1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/MustExecute.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/GenericDomTree.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Cloning.h" 53 #include "llvm/Transforms/Utils/LoopUtils.h" 54 #include "llvm/Transforms/Utils/ValueMapper.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <iterator> 58 #include <numeric> 59 #include <utility> 60 61 #define DEBUG_TYPE "simple-loop-unswitch" 62 63 using namespace llvm; 64 65 STATISTIC(NumBranches, "Number of branches unswitched"); 66 STATISTIC(NumSwitches, "Number of switches unswitched"); 67 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 68 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 69 STATISTIC( 70 NumCostMultiplierSkipped, 71 "Number of unswitch candidates that had their cost multiplier skipped"); 72 73 static cl::opt<bool> EnableNonTrivialUnswitch( 74 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 75 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 76 "following the configuration passed into the pass.")); 77 78 static cl::opt<int> 79 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 80 cl::desc("The cost threshold for unswitching a loop.")); 81 82 static cl::opt<bool> EnableUnswitchCostMultiplier( 83 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 84 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 85 "explosion in nontrivial unswitch.")); 86 static cl::opt<int> UnswitchSiblingsToplevelDiv( 87 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 88 cl::desc("Toplevel siblings divisor for cost multiplier.")); 89 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 90 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 91 cl::desc("Number of unswitch candidates that are ignored when calculating " 92 "cost multiplier.")); 93 static cl::opt<bool> UnswitchGuards( 94 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 95 cl::desc("If enabled, simple loop unswitching will also consider " 96 "llvm.experimental.guard intrinsics as unswitch candidates.")); 97 98 /// Collect all of the loop invariant input values transitively used by the 99 /// homogeneous instruction graph from a given root. 100 /// 101 /// This essentially walks from a root recursively through loop variant operands 102 /// which have the exact same opcode and finds all inputs which are loop 103 /// invariant. For some operations these can be re-associated and unswitched out 104 /// of the loop entirely. 105 static TinyPtrVector<Value *> 106 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 107 LoopInfo &LI) { 108 assert(!L.isLoopInvariant(&Root) && 109 "Only need to walk the graph if root itself is not invariant."); 110 TinyPtrVector<Value *> Invariants; 111 112 // Build a worklist and recurse through operators collecting invariants. 113 SmallVector<Instruction *, 4> Worklist; 114 SmallPtrSet<Instruction *, 8> Visited; 115 Worklist.push_back(&Root); 116 Visited.insert(&Root); 117 do { 118 Instruction &I = *Worklist.pop_back_val(); 119 for (Value *OpV : I.operand_values()) { 120 // Skip constants as unswitching isn't interesting for them. 121 if (isa<Constant>(OpV)) 122 continue; 123 124 // Add it to our result if loop invariant. 125 if (L.isLoopInvariant(OpV)) { 126 Invariants.push_back(OpV); 127 continue; 128 } 129 130 // If not an instruction with the same opcode, nothing we can do. 131 Instruction *OpI = dyn_cast<Instruction>(OpV); 132 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 133 continue; 134 135 // Visit this operand. 136 if (Visited.insert(OpI).second) 137 Worklist.push_back(OpI); 138 } 139 } while (!Worklist.empty()); 140 141 return Invariants; 142 } 143 144 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 145 Constant &Replacement) { 146 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 147 148 // Replace uses of LIC in the loop with the given constant. 149 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 150 // Grab the use and walk past it so we can clobber it in the use list. 151 Use *U = &*UI++; 152 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 153 154 // Replace this use within the loop body. 155 if (UserI && L.contains(UserI)) 156 U->set(&Replacement); 157 } 158 } 159 160 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 161 /// incoming values along this edge. 162 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 163 BasicBlock &ExitBB) { 164 for (Instruction &I : ExitBB) { 165 auto *PN = dyn_cast<PHINode>(&I); 166 if (!PN) 167 // No more PHIs to check. 168 return true; 169 170 // If the incoming value for this edge isn't loop invariant the unswitch 171 // won't be trivial. 172 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 173 return false; 174 } 175 llvm_unreachable("Basic blocks should never be empty!"); 176 } 177 178 /// Insert code to test a set of loop invariant values, and conditionally branch 179 /// on them. 180 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 181 ArrayRef<Value *> Invariants, 182 bool Direction, 183 BasicBlock &UnswitchedSucc, 184 BasicBlock &NormalSucc, 185 bool InsertFreeze) { 186 IRBuilder<> IRB(&BB); 187 188 Value *Cond = Direction ? IRB.CreateOr(Invariants) : 189 IRB.CreateAnd(Invariants); 190 if (InsertFreeze) 191 Cond = IRB.CreateFreeze(Cond, Cond->getName() + ".fr"); 192 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 193 Direction ? &NormalSucc : &UnswitchedSucc); 194 } 195 196 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 197 /// 198 /// Requires that the loop exit and unswitched basic block are the same, and 199 /// that the exiting block was a unique predecessor of that block. Rewrites the 200 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 201 /// PHI nodes from the old preheader that now contains the unswitched 202 /// terminator. 203 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 204 BasicBlock &OldExitingBB, 205 BasicBlock &OldPH) { 206 for (PHINode &PN : UnswitchedBB.phis()) { 207 // When the loop exit is directly unswitched we just need to update the 208 // incoming basic block. We loop to handle weird cases with repeated 209 // incoming blocks, but expect to typically only have one operand here. 210 for (auto i : seq<int>(0, PN.getNumOperands())) { 211 assert(PN.getIncomingBlock(i) == &OldExitingBB && 212 "Found incoming block different from unique predecessor!"); 213 PN.setIncomingBlock(i, &OldPH); 214 } 215 } 216 } 217 218 /// Rewrite the PHI nodes in the loop exit basic block and the split off 219 /// unswitched block. 220 /// 221 /// Because the exit block remains an exit from the loop, this rewrites the 222 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 223 /// nodes into the unswitched basic block to select between the value in the 224 /// old preheader and the loop exit. 225 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 226 BasicBlock &UnswitchedBB, 227 BasicBlock &OldExitingBB, 228 BasicBlock &OldPH, 229 bool FullUnswitch) { 230 assert(&ExitBB != &UnswitchedBB && 231 "Must have different loop exit and unswitched blocks!"); 232 Instruction *InsertPt = &*UnswitchedBB.begin(); 233 for (PHINode &PN : ExitBB.phis()) { 234 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 235 PN.getName() + ".split", InsertPt); 236 237 // Walk backwards over the old PHI node's inputs to minimize the cost of 238 // removing each one. We have to do this weird loop manually so that we 239 // create the same number of new incoming edges in the new PHI as we expect 240 // each case-based edge to be included in the unswitched switch in some 241 // cases. 242 // FIXME: This is really, really gross. It would be much cleaner if LLVM 243 // allowed us to create a single entry for a predecessor block without 244 // having separate entries for each "edge" even though these edges are 245 // required to produce identical results. 246 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 247 if (PN.getIncomingBlock(i) != &OldExitingBB) 248 continue; 249 250 Value *Incoming = PN.getIncomingValue(i); 251 if (FullUnswitch) 252 // No more edge from the old exiting block to the exit block. 253 PN.removeIncomingValue(i); 254 255 NewPN->addIncoming(Incoming, &OldPH); 256 } 257 258 // Now replace the old PHI with the new one and wire the old one in as an 259 // input to the new one. 260 PN.replaceAllUsesWith(NewPN); 261 NewPN->addIncoming(&PN, &ExitBB); 262 } 263 } 264 265 /// Hoist the current loop up to the innermost loop containing a remaining exit. 266 /// 267 /// Because we've removed an exit from the loop, we may have changed the set of 268 /// loops reachable and need to move the current loop up the loop nest or even 269 /// to an entirely separate nest. 270 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 271 DominatorTree &DT, LoopInfo &LI, 272 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 273 // If the loop is already at the top level, we can't hoist it anywhere. 274 Loop *OldParentL = L.getParentLoop(); 275 if (!OldParentL) 276 return; 277 278 SmallVector<BasicBlock *, 4> Exits; 279 L.getExitBlocks(Exits); 280 Loop *NewParentL = nullptr; 281 for (auto *ExitBB : Exits) 282 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 283 if (!NewParentL || NewParentL->contains(ExitL)) 284 NewParentL = ExitL; 285 286 if (NewParentL == OldParentL) 287 return; 288 289 // The new parent loop (if different) should always contain the old one. 290 if (NewParentL) 291 assert(NewParentL->contains(OldParentL) && 292 "Can only hoist this loop up the nest!"); 293 294 // The preheader will need to move with the body of this loop. However, 295 // because it isn't in this loop we also need to update the primary loop map. 296 assert(OldParentL == LI.getLoopFor(&Preheader) && 297 "Parent loop of this loop should contain this loop's preheader!"); 298 LI.changeLoopFor(&Preheader, NewParentL); 299 300 // Remove this loop from its old parent. 301 OldParentL->removeChildLoop(&L); 302 303 // Add the loop either to the new parent or as a top-level loop. 304 if (NewParentL) 305 NewParentL->addChildLoop(&L); 306 else 307 LI.addTopLevelLoop(&L); 308 309 // Remove this loops blocks from the old parent and every other loop up the 310 // nest until reaching the new parent. Also update all of these 311 // no-longer-containing loops to reflect the nesting change. 312 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 313 OldContainingL = OldContainingL->getParentLoop()) { 314 llvm::erase_if(OldContainingL->getBlocksVector(), 315 [&](const BasicBlock *BB) { 316 return BB == &Preheader || L.contains(BB); 317 }); 318 319 OldContainingL->getBlocksSet().erase(&Preheader); 320 for (BasicBlock *BB : L.blocks()) 321 OldContainingL->getBlocksSet().erase(BB); 322 323 // Because we just hoisted a loop out of this one, we have essentially 324 // created new exit paths from it. That means we need to form LCSSA PHI 325 // nodes for values used in the no-longer-nested loop. 326 formLCSSA(*OldContainingL, DT, &LI, SE); 327 328 // We shouldn't need to form dedicated exits because the exit introduced 329 // here is the (just split by unswitching) preheader. However, after trivial 330 // unswitching it is possible to get new non-dedicated exits out of parent 331 // loop so let's conservatively form dedicated exit blocks and figure out 332 // if we can optimize later. 333 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 334 /*PreserveLCSSA*/ true); 335 } 336 } 337 338 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 339 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 340 // as exiting block. 341 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 342 Loop *TopMost = LI.getLoopFor(ExitBB); 343 Loop *Current = TopMost; 344 while (Current) { 345 if (Current->isLoopExiting(ExitBB)) 346 TopMost = Current; 347 Current = Current->getParentLoop(); 348 } 349 return TopMost; 350 } 351 352 /// Unswitch a trivial branch if the condition is loop invariant. 353 /// 354 /// This routine should only be called when loop code leading to the branch has 355 /// been validated as trivial (no side effects). This routine checks if the 356 /// condition is invariant and one of the successors is a loop exit. This 357 /// allows us to unswitch without duplicating the loop, making it trivial. 358 /// 359 /// If this routine fails to unswitch the branch it returns false. 360 /// 361 /// If the branch can be unswitched, this routine splits the preheader and 362 /// hoists the branch above that split. Preserves loop simplified form 363 /// (splitting the exit block as necessary). It simplifies the branch within 364 /// the loop to an unconditional branch but doesn't remove it entirely. Further 365 /// cleanup can be done with some simplify-cfg like pass. 366 /// 367 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 368 /// invalidated by this. 369 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 370 LoopInfo &LI, ScalarEvolution *SE, 371 MemorySSAUpdater *MSSAU) { 372 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 373 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 374 375 // The loop invariant values that we want to unswitch. 376 TinyPtrVector<Value *> Invariants; 377 378 // When true, we're fully unswitching the branch rather than just unswitching 379 // some input conditions to the branch. 380 bool FullUnswitch = false; 381 382 if (L.isLoopInvariant(BI.getCondition())) { 383 Invariants.push_back(BI.getCondition()); 384 FullUnswitch = true; 385 } else { 386 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 387 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 388 if (Invariants.empty()) 389 // Couldn't find invariant inputs! 390 return false; 391 } 392 393 // Check that one of the branch's successors exits, and which one. 394 bool ExitDirection = true; 395 int LoopExitSuccIdx = 0; 396 auto *LoopExitBB = BI.getSuccessor(0); 397 if (L.contains(LoopExitBB)) { 398 ExitDirection = false; 399 LoopExitSuccIdx = 1; 400 LoopExitBB = BI.getSuccessor(1); 401 if (L.contains(LoopExitBB)) 402 return false; 403 } 404 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 405 auto *ParentBB = BI.getParent(); 406 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 407 return false; 408 409 // When unswitching only part of the branch's condition, we need the exit 410 // block to be reached directly from the partially unswitched input. This can 411 // be done when the exit block is along the true edge and the branch condition 412 // is a graph of `or` operations, or the exit block is along the false edge 413 // and the condition is a graph of `and` operations. 414 if (!FullUnswitch) { 415 if (ExitDirection) { 416 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 417 return false; 418 } else { 419 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 420 return false; 421 } 422 } 423 424 LLVM_DEBUG({ 425 dbgs() << " unswitching trivial invariant conditions for: " << BI 426 << "\n"; 427 for (Value *Invariant : Invariants) { 428 dbgs() << " " << *Invariant << " == true"; 429 if (Invariant != Invariants.back()) 430 dbgs() << " ||"; 431 dbgs() << "\n"; 432 } 433 }); 434 435 // If we have scalar evolutions, we need to invalidate them including this 436 // loop, the loop containing the exit block and the topmost parent loop 437 // exiting via LoopExitBB. 438 if (SE) { 439 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 440 SE->forgetLoop(ExitL); 441 else 442 // Forget the entire nest as this exits the entire nest. 443 SE->forgetTopmostLoop(&L); 444 } 445 446 if (MSSAU && VerifyMemorySSA) 447 MSSAU->getMemorySSA()->verifyMemorySSA(); 448 449 // Split the preheader, so that we know that there is a safe place to insert 450 // the conditional branch. We will change the preheader to have a conditional 451 // branch on LoopCond. 452 BasicBlock *OldPH = L.getLoopPreheader(); 453 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 454 455 // Now that we have a place to insert the conditional branch, create a place 456 // to branch to: this is the exit block out of the loop that we are 457 // unswitching. We need to split this if there are other loop predecessors. 458 // Because the loop is in simplified form, *any* other predecessor is enough. 459 BasicBlock *UnswitchedBB; 460 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 461 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 462 "A branch's parent isn't a predecessor!"); 463 UnswitchedBB = LoopExitBB; 464 } else { 465 UnswitchedBB = 466 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 467 } 468 469 if (MSSAU && VerifyMemorySSA) 470 MSSAU->getMemorySSA()->verifyMemorySSA(); 471 472 // Actually move the invariant uses into the unswitched position. If possible, 473 // we do this by moving the instructions, but when doing partial unswitching 474 // we do it by building a new merge of the values in the unswitched position. 475 OldPH->getTerminator()->eraseFromParent(); 476 if (FullUnswitch) { 477 // If fully unswitching, we can use the existing branch instruction. 478 // Splice it into the old PH to gate reaching the new preheader and re-point 479 // its successors. 480 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 481 BI); 482 if (MSSAU) { 483 // Temporarily clone the terminator, to make MSSA update cheaper by 484 // separating "insert edge" updates from "remove edge" ones. 485 ParentBB->getInstList().push_back(BI.clone()); 486 } else { 487 // Create a new unconditional branch that will continue the loop as a new 488 // terminator. 489 BranchInst::Create(ContinueBB, ParentBB); 490 } 491 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 492 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 493 } else { 494 // Only unswitching a subset of inputs to the condition, so we will need to 495 // build a new branch that merges the invariant inputs. 496 if (ExitDirection) 497 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 498 Instruction::Or && 499 "Must have an `or` of `i1`s for the condition!"); 500 else 501 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 502 Instruction::And && 503 "Must have an `and` of `i1`s for the condition!"); 504 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 505 *UnswitchedBB, *NewPH, false); 506 } 507 508 // Update the dominator tree with the added edge. 509 DT.insertEdge(OldPH, UnswitchedBB); 510 511 // After the dominator tree was updated with the added edge, update MemorySSA 512 // if available. 513 if (MSSAU) { 514 SmallVector<CFGUpdate, 1> Updates; 515 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 516 MSSAU->applyInsertUpdates(Updates, DT); 517 } 518 519 // Finish updating dominator tree and memory ssa for full unswitch. 520 if (FullUnswitch) { 521 if (MSSAU) { 522 // Remove the cloned branch instruction. 523 ParentBB->getTerminator()->eraseFromParent(); 524 // Create unconditional branch now. 525 BranchInst::Create(ContinueBB, ParentBB); 526 MSSAU->removeEdge(ParentBB, LoopExitBB); 527 } 528 DT.deleteEdge(ParentBB, LoopExitBB); 529 } 530 531 if (MSSAU && VerifyMemorySSA) 532 MSSAU->getMemorySSA()->verifyMemorySSA(); 533 534 // Rewrite the relevant PHI nodes. 535 if (UnswitchedBB == LoopExitBB) 536 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 537 else 538 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 539 *ParentBB, *OldPH, FullUnswitch); 540 541 // The constant we can replace all of our invariants with inside the loop 542 // body. If any of the invariants have a value other than this the loop won't 543 // be entered. 544 ConstantInt *Replacement = ExitDirection 545 ? ConstantInt::getFalse(BI.getContext()) 546 : ConstantInt::getTrue(BI.getContext()); 547 548 // Since this is an i1 condition we can also trivially replace uses of it 549 // within the loop with a constant. 550 for (Value *Invariant : Invariants) 551 replaceLoopInvariantUses(L, Invariant, *Replacement); 552 553 // If this was full unswitching, we may have changed the nesting relationship 554 // for this loop so hoist it to its correct parent if needed. 555 if (FullUnswitch) 556 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 557 558 if (MSSAU && VerifyMemorySSA) 559 MSSAU->getMemorySSA()->verifyMemorySSA(); 560 561 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 562 ++NumTrivial; 563 ++NumBranches; 564 return true; 565 } 566 567 /// Unswitch a trivial switch if the condition is loop invariant. 568 /// 569 /// This routine should only be called when loop code leading to the switch has 570 /// been validated as trivial (no side effects). This routine checks if the 571 /// condition is invariant and that at least one of the successors is a loop 572 /// exit. This allows us to unswitch without duplicating the loop, making it 573 /// trivial. 574 /// 575 /// If this routine fails to unswitch the switch it returns false. 576 /// 577 /// If the switch can be unswitched, this routine splits the preheader and 578 /// copies the switch above that split. If the default case is one of the 579 /// exiting cases, it copies the non-exiting cases and points them at the new 580 /// preheader. If the default case is not exiting, it copies the exiting cases 581 /// and points the default at the preheader. It preserves loop simplified form 582 /// (splitting the exit blocks as necessary). It simplifies the switch within 583 /// the loop by removing now-dead cases. If the default case is one of those 584 /// unswitched, it replaces its destination with a new basic block containing 585 /// only unreachable. Such basic blocks, while technically loop exits, are not 586 /// considered for unswitching so this is a stable transform and the same 587 /// switch will not be revisited. If after unswitching there is only a single 588 /// in-loop successor, the switch is further simplified to an unconditional 589 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 590 /// 591 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 592 /// invalidated by this. 593 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 594 LoopInfo &LI, ScalarEvolution *SE, 595 MemorySSAUpdater *MSSAU) { 596 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 597 Value *LoopCond = SI.getCondition(); 598 599 // If this isn't switching on an invariant condition, we can't unswitch it. 600 if (!L.isLoopInvariant(LoopCond)) 601 return false; 602 603 auto *ParentBB = SI.getParent(); 604 605 SmallVector<int, 4> ExitCaseIndices; 606 for (auto Case : SI.cases()) { 607 auto *SuccBB = Case.getCaseSuccessor(); 608 if (!L.contains(SuccBB) && 609 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 610 ExitCaseIndices.push_back(Case.getCaseIndex()); 611 } 612 BasicBlock *DefaultExitBB = nullptr; 613 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 614 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 615 if (!L.contains(SI.getDefaultDest()) && 616 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 617 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) { 618 DefaultExitBB = SI.getDefaultDest(); 619 } else if (ExitCaseIndices.empty()) 620 return false; 621 622 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 623 624 if (MSSAU && VerifyMemorySSA) 625 MSSAU->getMemorySSA()->verifyMemorySSA(); 626 627 // We may need to invalidate SCEVs for the outermost loop reached by any of 628 // the exits. 629 Loop *OuterL = &L; 630 631 if (DefaultExitBB) { 632 // Clear out the default destination temporarily to allow accurate 633 // predecessor lists to be examined below. 634 SI.setDefaultDest(nullptr); 635 // Check the loop containing this exit. 636 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 637 if (!ExitL || ExitL->contains(OuterL)) 638 OuterL = ExitL; 639 } 640 641 // Store the exit cases into a separate data structure and remove them from 642 // the switch. 643 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 644 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 645 4> ExitCases; 646 ExitCases.reserve(ExitCaseIndices.size()); 647 SwitchInstProfUpdateWrapper SIW(SI); 648 // We walk the case indices backwards so that we remove the last case first 649 // and don't disrupt the earlier indices. 650 for (unsigned Index : reverse(ExitCaseIndices)) { 651 auto CaseI = SI.case_begin() + Index; 652 // Compute the outer loop from this exit. 653 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 654 if (!ExitL || ExitL->contains(OuterL)) 655 OuterL = ExitL; 656 // Save the value of this case. 657 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 658 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 659 // Delete the unswitched cases. 660 SIW.removeCase(CaseI); 661 } 662 663 if (SE) { 664 if (OuterL) 665 SE->forgetLoop(OuterL); 666 else 667 SE->forgetTopmostLoop(&L); 668 } 669 670 // Check if after this all of the remaining cases point at the same 671 // successor. 672 BasicBlock *CommonSuccBB = nullptr; 673 if (SI.getNumCases() > 0 && 674 std::all_of(std::next(SI.case_begin()), SI.case_end(), 675 [&SI](const SwitchInst::CaseHandle &Case) { 676 return Case.getCaseSuccessor() == 677 SI.case_begin()->getCaseSuccessor(); 678 })) 679 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 680 if (!DefaultExitBB) { 681 // If we're not unswitching the default, we need it to match any cases to 682 // have a common successor or if we have no cases it is the common 683 // successor. 684 if (SI.getNumCases() == 0) 685 CommonSuccBB = SI.getDefaultDest(); 686 else if (SI.getDefaultDest() != CommonSuccBB) 687 CommonSuccBB = nullptr; 688 } 689 690 // Split the preheader, so that we know that there is a safe place to insert 691 // the switch. 692 BasicBlock *OldPH = L.getLoopPreheader(); 693 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 694 OldPH->getTerminator()->eraseFromParent(); 695 696 // Now add the unswitched switch. 697 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 698 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 699 700 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 701 // First, we split any exit blocks with remaining in-loop predecessors. Then 702 // we update the PHIs in one of two ways depending on if there was a split. 703 // We walk in reverse so that we split in the same order as the cases 704 // appeared. This is purely for convenience of reading the resulting IR, but 705 // it doesn't cost anything really. 706 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 707 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 708 // Handle the default exit if necessary. 709 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 710 // ranges aren't quite powerful enough yet. 711 if (DefaultExitBB) { 712 if (pred_empty(DefaultExitBB)) { 713 UnswitchedExitBBs.insert(DefaultExitBB); 714 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 715 } else { 716 auto *SplitBB = 717 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 718 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 719 *ParentBB, *OldPH, 720 /*FullUnswitch*/ true); 721 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 722 } 723 } 724 // Note that we must use a reference in the for loop so that we update the 725 // container. 726 for (auto &ExitCase : reverse(ExitCases)) { 727 // Grab a reference to the exit block in the pair so that we can update it. 728 BasicBlock *ExitBB = std::get<1>(ExitCase); 729 730 // If this case is the last edge into the exit block, we can simply reuse it 731 // as it will no longer be a loop exit. No mapping necessary. 732 if (pred_empty(ExitBB)) { 733 // Only rewrite once. 734 if (UnswitchedExitBBs.insert(ExitBB).second) 735 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 736 continue; 737 } 738 739 // Otherwise we need to split the exit block so that we retain an exit 740 // block from the loop and a target for the unswitched condition. 741 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 742 if (!SplitExitBB) { 743 // If this is the first time we see this, do the split and remember it. 744 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 745 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 746 *ParentBB, *OldPH, 747 /*FullUnswitch*/ true); 748 } 749 // Update the case pair to point to the split block. 750 std::get<1>(ExitCase) = SplitExitBB; 751 } 752 753 // Now add the unswitched cases. We do this in reverse order as we built them 754 // in reverse order. 755 for (auto &ExitCase : reverse(ExitCases)) { 756 ConstantInt *CaseVal = std::get<0>(ExitCase); 757 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 758 759 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 760 } 761 762 // If the default was unswitched, re-point it and add explicit cases for 763 // entering the loop. 764 if (DefaultExitBB) { 765 NewSIW->setDefaultDest(DefaultExitBB); 766 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 767 768 // We removed all the exit cases, so we just copy the cases to the 769 // unswitched switch. 770 for (const auto &Case : SI.cases()) 771 NewSIW.addCase(Case.getCaseValue(), NewPH, 772 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 773 } else if (DefaultCaseWeight) { 774 // We have to set branch weight of the default case. 775 uint64_t SW = *DefaultCaseWeight; 776 for (const auto &Case : SI.cases()) { 777 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 778 assert(W && 779 "case weight must be defined as default case weight is defined"); 780 SW += *W; 781 } 782 NewSIW.setSuccessorWeight(0, SW); 783 } 784 785 // If we ended up with a common successor for every path through the switch 786 // after unswitching, rewrite it to an unconditional branch to make it easy 787 // to recognize. Otherwise we potentially have to recognize the default case 788 // pointing at unreachable and other complexity. 789 if (CommonSuccBB) { 790 BasicBlock *BB = SI.getParent(); 791 // We may have had multiple edges to this common successor block, so remove 792 // them as predecessors. We skip the first one, either the default or the 793 // actual first case. 794 bool SkippedFirst = DefaultExitBB == nullptr; 795 for (auto Case : SI.cases()) { 796 assert(Case.getCaseSuccessor() == CommonSuccBB && 797 "Non-common successor!"); 798 (void)Case; 799 if (!SkippedFirst) { 800 SkippedFirst = true; 801 continue; 802 } 803 CommonSuccBB->removePredecessor(BB, 804 /*KeepOneInputPHIs*/ true); 805 } 806 // Now nuke the switch and replace it with a direct branch. 807 SIW.eraseFromParent(); 808 BranchInst::Create(CommonSuccBB, BB); 809 } else if (DefaultExitBB) { 810 assert(SI.getNumCases() > 0 && 811 "If we had no cases we'd have a common successor!"); 812 // Move the last case to the default successor. This is valid as if the 813 // default got unswitched it cannot be reached. This has the advantage of 814 // being simple and keeping the number of edges from this switch to 815 // successors the same, and avoiding any PHI update complexity. 816 auto LastCaseI = std::prev(SI.case_end()); 817 818 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 819 SIW.setSuccessorWeight( 820 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 821 SIW.removeCase(LastCaseI); 822 } 823 824 // Walk the unswitched exit blocks and the unswitched split blocks and update 825 // the dominator tree based on the CFG edits. While we are walking unordered 826 // containers here, the API for applyUpdates takes an unordered list of 827 // updates and requires them to not contain duplicates. 828 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 829 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 830 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 831 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 832 } 833 for (auto SplitUnswitchedPair : SplitExitBBMap) { 834 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 835 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 836 } 837 DT.applyUpdates(DTUpdates); 838 839 if (MSSAU) { 840 MSSAU->applyUpdates(DTUpdates, DT); 841 if (VerifyMemorySSA) 842 MSSAU->getMemorySSA()->verifyMemorySSA(); 843 } 844 845 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 846 847 // We may have changed the nesting relationship for this loop so hoist it to 848 // its correct parent if needed. 849 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 850 851 if (MSSAU && VerifyMemorySSA) 852 MSSAU->getMemorySSA()->verifyMemorySSA(); 853 854 ++NumTrivial; 855 ++NumSwitches; 856 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 857 return true; 858 } 859 860 /// This routine scans the loop to find a branch or switch which occurs before 861 /// any side effects occur. These can potentially be unswitched without 862 /// duplicating the loop. If a branch or switch is successfully unswitched the 863 /// scanning continues to see if subsequent branches or switches have become 864 /// trivial. Once all trivial candidates have been unswitched, this routine 865 /// returns. 866 /// 867 /// The return value indicates whether anything was unswitched (and therefore 868 /// changed). 869 /// 870 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 871 /// invalidated by this. 872 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 873 LoopInfo &LI, ScalarEvolution *SE, 874 MemorySSAUpdater *MSSAU) { 875 bool Changed = false; 876 877 // If loop header has only one reachable successor we should keep looking for 878 // trivial condition candidates in the successor as well. An alternative is 879 // to constant fold conditions and merge successors into loop header (then we 880 // only need to check header's terminator). The reason for not doing this in 881 // LoopUnswitch pass is that it could potentially break LoopPassManager's 882 // invariants. Folding dead branches could either eliminate the current loop 883 // or make other loops unreachable. LCSSA form might also not be preserved 884 // after deleting branches. The following code keeps traversing loop header's 885 // successors until it finds the trivial condition candidate (condition that 886 // is not a constant). Since unswitching generates branches with constant 887 // conditions, this scenario could be very common in practice. 888 BasicBlock *CurrentBB = L.getHeader(); 889 SmallPtrSet<BasicBlock *, 8> Visited; 890 Visited.insert(CurrentBB); 891 do { 892 // Check if there are any side-effecting instructions (e.g. stores, calls, 893 // volatile loads) in the part of the loop that the code *would* execute 894 // without unswitching. 895 if (MSSAU) // Possible early exit with MSSA 896 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 897 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 898 return Changed; 899 if (llvm::any_of(*CurrentBB, 900 [](Instruction &I) { return I.mayHaveSideEffects(); })) 901 return Changed; 902 903 Instruction *CurrentTerm = CurrentBB->getTerminator(); 904 905 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 906 // Don't bother trying to unswitch past a switch with a constant 907 // condition. This should be removed prior to running this pass by 908 // simplify-cfg. 909 if (isa<Constant>(SI->getCondition())) 910 return Changed; 911 912 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 913 // Couldn't unswitch this one so we're done. 914 return Changed; 915 916 // Mark that we managed to unswitch something. 917 Changed = true; 918 919 // If unswitching turned the terminator into an unconditional branch then 920 // we can continue. The unswitching logic specifically works to fold any 921 // cases it can into an unconditional branch to make it easier to 922 // recognize here. 923 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 924 if (!BI || BI->isConditional()) 925 return Changed; 926 927 CurrentBB = BI->getSuccessor(0); 928 continue; 929 } 930 931 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 932 if (!BI) 933 // We do not understand other terminator instructions. 934 return Changed; 935 936 // Don't bother trying to unswitch past an unconditional branch or a branch 937 // with a constant value. These should be removed by simplify-cfg prior to 938 // running this pass. 939 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 940 return Changed; 941 942 // Found a trivial condition candidate: non-foldable conditional branch. If 943 // we fail to unswitch this, we can't do anything else that is trivial. 944 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 945 return Changed; 946 947 // Mark that we managed to unswitch something. 948 Changed = true; 949 950 // If we only unswitched some of the conditions feeding the branch, we won't 951 // have collapsed it to a single successor. 952 BI = cast<BranchInst>(CurrentBB->getTerminator()); 953 if (BI->isConditional()) 954 return Changed; 955 956 // Follow the newly unconditional branch into its successor. 957 CurrentBB = BI->getSuccessor(0); 958 959 // When continuing, if we exit the loop or reach a previous visited block, 960 // then we can not reach any trivial condition candidates (unfoldable 961 // branch instructions or switch instructions) and no unswitch can happen. 962 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 963 964 return Changed; 965 } 966 967 /// Build the cloned blocks for an unswitched copy of the given loop. 968 /// 969 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 970 /// after the split block (`SplitBB`) that will be used to select between the 971 /// cloned and original loop. 972 /// 973 /// This routine handles cloning all of the necessary loop blocks and exit 974 /// blocks including rewriting their instructions and the relevant PHI nodes. 975 /// Any loop blocks or exit blocks which are dominated by a different successor 976 /// than the one for this clone of the loop blocks can be trivially skipped. We 977 /// use the `DominatingSucc` map to determine whether a block satisfies that 978 /// property with a simple map lookup. 979 /// 980 /// It also correctly creates the unconditional branch in the cloned 981 /// unswitched parent block to only point at the unswitched successor. 982 /// 983 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 984 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 985 /// the cloned blocks (and their loops) are left without full `LoopInfo` 986 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 987 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 988 /// instead the caller must recompute an accurate DT. It *does* correctly 989 /// update the `AssumptionCache` provided in `AC`. 990 static BasicBlock *buildClonedLoopBlocks( 991 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 992 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 993 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 994 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 995 ValueToValueMapTy &VMap, 996 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 997 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 998 SmallVector<BasicBlock *, 4> NewBlocks; 999 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1000 1001 // We will need to clone a bunch of blocks, wrap up the clone operation in 1002 // a helper. 1003 auto CloneBlock = [&](BasicBlock *OldBB) { 1004 // Clone the basic block and insert it before the new preheader. 1005 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1006 NewBB->moveBefore(LoopPH); 1007 1008 // Record this block and the mapping. 1009 NewBlocks.push_back(NewBB); 1010 VMap[OldBB] = NewBB; 1011 1012 return NewBB; 1013 }; 1014 1015 // We skip cloning blocks when they have a dominating succ that is not the 1016 // succ we are cloning for. 1017 auto SkipBlock = [&](BasicBlock *BB) { 1018 auto It = DominatingSucc.find(BB); 1019 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1020 }; 1021 1022 // First, clone the preheader. 1023 auto *ClonedPH = CloneBlock(LoopPH); 1024 1025 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1026 for (auto *LoopBB : L.blocks()) 1027 if (!SkipBlock(LoopBB)) 1028 CloneBlock(LoopBB); 1029 1030 // Split all the loop exit edges so that when we clone the exit blocks, if 1031 // any of the exit blocks are *also* a preheader for some other loop, we 1032 // don't create multiple predecessors entering the loop header. 1033 for (auto *ExitBB : ExitBlocks) { 1034 if (SkipBlock(ExitBB)) 1035 continue; 1036 1037 // When we are going to clone an exit, we don't need to clone all the 1038 // instructions in the exit block and we want to ensure we have an easy 1039 // place to merge the CFG, so split the exit first. This is always safe to 1040 // do because there cannot be any non-loop predecessors of a loop exit in 1041 // loop simplified form. 1042 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1043 1044 // Rearrange the names to make it easier to write test cases by having the 1045 // exit block carry the suffix rather than the merge block carrying the 1046 // suffix. 1047 MergeBB->takeName(ExitBB); 1048 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1049 1050 // Now clone the original exit block. 1051 auto *ClonedExitBB = CloneBlock(ExitBB); 1052 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1053 "Exit block should have been split to have one successor!"); 1054 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1055 "Cloned exit block has the wrong successor!"); 1056 1057 // Remap any cloned instructions and create a merge phi node for them. 1058 for (auto ZippedInsts : llvm::zip_first( 1059 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1060 llvm::make_range(ClonedExitBB->begin(), 1061 std::prev(ClonedExitBB->end())))) { 1062 Instruction &I = std::get<0>(ZippedInsts); 1063 Instruction &ClonedI = std::get<1>(ZippedInsts); 1064 1065 // The only instructions in the exit block should be PHI nodes and 1066 // potentially a landing pad. 1067 assert( 1068 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1069 "Bad instruction in exit block!"); 1070 // We should have a value map between the instruction and its clone. 1071 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1072 1073 auto *MergePN = 1074 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1075 &*MergeBB->getFirstInsertionPt()); 1076 I.replaceAllUsesWith(MergePN); 1077 MergePN->addIncoming(&I, ExitBB); 1078 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1079 } 1080 } 1081 1082 // Rewrite the instructions in the cloned blocks to refer to the instructions 1083 // in the cloned blocks. We have to do this as a second pass so that we have 1084 // everything available. Also, we have inserted new instructions which may 1085 // include assume intrinsics, so we update the assumption cache while 1086 // processing this. 1087 for (auto *ClonedBB : NewBlocks) 1088 for (Instruction &I : *ClonedBB) { 1089 RemapInstruction(&I, VMap, 1090 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1091 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1092 if (II->getIntrinsicID() == Intrinsic::assume) 1093 AC.registerAssumption(II); 1094 } 1095 1096 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1097 // have spurious incoming values. 1098 for (auto *LoopBB : L.blocks()) 1099 if (SkipBlock(LoopBB)) 1100 for (auto *SuccBB : successors(LoopBB)) 1101 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1102 for (PHINode &PN : ClonedSuccBB->phis()) 1103 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1104 1105 // Remove the cloned parent as a predecessor of any successor we ended up 1106 // cloning other than the unswitched one. 1107 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1108 for (auto *SuccBB : successors(ParentBB)) { 1109 if (SuccBB == UnswitchedSuccBB) 1110 continue; 1111 1112 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1113 if (!ClonedSuccBB) 1114 continue; 1115 1116 ClonedSuccBB->removePredecessor(ClonedParentBB, 1117 /*KeepOneInputPHIs*/ true); 1118 } 1119 1120 // Replace the cloned branch with an unconditional branch to the cloned 1121 // unswitched successor. 1122 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1123 ClonedParentBB->getTerminator()->eraseFromParent(); 1124 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1125 1126 // If there are duplicate entries in the PHI nodes because of multiple edges 1127 // to the unswitched successor, we need to nuke all but one as we replaced it 1128 // with a direct branch. 1129 for (PHINode &PN : ClonedSuccBB->phis()) { 1130 bool Found = false; 1131 // Loop over the incoming operands backwards so we can easily delete as we 1132 // go without invalidating the index. 1133 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1134 if (PN.getIncomingBlock(i) != ClonedParentBB) 1135 continue; 1136 if (!Found) { 1137 Found = true; 1138 continue; 1139 } 1140 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1141 } 1142 } 1143 1144 // Record the domtree updates for the new blocks. 1145 SmallPtrSet<BasicBlock *, 4> SuccSet; 1146 for (auto *ClonedBB : NewBlocks) { 1147 for (auto *SuccBB : successors(ClonedBB)) 1148 if (SuccSet.insert(SuccBB).second) 1149 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1150 SuccSet.clear(); 1151 } 1152 1153 return ClonedPH; 1154 } 1155 1156 /// Recursively clone the specified loop and all of its children. 1157 /// 1158 /// The target parent loop for the clone should be provided, or can be null if 1159 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1160 /// with the provided value map. The entire original loop must be present in 1161 /// the value map. The cloned loop is returned. 1162 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1163 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1164 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1165 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1166 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1167 for (auto *BB : OrigL.blocks()) { 1168 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1169 ClonedL.addBlockEntry(ClonedBB); 1170 if (LI.getLoopFor(BB) == &OrigL) 1171 LI.changeLoopFor(ClonedBB, &ClonedL); 1172 } 1173 }; 1174 1175 // We specially handle the first loop because it may get cloned into 1176 // a different parent and because we most commonly are cloning leaf loops. 1177 Loop *ClonedRootL = LI.AllocateLoop(); 1178 if (RootParentL) 1179 RootParentL->addChildLoop(ClonedRootL); 1180 else 1181 LI.addTopLevelLoop(ClonedRootL); 1182 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1183 1184 if (OrigRootL.empty()) 1185 return ClonedRootL; 1186 1187 // If we have a nest, we can quickly clone the entire loop nest using an 1188 // iterative approach because it is a tree. We keep the cloned parent in the 1189 // data structure to avoid repeatedly querying through a map to find it. 1190 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1191 // Build up the loops to clone in reverse order as we'll clone them from the 1192 // back. 1193 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1194 LoopsToClone.push_back({ClonedRootL, ChildL}); 1195 do { 1196 Loop *ClonedParentL, *L; 1197 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1198 Loop *ClonedL = LI.AllocateLoop(); 1199 ClonedParentL->addChildLoop(ClonedL); 1200 AddClonedBlocksToLoop(*L, *ClonedL); 1201 for (Loop *ChildL : llvm::reverse(*L)) 1202 LoopsToClone.push_back({ClonedL, ChildL}); 1203 } while (!LoopsToClone.empty()); 1204 1205 return ClonedRootL; 1206 } 1207 1208 /// Build the cloned loops of an original loop from unswitching. 1209 /// 1210 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1211 /// operation. We need to re-verify that there even is a loop (as the backedge 1212 /// may not have been cloned), and even if there are remaining backedges the 1213 /// backedge set may be different. However, we know that each child loop is 1214 /// undisturbed, we only need to find where to place each child loop within 1215 /// either any parent loop or within a cloned version of the original loop. 1216 /// 1217 /// Because child loops may end up cloned outside of any cloned version of the 1218 /// original loop, multiple cloned sibling loops may be created. All of them 1219 /// are returned so that the newly introduced loop nest roots can be 1220 /// identified. 1221 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1222 const ValueToValueMapTy &VMap, LoopInfo &LI, 1223 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1224 Loop *ClonedL = nullptr; 1225 1226 auto *OrigPH = OrigL.getLoopPreheader(); 1227 auto *OrigHeader = OrigL.getHeader(); 1228 1229 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1230 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1231 1232 // We need to know the loops of the cloned exit blocks to even compute the 1233 // accurate parent loop. If we only clone exits to some parent of the 1234 // original parent, we want to clone into that outer loop. We also keep track 1235 // of the loops that our cloned exit blocks participate in. 1236 Loop *ParentL = nullptr; 1237 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1238 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1239 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1240 for (auto *ExitBB : ExitBlocks) 1241 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1242 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1243 ExitLoopMap[ClonedExitBB] = ExitL; 1244 ClonedExitsInLoops.push_back(ClonedExitBB); 1245 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1246 ParentL = ExitL; 1247 } 1248 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1249 ParentL->contains(OrigL.getParentLoop())) && 1250 "The computed parent loop should always contain (or be) the parent of " 1251 "the original loop."); 1252 1253 // We build the set of blocks dominated by the cloned header from the set of 1254 // cloned blocks out of the original loop. While not all of these will 1255 // necessarily be in the cloned loop, it is enough to establish that they 1256 // aren't in unreachable cycles, etc. 1257 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1258 for (auto *BB : OrigL.blocks()) 1259 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1260 ClonedLoopBlocks.insert(ClonedBB); 1261 1262 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1263 // skipped cloning some region of this loop which can in turn skip some of 1264 // the backedges so we have to rebuild the blocks in the loop based on the 1265 // backedges that remain after cloning. 1266 SmallVector<BasicBlock *, 16> Worklist; 1267 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1268 for (auto *Pred : predecessors(ClonedHeader)) { 1269 // The only possible non-loop header predecessor is the preheader because 1270 // we know we cloned the loop in simplified form. 1271 if (Pred == ClonedPH) 1272 continue; 1273 1274 // Because the loop was in simplified form, the only non-loop predecessor 1275 // should be the preheader. 1276 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1277 "header other than the preheader " 1278 "that is not part of the loop!"); 1279 1280 // Insert this block into the loop set and on the first visit (and if it 1281 // isn't the header we're currently walking) put it into the worklist to 1282 // recurse through. 1283 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1284 Worklist.push_back(Pred); 1285 } 1286 1287 // If we had any backedges then there *is* a cloned loop. Put the header into 1288 // the loop set and then walk the worklist backwards to find all the blocks 1289 // that remain within the loop after cloning. 1290 if (!BlocksInClonedLoop.empty()) { 1291 BlocksInClonedLoop.insert(ClonedHeader); 1292 1293 while (!Worklist.empty()) { 1294 BasicBlock *BB = Worklist.pop_back_val(); 1295 assert(BlocksInClonedLoop.count(BB) && 1296 "Didn't put block into the loop set!"); 1297 1298 // Insert any predecessors that are in the possible set into the cloned 1299 // set, and if the insert is successful, add them to the worklist. Note 1300 // that we filter on the blocks that are definitely reachable via the 1301 // backedge to the loop header so we may prune out dead code within the 1302 // cloned loop. 1303 for (auto *Pred : predecessors(BB)) 1304 if (ClonedLoopBlocks.count(Pred) && 1305 BlocksInClonedLoop.insert(Pred).second) 1306 Worklist.push_back(Pred); 1307 } 1308 1309 ClonedL = LI.AllocateLoop(); 1310 if (ParentL) { 1311 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1312 ParentL->addChildLoop(ClonedL); 1313 } else { 1314 LI.addTopLevelLoop(ClonedL); 1315 } 1316 NonChildClonedLoops.push_back(ClonedL); 1317 1318 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1319 // We don't want to just add the cloned loop blocks based on how we 1320 // discovered them. The original order of blocks was carefully built in 1321 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1322 // that logic, we just re-walk the original blocks (and those of the child 1323 // loops) and filter them as we add them into the cloned loop. 1324 for (auto *BB : OrigL.blocks()) { 1325 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1326 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1327 continue; 1328 1329 // Directly add the blocks that are only in this loop. 1330 if (LI.getLoopFor(BB) == &OrigL) { 1331 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1332 continue; 1333 } 1334 1335 // We want to manually add it to this loop and parents. 1336 // Registering it with LoopInfo will happen when we clone the top 1337 // loop for this block. 1338 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1339 PL->addBlockEntry(ClonedBB); 1340 } 1341 1342 // Now add each child loop whose header remains within the cloned loop. All 1343 // of the blocks within the loop must satisfy the same constraints as the 1344 // header so once we pass the header checks we can just clone the entire 1345 // child loop nest. 1346 for (Loop *ChildL : OrigL) { 1347 auto *ClonedChildHeader = 1348 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1349 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1350 continue; 1351 1352 #ifndef NDEBUG 1353 // We should never have a cloned child loop header but fail to have 1354 // all of the blocks for that child loop. 1355 for (auto *ChildLoopBB : ChildL->blocks()) 1356 assert(BlocksInClonedLoop.count( 1357 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1358 "Child cloned loop has a header within the cloned outer " 1359 "loop but not all of its blocks!"); 1360 #endif 1361 1362 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1363 } 1364 } 1365 1366 // Now that we've handled all the components of the original loop that were 1367 // cloned into a new loop, we still need to handle anything from the original 1368 // loop that wasn't in a cloned loop. 1369 1370 // Figure out what blocks are left to place within any loop nest containing 1371 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1372 // them. 1373 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1374 if (BlocksInClonedLoop.empty()) 1375 UnloopedBlockSet.insert(ClonedPH); 1376 for (auto *ClonedBB : ClonedLoopBlocks) 1377 if (!BlocksInClonedLoop.count(ClonedBB)) 1378 UnloopedBlockSet.insert(ClonedBB); 1379 1380 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1381 // backwards across these to process them inside out. The order shouldn't 1382 // matter as we're just trying to build up the map from inside-out; we use 1383 // the map in a more stably ordered way below. 1384 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1385 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1386 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1387 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1388 }); 1389 1390 // Populate the existing ExitLoopMap with everything reachable from each 1391 // exit, starting from the inner most exit. 1392 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1393 assert(Worklist.empty() && "Didn't clear worklist!"); 1394 1395 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1396 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1397 1398 // Walk the CFG back until we hit the cloned PH adding everything reachable 1399 // and in the unlooped set to this exit block's loop. 1400 Worklist.push_back(ExitBB); 1401 do { 1402 BasicBlock *BB = Worklist.pop_back_val(); 1403 // We can stop recursing at the cloned preheader (if we get there). 1404 if (BB == ClonedPH) 1405 continue; 1406 1407 for (BasicBlock *PredBB : predecessors(BB)) { 1408 // If this pred has already been moved to our set or is part of some 1409 // (inner) loop, no update needed. 1410 if (!UnloopedBlockSet.erase(PredBB)) { 1411 assert( 1412 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1413 "Predecessor not mapped to a loop!"); 1414 continue; 1415 } 1416 1417 // We just insert into the loop set here. We'll add these blocks to the 1418 // exit loop after we build up the set in an order that doesn't rely on 1419 // predecessor order (which in turn relies on use list order). 1420 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1421 (void)Inserted; 1422 assert(Inserted && "Should only visit an unlooped block once!"); 1423 1424 // And recurse through to its predecessors. 1425 Worklist.push_back(PredBB); 1426 } 1427 } while (!Worklist.empty()); 1428 } 1429 1430 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1431 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1432 // in their original order adding them to the correct loop. 1433 1434 // We need a stable insertion order. We use the order of the original loop 1435 // order and map into the correct parent loop. 1436 for (auto *BB : llvm::concat<BasicBlock *const>( 1437 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1438 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1439 OuterL->addBasicBlockToLoop(BB, LI); 1440 1441 #ifndef NDEBUG 1442 for (auto &BBAndL : ExitLoopMap) { 1443 auto *BB = BBAndL.first; 1444 auto *OuterL = BBAndL.second; 1445 assert(LI.getLoopFor(BB) == OuterL && 1446 "Failed to put all blocks into outer loops!"); 1447 } 1448 #endif 1449 1450 // Now that all the blocks are placed into the correct containing loop in the 1451 // absence of child loops, find all the potentially cloned child loops and 1452 // clone them into whatever outer loop we placed their header into. 1453 for (Loop *ChildL : OrigL) { 1454 auto *ClonedChildHeader = 1455 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1456 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1457 continue; 1458 1459 #ifndef NDEBUG 1460 for (auto *ChildLoopBB : ChildL->blocks()) 1461 assert(VMap.count(ChildLoopBB) && 1462 "Cloned a child loop header but not all of that loops blocks!"); 1463 #endif 1464 1465 NonChildClonedLoops.push_back(cloneLoopNest( 1466 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1467 } 1468 } 1469 1470 static void 1471 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1472 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1473 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1474 // Find all the dead clones, and remove them from their successors. 1475 SmallVector<BasicBlock *, 16> DeadBlocks; 1476 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1477 for (auto &VMap : VMaps) 1478 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1479 if (!DT.isReachableFromEntry(ClonedBB)) { 1480 for (BasicBlock *SuccBB : successors(ClonedBB)) 1481 SuccBB->removePredecessor(ClonedBB); 1482 DeadBlocks.push_back(ClonedBB); 1483 } 1484 1485 // Remove all MemorySSA in the dead blocks 1486 if (MSSAU) { 1487 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1488 DeadBlocks.end()); 1489 MSSAU->removeBlocks(DeadBlockSet); 1490 } 1491 1492 // Drop any remaining references to break cycles. 1493 for (BasicBlock *BB : DeadBlocks) 1494 BB->dropAllReferences(); 1495 // Erase them from the IR. 1496 for (BasicBlock *BB : DeadBlocks) 1497 BB->eraseFromParent(); 1498 } 1499 1500 static void deleteDeadBlocksFromLoop(Loop &L, 1501 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1502 DominatorTree &DT, LoopInfo &LI, 1503 MemorySSAUpdater *MSSAU) { 1504 // Find all the dead blocks tied to this loop, and remove them from their 1505 // successors. 1506 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1507 1508 // Start with loop/exit blocks and get a transitive closure of reachable dead 1509 // blocks. 1510 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1511 ExitBlocks.end()); 1512 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1513 while (!DeathCandidates.empty()) { 1514 auto *BB = DeathCandidates.pop_back_val(); 1515 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1516 for (BasicBlock *SuccBB : successors(BB)) { 1517 SuccBB->removePredecessor(BB); 1518 DeathCandidates.push_back(SuccBB); 1519 } 1520 DeadBlockSet.insert(BB); 1521 } 1522 } 1523 1524 // Remove all MemorySSA in the dead blocks 1525 if (MSSAU) 1526 MSSAU->removeBlocks(DeadBlockSet); 1527 1528 // Filter out the dead blocks from the exit blocks list so that it can be 1529 // used in the caller. 1530 llvm::erase_if(ExitBlocks, 1531 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1532 1533 // Walk from this loop up through its parents removing all of the dead blocks. 1534 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1535 for (auto *BB : DeadBlockSet) 1536 ParentL->getBlocksSet().erase(BB); 1537 llvm::erase_if(ParentL->getBlocksVector(), 1538 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1539 } 1540 1541 // Now delete the dead child loops. This raw delete will clear them 1542 // recursively. 1543 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1544 if (!DeadBlockSet.count(ChildL->getHeader())) 1545 return false; 1546 1547 assert(llvm::all_of(ChildL->blocks(), 1548 [&](BasicBlock *ChildBB) { 1549 return DeadBlockSet.count(ChildBB); 1550 }) && 1551 "If the child loop header is dead all blocks in the child loop must " 1552 "be dead as well!"); 1553 LI.destroy(ChildL); 1554 return true; 1555 }); 1556 1557 // Remove the loop mappings for the dead blocks and drop all the references 1558 // from these blocks to others to handle cyclic references as we start 1559 // deleting the blocks themselves. 1560 for (auto *BB : DeadBlockSet) { 1561 // Check that the dominator tree has already been updated. 1562 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1563 LI.changeLoopFor(BB, nullptr); 1564 BB->dropAllReferences(); 1565 } 1566 1567 // Actually delete the blocks now that they've been fully unhooked from the 1568 // IR. 1569 for (auto *BB : DeadBlockSet) 1570 BB->eraseFromParent(); 1571 } 1572 1573 /// Recompute the set of blocks in a loop after unswitching. 1574 /// 1575 /// This walks from the original headers predecessors to rebuild the loop. We 1576 /// take advantage of the fact that new blocks can't have been added, and so we 1577 /// filter by the original loop's blocks. This also handles potentially 1578 /// unreachable code that we don't want to explore but might be found examining 1579 /// the predecessors of the header. 1580 /// 1581 /// If the original loop is no longer a loop, this will return an empty set. If 1582 /// it remains a loop, all the blocks within it will be added to the set 1583 /// (including those blocks in inner loops). 1584 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1585 LoopInfo &LI) { 1586 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1587 1588 auto *PH = L.getLoopPreheader(); 1589 auto *Header = L.getHeader(); 1590 1591 // A worklist to use while walking backwards from the header. 1592 SmallVector<BasicBlock *, 16> Worklist; 1593 1594 // First walk the predecessors of the header to find the backedges. This will 1595 // form the basis of our walk. 1596 for (auto *Pred : predecessors(Header)) { 1597 // Skip the preheader. 1598 if (Pred == PH) 1599 continue; 1600 1601 // Because the loop was in simplified form, the only non-loop predecessor 1602 // is the preheader. 1603 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1604 "than the preheader that is not part of the " 1605 "loop!"); 1606 1607 // Insert this block into the loop set and on the first visit and, if it 1608 // isn't the header we're currently walking, put it into the worklist to 1609 // recurse through. 1610 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1611 Worklist.push_back(Pred); 1612 } 1613 1614 // If no backedges were found, we're done. 1615 if (LoopBlockSet.empty()) 1616 return LoopBlockSet; 1617 1618 // We found backedges, recurse through them to identify the loop blocks. 1619 while (!Worklist.empty()) { 1620 BasicBlock *BB = Worklist.pop_back_val(); 1621 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1622 1623 // No need to walk past the header. 1624 if (BB == Header) 1625 continue; 1626 1627 // Because we know the inner loop structure remains valid we can use the 1628 // loop structure to jump immediately across the entire nested loop. 1629 // Further, because it is in loop simplified form, we can directly jump 1630 // to its preheader afterward. 1631 if (Loop *InnerL = LI.getLoopFor(BB)) 1632 if (InnerL != &L) { 1633 assert(L.contains(InnerL) && 1634 "Should not reach a loop *outside* this loop!"); 1635 // The preheader is the only possible predecessor of the loop so 1636 // insert it into the set and check whether it was already handled. 1637 auto *InnerPH = InnerL->getLoopPreheader(); 1638 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1639 "but not contain the inner loop " 1640 "preheader!"); 1641 if (!LoopBlockSet.insert(InnerPH).second) 1642 // The only way to reach the preheader is through the loop body 1643 // itself so if it has been visited the loop is already handled. 1644 continue; 1645 1646 // Insert all of the blocks (other than those already present) into 1647 // the loop set. We expect at least the block that led us to find the 1648 // inner loop to be in the block set, but we may also have other loop 1649 // blocks if they were already enqueued as predecessors of some other 1650 // outer loop block. 1651 for (auto *InnerBB : InnerL->blocks()) { 1652 if (InnerBB == BB) { 1653 assert(LoopBlockSet.count(InnerBB) && 1654 "Block should already be in the set!"); 1655 continue; 1656 } 1657 1658 LoopBlockSet.insert(InnerBB); 1659 } 1660 1661 // Add the preheader to the worklist so we will continue past the 1662 // loop body. 1663 Worklist.push_back(InnerPH); 1664 continue; 1665 } 1666 1667 // Insert any predecessors that were in the original loop into the new 1668 // set, and if the insert is successful, add them to the worklist. 1669 for (auto *Pred : predecessors(BB)) 1670 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1671 Worklist.push_back(Pred); 1672 } 1673 1674 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1675 1676 // We've found all the blocks participating in the loop, return our completed 1677 // set. 1678 return LoopBlockSet; 1679 } 1680 1681 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1682 /// 1683 /// The removal may have removed some child loops entirely but cannot have 1684 /// disturbed any remaining child loops. However, they may need to be hoisted 1685 /// to the parent loop (or to be top-level loops). The original loop may be 1686 /// completely removed. 1687 /// 1688 /// The sibling loops resulting from this update are returned. If the original 1689 /// loop remains a valid loop, it will be the first entry in this list with all 1690 /// of the newly sibling loops following it. 1691 /// 1692 /// Returns true if the loop remains a loop after unswitching, and false if it 1693 /// is no longer a loop after unswitching (and should not continue to be 1694 /// referenced). 1695 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1696 LoopInfo &LI, 1697 SmallVectorImpl<Loop *> &HoistedLoops) { 1698 auto *PH = L.getLoopPreheader(); 1699 1700 // Compute the actual parent loop from the exit blocks. Because we may have 1701 // pruned some exits the loop may be different from the original parent. 1702 Loop *ParentL = nullptr; 1703 SmallVector<Loop *, 4> ExitLoops; 1704 SmallVector<BasicBlock *, 4> ExitsInLoops; 1705 ExitsInLoops.reserve(ExitBlocks.size()); 1706 for (auto *ExitBB : ExitBlocks) 1707 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1708 ExitLoops.push_back(ExitL); 1709 ExitsInLoops.push_back(ExitBB); 1710 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1711 ParentL = ExitL; 1712 } 1713 1714 // Recompute the blocks participating in this loop. This may be empty if it 1715 // is no longer a loop. 1716 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1717 1718 // If we still have a loop, we need to re-set the loop's parent as the exit 1719 // block set changing may have moved it within the loop nest. Note that this 1720 // can only happen when this loop has a parent as it can only hoist the loop 1721 // *up* the nest. 1722 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1723 // Remove this loop's (original) blocks from all of the intervening loops. 1724 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1725 IL = IL->getParentLoop()) { 1726 IL->getBlocksSet().erase(PH); 1727 for (auto *BB : L.blocks()) 1728 IL->getBlocksSet().erase(BB); 1729 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1730 return BB == PH || L.contains(BB); 1731 }); 1732 } 1733 1734 LI.changeLoopFor(PH, ParentL); 1735 L.getParentLoop()->removeChildLoop(&L); 1736 if (ParentL) 1737 ParentL->addChildLoop(&L); 1738 else 1739 LI.addTopLevelLoop(&L); 1740 } 1741 1742 // Now we update all the blocks which are no longer within the loop. 1743 auto &Blocks = L.getBlocksVector(); 1744 auto BlocksSplitI = 1745 LoopBlockSet.empty() 1746 ? Blocks.begin() 1747 : std::stable_partition( 1748 Blocks.begin(), Blocks.end(), 1749 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1750 1751 // Before we erase the list of unlooped blocks, build a set of them. 1752 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1753 if (LoopBlockSet.empty()) 1754 UnloopedBlocks.insert(PH); 1755 1756 // Now erase these blocks from the loop. 1757 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1758 L.getBlocksSet().erase(BB); 1759 Blocks.erase(BlocksSplitI, Blocks.end()); 1760 1761 // Sort the exits in ascending loop depth, we'll work backwards across these 1762 // to process them inside out. 1763 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1764 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1765 }); 1766 1767 // We'll build up a set for each exit loop. 1768 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1769 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1770 1771 auto RemoveUnloopedBlocksFromLoop = 1772 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1773 for (auto *BB : UnloopedBlocks) 1774 L.getBlocksSet().erase(BB); 1775 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1776 return UnloopedBlocks.count(BB); 1777 }); 1778 }; 1779 1780 SmallVector<BasicBlock *, 16> Worklist; 1781 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1782 assert(Worklist.empty() && "Didn't clear worklist!"); 1783 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1784 1785 // Grab the next exit block, in decreasing loop depth order. 1786 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1787 Loop &ExitL = *LI.getLoopFor(ExitBB); 1788 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1789 1790 // Erase all of the unlooped blocks from the loops between the previous 1791 // exit loop and this exit loop. This works because the ExitInLoops list is 1792 // sorted in increasing order of loop depth and thus we visit loops in 1793 // decreasing order of loop depth. 1794 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1795 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1796 1797 // Walk the CFG back until we hit the cloned PH adding everything reachable 1798 // and in the unlooped set to this exit block's loop. 1799 Worklist.push_back(ExitBB); 1800 do { 1801 BasicBlock *BB = Worklist.pop_back_val(); 1802 // We can stop recursing at the cloned preheader (if we get there). 1803 if (BB == PH) 1804 continue; 1805 1806 for (BasicBlock *PredBB : predecessors(BB)) { 1807 // If this pred has already been moved to our set or is part of some 1808 // (inner) loop, no update needed. 1809 if (!UnloopedBlocks.erase(PredBB)) { 1810 assert((NewExitLoopBlocks.count(PredBB) || 1811 ExitL.contains(LI.getLoopFor(PredBB))) && 1812 "Predecessor not in a nested loop (or already visited)!"); 1813 continue; 1814 } 1815 1816 // We just insert into the loop set here. We'll add these blocks to the 1817 // exit loop after we build up the set in a deterministic order rather 1818 // than the predecessor-influenced visit order. 1819 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1820 (void)Inserted; 1821 assert(Inserted && "Should only visit an unlooped block once!"); 1822 1823 // And recurse through to its predecessors. 1824 Worklist.push_back(PredBB); 1825 } 1826 } while (!Worklist.empty()); 1827 1828 // If blocks in this exit loop were directly part of the original loop (as 1829 // opposed to a child loop) update the map to point to this exit loop. This 1830 // just updates a map and so the fact that the order is unstable is fine. 1831 for (auto *BB : NewExitLoopBlocks) 1832 if (Loop *BBL = LI.getLoopFor(BB)) 1833 if (BBL == &L || !L.contains(BBL)) 1834 LI.changeLoopFor(BB, &ExitL); 1835 1836 // We will remove the remaining unlooped blocks from this loop in the next 1837 // iteration or below. 1838 NewExitLoopBlocks.clear(); 1839 } 1840 1841 // Any remaining unlooped blocks are no longer part of any loop unless they 1842 // are part of some child loop. 1843 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1844 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1845 for (auto *BB : UnloopedBlocks) 1846 if (Loop *BBL = LI.getLoopFor(BB)) 1847 if (BBL == &L || !L.contains(BBL)) 1848 LI.changeLoopFor(BB, nullptr); 1849 1850 // Sink all the child loops whose headers are no longer in the loop set to 1851 // the parent (or to be top level loops). We reach into the loop and directly 1852 // update its subloop vector to make this batch update efficient. 1853 auto &SubLoops = L.getSubLoopsVector(); 1854 auto SubLoopsSplitI = 1855 LoopBlockSet.empty() 1856 ? SubLoops.begin() 1857 : std::stable_partition( 1858 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1859 return LoopBlockSet.count(SubL->getHeader()); 1860 }); 1861 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1862 HoistedLoops.push_back(HoistedL); 1863 HoistedL->setParentLoop(nullptr); 1864 1865 // To compute the new parent of this hoisted loop we look at where we 1866 // placed the preheader above. We can't lookup the header itself because we 1867 // retained the mapping from the header to the hoisted loop. But the 1868 // preheader and header should have the exact same new parent computed 1869 // based on the set of exit blocks from the original loop as the preheader 1870 // is a predecessor of the header and so reached in the reverse walk. And 1871 // because the loops were all in simplified form the preheader of the 1872 // hoisted loop can't be part of some *other* loop. 1873 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1874 NewParentL->addChildLoop(HoistedL); 1875 else 1876 LI.addTopLevelLoop(HoistedL); 1877 } 1878 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1879 1880 // Actually delete the loop if nothing remained within it. 1881 if (Blocks.empty()) { 1882 assert(SubLoops.empty() && 1883 "Failed to remove all subloops from the original loop!"); 1884 if (Loop *ParentL = L.getParentLoop()) 1885 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1886 else 1887 LI.removeLoop(llvm::find(LI, &L)); 1888 LI.destroy(&L); 1889 return false; 1890 } 1891 1892 return true; 1893 } 1894 1895 /// Helper to visit a dominator subtree, invoking a callable on each node. 1896 /// 1897 /// Returning false at any point will stop walking past that node of the tree. 1898 template <typename CallableT> 1899 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1900 SmallVector<DomTreeNode *, 4> DomWorklist; 1901 DomWorklist.push_back(DT[BB]); 1902 #ifndef NDEBUG 1903 SmallPtrSet<DomTreeNode *, 4> Visited; 1904 Visited.insert(DT[BB]); 1905 #endif 1906 do { 1907 DomTreeNode *N = DomWorklist.pop_back_val(); 1908 1909 // Visit this node. 1910 if (!Callable(N->getBlock())) 1911 continue; 1912 1913 // Accumulate the child nodes. 1914 for (DomTreeNode *ChildN : *N) { 1915 assert(Visited.insert(ChildN).second && 1916 "Cannot visit a node twice when walking a tree!"); 1917 DomWorklist.push_back(ChildN); 1918 } 1919 } while (!DomWorklist.empty()); 1920 } 1921 1922 static void unswitchNontrivialInvariants( 1923 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1924 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1925 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1926 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 1927 auto *ParentBB = TI.getParent(); 1928 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1929 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1930 1931 // We can only unswitch switches, conditional branches with an invariant 1932 // condition, or combining invariant conditions with an instruction. 1933 assert((SI || (BI && BI->isConditional())) && 1934 "Can only unswitch switches and conditional branch!"); 1935 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1936 if (FullUnswitch) 1937 assert(Invariants.size() == 1 && 1938 "Cannot have other invariants with full unswitching!"); 1939 else 1940 assert(isa<Instruction>(BI->getCondition()) && 1941 "Partial unswitching requires an instruction as the condition!"); 1942 1943 if (MSSAU && VerifyMemorySSA) 1944 MSSAU->getMemorySSA()->verifyMemorySSA(); 1945 1946 // Constant and BBs tracking the cloned and continuing successor. When we are 1947 // unswitching the entire condition, this can just be trivially chosen to 1948 // unswitch towards `true`. However, when we are unswitching a set of 1949 // invariants combined with `and` or `or`, the combining operation determines 1950 // the best direction to unswitch: we want to unswitch the direction that will 1951 // collapse the branch. 1952 bool Direction = true; 1953 int ClonedSucc = 0; 1954 if (!FullUnswitch) { 1955 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1956 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1957 Instruction::And && 1958 "Only `or` and `and` instructions can combine invariants being " 1959 "unswitched."); 1960 Direction = false; 1961 ClonedSucc = 1; 1962 } 1963 } 1964 1965 BasicBlock *RetainedSuccBB = 1966 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1967 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1968 if (BI) 1969 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1970 else 1971 for (auto Case : SI->cases()) 1972 if (Case.getCaseSuccessor() != RetainedSuccBB) 1973 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1974 1975 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 1976 "Should not unswitch the same successor we are retaining!"); 1977 1978 // The branch should be in this exact loop. Any inner loop's invariant branch 1979 // should be handled by unswitching that inner loop. The caller of this 1980 // routine should filter out any candidates that remain (but were skipped for 1981 // whatever reason). 1982 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1983 1984 // Compute the parent loop now before we start hacking on things. 1985 Loop *ParentL = L.getParentLoop(); 1986 // Get blocks in RPO order for MSSA update, before changing the CFG. 1987 LoopBlocksRPO LBRPO(&L); 1988 if (MSSAU) 1989 LBRPO.perform(&LI); 1990 1991 // Compute the outer-most loop containing one of our exit blocks. This is the 1992 // furthest up our loopnest which can be mutated, which we will use below to 1993 // update things. 1994 Loop *OuterExitL = &L; 1995 for (auto *ExitBB : ExitBlocks) { 1996 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1997 if (!NewOuterExitL) { 1998 // We exited the entire nest with this block, so we're done. 1999 OuterExitL = nullptr; 2000 break; 2001 } 2002 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2003 OuterExitL = NewOuterExitL; 2004 } 2005 2006 // At this point, we're definitely going to unswitch something so invalidate 2007 // any cached information in ScalarEvolution for the outer most loop 2008 // containing an exit block and all nested loops. 2009 if (SE) { 2010 if (OuterExitL) 2011 SE->forgetLoop(OuterExitL); 2012 else 2013 SE->forgetTopmostLoop(&L); 2014 } 2015 2016 ICFLoopSafetyInfo SafetyInfo(&DT); 2017 SafetyInfo.computeLoopSafetyInfo(&L); 2018 bool InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L); 2019 2020 // If the edge from this terminator to a successor dominates that successor, 2021 // store a map from each block in its dominator subtree to it. This lets us 2022 // tell when cloning for a particular successor if a block is dominated by 2023 // some *other* successor with a single data structure. We use this to 2024 // significantly reduce cloning. 2025 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2026 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2027 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2028 if (SuccBB->getUniquePredecessor() || 2029 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2030 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2031 })) 2032 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2033 DominatingSucc[BB] = SuccBB; 2034 return true; 2035 }); 2036 2037 // Split the preheader, so that we know that there is a safe place to insert 2038 // the conditional branch. We will change the preheader to have a conditional 2039 // branch on LoopCond. The original preheader will become the split point 2040 // between the unswitched versions, and we will have a new preheader for the 2041 // original loop. 2042 BasicBlock *SplitBB = L.getLoopPreheader(); 2043 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2044 2045 // Keep track of the dominator tree updates needed. 2046 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2047 2048 // Clone the loop for each unswitched successor. 2049 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2050 VMaps.reserve(UnswitchedSuccBBs.size()); 2051 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2052 for (auto *SuccBB : UnswitchedSuccBBs) { 2053 VMaps.emplace_back(new ValueToValueMapTy()); 2054 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2055 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2056 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2057 } 2058 2059 // The stitching of the branched code back together depends on whether we're 2060 // doing full unswitching or not with the exception that we always want to 2061 // nuke the initial terminator placed in the split block. 2062 SplitBB->getTerminator()->eraseFromParent(); 2063 if (FullUnswitch) { 2064 // Splice the terminator from the original loop and rewrite its 2065 // successors. 2066 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2067 2068 // Keep a clone of the terminator for MSSA updates. 2069 Instruction *NewTI = TI.clone(); 2070 ParentBB->getInstList().push_back(NewTI); 2071 2072 // First wire up the moved terminator to the preheaders. 2073 if (BI) { 2074 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2075 BI->setSuccessor(ClonedSucc, ClonedPH); 2076 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2077 if (InsertFreeze) { 2078 auto Cond = BI->getCondition(); 2079 if (!isGuaranteedNotToBeUndefOrPoison(Cond)) 2080 BI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", BI)); 2081 } 2082 2083 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2084 } else { 2085 assert(SI && "Must either be a branch or switch!"); 2086 2087 // Walk the cases and directly update their successors. 2088 assert(SI->getDefaultDest() == RetainedSuccBB && 2089 "Not retaining default successor!"); 2090 SI->setDefaultDest(LoopPH); 2091 for (auto &Case : SI->cases()) 2092 if (Case.getCaseSuccessor() == RetainedSuccBB) 2093 Case.setSuccessor(LoopPH); 2094 else 2095 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2096 2097 if (InsertFreeze) { 2098 auto Cond = SI->getCondition(); 2099 if (!isGuaranteedNotToBeUndefOrPoison(Cond)) 2100 SI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", SI)); 2101 } 2102 2103 // We need to use the set to populate domtree updates as even when there 2104 // are multiple cases pointing at the same successor we only want to 2105 // remove and insert one edge in the domtree. 2106 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2107 DTUpdates.push_back( 2108 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2109 } 2110 2111 if (MSSAU) { 2112 DT.applyUpdates(DTUpdates); 2113 DTUpdates.clear(); 2114 2115 // Remove all but one edge to the retained block and all unswitched 2116 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2117 // when we know we only keep a single edge for each case. 2118 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2119 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2120 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2121 2122 for (auto &VMap : VMaps) 2123 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2124 /*IgnoreIncomingWithNoClones=*/true); 2125 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2126 2127 // Remove all edges to unswitched blocks. 2128 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2129 MSSAU->removeEdge(ParentBB, SuccBB); 2130 } 2131 2132 // Now unhook the successor relationship as we'll be replacing 2133 // the terminator with a direct branch. This is much simpler for branches 2134 // than switches so we handle those first. 2135 if (BI) { 2136 // Remove the parent as a predecessor of the unswitched successor. 2137 assert(UnswitchedSuccBBs.size() == 1 && 2138 "Only one possible unswitched block for a branch!"); 2139 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2140 UnswitchedSuccBB->removePredecessor(ParentBB, 2141 /*KeepOneInputPHIs*/ true); 2142 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2143 } else { 2144 // Note that we actually want to remove the parent block as a predecessor 2145 // of *every* case successor. The case successor is either unswitched, 2146 // completely eliminating an edge from the parent to that successor, or it 2147 // is a duplicate edge to the retained successor as the retained successor 2148 // is always the default successor and as we'll replace this with a direct 2149 // branch we no longer need the duplicate entries in the PHI nodes. 2150 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2151 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2152 "Not retaining default successor!"); 2153 for (auto &Case : NewSI->cases()) 2154 Case.getCaseSuccessor()->removePredecessor( 2155 ParentBB, 2156 /*KeepOneInputPHIs*/ true); 2157 2158 // We need to use the set to populate domtree updates as even when there 2159 // are multiple cases pointing at the same successor we only want to 2160 // remove and insert one edge in the domtree. 2161 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2162 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2163 } 2164 2165 // After MSSAU update, remove the cloned terminator instruction NewTI. 2166 ParentBB->getTerminator()->eraseFromParent(); 2167 2168 // Create a new unconditional branch to the continuing block (as opposed to 2169 // the one cloned). 2170 BranchInst::Create(RetainedSuccBB, ParentBB); 2171 } else { 2172 assert(BI && "Only branches have partial unswitching."); 2173 assert(UnswitchedSuccBBs.size() == 1 && 2174 "Only one possible unswitched block for a branch!"); 2175 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2176 // When doing a partial unswitch, we have to do a bit more work to build up 2177 // the branch in the split block. 2178 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2179 *ClonedPH, *LoopPH, InsertFreeze); 2180 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2181 2182 if (MSSAU) { 2183 DT.applyUpdates(DTUpdates); 2184 DTUpdates.clear(); 2185 2186 // Perform MSSA cloning updates. 2187 for (auto &VMap : VMaps) 2188 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2189 /*IgnoreIncomingWithNoClones=*/true); 2190 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2191 } 2192 } 2193 2194 // Apply the updates accumulated above to get an up-to-date dominator tree. 2195 DT.applyUpdates(DTUpdates); 2196 2197 // Now that we have an accurate dominator tree, first delete the dead cloned 2198 // blocks so that we can accurately build any cloned loops. It is important to 2199 // not delete the blocks from the original loop yet because we still want to 2200 // reference the original loop to understand the cloned loop's structure. 2201 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2202 2203 // Build the cloned loop structure itself. This may be substantially 2204 // different from the original structure due to the simplified CFG. This also 2205 // handles inserting all the cloned blocks into the correct loops. 2206 SmallVector<Loop *, 4> NonChildClonedLoops; 2207 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2208 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2209 2210 // Now that our cloned loops have been built, we can update the original loop. 2211 // First we delete the dead blocks from it and then we rebuild the loop 2212 // structure taking these deletions into account. 2213 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2214 2215 if (MSSAU && VerifyMemorySSA) 2216 MSSAU->getMemorySSA()->verifyMemorySSA(); 2217 2218 SmallVector<Loop *, 4> HoistedLoops; 2219 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2220 2221 if (MSSAU && VerifyMemorySSA) 2222 MSSAU->getMemorySSA()->verifyMemorySSA(); 2223 2224 // This transformation has a high risk of corrupting the dominator tree, and 2225 // the below steps to rebuild loop structures will result in hard to debug 2226 // errors in that case so verify that the dominator tree is sane first. 2227 // FIXME: Remove this when the bugs stop showing up and rely on existing 2228 // verification steps. 2229 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2230 2231 if (BI) { 2232 // If we unswitched a branch which collapses the condition to a known 2233 // constant we want to replace all the uses of the invariants within both 2234 // the original and cloned blocks. We do this here so that we can use the 2235 // now updated dominator tree to identify which side the users are on. 2236 assert(UnswitchedSuccBBs.size() == 1 && 2237 "Only one possible unswitched block for a branch!"); 2238 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2239 2240 // When considering multiple partially-unswitched invariants 2241 // we cant just go replace them with constants in both branches. 2242 // 2243 // For 'AND' we infer that true branch ("continue") means true 2244 // for each invariant operand. 2245 // For 'OR' we can infer that false branch ("continue") means false 2246 // for each invariant operand. 2247 // So it happens that for multiple-partial case we dont replace 2248 // in the unswitched branch. 2249 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2250 2251 ConstantInt *UnswitchedReplacement = 2252 Direction ? ConstantInt::getTrue(BI->getContext()) 2253 : ConstantInt::getFalse(BI->getContext()); 2254 ConstantInt *ContinueReplacement = 2255 Direction ? ConstantInt::getFalse(BI->getContext()) 2256 : ConstantInt::getTrue(BI->getContext()); 2257 for (Value *Invariant : Invariants) 2258 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2259 UI != UE;) { 2260 // Grab the use and walk past it so we can clobber it in the use list. 2261 Use *U = &*UI++; 2262 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2263 if (!UserI) 2264 continue; 2265 2266 // Replace it with the 'continue' side if in the main loop body, and the 2267 // unswitched if in the cloned blocks. 2268 if (DT.dominates(LoopPH, UserI->getParent())) 2269 U->set(ContinueReplacement); 2270 else if (ReplaceUnswitched && 2271 DT.dominates(ClonedPH, UserI->getParent())) 2272 U->set(UnswitchedReplacement); 2273 } 2274 } 2275 2276 // We can change which blocks are exit blocks of all the cloned sibling 2277 // loops, the current loop, and any parent loops which shared exit blocks 2278 // with the current loop. As a consequence, we need to re-form LCSSA for 2279 // them. But we shouldn't need to re-form LCSSA for any child loops. 2280 // FIXME: This could be made more efficient by tracking which exit blocks are 2281 // new, and focusing on them, but that isn't likely to be necessary. 2282 // 2283 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2284 // loop nest and update every loop that could have had its exits changed. We 2285 // also need to cover any intervening loops. We add all of these loops to 2286 // a list and sort them by loop depth to achieve this without updating 2287 // unnecessary loops. 2288 auto UpdateLoop = [&](Loop &UpdateL) { 2289 #ifndef NDEBUG 2290 UpdateL.verifyLoop(); 2291 for (Loop *ChildL : UpdateL) { 2292 ChildL->verifyLoop(); 2293 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2294 "Perturbed a child loop's LCSSA form!"); 2295 } 2296 #endif 2297 // First build LCSSA for this loop so that we can preserve it when 2298 // forming dedicated exits. We don't want to perturb some other loop's 2299 // LCSSA while doing that CFG edit. 2300 formLCSSA(UpdateL, DT, &LI, SE); 2301 2302 // For loops reached by this loop's original exit blocks we may 2303 // introduced new, non-dedicated exits. At least try to re-form dedicated 2304 // exits for these loops. This may fail if they couldn't have dedicated 2305 // exits to start with. 2306 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2307 }; 2308 2309 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2310 // and we can do it in any order as they don't nest relative to each other. 2311 // 2312 // Also check if any of the loops we have updated have become top-level loops 2313 // as that will necessitate widening the outer loop scope. 2314 for (Loop *UpdatedL : 2315 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2316 UpdateLoop(*UpdatedL); 2317 if (!UpdatedL->getParentLoop()) 2318 OuterExitL = nullptr; 2319 } 2320 if (IsStillLoop) { 2321 UpdateLoop(L); 2322 if (!L.getParentLoop()) 2323 OuterExitL = nullptr; 2324 } 2325 2326 // If the original loop had exit blocks, walk up through the outer most loop 2327 // of those exit blocks to update LCSSA and form updated dedicated exits. 2328 if (OuterExitL != &L) 2329 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2330 OuterL = OuterL->getParentLoop()) 2331 UpdateLoop(*OuterL); 2332 2333 #ifndef NDEBUG 2334 // Verify the entire loop structure to catch any incorrect updates before we 2335 // progress in the pass pipeline. 2336 LI.verify(DT); 2337 #endif 2338 2339 // Now that we've unswitched something, make callbacks to report the changes. 2340 // For that we need to merge together the updated loops and the cloned loops 2341 // and check whether the original loop survived. 2342 SmallVector<Loop *, 4> SibLoops; 2343 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2344 if (UpdatedL->getParentLoop() == ParentL) 2345 SibLoops.push_back(UpdatedL); 2346 UnswitchCB(IsStillLoop, SibLoops); 2347 2348 if (MSSAU && VerifyMemorySSA) 2349 MSSAU->getMemorySSA()->verifyMemorySSA(); 2350 2351 if (BI) 2352 ++NumBranches; 2353 else 2354 ++NumSwitches; 2355 } 2356 2357 /// Recursively compute the cost of a dominator subtree based on the per-block 2358 /// cost map provided. 2359 /// 2360 /// The recursive computation is memozied into the provided DT-indexed cost map 2361 /// to allow querying it for most nodes in the domtree without it becoming 2362 /// quadratic. 2363 static int 2364 computeDomSubtreeCost(DomTreeNode &N, 2365 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2366 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2367 // Don't accumulate cost (or recurse through) blocks not in our block cost 2368 // map and thus not part of the duplication cost being considered. 2369 auto BBCostIt = BBCostMap.find(N.getBlock()); 2370 if (BBCostIt == BBCostMap.end()) 2371 return 0; 2372 2373 // Lookup this node to see if we already computed its cost. 2374 auto DTCostIt = DTCostMap.find(&N); 2375 if (DTCostIt != DTCostMap.end()) 2376 return DTCostIt->second; 2377 2378 // If not, we have to compute it. We can't use insert above and update 2379 // because computing the cost may insert more things into the map. 2380 int Cost = std::accumulate( 2381 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2382 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2383 }); 2384 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2385 (void)Inserted; 2386 assert(Inserted && "Should not insert a node while visiting children!"); 2387 return Cost; 2388 } 2389 2390 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2391 /// making the following replacement: 2392 /// 2393 /// --code before guard-- 2394 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2395 /// --code after guard-- 2396 /// 2397 /// into 2398 /// 2399 /// --code before guard-- 2400 /// br i1 %cond, label %guarded, label %deopt 2401 /// 2402 /// guarded: 2403 /// --code after guard-- 2404 /// 2405 /// deopt: 2406 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2407 /// unreachable 2408 /// 2409 /// It also makes all relevant DT and LI updates, so that all structures are in 2410 /// valid state after this transform. 2411 static BranchInst * 2412 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2413 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2414 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2415 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2416 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2417 BasicBlock *CheckBB = GI->getParent(); 2418 2419 if (MSSAU && VerifyMemorySSA) 2420 MSSAU->getMemorySSA()->verifyMemorySSA(); 2421 2422 // Remove all CheckBB's successors from DomTree. A block can be seen among 2423 // successors more than once, but for DomTree it should be added only once. 2424 SmallPtrSet<BasicBlock *, 4> Successors; 2425 for (auto *Succ : successors(CheckBB)) 2426 if (Successors.insert(Succ).second) 2427 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2428 2429 Instruction *DeoptBlockTerm = 2430 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2431 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2432 // SplitBlockAndInsertIfThen inserts control flow that branches to 2433 // DeoptBlockTerm if the condition is true. We want the opposite. 2434 CheckBI->swapSuccessors(); 2435 2436 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2437 GuardedBlock->setName("guarded"); 2438 CheckBI->getSuccessor(1)->setName("deopt"); 2439 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2440 2441 // We now have a new exit block. 2442 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2443 2444 if (MSSAU) 2445 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2446 2447 GI->moveBefore(DeoptBlockTerm); 2448 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2449 2450 // Add new successors of CheckBB into DomTree. 2451 for (auto *Succ : successors(CheckBB)) 2452 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2453 2454 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2455 // successors. 2456 for (auto *Succ : Successors) 2457 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2458 2459 // Make proper changes to DT. 2460 DT.applyUpdates(DTUpdates); 2461 // Inform LI of a new loop block. 2462 L.addBasicBlockToLoop(GuardedBlock, LI); 2463 2464 if (MSSAU) { 2465 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2466 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2467 if (VerifyMemorySSA) 2468 MSSAU->getMemorySSA()->verifyMemorySSA(); 2469 } 2470 2471 ++NumGuards; 2472 return CheckBI; 2473 } 2474 2475 /// Cost multiplier is a way to limit potentially exponential behavior 2476 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2477 /// candidates available. Also accounting for the number of "sibling" loops with 2478 /// the idea to account for previous unswitches that already happened on this 2479 /// cluster of loops. There was an attempt to keep this formula simple, 2480 /// just enough to limit the worst case behavior. Even if it is not that simple 2481 /// now it is still not an attempt to provide a detailed heuristic size 2482 /// prediction. 2483 /// 2484 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2485 /// unswitch candidates, making adequate predictions instead of wild guesses. 2486 /// That requires knowing not just the number of "remaining" candidates but 2487 /// also costs of unswitching for each of these candidates. 2488 static int CalculateUnswitchCostMultiplier( 2489 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2490 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2491 UnswitchCandidates) { 2492 2493 // Guards and other exiting conditions do not contribute to exponential 2494 // explosion as soon as they dominate the latch (otherwise there might be 2495 // another path to the latch remaining that does not allow to eliminate the 2496 // loop copy on unswitch). 2497 BasicBlock *Latch = L.getLoopLatch(); 2498 BasicBlock *CondBlock = TI.getParent(); 2499 if (DT.dominates(CondBlock, Latch) && 2500 (isGuard(&TI) || 2501 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2502 return L.contains(SuccBB); 2503 }) <= 1)) { 2504 NumCostMultiplierSkipped++; 2505 return 1; 2506 } 2507 2508 auto *ParentL = L.getParentLoop(); 2509 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2510 : std::distance(LI.begin(), LI.end())); 2511 // Count amount of clones that all the candidates might cause during 2512 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2513 int UnswitchedClones = 0; 2514 for (auto Candidate : UnswitchCandidates) { 2515 Instruction *CI = Candidate.first; 2516 BasicBlock *CondBlock = CI->getParent(); 2517 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2518 if (isGuard(CI)) { 2519 if (!SkipExitingSuccessors) 2520 UnswitchedClones++; 2521 continue; 2522 } 2523 int NonExitingSuccessors = llvm::count_if( 2524 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2525 return !SkipExitingSuccessors || L.contains(SuccBB); 2526 }); 2527 UnswitchedClones += Log2_32(NonExitingSuccessors); 2528 } 2529 2530 // Ignore up to the "unscaled candidates" number of unswitch candidates 2531 // when calculating the power-of-two scaling of the cost. The main idea 2532 // with this control is to allow a small number of unswitches to happen 2533 // and rely more on siblings multiplier (see below) when the number 2534 // of candidates is small. 2535 unsigned ClonesPower = 2536 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2537 2538 // Allowing top-level loops to spread a bit more than nested ones. 2539 int SiblingsMultiplier = 2540 std::max((ParentL ? SiblingsCount 2541 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2542 1); 2543 // Compute the cost multiplier in a way that won't overflow by saturating 2544 // at an upper bound. 2545 int CostMultiplier; 2546 if (ClonesPower > Log2_32(UnswitchThreshold) || 2547 SiblingsMultiplier > UnswitchThreshold) 2548 CostMultiplier = UnswitchThreshold; 2549 else 2550 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2551 (int)UnswitchThreshold); 2552 2553 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2554 << " (siblings " << SiblingsMultiplier << " * clones " 2555 << (1 << ClonesPower) << ")" 2556 << " for unswitch candidate: " << TI << "\n"); 2557 return CostMultiplier; 2558 } 2559 2560 static bool 2561 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2562 AssumptionCache &AC, TargetTransformInfo &TTI, 2563 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2564 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2565 // Collect all invariant conditions within this loop (as opposed to an inner 2566 // loop which would be handled when visiting that inner loop). 2567 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2568 UnswitchCandidates; 2569 2570 // Whether or not we should also collect guards in the loop. 2571 bool CollectGuards = false; 2572 if (UnswitchGuards) { 2573 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2574 Intrinsic::getName(Intrinsic::experimental_guard)); 2575 if (GuardDecl && !GuardDecl->use_empty()) 2576 CollectGuards = true; 2577 } 2578 2579 for (auto *BB : L.blocks()) { 2580 if (LI.getLoopFor(BB) != &L) 2581 continue; 2582 2583 if (CollectGuards) 2584 for (auto &I : *BB) 2585 if (isGuard(&I)) { 2586 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2587 // TODO: Support AND, OR conditions and partial unswitching. 2588 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2589 UnswitchCandidates.push_back({&I, {Cond}}); 2590 } 2591 2592 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2593 // We can only consider fully loop-invariant switch conditions as we need 2594 // to completely eliminate the switch after unswitching. 2595 if (!isa<Constant>(SI->getCondition()) && 2596 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2597 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2598 continue; 2599 } 2600 2601 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2602 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2603 BI->getSuccessor(0) == BI->getSuccessor(1)) 2604 continue; 2605 2606 if (L.isLoopInvariant(BI->getCondition())) { 2607 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2608 continue; 2609 } 2610 2611 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2612 if (CondI.getOpcode() != Instruction::And && 2613 CondI.getOpcode() != Instruction::Or) 2614 continue; 2615 2616 TinyPtrVector<Value *> Invariants = 2617 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2618 if (Invariants.empty()) 2619 continue; 2620 2621 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2622 } 2623 2624 // If we didn't find any candidates, we're done. 2625 if (UnswitchCandidates.empty()) 2626 return false; 2627 2628 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2629 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2630 // irreducible control flow into reducible control flow and introduce new 2631 // loops "out of thin air". If we ever discover important use cases for doing 2632 // this, we can add support to loop unswitch, but it is a lot of complexity 2633 // for what seems little or no real world benefit. 2634 LoopBlocksRPO RPOT(&L); 2635 RPOT.perform(&LI); 2636 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2637 return false; 2638 2639 SmallVector<BasicBlock *, 4> ExitBlocks; 2640 L.getUniqueExitBlocks(ExitBlocks); 2641 2642 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2643 // don't know how to split those exit blocks. 2644 // FIXME: We should teach SplitBlock to handle this and remove this 2645 // restriction. 2646 for (auto *ExitBB : ExitBlocks) 2647 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2648 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2649 return false; 2650 } 2651 2652 LLVM_DEBUG( 2653 dbgs() << "Considering " << UnswitchCandidates.size() 2654 << " non-trivial loop invariant conditions for unswitching.\n"); 2655 2656 // Given that unswitching these terminators will require duplicating parts of 2657 // the loop, so we need to be able to model that cost. Compute the ephemeral 2658 // values and set up a data structure to hold per-BB costs. We cache each 2659 // block's cost so that we don't recompute this when considering different 2660 // subsets of the loop for duplication during unswitching. 2661 SmallPtrSet<const Value *, 4> EphValues; 2662 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2663 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2664 2665 // Compute the cost of each block, as well as the total loop cost. Also, bail 2666 // out if we see instructions which are incompatible with loop unswitching 2667 // (convergent, noduplicate, or cross-basic-block tokens). 2668 // FIXME: We might be able to safely handle some of these in non-duplicated 2669 // regions. 2670 int LoopCost = 0; 2671 for (auto *BB : L.blocks()) { 2672 int Cost = 0; 2673 for (auto &I : *BB) { 2674 if (EphValues.count(&I)) 2675 continue; 2676 2677 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2678 return false; 2679 if (auto CS = CallSite(&I)) 2680 if (CS.isConvergent() || CS.cannotDuplicate()) 2681 return false; 2682 2683 Cost += TTI.getUserCost(&I); 2684 } 2685 assert(Cost >= 0 && "Must not have negative costs!"); 2686 LoopCost += Cost; 2687 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2688 BBCostMap[BB] = Cost; 2689 } 2690 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2691 2692 // Now we find the best candidate by searching for the one with the following 2693 // properties in order: 2694 // 2695 // 1) An unswitching cost below the threshold 2696 // 2) The smallest number of duplicated unswitch candidates (to avoid 2697 // creating redundant subsequent unswitching) 2698 // 3) The smallest cost after unswitching. 2699 // 2700 // We prioritize reducing fanout of unswitch candidates provided the cost 2701 // remains below the threshold because this has a multiplicative effect. 2702 // 2703 // This requires memoizing each dominator subtree to avoid redundant work. 2704 // 2705 // FIXME: Need to actually do the number of candidates part above. 2706 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2707 // Given a terminator which might be unswitched, computes the non-duplicated 2708 // cost for that terminator. 2709 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2710 BasicBlock &BB = *TI.getParent(); 2711 SmallPtrSet<BasicBlock *, 4> Visited; 2712 2713 int Cost = LoopCost; 2714 for (BasicBlock *SuccBB : successors(&BB)) { 2715 // Don't count successors more than once. 2716 if (!Visited.insert(SuccBB).second) 2717 continue; 2718 2719 // If this is a partial unswitch candidate, then it must be a conditional 2720 // branch with a condition of either `or` or `and`. In that case, one of 2721 // the successors is necessarily duplicated, so don't even try to remove 2722 // its cost. 2723 if (!FullUnswitch) { 2724 auto &BI = cast<BranchInst>(TI); 2725 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2726 Instruction::And) { 2727 if (SuccBB == BI.getSuccessor(1)) 2728 continue; 2729 } else { 2730 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2731 Instruction::Or && 2732 "Only `and` and `or` conditions can result in a partial " 2733 "unswitch!"); 2734 if (SuccBB == BI.getSuccessor(0)) 2735 continue; 2736 } 2737 } 2738 2739 // This successor's domtree will not need to be duplicated after 2740 // unswitching if the edge to the successor dominates it (and thus the 2741 // entire tree). This essentially means there is no other path into this 2742 // subtree and so it will end up live in only one clone of the loop. 2743 if (SuccBB->getUniquePredecessor() || 2744 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2745 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2746 })) { 2747 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2748 assert(Cost >= 0 && 2749 "Non-duplicated cost should never exceed total loop cost!"); 2750 } 2751 } 2752 2753 // Now scale the cost by the number of unique successors minus one. We 2754 // subtract one because there is already at least one copy of the entire 2755 // loop. This is computing the new cost of unswitching a condition. 2756 // Note that guards always have 2 unique successors that are implicit and 2757 // will be materialized if we decide to unswitch it. 2758 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2759 assert(SuccessorsCount > 1 && 2760 "Cannot unswitch a condition without multiple distinct successors!"); 2761 return Cost * (SuccessorsCount - 1); 2762 }; 2763 Instruction *BestUnswitchTI = nullptr; 2764 int BestUnswitchCost = 0; 2765 ArrayRef<Value *> BestUnswitchInvariants; 2766 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2767 Instruction &TI = *TerminatorAndInvariants.first; 2768 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2769 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2770 int CandidateCost = ComputeUnswitchedCost( 2771 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2772 Invariants[0] == BI->getCondition())); 2773 // Calculate cost multiplier which is a tool to limit potentially 2774 // exponential behavior of loop-unswitch. 2775 if (EnableUnswitchCostMultiplier) { 2776 int CostMultiplier = 2777 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2778 assert( 2779 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2780 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2781 CandidateCost *= CostMultiplier; 2782 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2783 << " (multiplier: " << CostMultiplier << ")" 2784 << " for unswitch candidate: " << TI << "\n"); 2785 } else { 2786 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2787 << " for unswitch candidate: " << TI << "\n"); 2788 } 2789 2790 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2791 BestUnswitchTI = &TI; 2792 BestUnswitchCost = CandidateCost; 2793 BestUnswitchInvariants = Invariants; 2794 } 2795 } 2796 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2797 2798 if (BestUnswitchCost >= UnswitchThreshold) { 2799 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2800 << BestUnswitchCost << "\n"); 2801 return false; 2802 } 2803 2804 // If the best candidate is a guard, turn it into a branch. 2805 if (isGuard(BestUnswitchTI)) 2806 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2807 ExitBlocks, DT, LI, MSSAU); 2808 2809 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2810 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2811 << "\n"); 2812 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2813 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2814 return true; 2815 } 2816 2817 /// Unswitch control flow predicated on loop invariant conditions. 2818 /// 2819 /// This first hoists all branches or switches which are trivial (IE, do not 2820 /// require duplicating any part of the loop) out of the loop body. It then 2821 /// looks at other loop invariant control flows and tries to unswitch those as 2822 /// well by cloning the loop if the result is small enough. 2823 /// 2824 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2825 /// updated based on the unswitch. 2826 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 2827 /// 2828 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2829 /// true, we will attempt to do non-trivial unswitching as well as trivial 2830 /// unswitching. 2831 /// 2832 /// The `UnswitchCB` callback provided will be run after unswitching is 2833 /// complete, with the first parameter set to `true` if the provided loop 2834 /// remains a loop, and a list of new sibling loops created. 2835 /// 2836 /// If `SE` is non-null, we will update that analysis based on the unswitching 2837 /// done. 2838 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2839 AssumptionCache &AC, TargetTransformInfo &TTI, 2840 bool NonTrivial, 2841 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2842 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2843 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2844 "Loops must be in LCSSA form before unswitching."); 2845 bool Changed = false; 2846 2847 // Must be in loop simplified form: we need a preheader and dedicated exits. 2848 if (!L.isLoopSimplifyForm()) 2849 return false; 2850 2851 // Try trivial unswitch first before loop over other basic blocks in the loop. 2852 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2853 // If we unswitched successfully we will want to clean up the loop before 2854 // processing it further so just mark it as unswitched and return. 2855 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2856 return true; 2857 } 2858 2859 // If we're not doing non-trivial unswitching, we're done. We both accept 2860 // a parameter but also check a local flag that can be used for testing 2861 // a debugging. 2862 if (!NonTrivial && !EnableNonTrivialUnswitch) 2863 return false; 2864 2865 // For non-trivial unswitching, because it often creates new loops, we rely on 2866 // the pass manager to iterate on the loops rather than trying to immediately 2867 // reach a fixed point. There is no substantial advantage to iterating 2868 // internally, and if any of the new loops are simplified enough to contain 2869 // trivial unswitching we want to prefer those. 2870 2871 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2872 // a partial unswitch when possible below the threshold. 2873 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2874 return true; 2875 2876 // No other opportunities to unswitch. 2877 return Changed; 2878 } 2879 2880 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2881 LoopStandardAnalysisResults &AR, 2882 LPMUpdater &U) { 2883 Function &F = *L.getHeader()->getParent(); 2884 (void)F; 2885 2886 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2887 << "\n"); 2888 2889 // Save the current loop name in a variable so that we can report it even 2890 // after it has been deleted. 2891 std::string LoopName = std::string(L.getName()); 2892 2893 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2894 ArrayRef<Loop *> NewLoops) { 2895 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2896 if (!NewLoops.empty()) 2897 U.addSiblingLoops(NewLoops); 2898 2899 // If the current loop remains valid, we should revisit it to catch any 2900 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2901 if (CurrentLoopValid) 2902 U.revisitCurrentLoop(); 2903 else 2904 U.markLoopAsDeleted(L, LoopName); 2905 }; 2906 2907 Optional<MemorySSAUpdater> MSSAU; 2908 if (AR.MSSA) { 2909 MSSAU = MemorySSAUpdater(AR.MSSA); 2910 if (VerifyMemorySSA) 2911 AR.MSSA->verifyMemorySSA(); 2912 } 2913 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2914 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 2915 return PreservedAnalyses::all(); 2916 2917 if (AR.MSSA && VerifyMemorySSA) 2918 AR.MSSA->verifyMemorySSA(); 2919 2920 // Historically this pass has had issues with the dominator tree so verify it 2921 // in asserts builds. 2922 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2923 2924 auto PA = getLoopPassPreservedAnalyses(); 2925 if (AR.MSSA) 2926 PA.preserve<MemorySSAAnalysis>(); 2927 return PA; 2928 } 2929 2930 namespace { 2931 2932 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2933 bool NonTrivial; 2934 2935 public: 2936 static char ID; // Pass ID, replacement for typeid 2937 2938 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2939 : LoopPass(ID), NonTrivial(NonTrivial) { 2940 initializeSimpleLoopUnswitchLegacyPassPass( 2941 *PassRegistry::getPassRegistry()); 2942 } 2943 2944 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2945 2946 void getAnalysisUsage(AnalysisUsage &AU) const override { 2947 AU.addRequired<AssumptionCacheTracker>(); 2948 AU.addRequired<TargetTransformInfoWrapperPass>(); 2949 if (EnableMSSALoopDependency) { 2950 AU.addRequired<MemorySSAWrapperPass>(); 2951 AU.addPreserved<MemorySSAWrapperPass>(); 2952 } 2953 getLoopAnalysisUsage(AU); 2954 } 2955 }; 2956 2957 } // end anonymous namespace 2958 2959 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2960 if (skipLoop(L)) 2961 return false; 2962 2963 Function &F = *L->getHeader()->getParent(); 2964 2965 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2966 << "\n"); 2967 2968 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2969 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2970 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2971 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2972 MemorySSA *MSSA = nullptr; 2973 Optional<MemorySSAUpdater> MSSAU; 2974 if (EnableMSSALoopDependency) { 2975 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2976 MSSAU = MemorySSAUpdater(MSSA); 2977 } 2978 2979 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 2980 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 2981 2982 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2983 ArrayRef<Loop *> NewLoops) { 2984 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2985 for (auto *NewL : NewLoops) 2986 LPM.addLoop(*NewL); 2987 2988 // If the current loop remains valid, re-add it to the queue. This is 2989 // a little wasteful as we'll finish processing the current loop as well, 2990 // but it is the best we can do in the old PM. 2991 if (CurrentLoopValid) 2992 LPM.addLoop(*L); 2993 else 2994 LPM.markLoopAsDeleted(*L); 2995 }; 2996 2997 if (MSSA && VerifyMemorySSA) 2998 MSSA->verifyMemorySSA(); 2999 3000 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 3001 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 3002 3003 if (MSSA && VerifyMemorySSA) 3004 MSSA->verifyMemorySSA(); 3005 3006 // Historically this pass has had issues with the dominator tree so verify it 3007 // in asserts builds. 3008 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3009 3010 return Changed; 3011 } 3012 3013 char SimpleLoopUnswitchLegacyPass::ID = 0; 3014 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3015 "Simple unswitch loops", false, false) 3016 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3017 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3018 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3019 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3020 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3021 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3022 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3023 "Simple unswitch loops", false, false) 3024 3025 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3026 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3027 } 3028