1 //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Loop unrolling may create many similar GEPs for array accesses. 11 // e.g., a 2-level loop 12 // 13 // float a[32][32]; // global variable 14 // 15 // for (int i = 0; i < 2; ++i) { 16 // for (int j = 0; j < 2; ++j) { 17 // ... 18 // ... = a[x + i][y + j]; 19 // ... 20 // } 21 // } 22 // 23 // will probably be unrolled to: 24 // 25 // gep %a, 0, %x, %y; load 26 // gep %a, 0, %x, %y + 1; load 27 // gep %a, 0, %x + 1, %y; load 28 // gep %a, 0, %x + 1, %y + 1; load 29 // 30 // LLVM's GVN does not use partial redundancy elimination yet, and is thus 31 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs 32 // significant slowdown in targets with limited addressing modes. For instance, 33 // because the PTX target does not support the reg+reg addressing mode, the 34 // NVPTX backend emits PTX code that literally computes the pointer address of 35 // each GEP, wasting tons of registers. It emits the following PTX for the 36 // first load and similar PTX for other loads. 37 // 38 // mov.u32 %r1, %x; 39 // mov.u32 %r2, %y; 40 // mul.wide.u32 %rl2, %r1, 128; 41 // mov.u64 %rl3, a; 42 // add.s64 %rl4, %rl3, %rl2; 43 // mul.wide.u32 %rl5, %r2, 4; 44 // add.s64 %rl6, %rl4, %rl5; 45 // ld.global.f32 %f1, [%rl6]; 46 // 47 // To reduce the register pressure, the optimization implemented in this file 48 // merges the common part of a group of GEPs, so we can compute each pointer 49 // address by adding a simple offset to the common part, saving many registers. 50 // 51 // It works by splitting each GEP into a variadic base and a constant offset. 52 // The variadic base can be computed once and reused by multiple GEPs, and the 53 // constant offsets can be nicely folded into the reg+immediate addressing mode 54 // (supported by most targets) without using any extra register. 55 // 56 // For instance, we transform the four GEPs and four loads in the above example 57 // into: 58 // 59 // base = gep a, 0, x, y 60 // load base 61 // laod base + 1 * sizeof(float) 62 // load base + 32 * sizeof(float) 63 // load base + 33 * sizeof(float) 64 // 65 // Given the transformed IR, a backend that supports the reg+immediate 66 // addressing mode can easily fold the pointer arithmetics into the loads. For 67 // example, the NVPTX backend can easily fold the pointer arithmetics into the 68 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers. 69 // 70 // mov.u32 %r1, %tid.x; 71 // mov.u32 %r2, %tid.y; 72 // mul.wide.u32 %rl2, %r1, 128; 73 // mov.u64 %rl3, a; 74 // add.s64 %rl4, %rl3, %rl2; 75 // mul.wide.u32 %rl5, %r2, 4; 76 // add.s64 %rl6, %rl4, %rl5; 77 // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX 78 // ld.global.f32 %f2, [%rl6+4]; // much better 79 // ld.global.f32 %f3, [%rl6+128]; // much better 80 // ld.global.f32 %f4, [%rl6+132]; // much better 81 // 82 // Another improvement enabled by the LowerGEP flag is to lower a GEP with 83 // multiple indices to either multiple GEPs with a single index or arithmetic 84 // operations (depending on whether the target uses alias analysis in codegen). 85 // Such transformation can have following benefits: 86 // (1) It can always extract constants in the indices of structure type. 87 // (2) After such Lowering, there are more optimization opportunities such as 88 // CSE, LICM and CGP. 89 // 90 // E.g. The following GEPs have multiple indices: 91 // BB1: 92 // %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3 93 // load %p 94 // ... 95 // BB2: 96 // %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2 97 // load %p2 98 // ... 99 // 100 // We can not do CSE to the common part related to index "i64 %i". Lowering 101 // GEPs can achieve such goals. 102 // If the target does not use alias analysis in codegen, this pass will 103 // lower a GEP with multiple indices into arithmetic operations: 104 // BB1: 105 // %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity 106 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity 107 // %3 = add i64 %1, %2 ; CSE opportunity 108 // %4 = mul i64 %j1, length_of_struct 109 // %5 = add i64 %3, %4 110 // %6 = add i64 %3, struct_field_3 ; Constant offset 111 // %p = inttoptr i64 %6 to i32* 112 // load %p 113 // ... 114 // BB2: 115 // %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity 116 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity 117 // %9 = add i64 %7, %8 ; CSE opportunity 118 // %10 = mul i64 %j2, length_of_struct 119 // %11 = add i64 %9, %10 120 // %12 = add i64 %11, struct_field_2 ; Constant offset 121 // %p = inttoptr i64 %12 to i32* 122 // load %p2 123 // ... 124 // 125 // If the target uses alias analysis in codegen, this pass will lower a GEP 126 // with multiple indices into multiple GEPs with a single index: 127 // BB1: 128 // %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity 129 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity 130 // %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity 131 // %4 = mul i64 %j1, length_of_struct 132 // %5 = getelementptr i8* %3, i64 %4 133 // %6 = getelementptr i8* %5, struct_field_3 ; Constant offset 134 // %p = bitcast i8* %6 to i32* 135 // load %p 136 // ... 137 // BB2: 138 // %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity 139 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity 140 // %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity 141 // %10 = mul i64 %j2, length_of_struct 142 // %11 = getelementptr i8* %9, i64 %10 143 // %12 = getelementptr i8* %11, struct_field_2 ; Constant offset 144 // %p2 = bitcast i8* %12 to i32* 145 // load %p2 146 // ... 147 // 148 // Lowering GEPs can also benefit other passes such as LICM and CGP. 149 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple 150 // indices if one of the index is variant. If we lower such GEP into invariant 151 // parts and variant parts, LICM can hoist/sink those invariant parts. 152 // CGP (CodeGen Prepare) tries to sink address calculations that match the 153 // target's addressing modes. A GEP with multiple indices may not match and will 154 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of 155 // them. So we end up with a better addressing mode. 156 // 157 //===----------------------------------------------------------------------===// 158 159 #include "llvm/ADT/APInt.h" 160 #include "llvm/ADT/DenseMap.h" 161 #include "llvm/ADT/DepthFirstIterator.h" 162 #include "llvm/ADT/SmallVector.h" 163 #include "llvm/Analysis/LoopInfo.h" 164 #include "llvm/Analysis/MemoryBuiltins.h" 165 #include "llvm/Analysis/ScalarEvolution.h" 166 #include "llvm/Analysis/TargetLibraryInfo.h" 167 #include "llvm/Analysis/TargetTransformInfo.h" 168 #include "llvm/Analysis/Utils/Local.h" 169 #include "llvm/Analysis/ValueTracking.h" 170 #include "llvm/IR/BasicBlock.h" 171 #include "llvm/IR/Constant.h" 172 #include "llvm/IR/Constants.h" 173 #include "llvm/IR/DataLayout.h" 174 #include "llvm/IR/DerivedTypes.h" 175 #include "llvm/IR/Dominators.h" 176 #include "llvm/IR/Function.h" 177 #include "llvm/IR/GetElementPtrTypeIterator.h" 178 #include "llvm/IR/IRBuilder.h" 179 #include "llvm/IR/Instruction.h" 180 #include "llvm/IR/Instructions.h" 181 #include "llvm/IR/Module.h" 182 #include "llvm/IR/PatternMatch.h" 183 #include "llvm/IR/Type.h" 184 #include "llvm/IR/User.h" 185 #include "llvm/IR/Value.h" 186 #include "llvm/Pass.h" 187 #include "llvm/Support/Casting.h" 188 #include "llvm/Support/CommandLine.h" 189 #include "llvm/Support/ErrorHandling.h" 190 #include "llvm/Support/raw_ostream.h" 191 #include "llvm/Target/TargetMachine.h" 192 #include "llvm/Transforms/Scalar.h" 193 #include <cassert> 194 #include <cstdint> 195 #include <string> 196 197 using namespace llvm; 198 using namespace llvm::PatternMatch; 199 200 static cl::opt<bool> DisableSeparateConstOffsetFromGEP( 201 "disable-separate-const-offset-from-gep", cl::init(false), 202 cl::desc("Do not separate the constant offset from a GEP instruction"), 203 cl::Hidden); 204 205 // Setting this flag may emit false positives when the input module already 206 // contains dead instructions. Therefore, we set it only in unit tests that are 207 // free of dead code. 208 static cl::opt<bool> 209 VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false), 210 cl::desc("Verify this pass produces no dead code"), 211 cl::Hidden); 212 213 namespace { 214 215 /// A helper class for separating a constant offset from a GEP index. 216 /// 217 /// In real programs, a GEP index may be more complicated than a simple addition 218 /// of something and a constant integer which can be trivially splitted. For 219 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the 220 /// constant offset, so that we can separate the index to (a << 3) + b and 5. 221 /// 222 /// Therefore, this class looks into the expression that computes a given GEP 223 /// index, and tries to find a constant integer that can be hoisted to the 224 /// outermost level of the expression as an addition. Not every constant in an 225 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a + 226 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case, 227 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15). 228 class ConstantOffsetExtractor { 229 public: 230 /// Extracts a constant offset from the given GEP index. It returns the 231 /// new index representing the remainder (equal to the original index minus 232 /// the constant offset), or nullptr if we cannot extract a constant offset. 233 /// \p Idx The given GEP index 234 /// \p GEP The given GEP 235 /// \p UserChainTail Outputs the tail of UserChain so that we can 236 /// garbage-collect unused instructions in UserChain. 237 static Value *Extract(Value *Idx, GetElementPtrInst *GEP, 238 User *&UserChainTail, const DominatorTree *DT); 239 240 /// Looks for a constant offset from the given GEP index without extracting 241 /// it. It returns the numeric value of the extracted constant offset (0 if 242 /// failed). The meaning of the arguments are the same as Extract. 243 static int64_t Find(Value *Idx, GetElementPtrInst *GEP, 244 const DominatorTree *DT); 245 246 private: 247 ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT) 248 : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) { 249 } 250 251 /// Searches the expression that computes V for a non-zero constant C s.t. 252 /// V can be reassociated into the form V' + C. If the searching is 253 /// successful, returns C and update UserChain as a def-use chain from C to V; 254 /// otherwise, UserChain is empty. 255 /// 256 /// \p V The given expression 257 /// \p SignExtended Whether V will be sign-extended in the computation of the 258 /// GEP index 259 /// \p ZeroExtended Whether V will be zero-extended in the computation of the 260 /// GEP index 261 /// \p NonNegative Whether V is guaranteed to be non-negative. For example, 262 /// an index of an inbounds GEP is guaranteed to be 263 /// non-negative. Levaraging this, we can better split 264 /// inbounds GEPs. 265 APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative); 266 267 /// A helper function to look into both operands of a binary operator. 268 APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended, 269 bool ZeroExtended); 270 271 /// After finding the constant offset C from the GEP index I, we build a new 272 /// index I' s.t. I' + C = I. This function builds and returns the new 273 /// index I' according to UserChain produced by function "find". 274 /// 275 /// The building conceptually takes two steps: 276 /// 1) iteratively distribute s/zext towards the leaves of the expression tree 277 /// that computes I 278 /// 2) reassociate the expression tree to the form I' + C. 279 /// 280 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute 281 /// sext to a, b and 5 so that we have 282 /// sext(a) + (sext(b) + 5). 283 /// Then, we reassociate it to 284 /// (sext(a) + sext(b)) + 5. 285 /// Given this form, we know I' is sext(a) + sext(b). 286 Value *rebuildWithoutConstOffset(); 287 288 /// After the first step of rebuilding the GEP index without the constant 289 /// offset, distribute s/zext to the operands of all operators in UserChain. 290 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) => 291 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))). 292 /// 293 /// The function also updates UserChain to point to new subexpressions after 294 /// distributing s/zext. e.g., the old UserChain of the above example is 295 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)), 296 /// and the new UserChain is 297 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) -> 298 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5)) 299 /// 300 /// \p ChainIndex The index to UserChain. ChainIndex is initially 301 /// UserChain.size() - 1, and is decremented during 302 /// the recursion. 303 Value *distributeExtsAndCloneChain(unsigned ChainIndex); 304 305 /// Reassociates the GEP index to the form I' + C and returns I'. 306 Value *removeConstOffset(unsigned ChainIndex); 307 308 /// A helper function to apply ExtInsts, a list of s/zext, to value V. 309 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function 310 /// returns "sext i32 (zext i16 V to i32) to i64". 311 Value *applyExts(Value *V); 312 313 /// A helper function that returns whether we can trace into the operands 314 /// of binary operator BO for a constant offset. 315 /// 316 /// \p SignExtended Whether BO is surrounded by sext 317 /// \p ZeroExtended Whether BO is surrounded by zext 318 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound 319 /// array index. 320 bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO, 321 bool NonNegative); 322 323 /// The path from the constant offset to the old GEP index. e.g., if the GEP 324 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will 325 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and 326 /// UserChain[2] will be the entire expression "a * b + (c + 5)". 327 /// 328 /// This path helps to rebuild the new GEP index. 329 SmallVector<User *, 8> UserChain; 330 331 /// A data structure used in rebuildWithoutConstOffset. Contains all 332 /// sext/zext instructions along UserChain. 333 SmallVector<CastInst *, 16> ExtInsts; 334 335 /// Insertion position of cloned instructions. 336 Instruction *IP; 337 338 const DataLayout &DL; 339 const DominatorTree *DT; 340 }; 341 342 /// A pass that tries to split every GEP in the function into a variadic 343 /// base and a constant offset. It is a FunctionPass because searching for the 344 /// constant offset may inspect other basic blocks. 345 class SeparateConstOffsetFromGEP : public FunctionPass { 346 public: 347 static char ID; 348 349 SeparateConstOffsetFromGEP(bool LowerGEP = false) 350 : FunctionPass(ID), LowerGEP(LowerGEP) { 351 initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry()); 352 } 353 354 void getAnalysisUsage(AnalysisUsage &AU) const override { 355 AU.addRequired<DominatorTreeWrapperPass>(); 356 AU.addRequired<ScalarEvolutionWrapperPass>(); 357 AU.addRequired<TargetTransformInfoWrapperPass>(); 358 AU.addRequired<LoopInfoWrapperPass>(); 359 AU.setPreservesCFG(); 360 AU.addRequired<TargetLibraryInfoWrapperPass>(); 361 } 362 363 bool doInitialization(Module &M) override { 364 DL = &M.getDataLayout(); 365 return false; 366 } 367 368 bool runOnFunction(Function &F) override; 369 370 private: 371 /// Tries to split the given GEP into a variadic base and a constant offset, 372 /// and returns true if the splitting succeeds. 373 bool splitGEP(GetElementPtrInst *GEP); 374 375 /// Lower a GEP with multiple indices into multiple GEPs with a single index. 376 /// Function splitGEP already split the original GEP into a variadic part and 377 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the 378 /// variadic part into a set of GEPs with a single index and applies 379 /// AccumulativeByteOffset to it. 380 /// \p Variadic The variadic part of the original GEP. 381 /// \p AccumulativeByteOffset The constant offset. 382 void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic, 383 int64_t AccumulativeByteOffset); 384 385 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form. 386 /// Function splitGEP already split the original GEP into a variadic part and 387 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the 388 /// variadic part into a set of arithmetic operations and applies 389 /// AccumulativeByteOffset to it. 390 /// \p Variadic The variadic part of the original GEP. 391 /// \p AccumulativeByteOffset The constant offset. 392 void lowerToArithmetics(GetElementPtrInst *Variadic, 393 int64_t AccumulativeByteOffset); 394 395 /// Finds the constant offset within each index and accumulates them. If 396 /// LowerGEP is true, it finds in indices of both sequential and structure 397 /// types, otherwise it only finds in sequential indices. The output 398 /// NeedsExtraction indicates whether we successfully find a non-zero constant 399 /// offset. 400 int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction); 401 402 /// Canonicalize array indices to pointer-size integers. This helps to 403 /// simplify the logic of splitting a GEP. For example, if a + b is a 404 /// pointer-size integer, we have 405 /// gep base, a + b = gep (gep base, a), b 406 /// However, this equality may not hold if the size of a + b is smaller than 407 /// the pointer size, because LLVM conceptually sign-extends GEP indices to 408 /// pointer size before computing the address 409 /// (http://llvm.org/docs/LangRef.html#id181). 410 /// 411 /// This canonicalization is very likely already done in clang and 412 /// instcombine. Therefore, the program will probably remain the same. 413 /// 414 /// Returns true if the module changes. 415 /// 416 /// Verified in @i32_add in split-gep.ll 417 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP); 418 419 /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow. 420 /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting 421 /// the constant offset. After extraction, it becomes desirable to reunion the 422 /// distributed sexts. For example, 423 /// 424 /// &a[sext(i +nsw (j +nsw 5)] 425 /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)] 426 /// => constant extraction &a[sext(i) + sext(j)] + 5 427 /// => reunion &a[sext(i +nsw j)] + 5 428 bool reuniteExts(Function &F); 429 430 /// A helper that reunites sexts in an instruction. 431 bool reuniteExts(Instruction *I); 432 433 /// Find the closest dominator of <Dominatee> that is equivalent to <Key>. 434 Instruction *findClosestMatchingDominator(const SCEV *Key, 435 Instruction *Dominatee); 436 /// Verify F is free of dead code. 437 void verifyNoDeadCode(Function &F); 438 439 bool hasMoreThanOneUseInLoop(Value *v, Loop *L); 440 441 // Swap the index operand of two GEP. 442 void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second); 443 444 // Check if it is safe to swap operand of two GEP. 445 bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second, 446 Loop *CurLoop); 447 448 const DataLayout *DL = nullptr; 449 DominatorTree *DT = nullptr; 450 ScalarEvolution *SE; 451 452 LoopInfo *LI; 453 TargetLibraryInfo *TLI; 454 455 /// Whether to lower a GEP with multiple indices into arithmetic operations or 456 /// multiple GEPs with a single index. 457 bool LowerGEP; 458 459 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingExprs; 460 }; 461 462 } // end anonymous namespace 463 464 char SeparateConstOffsetFromGEP::ID = 0; 465 466 INITIALIZE_PASS_BEGIN( 467 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep", 468 "Split GEPs to a variadic base and a constant offset for better CSE", false, 469 false) 470 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 471 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 472 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 473 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 474 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 475 INITIALIZE_PASS_END( 476 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep", 477 "Split GEPs to a variadic base and a constant offset for better CSE", false, 478 false) 479 480 FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) { 481 return new SeparateConstOffsetFromGEP(LowerGEP); 482 } 483 484 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended, 485 bool ZeroExtended, 486 BinaryOperator *BO, 487 bool NonNegative) { 488 // We only consider ADD, SUB and OR, because a non-zero constant found in 489 // expressions composed of these operations can be easily hoisted as a 490 // constant offset by reassociation. 491 if (BO->getOpcode() != Instruction::Add && 492 BO->getOpcode() != Instruction::Sub && 493 BO->getOpcode() != Instruction::Or) { 494 return false; 495 } 496 497 Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1); 498 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS 499 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS). 500 // FIXME: this does not appear to be covered by any tests 501 // (with x86/aarch64 backends at least) 502 if (BO->getOpcode() == Instruction::Or && 503 !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT)) 504 return false; 505 506 // In addition, tracing into BO requires that its surrounding s/zext (if 507 // any) is distributable to both operands. 508 // 509 // Suppose BO = A op B. 510 // SignExtended | ZeroExtended | Distributable? 511 // --------------+--------------+---------------------------------- 512 // 0 | 0 | true because no s/zext exists 513 // 0 | 1 | zext(BO) == zext(A) op zext(B) 514 // 1 | 0 | sext(BO) == sext(A) op sext(B) 515 // 1 | 1 | zext(sext(BO)) == 516 // | | zext(sext(A)) op zext(sext(B)) 517 if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) { 518 // If a + b >= 0 and (a >= 0 or b >= 0), then 519 // sext(a + b) = sext(a) + sext(b) 520 // even if the addition is not marked nsw. 521 // 522 // Leveraging this invarient, we can trace into an sext'ed inbound GEP 523 // index if the constant offset is non-negative. 524 // 525 // Verified in @sext_add in split-gep.ll. 526 if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) { 527 if (!ConstLHS->isNegative()) 528 return true; 529 } 530 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) { 531 if (!ConstRHS->isNegative()) 532 return true; 533 } 534 } 535 536 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B) 537 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B) 538 if (BO->getOpcode() == Instruction::Add || 539 BO->getOpcode() == Instruction::Sub) { 540 if (SignExtended && !BO->hasNoSignedWrap()) 541 return false; 542 if (ZeroExtended && !BO->hasNoUnsignedWrap()) 543 return false; 544 } 545 546 return true; 547 } 548 549 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO, 550 bool SignExtended, 551 bool ZeroExtended) { 552 // BO being non-negative does not shed light on whether its operands are 553 // non-negative. Clear the NonNegative flag here. 554 APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended, 555 /* NonNegative */ false); 556 // If we found a constant offset in the left operand, stop and return that. 557 // This shortcut might cause us to miss opportunities of combining the 558 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9. 559 // However, such cases are probably already handled by -instcombine, 560 // given this pass runs after the standard optimizations. 561 if (ConstantOffset != 0) return ConstantOffset; 562 ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended, 563 /* NonNegative */ false); 564 // If U is a sub operator, negate the constant offset found in the right 565 // operand. 566 if (BO->getOpcode() == Instruction::Sub) 567 ConstantOffset = -ConstantOffset; 568 return ConstantOffset; 569 } 570 571 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended, 572 bool ZeroExtended, bool NonNegative) { 573 // TODO(jingyue): We could trace into integer/pointer casts, such as 574 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only 575 // integers because it gives good enough results for our benchmarks. 576 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 577 578 // We cannot do much with Values that are not a User, such as an Argument. 579 User *U = dyn_cast<User>(V); 580 if (U == nullptr) return APInt(BitWidth, 0); 581 582 APInt ConstantOffset(BitWidth, 0); 583 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 584 // Hooray, we found it! 585 ConstantOffset = CI->getValue(); 586 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) { 587 // Trace into subexpressions for more hoisting opportunities. 588 if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) 589 ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended); 590 } else if (isa<SExtInst>(V)) { 591 ConstantOffset = find(U->getOperand(0), /* SignExtended */ true, 592 ZeroExtended, NonNegative).sext(BitWidth); 593 } else if (isa<ZExtInst>(V)) { 594 // As an optimization, we can clear the SignExtended flag because 595 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll. 596 // 597 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0. 598 ConstantOffset = 599 find(U->getOperand(0), /* SignExtended */ false, 600 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth); 601 } 602 603 // If we found a non-zero constant offset, add it to the path for 604 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't 605 // help this optimization. 606 if (ConstantOffset != 0) 607 UserChain.push_back(U); 608 return ConstantOffset; 609 } 610 611 Value *ConstantOffsetExtractor::applyExts(Value *V) { 612 Value *Current = V; 613 // ExtInsts is built in the use-def order. Therefore, we apply them to V 614 // in the reversed order. 615 for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) { 616 if (Constant *C = dyn_cast<Constant>(Current)) { 617 // If Current is a constant, apply s/zext using ConstantExpr::getCast. 618 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt. 619 Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType()); 620 } else { 621 Instruction *Ext = (*I)->clone(); 622 Ext->setOperand(0, Current); 623 Ext->insertBefore(IP); 624 Current = Ext; 625 } 626 } 627 return Current; 628 } 629 630 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() { 631 distributeExtsAndCloneChain(UserChain.size() - 1); 632 // Remove all nullptrs (used to be s/zext) from UserChain. 633 unsigned NewSize = 0; 634 for (User *I : UserChain) { 635 if (I != nullptr) { 636 UserChain[NewSize] = I; 637 NewSize++; 638 } 639 } 640 UserChain.resize(NewSize); 641 return removeConstOffset(UserChain.size() - 1); 642 } 643 644 Value * 645 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) { 646 User *U = UserChain[ChainIndex]; 647 if (ChainIndex == 0) { 648 assert(isa<ConstantInt>(U)); 649 // If U is a ConstantInt, applyExts will return a ConstantInt as well. 650 return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U)); 651 } 652 653 if (CastInst *Cast = dyn_cast<CastInst>(U)) { 654 assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) && 655 "We only traced into two types of CastInst: sext and zext"); 656 ExtInsts.push_back(Cast); 657 UserChain[ChainIndex] = nullptr; 658 return distributeExtsAndCloneChain(ChainIndex - 1); 659 } 660 661 // Function find only trace into BinaryOperator and CastInst. 662 BinaryOperator *BO = cast<BinaryOperator>(U); 663 // OpNo = which operand of BO is UserChain[ChainIndex - 1] 664 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); 665 Value *TheOther = applyExts(BO->getOperand(1 - OpNo)); 666 Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1); 667 668 BinaryOperator *NewBO = nullptr; 669 if (OpNo == 0) { 670 NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther, 671 BO->getName(), IP); 672 } else { 673 NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain, 674 BO->getName(), IP); 675 } 676 return UserChain[ChainIndex] = NewBO; 677 } 678 679 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) { 680 if (ChainIndex == 0) { 681 assert(isa<ConstantInt>(UserChain[ChainIndex])); 682 return ConstantInt::getNullValue(UserChain[ChainIndex]->getType()); 683 } 684 685 BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]); 686 assert(BO->getNumUses() <= 1 && 687 "distributeExtsAndCloneChain clones each BinaryOperator in " 688 "UserChain, so no one should be used more than " 689 "once"); 690 691 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); 692 assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]); 693 Value *NextInChain = removeConstOffset(ChainIndex - 1); 694 Value *TheOther = BO->getOperand(1 - OpNo); 695 696 // If NextInChain is 0 and not the LHS of a sub, we can simplify the 697 // sub-expression to be just TheOther. 698 if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) { 699 if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0)) 700 return TheOther; 701 } 702 703 BinaryOperator::BinaryOps NewOp = BO->getOpcode(); 704 if (BO->getOpcode() == Instruction::Or) { 705 // Rebuild "or" as "add", because "or" may be invalid for the new 706 // epxression. 707 // 708 // For instance, given 709 // a | (b + 5) where a and b + 5 have no common bits, 710 // we can extract 5 as the constant offset. 711 // 712 // However, reusing the "or" in the new index would give us 713 // (a | b) + 5 714 // which does not equal a | (b + 5). 715 // 716 // Replacing the "or" with "add" is fine, because 717 // a | (b + 5) = a + (b + 5) = (a + b) + 5 718 NewOp = Instruction::Add; 719 } 720 721 BinaryOperator *NewBO; 722 if (OpNo == 0) { 723 NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP); 724 } else { 725 NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP); 726 } 727 NewBO->takeName(BO); 728 return NewBO; 729 } 730 731 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP, 732 User *&UserChainTail, 733 const DominatorTree *DT) { 734 ConstantOffsetExtractor Extractor(GEP, DT); 735 // Find a non-zero constant offset first. 736 APInt ConstantOffset = 737 Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, 738 GEP->isInBounds()); 739 if (ConstantOffset == 0) { 740 UserChainTail = nullptr; 741 return nullptr; 742 } 743 // Separates the constant offset from the GEP index. 744 Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset(); 745 UserChainTail = Extractor.UserChain.back(); 746 return IdxWithoutConstOffset; 747 } 748 749 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP, 750 const DominatorTree *DT) { 751 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative. 752 return ConstantOffsetExtractor(GEP, DT) 753 .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, 754 GEP->isInBounds()) 755 .getSExtValue(); 756 } 757 758 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize( 759 GetElementPtrInst *GEP) { 760 bool Changed = false; 761 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 762 gep_type_iterator GTI = gep_type_begin(*GEP); 763 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); 764 I != E; ++I, ++GTI) { 765 // Skip struct member indices which must be i32. 766 if (GTI.isSequential()) { 767 if ((*I)->getType() != IntPtrTy) { 768 *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP); 769 Changed = true; 770 } 771 } 772 } 773 return Changed; 774 } 775 776 int64_t 777 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP, 778 bool &NeedsExtraction) { 779 NeedsExtraction = false; 780 int64_t AccumulativeByteOffset = 0; 781 gep_type_iterator GTI = gep_type_begin(*GEP); 782 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { 783 if (GTI.isSequential()) { 784 // Tries to extract a constant offset from this GEP index. 785 int64_t ConstantOffset = 786 ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT); 787 if (ConstantOffset != 0) { 788 NeedsExtraction = true; 789 // A GEP may have multiple indices. We accumulate the extracted 790 // constant offset to a byte offset, and later offset the remainder of 791 // the original GEP with this byte offset. 792 AccumulativeByteOffset += 793 ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType()); 794 } 795 } else if (LowerGEP) { 796 StructType *StTy = GTI.getStructType(); 797 uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue(); 798 // Skip field 0 as the offset is always 0. 799 if (Field != 0) { 800 NeedsExtraction = true; 801 AccumulativeByteOffset += 802 DL->getStructLayout(StTy)->getElementOffset(Field); 803 } 804 } 805 } 806 return AccumulativeByteOffset; 807 } 808 809 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs( 810 GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) { 811 IRBuilder<> Builder(Variadic); 812 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType()); 813 814 Type *I8PtrTy = 815 Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace()); 816 Value *ResultPtr = Variadic->getOperand(0); 817 Loop *L = LI->getLoopFor(Variadic->getParent()); 818 // Check if the base is not loop invariant or used more than once. 819 bool isSwapCandidate = 820 L && L->isLoopInvariant(ResultPtr) && 821 !hasMoreThanOneUseInLoop(ResultPtr, L); 822 Value *FirstResult = nullptr; 823 824 if (ResultPtr->getType() != I8PtrTy) 825 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 826 827 gep_type_iterator GTI = gep_type_begin(*Variadic); 828 // Create an ugly GEP for each sequential index. We don't create GEPs for 829 // structure indices, as they are accumulated in the constant offset index. 830 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) { 831 if (GTI.isSequential()) { 832 Value *Idx = Variadic->getOperand(I); 833 // Skip zero indices. 834 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) 835 if (CI->isZero()) 836 continue; 837 838 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(), 839 DL->getTypeAllocSize(GTI.getIndexedType())); 840 // Scale the index by element size. 841 if (ElementSize != 1) { 842 if (ElementSize.isPowerOf2()) { 843 Idx = Builder.CreateShl( 844 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2())); 845 } else { 846 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize)); 847 } 848 } 849 // Create an ugly GEP with a single index for each index. 850 ResultPtr = 851 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep"); 852 if (FirstResult == nullptr) 853 FirstResult = ResultPtr; 854 } 855 } 856 857 // Create a GEP with the constant offset index. 858 if (AccumulativeByteOffset != 0) { 859 Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset); 860 ResultPtr = 861 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep"); 862 } else 863 isSwapCandidate = false; 864 865 // If we created a GEP with constant index, and the base is loop invariant, 866 // then we swap the first one with it, so LICM can move constant GEP out 867 // later. 868 GetElementPtrInst *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult); 869 GetElementPtrInst *SecondGEP = dyn_cast_or_null<GetElementPtrInst>(ResultPtr); 870 if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L)) 871 swapGEPOperand(FirstGEP, SecondGEP); 872 873 if (ResultPtr->getType() != Variadic->getType()) 874 ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType()); 875 876 Variadic->replaceAllUsesWith(ResultPtr); 877 Variadic->eraseFromParent(); 878 } 879 880 void 881 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic, 882 int64_t AccumulativeByteOffset) { 883 IRBuilder<> Builder(Variadic); 884 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType()); 885 886 Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy); 887 gep_type_iterator GTI = gep_type_begin(*Variadic); 888 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We 889 // don't create arithmetics for structure indices, as they are accumulated 890 // in the constant offset index. 891 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) { 892 if (GTI.isSequential()) { 893 Value *Idx = Variadic->getOperand(I); 894 // Skip zero indices. 895 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) 896 if (CI->isZero()) 897 continue; 898 899 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(), 900 DL->getTypeAllocSize(GTI.getIndexedType())); 901 // Scale the index by element size. 902 if (ElementSize != 1) { 903 if (ElementSize.isPowerOf2()) { 904 Idx = Builder.CreateShl( 905 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2())); 906 } else { 907 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize)); 908 } 909 } 910 // Create an ADD for each index. 911 ResultPtr = Builder.CreateAdd(ResultPtr, Idx); 912 } 913 } 914 915 // Create an ADD for the constant offset index. 916 if (AccumulativeByteOffset != 0) { 917 ResultPtr = Builder.CreateAdd( 918 ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset)); 919 } 920 921 ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType()); 922 Variadic->replaceAllUsesWith(ResultPtr); 923 Variadic->eraseFromParent(); 924 } 925 926 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) { 927 // Skip vector GEPs. 928 if (GEP->getType()->isVectorTy()) 929 return false; 930 931 // The backend can already nicely handle the case where all indices are 932 // constant. 933 if (GEP->hasAllConstantIndices()) 934 return false; 935 936 bool Changed = canonicalizeArrayIndicesToPointerSize(GEP); 937 938 bool NeedsExtraction; 939 int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction); 940 941 if (!NeedsExtraction) 942 return Changed; 943 944 TargetTransformInfo &TTI = 945 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*GEP->getFunction()); 946 947 // If LowerGEP is disabled, before really splitting the GEP, check whether the 948 // backend supports the addressing mode we are about to produce. If no, this 949 // splitting probably won't be beneficial. 950 // If LowerGEP is enabled, even the extracted constant offset can not match 951 // the addressing mode, we can still do optimizations to other lowered parts 952 // of variable indices. Therefore, we don't check for addressing modes in that 953 // case. 954 if (!LowerGEP) { 955 unsigned AddrSpace = GEP->getPointerAddressSpace(); 956 if (!TTI.isLegalAddressingMode(GEP->getResultElementType(), 957 /*BaseGV=*/nullptr, AccumulativeByteOffset, 958 /*HasBaseReg=*/true, /*Scale=*/0, 959 AddrSpace)) { 960 return Changed; 961 } 962 } 963 964 // Remove the constant offset in each sequential index. The resultant GEP 965 // computes the variadic base. 966 // Notice that we don't remove struct field indices here. If LowerGEP is 967 // disabled, a structure index is not accumulated and we still use the old 968 // one. If LowerGEP is enabled, a structure index is accumulated in the 969 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later 970 // handle the constant offset and won't need a new structure index. 971 gep_type_iterator GTI = gep_type_begin(*GEP); 972 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { 973 if (GTI.isSequential()) { 974 // Splits this GEP index into a variadic part and a constant offset, and 975 // uses the variadic part as the new index. 976 Value *OldIdx = GEP->getOperand(I); 977 User *UserChainTail; 978 Value *NewIdx = 979 ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT); 980 if (NewIdx != nullptr) { 981 // Switches to the index with the constant offset removed. 982 GEP->setOperand(I, NewIdx); 983 // After switching to the new index, we can garbage-collect UserChain 984 // and the old index if they are not used. 985 RecursivelyDeleteTriviallyDeadInstructions(UserChainTail); 986 RecursivelyDeleteTriviallyDeadInstructions(OldIdx); 987 } 988 } 989 } 990 991 // Clear the inbounds attribute because the new index may be off-bound. 992 // e.g., 993 // 994 // b = add i64 a, 5 995 // addr = gep inbounds float, float* p, i64 b 996 // 997 // is transformed to: 998 // 999 // addr2 = gep float, float* p, i64 a ; inbounds removed 1000 // addr = gep inbounds float, float* addr2, i64 5 1001 // 1002 // If a is -4, although the old index b is in bounds, the new index a is 1003 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the 1004 // inbounds keyword is not present, the offsets are added to the base 1005 // address with silently-wrapping two's complement arithmetic". 1006 // Therefore, the final code will be a semantically equivalent. 1007 // 1008 // TODO(jingyue): do some range analysis to keep as many inbounds as 1009 // possible. GEPs with inbounds are more friendly to alias analysis. 1010 bool GEPWasInBounds = GEP->isInBounds(); 1011 GEP->setIsInBounds(false); 1012 1013 // Lowers a GEP to either GEPs with a single index or arithmetic operations. 1014 if (LowerGEP) { 1015 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to 1016 // arithmetic operations if the target uses alias analysis in codegen. 1017 if (TTI.useAA()) 1018 lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset); 1019 else 1020 lowerToArithmetics(GEP, AccumulativeByteOffset); 1021 return true; 1022 } 1023 1024 // No need to create another GEP if the accumulative byte offset is 0. 1025 if (AccumulativeByteOffset == 0) 1026 return true; 1027 1028 // Offsets the base with the accumulative byte offset. 1029 // 1030 // %gep ; the base 1031 // ... %gep ... 1032 // 1033 // => add the offset 1034 // 1035 // %gep2 ; clone of %gep 1036 // %new.gep = gep %gep2, <offset / sizeof(*%gep)> 1037 // %gep ; will be removed 1038 // ... %gep ... 1039 // 1040 // => replace all uses of %gep with %new.gep and remove %gep 1041 // 1042 // %gep2 ; clone of %gep 1043 // %new.gep = gep %gep2, <offset / sizeof(*%gep)> 1044 // ... %new.gep ... 1045 // 1046 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an 1047 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep): 1048 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the 1049 // type of %gep. 1050 // 1051 // %gep2 ; clone of %gep 1052 // %0 = bitcast %gep2 to i8* 1053 // %uglygep = gep %0, <offset> 1054 // %new.gep = bitcast %uglygep to <type of %gep> 1055 // ... %new.gep ... 1056 Instruction *NewGEP = GEP->clone(); 1057 NewGEP->insertBefore(GEP); 1058 1059 // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned = 1060 // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is 1061 // used with unsigned integers later. 1062 int64_t ElementTypeSizeOfGEP = static_cast<int64_t>( 1063 DL->getTypeAllocSize(GEP->getResultElementType())); 1064 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 1065 if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) { 1066 // Very likely. As long as %gep is natually aligned, the byte offset we 1067 // extracted should be a multiple of sizeof(*%gep). 1068 int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP; 1069 NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP, 1070 ConstantInt::get(IntPtrTy, Index, true), 1071 GEP->getName(), GEP); 1072 NewGEP->copyMetadata(*GEP); 1073 // Inherit the inbounds attribute of the original GEP. 1074 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds); 1075 } else { 1076 // Unlikely but possible. For example, 1077 // #pragma pack(1) 1078 // struct S { 1079 // int a[3]; 1080 // int64 b[8]; 1081 // }; 1082 // #pragma pack() 1083 // 1084 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After 1085 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is 1086 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of 1087 // sizeof(int64). 1088 // 1089 // Emit an uglygep in this case. 1090 Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(), 1091 GEP->getPointerAddressSpace()); 1092 NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP); 1093 NewGEP = GetElementPtrInst::Create( 1094 Type::getInt8Ty(GEP->getContext()), NewGEP, 1095 ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep", 1096 GEP); 1097 NewGEP->copyMetadata(*GEP); 1098 // Inherit the inbounds attribute of the original GEP. 1099 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds); 1100 if (GEP->getType() != I8PtrTy) 1101 NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP); 1102 } 1103 1104 GEP->replaceAllUsesWith(NewGEP); 1105 GEP->eraseFromParent(); 1106 1107 return true; 1108 } 1109 1110 bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) { 1111 if (skipFunction(F)) 1112 return false; 1113 1114 if (DisableSeparateConstOffsetFromGEP) 1115 return false; 1116 1117 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1118 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1119 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1120 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1121 bool Changed = false; 1122 for (BasicBlock &B : F) { 1123 for (BasicBlock::iterator I = B.begin(), IE = B.end(); I != IE;) 1124 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) 1125 Changed |= splitGEP(GEP); 1126 // No need to split GEP ConstantExprs because all its indices are constant 1127 // already. 1128 } 1129 1130 Changed |= reuniteExts(F); 1131 1132 if (VerifyNoDeadCode) 1133 verifyNoDeadCode(F); 1134 1135 return Changed; 1136 } 1137 1138 Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator( 1139 const SCEV *Key, Instruction *Dominatee) { 1140 auto Pos = DominatingExprs.find(Key); 1141 if (Pos == DominatingExprs.end()) 1142 return nullptr; 1143 1144 auto &Candidates = Pos->second; 1145 // Because we process the basic blocks in pre-order of the dominator tree, a 1146 // candidate that doesn't dominate the current instruction won't dominate any 1147 // future instruction either. Therefore, we pop it out of the stack. This 1148 // optimization makes the algorithm O(n). 1149 while (!Candidates.empty()) { 1150 Instruction *Candidate = Candidates.back(); 1151 if (DT->dominates(Candidate, Dominatee)) 1152 return Candidate; 1153 Candidates.pop_back(); 1154 } 1155 return nullptr; 1156 } 1157 1158 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) { 1159 if (!SE->isSCEVable(I->getType())) 1160 return false; 1161 1162 // Dom: LHS+RHS 1163 // I: sext(LHS)+sext(RHS) 1164 // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom). 1165 // TODO: handle zext 1166 Value *LHS = nullptr, *RHS = nullptr; 1167 if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS)))) || 1168 match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) { 1169 if (LHS->getType() == RHS->getType()) { 1170 const SCEV *Key = 1171 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS)); 1172 if (auto *Dom = findClosestMatchingDominator(Key, I)) { 1173 Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I); 1174 NewSExt->takeName(I); 1175 I->replaceAllUsesWith(NewSExt); 1176 RecursivelyDeleteTriviallyDeadInstructions(I); 1177 return true; 1178 } 1179 } 1180 } 1181 1182 // Add I to DominatingExprs if it's an add/sub that can't sign overflow. 1183 if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS))) || 1184 match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) { 1185 if (programUndefinedIfFullPoison(I)) { 1186 const SCEV *Key = 1187 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS)); 1188 DominatingExprs[Key].push_back(I); 1189 } 1190 } 1191 return false; 1192 } 1193 1194 bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) { 1195 bool Changed = false; 1196 DominatingExprs.clear(); 1197 for (const auto Node : depth_first(DT)) { 1198 BasicBlock *BB = Node->getBlock(); 1199 for (auto I = BB->begin(); I != BB->end(); ) { 1200 Instruction *Cur = &*I++; 1201 Changed |= reuniteExts(Cur); 1202 } 1203 } 1204 return Changed; 1205 } 1206 1207 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) { 1208 for (BasicBlock &B : F) { 1209 for (Instruction &I : B) { 1210 if (isInstructionTriviallyDead(&I)) { 1211 std::string ErrMessage; 1212 raw_string_ostream RSO(ErrMessage); 1213 RSO << "Dead instruction detected!\n" << I << "\n"; 1214 llvm_unreachable(RSO.str().c_str()); 1215 } 1216 } 1217 } 1218 } 1219 1220 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand( 1221 GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) { 1222 if (!FirstGEP || !FirstGEP->hasOneUse()) 1223 return false; 1224 1225 if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent()) 1226 return false; 1227 1228 if (FirstGEP == SecondGEP) 1229 return false; 1230 1231 unsigned FirstNum = FirstGEP->getNumOperands(); 1232 unsigned SecondNum = SecondGEP->getNumOperands(); 1233 // Give up if the number of operands are not 2. 1234 if (FirstNum != SecondNum || FirstNum != 2) 1235 return false; 1236 1237 Value *FirstBase = FirstGEP->getOperand(0); 1238 Value *SecondBase = SecondGEP->getOperand(0); 1239 Value *FirstOffset = FirstGEP->getOperand(1); 1240 // Give up if the index of the first GEP is loop invariant. 1241 if (CurLoop->isLoopInvariant(FirstOffset)) 1242 return false; 1243 1244 // Give up if base doesn't have same type. 1245 if (FirstBase->getType() != SecondBase->getType()) 1246 return false; 1247 1248 Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset); 1249 1250 // Check if the second operand of first GEP has constant coefficient. 1251 // For an example, for the following code, we won't gain anything by 1252 // hoisting the second GEP out because the second GEP can be folded away. 1253 // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256 1254 // %67 = shl i64 %scevgep.sum.ur159, 2 1255 // %uglygep160 = getelementptr i8* %65, i64 %67 1256 // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024 1257 1258 // Skip constant shift instruction which may be generated by Splitting GEPs. 1259 if (FirstOffsetDef && FirstOffsetDef->isShift() && 1260 isa<ConstantInt>(FirstOffsetDef->getOperand(1))) 1261 FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0)); 1262 1263 // Give up if FirstOffsetDef is an Add or Sub with constant. 1264 // Because it may not profitable at all due to constant folding. 1265 if (FirstOffsetDef) 1266 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) { 1267 unsigned opc = BO->getOpcode(); 1268 if ((opc == Instruction::Add || opc == Instruction::Sub) && 1269 (isa<ConstantInt>(BO->getOperand(0)) || 1270 isa<ConstantInt>(BO->getOperand(1)))) 1271 return false; 1272 } 1273 return true; 1274 } 1275 1276 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) { 1277 int UsesInLoop = 0; 1278 for (User *U : V->users()) { 1279 if (Instruction *User = dyn_cast<Instruction>(U)) 1280 if (L->contains(User)) 1281 if (++UsesInLoop > 1) 1282 return true; 1283 } 1284 return false; 1285 } 1286 1287 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First, 1288 GetElementPtrInst *Second) { 1289 Value *Offset1 = First->getOperand(1); 1290 Value *Offset2 = Second->getOperand(1); 1291 First->setOperand(1, Offset2); 1292 Second->setOperand(1, Offset1); 1293 1294 // We changed p+o+c to p+c+o, p+c may not be inbound anymore. 1295 const DataLayout &DAL = First->getModule()->getDataLayout(); 1296 APInt Offset(DAL.getIndexSizeInBits( 1297 cast<PointerType>(First->getType())->getAddressSpace()), 1298 0); 1299 Value *NewBase = 1300 First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset); 1301 uint64_t ObjectSize; 1302 if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) || 1303 Offset.ugt(ObjectSize)) { 1304 First->setIsInBounds(false); 1305 Second->setIsInBounds(false); 1306 } else 1307 First->setIsInBounds(true); 1308 } 1309