xref: /llvm-project/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp (revision 99c5a66c62ae6b818fcc62a4d9c936ba9d82bdce)
1 //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop unrolling may create many similar GEPs for array accesses.
10 // e.g., a 2-level loop
11 //
12 // float a[32][32]; // global variable
13 //
14 // for (int i = 0; i < 2; ++i) {
15 //   for (int j = 0; j < 2; ++j) {
16 //     ...
17 //     ... = a[x + i][y + j];
18 //     ...
19 //   }
20 // }
21 //
22 // will probably be unrolled to:
23 //
24 // gep %a, 0, %x, %y; load
25 // gep %a, 0, %x, %y + 1; load
26 // gep %a, 0, %x + 1, %y; load
27 // gep %a, 0, %x + 1, %y + 1; load
28 //
29 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
30 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
31 // significant slowdown in targets with limited addressing modes. For instance,
32 // because the PTX target does not support the reg+reg addressing mode, the
33 // NVPTX backend emits PTX code that literally computes the pointer address of
34 // each GEP, wasting tons of registers. It emits the following PTX for the
35 // first load and similar PTX for other loads.
36 //
37 // mov.u32         %r1, %x;
38 // mov.u32         %r2, %y;
39 // mul.wide.u32    %rl2, %r1, 128;
40 // mov.u64         %rl3, a;
41 // add.s64         %rl4, %rl3, %rl2;
42 // mul.wide.u32    %rl5, %r2, 4;
43 // add.s64         %rl6, %rl4, %rl5;
44 // ld.global.f32   %f1, [%rl6];
45 //
46 // To reduce the register pressure, the optimization implemented in this file
47 // merges the common part of a group of GEPs, so we can compute each pointer
48 // address by adding a simple offset to the common part, saving many registers.
49 //
50 // It works by splitting each GEP into a variadic base and a constant offset.
51 // The variadic base can be computed once and reused by multiple GEPs, and the
52 // constant offsets can be nicely folded into the reg+immediate addressing mode
53 // (supported by most targets) without using any extra register.
54 //
55 // For instance, we transform the four GEPs and four loads in the above example
56 // into:
57 //
58 // base = gep a, 0, x, y
59 // load base
60 // laod base + 1  * sizeof(float)
61 // load base + 32 * sizeof(float)
62 // load base + 33 * sizeof(float)
63 //
64 // Given the transformed IR, a backend that supports the reg+immediate
65 // addressing mode can easily fold the pointer arithmetics into the loads. For
66 // example, the NVPTX backend can easily fold the pointer arithmetics into the
67 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
68 //
69 // mov.u32         %r1, %tid.x;
70 // mov.u32         %r2, %tid.y;
71 // mul.wide.u32    %rl2, %r1, 128;
72 // mov.u64         %rl3, a;
73 // add.s64         %rl4, %rl3, %rl2;
74 // mul.wide.u32    %rl5, %r2, 4;
75 // add.s64         %rl6, %rl4, %rl5;
76 // ld.global.f32   %f1, [%rl6]; // so far the same as unoptimized PTX
77 // ld.global.f32   %f2, [%rl6+4]; // much better
78 // ld.global.f32   %f3, [%rl6+128]; // much better
79 // ld.global.f32   %f4, [%rl6+132]; // much better
80 //
81 // Another improvement enabled by the LowerGEP flag is to lower a GEP with
82 // multiple indices to either multiple GEPs with a single index or arithmetic
83 // operations (depending on whether the target uses alias analysis in codegen).
84 // Such transformation can have following benefits:
85 // (1) It can always extract constants in the indices of structure type.
86 // (2) After such Lowering, there are more optimization opportunities such as
87 //     CSE, LICM and CGP.
88 //
89 // E.g. The following GEPs have multiple indices:
90 //  BB1:
91 //    %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
92 //    load %p
93 //    ...
94 //  BB2:
95 //    %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
96 //    load %p2
97 //    ...
98 //
99 // We can not do CSE to the common part related to index "i64 %i". Lowering
100 // GEPs can achieve such goals.
101 // If the target does not use alias analysis in codegen, this pass will
102 // lower a GEP with multiple indices into arithmetic operations:
103 //  BB1:
104 //    %1 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
105 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
106 //    %3 = add i64 %1, %2                          ; CSE opportunity
107 //    %4 = mul i64 %j1, length_of_struct
108 //    %5 = add i64 %3, %4
109 //    %6 = add i64 %3, struct_field_3              ; Constant offset
110 //    %p = inttoptr i64 %6 to i32*
111 //    load %p
112 //    ...
113 //  BB2:
114 //    %7 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
115 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
116 //    %9 = add i64 %7, %8                          ; CSE opportunity
117 //    %10 = mul i64 %j2, length_of_struct
118 //    %11 = add i64 %9, %10
119 //    %12 = add i64 %11, struct_field_2            ; Constant offset
120 //    %p = inttoptr i64 %12 to i32*
121 //    load %p2
122 //    ...
123 //
124 // If the target uses alias analysis in codegen, this pass will lower a GEP
125 // with multiple indices into multiple GEPs with a single index:
126 //  BB1:
127 //    %1 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
128 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
129 //    %3 = getelementptr i8* %1, i64 %2            ; CSE opportunity
130 //    %4 = mul i64 %j1, length_of_struct
131 //    %5 = getelementptr i8* %3, i64 %4
132 //    %6 = getelementptr i8* %5, struct_field_3    ; Constant offset
133 //    %p = bitcast i8* %6 to i32*
134 //    load %p
135 //    ...
136 //  BB2:
137 //    %7 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
138 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
139 //    %9 = getelementptr i8* %7, i64 %8            ; CSE opportunity
140 //    %10 = mul i64 %j2, length_of_struct
141 //    %11 = getelementptr i8* %9, i64 %10
142 //    %12 = getelementptr i8* %11, struct_field_2  ; Constant offset
143 //    %p2 = bitcast i8* %12 to i32*
144 //    load %p2
145 //    ...
146 //
147 // Lowering GEPs can also benefit other passes such as LICM and CGP.
148 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
149 // indices if one of the index is variant. If we lower such GEP into invariant
150 // parts and variant parts, LICM can hoist/sink those invariant parts.
151 // CGP (CodeGen Prepare) tries to sink address calculations that match the
152 // target's addressing modes. A GEP with multiple indices may not match and will
153 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
154 // them. So we end up with a better addressing mode.
155 //
156 //===----------------------------------------------------------------------===//
157 
158 #include "llvm/Transforms/Scalar/SeparateConstOffsetFromGEP.h"
159 #include "llvm/ADT/APInt.h"
160 #include "llvm/ADT/DenseMap.h"
161 #include "llvm/ADT/DepthFirstIterator.h"
162 #include "llvm/ADT/SmallVector.h"
163 #include "llvm/Analysis/LoopInfo.h"
164 #include "llvm/Analysis/MemoryBuiltins.h"
165 #include "llvm/Analysis/TargetLibraryInfo.h"
166 #include "llvm/Analysis/TargetTransformInfo.h"
167 #include "llvm/Analysis/ValueTracking.h"
168 #include "llvm/IR/BasicBlock.h"
169 #include "llvm/IR/Constant.h"
170 #include "llvm/IR/Constants.h"
171 #include "llvm/IR/DataLayout.h"
172 #include "llvm/IR/DerivedTypes.h"
173 #include "llvm/IR/Dominators.h"
174 #include "llvm/IR/Function.h"
175 #include "llvm/IR/GetElementPtrTypeIterator.h"
176 #include "llvm/IR/IRBuilder.h"
177 #include "llvm/IR/InstrTypes.h"
178 #include "llvm/IR/Instruction.h"
179 #include "llvm/IR/Instructions.h"
180 #include "llvm/IR/Module.h"
181 #include "llvm/IR/PassManager.h"
182 #include "llvm/IR/PatternMatch.h"
183 #include "llvm/IR/Type.h"
184 #include "llvm/IR/User.h"
185 #include "llvm/IR/Value.h"
186 #include "llvm/InitializePasses.h"
187 #include "llvm/Pass.h"
188 #include "llvm/Support/Casting.h"
189 #include "llvm/Support/CommandLine.h"
190 #include "llvm/Support/ErrorHandling.h"
191 #include "llvm/Support/raw_ostream.h"
192 #include "llvm/Transforms/Scalar.h"
193 #include "llvm/Transforms/Utils/Local.h"
194 #include <cassert>
195 #include <cstdint>
196 #include <string>
197 
198 using namespace llvm;
199 using namespace llvm::PatternMatch;
200 
201 static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
202     "disable-separate-const-offset-from-gep", cl::init(false),
203     cl::desc("Do not separate the constant offset from a GEP instruction"),
204     cl::Hidden);
205 
206 // Setting this flag may emit false positives when the input module already
207 // contains dead instructions. Therefore, we set it only in unit tests that are
208 // free of dead code.
209 static cl::opt<bool>
210     VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
211                      cl::desc("Verify this pass produces no dead code"),
212                      cl::Hidden);
213 
214 namespace {
215 
216 /// A helper class for separating a constant offset from a GEP index.
217 ///
218 /// In real programs, a GEP index may be more complicated than a simple addition
219 /// of something and a constant integer which can be trivially splitted. For
220 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
221 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
222 ///
223 /// Therefore, this class looks into the expression that computes a given GEP
224 /// index, and tries to find a constant integer that can be hoisted to the
225 /// outermost level of the expression as an addition. Not every constant in an
226 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
227 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
228 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
229 class ConstantOffsetExtractor {
230 public:
231   /// Extracts a constant offset from the given GEP index. It returns the
232   /// new index representing the remainder (equal to the original index minus
233   /// the constant offset), or nullptr if we cannot extract a constant offset.
234   /// \p Idx The given GEP index
235   /// \p GEP The given GEP
236   /// \p UserChainTail Outputs the tail of UserChain so that we can
237   ///                  garbage-collect unused instructions in UserChain.
238   static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
239                         User *&UserChainTail);
240 
241   /// Looks for a constant offset from the given GEP index without extracting
242   /// it. It returns the numeric value of the extracted constant offset (0 if
243   /// failed). The meaning of the arguments are the same as Extract.
244   static int64_t Find(Value *Idx, GetElementPtrInst *GEP);
245 
246 private:
247   ConstantOffsetExtractor(Instruction *InsertionPt)
248       : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()) {}
249 
250   /// Searches the expression that computes V for a non-zero constant C s.t.
251   /// V can be reassociated into the form V' + C. If the searching is
252   /// successful, returns C and update UserChain as a def-use chain from C to V;
253   /// otherwise, UserChain is empty.
254   ///
255   /// \p V            The given expression
256   /// \p SignExtended Whether V will be sign-extended in the computation of the
257   ///                 GEP index
258   /// \p ZeroExtended Whether V will be zero-extended in the computation of the
259   ///                 GEP index
260   /// \p NonNegative  Whether V is guaranteed to be non-negative. For example,
261   ///                 an index of an inbounds GEP is guaranteed to be
262   ///                 non-negative. Levaraging this, we can better split
263   ///                 inbounds GEPs.
264   APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
265 
266   /// A helper function to look into both operands of a binary operator.
267   APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
268                             bool ZeroExtended);
269 
270   /// After finding the constant offset C from the GEP index I, we build a new
271   /// index I' s.t. I' + C = I. This function builds and returns the new
272   /// index I' according to UserChain produced by function "find".
273   ///
274   /// The building conceptually takes two steps:
275   /// 1) iteratively distribute s/zext towards the leaves of the expression tree
276   /// that computes I
277   /// 2) reassociate the expression tree to the form I' + C.
278   ///
279   /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
280   /// sext to a, b and 5 so that we have
281   ///   sext(a) + (sext(b) + 5).
282   /// Then, we reassociate it to
283   ///   (sext(a) + sext(b)) + 5.
284   /// Given this form, we know I' is sext(a) + sext(b).
285   Value *rebuildWithoutConstOffset();
286 
287   /// After the first step of rebuilding the GEP index without the constant
288   /// offset, distribute s/zext to the operands of all operators in UserChain.
289   /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
290   /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
291   ///
292   /// The function also updates UserChain to point to new subexpressions after
293   /// distributing s/zext. e.g., the old UserChain of the above example is
294   /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
295   /// and the new UserChain is
296   /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
297   ///   zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
298   ///
299   /// \p ChainIndex The index to UserChain. ChainIndex is initially
300   ///               UserChain.size() - 1, and is decremented during
301   ///               the recursion.
302   Value *distributeExtsAndCloneChain(unsigned ChainIndex);
303 
304   /// Reassociates the GEP index to the form I' + C and returns I'.
305   Value *removeConstOffset(unsigned ChainIndex);
306 
307   /// A helper function to apply ExtInsts, a list of s/zext, to value V.
308   /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
309   /// returns "sext i32 (zext i16 V to i32) to i64".
310   Value *applyExts(Value *V);
311 
312   /// A helper function that returns whether we can trace into the operands
313   /// of binary operator BO for a constant offset.
314   ///
315   /// \p SignExtended Whether BO is surrounded by sext
316   /// \p ZeroExtended Whether BO is surrounded by zext
317   /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
318   ///                array index.
319   bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
320                     bool NonNegative);
321 
322   /// The path from the constant offset to the old GEP index. e.g., if the GEP
323   /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
324   /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
325   /// UserChain[2] will be the entire expression "a * b + (c + 5)".
326   ///
327   /// This path helps to rebuild the new GEP index.
328   SmallVector<User *, 8> UserChain;
329 
330   /// A data structure used in rebuildWithoutConstOffset. Contains all
331   /// sext/zext instructions along UserChain.
332   SmallVector<CastInst *, 16> ExtInsts;
333 
334   /// Insertion position of cloned instructions.
335   Instruction *IP;
336 
337   const DataLayout &DL;
338 };
339 
340 /// A pass that tries to split every GEP in the function into a variadic
341 /// base and a constant offset. It is a FunctionPass because searching for the
342 /// constant offset may inspect other basic blocks.
343 class SeparateConstOffsetFromGEPLegacyPass : public FunctionPass {
344 public:
345   static char ID;
346 
347   SeparateConstOffsetFromGEPLegacyPass(bool LowerGEP = false)
348       : FunctionPass(ID), LowerGEP(LowerGEP) {
349     initializeSeparateConstOffsetFromGEPLegacyPassPass(
350         *PassRegistry::getPassRegistry());
351   }
352 
353   void getAnalysisUsage(AnalysisUsage &AU) const override {
354     AU.addRequired<DominatorTreeWrapperPass>();
355     AU.addRequired<TargetTransformInfoWrapperPass>();
356     AU.addRequired<LoopInfoWrapperPass>();
357     AU.setPreservesCFG();
358     AU.addRequired<TargetLibraryInfoWrapperPass>();
359   }
360 
361   bool runOnFunction(Function &F) override;
362 
363 private:
364   bool LowerGEP;
365 };
366 
367 /// A pass that tries to split every GEP in the function into a variadic
368 /// base and a constant offset. It is a FunctionPass because searching for the
369 /// constant offset may inspect other basic blocks.
370 class SeparateConstOffsetFromGEP {
371 public:
372   SeparateConstOffsetFromGEP(
373       DominatorTree *DT, LoopInfo *LI, TargetLibraryInfo *TLI,
374       function_ref<TargetTransformInfo &(Function &)> GetTTI, bool LowerGEP)
375       : DT(DT), LI(LI), TLI(TLI), GetTTI(GetTTI), LowerGEP(LowerGEP) {}
376 
377   bool run(Function &F);
378 
379 private:
380   /// Track the operands of an add or sub.
381   using ExprKey = std::pair<Value *, Value *>;
382 
383   /// Create a pair for use as a map key for a commutable operation.
384   static ExprKey createNormalizedCommutablePair(Value *A, Value *B) {
385     if (A < B)
386       return {A, B};
387     return {B, A};
388   }
389 
390   /// Tries to split the given GEP into a variadic base and a constant offset,
391   /// and returns true if the splitting succeeds.
392   bool splitGEP(GetElementPtrInst *GEP);
393 
394   /// Lower a GEP with multiple indices into multiple GEPs with a single index.
395   /// Function splitGEP already split the original GEP into a variadic part and
396   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
397   /// variadic part into a set of GEPs with a single index and applies
398   /// AccumulativeByteOffset to it.
399   /// \p Variadic                  The variadic part of the original GEP.
400   /// \p AccumulativeByteOffset    The constant offset.
401   void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
402                               int64_t AccumulativeByteOffset);
403 
404   /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
405   /// Function splitGEP already split the original GEP into a variadic part and
406   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
407   /// variadic part into a set of arithmetic operations and applies
408   /// AccumulativeByteOffset to it.
409   /// \p Variadic                  The variadic part of the original GEP.
410   /// \p AccumulativeByteOffset    The constant offset.
411   void lowerToArithmetics(GetElementPtrInst *Variadic,
412                           int64_t AccumulativeByteOffset);
413 
414   /// Finds the constant offset within each index and accumulates them. If
415   /// LowerGEP is true, it finds in indices of both sequential and structure
416   /// types, otherwise it only finds in sequential indices. The output
417   /// NeedsExtraction indicates whether we successfully find a non-zero constant
418   /// offset.
419   int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
420 
421   /// Canonicalize array indices to pointer-size integers. This helps to
422   /// simplify the logic of splitting a GEP. For example, if a + b is a
423   /// pointer-size integer, we have
424   ///   gep base, a + b = gep (gep base, a), b
425   /// However, this equality may not hold if the size of a + b is smaller than
426   /// the pointer size, because LLVM conceptually sign-extends GEP indices to
427   /// pointer size before computing the address
428   /// (http://llvm.org/docs/LangRef.html#id181).
429   ///
430   /// This canonicalization is very likely already done in clang and
431   /// instcombine. Therefore, the program will probably remain the same.
432   ///
433   /// Returns true if the module changes.
434   ///
435   /// Verified in @i32_add in split-gep.ll
436   bool canonicalizeArrayIndicesToIndexSize(GetElementPtrInst *GEP);
437 
438   /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
439   /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
440   /// the constant offset. After extraction, it becomes desirable to reunion the
441   /// distributed sexts. For example,
442   ///
443   ///                              &a[sext(i +nsw (j +nsw 5)]
444   ///   => distribute              &a[sext(i) +nsw (sext(j) +nsw 5)]
445   ///   => constant extraction     &a[sext(i) + sext(j)] + 5
446   ///   => reunion                 &a[sext(i +nsw j)] + 5
447   bool reuniteExts(Function &F);
448 
449   /// A helper that reunites sexts in an instruction.
450   bool reuniteExts(Instruction *I);
451 
452   /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
453   Instruction *findClosestMatchingDominator(
454       ExprKey Key, Instruction *Dominatee,
455       DenseMap<ExprKey, SmallVector<Instruction *, 2>> &DominatingExprs);
456 
457   /// Verify F is free of dead code.
458   void verifyNoDeadCode(Function &F);
459 
460   bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
461 
462   // Swap the index operand of two GEP.
463   void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
464 
465   // Check if it is safe to swap operand of two GEP.
466   bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
467                             Loop *CurLoop);
468 
469   const DataLayout *DL = nullptr;
470   DominatorTree *DT = nullptr;
471   LoopInfo *LI;
472   TargetLibraryInfo *TLI;
473   // Retrieved lazily since not always used.
474   function_ref<TargetTransformInfo &(Function &)> GetTTI;
475 
476   /// Whether to lower a GEP with multiple indices into arithmetic operations or
477   /// multiple GEPs with a single index.
478   bool LowerGEP;
479 
480   DenseMap<ExprKey, SmallVector<Instruction *, 2>> DominatingAdds;
481   DenseMap<ExprKey, SmallVector<Instruction *, 2>> DominatingSubs;
482 };
483 
484 } // end anonymous namespace
485 
486 char SeparateConstOffsetFromGEPLegacyPass::ID = 0;
487 
488 INITIALIZE_PASS_BEGIN(
489     SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep",
490     "Split GEPs to a variadic base and a constant offset for better CSE", false,
491     false)
492 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
493 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
494 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
495 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
496 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
497 INITIALIZE_PASS_END(
498     SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep",
499     "Split GEPs to a variadic base and a constant offset for better CSE", false,
500     false)
501 
502 FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) {
503   return new SeparateConstOffsetFromGEPLegacyPass(LowerGEP);
504 }
505 
506 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
507                                             bool ZeroExtended,
508                                             BinaryOperator *BO,
509                                             bool NonNegative) {
510   // We only consider ADD, SUB and OR, because a non-zero constant found in
511   // expressions composed of these operations can be easily hoisted as a
512   // constant offset by reassociation.
513   if (BO->getOpcode() != Instruction::Add &&
514       BO->getOpcode() != Instruction::Sub &&
515       BO->getOpcode() != Instruction::Or) {
516     return false;
517   }
518 
519   Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
520   // Do not trace into "or" unless it is equivalent to "add".
521   // This is the case if the or's disjoint flag is set.
522   if (BO->getOpcode() == Instruction::Or &&
523       !cast<PossiblyDisjointInst>(BO)->isDisjoint())
524     return false;
525 
526   // FIXME: We don't currently support constants from the RHS of subs,
527   // when we are zero-extended, because we need a way to zero-extended
528   // them before they are negated.
529   if (ZeroExtended && !SignExtended && BO->getOpcode() == Instruction::Sub)
530     return false;
531 
532   // In addition, tracing into BO requires that its surrounding s/zext (if
533   // any) is distributable to both operands.
534   //
535   // Suppose BO = A op B.
536   //  SignExtended | ZeroExtended | Distributable?
537   // --------------+--------------+----------------------------------
538   //       0       |      0       | true because no s/zext exists
539   //       0       |      1       | zext(BO) == zext(A) op zext(B)
540   //       1       |      0       | sext(BO) == sext(A) op sext(B)
541   //       1       |      1       | zext(sext(BO)) ==
542   //               |              |     zext(sext(A)) op zext(sext(B))
543   if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
544     // If a + b >= 0 and (a >= 0 or b >= 0), then
545     //   sext(a + b) = sext(a) + sext(b)
546     // even if the addition is not marked nsw.
547     //
548     // Leveraging this invariant, we can trace into an sext'ed inbound GEP
549     // index if the constant offset is non-negative.
550     //
551     // Verified in @sext_add in split-gep.ll.
552     if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
553       if (!ConstLHS->isNegative())
554         return true;
555     }
556     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
557       if (!ConstRHS->isNegative())
558         return true;
559     }
560   }
561 
562   // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
563   // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
564   if (BO->getOpcode() == Instruction::Add ||
565       BO->getOpcode() == Instruction::Sub) {
566     if (SignExtended && !BO->hasNoSignedWrap())
567       return false;
568     if (ZeroExtended && !BO->hasNoUnsignedWrap())
569       return false;
570   }
571 
572   return true;
573 }
574 
575 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
576                                                    bool SignExtended,
577                                                    bool ZeroExtended) {
578   // Save off the current height of the chain, in case we need to restore it.
579   size_t ChainLength = UserChain.size();
580 
581   // BO being non-negative does not shed light on whether its operands are
582   // non-negative. Clear the NonNegative flag here.
583   APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
584                               /* NonNegative */ false);
585   // If we found a constant offset in the left operand, stop and return that.
586   // This shortcut might cause us to miss opportunities of combining the
587   // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
588   // However, such cases are probably already handled by -instcombine,
589   // given this pass runs after the standard optimizations.
590   if (ConstantOffset != 0) return ConstantOffset;
591 
592   // Reset the chain back to where it was when we started exploring this node,
593   // since visiting the LHS didn't pan out.
594   UserChain.resize(ChainLength);
595 
596   ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
597                         /* NonNegative */ false);
598   // If U is a sub operator, negate the constant offset found in the right
599   // operand.
600   if (BO->getOpcode() == Instruction::Sub)
601     ConstantOffset = -ConstantOffset;
602 
603   // If RHS wasn't a suitable candidate either, reset the chain again.
604   if (ConstantOffset == 0)
605     UserChain.resize(ChainLength);
606 
607   return ConstantOffset;
608 }
609 
610 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
611                                     bool ZeroExtended, bool NonNegative) {
612   // TODO(jingyue): We could trace into integer/pointer casts, such as
613   // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
614   // integers because it gives good enough results for our benchmarks.
615   unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
616 
617   // We cannot do much with Values that are not a User, such as an Argument.
618   User *U = dyn_cast<User>(V);
619   if (U == nullptr) return APInt(BitWidth, 0);
620 
621   APInt ConstantOffset(BitWidth, 0);
622   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
623     // Hooray, we found it!
624     ConstantOffset = CI->getValue();
625   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
626     // Trace into subexpressions for more hoisting opportunities.
627     if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
628       ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
629   } else if (isa<TruncInst>(V)) {
630     ConstantOffset =
631         find(U->getOperand(0), SignExtended, ZeroExtended, NonNegative)
632             .trunc(BitWidth);
633   } else if (isa<SExtInst>(V)) {
634     ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
635                           ZeroExtended, NonNegative).sext(BitWidth);
636   } else if (isa<ZExtInst>(V)) {
637     // As an optimization, we can clear the SignExtended flag because
638     // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
639     //
640     // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
641     ConstantOffset =
642         find(U->getOperand(0), /* SignExtended */ false,
643              /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
644   }
645 
646   // If we found a non-zero constant offset, add it to the path for
647   // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
648   // help this optimization.
649   if (ConstantOffset != 0)
650     UserChain.push_back(U);
651   return ConstantOffset;
652 }
653 
654 Value *ConstantOffsetExtractor::applyExts(Value *V) {
655   Value *Current = V;
656   // ExtInsts is built in the use-def order. Therefore, we apply them to V
657   // in the reversed order.
658   for (CastInst *I : llvm::reverse(ExtInsts)) {
659     if (Constant *C = dyn_cast<Constant>(Current)) {
660       // Try to constant fold the cast.
661       Current = ConstantFoldCastOperand(I->getOpcode(), C, I->getType(), DL);
662       if (Current)
663         continue;
664     }
665 
666     Instruction *Ext = I->clone();
667     Ext->setOperand(0, Current);
668     Ext->insertBefore(IP);
669     Current = Ext;
670   }
671   return Current;
672 }
673 
674 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
675   distributeExtsAndCloneChain(UserChain.size() - 1);
676   // Remove all nullptrs (used to be s/zext) from UserChain.
677   unsigned NewSize = 0;
678   for (User *I : UserChain) {
679     if (I != nullptr) {
680       UserChain[NewSize] = I;
681       NewSize++;
682     }
683   }
684   UserChain.resize(NewSize);
685   return removeConstOffset(UserChain.size() - 1);
686 }
687 
688 Value *
689 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
690   User *U = UserChain[ChainIndex];
691   if (ChainIndex == 0) {
692     assert(isa<ConstantInt>(U));
693     // If U is a ConstantInt, applyExts will return a ConstantInt as well.
694     return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
695   }
696 
697   if (CastInst *Cast = dyn_cast<CastInst>(U)) {
698     assert(
699         (isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) &&
700         "Only following instructions can be traced: sext, zext & trunc");
701     ExtInsts.push_back(Cast);
702     UserChain[ChainIndex] = nullptr;
703     return distributeExtsAndCloneChain(ChainIndex - 1);
704   }
705 
706   // Function find only trace into BinaryOperator and CastInst.
707   BinaryOperator *BO = cast<BinaryOperator>(U);
708   // OpNo = which operand of BO is UserChain[ChainIndex - 1]
709   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
710   Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
711   Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
712 
713   BinaryOperator *NewBO = nullptr;
714   if (OpNo == 0) {
715     NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
716                                    BO->getName(), IP);
717   } else {
718     NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
719                                    BO->getName(), IP);
720   }
721   return UserChain[ChainIndex] = NewBO;
722 }
723 
724 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
725   if (ChainIndex == 0) {
726     assert(isa<ConstantInt>(UserChain[ChainIndex]));
727     return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
728   }
729 
730   BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
731   assert((BO->use_empty() || BO->hasOneUse()) &&
732          "distributeExtsAndCloneChain clones each BinaryOperator in "
733          "UserChain, so no one should be used more than "
734          "once");
735 
736   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
737   assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
738   Value *NextInChain = removeConstOffset(ChainIndex - 1);
739   Value *TheOther = BO->getOperand(1 - OpNo);
740 
741   // If NextInChain is 0 and not the LHS of a sub, we can simplify the
742   // sub-expression to be just TheOther.
743   if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
744     if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
745       return TheOther;
746   }
747 
748   BinaryOperator::BinaryOps NewOp = BO->getOpcode();
749   if (BO->getOpcode() == Instruction::Or) {
750     // Rebuild "or" as "add", because "or" may be invalid for the new
751     // expression.
752     //
753     // For instance, given
754     //   a | (b + 5) where a and b + 5 have no common bits,
755     // we can extract 5 as the constant offset.
756     //
757     // However, reusing the "or" in the new index would give us
758     //   (a | b) + 5
759     // which does not equal a | (b + 5).
760     //
761     // Replacing the "or" with "add" is fine, because
762     //   a | (b + 5) = a + (b + 5) = (a + b) + 5
763     NewOp = Instruction::Add;
764   }
765 
766   BinaryOperator *NewBO;
767   if (OpNo == 0) {
768     NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
769   } else {
770     NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
771   }
772   NewBO->takeName(BO);
773   return NewBO;
774 }
775 
776 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
777                                         User *&UserChainTail) {
778   ConstantOffsetExtractor Extractor(GEP);
779   // Find a non-zero constant offset first.
780   APInt ConstantOffset =
781       Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
782                      GEP->isInBounds());
783   if (ConstantOffset == 0) {
784     UserChainTail = nullptr;
785     return nullptr;
786   }
787   // Separates the constant offset from the GEP index.
788   Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
789   UserChainTail = Extractor.UserChain.back();
790   return IdxWithoutConstOffset;
791 }
792 
793 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP) {
794   // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
795   return ConstantOffsetExtractor(GEP)
796       .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
797             GEP->isInBounds())
798       .getSExtValue();
799 }
800 
801 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToIndexSize(
802     GetElementPtrInst *GEP) {
803   bool Changed = false;
804   Type *PtrIdxTy = DL->getIndexType(GEP->getType());
805   gep_type_iterator GTI = gep_type_begin(*GEP);
806   for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
807        I != E; ++I, ++GTI) {
808     // Skip struct member indices which must be i32.
809     if (GTI.isSequential()) {
810       if ((*I)->getType() != PtrIdxTy) {
811         *I = CastInst::CreateIntegerCast(*I, PtrIdxTy, true, "idxprom", GEP);
812         Changed = true;
813       }
814     }
815   }
816   return Changed;
817 }
818 
819 int64_t
820 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
821                                                  bool &NeedsExtraction) {
822   NeedsExtraction = false;
823   int64_t AccumulativeByteOffset = 0;
824   gep_type_iterator GTI = gep_type_begin(*GEP);
825   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
826     if (GTI.isSequential()) {
827       // Constant offsets of scalable types are not really constant.
828       if (GTI.getIndexedType()->isScalableTy())
829         continue;
830 
831       // Tries to extract a constant offset from this GEP index.
832       int64_t ConstantOffset =
833           ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP);
834       if (ConstantOffset != 0) {
835         NeedsExtraction = true;
836         // A GEP may have multiple indices.  We accumulate the extracted
837         // constant offset to a byte offset, and later offset the remainder of
838         // the original GEP with this byte offset.
839         AccumulativeByteOffset +=
840             ConstantOffset * GTI.getSequentialElementStride(*DL);
841       }
842     } else if (LowerGEP) {
843       StructType *StTy = GTI.getStructType();
844       uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
845       // Skip field 0 as the offset is always 0.
846       if (Field != 0) {
847         NeedsExtraction = true;
848         AccumulativeByteOffset +=
849             DL->getStructLayout(StTy)->getElementOffset(Field);
850       }
851     }
852   }
853   return AccumulativeByteOffset;
854 }
855 
856 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
857     GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
858   IRBuilder<> Builder(Variadic);
859   Type *PtrIndexTy = DL->getIndexType(Variadic->getType());
860 
861   Value *ResultPtr = Variadic->getOperand(0);
862   Loop *L = LI->getLoopFor(Variadic->getParent());
863   // Check if the base is not loop invariant or used more than once.
864   bool isSwapCandidate =
865       L && L->isLoopInvariant(ResultPtr) &&
866       !hasMoreThanOneUseInLoop(ResultPtr, L);
867   Value *FirstResult = nullptr;
868 
869   gep_type_iterator GTI = gep_type_begin(*Variadic);
870   // Create an ugly GEP for each sequential index. We don't create GEPs for
871   // structure indices, as they are accumulated in the constant offset index.
872   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
873     if (GTI.isSequential()) {
874       Value *Idx = Variadic->getOperand(I);
875       // Skip zero indices.
876       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
877         if (CI->isZero())
878           continue;
879 
880       APInt ElementSize = APInt(PtrIndexTy->getIntegerBitWidth(),
881                                 GTI.getSequentialElementStride(*DL));
882       // Scale the index by element size.
883       if (ElementSize != 1) {
884         if (ElementSize.isPowerOf2()) {
885           Idx = Builder.CreateShl(
886               Idx, ConstantInt::get(PtrIndexTy, ElementSize.logBase2()));
887         } else {
888           Idx =
889               Builder.CreateMul(Idx, ConstantInt::get(PtrIndexTy, ElementSize));
890         }
891       }
892       // Create an ugly GEP with a single index for each index.
893       ResultPtr = Builder.CreatePtrAdd(ResultPtr, Idx, "uglygep");
894       if (FirstResult == nullptr)
895         FirstResult = ResultPtr;
896     }
897   }
898 
899   // Create a GEP with the constant offset index.
900   if (AccumulativeByteOffset != 0) {
901     Value *Offset = ConstantInt::get(PtrIndexTy, AccumulativeByteOffset);
902     ResultPtr = Builder.CreatePtrAdd(ResultPtr, Offset, "uglygep");
903   } else
904     isSwapCandidate = false;
905 
906   // If we created a GEP with constant index, and the base is loop invariant,
907   // then we swap the first one with it, so LICM can move constant GEP out
908   // later.
909   auto *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult);
910   auto *SecondGEP = dyn_cast<GetElementPtrInst>(ResultPtr);
911   if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
912     swapGEPOperand(FirstGEP, SecondGEP);
913 
914   Variadic->replaceAllUsesWith(ResultPtr);
915   Variadic->eraseFromParent();
916 }
917 
918 void
919 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
920                                                int64_t AccumulativeByteOffset) {
921   IRBuilder<> Builder(Variadic);
922   Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
923   assert(IntPtrTy == DL->getIndexType(Variadic->getType()) &&
924          "Pointer type must match index type for arithmetic-based lowering of "
925          "split GEPs");
926 
927   Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
928   gep_type_iterator GTI = gep_type_begin(*Variadic);
929   // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
930   // don't create arithmetics for structure indices, as they are accumulated
931   // in the constant offset index.
932   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
933     if (GTI.isSequential()) {
934       Value *Idx = Variadic->getOperand(I);
935       // Skip zero indices.
936       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
937         if (CI->isZero())
938           continue;
939 
940       APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
941                                 GTI.getSequentialElementStride(*DL));
942       // Scale the index by element size.
943       if (ElementSize != 1) {
944         if (ElementSize.isPowerOf2()) {
945           Idx = Builder.CreateShl(
946               Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
947         } else {
948           Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
949         }
950       }
951       // Create an ADD for each index.
952       ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
953     }
954   }
955 
956   // Create an ADD for the constant offset index.
957   if (AccumulativeByteOffset != 0) {
958     ResultPtr = Builder.CreateAdd(
959         ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
960   }
961 
962   ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
963   Variadic->replaceAllUsesWith(ResultPtr);
964   Variadic->eraseFromParent();
965 }
966 
967 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
968   // Skip vector GEPs.
969   if (GEP->getType()->isVectorTy())
970     return false;
971 
972   // The backend can already nicely handle the case where all indices are
973   // constant.
974   if (GEP->hasAllConstantIndices())
975     return false;
976 
977   bool Changed = canonicalizeArrayIndicesToIndexSize(GEP);
978 
979   bool NeedsExtraction;
980   int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
981 
982   if (!NeedsExtraction)
983     return Changed;
984 
985   TargetTransformInfo &TTI = GetTTI(*GEP->getFunction());
986 
987   // If LowerGEP is disabled, before really splitting the GEP, check whether the
988   // backend supports the addressing mode we are about to produce. If no, this
989   // splitting probably won't be beneficial.
990   // If LowerGEP is enabled, even the extracted constant offset can not match
991   // the addressing mode, we can still do optimizations to other lowered parts
992   // of variable indices. Therefore, we don't check for addressing modes in that
993   // case.
994   if (!LowerGEP) {
995     unsigned AddrSpace = GEP->getPointerAddressSpace();
996     if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
997                                    /*BaseGV=*/nullptr, AccumulativeByteOffset,
998                                    /*HasBaseReg=*/true, /*Scale=*/0,
999                                    AddrSpace)) {
1000       return Changed;
1001     }
1002   }
1003 
1004   // Remove the constant offset in each sequential index. The resultant GEP
1005   // computes the variadic base.
1006   // Notice that we don't remove struct field indices here. If LowerGEP is
1007   // disabled, a structure index is not accumulated and we still use the old
1008   // one. If LowerGEP is enabled, a structure index is accumulated in the
1009   // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
1010   // handle the constant offset and won't need a new structure index.
1011   gep_type_iterator GTI = gep_type_begin(*GEP);
1012   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
1013     if (GTI.isSequential()) {
1014       // Constant offsets of scalable types are not really constant.
1015       if (GTI.getIndexedType()->isScalableTy())
1016         continue;
1017 
1018       // Splits this GEP index into a variadic part and a constant offset, and
1019       // uses the variadic part as the new index.
1020       Value *OldIdx = GEP->getOperand(I);
1021       User *UserChainTail;
1022       Value *NewIdx =
1023           ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail);
1024       if (NewIdx != nullptr) {
1025         // Switches to the index with the constant offset removed.
1026         GEP->setOperand(I, NewIdx);
1027         // After switching to the new index, we can garbage-collect UserChain
1028         // and the old index if they are not used.
1029         RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
1030         RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
1031       }
1032     }
1033   }
1034 
1035   // Clear the inbounds attribute because the new index may be off-bound.
1036   // e.g.,
1037   //
1038   //   b     = add i64 a, 5
1039   //   addr  = gep inbounds float, float* p, i64 b
1040   //
1041   // is transformed to:
1042   //
1043   //   addr2 = gep float, float* p, i64 a ; inbounds removed
1044   //   addr  = gep inbounds float, float* addr2, i64 5
1045   //
1046   // If a is -4, although the old index b is in bounds, the new index a is
1047   // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
1048   // inbounds keyword is not present, the offsets are added to the base
1049   // address with silently-wrapping two's complement arithmetic".
1050   // Therefore, the final code will be a semantically equivalent.
1051   //
1052   // TODO(jingyue): do some range analysis to keep as many inbounds as
1053   // possible. GEPs with inbounds are more friendly to alias analysis.
1054   bool GEPWasInBounds = GEP->isInBounds();
1055   GEP->setIsInBounds(false);
1056 
1057   // Lowers a GEP to either GEPs with a single index or arithmetic operations.
1058   if (LowerGEP) {
1059     // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
1060     // arithmetic operations if the target uses alias analysis in codegen.
1061     // Additionally, pointers that aren't integral (and so can't be safely
1062     // converted to integers) or those whose offset size is different from their
1063     // pointer size (which means that doing integer arithmetic on them could
1064     // affect that data) can't be lowered in this way.
1065     unsigned AddrSpace = GEP->getPointerAddressSpace();
1066     bool PointerHasExtraData = DL->getPointerSizeInBits(AddrSpace) !=
1067                                DL->getIndexSizeInBits(AddrSpace);
1068     if (TTI.useAA() || DL->isNonIntegralAddressSpace(AddrSpace) ||
1069         PointerHasExtraData)
1070       lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
1071     else
1072       lowerToArithmetics(GEP, AccumulativeByteOffset);
1073     return true;
1074   }
1075 
1076   // No need to create another GEP if the accumulative byte offset is 0.
1077   if (AccumulativeByteOffset == 0)
1078     return true;
1079 
1080   // Offsets the base with the accumulative byte offset.
1081   //
1082   //   %gep                        ; the base
1083   //   ... %gep ...
1084   //
1085   // => add the offset
1086   //
1087   //   %gep2                       ; clone of %gep
1088   //   %new.gep = gep i8, %gep2, %offset
1089   //   %gep                        ; will be removed
1090   //   ... %gep ...
1091   //
1092   // => replace all uses of %gep with %new.gep and remove %gep
1093   //
1094   //   %gep2                       ; clone of %gep
1095   //   %new.gep = gep i8, %gep2, %offset
1096   //   ... %new.gep ...
1097   Instruction *NewGEP = GEP->clone();
1098   NewGEP->insertBefore(GEP);
1099 
1100   Type *PtrIdxTy = DL->getIndexType(GEP->getType());
1101   IRBuilder<> Builder(GEP);
1102   NewGEP = cast<Instruction>(Builder.CreatePtrAdd(
1103       NewGEP, ConstantInt::get(PtrIdxTy, AccumulativeByteOffset, true),
1104       GEP->getName(), GEPWasInBounds));
1105   NewGEP->copyMetadata(*GEP);
1106 
1107   GEP->replaceAllUsesWith(NewGEP);
1108   GEP->eraseFromParent();
1109 
1110   return true;
1111 }
1112 
1113 bool SeparateConstOffsetFromGEPLegacyPass::runOnFunction(Function &F) {
1114   if (skipFunction(F))
1115     return false;
1116   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1117   auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1118   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1119   auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
1120     return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1121   };
1122   SeparateConstOffsetFromGEP Impl(DT, LI, TLI, GetTTI, LowerGEP);
1123   return Impl.run(F);
1124 }
1125 
1126 bool SeparateConstOffsetFromGEP::run(Function &F) {
1127   if (DisableSeparateConstOffsetFromGEP)
1128     return false;
1129 
1130   DL = &F.getParent()->getDataLayout();
1131   bool Changed = false;
1132   for (BasicBlock &B : F) {
1133     if (!DT->isReachableFromEntry(&B))
1134       continue;
1135 
1136     for (Instruction &I : llvm::make_early_inc_range(B))
1137       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I))
1138         Changed |= splitGEP(GEP);
1139     // No need to split GEP ConstantExprs because all its indices are constant
1140     // already.
1141   }
1142 
1143   Changed |= reuniteExts(F);
1144 
1145   if (VerifyNoDeadCode)
1146     verifyNoDeadCode(F);
1147 
1148   return Changed;
1149 }
1150 
1151 Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
1152     ExprKey Key, Instruction *Dominatee,
1153     DenseMap<ExprKey, SmallVector<Instruction *, 2>> &DominatingExprs) {
1154   auto Pos = DominatingExprs.find(Key);
1155   if (Pos == DominatingExprs.end())
1156     return nullptr;
1157 
1158   auto &Candidates = Pos->second;
1159   // Because we process the basic blocks in pre-order of the dominator tree, a
1160   // candidate that doesn't dominate the current instruction won't dominate any
1161   // future instruction either. Therefore, we pop it out of the stack. This
1162   // optimization makes the algorithm O(n).
1163   while (!Candidates.empty()) {
1164     Instruction *Candidate = Candidates.back();
1165     if (DT->dominates(Candidate, Dominatee))
1166       return Candidate;
1167     Candidates.pop_back();
1168   }
1169   return nullptr;
1170 }
1171 
1172 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
1173   if (!I->getType()->isIntOrIntVectorTy())
1174     return false;
1175 
1176   //   Dom: LHS+RHS
1177   //   I: sext(LHS)+sext(RHS)
1178   // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
1179   // TODO: handle zext
1180   Value *LHS = nullptr, *RHS = nullptr;
1181   if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1182     if (LHS->getType() == RHS->getType()) {
1183       ExprKey Key = createNormalizedCommutablePair(LHS, RHS);
1184       if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingAdds)) {
1185         Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1186         NewSExt->takeName(I);
1187         I->replaceAllUsesWith(NewSExt);
1188         RecursivelyDeleteTriviallyDeadInstructions(I);
1189         return true;
1190       }
1191     }
1192   } else if (match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1193     if (LHS->getType() == RHS->getType()) {
1194       if (auto *Dom =
1195               findClosestMatchingDominator({LHS, RHS}, I, DominatingSubs)) {
1196         Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1197         NewSExt->takeName(I);
1198         I->replaceAllUsesWith(NewSExt);
1199         RecursivelyDeleteTriviallyDeadInstructions(I);
1200         return true;
1201       }
1202     }
1203   }
1204 
1205   // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
1206   if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS)))) {
1207     if (programUndefinedIfPoison(I)) {
1208       ExprKey Key = createNormalizedCommutablePair(LHS, RHS);
1209       DominatingAdds[Key].push_back(I);
1210     }
1211   } else if (match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
1212     if (programUndefinedIfPoison(I))
1213       DominatingSubs[{LHS, RHS}].push_back(I);
1214   }
1215   return false;
1216 }
1217 
1218 bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
1219   bool Changed = false;
1220   DominatingAdds.clear();
1221   DominatingSubs.clear();
1222   for (const auto Node : depth_first(DT)) {
1223     BasicBlock *BB = Node->getBlock();
1224     for (Instruction &I : llvm::make_early_inc_range(*BB))
1225       Changed |= reuniteExts(&I);
1226   }
1227   return Changed;
1228 }
1229 
1230 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
1231   for (BasicBlock &B : F) {
1232     for (Instruction &I : B) {
1233       if (isInstructionTriviallyDead(&I)) {
1234         std::string ErrMessage;
1235         raw_string_ostream RSO(ErrMessage);
1236         RSO << "Dead instruction detected!\n" << I << "\n";
1237         llvm_unreachable(RSO.str().c_str());
1238       }
1239     }
1240   }
1241 }
1242 
1243 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
1244     GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
1245   if (!FirstGEP || !FirstGEP->hasOneUse())
1246     return false;
1247 
1248   if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
1249     return false;
1250 
1251   if (FirstGEP == SecondGEP)
1252     return false;
1253 
1254   unsigned FirstNum = FirstGEP->getNumOperands();
1255   unsigned SecondNum = SecondGEP->getNumOperands();
1256   // Give up if the number of operands are not 2.
1257   if (FirstNum != SecondNum || FirstNum != 2)
1258     return false;
1259 
1260   Value *FirstBase = FirstGEP->getOperand(0);
1261   Value *SecondBase = SecondGEP->getOperand(0);
1262   Value *FirstOffset = FirstGEP->getOperand(1);
1263   // Give up if the index of the first GEP is loop invariant.
1264   if (CurLoop->isLoopInvariant(FirstOffset))
1265     return false;
1266 
1267   // Give up if base doesn't have same type.
1268   if (FirstBase->getType() != SecondBase->getType())
1269     return false;
1270 
1271   Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
1272 
1273   // Check if the second operand of first GEP has constant coefficient.
1274   // For an example, for the following code,  we won't gain anything by
1275   // hoisting the second GEP out because the second GEP can be folded away.
1276   //   %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
1277   //   %67 = shl i64 %scevgep.sum.ur159, 2
1278   //   %uglygep160 = getelementptr i8* %65, i64 %67
1279   //   %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
1280 
1281   // Skip constant shift instruction which may be generated by Splitting GEPs.
1282   if (FirstOffsetDef && FirstOffsetDef->isShift() &&
1283       isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
1284     FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
1285 
1286   // Give up if FirstOffsetDef is an Add or Sub with constant.
1287   // Because it may not profitable at all due to constant folding.
1288   if (FirstOffsetDef)
1289     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
1290       unsigned opc = BO->getOpcode();
1291       if ((opc == Instruction::Add || opc == Instruction::Sub) &&
1292           (isa<ConstantInt>(BO->getOperand(0)) ||
1293            isa<ConstantInt>(BO->getOperand(1))))
1294         return false;
1295     }
1296   return true;
1297 }
1298 
1299 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
1300   int UsesInLoop = 0;
1301   for (User *U : V->users()) {
1302     if (Instruction *User = dyn_cast<Instruction>(U))
1303       if (L->contains(User))
1304         if (++UsesInLoop > 1)
1305           return true;
1306   }
1307   return false;
1308 }
1309 
1310 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
1311                                                 GetElementPtrInst *Second) {
1312   Value *Offset1 = First->getOperand(1);
1313   Value *Offset2 = Second->getOperand(1);
1314   First->setOperand(1, Offset2);
1315   Second->setOperand(1, Offset1);
1316 
1317   // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
1318   const DataLayout &DAL = First->getModule()->getDataLayout();
1319   APInt Offset(DAL.getIndexSizeInBits(
1320                    cast<PointerType>(First->getType())->getAddressSpace()),
1321                0);
1322   Value *NewBase =
1323       First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
1324   uint64_t ObjectSize;
1325   if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
1326      Offset.ugt(ObjectSize)) {
1327     First->setIsInBounds(false);
1328     Second->setIsInBounds(false);
1329   } else
1330     First->setIsInBounds(true);
1331 }
1332 
1333 void SeparateConstOffsetFromGEPPass::printPipeline(
1334     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1335   static_cast<PassInfoMixin<SeparateConstOffsetFromGEPPass> *>(this)
1336       ->printPipeline(OS, MapClassName2PassName);
1337   OS << '<';
1338   if (LowerGEP)
1339     OS << "lower-gep";
1340   OS << '>';
1341 }
1342 
1343 PreservedAnalyses
1344 SeparateConstOffsetFromGEPPass::run(Function &F, FunctionAnalysisManager &AM) {
1345   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1346   auto *LI = &AM.getResult<LoopAnalysis>(F);
1347   auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1348   auto GetTTI = [&AM](Function &F) -> TargetTransformInfo & {
1349     return AM.getResult<TargetIRAnalysis>(F);
1350   };
1351   SeparateConstOffsetFromGEP Impl(DT, LI, TLI, GetTTI, LowerGEP);
1352   if (!Impl.run(F))
1353     return PreservedAnalyses::all();
1354   PreservedAnalyses PA;
1355   PA.preserveSet<CFGAnalyses>();
1356   return PA;
1357 }
1358