit block's loop. 1903 Worklist.push_back(ExitBB); 1904 do { 1905 BasicBlock *BB = Worklist.pop_back_val(); 1906 // We can stop recursing at the cloned preheader (if we get there). 1907 if (BB == PH) 1908 continue; 1909 1910 for (BasicBlock *PredBB : predecessors(BB)) { 1911 // If this pred has already been moved to our set or is part of some 1912 // (inner) loop, no update needed. 1913 if (!UnloopedBlocks.erase(PredBB)) { 1914 assert((NewExitLoopBlocks.count(PredBB) || 1915 ExitL.contains(LI.getLoopFor(PredBB))) && 1916 "Predecessor not in a nested loop (or already visited)!"); 1917 continue; 1918 } 1919 1920 // We just insert into the loop set here. We'll add these blocks to the 1921 // exit loop after we build up the set in a deterministic order rather 1922 // than the predecessor-influenced visit order. 1923 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1924 (void)Inserted; 1925 assert(Inserted && "Should only visit an unlooped block once!"); 1926 1927 // And recurse through to its predecessors. 1928 Worklist.push_back(PredBB); 1929 } 1930 } while (!Worklist.empty()); 1931 1932 // If blocks in this exit loop were directly part of the original loop (as 1933 // opposed to a child loop) update the map to point to this exit loop. This 1934 // just updates a map and so the fact that the order is unstable is fine. 1935 for (auto *BB : NewExitLoopBlocks) 1936 if (Loop *BBL = LI.getLoopFor(BB)) 1937 if (BBL == &L || !L.contains(BBL)) 1938 LI.changeLoopFor(BB, &ExitL); 1939 1940 // We will remove the remaining unlooped blocks from this loop in the next 1941 // iteration or below. 1942 NewExitLoopBlocks.clear(); 1943 } 1944 1945 // Any remaining unlooped blocks are no longer part of any loop unless they 1946 // are part of some child loop. 1947 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1948 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1949 for (auto *BB : UnloopedBlocks) 1950 if (Loop *BBL = LI.getLoopFor(BB)) 1951 if (BBL == &L || !L.contains(BBL)) 1952 LI.changeLoopFor(BB, nullptr); 1953 1954 // Sink all the child loops whose headers are no longer in the loop set to 1955 // the parent (or to be top level loops). We reach into the loop and directly 1956 // update its subloop vector to make this batch update efficient. 1957 auto &SubLoops = L.getSubLoopsVector(); 1958 auto SubLoopsSplitI = 1959 LoopBlockSet.empty() 1960 ? SubLoops.begin() 1961 : std::stable_partition( 1962 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1963 return LoopBlockSet.count(SubL->getHeader()); 1964 }); 1965 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1966 HoistedLoops.push_back(HoistedL); 1967 HoistedL->setParentLoop(nullptr); 1968 1969 // To compute the new parent of this hoisted loop we look at where we 1970 // placed the preheader above. We can't lookup the header itself because we 1971 // retained the mapping from the header to the hoisted loop. But the 1972 // preheader and header should have the exact same new parent computed 1973 // based on the set of exit blocks from the original loop as the preheader 1974 // is a predecessor of the header and so reached in the reverse walk. And 1975 // because the loops were all in simplified form the preheader of the 1976 // hoisted loop can't be part of some *other* loop. 1977 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1978 NewParentL->addChildLoop(HoistedL); 1979 else 1980 LI.addTopLevelLoop(HoistedL); 1981 } 1982 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1983 1984 // Actually delete the loop if nothing remained within it. 1985 if (Blocks.empty()) { 1986 assert(SubLoops.empty() && 1987 "Failed to remove all subloops from the original loop!"); 1988 if (Loop *ParentL = L.getParentLoop()) 1989 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1990 else 1991 LI.removeLoop(llvm::find(LI, &L)); 1992 // markLoopAsDeleted for L should be triggered by the caller (it is typically 1993 // done by using the UnswitchCB callback). 1994 LI.destroy(&L); 1995 return false; 1996 } 1997 1998 return true; 1999 } 2000 2001 /// Helper to visit a dominator subtree, invoking a callable on each node. 2002 /// 2003 /// Returning false at any point will stop walking past that node of the tree. 2004 template <typename CallableT> 2005 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 2006 SmallVector<DomTreeNode *, 4> DomWorklist; 2007 DomWorklist.push_back(DT[BB]); 2008 #ifndef NDEBUG 2009 SmallPtrSet<DomTreeNode *, 4> Visited; 2010 Visited.insert(DT[BB]); 2011 #endif 2012 do { 2013 DomTreeNode *N = DomWorklist.pop_back_val(); 2014 2015 // Visit this node. 2016 if (!Callable(N->getBlock())) 2017 continue; 2018 2019 // Accumulate the child nodes. 2020 for (DomTreeNode *ChildN : *N) { 2021 assert(Visited.insert(ChildN).second && 2022 "Cannot visit a node twice when walking a tree!"); 2023 DomWorklist.push_back(ChildN); 2024 } 2025 } while (!DomWorklist.empty()); 2026 } 2027 2028 static void unswitchNontrivialInvariants( 2029 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 2030 SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo, 2031 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2032 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 2033 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 2034 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 2035 auto *ParentBB = TI.getParent(); 2036 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2037 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 2038 2039 // We can only unswitch switches, conditional branches with an invariant 2040 // condition, or combining invariant conditions with an instruction or 2041 // partially invariant instructions. 2042 assert((SI || (BI && BI->isConditional())) && 2043 "Can only unswitch switches and conditional branch!"); 2044 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty(); 2045 bool FullUnswitch = 2046 SI || (BI->getCondition() == Invariants[0] && !PartiallyInvariant); 2047 if (FullUnswitch) 2048 assert(Invariants.size() == 1 && 2049 "Cannot have other invariants with full unswitching!"); 2050 else 2051 assert(isa<Instruction>(BI->getCondition()) && 2052 "Partial unswitching requires an instruction as the condition!"); 2053 2054 if (MSSAU && VerifyMemorySSA) 2055 MSSAU->getMemorySSA()->verifyMemorySSA(); 2056 2057 // Constant and BBs tracking the cloned and continuing successor. When we are 2058 // unswitching the entire condition, this can just be trivially chosen to 2059 // unswitch towards `true`. However, when we are unswitching a set of 2060 // invariants combined with `and` or `or` or partially invariant instructions, 2061 // the combining operation determines the best direction to unswitch: we want 2062 // to unswitch the direction that will collapse the branch. 2063 bool Direction = true; 2064 int ClonedSucc = 0; 2065 if (!FullUnswitch) { 2066 Value *Cond = BI->getCondition(); 2067 (void)Cond; 2068 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || 2069 PartiallyInvariant) && 2070 "Only `or`, `and`, an `select`, partially invariant instructions " 2071 "can combine invariants being unswitched."); 2072 if (!match(BI->getCondition(), m_LogicalOr())) { 2073 if (match(BI->getCondition(), m_LogicalAnd()) || 2074 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) { 2075 Direction = false; 2076 ClonedSucc = 1; 2077 } 2078 } 2079 } 2080 2081 BasicBlock *RetainedSuccBB = 2082 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 2083 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 2084 if (BI) 2085 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 2086 else 2087 for (auto Case : SI->cases()) 2088 if (Case.getCaseSuccessor() != RetainedSuccBB) 2089 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 2090 2091 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 2092 "Should not unswitch the same successor we are retaining!"); 2093 2094 // The branch should be in this exact loop. Any inner loop's invariant branch 2095 // should be handled by unswitching that inner loop. The caller of this 2096 // routine should filter out any candidates that remain (but were skipped for 2097 // whatever reason). 2098 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2099 2100 // Compute the parent loop now before we start hacking on things. 2101 Loop *ParentL = L.getParentLoop(); 2102 // Get blocks in RPO order for MSSA update, before changing the CFG. 2103 LoopBlocksRPO LBRPO(&L); 2104 if (MSSAU) 2105 LBRPO.perform(&LI); 2106 2107 // Compute the outer-most loop containing one of our exit blocks. This is the 2108 // furthest up our loopnest which can be mutated, which we will use below to 2109 // update things. 2110 Loop *OuterExitL = &L; 2111 for (auto *ExitBB : ExitBlocks) { 2112 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2113 if (!NewOuterExitL) { 2114 // We exited the entire nest with this block, so we're done. 2115 OuterExitL = nullptr; 2116 break; 2117 } 2118 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2119 OuterExitL = NewOuterExitL; 2120 } 2121 2122 // At this point, we're definitely going to unswitch something so invalidate 2123 // any cached information in ScalarEvolution for the outer most loop 2124 // containing an exit block and all nested loops. 2125 if (SE) { 2126 if (OuterExitL) 2127 SE->forgetLoop(OuterExitL); 2128 else 2129 SE->forgetTopmostLoop(&L); 2130 } 2131 2132 bool InsertFreeze = false; 2133 if (FreezeLoopUnswitchCond) { 2134 ICFLoopSafetyInfo SafetyInfo; 2135 SafetyInfo.computeLoopSafetyInfo(&L); 2136 InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L); 2137 } 2138 2139 // If the edge from this terminator to a successor dominates that successor, 2140 // store a map from each block in its dominator subtree to it. This lets us 2141 // tell when cloning for a particular successor if a block is dominated by 2142 // some *other* successor with a single data structure. We use this to 2143 // significantly reduce cloning. 2144 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2145 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2146 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2147 if (SuccBB->getUniquePredecessor() || 2148 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2149 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2150 })) 2151 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2152 DominatingSucc[BB] = SuccBB; 2153 return true; 2154 }); 2155 2156 // Split the preheader, so that we know that there is a safe place to insert 2157 // the conditional branch. We will change the preheader to have a conditional 2158 // branch on LoopCond. The original preheader will become the split point 2159 // between the unswitched versions, and we will have a new preheader for the 2160 // original loop. 2161 BasicBlock *SplitBB = L.getLoopPreheader(); 2162 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2163 2164 // Keep track of the dominator tree updates needed. 2165 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2166 2167 // Clone the loop for each unswitched successor. 2168 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2169 VMaps.reserve(UnswitchedSuccBBs.size()); 2170 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2171 for (auto *SuccBB : UnswitchedSuccBBs) { 2172 VMaps.emplace_back(new ValueToValueMapTy()); 2173 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2174 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2175 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2176 } 2177 2178 // Drop metadata if we may break its semantics by moving this instr into the 2179 // split block. 2180 if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 2181 if (DropNonTrivialImplicitNullChecks) 2182 // Do not spend time trying to understand if we can keep it, just drop it 2183 // to save compile time. 2184 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2185 else { 2186 // It is only legal to preserve make.implicit metadata if we are 2187 // guaranteed no reach implicit null check after following this branch. 2188 ICFLoopSafetyInfo SafetyInfo; 2189 SafetyInfo.computeLoopSafetyInfo(&L); 2190 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2191 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2192 } 2193 } 2194 2195 // The stitching of the branched code back together depends on whether we're 2196 // doing full unswitching or not with the exception that we always want to 2197 // nuke the initial terminator placed in the split block. 2198 SplitBB->getTerminator()->eraseFromParent(); 2199 if (FullUnswitch) { 2200 // Splice the terminator from the original loop and rewrite its 2201 // successors. 2202 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2203 2204 // Keep a clone of the terminator for MSSA updates. 2205 Instruction *NewTI = TI.clone(); 2206 ParentBB->getInstList().push_back(NewTI); 2207 2208 // First wire up the moved terminator to the preheaders. 2209 if (BI) { 2210 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2211 BI->setSuccessor(ClonedSucc, ClonedPH); 2212 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2213 if (InsertFreeze) { 2214 auto Cond = BI->getCondition(); 2215 if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, BI, &DT)) 2216 BI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", BI)); 2217 } 2218 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2219 } else { 2220 assert(SI && "Must either be a branch or switch!"); 2221 2222 // Walk the cases and directly update their successors. 2223 assert(SI->getDefaultDest() == RetainedSuccBB && 2224 "Not retaining default successor!"); 2225 SI->setDefaultDest(LoopPH); 2226 for (auto &Case : SI->cases()) 2227 if (Case.getCaseSuccessor() == RetainedSuccBB) 2228 Case.setSuccessor(LoopPH); 2229 else 2230 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2231 2232 if (InsertFreeze) { 2233 auto Cond = SI->getCondition(); 2234 if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, SI, &DT)) 2235 SI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", SI)); 2236 } 2237 // We need to use the set to populate domtree updates as even when there 2238 // are multiple cases pointing at the same successor we only want to 2239 // remove and insert one edge in the domtree. 2240 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2241 DTUpdates.push_back( 2242 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2243 } 2244 2245 if (MSSAU) { 2246 DT.applyUpdates(DTUpdates); 2247 DTUpdates.clear(); 2248 2249 // Remove all but one edge to the retained block and all unswitched 2250 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2251 // when we know we only keep a single edge for each case. 2252 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2253 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2254 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2255 2256 for (auto &VMap : VMaps) 2257 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2258 /*IgnoreIncomingWithNoClones=*/true); 2259 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2260 2261 // Remove all edges to unswitched blocks. 2262 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2263 MSSAU->removeEdge(ParentBB, SuccBB); 2264 } 2265 2266 // Now unhook the successor relationship as we'll be replacing 2267 // the terminator with a direct branch. This is much simpler for branches 2268 // than switches so we handle those first. 2269 if (BI) { 2270 // Remove the parent as a predecessor of the unswitched successor. 2271 assert(UnswitchedSuccBBs.size() == 1 && 2272 "Only one possible unswitched block for a branch!"); 2273 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2274 UnswitchedSuccBB->removePredecessor(ParentBB, 2275 /*KeepOneInputPHIs*/ true); 2276 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2277 } else { 2278 // Note that we actually want to remove the parent block as a predecessor 2279 // of *every* case successor. The case successor is either unswitched, 2280 // completely eliminating an edge from the parent to that successor, or it 2281 // is a duplicate edge to the retained successor as the retained successor 2282 // is always the default successor and as we'll replace this with a direct 2283 // branch we no longer need the duplicate entries in the PHI nodes. 2284 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2285 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2286 "Not retaining default successor!"); 2287 for (auto &Case : NewSI->cases()) 2288 Case.getCaseSuccessor()->removePredecessor( 2289 ParentBB, 2290 /*KeepOneInputPHIs*/ true); 2291 2292 // We need to use the set to populate domtree updates as even when there 2293 // are multiple cases pointing at the same successor we only want to 2294 // remove and insert one edge in the domtree. 2295 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2296 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2297 } 2298 2299 // After MSSAU update, remove the cloned terminator instruction NewTI. 2300 ParentBB->getTerminator()->eraseFromParent(); 2301 2302 // Create a new unconditional branch to the continuing block (as opposed to 2303 // the one cloned). 2304 BranchInst::Create(RetainedSuccBB, ParentBB); 2305 } else { 2306 assert(BI && "Only branches have partial unswitching."); 2307 assert(UnswitchedSuccBBs.size() == 1 && 2308 "Only one possible unswitched block for a branch!"); 2309 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2310 // When doing a partial unswitch, we have to do a bit more work to build up 2311 // the branch in the split block. 2312 if (PartiallyInvariant) 2313 buildPartialInvariantUnswitchConditionalBranch( 2314 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU); 2315 else 2316 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2317 *ClonedPH, *LoopPH, InsertFreeze); 2318 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2319 2320 if (MSSAU) { 2321 DT.applyUpdates(DTUpdates); 2322 DTUpdates.clear(); 2323 2324 // Perform MSSA cloning updates. 2325 for (auto &VMap : VMaps) 2326 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2327 /*IgnoreIncomingWithNoClones=*/true); 2328 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2329 } 2330 } 2331 2332 // Apply the updates accumulated above to get an up-to-date dominator tree. 2333 DT.applyUpdates(DTUpdates); 2334 2335 // Now that we have an accurate dominator tree, first delete the dead cloned 2336 // blocks so that we can accurately build any cloned loops. It is important to 2337 // not delete the blocks from the original loop yet because we still want to 2338 // reference the original loop to understand the cloned loop's structure. 2339 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2340 2341 // Build the cloned loop structure itself. This may be substantially 2342 // different from the original structure due to the simplified CFG. This also 2343 // handles inserting all the cloned blocks into the correct loops. 2344 SmallVector<Loop *, 4> NonChildClonedLoops; 2345 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2346 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2347 2348 // Now that our cloned loops have been built, we can update the original loop. 2349 // First we delete the dead blocks from it and then we rebuild the loop 2350 // structure taking these deletions into account. 2351 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, DestroyLoopCB); 2352 2353 if (MSSAU && VerifyMemorySSA) 2354 MSSAU->getMemorySSA()->verifyMemorySSA(); 2355 2356 SmallVector<Loop *, 4> HoistedLoops; 2357 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2358 2359 if (MSSAU && VerifyMemorySSA) 2360 MSSAU->getMemorySSA()->verifyMemorySSA(); 2361 2362 // This transformation has a high risk of corrupting the dominator tree, and 2363 // the below steps to rebuild loop structures will result in hard to debug 2364 // errors in that case so verify that the dominator tree is sane first. 2365 // FIXME: Remove this when the bugs stop showing up and rely on existing 2366 // verification steps. 2367 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2368 2369 if (BI && !PartiallyInvariant) { 2370 // If we unswitched a branch which collapses the condition to a known 2371 // constant we want to replace all the uses of the invariants within both 2372 // the original and cloned blocks. We do this here so that we can use the 2373 // now updated dominator tree to identify which side the users are on. 2374 assert(UnswitchedSuccBBs.size() == 1 && 2375 "Only one possible unswitched block for a branch!"); 2376 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2377 2378 // When considering multiple partially-unswitched invariants 2379 // we cant just go replace them with constants in both branches. 2380 // 2381 // For 'AND' we infer that true branch ("continue") means true 2382 // for each invariant operand. 2383 // For 'OR' we can infer that false branch ("continue") means false 2384 // for each invariant operand. 2385 // So it happens that for multiple-partial case we dont replace 2386 // in the unswitched branch. 2387 bool ReplaceUnswitched = 2388 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant; 2389 2390 ConstantInt *UnswitchedReplacement = 2391 Direction ? ConstantInt::getTrue(BI->getContext()) 2392 : ConstantInt::getFalse(BI->getContext()); 2393 ConstantInt *ContinueReplacement = 2394 Direction ? ConstantInt::getFalse(BI->getContext()) 2395 : ConstantInt::getTrue(BI->getContext()); 2396 for (Value *Invariant : Invariants) { 2397 assert(!isa<Constant>(Invariant) && 2398 "Should not be replacing constant values!"); 2399 // Use make_early_inc_range here as set invalidates the iterator. 2400 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 2401 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 2402 if (!UserI) 2403 continue; 2404 2405 // Replace it with the 'continue' side if in the main loop body, and the 2406 // unswitched if in the cloned blocks. 2407 if (DT.dominates(LoopPH, UserI->getParent())) 2408 U.set(ContinueReplacement); 2409 else if (ReplaceUnswitched && 2410 DT.dominates(ClonedPH, UserI->getParent())) 2411 U.set(UnswitchedReplacement); 2412 } 2413 } 2414 } 2415 2416 // We can change which blocks are exit blocks of all the cloned sibling 2417 // loops, the current loop, and any parent loops which shared exit blocks 2418 // with the current loop. As a consequence, we need to re-form LCSSA for 2419 // them. But we shouldn't need to re-form LCSSA for any child loops. 2420 // FIXME: This could be made more efficient by tracking which exit blocks are 2421 // new, and focusing on them, but that isn't likely to be necessary. 2422 // 2423 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2424 // loop nest and update every loop that could have had its exits changed. We 2425 // also need to cover any intervening loops. We add all of these loops to 2426 // a list and sort them by loop depth to achieve this without updating 2427 // unnecessary loops. 2428 auto UpdateLoop = [&](Loop &UpdateL) { 2429 #ifndef NDEBUG 2430 UpdateL.verifyLoop(); 2431 for (Loop *ChildL : UpdateL) { 2432 ChildL->verifyLoop(); 2433 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2434 "Perturbed a child loop's LCSSA form!"); 2435 } 2436 #endif 2437 // First build LCSSA for this loop so that we can preserve it when 2438 // forming dedicated exits. We don't want to perturb some other loop's 2439 // LCSSA while doing that CFG edit. 2440 formLCSSA(UpdateL, DT, &LI, SE); 2441 2442 // For loops reached by this loop's original exit blocks we may 2443 // introduced new, non-dedicated exits. At least try to re-form dedicated 2444 // exits for these loops. This may fail if they couldn't have dedicated 2445 // exits to start with. 2446 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2447 }; 2448 2449 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2450 // and we can do it in any order as they don't nest relative to each other. 2451 // 2452 // Also check if any of the loops we have updated have become top-level loops 2453 // as that will necessitate widening the outer loop scope. 2454 for (Loop *UpdatedL : 2455 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2456 UpdateLoop(*UpdatedL); 2457 if (UpdatedL->isOutermost()) 2458 OuterExitL = nullptr; 2459 } 2460 if (IsStillLoop) { 2461 UpdateLoop(L); 2462 if (L.isOutermost()) 2463 OuterExitL = nullptr; 2464 } 2465 2466 // If the original loop had exit blocks, walk up through the outer most loop 2467 // of those exit blocks to update LCSSA and form updated dedicated exits. 2468 if (OuterExitL != &L) 2469 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2470 OuterL = OuterL->getParentLoop()) 2471 UpdateLoop(*OuterL); 2472 2473 #ifndef NDEBUG 2474 // Verify the entire loop structure to catch any incorrect updates before we 2475 // progress in the pass pipeline. 2476 LI.verify(DT); 2477 #endif 2478 2479 // Now that we've unswitched something, make callbacks to report the changes. 2480 // For that we need to merge together the updated loops and the cloned loops 2481 // and check whether the original loop survived. 2482 SmallVector<Loop *, 4> SibLoops; 2483 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2484 if (UpdatedL->getParentLoop() == ParentL) 2485 SibLoops.push_back(UpdatedL); 2486 UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops); 2487 2488 if (MSSAU && VerifyMemorySSA) 2489 MSSAU->getMemorySSA()->verifyMemorySSA(); 2490 2491 if (BI) 2492 ++NumBranches; 2493 else 2494 ++NumSwitches; 2495 } 2496 2497 /// Recursively compute the cost of a dominator subtree based on the per-block 2498 /// cost map provided. 2499 /// 2500 /// The recursive computation is memozied into the provided DT-indexed cost map 2501 /// to allow querying it for most nodes in the domtree without it becoming 2502 /// quadratic. 2503 static InstructionCost computeDomSubtreeCost( 2504 DomTreeNode &N, 2505 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, 2506 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { 2507 // Don't accumulate cost (or recurse through) blocks not in our block cost 2508 // map and thus not part of the duplication cost being considered. 2509 auto BBCostIt = BBCostMap.find(N.getBlock()); 2510 if (BBCostIt == BBCostMap.end()) 2511 return 0; 2512 2513 // Lookup this node to see if we already computed its cost. 2514 auto DTCostIt = DTCostMap.find(&N); 2515 if (DTCostIt != DTCostMap.end()) 2516 return DTCostIt->second; 2517 2518 // If not, we have to compute it. We can't use insert above and update 2519 // because computing the cost may insert more things into the map. 2520 InstructionCost Cost = std::accumulate( 2521 N.begin(), N.end(), BBCostIt->second, 2522 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { 2523 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2524 }); 2525 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2526 (void)Inserted; 2527 assert(Inserted && "Should not insert a node while visiting children!"); 2528 return Cost; 2529 } 2530 2531 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2532 /// making the following replacement: 2533 /// 2534 /// --code before guard-- 2535 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2536 /// --code after guard-- 2537 /// 2538 /// into 2539 /// 2540 /// --code before guard-- 2541 /// br i1 %cond, label %guarded, label %deopt 2542 /// 2543 /// guarded: 2544 /// --code after guard-- 2545 /// 2546 /// deopt: 2547 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2548 /// unreachable 2549 /// 2550 /// It also makes all relevant DT and LI updates, so that all structures are in 2551 /// valid state after this transform. 2552 static BranchInst * 2553 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2554 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2555 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2556 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2557 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2558 BasicBlock *CheckBB = GI->getParent(); 2559 2560 if (MSSAU && VerifyMemorySSA) 2561 MSSAU->getMemorySSA()->verifyMemorySSA(); 2562 2563 // Remove all CheckBB's successors from DomTree. A block can be seen among 2564 // successors more than once, but for DomTree it should be added only once. 2565 SmallPtrSet<BasicBlock *, 4> Successors; 2566 for (auto *Succ : successors(CheckBB)) 2567 if (Successors.insert(Succ).second) 2568 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2569 2570 Instruction *DeoptBlockTerm = 2571 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2572 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2573 // SplitBlockAndInsertIfThen inserts control flow that branches to 2574 // DeoptBlockTerm if the condition is true. We want the opposite. 2575 CheckBI->swapSuccessors(); 2576 2577 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2578 GuardedBlock->setName("guarded"); 2579 CheckBI->getSuccessor(1)->setName("deopt"); 2580 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2581 2582 // We now have a new exit block. 2583 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2584 2585 if (MSSAU) 2586 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2587 2588 GI->moveBefore(DeoptBlockTerm); 2589 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2590 2591 // Add new successors of CheckBB into DomTree. 2592 for (auto *Succ : successors(CheckBB)) 2593 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2594 2595 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2596 // successors. 2597 for (auto *Succ : Successors) 2598 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2599 2600 // Make proper changes to DT. 2601 DT.applyUpdates(DTUpdates); 2602 // Inform LI of a new loop block. 2603 L.addBasicBlockToLoop(GuardedBlock, LI); 2604 2605 if (MSSAU) { 2606 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2607 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2608 if (VerifyMemorySSA) 2609 MSSAU->getMemorySSA()->verifyMemorySSA(); 2610 } 2611 2612 ++NumGuards; 2613 return CheckBI; 2614 } 2615 2616 /// Cost multiplier is a way to limit potentially exponential behavior 2617 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2618 /// candidates available. Also accounting for the number of "sibling" loops with 2619 /// the idea to account for previous unswitches that already happened on this 2620 /// cluster of loops. There was an attempt to keep this formula simple, 2621 /// just enough to limit the worst case behavior. Even if it is not that simple 2622 /// now it is still not an attempt to provide a detailed heuristic size 2623 /// prediction. 2624 /// 2625 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2626 /// unswitch candidates, making adequate predictions instead of wild guesses. 2627 /// That requires knowing not just the number of "remaining" candidates but 2628 /// also costs of unswitching for each of these candidates. 2629 static int CalculateUnswitchCostMultiplier( 2630 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2631 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2632 UnswitchCandidates) { 2633 2634 // Guards and other exiting conditions do not contribute to exponential 2635 // explosion as soon as they dominate the latch (otherwise there might be 2636 // another path to the latch remaining that does not allow to eliminate the 2637 // loop copy on unswitch). 2638 BasicBlock *Latch = L.getLoopLatch(); 2639 BasicBlock *CondBlock = TI.getParent(); 2640 if (DT.dominates(CondBlock, Latch) && 2641 (isGuard(&TI) || 2642 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2643 return L.contains(SuccBB); 2644 }) <= 1)) { 2645 NumCostMultiplierSkipped++; 2646 return 1; 2647 } 2648 2649 auto *ParentL = L.getParentLoop(); 2650 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2651 : std::distance(LI.begin(), LI.end())); 2652 // Count amount of clones that all the candidates might cause during 2653 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2654 int UnswitchedClones = 0; 2655 for (auto Candidate : UnswitchCandidates) { 2656 Instruction *CI = Candidate.first; 2657 BasicBlock *CondBlock = CI->getParent(); 2658 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2659 if (isGuard(CI)) { 2660 if (!SkipExitingSuccessors) 2661 UnswitchedClones++; 2662 continue; 2663 } 2664 int NonExitingSuccessors = llvm::count_if( 2665 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2666 return !SkipExitingSuccessors || L.contains(SuccBB); 2667 }); 2668 UnswitchedClones += Log2_32(NonExitingSuccessors); 2669 } 2670 2671 // Ignore up to the "unscaled candidates" number of unswitch candidates 2672 // when calculating the power-of-two scaling of the cost. The main idea 2673 // with this control is to allow a small number of unswitches to happen 2674 // and rely more on siblings multiplier (see below) when the number 2675 // of candidates is small. 2676 unsigned ClonesPower = 2677 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2678 2679 // Allowing top-level loops to spread a bit more than nested ones. 2680 int SiblingsMultiplier = 2681 std::max((ParentL ? SiblingsCount 2682 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2683 1); 2684 // Compute the cost multiplier in a way that won't overflow by saturating 2685 // at an upper bound. 2686 int CostMultiplier; 2687 if (ClonesPower > Log2_32(UnswitchThreshold) || 2688 SiblingsMultiplier > UnswitchThreshold) 2689 CostMultiplier = UnswitchThreshold; 2690 else 2691 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2692 (int)UnswitchThreshold); 2693 2694 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2695 << " (siblings " << SiblingsMultiplier << " * clones " 2696 << (1 << ClonesPower) << ")" 2697 << " for unswitch candidate: " << TI << "\n"); 2698 return CostMultiplier; 2699 } 2700 2701 static bool unswitchBestCondition( 2702 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2703 AAResults &AA, TargetTransformInfo &TTI, 2704 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 2705 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 2706 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 2707 // Collect all invariant conditions within this loop (as opposed to an inner 2708 // loop which would be handled when visiting that inner loop). 2709 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2710 UnswitchCandidates; 2711 2712 // Whether or not we should also collect guards in the loop. 2713 bool CollectGuards = false; 2714 if (UnswitchGuards) { 2715 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2716 Intrinsic::getName(Intrinsic::experimental_guard)); 2717 if (GuardDecl && !GuardDecl->use_empty()) 2718 CollectGuards = true; 2719 } 2720 2721 IVConditionInfo PartialIVInfo; 2722 for (auto *BB : L.blocks()) { 2723 if (LI.getLoopFor(BB) != &L) 2724 continue; 2725 2726 if (CollectGuards) 2727 for (auto &I : *BB) 2728 if (isGuard(&I)) { 2729 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2730 // TODO: Support AND, OR conditions and partial unswitching. 2731 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2732 UnswitchCandidates.push_back({&I, {Cond}}); 2733 } 2734 2735 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2736 // We can only consider fully loop-invariant switch conditions as we need 2737 // to completely eliminate the switch after unswitching. 2738 if (!isa<Constant>(SI->getCondition()) && 2739 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2740 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2741 continue; 2742 } 2743 2744 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2745 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2746 BI->getSuccessor(0) == BI->getSuccessor(1)) 2747 continue; 2748 2749 // If BI's condition is 'select _, true, false', simplify it to confuse 2750 // matchers 2751 Value *Cond = BI->getCondition(), *CondNext; 2752 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero()))) 2753 Cond = CondNext; 2754 BI->setCondition(Cond); 2755 2756 if (isa<Constant>(Cond)) 2757 continue; 2758 2759 if (L.isLoopInvariant(BI->getCondition())) { 2760 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2761 continue; 2762 } 2763 2764 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2765 if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) { 2766 TinyPtrVector<Value *> Invariants = 2767 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2768 if (Invariants.empty()) 2769 continue; 2770 2771 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2772 continue; 2773 } 2774 } 2775 2776 Instruction *PartialIVCondBranch = nullptr; 2777 if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") && 2778 !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) { 2779 return TerminatorAndInvariants.first == L.getHeader()->getTerminator(); 2780 })) { 2781 MemorySSA *MSSA = MSSAU->getMemorySSA(); 2782 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) { 2783 LLVM_DEBUG( 2784 dbgs() << "simple-loop-unswitch: Found partially invariant condition " 2785 << *Info->InstToDuplicate[0] << "\n"); 2786 PartialIVInfo = *Info; 2787 PartialIVCondBranch = L.getHeader()->getTerminator(); 2788 TinyPtrVector<Value *> ValsToDuplicate; 2789 for (auto *Inst : Info->InstToDuplicate) 2790 ValsToDuplicate.push_back(Inst); 2791 UnswitchCandidates.push_back( 2792 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)}); 2793 } 2794 } 2795 2796 // If we didn't find any candidates, we're done. 2797 if (UnswitchCandidates.empty()) 2798 return false; 2799 2800 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2801 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2802 // irreducible control flow into reducible control flow and introduce new 2803 // loops "out of thin air". If we ever discover important use cases for doing 2804 // this, we can add support to loop unswitch, but it is a lot of complexity 2805 // for what seems little or no real world benefit. 2806 LoopBlocksRPO RPOT(&L); 2807 RPOT.perform(&LI); 2808 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2809 return false; 2810 2811 SmallVector<BasicBlock *, 4> ExitBlocks; 2812 L.getUniqueExitBlocks(ExitBlocks); 2813 2814 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch 2815 // instruction as we don't know how to split those exit blocks. 2816 // FIXME: We should teach SplitBlock to handle this and remove this 2817 // restriction. 2818 for (auto *ExitBB : ExitBlocks) { 2819 auto *I = ExitBB->getFirstNonPHI(); 2820 if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) { 2821 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch " 2822 "in exit block\n"); 2823 return false; 2824 } 2825 } 2826 2827 LLVM_DEBUG( 2828 dbgs() << "Considering " << UnswitchCandidates.size() 2829 << " non-trivial loop invariant conditions for unswitching.\n"); 2830 2831 // Given that unswitching these terminators will require duplicating parts of 2832 // the loop, so we need to be able to model that cost. Compute the ephemeral 2833 // values and set up a data structure to hold per-BB costs. We cache each 2834 // block's cost so that we don't recompute this when considering different 2835 // subsets of the loop for duplication during unswitching. 2836 SmallPtrSet<const Value *, 4> EphValues; 2837 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2838 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; 2839 2840 // Compute the cost of each block, as well as the total loop cost. Also, bail 2841 // out if we see instructions which are incompatible with loop unswitching 2842 // (convergent, noduplicate, or cross-basic-block tokens). 2843 // FIXME: We might be able to safely handle some of these in non-duplicated 2844 // regions. 2845 TargetTransformInfo::TargetCostKind CostKind = 2846 L.getHeader()->getParent()->hasMinSize() 2847 ? TargetTransformInfo::TCK_CodeSize 2848 : TargetTransformInfo::TCK_SizeAndLatency; 2849 InstructionCost LoopCost = 0; 2850 for (auto *BB : L.blocks()) { 2851 InstructionCost Cost = 0; 2852 for (auto &I : *BB) { 2853 if (EphValues.count(&I)) 2854 continue; 2855 2856 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2857 return false; 2858 if (auto *CB = dyn_cast<CallBase>(&I)) 2859 if (CB->isConvergent() || CB->cannotDuplicate()) 2860 return false; 2861 2862 Cost += TTI.getUserCost(&I, CostKind); 2863 } 2864 assert(Cost >= 0 && "Must not have negative costs!"); 2865 LoopCost += Cost; 2866 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2867 BBCostMap[BB] = Cost; 2868 } 2869 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2870 2871 // Now we find the best candidate by searching for the one with the following 2872 // properties in order: 2873 // 2874 // 1) An unswitching cost below the threshold 2875 // 2) The smallest number of duplicated unswitch candidates (to avoid 2876 // creating redundant subsequent unswitching) 2877 // 3) The smallest cost after unswitching. 2878 // 2879 // We prioritize reducing fanout of unswitch candidates provided the cost 2880 // remains below the threshold because this has a multiplicative effect. 2881 // 2882 // This requires memoizing each dominator subtree to avoid redundant work. 2883 // 2884 // FIXME: Need to actually do the number of candidates part above. 2885 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; 2886 // Given a terminator which might be unswitched, computes the non-duplicated 2887 // cost for that terminator. 2888 auto ComputeUnswitchedCost = [&](Instruction &TI, 2889 bool FullUnswitch) -> InstructionCost { 2890 BasicBlock &BB = *TI.getParent(); 2891 SmallPtrSet<BasicBlock *, 4> Visited; 2892 2893 InstructionCost Cost = 0; 2894 for (BasicBlock *SuccBB : successors(&BB)) { 2895 // Don't count successors more than once. 2896 if (!Visited.insert(SuccBB).second) 2897 continue; 2898 2899 // If this is a partial unswitch candidate, then it must be a conditional 2900 // branch with a condition of either `or`, `and`, their corresponding 2901 // select forms or partially invariant instructions. In that case, one of 2902 // the successors is necessarily duplicated, so don't even try to remove 2903 // its cost. 2904 if (!FullUnswitch) { 2905 auto &BI = cast<BranchInst>(TI); 2906 if (match(BI.getCondition(), m_LogicalAnd())) { 2907 if (SuccBB == BI.getSuccessor(1)) 2908 continue; 2909 } else if (match(BI.getCondition(), m_LogicalOr())) { 2910 if (SuccBB == BI.getSuccessor(0)) 2911 continue; 2912 } else if ((PartialIVInfo.KnownValue->isOneValue() && 2913 SuccBB == BI.getSuccessor(0)) || 2914 (!PartialIVInfo.KnownValue->isOneValue() && 2915 SuccBB == BI.getSuccessor(1))) 2916 continue; 2917 } 2918 2919 // This successor's domtree will not need to be duplicated after 2920 // unswitching if the edge to the successor dominates it (and thus the 2921 // entire tree). This essentially means there is no other path into this 2922 // subtree and so it will end up live in only one clone of the loop. 2923 if (SuccBB->getUniquePredecessor() || 2924 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2925 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2926 })) { 2927 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2928 assert(Cost <= LoopCost && 2929 "Non-duplicated cost should never exceed total loop cost!"); 2930 } 2931 } 2932 2933 // Now scale the cost by the number of unique successors minus one. We 2934 // subtract one because there is already at least one copy of the entire 2935 // loop. This is computing the new cost of unswitching a condition. 2936 // Note that guards always have 2 unique successors that are implicit and 2937 // will be materialized if we decide to unswitch it. 2938 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2939 assert(SuccessorsCount > 1 && 2940 "Cannot unswitch a condition without multiple distinct successors!"); 2941 return (LoopCost - Cost) * (SuccessorsCount - 1); 2942 }; 2943 Instruction *BestUnswitchTI = nullptr; 2944 InstructionCost BestUnswitchCost = 0; 2945 ArrayRef<Value *> BestUnswitchInvariants; 2946 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2947 Instruction &TI = *TerminatorAndInvariants.first; 2948 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2949 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2950 InstructionCost CandidateCost = ComputeUnswitchedCost( 2951 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2952 Invariants[0] == BI->getCondition())); 2953 // Calculate cost multiplier which is a tool to limit potentially 2954 // exponential behavior of loop-unswitch. 2955 if (EnableUnswitchCostMultiplier) { 2956 int CostMultiplier = 2957 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2958 assert( 2959 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2960 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2961 CandidateCost *= CostMultiplier; 2962 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2963 << " (multiplier: " << CostMultiplier << ")" 2964 << " for unswitch candidate: " << TI << "\n"); 2965 } else { 2966 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2967 << " for unswitch candidate: " << TI << "\n"); 2968 } 2969 2970 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2971 BestUnswitchTI = &TI; 2972 BestUnswitchCost = CandidateCost; 2973 BestUnswitchInvariants = Invariants; 2974 } 2975 } 2976 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2977 2978 if (BestUnswitchCost >= UnswitchThreshold) { 2979 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2980 << BestUnswitchCost << "\n"); 2981 return false; 2982 } 2983 2984 if (BestUnswitchTI != PartialIVCondBranch) 2985 PartialIVInfo.InstToDuplicate.clear(); 2986 2987 // If the best candidate is a guard, turn it into a branch. 2988 if (isGuard(BestUnswitchTI)) 2989 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2990 ExitBlocks, DT, LI, MSSAU); 2991 2992 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2993 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2994 << "\n"); 2995 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2996 ExitBlocks, PartialIVInfo, DT, LI, AC, 2997 UnswitchCB, SE, MSSAU, DestroyLoopCB); 2998 return true; 2999 } 3000 3001 /// Unswitch control flow predicated on loop invariant conditions. 3002 /// 3003 /// This first hoists all branches or switches which are trivial (IE, do not 3004 /// require duplicating any part of the loop) out of the loop body. It then 3005 /// looks at other loop invariant control flows and tries to unswitch those as 3006 /// well by cloning the loop if the result is small enough. 3007 /// 3008 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are 3009 /// also updated based on the unswitch. The `MSSA` analysis is also updated if 3010 /// valid (i.e. its use is enabled). 3011 /// 3012 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 3013 /// true, we will attempt to do non-trivial unswitching as well as trivial 3014 /// unswitching. 3015 /// 3016 /// The `UnswitchCB` callback provided will be run after unswitching is 3017 /// complete, with the first parameter set to `true` if the provided loop 3018 /// remains a loop, and a list of new sibling loops created. 3019 /// 3020 /// If `SE` is non-null, we will update that analysis based on the unswitching 3021 /// done. 3022 static bool 3023 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 3024 AAResults &AA, TargetTransformInfo &TTI, bool Trivial, 3025 bool NonTrivial, 3026 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 3027 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 3028 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 3029 assert(L.isRecursivelyLCSSAForm(DT, LI) && 3030 "Loops must be in LCSSA form before unswitching."); 3031 3032 // Must be in loop simplified form: we need a preheader and dedicated exits. 3033 if (!L.isLoopSimplifyForm()) 3034 return false; 3035 3036 // Try trivial unswitch first before loop over other basic blocks in the loop. 3037 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 3038 // If we unswitched successfully we will want to clean up the loop before 3039 // processing it further so just mark it as unswitched and return. 3040 UnswitchCB(/*CurrentLoopValid*/ true, false, {}); 3041 return true; 3042 } 3043 3044 // Check whether we should continue with non-trivial conditions. 3045 // EnableNonTrivialUnswitch: Global variable that forces non-trivial 3046 // unswitching for testing and debugging. 3047 // NonTrivial: Parameter that enables non-trivial unswitching for this 3048 // invocation of the transform. But this should be allowed only 3049 // for targets without branch divergence. 3050 // 3051 // FIXME: If divergence analysis becomes available to a loop 3052 // transform, we should allow unswitching for non-trivial uniform 3053 // branches even on targets that have divergence. 3054 // https://bugs.llvm.org/show_bug.cgi?id=48819 3055 bool ContinueWithNonTrivial = 3056 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence()); 3057 if (!ContinueWithNonTrivial) 3058 return false; 3059 3060 // Skip non-trivial unswitching for optsize functions. 3061 if (L.getHeader()->getParent()->hasOptSize()) 3062 return false; 3063 3064 // Skip non-trivial unswitching for loops that cannot be cloned. 3065 if (!L.isSafeToClone()) 3066 return false; 3067 3068 // For non-trivial unswitching, because it often creates new loops, we rely on 3069 // the pass manager to iterate on the loops rather than trying to immediately 3070 // reach a fixed point. There is no substantial advantage to iterating 3071 // internally, and if any of the new loops are simplified enough to contain 3072 // trivial unswitching we want to prefer those. 3073 3074 // Try to unswitch the best invariant condition. We prefer this full unswitch to 3075 // a partial unswitch when possible below the threshold. 3076 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU, 3077 DestroyLoopCB)) 3078 return true; 3079 3080 // No other opportunities to unswitch. 3081 return false; 3082 } 3083 3084 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 3085 LoopStandardAnalysisResults &AR, 3086 LPMUpdater &U) { 3087 Function &F = *L.getHeader()->getParent(); 3088 (void)F; 3089 3090 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 3091 << "\n"); 3092 3093 // Save the current loop name in a variable so that we can report it even 3094 // after it has been deleted. 3095 std::string LoopName = std::string(L.getName()); 3096 3097 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 3098 bool PartiallyInvariant, 3099 ArrayRef<Loop *> NewLoops) { 3100 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3101 if (!NewLoops.empty()) 3102 U.addSiblingLoops(NewLoops); 3103 3104 // If the current loop remains valid, we should revisit it to catch any 3105 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 3106 if (CurrentLoopValid) { 3107 if (PartiallyInvariant) { 3108 // Mark the new loop as partially unswitched, to avoid unswitching on 3109 // the same condition again. 3110 auto &Context = L.getHeader()->getContext(); 3111 MDNode *DisableUnswitchMD = MDNode::get( 3112 Context, 3113 MDString::get(Context, "llvm.loop.unswitch.partial.disable")); 3114 MDNode *NewLoopID = makePostTransformationMetadata( 3115 Context, L.getLoopID(), {"llvm.loop.unswitch.partial"}, 3116 {DisableUnswitchMD}); 3117 L.setLoopID(NewLoopID); 3118 } else 3119 U.revisitCurrentLoop(); 3120 } else 3121 U.markLoopAsDeleted(L, LoopName); 3122 }; 3123 3124 auto DestroyLoopCB = [&U](Loop &L, StringRef Name) { 3125 U.markLoopAsDeleted(L, Name); 3126 }; 3127 3128 Optional<MemorySSAUpdater> MSSAU; 3129 if (AR.MSSA) { 3130 MSSAU = MemorySSAUpdater(AR.MSSA); 3131 if (VerifyMemorySSA) 3132 AR.MSSA->verifyMemorySSA(); 3133 } 3134 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial, 3135 UnswitchCB, &AR.SE, 3136 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr, 3137 DestroyLoopCB)) 3138 return PreservedAnalyses::all(); 3139 3140 if (AR.MSSA && VerifyMemorySSA) 3141 AR.MSSA->verifyMemorySSA(); 3142 3143 // Historically this pass has had issues with the dominator tree so verify it 3144 // in asserts builds. 3145 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 3146 3147 auto PA = getLoopPassPreservedAnalyses(); 3148 if (AR.MSSA) 3149 PA.preserve<MemorySSAAnalysis>(); 3150 return PA; 3151 } 3152 3153 void SimpleLoopUnswitchPass::printPipeline( 3154 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 3155 static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline( 3156 OS, MapClassName2PassName); 3157 3158 OS << "<"; 3159 OS << (NonTrivial ? "" : "no-") << "nontrivial;"; 3160 OS << (Trivial ? "" : "no-") << "trivial"; 3161 OS << ">"; 3162 } 3163 3164 namespace { 3165 3166 class SimpleLoopUnswitchLegacyPass : public LoopPass { 3167 bool NonTrivial; 3168 3169 public: 3170 static char ID; // Pass ID, replacement for typeid 3171 3172 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 3173 : LoopPass(ID), NonTrivial(NonTrivial) { 3174 initializeSimpleLoopUnswitchLegacyPassPass( 3175 *PassRegistry::getPassRegistry()); 3176 } 3177 3178 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 3179 3180 void getAnalysisUsage(AnalysisUsage &AU) const override { 3181 AU.addRequired<AssumptionCacheTracker>(); 3182 AU.addRequired<TargetTransformInfoWrapperPass>(); 3183 AU.addRequired<MemorySSAWrapperPass>(); 3184 AU.addPreserved<MemorySSAWrapperPass>(); 3185 getLoopAnalysisUsage(AU); 3186 } 3187 }; 3188 3189 } // end anonymous namespace 3190 3191 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 3192 if (skipLoop(L)) 3193 return false; 3194 3195 Function &F = *L->getHeader()->getParent(); 3196 3197 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3198 << "\n"); 3199 3200 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3201 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3202 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3203 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 3204 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3205 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3206 MemorySSAUpdater MSSAU(MSSA); 3207 3208 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 3209 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 3210 3211 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant, 3212 ArrayRef<Loop *> NewLoops) { 3213 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3214 for (auto *NewL : NewLoops) 3215 LPM.addLoop(*NewL); 3216 3217 // If the current loop remains valid, re-add it to the queue. This is 3218 // a little wasteful as we'll finish processing the current loop as well, 3219 // but it is the best we can do in the old PM. 3220 if (CurrentLoopValid) { 3221 // If the current loop has been unswitched using a partially invariant 3222 // condition, we should not re-add the current loop to avoid unswitching 3223 // on the same condition again. 3224 if (!PartiallyInvariant) 3225 LPM.addLoop(*L); 3226 } else 3227 LPM.markLoopAsDeleted(*L); 3228 }; 3229 3230 auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) { 3231 LPM.markLoopAsDeleted(L); 3232 }; 3233 3234 if (VerifyMemorySSA) 3235 MSSA->verifyMemorySSA(); 3236 3237 bool Changed = unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, 3238 UnswitchCB, SE, &MSSAU, DestroyLoopCB); 3239 3240 if (VerifyMemorySSA) 3241 MSSA->verifyMemorySSA(); 3242 3243 // Historically this pass has had issues with the dominator tree so verify it 3244 // in asserts builds. 3245 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3246 3247 return Changed; 3248 } 3249 3250 char SimpleLoopUnswitchLegacyPass::ID = 0; 3251 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3252 "Simple unswitch loops", false, false) 3253 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3254 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3255 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3256 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3257 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3258 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3259 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3260 "Simple unswitch loops", false, false) 3261 3262 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3263 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3264 } 3265