xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision 0ace148ca6229f3d374728f48ad4a8ed9886c229)
1 //===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/LoopAnalysisManager.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Use.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/GenericDomTree.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/Cloning.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include "llvm/Transforms/Utils/ValueMapper.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <iterator>
51 #include <numeric>
52 #include <utility>
53 
54 #define DEBUG_TYPE "simple-loop-unswitch"
55 
56 using namespace llvm;
57 
58 STATISTIC(NumBranches, "Number of branches unswitched");
59 STATISTIC(NumSwitches, "Number of switches unswitched");
60 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
61 
62 static cl::opt<bool> EnableNonTrivialUnswitch(
63     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
64     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
65              "following the configuration passed into the pass."));
66 
67 static cl::opt<int>
68     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
69                       cl::desc("The cost threshold for unswitching a loop."));
70 
71 static void replaceLoopUsesWithConstant(Loop &L, Value &LIC,
72                                         Constant &Replacement) {
73   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
74 
75   // Replace uses of LIC in the loop with the given constant.
76   for (auto UI = LIC.use_begin(), UE = LIC.use_end(); UI != UE;) {
77     // Grab the use and walk past it so we can clobber it in the use list.
78     Use *U = &*UI++;
79     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
80     if (!UserI || !L.contains(UserI))
81       continue;
82 
83     // Replace this use within the loop body.
84     *U = &Replacement;
85   }
86 }
87 
88 /// Update the IDom for a basic block whose predecessor set has changed.
89 ///
90 /// This routine is designed to work when the domtree update is relatively
91 /// localized by leveraging a known common dominator, often a loop header.
92 ///
93 /// FIXME: Should consider hand-rolling a slightly more efficient non-DFS
94 /// approach here as we can do that easily by persisting the candidate IDom's
95 /// dominating set between each predecessor.
96 ///
97 /// FIXME: Longer term, many uses of this can be replaced by an incremental
98 /// domtree update strategy that starts from a known dominating block and
99 /// rebuilds that subtree.
100 static bool updateIDomWithKnownCommonDominator(BasicBlock *BB,
101                                                BasicBlock *KnownDominatingBB,
102                                                DominatorTree &DT) {
103   assert(pred_begin(BB) != pred_end(BB) &&
104          "This routine does not handle unreachable blocks!");
105 
106   BasicBlock *OrigIDom = DT[BB]->getIDom()->getBlock();
107 
108   BasicBlock *IDom = *pred_begin(BB);
109   assert(DT.dominates(KnownDominatingBB, IDom) &&
110          "Bad known dominating block!");
111 
112   // Walk all of the other predecessors finding the nearest common dominator
113   // until all predecessors are covered or we reach the loop header. The loop
114   // header necessarily dominates all loop exit blocks in loop simplified form
115   // so we can early-exit the moment we hit that block.
116   for (auto PI = std::next(pred_begin(BB)), PE = pred_end(BB);
117        PI != PE && IDom != KnownDominatingBB; ++PI) {
118     assert(DT.dominates(KnownDominatingBB, *PI) &&
119            "Bad known dominating block!");
120     IDom = DT.findNearestCommonDominator(IDom, *PI);
121   }
122 
123   if (IDom == OrigIDom)
124     return false;
125 
126   DT.changeImmediateDominator(BB, IDom);
127   return true;
128 }
129 
130 // Note that we don't currently use the IDFCalculator here for two reasons:
131 // 1) It computes dominator tree levels for the entire function on each run
132 //    of 'compute'. While this isn't terrible, given that we expect to update
133 //    relatively small subtrees of the domtree, it isn't necessarily the right
134 //    tradeoff.
135 // 2) The interface doesn't fit this usage well. It doesn't operate in
136 //    append-only, and builds several sets that we don't need.
137 //
138 // FIXME: Neither of these issues are a big deal and could be addressed with
139 // some amount of refactoring of IDFCalculator. That would allow us to share
140 // the core logic here (which is solving the same core problem).
141 static void appendDomFrontier(DomTreeNode *Node,
142                               SmallSetVector<BasicBlock *, 4> &Worklist,
143                               SmallVectorImpl<DomTreeNode *> &DomNodes,
144                               SmallPtrSetImpl<BasicBlock *> &DomSet) {
145   assert(DomNodes.empty() && "Must start with no dominator nodes.");
146   assert(DomSet.empty() && "Must start with an empty dominator set.");
147 
148   // First flatten this subtree into sequence of nodes by doing a pre-order
149   // walk.
150   DomNodes.push_back(Node);
151   // We intentionally re-evaluate the size as each node can add new children.
152   // Because this is a tree walk, this cannot add any duplicates.
153   for (int i = 0; i < (int)DomNodes.size(); ++i)
154     DomNodes.insert(DomNodes.end(), DomNodes[i]->begin(), DomNodes[i]->end());
155 
156   // Now create a set of the basic blocks so we can quickly test for
157   // dominated successors. We could in theory use the DFS numbers of the
158   // dominator tree for this, but we want this to remain predictably fast
159   // even while we mutate the dominator tree in ways that would invalidate
160   // the DFS numbering.
161   for (DomTreeNode *InnerN : DomNodes)
162     DomSet.insert(InnerN->getBlock());
163 
164   // Now re-walk the nodes, appending every successor of every node that isn't
165   // in the set. Note that we don't append the node itself, even though if it
166   // is a successor it does not strictly dominate itself and thus it would be
167   // part of the dominance frontier. The reason we don't append it is that
168   // the node passed in came *from* the worklist and so it has already been
169   // processed.
170   for (DomTreeNode *InnerN : DomNodes)
171     for (BasicBlock *SuccBB : successors(InnerN->getBlock()))
172       if (!DomSet.count(SuccBB))
173         Worklist.insert(SuccBB);
174 
175   DomNodes.clear();
176   DomSet.clear();
177 }
178 
179 /// Update the dominator tree after unswitching a particular former exit block.
180 ///
181 /// This handles the full update of the dominator tree after hoisting a block
182 /// that previously was an exit block (or split off of an exit block) up to be
183 /// reached from the new immediate dominator of the preheader.
184 ///
185 /// The common case is simple -- we just move the unswitched block to have an
186 /// immediate dominator of the old preheader. But in complex cases, there may
187 /// be other blocks reachable from the unswitched block that are immediately
188 /// dominated by some node between the unswitched one and the old preheader.
189 /// All of these also need to be hoisted in the dominator tree. We also want to
190 /// minimize queries to the dominator tree because each step of this
191 /// invalidates any DFS numbers that would make queries fast.
192 static void updateDTAfterUnswitch(BasicBlock *UnswitchedBB, BasicBlock *OldPH,
193                                   DominatorTree &DT) {
194   DomTreeNode *OldPHNode = DT[OldPH];
195   DomTreeNode *UnswitchedNode = DT[UnswitchedBB];
196   // If the dominator tree has already been updated for this unswitched node,
197   // we're done. This makes it easier to use this routine if there are multiple
198   // paths to the same unswitched destination.
199   if (UnswitchedNode->getIDom() == OldPHNode)
200     return;
201 
202   // First collect the domtree nodes that we are hoisting over. These are the
203   // set of nodes which may have children that need to be hoisted as well.
204   SmallPtrSet<DomTreeNode *, 4> DomChain;
205   for (auto *IDom = UnswitchedNode->getIDom(); IDom != OldPHNode;
206        IDom = IDom->getIDom())
207     DomChain.insert(IDom);
208 
209   // The unswitched block ends up immediately dominated by the old preheader --
210   // regardless of whether it is the loop exit block or split off of the loop
211   // exit block.
212   DT.changeImmediateDominator(UnswitchedNode, OldPHNode);
213 
214   // For everything that moves up the dominator tree, we need to examine the
215   // dominator frontier to see if it additionally should move up the dominator
216   // tree. This lambda appends the dominator frontier for a node on the
217   // worklist.
218   SmallSetVector<BasicBlock *, 4> Worklist;
219 
220   // Scratch data structures reused by domfrontier finding.
221   SmallVector<DomTreeNode *, 4> DomNodes;
222   SmallPtrSet<BasicBlock *, 4> DomSet;
223 
224   // Append the initial dom frontier nodes.
225   appendDomFrontier(UnswitchedNode, Worklist, DomNodes, DomSet);
226 
227   // Walk the worklist. We grow the list in the loop and so must recompute size.
228   for (int i = 0; i < (int)Worklist.size(); ++i) {
229     auto *BB = Worklist[i];
230 
231     DomTreeNode *Node = DT[BB];
232     assert(!DomChain.count(Node) &&
233            "Cannot be dominated by a block you can reach!");
234 
235     // If this block had an immediate dominator somewhere in the chain
236     // we hoisted over, then its position in the domtree needs to move as it is
237     // reachable from a node hoisted over this chain.
238     if (!DomChain.count(Node->getIDom()))
239       continue;
240 
241     DT.changeImmediateDominator(Node, OldPHNode);
242 
243     // Now add this node's dominator frontier to the worklist as well.
244     appendDomFrontier(Node, Worklist, DomNodes, DomSet);
245   }
246 }
247 
248 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
249 /// incoming values along this edge.
250 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
251                                          BasicBlock &ExitBB) {
252   for (Instruction &I : ExitBB) {
253     auto *PN = dyn_cast<PHINode>(&I);
254     if (!PN)
255       // No more PHIs to check.
256       return true;
257 
258     // If the incoming value for this edge isn't loop invariant the unswitch
259     // won't be trivial.
260     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
261       return false;
262   }
263   llvm_unreachable("Basic blocks should never be empty!");
264 }
265 
266 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
267 ///
268 /// Requires that the loop exit and unswitched basic block are the same, and
269 /// that the exiting block was a unique predecessor of that block. Rewrites the
270 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
271 /// PHI nodes from the old preheader that now contains the unswitched
272 /// terminator.
273 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
274                                                   BasicBlock &OldExitingBB,
275                                                   BasicBlock &OldPH) {
276   for (PHINode &PN : UnswitchedBB.phis()) {
277     // When the loop exit is directly unswitched we just need to update the
278     // incoming basic block. We loop to handle weird cases with repeated
279     // incoming blocks, but expect to typically only have one operand here.
280     for (auto i : seq<int>(0, PN.getNumOperands())) {
281       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
282              "Found incoming block different from unique predecessor!");
283       PN.setIncomingBlock(i, &OldPH);
284     }
285   }
286 }
287 
288 /// Rewrite the PHI nodes in the loop exit basic block and the split off
289 /// unswitched block.
290 ///
291 /// Because the exit block remains an exit from the loop, this rewrites the
292 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
293 /// nodes into the unswitched basic block to select between the value in the
294 /// old preheader and the loop exit.
295 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
296                                                       BasicBlock &UnswitchedBB,
297                                                       BasicBlock &OldExitingBB,
298                                                       BasicBlock &OldPH) {
299   assert(&ExitBB != &UnswitchedBB &&
300          "Must have different loop exit and unswitched blocks!");
301   Instruction *InsertPt = &*UnswitchedBB.begin();
302   for (PHINode &PN : ExitBB.phis()) {
303     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
304                                   PN.getName() + ".split", InsertPt);
305 
306     // Walk backwards over the old PHI node's inputs to minimize the cost of
307     // removing each one. We have to do this weird loop manually so that we
308     // create the same number of new incoming edges in the new PHI as we expect
309     // each case-based edge to be included in the unswitched switch in some
310     // cases.
311     // FIXME: This is really, really gross. It would be much cleaner if LLVM
312     // allowed us to create a single entry for a predecessor block without
313     // having separate entries for each "edge" even though these edges are
314     // required to produce identical results.
315     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
316       if (PN.getIncomingBlock(i) != &OldExitingBB)
317         continue;
318 
319       Value *Incoming = PN.removeIncomingValue(i);
320       NewPN->addIncoming(Incoming, &OldPH);
321     }
322 
323     // Now replace the old PHI with the new one and wire the old one in as an
324     // input to the new one.
325     PN.replaceAllUsesWith(NewPN);
326     NewPN->addIncoming(&PN, &ExitBB);
327   }
328 }
329 
330 /// Unswitch a trivial branch if the condition is loop invariant.
331 ///
332 /// This routine should only be called when loop code leading to the branch has
333 /// been validated as trivial (no side effects). This routine checks if the
334 /// condition is invariant and one of the successors is a loop exit. This
335 /// allows us to unswitch without duplicating the loop, making it trivial.
336 ///
337 /// If this routine fails to unswitch the branch it returns false.
338 ///
339 /// If the branch can be unswitched, this routine splits the preheader and
340 /// hoists the branch above that split. Preserves loop simplified form
341 /// (splitting the exit block as necessary). It simplifies the branch within
342 /// the loop to an unconditional branch but doesn't remove it entirely. Further
343 /// cleanup can be done with some simplify-cfg like pass.
344 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
345                                   LoopInfo &LI) {
346   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
347   DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
348 
349   Value *LoopCond = BI.getCondition();
350 
351   // Need a trivial loop condition to unswitch.
352   if (!L.isLoopInvariant(LoopCond))
353     return false;
354 
355   // FIXME: We should compute this once at the start and update it!
356   SmallVector<BasicBlock *, 16> ExitBlocks;
357   L.getExitBlocks(ExitBlocks);
358   SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
359                                              ExitBlocks.end());
360 
361   // Check to see if a successor of the branch is guaranteed to
362   // exit through a unique exit block without having any
363   // side-effects.  If so, determine the value of Cond that causes
364   // it to do this.
365   ConstantInt *CondVal = ConstantInt::getTrue(BI.getContext());
366   ConstantInt *Replacement = ConstantInt::getFalse(BI.getContext());
367   int LoopExitSuccIdx = 0;
368   auto *LoopExitBB = BI.getSuccessor(0);
369   if (!ExitBlockSet.count(LoopExitBB)) {
370     std::swap(CondVal, Replacement);
371     LoopExitSuccIdx = 1;
372     LoopExitBB = BI.getSuccessor(1);
373     if (!ExitBlockSet.count(LoopExitBB))
374       return false;
375   }
376   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
377   assert(L.contains(ContinueBB) &&
378          "Cannot have both successors exit and still be in the loop!");
379 
380   auto *ParentBB = BI.getParent();
381   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
382     return false;
383 
384   DEBUG(dbgs() << "    unswitching trivial branch when: " << CondVal
385                << " == " << LoopCond << "\n");
386 
387   // Split the preheader, so that we know that there is a safe place to insert
388   // the conditional branch. We will change the preheader to have a conditional
389   // branch on LoopCond.
390   BasicBlock *OldPH = L.getLoopPreheader();
391   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
392 
393   // Now that we have a place to insert the conditional branch, create a place
394   // to branch to: this is the exit block out of the loop that we are
395   // unswitching. We need to split this if there are other loop predecessors.
396   // Because the loop is in simplified form, *any* other predecessor is enough.
397   BasicBlock *UnswitchedBB;
398   if (BasicBlock *PredBB = LoopExitBB->getUniquePredecessor()) {
399     (void)PredBB;
400     assert(PredBB == BI.getParent() &&
401            "A branch's parent isn't a predecessor!");
402     UnswitchedBB = LoopExitBB;
403   } else {
404     UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
405   }
406 
407   // Now splice the branch to gate reaching the new preheader and re-point its
408   // successors.
409   OldPH->getInstList().splice(std::prev(OldPH->end()),
410                               BI.getParent()->getInstList(), BI);
411   OldPH->getTerminator()->eraseFromParent();
412   BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
413   BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
414 
415   // Create a new unconditional branch that will continue the loop as a new
416   // terminator.
417   BranchInst::Create(ContinueBB, ParentBB);
418 
419   // Rewrite the relevant PHI nodes.
420   if (UnswitchedBB == LoopExitBB)
421     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
422   else
423     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
424                                               *ParentBB, *OldPH);
425 
426   // Now we need to update the dominator tree.
427   updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
428   // But if we split something off of the loop exit block then we also removed
429   // one of the predecessors for the loop exit block and may need to update its
430   // idom.
431   if (UnswitchedBB != LoopExitBB)
432     updateIDomWithKnownCommonDominator(LoopExitBB, L.getHeader(), DT);
433 
434   // Since this is an i1 condition we can also trivially replace uses of it
435   // within the loop with a constant.
436   replaceLoopUsesWithConstant(L, *LoopCond, *Replacement);
437 
438   ++NumTrivial;
439   ++NumBranches;
440   return true;
441 }
442 
443 /// Unswitch a trivial switch if the condition is loop invariant.
444 ///
445 /// This routine should only be called when loop code leading to the switch has
446 /// been validated as trivial (no side effects). This routine checks if the
447 /// condition is invariant and that at least one of the successors is a loop
448 /// exit. This allows us to unswitch without duplicating the loop, making it
449 /// trivial.
450 ///
451 /// If this routine fails to unswitch the switch it returns false.
452 ///
453 /// If the switch can be unswitched, this routine splits the preheader and
454 /// copies the switch above that split. If the default case is one of the
455 /// exiting cases, it copies the non-exiting cases and points them at the new
456 /// preheader. If the default case is not exiting, it copies the exiting cases
457 /// and points the default at the preheader. It preserves loop simplified form
458 /// (splitting the exit blocks as necessary). It simplifies the switch within
459 /// the loop by removing now-dead cases. If the default case is one of those
460 /// unswitched, it replaces its destination with a new basic block containing
461 /// only unreachable. Such basic blocks, while technically loop exits, are not
462 /// considered for unswitching so this is a stable transform and the same
463 /// switch will not be revisited. If after unswitching there is only a single
464 /// in-loop successor, the switch is further simplified to an unconditional
465 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
466 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
467                                   LoopInfo &LI) {
468   DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
469   Value *LoopCond = SI.getCondition();
470 
471   // If this isn't switching on an invariant condition, we can't unswitch it.
472   if (!L.isLoopInvariant(LoopCond))
473     return false;
474 
475   auto *ParentBB = SI.getParent();
476 
477   // FIXME: We should compute this once at the start and update it!
478   SmallVector<BasicBlock *, 16> ExitBlocks;
479   L.getExitBlocks(ExitBlocks);
480   SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
481                                              ExitBlocks.end());
482 
483   SmallVector<int, 4> ExitCaseIndices;
484   for (auto Case : SI.cases()) {
485     auto *SuccBB = Case.getCaseSuccessor();
486     if (ExitBlockSet.count(SuccBB) &&
487         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
488       ExitCaseIndices.push_back(Case.getCaseIndex());
489   }
490   BasicBlock *DefaultExitBB = nullptr;
491   if (ExitBlockSet.count(SI.getDefaultDest()) &&
492       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
493       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
494     DefaultExitBB = SI.getDefaultDest();
495   else if (ExitCaseIndices.empty())
496     return false;
497 
498   DEBUG(dbgs() << "    unswitching trivial cases...\n");
499 
500   SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
501   ExitCases.reserve(ExitCaseIndices.size());
502   // We walk the case indices backwards so that we remove the last case first
503   // and don't disrupt the earlier indices.
504   for (unsigned Index : reverse(ExitCaseIndices)) {
505     auto CaseI = SI.case_begin() + Index;
506     // Save the value of this case.
507     ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
508     // Delete the unswitched cases.
509     SI.removeCase(CaseI);
510   }
511 
512   // Check if after this all of the remaining cases point at the same
513   // successor.
514   BasicBlock *CommonSuccBB = nullptr;
515   if (SI.getNumCases() > 0 &&
516       std::all_of(std::next(SI.case_begin()), SI.case_end(),
517                   [&SI](const SwitchInst::CaseHandle &Case) {
518                     return Case.getCaseSuccessor() ==
519                            SI.case_begin()->getCaseSuccessor();
520                   }))
521     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
522 
523   if (DefaultExitBB) {
524     // We can't remove the default edge so replace it with an edge to either
525     // the single common remaining successor (if we have one) or an unreachable
526     // block.
527     if (CommonSuccBB) {
528       SI.setDefaultDest(CommonSuccBB);
529     } else {
530       BasicBlock *UnreachableBB = BasicBlock::Create(
531           ParentBB->getContext(),
532           Twine(ParentBB->getName()) + ".unreachable_default",
533           ParentBB->getParent());
534       new UnreachableInst(ParentBB->getContext(), UnreachableBB);
535       SI.setDefaultDest(UnreachableBB);
536       DT.addNewBlock(UnreachableBB, ParentBB);
537     }
538   } else {
539     // If we're not unswitching the default, we need it to match any cases to
540     // have a common successor or if we have no cases it is the common
541     // successor.
542     if (SI.getNumCases() == 0)
543       CommonSuccBB = SI.getDefaultDest();
544     else if (SI.getDefaultDest() != CommonSuccBB)
545       CommonSuccBB = nullptr;
546   }
547 
548   // Split the preheader, so that we know that there is a safe place to insert
549   // the switch.
550   BasicBlock *OldPH = L.getLoopPreheader();
551   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
552   OldPH->getTerminator()->eraseFromParent();
553 
554   // Now add the unswitched switch.
555   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
556 
557   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
558   // First, we split any exit blocks with remaining in-loop predecessors. Then
559   // we update the PHIs in one of two ways depending on if there was a split.
560   // We walk in reverse so that we split in the same order as the cases
561   // appeared. This is purely for convenience of reading the resulting IR, but
562   // it doesn't cost anything really.
563   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
564   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
565   // Handle the default exit if necessary.
566   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
567   // ranges aren't quite powerful enough yet.
568   if (DefaultExitBB) {
569     if (pred_empty(DefaultExitBB)) {
570       UnswitchedExitBBs.insert(DefaultExitBB);
571       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
572     } else {
573       auto *SplitBB =
574           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
575       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
576                                                 *ParentBB, *OldPH);
577       updateIDomWithKnownCommonDominator(DefaultExitBB, L.getHeader(), DT);
578       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
579     }
580   }
581   // Note that we must use a reference in the for loop so that we update the
582   // container.
583   for (auto &CasePair : reverse(ExitCases)) {
584     // Grab a reference to the exit block in the pair so that we can update it.
585     BasicBlock *ExitBB = CasePair.second;
586 
587     // If this case is the last edge into the exit block, we can simply reuse it
588     // as it will no longer be a loop exit. No mapping necessary.
589     if (pred_empty(ExitBB)) {
590       // Only rewrite once.
591       if (UnswitchedExitBBs.insert(ExitBB).second)
592         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
593       continue;
594     }
595 
596     // Otherwise we need to split the exit block so that we retain an exit
597     // block from the loop and a target for the unswitched condition.
598     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
599     if (!SplitExitBB) {
600       // If this is the first time we see this, do the split and remember it.
601       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
602       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
603                                                 *ParentBB, *OldPH);
604       updateIDomWithKnownCommonDominator(ExitBB, L.getHeader(), DT);
605     }
606     // Update the case pair to point to the split block.
607     CasePair.second = SplitExitBB;
608   }
609 
610   // Now add the unswitched cases. We do this in reverse order as we built them
611   // in reverse order.
612   for (auto CasePair : reverse(ExitCases)) {
613     ConstantInt *CaseVal = CasePair.first;
614     BasicBlock *UnswitchedBB = CasePair.second;
615 
616     NewSI->addCase(CaseVal, UnswitchedBB);
617     updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
618   }
619 
620   // If the default was unswitched, re-point it and add explicit cases for
621   // entering the loop.
622   if (DefaultExitBB) {
623     NewSI->setDefaultDest(DefaultExitBB);
624     updateDTAfterUnswitch(DefaultExitBB, OldPH, DT);
625 
626     // We removed all the exit cases, so we just copy the cases to the
627     // unswitched switch.
628     for (auto Case : SI.cases())
629       NewSI->addCase(Case.getCaseValue(), NewPH);
630   }
631 
632   // If we ended up with a common successor for every path through the switch
633   // after unswitching, rewrite it to an unconditional branch to make it easy
634   // to recognize. Otherwise we potentially have to recognize the default case
635   // pointing at unreachable and other complexity.
636   if (CommonSuccBB) {
637     BasicBlock *BB = SI.getParent();
638     SI.eraseFromParent();
639     BranchInst::Create(CommonSuccBB, BB);
640   }
641 
642   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
643   ++NumTrivial;
644   ++NumSwitches;
645   return true;
646 }
647 
648 /// This routine scans the loop to find a branch or switch which occurs before
649 /// any side effects occur. These can potentially be unswitched without
650 /// duplicating the loop. If a branch or switch is successfully unswitched the
651 /// scanning continues to see if subsequent branches or switches have become
652 /// trivial. Once all trivial candidates have been unswitched, this routine
653 /// returns.
654 ///
655 /// The return value indicates whether anything was unswitched (and therefore
656 /// changed).
657 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
658                                          LoopInfo &LI) {
659   bool Changed = false;
660 
661   // If loop header has only one reachable successor we should keep looking for
662   // trivial condition candidates in the successor as well. An alternative is
663   // to constant fold conditions and merge successors into loop header (then we
664   // only need to check header's terminator). The reason for not doing this in
665   // LoopUnswitch pass is that it could potentially break LoopPassManager's
666   // invariants. Folding dead branches could either eliminate the current loop
667   // or make other loops unreachable. LCSSA form might also not be preserved
668   // after deleting branches. The following code keeps traversing loop header's
669   // successors until it finds the trivial condition candidate (condition that
670   // is not a constant). Since unswitching generates branches with constant
671   // conditions, this scenario could be very common in practice.
672   BasicBlock *CurrentBB = L.getHeader();
673   SmallPtrSet<BasicBlock *, 8> Visited;
674   Visited.insert(CurrentBB);
675   do {
676     // Check if there are any side-effecting instructions (e.g. stores, calls,
677     // volatile loads) in the part of the loop that the code *would* execute
678     // without unswitching.
679     if (llvm::any_of(*CurrentBB,
680                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
681       return Changed;
682 
683     TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
684 
685     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
686       // Don't bother trying to unswitch past a switch with a constant
687       // condition. This should be removed prior to running this pass by
688       // simplify-cfg.
689       if (isa<Constant>(SI->getCondition()))
690         return Changed;
691 
692       if (!unswitchTrivialSwitch(L, *SI, DT, LI))
693         // Coludn't unswitch this one so we're done.
694         return Changed;
695 
696       // Mark that we managed to unswitch something.
697       Changed = true;
698 
699       // If unswitching turned the terminator into an unconditional branch then
700       // we can continue. The unswitching logic specifically works to fold any
701       // cases it can into an unconditional branch to make it easier to
702       // recognize here.
703       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
704       if (!BI || BI->isConditional())
705         return Changed;
706 
707       CurrentBB = BI->getSuccessor(0);
708       continue;
709     }
710 
711     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
712     if (!BI)
713       // We do not understand other terminator instructions.
714       return Changed;
715 
716     // Don't bother trying to unswitch past an unconditional branch or a branch
717     // with a constant value. These should be removed by simplify-cfg prior to
718     // running this pass.
719     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
720       return Changed;
721 
722     // Found a trivial condition candidate: non-foldable conditional branch. If
723     // we fail to unswitch this, we can't do anything else that is trivial.
724     if (!unswitchTrivialBranch(L, *BI, DT, LI))
725       return Changed;
726 
727     // Mark that we managed to unswitch something.
728     Changed = true;
729 
730     // We unswitched the branch. This should always leave us with an
731     // unconditional branch that we can follow now.
732     BI = cast<BranchInst>(CurrentBB->getTerminator());
733     assert(!BI->isConditional() &&
734            "Cannot form a conditional branch by unswitching1");
735     CurrentBB = BI->getSuccessor(0);
736 
737     // When continuing, if we exit the loop or reach a previous visited block,
738     // then we can not reach any trivial condition candidates (unfoldable
739     // branch instructions or switch instructions) and no unswitch can happen.
740   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
741 
742   return Changed;
743 }
744 
745 /// Build the cloned blocks for an unswitched copy of the given loop.
746 ///
747 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
748 /// after the split block (`SplitBB`) that will be used to select between the
749 /// cloned and original loop.
750 ///
751 /// This routine handles cloning all of the necessary loop blocks and exit
752 /// blocks including rewriting their instructions and the relevant PHI nodes.
753 /// It skips loop and exit blocks that are not necessary based on the provided
754 /// set. It also correctly creates the unconditional branch in the cloned
755 /// unswitched parent block to only point at the unswitched successor.
756 ///
757 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
758 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
759 /// the cloned blocks (and their loops) are left without full `LoopInfo`
760 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
761 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
762 /// instead the caller must recompute an accurate DT. It *does* correctly
763 /// update the `AssumptionCache` provided in `AC`.
764 static BasicBlock *buildClonedLoopBlocks(
765     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
766     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
767     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
768     const SmallPtrSetImpl<BasicBlock *> &SkippedLoopAndExitBlocks,
769     ValueToValueMapTy &VMap, AssumptionCache &AC, DominatorTree &DT,
770     LoopInfo &LI) {
771   SmallVector<BasicBlock *, 4> NewBlocks;
772   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
773 
774   // We will need to clone a bunch of blocks, wrap up the clone operation in
775   // a helper.
776   auto CloneBlock = [&](BasicBlock *OldBB) {
777     // Clone the basic block and insert it before the new preheader.
778     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
779     NewBB->moveBefore(LoopPH);
780 
781     // Record this block and the mapping.
782     NewBlocks.push_back(NewBB);
783     VMap[OldBB] = NewBB;
784 
785     // Add the block to the domtree. We'll move it to the correct position
786     // below.
787     DT.addNewBlock(NewBB, SplitBB);
788 
789     return NewBB;
790   };
791 
792   // First, clone the preheader.
793   auto *ClonedPH = CloneBlock(LoopPH);
794 
795   // Then clone all the loop blocks, skipping the ones that aren't necessary.
796   for (auto *LoopBB : L.blocks())
797     if (!SkippedLoopAndExitBlocks.count(LoopBB))
798       CloneBlock(LoopBB);
799 
800   // Split all the loop exit edges so that when we clone the exit blocks, if
801   // any of the exit blocks are *also* a preheader for some other loop, we
802   // don't create multiple predecessors entering the loop header.
803   for (auto *ExitBB : ExitBlocks) {
804     if (SkippedLoopAndExitBlocks.count(ExitBB))
805       continue;
806 
807     // When we are going to clone an exit, we don't need to clone all the
808     // instructions in the exit block and we want to ensure we have an easy
809     // place to merge the CFG, so split the exit first. This is always safe to
810     // do because there cannot be any non-loop predecessors of a loop exit in
811     // loop simplified form.
812     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
813 
814     // Rearrange the names to make it easier to write test cases by having the
815     // exit block carry the suffix rather than the merge block carrying the
816     // suffix.
817     MergeBB->takeName(ExitBB);
818     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
819 
820     // Now clone the original exit block.
821     auto *ClonedExitBB = CloneBlock(ExitBB);
822     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
823            "Exit block should have been split to have one successor!");
824     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
825            "Cloned exit block has the wrong successor!");
826 
827     // Move the merge block's idom to be the split point as one exit is
828     // dominated by one header, and the other by another, so we know the split
829     // point dominates both. While the dominator tree isn't fully accurate, we
830     // want sub-trees within the original loop to be correctly reflect
831     // dominance within that original loop (at least) and that requires moving
832     // the merge block out of that subtree.
833     // FIXME: This is very brittle as we essentially have a partial contract on
834     // the dominator tree. We really need to instead update it and keep it
835     // valid or stop relying on it.
836     DT.changeImmediateDominator(MergeBB, SplitBB);
837 
838     // Remap any cloned instructions and create a merge phi node for them.
839     for (auto ZippedInsts : llvm::zip_first(
840              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
841              llvm::make_range(ClonedExitBB->begin(),
842                               std::prev(ClonedExitBB->end())))) {
843       Instruction &I = std::get<0>(ZippedInsts);
844       Instruction &ClonedI = std::get<1>(ZippedInsts);
845 
846       // The only instructions in the exit block should be PHI nodes and
847       // potentially a landing pad.
848       assert(
849           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
850           "Bad instruction in exit block!");
851       // We should have a value map between the instruction and its clone.
852       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
853 
854       auto *MergePN =
855           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
856                           &*MergeBB->getFirstInsertionPt());
857       I.replaceAllUsesWith(MergePN);
858       MergePN->addIncoming(&I, ExitBB);
859       MergePN->addIncoming(&ClonedI, ClonedExitBB);
860     }
861   }
862 
863   // Rewrite the instructions in the cloned blocks to refer to the instructions
864   // in the cloned blocks. We have to do this as a second pass so that we have
865   // everything available. Also, we have inserted new instructions which may
866   // include assume intrinsics, so we update the assumption cache while
867   // processing this.
868   for (auto *ClonedBB : NewBlocks)
869     for (Instruction &I : *ClonedBB) {
870       RemapInstruction(&I, VMap,
871                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
872       if (auto *II = dyn_cast<IntrinsicInst>(&I))
873         if (II->getIntrinsicID() == Intrinsic::assume)
874           AC.registerAssumption(II);
875     }
876 
877   // Remove the cloned parent as a predecessor of the cloned continue successor
878   // if we did in fact clone it.
879   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
880   if (auto *ClonedContinueSuccBB =
881           cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB)))
882     ClonedContinueSuccBB->removePredecessor(ClonedParentBB,
883                                             /*DontDeleteUselessPHIs*/ true);
884   // Replace the cloned branch with an unconditional branch to the cloned
885   // unswitched successor.
886   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
887   ClonedParentBB->getTerminator()->eraseFromParent();
888   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
889 
890   // Update any PHI nodes in the cloned successors of the skipped blocks to not
891   // have spurious incoming values.
892   for (auto *LoopBB : L.blocks())
893     if (SkippedLoopAndExitBlocks.count(LoopBB))
894       for (auto *SuccBB : successors(LoopBB))
895         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
896           for (PHINode &PN : ClonedSuccBB->phis())
897             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
898 
899   return ClonedPH;
900 }
901 
902 /// Recursively clone the specified loop and all of its children.
903 ///
904 /// The target parent loop for the clone should be provided, or can be null if
905 /// the clone is a top-level loop. While cloning, all the blocks are mapped
906 /// with the provided value map. The entire original loop must be present in
907 /// the value map. The cloned loop is returned.
908 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
909                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
910   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
911     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
912     ClonedL.reserveBlocks(OrigL.getNumBlocks());
913     for (auto *BB : OrigL.blocks()) {
914       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
915       ClonedL.addBlockEntry(ClonedBB);
916       if (LI.getLoopFor(BB) == &OrigL)
917         LI.changeLoopFor(ClonedBB, &ClonedL);
918     }
919   };
920 
921   // We specially handle the first loop because it may get cloned into
922   // a different parent and because we most commonly are cloning leaf loops.
923   Loop *ClonedRootL = LI.AllocateLoop();
924   if (RootParentL)
925     RootParentL->addChildLoop(ClonedRootL);
926   else
927     LI.addTopLevelLoop(ClonedRootL);
928   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
929 
930   if (OrigRootL.empty())
931     return ClonedRootL;
932 
933   // If we have a nest, we can quickly clone the entire loop nest using an
934   // iterative approach because it is a tree. We keep the cloned parent in the
935   // data structure to avoid repeatedly querying through a map to find it.
936   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
937   // Build up the loops to clone in reverse order as we'll clone them from the
938   // back.
939   for (Loop *ChildL : llvm::reverse(OrigRootL))
940     LoopsToClone.push_back({ClonedRootL, ChildL});
941   do {
942     Loop *ClonedParentL, *L;
943     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
944     Loop *ClonedL = LI.AllocateLoop();
945     ClonedParentL->addChildLoop(ClonedL);
946     AddClonedBlocksToLoop(*L, *ClonedL);
947     for (Loop *ChildL : llvm::reverse(*L))
948       LoopsToClone.push_back({ClonedL, ChildL});
949   } while (!LoopsToClone.empty());
950 
951   return ClonedRootL;
952 }
953 
954 /// Build the cloned loops of an original loop from unswitching.
955 ///
956 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
957 /// operation. We need to re-verify that there even is a loop (as the backedge
958 /// may not have been cloned), and even if there are remaining backedges the
959 /// backedge set may be different. However, we know that each child loop is
960 /// undisturbed, we only need to find where to place each child loop within
961 /// either any parent loop or within a cloned version of the original loop.
962 ///
963 /// Because child loops may end up cloned outside of any cloned version of the
964 /// original loop, multiple cloned sibling loops may be created. All of them
965 /// are returned so that the newly introduced loop nest roots can be
966 /// identified.
967 static Loop *buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
968                               const ValueToValueMapTy &VMap, LoopInfo &LI,
969                               SmallVectorImpl<Loop *> &NonChildClonedLoops) {
970   Loop *ClonedL = nullptr;
971 
972   auto *OrigPH = OrigL.getLoopPreheader();
973   auto *OrigHeader = OrigL.getHeader();
974 
975   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
976   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
977 
978   // We need to know the loops of the cloned exit blocks to even compute the
979   // accurate parent loop. If we only clone exits to some parent of the
980   // original parent, we want to clone into that outer loop. We also keep track
981   // of the loops that our cloned exit blocks participate in.
982   Loop *ParentL = nullptr;
983   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
984   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
985   ClonedExitsInLoops.reserve(ExitBlocks.size());
986   for (auto *ExitBB : ExitBlocks)
987     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
988       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
989         ExitLoopMap[ClonedExitBB] = ExitL;
990         ClonedExitsInLoops.push_back(ClonedExitBB);
991         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
992           ParentL = ExitL;
993       }
994   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
995           ParentL->contains(OrigL.getParentLoop())) &&
996          "The computed parent loop should always contain (or be) the parent of "
997          "the original loop.");
998 
999   // We build the set of blocks dominated by the cloned header from the set of
1000   // cloned blocks out of the original loop. While not all of these will
1001   // necessarily be in the cloned loop, it is enough to establish that they
1002   // aren't in unreachable cycles, etc.
1003   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1004   for (auto *BB : OrigL.blocks())
1005     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1006       ClonedLoopBlocks.insert(ClonedBB);
1007 
1008   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1009   // skipped cloning some region of this loop which can in turn skip some of
1010   // the backedges so we have to rebuild the blocks in the loop based on the
1011   // backedges that remain after cloning.
1012   SmallVector<BasicBlock *, 16> Worklist;
1013   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1014   for (auto *Pred : predecessors(ClonedHeader)) {
1015     // The only possible non-loop header predecessor is the preheader because
1016     // we know we cloned the loop in simplified form.
1017     if (Pred == ClonedPH)
1018       continue;
1019 
1020     // Because the loop was in simplified form, the only non-loop predecessor
1021     // should be the preheader.
1022     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1023                                            "header other than the preheader "
1024                                            "that is not part of the loop!");
1025 
1026     // Insert this block into the loop set and on the first visit (and if it
1027     // isn't the header we're currently walking) put it into the worklist to
1028     // recurse through.
1029     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1030       Worklist.push_back(Pred);
1031   }
1032 
1033   // If we had any backedges then there *is* a cloned loop. Put the header into
1034   // the loop set and then walk the worklist backwards to find all the blocks
1035   // that remain within the loop after cloning.
1036   if (!BlocksInClonedLoop.empty()) {
1037     BlocksInClonedLoop.insert(ClonedHeader);
1038 
1039     while (!Worklist.empty()) {
1040       BasicBlock *BB = Worklist.pop_back_val();
1041       assert(BlocksInClonedLoop.count(BB) &&
1042              "Didn't put block into the loop set!");
1043 
1044       // Insert any predecessors that are in the possible set into the cloned
1045       // set, and if the insert is successful, add them to the worklist. Note
1046       // that we filter on the blocks that are definitely reachable via the
1047       // backedge to the loop header so we may prune out dead code within the
1048       // cloned loop.
1049       for (auto *Pred : predecessors(BB))
1050         if (ClonedLoopBlocks.count(Pred) &&
1051             BlocksInClonedLoop.insert(Pred).second)
1052           Worklist.push_back(Pred);
1053     }
1054 
1055     ClonedL = LI.AllocateLoop();
1056     if (ParentL) {
1057       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1058       ParentL->addChildLoop(ClonedL);
1059     } else {
1060       LI.addTopLevelLoop(ClonedL);
1061     }
1062 
1063     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1064     // We don't want to just add the cloned loop blocks based on how we
1065     // discovered them. The original order of blocks was carefully built in
1066     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1067     // that logic, we just re-walk the original blocks (and those of the child
1068     // loops) and filter them as we add them into the cloned loop.
1069     for (auto *BB : OrigL.blocks()) {
1070       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1071       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1072         continue;
1073 
1074       // Directly add the blocks that are only in this loop.
1075       if (LI.getLoopFor(BB) == &OrigL) {
1076         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1077         continue;
1078       }
1079 
1080       // We want to manually add it to this loop and parents.
1081       // Registering it with LoopInfo will happen when we clone the top
1082       // loop for this block.
1083       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1084         PL->addBlockEntry(ClonedBB);
1085     }
1086 
1087     // Now add each child loop whose header remains within the cloned loop. All
1088     // of the blocks within the loop must satisfy the same constraints as the
1089     // header so once we pass the header checks we can just clone the entire
1090     // child loop nest.
1091     for (Loop *ChildL : OrigL) {
1092       auto *ClonedChildHeader =
1093           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1094       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1095         continue;
1096 
1097 #ifndef NDEBUG
1098       // We should never have a cloned child loop header but fail to have
1099       // all of the blocks for that child loop.
1100       for (auto *ChildLoopBB : ChildL->blocks())
1101         assert(BlocksInClonedLoop.count(
1102                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1103                "Child cloned loop has a header within the cloned outer "
1104                "loop but not all of its blocks!");
1105 #endif
1106 
1107       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1108     }
1109   }
1110 
1111   // Now that we've handled all the components of the original loop that were
1112   // cloned into a new loop, we still need to handle anything from the original
1113   // loop that wasn't in a cloned loop.
1114 
1115   // Figure out what blocks are left to place within any loop nest containing
1116   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1117   // them.
1118   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1119   if (BlocksInClonedLoop.empty())
1120     UnloopedBlockSet.insert(ClonedPH);
1121   for (auto *ClonedBB : ClonedLoopBlocks)
1122     if (!BlocksInClonedLoop.count(ClonedBB))
1123       UnloopedBlockSet.insert(ClonedBB);
1124 
1125   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1126   // backwards across these to process them inside out. The order shouldn't
1127   // matter as we're just trying to build up the map from inside-out; we use
1128   // the map in a more stably ordered way below.
1129   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1130   llvm::sort(OrderedClonedExitsInLoops.begin(),
1131              OrderedClonedExitsInLoops.end(),
1132              [&](BasicBlock *LHS, BasicBlock *RHS) {
1133                return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1134                       ExitLoopMap.lookup(RHS)->getLoopDepth();
1135              });
1136 
1137   // Populate the existing ExitLoopMap with everything reachable from each
1138   // exit, starting from the inner most exit.
1139   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1140     assert(Worklist.empty() && "Didn't clear worklist!");
1141 
1142     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1143     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1144 
1145     // Walk the CFG back until we hit the cloned PH adding everything reachable
1146     // and in the unlooped set to this exit block's loop.
1147     Worklist.push_back(ExitBB);
1148     do {
1149       BasicBlock *BB = Worklist.pop_back_val();
1150       // We can stop recursing at the cloned preheader (if we get there).
1151       if (BB == ClonedPH)
1152         continue;
1153 
1154       for (BasicBlock *PredBB : predecessors(BB)) {
1155         // If this pred has already been moved to our set or is part of some
1156         // (inner) loop, no update needed.
1157         if (!UnloopedBlockSet.erase(PredBB)) {
1158           assert(
1159               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1160               "Predecessor not mapped to a loop!");
1161           continue;
1162         }
1163 
1164         // We just insert into the loop set here. We'll add these blocks to the
1165         // exit loop after we build up the set in an order that doesn't rely on
1166         // predecessor order (which in turn relies on use list order).
1167         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1168         (void)Inserted;
1169         assert(Inserted && "Should only visit an unlooped block once!");
1170 
1171         // And recurse through to its predecessors.
1172         Worklist.push_back(PredBB);
1173       }
1174     } while (!Worklist.empty());
1175   }
1176 
1177   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1178   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1179   // in their original order adding them to the correct loop.
1180 
1181   // We need a stable insertion order. We use the order of the original loop
1182   // order and map into the correct parent loop.
1183   for (auto *BB : llvm::concat<BasicBlock *const>(
1184            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1185     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1186       OuterL->addBasicBlockToLoop(BB, LI);
1187 
1188 #ifndef NDEBUG
1189   for (auto &BBAndL : ExitLoopMap) {
1190     auto *BB = BBAndL.first;
1191     auto *OuterL = BBAndL.second;
1192     assert(LI.getLoopFor(BB) == OuterL &&
1193            "Failed to put all blocks into outer loops!");
1194   }
1195 #endif
1196 
1197   // Now that all the blocks are placed into the correct containing loop in the
1198   // absence of child loops, find all the potentially cloned child loops and
1199   // clone them into whatever outer loop we placed their header into.
1200   for (Loop *ChildL : OrigL) {
1201     auto *ClonedChildHeader =
1202         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1203     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1204       continue;
1205 
1206 #ifndef NDEBUG
1207     for (auto *ChildLoopBB : ChildL->blocks())
1208       assert(VMap.count(ChildLoopBB) &&
1209              "Cloned a child loop header but not all of that loops blocks!");
1210 #endif
1211 
1212     NonChildClonedLoops.push_back(cloneLoopNest(
1213         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1214   }
1215 
1216   // Return the main cloned loop if any.
1217   return ClonedL;
1218 }
1219 
1220 static void deleteDeadBlocksFromLoop(Loop &L, BasicBlock *DeadSubtreeRoot,
1221                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1222                                      DominatorTree &DT, LoopInfo &LI) {
1223   // Walk the dominator tree to build up the set of blocks we will delete here.
1224   // The order is designed to allow us to always delete bottom-up and avoid any
1225   // dangling uses.
1226   SmallSetVector<BasicBlock *, 16> DeadBlocks;
1227   DeadBlocks.insert(DeadSubtreeRoot);
1228   for (int i = 0; i < (int)DeadBlocks.size(); ++i)
1229     for (DomTreeNode *ChildN : *DT[DeadBlocks[i]]) {
1230       // FIXME: This assert should pass and that means we don't change nearly
1231       // as much below! Consider rewriting all of this to avoid deleting
1232       // blocks. They are always cloned before being deleted, and so instead
1233       // could just be moved.
1234       // FIXME: This in turn means that we might actually be more able to
1235       // update the domtree.
1236       assert((L.contains(ChildN->getBlock()) ||
1237               llvm::find(ExitBlocks, ChildN->getBlock()) != ExitBlocks.end()) &&
1238              "Should never reach beyond the loop and exits when deleting!");
1239       DeadBlocks.insert(ChildN->getBlock());
1240     }
1241 
1242   // Filter out the dead blocks from the exit blocks list so that it can be
1243   // used in the caller.
1244   llvm::erase_if(ExitBlocks,
1245                  [&](BasicBlock *BB) { return DeadBlocks.count(BB); });
1246 
1247   // Remove these blocks from their successors.
1248   for (auto *BB : DeadBlocks)
1249     for (BasicBlock *SuccBB : successors(BB))
1250       SuccBB->removePredecessor(BB, /*DontDeleteUselessPHIs*/ true);
1251 
1252   // Walk from this loop up through its parents removing all of the dead blocks.
1253   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1254     for (auto *BB : DeadBlocks)
1255       ParentL->getBlocksSet().erase(BB);
1256     llvm::erase_if(ParentL->getBlocksVector(),
1257                    [&](BasicBlock *BB) { return DeadBlocks.count(BB); });
1258   }
1259 
1260   // Now delete the dead child loops. This raw delete will clear them
1261   // recursively.
1262   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1263     if (!DeadBlocks.count(ChildL->getHeader()))
1264       return false;
1265 
1266     assert(llvm::all_of(ChildL->blocks(),
1267                         [&](BasicBlock *ChildBB) {
1268                           return DeadBlocks.count(ChildBB);
1269                         }) &&
1270            "If the child loop header is dead all blocks in the child loop must "
1271            "be dead as well!");
1272     LI.destroy(ChildL);
1273     return true;
1274   });
1275 
1276   // Remove the mappings for the dead blocks.
1277   for (auto *BB : DeadBlocks)
1278     LI.changeLoopFor(BB, nullptr);
1279 
1280   // Drop all the references from these blocks to others to handle cyclic
1281   // references as we start deleting the blocks themselves.
1282   for (auto *BB : DeadBlocks)
1283     BB->dropAllReferences();
1284 
1285   for (auto *BB : llvm::reverse(DeadBlocks)) {
1286     DT.eraseNode(BB);
1287     BB->eraseFromParent();
1288   }
1289 }
1290 
1291 /// Recompute the set of blocks in a loop after unswitching.
1292 ///
1293 /// This walks from the original headers predecessors to rebuild the loop. We
1294 /// take advantage of the fact that new blocks can't have been added, and so we
1295 /// filter by the original loop's blocks. This also handles potentially
1296 /// unreachable code that we don't want to explore but might be found examining
1297 /// the predecessors of the header.
1298 ///
1299 /// If the original loop is no longer a loop, this will return an empty set. If
1300 /// it remains a loop, all the blocks within it will be added to the set
1301 /// (including those blocks in inner loops).
1302 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1303                                                                  LoopInfo &LI) {
1304   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1305 
1306   auto *PH = L.getLoopPreheader();
1307   auto *Header = L.getHeader();
1308 
1309   // A worklist to use while walking backwards from the header.
1310   SmallVector<BasicBlock *, 16> Worklist;
1311 
1312   // First walk the predecessors of the header to find the backedges. This will
1313   // form the basis of our walk.
1314   for (auto *Pred : predecessors(Header)) {
1315     // Skip the preheader.
1316     if (Pred == PH)
1317       continue;
1318 
1319     // Because the loop was in simplified form, the only non-loop predecessor
1320     // is the preheader.
1321     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1322                                "than the preheader that is not part of the "
1323                                "loop!");
1324 
1325     // Insert this block into the loop set and on the first visit and, if it
1326     // isn't the header we're currently walking, put it into the worklist to
1327     // recurse through.
1328     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1329       Worklist.push_back(Pred);
1330   }
1331 
1332   // If no backedges were found, we're done.
1333   if (LoopBlockSet.empty())
1334     return LoopBlockSet;
1335 
1336   // Add the loop header to the set.
1337   LoopBlockSet.insert(Header);
1338 
1339   // We found backedges, recurse through them to identify the loop blocks.
1340   while (!Worklist.empty()) {
1341     BasicBlock *BB = Worklist.pop_back_val();
1342     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1343 
1344     // Because we know the inner loop structure remains valid we can use the
1345     // loop structure to jump immediately across the entire nested loop.
1346     // Further, because it is in loop simplified form, we can directly jump
1347     // to its preheader afterward.
1348     if (Loop *InnerL = LI.getLoopFor(BB))
1349       if (InnerL != &L) {
1350         assert(L.contains(InnerL) &&
1351                "Should not reach a loop *outside* this loop!");
1352         // The preheader is the only possible predecessor of the loop so
1353         // insert it into the set and check whether it was already handled.
1354         auto *InnerPH = InnerL->getLoopPreheader();
1355         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1356                                       "but not contain the inner loop "
1357                                       "preheader!");
1358         if (!LoopBlockSet.insert(InnerPH).second)
1359           // The only way to reach the preheader is through the loop body
1360           // itself so if it has been visited the loop is already handled.
1361           continue;
1362 
1363         // Insert all of the blocks (other than those already present) into
1364         // the loop set. We expect at least the block that led us to find the
1365         // inner loop to be in the block set, but we may also have other loop
1366         // blocks if they were already enqueued as predecessors of some other
1367         // outer loop block.
1368         for (auto *InnerBB : InnerL->blocks()) {
1369           if (InnerBB == BB) {
1370             assert(LoopBlockSet.count(InnerBB) &&
1371                    "Block should already be in the set!");
1372             continue;
1373           }
1374 
1375           LoopBlockSet.insert(InnerBB);
1376         }
1377 
1378         // Add the preheader to the worklist so we will continue past the
1379         // loop body.
1380         Worklist.push_back(InnerPH);
1381         continue;
1382       }
1383 
1384     // Insert any predecessors that were in the original loop into the new
1385     // set, and if the insert is successful, add them to the worklist.
1386     for (auto *Pred : predecessors(BB))
1387       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1388         Worklist.push_back(Pred);
1389   }
1390 
1391   // We've found all the blocks participating in the loop, return our completed
1392   // set.
1393   return LoopBlockSet;
1394 }
1395 
1396 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1397 ///
1398 /// The removal may have removed some child loops entirely but cannot have
1399 /// disturbed any remaining child loops. However, they may need to be hoisted
1400 /// to the parent loop (or to be top-level loops). The original loop may be
1401 /// completely removed.
1402 ///
1403 /// The sibling loops resulting from this update are returned. If the original
1404 /// loop remains a valid loop, it will be the first entry in this list with all
1405 /// of the newly sibling loops following it.
1406 ///
1407 /// Returns true if the loop remains a loop after unswitching, and false if it
1408 /// is no longer a loop after unswitching (and should not continue to be
1409 /// referenced).
1410 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1411                                      LoopInfo &LI,
1412                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1413   auto *PH = L.getLoopPreheader();
1414 
1415   // Compute the actual parent loop from the exit blocks. Because we may have
1416   // pruned some exits the loop may be different from the original parent.
1417   Loop *ParentL = nullptr;
1418   SmallVector<Loop *, 4> ExitLoops;
1419   SmallVector<BasicBlock *, 4> ExitsInLoops;
1420   ExitsInLoops.reserve(ExitBlocks.size());
1421   for (auto *ExitBB : ExitBlocks)
1422     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1423       ExitLoops.push_back(ExitL);
1424       ExitsInLoops.push_back(ExitBB);
1425       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1426         ParentL = ExitL;
1427     }
1428 
1429   // Recompute the blocks participating in this loop. This may be empty if it
1430   // is no longer a loop.
1431   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1432 
1433   // If we still have a loop, we need to re-set the loop's parent as the exit
1434   // block set changing may have moved it within the loop nest. Note that this
1435   // can only happen when this loop has a parent as it can only hoist the loop
1436   // *up* the nest.
1437   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1438     // Remove this loop's (original) blocks from all of the intervening loops.
1439     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1440          IL = IL->getParentLoop()) {
1441       IL->getBlocksSet().erase(PH);
1442       for (auto *BB : L.blocks())
1443         IL->getBlocksSet().erase(BB);
1444       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1445         return BB == PH || L.contains(BB);
1446       });
1447     }
1448 
1449     LI.changeLoopFor(PH, ParentL);
1450     L.getParentLoop()->removeChildLoop(&L);
1451     if (ParentL)
1452       ParentL->addChildLoop(&L);
1453     else
1454       LI.addTopLevelLoop(&L);
1455   }
1456 
1457   // Now we update all the blocks which are no longer within the loop.
1458   auto &Blocks = L.getBlocksVector();
1459   auto BlocksSplitI =
1460       LoopBlockSet.empty()
1461           ? Blocks.begin()
1462           : std::stable_partition(
1463                 Blocks.begin(), Blocks.end(),
1464                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1465 
1466   // Before we erase the list of unlooped blocks, build a set of them.
1467   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1468   if (LoopBlockSet.empty())
1469     UnloopedBlocks.insert(PH);
1470 
1471   // Now erase these blocks from the loop.
1472   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1473     L.getBlocksSet().erase(BB);
1474   Blocks.erase(BlocksSplitI, Blocks.end());
1475 
1476   // Sort the exits in ascending loop depth, we'll work backwards across these
1477   // to process them inside out.
1478   std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1479                    [&](BasicBlock *LHS, BasicBlock *RHS) {
1480                      return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1481                    });
1482 
1483   // We'll build up a set for each exit loop.
1484   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1485   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1486 
1487   auto RemoveUnloopedBlocksFromLoop =
1488       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1489         for (auto *BB : UnloopedBlocks)
1490           L.getBlocksSet().erase(BB);
1491         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1492           return UnloopedBlocks.count(BB);
1493         });
1494       };
1495 
1496   SmallVector<BasicBlock *, 16> Worklist;
1497   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1498     assert(Worklist.empty() && "Didn't clear worklist!");
1499     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1500 
1501     // Grab the next exit block, in decreasing loop depth order.
1502     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1503     Loop &ExitL = *LI.getLoopFor(ExitBB);
1504     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1505 
1506     // Erase all of the unlooped blocks from the loops between the previous
1507     // exit loop and this exit loop. This works because the ExitInLoops list is
1508     // sorted in increasing order of loop depth and thus we visit loops in
1509     // decreasing order of loop depth.
1510     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1511       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1512 
1513     // Walk the CFG back until we hit the cloned PH adding everything reachable
1514     // and in the unlooped set to this exit block's loop.
1515     Worklist.push_back(ExitBB);
1516     do {
1517       BasicBlock *BB = Worklist.pop_back_val();
1518       // We can stop recursing at the cloned preheader (if we get there).
1519       if (BB == PH)
1520         continue;
1521 
1522       for (BasicBlock *PredBB : predecessors(BB)) {
1523         // If this pred has already been moved to our set or is part of some
1524         // (inner) loop, no update needed.
1525         if (!UnloopedBlocks.erase(PredBB)) {
1526           assert((NewExitLoopBlocks.count(PredBB) ||
1527                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1528                  "Predecessor not in a nested loop (or already visited)!");
1529           continue;
1530         }
1531 
1532         // We just insert into the loop set here. We'll add these blocks to the
1533         // exit loop after we build up the set in a deterministic order rather
1534         // than the predecessor-influenced visit order.
1535         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1536         (void)Inserted;
1537         assert(Inserted && "Should only visit an unlooped block once!");
1538 
1539         // And recurse through to its predecessors.
1540         Worklist.push_back(PredBB);
1541       }
1542     } while (!Worklist.empty());
1543 
1544     // If blocks in this exit loop were directly part of the original loop (as
1545     // opposed to a child loop) update the map to point to this exit loop. This
1546     // just updates a map and so the fact that the order is unstable is fine.
1547     for (auto *BB : NewExitLoopBlocks)
1548       if (Loop *BBL = LI.getLoopFor(BB))
1549         if (BBL == &L || !L.contains(BBL))
1550           LI.changeLoopFor(BB, &ExitL);
1551 
1552     // We will remove the remaining unlooped blocks from this loop in the next
1553     // iteration or below.
1554     NewExitLoopBlocks.clear();
1555   }
1556 
1557   // Any remaining unlooped blocks are no longer part of any loop unless they
1558   // are part of some child loop.
1559   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1560     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1561   for (auto *BB : UnloopedBlocks)
1562     if (Loop *BBL = LI.getLoopFor(BB))
1563       if (BBL == &L || !L.contains(BBL))
1564         LI.changeLoopFor(BB, nullptr);
1565 
1566   // Sink all the child loops whose headers are no longer in the loop set to
1567   // the parent (or to be top level loops). We reach into the loop and directly
1568   // update its subloop vector to make this batch update efficient.
1569   auto &SubLoops = L.getSubLoopsVector();
1570   auto SubLoopsSplitI =
1571       LoopBlockSet.empty()
1572           ? SubLoops.begin()
1573           : std::stable_partition(
1574                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1575                   return LoopBlockSet.count(SubL->getHeader());
1576                 });
1577   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1578     HoistedLoops.push_back(HoistedL);
1579     HoistedL->setParentLoop(nullptr);
1580 
1581     // To compute the new parent of this hoisted loop we look at where we
1582     // placed the preheader above. We can't lookup the header itself because we
1583     // retained the mapping from the header to the hoisted loop. But the
1584     // preheader and header should have the exact same new parent computed
1585     // based on the set of exit blocks from the original loop as the preheader
1586     // is a predecessor of the header and so reached in the reverse walk. And
1587     // because the loops were all in simplified form the preheader of the
1588     // hoisted loop can't be part of some *other* loop.
1589     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1590       NewParentL->addChildLoop(HoistedL);
1591     else
1592       LI.addTopLevelLoop(HoistedL);
1593   }
1594   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1595 
1596   // Actually delete the loop if nothing remained within it.
1597   if (Blocks.empty()) {
1598     assert(SubLoops.empty() &&
1599            "Failed to remove all subloops from the original loop!");
1600     if (Loop *ParentL = L.getParentLoop())
1601       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1602     else
1603       LI.removeLoop(llvm::find(LI, &L));
1604     LI.destroy(&L);
1605     return false;
1606   }
1607 
1608   return true;
1609 }
1610 
1611 /// Helper to visit a dominator subtree, invoking a callable on each node.
1612 ///
1613 /// Returning false at any point will stop walking past that node of the tree.
1614 template <typename CallableT>
1615 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1616   SmallVector<DomTreeNode *, 4> DomWorklist;
1617   DomWorklist.push_back(DT[BB]);
1618 #ifndef NDEBUG
1619   SmallPtrSet<DomTreeNode *, 4> Visited;
1620   Visited.insert(DT[BB]);
1621 #endif
1622   do {
1623     DomTreeNode *N = DomWorklist.pop_back_val();
1624 
1625     // Visit this node.
1626     if (!Callable(N->getBlock()))
1627       continue;
1628 
1629     // Accumulate the child nodes.
1630     for (DomTreeNode *ChildN : *N) {
1631       assert(Visited.insert(ChildN).second &&
1632              "Cannot visit a node twice when walking a tree!");
1633       DomWorklist.push_back(ChildN);
1634     }
1635   } while (!DomWorklist.empty());
1636 }
1637 
1638 /// Take an invariant branch that has been determined to be safe and worthwhile
1639 /// to unswitch despite being non-trivial to do so and perform the unswitch.
1640 ///
1641 /// This directly updates the CFG to hoist the predicate out of the loop, and
1642 /// clone the necessary parts of the loop to maintain behavior.
1643 ///
1644 /// It also updates both dominator tree and loopinfo based on the unswitching.
1645 ///
1646 /// Once unswitching has been performed it runs the provided callback to report
1647 /// the new loops and no-longer valid loops to the caller.
1648 static bool unswitchInvariantBranch(
1649     Loop &L, BranchInst &BI, DominatorTree &DT, LoopInfo &LI,
1650     AssumptionCache &AC,
1651     function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
1652   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
1653   assert(L.isLoopInvariant(BI.getCondition()) &&
1654          "Can only unswitch an invariant branch condition!");
1655 
1656   // Constant and BBs tracking the cloned and continuing successor.
1657   const int ClonedSucc = 0;
1658   auto *ParentBB = BI.getParent();
1659   auto *UnswitchedSuccBB = BI.getSuccessor(ClonedSucc);
1660   auto *ContinueSuccBB = BI.getSuccessor(1 - ClonedSucc);
1661 
1662   assert(UnswitchedSuccBB != ContinueSuccBB &&
1663          "Should not unswitch a branch that always goes to the same place!");
1664 
1665   // The branch should be in this exact loop. Any inner loop's invariant branch
1666   // should be handled by unswitching that inner loop. The caller of this
1667   // routine should filter out any candidates that remain (but were skipped for
1668   // whatever reason).
1669   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1670 
1671   SmallVector<BasicBlock *, 4> ExitBlocks;
1672   L.getUniqueExitBlocks(ExitBlocks);
1673 
1674   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
1675   // don't know how to split those exit blocks.
1676   // FIXME: We should teach SplitBlock to handle this and remove this
1677   // restriction.
1678   for (auto *ExitBB : ExitBlocks)
1679     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI()))
1680       return false;
1681 
1682   SmallPtrSet<BasicBlock *, 4> ExitBlockSet(ExitBlocks.begin(),
1683                                             ExitBlocks.end());
1684 
1685   // Compute the parent loop now before we start hacking on things.
1686   Loop *ParentL = L.getParentLoop();
1687 
1688   // Compute the outer-most loop containing one of our exit blocks. This is the
1689   // furthest up our loopnest which can be mutated, which we will use below to
1690   // update things.
1691   Loop *OuterExitL = &L;
1692   for (auto *ExitBB : ExitBlocks) {
1693     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1694     if (!NewOuterExitL) {
1695       // We exited the entire nest with this block, so we're done.
1696       OuterExitL = nullptr;
1697       break;
1698     }
1699     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1700       OuterExitL = NewOuterExitL;
1701   }
1702 
1703   // If the edge we *aren't* cloning in the unswitch (the continuing edge)
1704   // dominates its target, we can skip cloning the dominated region of the loop
1705   // and its exits. We compute this as a set of nodes to be skipped.
1706   SmallPtrSet<BasicBlock *, 4> SkippedLoopAndExitBlocks;
1707   if (ContinueSuccBB->getUniquePredecessor() ||
1708       llvm::all_of(predecessors(ContinueSuccBB), [&](BasicBlock *PredBB) {
1709         return PredBB == ParentBB || DT.dominates(ContinueSuccBB, PredBB);
1710       })) {
1711     visitDomSubTree(DT, ContinueSuccBB, [&](BasicBlock *BB) {
1712       SkippedLoopAndExitBlocks.insert(BB);
1713       return true;
1714     });
1715   }
1716   // Similarly, if the edge we *are* cloning in the unswitch (the unswitched
1717   // edge) dominates its target, we will end up with dead nodes in the original
1718   // loop and its exits that will need to be deleted. Here, we just retain that
1719   // the property holds and will compute the deleted set later.
1720   bool DeleteUnswitchedSucc =
1721       UnswitchedSuccBB->getUniquePredecessor() ||
1722       llvm::all_of(predecessors(UnswitchedSuccBB), [&](BasicBlock *PredBB) {
1723         return PredBB == ParentBB || DT.dominates(UnswitchedSuccBB, PredBB);
1724       });
1725 
1726   // Split the preheader, so that we know that there is a safe place to insert
1727   // the conditional branch. We will change the preheader to have a conditional
1728   // branch on LoopCond. The original preheader will become the split point
1729   // between the unswitched versions, and we will have a new preheader for the
1730   // original loop.
1731   BasicBlock *SplitBB = L.getLoopPreheader();
1732   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
1733 
1734   // Keep a mapping for the cloned values.
1735   ValueToValueMapTy VMap;
1736 
1737   // Build the cloned blocks from the loop.
1738   auto *ClonedPH = buildClonedLoopBlocks(
1739       L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB,
1740       ContinueSuccBB, SkippedLoopAndExitBlocks, VMap, AC, DT, LI);
1741 
1742   // Build the cloned loop structure itself. This may be substantially
1743   // different from the original structure due to the simplified CFG. This also
1744   // handles inserting all the cloned blocks into the correct loops.
1745   SmallVector<Loop *, 4> NonChildClonedLoops;
1746   Loop *ClonedL =
1747       buildClonedLoops(L, ExitBlocks, VMap, LI, NonChildClonedLoops);
1748 
1749   // Remove the parent as a predecessor of the unswitched successor.
1750   UnswitchedSuccBB->removePredecessor(ParentBB, /*DontDeleteUselessPHIs*/ true);
1751 
1752   // Now splice the branch from the original loop and use it to select between
1753   // the two loops.
1754   SplitBB->getTerminator()->eraseFromParent();
1755   SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), BI);
1756   BI.setSuccessor(ClonedSucc, ClonedPH);
1757   BI.setSuccessor(1 - ClonedSucc, LoopPH);
1758 
1759   // Create a new unconditional branch to the continuing block (as opposed to
1760   // the one cloned).
1761   BranchInst::Create(ContinueSuccBB, ParentBB);
1762 
1763   // Delete anything that was made dead in the original loop due to
1764   // unswitching.
1765   if (DeleteUnswitchedSucc)
1766     deleteDeadBlocksFromLoop(L, UnswitchedSuccBB, ExitBlocks, DT, LI);
1767 
1768   SmallVector<Loop *, 4> HoistedLoops;
1769   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
1770 
1771   // This will have completely invalidated the dominator tree. We can't easily
1772   // bound how much is invalid because in some cases we will refine the
1773   // predecessor set of exit blocks of the loop which can move large unrelated
1774   // regions of code into a new subtree.
1775   //
1776   // FIXME: Eventually, we should use an incremental update utility that
1777   // leverages the existing information in the dominator tree (and potentially
1778   // the nature of the change) to more efficiently update things.
1779   DT.recalculate(*SplitBB->getParent());
1780 
1781   // We can change which blocks are exit blocks of all the cloned sibling
1782   // loops, the current loop, and any parent loops which shared exit blocks
1783   // with the current loop. As a consequence, we need to re-form LCSSA for
1784   // them. But we shouldn't need to re-form LCSSA for any child loops.
1785   // FIXME: This could be made more efficient by tracking which exit blocks are
1786   // new, and focusing on them, but that isn't likely to be necessary.
1787   //
1788   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
1789   // loop nest and update every loop that could have had its exits changed. We
1790   // also need to cover any intervening loops. We add all of these loops to
1791   // a list and sort them by loop depth to achieve this without updating
1792   // unnecessary loops.
1793   auto UpdateLCSSA = [&](Loop &UpdateL) {
1794 #ifndef NDEBUG
1795     for (Loop *ChildL : UpdateL)
1796       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
1797              "Perturbed a child loop's LCSSA form!");
1798 #endif
1799     formLCSSA(UpdateL, DT, &LI, nullptr);
1800   };
1801 
1802   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
1803   // and we can do it in any order as they don't nest relative to each other.
1804   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
1805     UpdateLCSSA(*UpdatedL);
1806 
1807   // If the original loop had exit blocks, walk up through the outer most loop
1808   // of those exit blocks to update LCSSA and form updated dedicated exits.
1809   if (OuterExitL != &L) {
1810     SmallVector<Loop *, 4> OuterLoops;
1811     // We start with the cloned loop and the current loop if they are loops and
1812     // move toward OuterExitL. Also, if either the cloned loop or the current
1813     // loop have become top level loops we need to walk all the way out.
1814     if (ClonedL) {
1815       OuterLoops.push_back(ClonedL);
1816       if (!ClonedL->getParentLoop())
1817         OuterExitL = nullptr;
1818     }
1819     if (IsStillLoop) {
1820       OuterLoops.push_back(&L);
1821       if (!L.getParentLoop())
1822         OuterExitL = nullptr;
1823     }
1824     // Grab all of the enclosing loops now.
1825     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
1826          OuterL = OuterL->getParentLoop())
1827       OuterLoops.push_back(OuterL);
1828 
1829     // Finally, update our list of outer loops. This is nicely ordered to work
1830     // inside-out.
1831     for (Loop *OuterL : OuterLoops) {
1832       // First build LCSSA for this loop so that we can preserve it when
1833       // forming dedicated exits. We don't want to perturb some other loop's
1834       // LCSSA while doing that CFG edit.
1835       UpdateLCSSA(*OuterL);
1836 
1837       // For loops reached by this loop's original exit blocks we may
1838       // introduced new, non-dedicated exits. At least try to re-form dedicated
1839       // exits for these loops. This may fail if they couldn't have dedicated
1840       // exits to start with.
1841       formDedicatedExitBlocks(OuterL, &DT, &LI, /*PreserveLCSSA*/ true);
1842     }
1843   }
1844 
1845 #ifndef NDEBUG
1846   // Verify the entire loop structure to catch any incorrect updates before we
1847   // progress in the pass pipeline.
1848   LI.verify(DT);
1849 #endif
1850 
1851   // Now that we've unswitched something, make callbacks to report the changes.
1852   // For that we need to merge together the updated loops and the cloned loops
1853   // and check whether the original loop survived.
1854   SmallVector<Loop *, 4> SibLoops;
1855   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
1856     if (UpdatedL->getParentLoop() == ParentL)
1857       SibLoops.push_back(UpdatedL);
1858   NonTrivialUnswitchCB(IsStillLoop, SibLoops);
1859 
1860   ++NumBranches;
1861   return true;
1862 }
1863 
1864 /// Recursively compute the cost of a dominator subtree based on the per-block
1865 /// cost map provided.
1866 ///
1867 /// The recursive computation is memozied into the provided DT-indexed cost map
1868 /// to allow querying it for most nodes in the domtree without it becoming
1869 /// quadratic.
1870 static int
1871 computeDomSubtreeCost(DomTreeNode &N,
1872                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
1873                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
1874   // Don't accumulate cost (or recurse through) blocks not in our block cost
1875   // map and thus not part of the duplication cost being considered.
1876   auto BBCostIt = BBCostMap.find(N.getBlock());
1877   if (BBCostIt == BBCostMap.end())
1878     return 0;
1879 
1880   // Lookup this node to see if we already computed its cost.
1881   auto DTCostIt = DTCostMap.find(&N);
1882   if (DTCostIt != DTCostMap.end())
1883     return DTCostIt->second;
1884 
1885   // If not, we have to compute it. We can't use insert above and update
1886   // because computing the cost may insert more things into the map.
1887   int Cost = std::accumulate(
1888       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
1889         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
1890       });
1891   bool Inserted = DTCostMap.insert({&N, Cost}).second;
1892   (void)Inserted;
1893   assert(Inserted && "Should not insert a node while visiting children!");
1894   return Cost;
1895 }
1896 
1897 /// Unswitch control flow predicated on loop invariant conditions.
1898 ///
1899 /// This first hoists all branches or switches which are trivial (IE, do not
1900 /// require duplicating any part of the loop) out of the loop body. It then
1901 /// looks at other loop invariant control flows and tries to unswitch those as
1902 /// well by cloning the loop if the result is small enough.
1903 static bool
1904 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
1905              TargetTransformInfo &TTI, bool NonTrivial,
1906              function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
1907   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
1908          "Loops must be in LCSSA form before unswitching.");
1909   bool Changed = false;
1910 
1911   // Must be in loop simplified form: we need a preheader and dedicated exits.
1912   if (!L.isLoopSimplifyForm())
1913     return false;
1914 
1915   // Try trivial unswitch first before loop over other basic blocks in the loop.
1916   Changed |= unswitchAllTrivialConditions(L, DT, LI);
1917 
1918   // If we're not doing non-trivial unswitching, we're done. We both accept
1919   // a parameter but also check a local flag that can be used for testing
1920   // a debugging.
1921   if (!NonTrivial && !EnableNonTrivialUnswitch)
1922     return Changed;
1923 
1924   // Collect all remaining invariant branch conditions within this loop (as
1925   // opposed to an inner loop which would be handled when visiting that inner
1926   // loop).
1927   SmallVector<TerminatorInst *, 4> UnswitchCandidates;
1928   for (auto *BB : L.blocks())
1929     if (LI.getLoopFor(BB) == &L)
1930       if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1931         if (BI->isConditional() && L.isLoopInvariant(BI->getCondition()) &&
1932             BI->getSuccessor(0) != BI->getSuccessor(1))
1933           UnswitchCandidates.push_back(BI);
1934 
1935   // If we didn't find any candidates, we're done.
1936   if (UnswitchCandidates.empty())
1937     return Changed;
1938 
1939   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
1940   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
1941   // irreducible control flow into reducible control flow and introduce new
1942   // loops "out of thin air". If we ever discover important use cases for doing
1943   // this, we can add support to loop unswitch, but it is a lot of complexity
1944   // for what seems little or no real world benifit.
1945   LoopBlocksRPO RPOT(&L);
1946   RPOT.perform(&LI);
1947   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
1948     return Changed;
1949 
1950   DEBUG(dbgs() << "Considering " << UnswitchCandidates.size()
1951                << " non-trivial loop invariant conditions for unswitching.\n");
1952 
1953   // Given that unswitching these terminators will require duplicating parts of
1954   // the loop, so we need to be able to model that cost. Compute the ephemeral
1955   // values and set up a data structure to hold per-BB costs. We cache each
1956   // block's cost so that we don't recompute this when considering different
1957   // subsets of the loop for duplication during unswitching.
1958   SmallPtrSet<const Value *, 4> EphValues;
1959   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
1960   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
1961 
1962   // Compute the cost of each block, as well as the total loop cost. Also, bail
1963   // out if we see instructions which are incompatible with loop unswitching
1964   // (convergent, noduplicate, or cross-basic-block tokens).
1965   // FIXME: We might be able to safely handle some of these in non-duplicated
1966   // regions.
1967   int LoopCost = 0;
1968   for (auto *BB : L.blocks()) {
1969     int Cost = 0;
1970     for (auto &I : *BB) {
1971       if (EphValues.count(&I))
1972         continue;
1973 
1974       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
1975         return Changed;
1976       if (auto CS = CallSite(&I))
1977         if (CS.isConvergent() || CS.cannotDuplicate())
1978           return Changed;
1979 
1980       Cost += TTI.getUserCost(&I);
1981     }
1982     assert(Cost >= 0 && "Must not have negative costs!");
1983     LoopCost += Cost;
1984     assert(LoopCost >= 0 && "Must not have negative loop costs!");
1985     BBCostMap[BB] = Cost;
1986   }
1987   DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
1988 
1989   // Now we find the best candidate by searching for the one with the following
1990   // properties in order:
1991   //
1992   // 1) An unswitching cost below the threshold
1993   // 2) The smallest number of duplicated unswitch candidates (to avoid
1994   //    creating redundant subsequent unswitching)
1995   // 3) The smallest cost after unswitching.
1996   //
1997   // We prioritize reducing fanout of unswitch candidates provided the cost
1998   // remains below the threshold because this has a multiplicative effect.
1999   //
2000   // This requires memoizing each dominator subtree to avoid redundant work.
2001   //
2002   // FIXME: Need to actually do the number of candidates part above.
2003   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2004   // Given a terminator which might be unswitched, computes the non-duplicated
2005   // cost for that terminator.
2006   auto ComputeUnswitchedCost = [&](TerminatorInst *TI) {
2007     BasicBlock &BB = *TI->getParent();
2008     SmallPtrSet<BasicBlock *, 4> Visited;
2009 
2010     int Cost = LoopCost;
2011     for (BasicBlock *SuccBB : successors(&BB)) {
2012       // Don't count successors more than once.
2013       if (!Visited.insert(SuccBB).second)
2014         continue;
2015 
2016       // This successor's domtree will not need to be duplicated after
2017       // unswitching if the edge to the successor dominates it (and thus the
2018       // entire tree). This essentially means there is no other path into this
2019       // subtree and so it will end up live in only one clone of the loop.
2020       if (SuccBB->getUniquePredecessor() ||
2021           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2022             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2023           })) {
2024         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2025         assert(Cost >= 0 &&
2026                "Non-duplicated cost should never exceed total loop cost!");
2027       }
2028     }
2029 
2030     // Now scale the cost by the number of unique successors minus one. We
2031     // subtract one because there is already at least one copy of the entire
2032     // loop. This is computing the new cost of unswitching a condition.
2033     assert(Visited.size() > 1 &&
2034            "Cannot unswitch a condition without multiple distinct successors!");
2035     return Cost * (Visited.size() - 1);
2036   };
2037   TerminatorInst *BestUnswitchTI = nullptr;
2038   int BestUnswitchCost;
2039   for (TerminatorInst *CandidateTI : UnswitchCandidates) {
2040     int CandidateCost = ComputeUnswitchedCost(CandidateTI);
2041     DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2042                  << " for unswitch candidate: " << *CandidateTI << "\n");
2043     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2044       BestUnswitchTI = CandidateTI;
2045       BestUnswitchCost = CandidateCost;
2046     }
2047   }
2048 
2049   if (BestUnswitchCost < UnswitchThreshold) {
2050     DEBUG(dbgs() << "  Trying to unswitch non-trivial (cost = "
2051                  << BestUnswitchCost << ") branch: " << *BestUnswitchTI
2052                  << "\n");
2053     Changed |= unswitchInvariantBranch(L, cast<BranchInst>(*BestUnswitchTI), DT,
2054                                        LI, AC, NonTrivialUnswitchCB);
2055   } else {
2056     DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << BestUnswitchCost
2057                  << "\n");
2058   }
2059 
2060   return Changed;
2061 }
2062 
2063 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2064                                               LoopStandardAnalysisResults &AR,
2065                                               LPMUpdater &U) {
2066   Function &F = *L.getHeader()->getParent();
2067   (void)F;
2068 
2069   DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L << "\n");
2070 
2071   // Save the current loop name in a variable so that we can report it even
2072   // after it has been deleted.
2073   std::string LoopName = L.getName();
2074 
2075   auto NonTrivialUnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2076                                                   ArrayRef<Loop *> NewLoops) {
2077     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2078     U.addSiblingLoops(NewLoops);
2079 
2080     // If the current loop remains valid, we should revisit it to catch any
2081     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2082     if (CurrentLoopValid)
2083       U.revisitCurrentLoop();
2084     else
2085       U.markLoopAsDeleted(L, LoopName);
2086   };
2087 
2088   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial,
2089                     NonTrivialUnswitchCB))
2090     return PreservedAnalyses::all();
2091 
2092   // Historically this pass has had issues with the dominator tree so verify it
2093   // in asserts builds.
2094   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2095   return getLoopPassPreservedAnalyses();
2096 }
2097 
2098 namespace {
2099 
2100 class SimpleLoopUnswitchLegacyPass : public LoopPass {
2101   bool NonTrivial;
2102 
2103 public:
2104   static char ID; // Pass ID, replacement for typeid
2105 
2106   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2107       : LoopPass(ID), NonTrivial(NonTrivial) {
2108     initializeSimpleLoopUnswitchLegacyPassPass(
2109         *PassRegistry::getPassRegistry());
2110   }
2111 
2112   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2113 
2114   void getAnalysisUsage(AnalysisUsage &AU) const override {
2115     AU.addRequired<AssumptionCacheTracker>();
2116     AU.addRequired<TargetTransformInfoWrapperPass>();
2117     getLoopAnalysisUsage(AU);
2118   }
2119 };
2120 
2121 } // end anonymous namespace
2122 
2123 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2124   if (skipLoop(L))
2125     return false;
2126 
2127   Function &F = *L->getHeader()->getParent();
2128 
2129   DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L << "\n");
2130 
2131   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2132   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2133   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2134   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2135 
2136   auto NonTrivialUnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2137                                          ArrayRef<Loop *> NewLoops) {
2138     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2139     for (auto *NewL : NewLoops)
2140       LPM.addLoop(*NewL);
2141 
2142     // If the current loop remains valid, re-add it to the queue. This is
2143     // a little wasteful as we'll finish processing the current loop as well,
2144     // but it is the best we can do in the old PM.
2145     if (CurrentLoopValid)
2146       LPM.addLoop(*L);
2147     else
2148       LPM.markLoopAsDeleted(*L);
2149   };
2150 
2151   bool Changed =
2152       unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, NonTrivialUnswitchCB);
2153 
2154   // If anything was unswitched, also clear any cached information about this
2155   // loop.
2156   LPM.deleteSimpleAnalysisLoop(L);
2157 
2158   // Historically this pass has had issues with the dominator tree so verify it
2159   // in asserts builds.
2160   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2161 
2162   return Changed;
2163 }
2164 
2165 char SimpleLoopUnswitchLegacyPass::ID = 0;
2166 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2167                       "Simple unswitch loops", false, false)
2168 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2169 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2170 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2171 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2172 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2173 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2174                     "Simple unswitch loops", false, false)
2175 
2176 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2177   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
2178 }
2179