1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 namespace { 59 struct RewriteStatepointsForGC : public FunctionPass { 60 static char ID; // Pass identification, replacement for typeid 61 62 RewriteStatepointsForGC() : FunctionPass(ID) { 63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 64 } 65 bool runOnFunction(Function &F) override; 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override { 68 // We add and rewrite a bunch of instructions, but don't really do much 69 // else. We could in theory preserve a lot more analyses here. 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 } 72 }; 73 } // namespace 74 75 char RewriteStatepointsForGC::ID = 0; 76 77 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 78 return new RewriteStatepointsForGC(); 79 } 80 81 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 82 "Make relocations explicit at statepoints", false, false) 83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 84 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 85 "Make relocations explicit at statepoints", false, false) 86 87 namespace { 88 // The type of the internal cache used inside the findBasePointers family 89 // of functions. From the callers perspective, this is an opaque type and 90 // should not be inspected. 91 // 92 // In the actual implementation this caches two relations: 93 // - The base relation itself (i.e. this pointer is based on that one) 94 // - The base defining value relation (i.e. before base_phi insertion) 95 // Generally, after the execution of a full findBasePointer call, only the 96 // base relation will remain. Internally, we add a mixture of the two 97 // types, then update all the second type to the first type 98 typedef std::map<Value *, Value *> DefiningValueMapTy; 99 100 struct PartiallyConstructedSafepointRecord { 101 /// The set of values known to be live accross this safepoint 102 std::set<llvm::Value *> liveset; 103 104 /// Mapping from live pointers to a base-defining-value 105 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 106 107 /// Any new values which were added to the IR during base pointer analysis 108 /// for this safepoint 109 DenseSet<llvm::Value *> NewInsertedDefs; 110 111 /// The bounds of the inserted code for the safepoint 112 std::pair<Instruction *, Instruction *> SafepointBounds; 113 114 /// Instruction to which exceptional gc relocates are attached 115 /// Makes it easier to iterate through them during relocationViaAlloca. 116 Instruction *UnwindToken; 117 }; 118 } 119 120 // TODO: Once we can get to the GCStrategy, this becomes 121 // Optional<bool> isGCManagedPointer(const Value *V) const override { 122 123 static bool isGCPointerType(const Type *T) { 124 if (const PointerType *PT = dyn_cast<PointerType>(T)) 125 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 126 // GC managed heap. We know that a pointer into this heap needs to be 127 // updated and that no other pointer does. 128 return (1 == PT->getAddressSpace()); 129 return false; 130 } 131 132 /// Return true if the Value is a gc reference type which is potentially used 133 /// after the instruction 'loc'. This is only used with the edge reachability 134 /// liveness code. Note: It is assumed the V dominates loc. 135 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, 136 LoopInfo *LI) { 137 if (!isGCPointerType(V.getType())) 138 return false; 139 140 if (V.use_empty()) 141 return false; 142 143 // Given assumption that V dominates loc, this may be live 144 return true; 145 } 146 147 #ifndef NDEBUG 148 static bool isAggWhichContainsGCPtrType(Type *Ty) { 149 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 150 return isGCPointerType(VT->getScalarType()); 151 else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 152 return isGCPointerType(AT->getElementType()) || 153 isAggWhichContainsGCPtrType(AT->getElementType()); 154 } else if (StructType *ST = dyn_cast<StructType>(Ty)) { 155 bool UnsupportedType = false; 156 for (Type *SubType : ST->subtypes()) 157 UnsupportedType |= 158 isGCPointerType(SubType) || isAggWhichContainsGCPtrType(SubType); 159 return UnsupportedType; 160 } else 161 return false; 162 } 163 #endif 164 165 // Conservatively identifies any definitions which might be live at the 166 // given instruction. The analysis is performed immediately before the 167 // given instruction. Values defined by that instruction are not considered 168 // live. Values used by that instruction are considered live. 169 // 170 // preconditions: valid IR graph, term is either a terminator instruction or 171 // a call instruction, pred is the basic block of term, DT, LI are valid 172 // 173 // side effects: none, does not mutate IR 174 // 175 // postconditions: populates liveValues as discussed above 176 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 177 DominatorTree &DT, LoopInfo *LI, 178 std::set<llvm::Value *> &liveValues) { 179 liveValues.clear(); 180 181 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 182 183 Function *F = pred->getParent(); 184 185 auto is_live_gc_reference = 186 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 187 188 // Are there any gc pointer arguments live over this point? This needs to be 189 // special cased since arguments aren't defined in basic blocks. 190 for (Argument &arg : F->args()) { 191 assert(!isAggWhichContainsGCPtrType(arg.getType()) && 192 "support for FCA unimplemented"); 193 194 if (is_live_gc_reference(arg)) { 195 liveValues.insert(&arg); 196 } 197 } 198 199 // Walk through all dominating blocks - the ones which can contain 200 // definitions used in this block - and check to see if any of the values 201 // they define are used in locations potentially reachable from the 202 // interesting instruction. 203 BasicBlock *BBI = pred; 204 while (true) { 205 if (TraceLSP) { 206 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 207 } 208 assert(DT.dominates(BBI, pred)); 209 assert(isPotentiallyReachable(BBI, pred, &DT) && 210 "dominated block must be reachable"); 211 212 // Walk through the instructions in dominating blocks and keep any 213 // that have a use potentially reachable from the block we're 214 // considering putting the safepoint in 215 for (Instruction &inst : *BBI) { 216 if (TraceLSP) { 217 errs() << "[LSP] Looking at instruction "; 218 inst.dump(); 219 } 220 221 if (pred == BBI && (&inst) == term) { 222 if (TraceLSP) { 223 errs() << "[LSP] stopped because we encountered the safepoint " 224 "instruction.\n"; 225 } 226 227 // If we're in the block which defines the interesting instruction, 228 // we don't want to include any values as live which are defined 229 // _after_ the interesting line or as part of the line itself 230 // i.e. "term" is the call instruction for a call safepoint, the 231 // results of the call should not be considered live in that stackmap 232 break; 233 } 234 235 assert(!isAggWhichContainsGCPtrType(inst.getType()) && 236 "support for FCA unimplemented"); 237 238 if (is_live_gc_reference(inst)) { 239 if (TraceLSP) { 240 errs() << "[LSP] found live value for this safepoint "; 241 inst.dump(); 242 term->dump(); 243 } 244 liveValues.insert(&inst); 245 } 246 } 247 if (!DT.getNode(BBI)->getIDom()) { 248 assert(BBI == &F->getEntryBlock() && 249 "failed to find a dominator for something other than " 250 "the entry block"); 251 break; 252 } 253 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 254 } 255 } 256 257 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 258 if (a->hasName() && b->hasName()) { 259 return -1 == a->getName().compare(b->getName()); 260 } else if (a->hasName() && !b->hasName()) { 261 return true; 262 } else if (!a->hasName() && b->hasName()) { 263 return false; 264 } else { 265 // Better than nothing, but not stable 266 return a < b; 267 } 268 } 269 270 /// Find the initial live set. Note that due to base pointer 271 /// insertion, the live set may be incomplete. 272 static void 273 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 274 PartiallyConstructedSafepointRecord &result) { 275 Instruction *inst = CS.getInstruction(); 276 277 BasicBlock *BB = inst->getParent(); 278 std::set<Value *> liveset; 279 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 280 281 if (PrintLiveSet) { 282 // Note: This output is used by several of the test cases 283 // The order of elemtns in a set is not stable, put them in a vec and sort 284 // by name 285 std::vector<Value *> temp; 286 temp.insert(temp.end(), liveset.begin(), liveset.end()); 287 std::sort(temp.begin(), temp.end(), order_by_name); 288 errs() << "Live Variables:\n"; 289 for (Value *V : temp) { 290 errs() << " " << V->getName(); // no newline 291 V->dump(); 292 } 293 } 294 if (PrintLiveSetSize) { 295 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 296 errs() << "Number live values: " << liveset.size() << "\n"; 297 } 298 result.liveset = liveset; 299 } 300 301 /// True iff this value is the null pointer constant (of any pointer type) 302 static bool isNullConstant(Value *V) { 303 return isa<Constant>(V) && isa<PointerType>(V->getType()) && 304 cast<Constant>(V)->isNullValue(); 305 } 306 307 /// Helper function for findBasePointer - Will return a value which either a) 308 /// defines the base pointer for the input or b) blocks the simple search 309 /// (i.e. a PHI or Select of two derived pointers) 310 static Value *findBaseDefiningValue(Value *I) { 311 assert(I->getType()->isPointerTy() && 312 "Illegal to ask for the base pointer of a non-pointer type"); 313 314 // There are instructions which can never return gc pointer values. Sanity 315 // check 316 // that this is actually true. 317 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && 318 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); 319 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) || 320 !cast<Instruction>(I)->isTerminator()) && 321 "With the exception of invoke terminators don't define values"); 322 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) && 323 "Can't be definitions to start with"); 324 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) && 325 "Comparisons don't give ops"); 326 // There's a bunch of instructions which just don't make sense to apply to 327 // a pointer. The only valid reason for this would be pointer bit 328 // twiddling which we're just not going to support. 329 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) && 330 "Binary ops on pointer values are meaningless. Unless your " 331 "bit-twiddling which we don't support"); 332 333 if (Argument *Arg = dyn_cast<Argument>(I)) { 334 // An incoming argument to the function is a base pointer 335 // We should have never reached here if this argument isn't an gc value 336 assert(Arg->getType()->isPointerTy() && 337 "Base for pointer must be another pointer"); 338 return Arg; 339 } 340 341 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) { 342 // base case 343 assert(global->getType()->isPointerTy() && 344 "Base for pointer must be another pointer"); 345 return global; 346 } 347 348 // inlining could possibly introduce phi node that contains 349 // undef if callee has multiple returns 350 if (UndefValue *undef = dyn_cast<UndefValue>(I)) { 351 assert(undef->getType()->isPointerTy() && 352 "Base for pointer must be another pointer"); 353 return undef; // utterly meaningless, but useful for dealing with 354 // partially optimized code. 355 } 356 357 // Due to inheritance, this must be _after_ the global variable and undef 358 // checks 359 if (Constant *con = dyn_cast<Constant>(I)) { 360 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 361 "order of checks wrong!"); 362 // Note: Finding a constant base for something marked for relocation 363 // doesn't really make sense. The most likely case is either a) some 364 // screwed up the address space usage or b) your validating against 365 // compiled C++ code w/o the proper separation. The only real exception 366 // is a null pointer. You could have generic code written to index of 367 // off a potentially null value and have proven it null. We also use 368 // null pointers in dead paths of relocation phis (which we might later 369 // want to find a base pointer for). 370 assert(con->getType()->isPointerTy() && 371 "Base for pointer must be another pointer"); 372 assert(con->isNullValue() && "null is the only case which makes sense"); 373 return con; 374 } 375 376 if (CastInst *CI = dyn_cast<CastInst>(I)) { 377 Value *def = CI->stripPointerCasts(); 378 assert(def->getType()->isPointerTy() && 379 "Base for pointer must be another pointer"); 380 if (isa<CastInst>(def)) { 381 // If we find a cast instruction here, it means we've found a cast 382 // which is not simply a pointer cast (i.e. an inttoptr). We don't 383 // know how to handle int->ptr conversion. 384 llvm_unreachable("Can not find the base pointers for an inttoptr cast"); 385 } 386 assert(!isa<CastInst>(def) && "shouldn't find another cast here"); 387 return findBaseDefiningValue(def); 388 } 389 390 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 391 if (LI->getType()->isPointerTy()) { 392 Value *Op = LI->getOperand(0); 393 (void)Op; 394 // Has to be a pointer to an gc object, or possibly an array of such? 395 assert(Op->getType()->isPointerTy()); 396 return LI; // The value loaded is an gc base itself 397 } 398 } 399 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 400 Value *Op = GEP->getOperand(0); 401 if (Op->getType()->isPointerTy()) { 402 return findBaseDefiningValue(Op); // The base of this GEP is the base 403 } 404 } 405 406 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) { 407 // An alloca represents a conceptual stack slot. It's the slot itself 408 // that the GC needs to know about, not the value in the slot. 409 assert(alloc->getType()->isPointerTy() && 410 "Base for pointer must be another pointer"); 411 return alloc; 412 } 413 414 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 415 switch (II->getIntrinsicID()) { 416 default: 417 // fall through to general call handling 418 break; 419 case Intrinsic::experimental_gc_statepoint: 420 case Intrinsic::experimental_gc_result_float: 421 case Intrinsic::experimental_gc_result_int: 422 llvm_unreachable("these don't produce pointers"); 423 case Intrinsic::experimental_gc_result_ptr: 424 // This is just a special case of the CallInst check below to handle a 425 // statepoint with deopt args which hasn't been rewritten for GC yet. 426 // TODO: Assert that the statepoint isn't rewritten yet. 427 return II; 428 case Intrinsic::experimental_gc_relocate: { 429 // Rerunning safepoint insertion after safepoints are already 430 // inserted is not supported. It could probably be made to work, 431 // but why are you doing this? There's no good reason. 432 llvm_unreachable("repeat safepoint insertion is not supported"); 433 } 434 case Intrinsic::gcroot: 435 // Currently, this mechanism hasn't been extended to work with gcroot. 436 // There's no reason it couldn't be, but I haven't thought about the 437 // implications much. 438 llvm_unreachable( 439 "interaction with the gcroot mechanism is not supported"); 440 } 441 } 442 // We assume that functions in the source language only return base 443 // pointers. This should probably be generalized via attributes to support 444 // both source language and internal functions. 445 if (CallInst *call = dyn_cast<CallInst>(I)) { 446 assert(call->getType()->isPointerTy() && 447 "Base for pointer must be another pointer"); 448 return call; 449 } 450 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 451 assert(invoke->getType()->isPointerTy() && 452 "Base for pointer must be another pointer"); 453 return invoke; 454 } 455 456 // I have absolutely no idea how to implement this part yet. It's not 457 // neccessarily hard, I just haven't really looked at it yet. 458 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 459 460 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) { 461 // A CAS is effectively a atomic store and load combined under a 462 // predicate. From the perspective of base pointers, we just treat it 463 // like a load. We loaded a pointer from a address in memory, that value 464 // had better be a valid base pointer. 465 return cas->getPointerOperand(); 466 } 467 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) { 468 assert(AtomicRMWInst::Xchg == atomic->getOperation() && 469 "All others are binary ops which don't apply to base pointers"); 470 // semantically, a load, store pair. Treat it the same as a standard load 471 return atomic->getPointerOperand(); 472 } 473 474 // The aggregate ops. Aggregates can either be in the heap or on the 475 // stack, but in either case, this is simply a field load. As a result, 476 // this is a defining definition of the base just like a load is. 477 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) { 478 return ev; 479 } 480 481 // We should never see an insert vector since that would require we be 482 // tracing back a struct value not a pointer value. 483 assert(!isa<InsertValueInst>(I) && 484 "Base pointer for a struct is meaningless"); 485 486 // The last two cases here don't return a base pointer. Instead, they 487 // return a value which dynamically selects from amoung several base 488 // derived pointers (each with it's own base potentially). It's the job of 489 // the caller to resolve these. 490 if (SelectInst *select = dyn_cast<SelectInst>(I)) { 491 return select; 492 } 493 if (PHINode *phi = dyn_cast<PHINode>(I)) { 494 return phi; 495 } 496 497 errs() << "unknown type: " << *I << "\n"; 498 llvm_unreachable("unknown type"); 499 return nullptr; 500 } 501 502 /// Returns the base defining value for this value. 503 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { 504 Value *&Cached = cache[I]; 505 if (!Cached) { 506 Cached = findBaseDefiningValue(I); 507 } 508 assert(cache[I] != nullptr); 509 510 if (TraceLSP) { 511 errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 512 << "\n"; 513 } 514 return Cached; 515 } 516 517 /// Return a base pointer for this value if known. Otherwise, return it's 518 /// base defining value. 519 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { 520 Value *def = findBaseDefiningValueCached(I, cache); 521 auto Found = cache.find(def); 522 if (Found != cache.end()) { 523 // Either a base-of relation, or a self reference. Caller must check. 524 return Found->second; 525 } 526 // Only a BDV available 527 return def; 528 } 529 530 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 531 /// is it known to be a base pointer? Or do we need to continue searching. 532 static bool isKnownBaseResult(Value *v) { 533 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) { 534 // no recursion possible 535 return true; 536 } 537 if (cast<Instruction>(v)->getMetadata("is_base_value")) { 538 // This is a previously inserted base phi or select. We know 539 // that this is a base value. 540 return true; 541 } 542 543 // We need to keep searching 544 return false; 545 } 546 547 // TODO: find a better name for this 548 namespace { 549 class PhiState { 550 public: 551 enum Status { Unknown, Base, Conflict }; 552 553 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 554 assert(status != Base || b); 555 } 556 PhiState(Value *b) : status(Base), base(b) {} 557 PhiState() : status(Unknown), base(nullptr) {} 558 PhiState(const PhiState &other) : status(other.status), base(other.base) { 559 assert(status != Base || base); 560 } 561 562 Status getStatus() const { return status; } 563 Value *getBase() const { return base; } 564 565 bool isBase() const { return getStatus() == Base; } 566 bool isUnknown() const { return getStatus() == Unknown; } 567 bool isConflict() const { return getStatus() == Conflict; } 568 569 bool operator==(const PhiState &other) const { 570 return base == other.base && status == other.status; 571 } 572 573 bool operator!=(const PhiState &other) const { return !(*this == other); } 574 575 void dump() { 576 errs() << status << " (" << base << " - " 577 << (base ? base->getName() : "nullptr") << "): "; 578 } 579 580 private: 581 Status status; 582 Value *base; // non null only if status == base 583 }; 584 585 // Values of type PhiState form a lattice, and this is a helper 586 // class that implementes the meet operation. The meat of the meet 587 // operation is implemented in MeetPhiStates::pureMeet 588 class MeetPhiStates { 589 public: 590 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 591 explicit MeetPhiStates(const std::map<Value *, PhiState> &phiStates) 592 : phiStates(phiStates) {} 593 594 // Destructively meet the current result with the base V. V can 595 // either be a merge instruction (SelectInst / PHINode), in which 596 // case its status is looked up in the phiStates map; or a regular 597 // SSA value, in which case it is assumed to be a base. 598 void meetWith(Value *V) { 599 PhiState otherState = getStateForBDV(V); 600 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 601 MeetPhiStates::pureMeet(currentResult, otherState)) && 602 "math is wrong: meet does not commute!"); 603 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 604 } 605 606 PhiState getResult() const { return currentResult; } 607 608 private: 609 const std::map<Value *, PhiState> &phiStates; 610 PhiState currentResult; 611 612 /// Return a phi state for a base defining value. We'll generate a new 613 /// base state for known bases and expect to find a cached state otherwise 614 PhiState getStateForBDV(Value *baseValue) { 615 if (isKnownBaseResult(baseValue)) { 616 return PhiState(baseValue); 617 } else { 618 return lookupFromMap(baseValue); 619 } 620 } 621 622 PhiState lookupFromMap(Value *V) { 623 auto I = phiStates.find(V); 624 assert(I != phiStates.end() && "lookup failed!"); 625 return I->second; 626 } 627 628 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 629 switch (stateA.getStatus()) { 630 case PhiState::Unknown: 631 return stateB; 632 633 case PhiState::Base: 634 assert(stateA.getBase() && "can't be null"); 635 if (stateB.isUnknown()) { 636 return stateA; 637 } else if (stateB.isBase()) { 638 if (stateA.getBase() == stateB.getBase()) { 639 assert(stateA == stateB && "equality broken!"); 640 return stateA; 641 } 642 return PhiState(PhiState::Conflict); 643 } else { 644 assert(stateB.isConflict() && "only three states!"); 645 return PhiState(PhiState::Conflict); 646 } 647 648 case PhiState::Conflict: 649 return stateA; 650 } 651 llvm_unreachable("only three states!"); 652 } 653 }; 654 } 655 /// For a given value or instruction, figure out what base ptr it's derived 656 /// from. For gc objects, this is simply itself. On success, returns a value 657 /// which is the base pointer. (This is reliable and can be used for 658 /// relocation.) On failure, returns nullptr. 659 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 660 DenseSet<llvm::Value *> &NewInsertedDefs) { 661 Value *def = findBaseOrBDV(I, cache); 662 663 if (isKnownBaseResult(def)) { 664 return def; 665 } 666 667 // Here's the rough algorithm: 668 // - For every SSA value, construct a mapping to either an actual base 669 // pointer or a PHI which obscures the base pointer. 670 // - Construct a mapping from PHI to unknown TOP state. Use an 671 // optimistic algorithm to propagate base pointer information. Lattice 672 // looks like: 673 // UNKNOWN 674 // b1 b2 b3 b4 675 // CONFLICT 676 // When algorithm terminates, all PHIs will either have a single concrete 677 // base or be in a conflict state. 678 // - For every conflict, insert a dummy PHI node without arguments. Add 679 // these to the base[Instruction] = BasePtr mapping. For every 680 // non-conflict, add the actual base. 681 // - For every conflict, add arguments for the base[a] of each input 682 // arguments. 683 // 684 // Note: A simpler form of this would be to add the conflict form of all 685 // PHIs without running the optimistic algorithm. This would be 686 // analougous to pessimistic data flow and would likely lead to an 687 // overall worse solution. 688 689 std::map<Value *, PhiState> states; 690 states[def] = PhiState(); 691 // Recursively fill in all phis & selects reachable from the initial one 692 // for which we don't already know a definite base value for 693 // PERF: Yes, this is as horribly inefficient as it looks. 694 bool done = false; 695 while (!done) { 696 done = true; 697 for (auto Pair : states) { 698 Value *v = Pair.first; 699 assert(!isKnownBaseResult(v) && "why did it get added?"); 700 if (PHINode *phi = dyn_cast<PHINode>(v)) { 701 unsigned NumPHIValues = phi->getNumIncomingValues(); 702 assert(NumPHIValues > 0 && "zero input phis are illegal"); 703 for (unsigned i = 0; i != NumPHIValues; ++i) { 704 Value *InVal = phi->getIncomingValue(i); 705 Value *local = findBaseOrBDV(InVal, cache); 706 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 707 states[local] = PhiState(); 708 done = false; 709 } 710 } 711 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 712 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 713 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 714 states[local] = PhiState(); 715 done = false; 716 } 717 local = findBaseOrBDV(sel->getFalseValue(), cache); 718 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 719 states[local] = PhiState(); 720 done = false; 721 } 722 } 723 } 724 } 725 726 if (TraceLSP) { 727 errs() << "States after initialization:\n"; 728 for (auto Pair : states) { 729 Instruction *v = cast<Instruction>(Pair.first); 730 PhiState state = Pair.second; 731 state.dump(); 732 v->dump(); 733 } 734 } 735 736 // TODO: come back and revisit the state transitions around inputs which 737 // have reached conflict state. The current version seems too conservative. 738 739 bool progress = true; 740 size_t oldSize = 0; 741 while (progress) { 742 oldSize = states.size(); 743 progress = false; 744 for (auto Pair : states) { 745 MeetPhiStates calculateMeet(states); 746 Value *v = Pair.first; 747 assert(!isKnownBaseResult(v) && "why did it get added?"); 748 assert(isa<SelectInst>(v) || isa<PHINode>(v)); 749 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 750 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 751 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 752 } else if (PHINode *phi = dyn_cast<PHINode>(v)) { 753 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 754 calculateMeet.meetWith( 755 findBaseOrBDV(phi->getIncomingValue(i), cache)); 756 } 757 } else { 758 llvm_unreachable("no such state expected"); 759 } 760 761 PhiState oldState = states[v]; 762 PhiState newState = calculateMeet.getResult(); 763 if (oldState != newState) { 764 progress = true; 765 states[v] = newState; 766 } 767 } 768 769 assert(oldSize <= states.size()); 770 assert(oldSize == states.size() || progress); 771 } 772 773 if (TraceLSP) { 774 errs() << "States after meet iteration:\n"; 775 for (auto Pair : states) { 776 Instruction *v = cast<Instruction>(Pair.first); 777 PhiState state = Pair.second; 778 state.dump(); 779 v->dump(); 780 } 781 } 782 783 // Insert Phis for all conflicts 784 for (auto Pair : states) { 785 Instruction *v = cast<Instruction>(Pair.first); 786 PhiState state = Pair.second; 787 assert(!isKnownBaseResult(v) && "why did it get added?"); 788 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 789 if (state.isConflict()) { 790 if (isa<PHINode>(v)) { 791 int num_preds = 792 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 793 assert(num_preds > 0 && "how did we reach here"); 794 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 795 NewInsertedDefs.insert(phi); 796 // Add metadata marking this as a base value 797 auto *const_1 = ConstantInt::get( 798 Type::getInt32Ty( 799 v->getParent()->getParent()->getParent()->getContext()), 800 1); 801 auto MDConst = ConstantAsMetadata::get(const_1); 802 MDNode *md = MDNode::get( 803 v->getParent()->getParent()->getParent()->getContext(), MDConst); 804 phi->setMetadata("is_base_value", md); 805 states[v] = PhiState(PhiState::Conflict, phi); 806 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 807 // The undef will be replaced later 808 UndefValue *undef = UndefValue::get(sel->getType()); 809 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 810 undef, "base_select", sel); 811 NewInsertedDefs.insert(basesel); 812 // Add metadata marking this as a base value 813 auto *const_1 = ConstantInt::get( 814 Type::getInt32Ty( 815 v->getParent()->getParent()->getParent()->getContext()), 816 1); 817 auto MDConst = ConstantAsMetadata::get(const_1); 818 MDNode *md = MDNode::get( 819 v->getParent()->getParent()->getParent()->getContext(), MDConst); 820 basesel->setMetadata("is_base_value", md); 821 states[v] = PhiState(PhiState::Conflict, basesel); 822 } else { 823 assert(false); 824 } 825 } 826 } 827 828 // Fixup all the inputs of the new PHIs 829 for (auto Pair : states) { 830 Instruction *v = cast<Instruction>(Pair.first); 831 PhiState state = Pair.second; 832 833 assert(!isKnownBaseResult(v) && "why did it get added?"); 834 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 835 if (state.isConflict()) { 836 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 837 PHINode *phi = cast<PHINode>(v); 838 unsigned NumPHIValues = phi->getNumIncomingValues(); 839 for (unsigned i = 0; i < NumPHIValues; i++) { 840 Value *InVal = phi->getIncomingValue(i); 841 BasicBlock *InBB = phi->getIncomingBlock(i); 842 843 // If we've already seen InBB, add the same incoming value 844 // we added for it earlier. The IR verifier requires phi 845 // nodes with multiple entries from the same basic block 846 // to have the same incoming value for each of those 847 // entries. If we don't do this check here and basephi 848 // has a different type than base, we'll end up adding two 849 // bitcasts (and hence two distinct values) as incoming 850 // values for the same basic block. 851 852 int blockIndex = basephi->getBasicBlockIndex(InBB); 853 if (blockIndex != -1) { 854 Value *oldBase = basephi->getIncomingValue(blockIndex); 855 basephi->addIncoming(oldBase, InBB); 856 #ifndef NDEBUG 857 Value *base = findBaseOrBDV(InVal, cache); 858 if (!isKnownBaseResult(base)) { 859 // Either conflict or base. 860 assert(states.count(base)); 861 base = states[base].getBase(); 862 assert(base != nullptr && "unknown PhiState!"); 863 assert(NewInsertedDefs.count(base) && 864 "should have already added this in a prev. iteration!"); 865 } 866 867 // In essense this assert states: the only way two 868 // values incoming from the same basic block may be 869 // different is by being different bitcasts of the same 870 // value. A cleanup that remains TODO is changing 871 // findBaseOrBDV to return an llvm::Value of the correct 872 // type (and still remain pure). This will remove the 873 // need to add bitcasts. 874 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 875 "sanity -- findBaseOrBDV should be pure!"); 876 #endif 877 continue; 878 } 879 880 // Find either the defining value for the PHI or the normal base for 881 // a non-phi node 882 Value *base = findBaseOrBDV(InVal, cache); 883 if (!isKnownBaseResult(base)) { 884 // Either conflict or base. 885 assert(states.count(base)); 886 base = states[base].getBase(); 887 assert(base != nullptr && "unknown PhiState!"); 888 } 889 assert(base && "can't be null"); 890 // Must use original input BB since base may not be Instruction 891 // The cast is needed since base traversal may strip away bitcasts 892 if (base->getType() != basephi->getType()) { 893 base = new BitCastInst(base, basephi->getType(), "cast", 894 InBB->getTerminator()); 895 NewInsertedDefs.insert(base); 896 } 897 basephi->addIncoming(base, InBB); 898 } 899 assert(basephi->getNumIncomingValues() == NumPHIValues); 900 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) { 901 SelectInst *sel = cast<SelectInst>(v); 902 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 903 // something more safe and less hacky. 904 for (int i = 1; i <= 2; i++) { 905 Value *InVal = sel->getOperand(i); 906 // Find either the defining value for the PHI or the normal base for 907 // a non-phi node 908 Value *base = findBaseOrBDV(InVal, cache); 909 if (!isKnownBaseResult(base)) { 910 // Either conflict or base. 911 assert(states.count(base)); 912 base = states[base].getBase(); 913 assert(base != nullptr && "unknown PhiState!"); 914 } 915 assert(base && "can't be null"); 916 // Must use original input BB since base may not be Instruction 917 // The cast is needed since base traversal may strip away bitcasts 918 if (base->getType() != basesel->getType()) { 919 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 920 NewInsertedDefs.insert(base); 921 } 922 basesel->setOperand(i, base); 923 } 924 } else { 925 assert(false && "unexpected type"); 926 } 927 } 928 } 929 930 // Cache all of our results so we can cheaply reuse them 931 // NOTE: This is actually two caches: one of the base defining value 932 // relation and one of the base pointer relation! FIXME 933 for (auto item : states) { 934 Value *v = item.first; 935 Value *base = item.second.getBase(); 936 assert(v && base); 937 assert(!isKnownBaseResult(v) && "why did it get added?"); 938 939 if (TraceLSP) { 940 std::string fromstr = 941 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 942 : "none"; 943 errs() << "Updating base value cache" 944 << " for: " << (v->hasName() ? v->getName() : "") 945 << " from: " << fromstr 946 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 947 } 948 949 assert(isKnownBaseResult(base) && 950 "must be something we 'know' is a base pointer"); 951 if (cache.count(v)) { 952 // Once we transition from the BDV relation being store in the cache to 953 // the base relation being stored, it must be stable 954 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 955 "base relation should be stable"); 956 } 957 cache[v] = base; 958 } 959 assert(cache.find(def) != cache.end()); 960 return cache[def]; 961 } 962 963 // For a set of live pointers (base and/or derived), identify the base 964 // pointer of the object which they are derived from. This routine will 965 // mutate the IR graph as needed to make the 'base' pointer live at the 966 // definition site of 'derived'. This ensures that any use of 'derived' can 967 // also use 'base'. This may involve the insertion of a number of 968 // additional PHI nodes. 969 // 970 // preconditions: live is a set of pointer type Values 971 // 972 // side effects: may insert PHI nodes into the existing CFG, will preserve 973 // CFG, will not remove or mutate any existing nodes 974 // 975 // post condition: PointerToBase contains one (derived, base) pair for every 976 // pointer in live. Note that derived can be equal to base if the original 977 // pointer was a base pointer. 978 static void findBasePointers(const std::set<llvm::Value *> &live, 979 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 980 DominatorTree *DT, DefiningValueMapTy &DVCache, 981 DenseSet<llvm::Value *> &NewInsertedDefs) { 982 for (Value *ptr : live) { 983 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs); 984 assert(base && "failed to find base pointer"); 985 PointerToBase[ptr] = base; 986 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 987 DT->dominates(cast<Instruction>(base)->getParent(), 988 cast<Instruction>(ptr)->getParent())) && 989 "The base we found better dominate the derived pointer"); 990 991 if (isNullConstant(base)) 992 // If you see this trip and like to live really dangerously, the code 993 // should be correct, just with idioms the verifier can't handle. You 994 // can try disabling the verifier at your own substaintial risk. 995 llvm_unreachable("the relocation code needs adjustment to handle the" 996 "relocation of a null pointer constant without causing" 997 "false positives in the safepoint ir verifier."); 998 } 999 } 1000 1001 /// Find the required based pointers (and adjust the live set) for the given 1002 /// parse point. 1003 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1004 const CallSite &CS, 1005 PartiallyConstructedSafepointRecord &result) { 1006 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1007 DenseSet<llvm::Value *> NewInsertedDefs; 1008 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs); 1009 1010 if (PrintBasePointers) { 1011 errs() << "Base Pairs (w/o Relocation):\n"; 1012 for (auto Pair : PointerToBase) { 1013 errs() << " derived %" << Pair.first->getName() << " base %" 1014 << Pair.second->getName() << "\n"; 1015 } 1016 } 1017 1018 result.PointerToBase = PointerToBase; 1019 result.NewInsertedDefs = NewInsertedDefs; 1020 } 1021 1022 /// Check for liveness of items in the insert defs and add them to the live 1023 /// and base pointer sets 1024 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 1025 const std::set<Value *> &allInsertedDefs, 1026 PartiallyConstructedSafepointRecord &result) { 1027 Instruction *inst = CS.getInstruction(); 1028 1029 auto liveset = result.liveset; 1030 auto PointerToBase = result.PointerToBase; 1031 1032 auto is_live_gc_reference = 1033 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 1034 1035 // For each new definition, check to see if a) the definition dominates the 1036 // instruction we're interested in, and b) one of the uses of that definition 1037 // is edge-reachable from the instruction we're interested in. This is the 1038 // same definition of liveness we used in the intial liveness analysis 1039 for (Value *newDef : allInsertedDefs) { 1040 if (liveset.count(newDef)) { 1041 // already live, no action needed 1042 continue; 1043 } 1044 1045 // PERF: Use DT to check instruction domination might not be good for 1046 // compilation time, and we could change to optimal solution if this 1047 // turn to be a issue 1048 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1049 // can't possibly be live at inst 1050 continue; 1051 } 1052 1053 if (is_live_gc_reference(*newDef)) { 1054 // Add the live new defs into liveset and PointerToBase 1055 liveset.insert(newDef); 1056 PointerToBase[newDef] = newDef; 1057 } 1058 } 1059 1060 result.liveset = liveset; 1061 result.PointerToBase = PointerToBase; 1062 } 1063 1064 static void fixupLiveReferences( 1065 Function &F, DominatorTree &DT, Pass *P, 1066 const std::set<llvm::Value *> &allInsertedDefs, 1067 std::vector<CallSite> &toUpdate, 1068 std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1069 for (size_t i = 0; i < records.size(); i++) { 1070 struct PartiallyConstructedSafepointRecord &info = records[i]; 1071 CallSite &CS = toUpdate[i]; 1072 fixupLiveness(DT, CS, allInsertedDefs, info); 1073 } 1074 } 1075 1076 // Normalize basic block to make it ready to be target of invoke statepoint. 1077 // It means spliting it to have single predecessor. Return newly created BB 1078 // ready to be successor of invoke statepoint. 1079 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1080 BasicBlock *InvokeParent, 1081 Pass *P) { 1082 BasicBlock *ret = BB; 1083 1084 if (!BB->getUniquePredecessor()) { 1085 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1086 } 1087 1088 // Another requirement for such basic blocks is to not have any phi nodes. 1089 // Since we just ensured that new BB will have single predecessor, 1090 // all phi nodes in it will have one value. Here it would be naturall place 1091 // to 1092 // remove them all. But we can not do this because we are risking to remove 1093 // one of the values stored in liveset of another statepoint. We will do it 1094 // later after placing all safepoints. 1095 1096 return ret; 1097 } 1098 1099 static void 1100 VerifySafepointBounds(const std::pair<Instruction *, Instruction *> &bounds) { 1101 assert(bounds.first->getParent() && bounds.second->getParent() && 1102 "both must belong to basic blocks"); 1103 if (bounds.first->getParent() == bounds.second->getParent()) { 1104 // This is a call safepoint 1105 // TODO: scan the range to find the statepoint 1106 // TODO: check that the following instruction is not a gc_relocate or 1107 // gc_result 1108 } else { 1109 // This is an invoke safepoint 1110 InvokeInst *invoke = dyn_cast<InvokeInst>(bounds.first); 1111 (void)invoke; 1112 assert(invoke && "only continues over invokes!"); 1113 assert(invoke->getNormalDest() == bounds.second->getParent() && 1114 "safepoint should continue into normal exit block"); 1115 } 1116 } 1117 1118 static int find_index(const SmallVectorImpl<Value *> &livevec, Value *val) { 1119 auto itr = std::find(livevec.begin(), livevec.end(), val); 1120 assert(livevec.end() != itr); 1121 size_t index = std::distance(livevec.begin(), itr); 1122 assert(index < livevec.size()); 1123 return index; 1124 } 1125 1126 // Create new attribute set containing only attributes which can be transfered 1127 // from original call to the safepoint. 1128 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1129 AttributeSet ret; 1130 1131 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1132 unsigned index = AS.getSlotIndex(Slot); 1133 1134 if (index == AttributeSet::ReturnIndex || 1135 index == AttributeSet::FunctionIndex) { 1136 1137 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1138 ++it) { 1139 Attribute attr = *it; 1140 1141 // Do not allow certain attributes - just skip them 1142 // Safepoint can not be read only or read none. 1143 if (attr.hasAttribute(Attribute::ReadNone) || 1144 attr.hasAttribute(Attribute::ReadOnly)) 1145 continue; 1146 1147 ret = ret.addAttributes( 1148 AS.getContext(), index, 1149 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1150 } 1151 } 1152 1153 // Just skip parameter attributes for now 1154 } 1155 1156 return ret; 1157 } 1158 1159 /// Helper function to place all gc relocates necessary for the given 1160 /// statepoint. 1161 /// Inputs: 1162 /// liveVariables - list of variables to be relocated. 1163 /// liveStart - index of the first live variable. 1164 /// basePtrs - base pointers. 1165 /// statepointToken - statepoint instruction to which relocates should be 1166 /// bound. 1167 /// Builder - Llvm IR builder to be used to construct new calls. 1168 /// Returns array with newly created relocates. 1169 static std::vector<llvm::Instruction *> 1170 CreateGCRelocates(const SmallVectorImpl<llvm::Value *> &liveVariables, 1171 const int liveStart, 1172 const SmallVectorImpl<llvm::Value *> &basePtrs, 1173 Instruction *statepointToken, IRBuilder<> Builder) { 1174 1175 std::vector<llvm::Instruction *> newDefs; 1176 1177 Module *M = statepointToken->getParent()->getParent()->getParent(); 1178 1179 for (unsigned i = 0; i < liveVariables.size(); i++) { 1180 // We generate a (potentially) unique declaration for every pointer type 1181 // combination. This results is some blow up the function declarations in 1182 // the IR, but removes the need for argument bitcasts which shrinks the IR 1183 // greatly and makes it much more readable. 1184 std::vector<Type *> types; // one per 'any' type 1185 types.push_back(liveVariables[i]->getType()); // result type 1186 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1187 M, Intrinsic::experimental_gc_relocate, types); 1188 1189 // Generate the gc.relocate call and save the result 1190 Value *baseIdx = 1191 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1192 liveStart + find_index(liveVariables, basePtrs[i])); 1193 Value *liveIdx = ConstantInt::get( 1194 Type::getInt32Ty(M->getContext()), 1195 liveStart + find_index(liveVariables, liveVariables[i])); 1196 1197 // only specify a debug name if we can give a useful one 1198 Value *reloc = Builder.CreateCall3( 1199 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1200 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1201 : ""); 1202 // Trick CodeGen into thinking there are lots of free registers at this 1203 // fake call. 1204 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1205 1206 newDefs.push_back(cast<Instruction>(reloc)); 1207 } 1208 assert(newDefs.size() == liveVariables.size() && 1209 "missing or extra redefinition at safepoint"); 1210 1211 return newDefs; 1212 } 1213 1214 static void 1215 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1216 const SmallVectorImpl<llvm::Value *> &basePtrs, 1217 const SmallVectorImpl<llvm::Value *> &liveVariables, 1218 Pass *P, 1219 PartiallyConstructedSafepointRecord &result) { 1220 assert(basePtrs.size() == liveVariables.size()); 1221 assert(isStatepoint(CS) && 1222 "This method expects to be rewriting a statepoint"); 1223 1224 BasicBlock *BB = CS.getInstruction()->getParent(); 1225 assert(BB); 1226 Function *F = BB->getParent(); 1227 assert(F && "must be set"); 1228 Module *M = F->getParent(); 1229 (void)M; 1230 assert(M && "must be set"); 1231 1232 // We're not changing the function signature of the statepoint since the gc 1233 // arguments go into the var args section. 1234 Function *gc_statepoint_decl = CS.getCalledFunction(); 1235 1236 // Then go ahead and use the builder do actually do the inserts. We insert 1237 // immediately before the previous instruction under the assumption that all 1238 // arguments will be available here. We can't insert afterwards since we may 1239 // be replacing a terminator. 1240 Instruction *insertBefore = CS.getInstruction(); 1241 IRBuilder<> Builder(insertBefore); 1242 // Copy all of the arguments from the original statepoint - this includes the 1243 // target, call args, and deopt args 1244 std::vector<llvm::Value *> args; 1245 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1246 // TODO: Clear the 'needs rewrite' flag 1247 1248 // add all the pointers to be relocated (gc arguments) 1249 // Capture the start of the live variable list for use in the gc_relocates 1250 const int live_start = args.size(); 1251 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1252 1253 // Create the statepoint given all the arguments 1254 Instruction *token = nullptr; 1255 AttributeSet return_attributes; 1256 if (CS.isCall()) { 1257 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1258 CallInst *call = 1259 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1260 call->setTailCall(toReplace->isTailCall()); 1261 call->setCallingConv(toReplace->getCallingConv()); 1262 1263 // Currently we will fail on parameter attributes and on certain 1264 // function attributes. 1265 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1266 // In case if we can handle this set of sttributes - set up function attrs 1267 // directly on statepoint and return attrs later for gc_result intrinsic. 1268 call->setAttributes(new_attrs.getFnAttributes()); 1269 return_attributes = new_attrs.getRetAttributes(); 1270 1271 token = call; 1272 1273 // Put the following gc_result and gc_relocate calls immediately after the 1274 // the old call (which we're about to delete) 1275 BasicBlock::iterator next(toReplace); 1276 assert(BB->end() != next && "not a terminator, must have next"); 1277 next++; 1278 Instruction *IP = &*(next); 1279 Builder.SetInsertPoint(IP); 1280 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1281 1282 } else if (CS.isInvoke()) { 1283 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1284 1285 // Insert the new invoke into the old block. We'll remove the old one in a 1286 // moment at which point this will become the new terminator for the 1287 // original block. 1288 InvokeInst *invoke = InvokeInst::Create( 1289 gc_statepoint_decl, toReplace->getNormalDest(), 1290 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1291 invoke->setCallingConv(toReplace->getCallingConv()); 1292 1293 // Currently we will fail on parameter attributes and on certain 1294 // function attributes. 1295 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1296 // In case if we can handle this set of sttributes - set up function attrs 1297 // directly on statepoint and return attrs later for gc_result intrinsic. 1298 invoke->setAttributes(new_attrs.getFnAttributes()); 1299 return_attributes = new_attrs.getRetAttributes(); 1300 1301 token = invoke; 1302 1303 // Generate gc relocates in exceptional path 1304 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1305 toReplace->getUnwindDest(), invoke->getParent(), P); 1306 1307 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1308 Builder.SetInsertPoint(IP); 1309 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1310 1311 // Extract second element from landingpad return value. We will attach 1312 // exceptional gc relocates to it. 1313 const unsigned idx = 1; 1314 Instruction *exceptional_token = 1315 cast<Instruction>(Builder.CreateExtractValue( 1316 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1317 result.UnwindToken = exceptional_token; 1318 1319 // Just throw away return value. We will use the one we got for normal 1320 // block. 1321 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1322 exceptional_token, Builder); 1323 1324 // Generate gc relocates and returns for normal block 1325 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1326 toReplace->getNormalDest(), invoke->getParent(), P); 1327 1328 IP = &*(normalDest->getFirstInsertionPt()); 1329 Builder.SetInsertPoint(IP); 1330 1331 // gc relocates will be generated later as if it were regular call 1332 // statepoint 1333 } else { 1334 llvm_unreachable("unexpect type of CallSite"); 1335 } 1336 assert(token); 1337 1338 // Take the name of the original value call if it had one. 1339 token->takeName(CS.getInstruction()); 1340 1341 // The GCResult is already inserted, we just need to find it 1342 Instruction *gc_result = nullptr; 1343 /* scope */ { 1344 Instruction *toReplace = CS.getInstruction(); 1345 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1346 "only valid use before rewrite is gc.result"); 1347 if (toReplace->hasOneUse()) { 1348 Instruction *GCResult = cast<Instruction>(*toReplace->user_begin()); 1349 assert(isGCResult(GCResult)); 1350 gc_result = GCResult; 1351 } 1352 } 1353 1354 // Update the gc.result of the original statepoint (if any) to use the newly 1355 // inserted statepoint. This is safe to do here since the token can't be 1356 // considered a live reference. 1357 CS.getInstruction()->replaceAllUsesWith(token); 1358 1359 // Second, create a gc.relocate for every live variable 1360 std::vector<llvm::Instruction *> newDefs = 1361 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1362 1363 // Need to pass through the last part of the safepoint block so that we 1364 // don't accidentally update uses in a following gc.relocate which is 1365 // still conceptually part of the same safepoint. Gah. 1366 Instruction *last = nullptr; 1367 if (!newDefs.empty()) { 1368 last = newDefs.back(); 1369 } else if (gc_result) { 1370 last = gc_result; 1371 } else { 1372 last = token; 1373 } 1374 assert(last && "can't be null"); 1375 const auto bounds = std::make_pair(token, last); 1376 1377 // Sanity check our results - this is slightly non-trivial due to invokes 1378 VerifySafepointBounds(bounds); 1379 1380 result.SafepointBounds = bounds; 1381 } 1382 1383 namespace { 1384 struct name_ordering { 1385 Value *base; 1386 Value *derived; 1387 bool operator()(name_ordering const &a, name_ordering const &b) { 1388 return -1 == a.derived->getName().compare(b.derived->getName()); 1389 } 1390 }; 1391 } 1392 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1393 SmallVectorImpl<Value *> &livevec) { 1394 assert(basevec.size() == livevec.size()); 1395 1396 std::vector<name_ordering> temp; 1397 for (size_t i = 0; i < basevec.size(); i++) { 1398 name_ordering v; 1399 v.base = basevec[i]; 1400 v.derived = livevec[i]; 1401 temp.push_back(v); 1402 } 1403 std::sort(temp.begin(), temp.end(), name_ordering()); 1404 for (size_t i = 0; i < basevec.size(); i++) { 1405 basevec[i] = temp[i].base; 1406 livevec[i] = temp[i].derived; 1407 } 1408 } 1409 1410 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1411 // which make the relocations happening at this safepoint explicit. 1412 // 1413 // WARNING: Does not do any fixup to adjust users of the original live 1414 // values. That's the callers responsibility. 1415 static void 1416 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1417 PartiallyConstructedSafepointRecord &result) { 1418 auto liveset = result.liveset; 1419 auto PointerToBase = result.PointerToBase; 1420 1421 // Convert to vector for efficient cross referencing. 1422 SmallVector<Value *, 64> basevec, livevec; 1423 livevec.reserve(liveset.size()); 1424 basevec.reserve(liveset.size()); 1425 for (Value *L : liveset) { 1426 livevec.push_back(L); 1427 1428 assert(PointerToBase.find(L) != PointerToBase.end()); 1429 Value *base = PointerToBase[L]; 1430 basevec.push_back(base); 1431 } 1432 assert(livevec.size() == basevec.size()); 1433 1434 // To make the output IR slightly more stable (for use in diffs), ensure a 1435 // fixed order of the values in the safepoint (by sorting the value name). 1436 // The order is otherwise meaningless. 1437 stablize_order(basevec, livevec); 1438 1439 // Do the actual rewriting and delete the old statepoint 1440 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1441 CS.getInstruction()->eraseFromParent(); 1442 } 1443 1444 // Helper function for the relocationViaAlloca. 1445 // It receives iterator to the statepoint gc relocates and emits store to the 1446 // assigned 1447 // location (via allocaMap) for the each one of them. 1448 // Add visited values into the visitedLiveValues set we will later use them 1449 // for sanity check. 1450 static void 1451 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1452 DenseMap<Value *, Value *> &allocaMap, 1453 DenseSet<Value *> &visitedLiveValues) { 1454 1455 for (User *U : gcRelocs) { 1456 if (!isa<IntrinsicInst>(U)) 1457 continue; 1458 1459 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1460 1461 // We only care about relocates 1462 if (relocatedValue->getIntrinsicID() != 1463 Intrinsic::experimental_gc_relocate) { 1464 continue; 1465 } 1466 1467 GCRelocateOperands relocateOperands(relocatedValue); 1468 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1469 assert(allocaMap.count(originalValue)); 1470 Value *alloca = allocaMap[originalValue]; 1471 1472 // Emit store into the related alloca 1473 StoreInst *store = new StoreInst(relocatedValue, alloca); 1474 store->insertAfter(relocatedValue); 1475 1476 #ifndef NDEBUG 1477 visitedLiveValues.insert(originalValue); 1478 #endif 1479 } 1480 } 1481 1482 /// do all the relocation update via allocas and mem2reg 1483 static void relocationViaAlloca( 1484 Function &F, DominatorTree &DT, const std::vector<Value *> &live, 1485 const std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1486 #ifndef NDEBUG 1487 int initialAllocaNum = 0; 1488 1489 // record initial number of allocas 1490 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1491 itr++) { 1492 if (isa<AllocaInst>(*itr)) 1493 initialAllocaNum++; 1494 } 1495 #endif 1496 1497 // TODO-PERF: change data structures, reserve 1498 DenseMap<Value *, Value *> allocaMap; 1499 SmallVector<AllocaInst *, 200> PromotableAllocas; 1500 PromotableAllocas.reserve(live.size()); 1501 1502 // emit alloca for each live gc pointer 1503 for (unsigned i = 0; i < live.size(); i++) { 1504 Value *liveValue = live[i]; 1505 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1506 F.getEntryBlock().getFirstNonPHI()); 1507 allocaMap[liveValue] = alloca; 1508 PromotableAllocas.push_back(alloca); 1509 } 1510 1511 // The next two loops are part of the same conceptual operation. We need to 1512 // insert a store to the alloca after the original def and at each 1513 // redefinition. We need to insert a load before each use. These are split 1514 // into distinct loops for performance reasons. 1515 1516 // update gc pointer after each statepoint 1517 // either store a relocated value or null (if no relocated value found for 1518 // this gc pointer and it is not a gc_result) 1519 // this must happen before we update the statepoint with load of alloca 1520 // otherwise we lose the link between statepoint and old def 1521 for (size_t i = 0; i < records.size(); i++) { 1522 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1523 Value *statepoint = info.SafepointBounds.first; 1524 1525 // This will be used for consistency check 1526 DenseSet<Value *> visitedLiveValues; 1527 1528 // Insert stores for normal statepoint gc relocates 1529 insertRelocationStores(statepoint->users(), allocaMap, visitedLiveValues); 1530 1531 // In case if it was invoke statepoint 1532 // we will insert stores for exceptional path gc relocates. 1533 if (isa<InvokeInst>(statepoint)) { 1534 insertRelocationStores(info.UnwindToken->users(), 1535 allocaMap, visitedLiveValues); 1536 } 1537 1538 #ifndef NDEBUG 1539 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1540 // the gc.statepoint. This will turn some subtle GC problems into slightly 1541 // easier to debug SEGVs 1542 SmallVector<AllocaInst *, 64> ToClobber; 1543 for (auto Pair : allocaMap) { 1544 Value *Def = Pair.first; 1545 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1546 1547 // This value was relocated 1548 if (visitedLiveValues.count(Def)) { 1549 continue; 1550 } 1551 ToClobber.push_back(Alloca); 1552 } 1553 1554 Instruction *Statepoint = info.SafepointBounds.first; 1555 auto InsertClobbersAt = [&](Instruction *IP) { 1556 for (auto *AI : ToClobber) { 1557 auto AIType = cast<PointerType>(AI->getType()); 1558 auto PT = cast<PointerType>(AIType->getElementType()); 1559 Constant *CPN = ConstantPointerNull::get(PT); 1560 StoreInst *store = new StoreInst(CPN, AI); 1561 store->insertBefore(IP); 1562 } 1563 }; 1564 1565 // Insert the clobbering stores. These may get intermixed with the 1566 // gc.results and gc.relocates, but that's fine. 1567 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1568 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1569 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1570 } else if (auto CI = dyn_cast<CallInst>(Statepoint)) { 1571 BasicBlock::iterator Next(CI); 1572 Next++; 1573 InsertClobbersAt(Next); 1574 } else 1575 llvm_unreachable("illegal statepoint instruction type?"); 1576 #endif 1577 } 1578 // update use with load allocas and add store for gc_relocated 1579 for (auto Pair : allocaMap) { 1580 Value *def = Pair.first; 1581 Value *alloca = Pair.second; 1582 1583 // we pre-record the uses of allocas so that we dont have to worry about 1584 // later update 1585 // that change the user information. 1586 SmallVector<Instruction *, 20> uses; 1587 // PERF: trade a linear scan for repeated reallocation 1588 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1589 for (User *U : def->users()) { 1590 if (!isa<ConstantExpr>(U)) { 1591 // If the def has a ConstantExpr use, then the def is either a 1592 // ConstantExpr use itself or null. In either case 1593 // (recursively in the first, directly in the second), the oop 1594 // it is ultimately dependent on is null and this particular 1595 // use does not need to be fixed up. 1596 uses.push_back(cast<Instruction>(U)); 1597 } 1598 } 1599 1600 std::sort(uses.begin(), uses.end()); 1601 auto last = std::unique(uses.begin(), uses.end()); 1602 uses.erase(last, uses.end()); 1603 1604 for (Instruction *use : uses) { 1605 if (isa<PHINode>(use)) { 1606 PHINode *phi = cast<PHINode>(use); 1607 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1608 if (def == phi->getIncomingValue(i)) { 1609 LoadInst *load = new LoadInst( 1610 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1611 phi->setIncomingValue(i, load); 1612 } 1613 } 1614 } else { 1615 LoadInst *load = new LoadInst(alloca, "", use); 1616 use->replaceUsesOfWith(def, load); 1617 } 1618 } 1619 1620 // emit store for the initial gc value 1621 // store must be inserted after load, otherwise store will be in alloca's 1622 // use list and an extra load will be inserted before it 1623 StoreInst *store = new StoreInst(def, alloca); 1624 if (isa<Instruction>(def)) { 1625 store->insertAfter(cast<Instruction>(def)); 1626 } else { 1627 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1628 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) && 1629 "Must be argument or global"); 1630 store->insertAfter(cast<Instruction>(alloca)); 1631 } 1632 } 1633 1634 assert(PromotableAllocas.size() == live.size() && 1635 "we must have the same allocas with lives"); 1636 if (!PromotableAllocas.empty()) { 1637 // apply mem2reg to promote alloca to SSA 1638 PromoteMemToReg(PromotableAllocas, DT); 1639 } 1640 1641 #ifndef NDEBUG 1642 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1643 itr++) { 1644 if (isa<AllocaInst>(*itr)) 1645 initialAllocaNum--; 1646 } 1647 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); 1648 #endif 1649 } 1650 1651 /// Implement a unique function which doesn't require we sort the input 1652 /// vector. Doing so has the effect of changing the output of a couple of 1653 /// tests in ways which make them less useful in testing fused safepoints. 1654 template <typename T> static void unique_unsorted(std::vector<T> &vec) { 1655 DenseSet<T> seen; 1656 std::vector<T> tmp; 1657 vec.reserve(vec.size()); 1658 std::swap(tmp, vec); 1659 for (auto V : tmp) { 1660 if (seen.insert(V).second) { 1661 vec.push_back(V); 1662 } 1663 } 1664 } 1665 1666 static Function *getUseHolder(Module &M) { 1667 FunctionType *ftype = 1668 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1669 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1670 return Func; 1671 } 1672 1673 /// Insert holders so that each Value is obviously live through the entire 1674 /// liftetime of the call. 1675 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1676 std::vector<CallInst *> &holders) { 1677 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1678 Function *Func = getUseHolder(*M); 1679 if (CS.isCall()) { 1680 // For call safepoints insert dummy calls right after safepoint 1681 BasicBlock::iterator next(CS.getInstruction()); 1682 next++; 1683 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1684 holders.push_back(base_holder); 1685 } else if (CS.isInvoke()) { 1686 // For invoke safepooints insert dummy calls both in normal and 1687 // exceptional destination blocks 1688 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1689 CallInst *normal_holder = CallInst::Create( 1690 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1691 CallInst *unwind_holder = CallInst::Create( 1692 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1693 holders.push_back(normal_holder); 1694 holders.push_back(unwind_holder); 1695 } else { 1696 assert(false && "Unsupported"); 1697 } 1698 } 1699 1700 static void findLiveReferences( 1701 Function &F, DominatorTree &DT, Pass *P, std::vector<CallSite> &toUpdate, 1702 std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1703 for (size_t i = 0; i < records.size(); i++) { 1704 struct PartiallyConstructedSafepointRecord &info = records[i]; 1705 CallSite &CS = toUpdate[i]; 1706 analyzeParsePointLiveness(DT, CS, info); 1707 } 1708 } 1709 1710 static void addBasesAsLiveValues(std::set<Value *> &liveset, 1711 DenseMap<Value *, Value *> &PointerToBase) { 1712 // Identify any base pointers which are used in this safepoint, but not 1713 // themselves relocated. We need to relocate them so that later inserted 1714 // safepoints can get the properly relocated base register. 1715 DenseSet<Value *> missing; 1716 for (Value *L : liveset) { 1717 assert(PointerToBase.find(L) != PointerToBase.end()); 1718 Value *base = PointerToBase[L]; 1719 assert(base); 1720 if (liveset.find(base) == liveset.end()) { 1721 assert(PointerToBase.find(base) == PointerToBase.end()); 1722 // uniqued by set insert 1723 missing.insert(base); 1724 } 1725 } 1726 1727 // Note that we want these at the end of the list, otherwise 1728 // register placement gets screwed up once we lower to STATEPOINT 1729 // instructions. This is an utter hack, but there doesn't seem to be a 1730 // better one. 1731 for (Value *base : missing) { 1732 assert(base); 1733 liveset.insert(base); 1734 PointerToBase[base] = base; 1735 } 1736 assert(liveset.size() == PointerToBase.size()); 1737 } 1738 1739 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1740 std::vector<CallSite> &toUpdate) { 1741 #ifndef NDEBUG 1742 // sanity check the input 1743 std::set<CallSite> uniqued; 1744 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1745 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1746 1747 for (size_t i = 0; i < toUpdate.size(); i++) { 1748 CallSite &CS = toUpdate[i]; 1749 assert(CS.getInstruction()->getParent()->getParent() == &F); 1750 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1751 } 1752 #endif 1753 1754 // A list of dummy calls added to the IR to keep various values obviously 1755 // live in the IR. We'll remove all of these when done. 1756 std::vector<CallInst *> holders; 1757 1758 // Insert a dummy call with all of the arguments to the vm_state we'll need 1759 // for the actual safepoint insertion. This ensures reference arguments in 1760 // the deopt argument list are considered live through the safepoint (and 1761 // thus makes sure they get relocated.) 1762 for (size_t i = 0; i < toUpdate.size(); i++) { 1763 CallSite &CS = toUpdate[i]; 1764 Statepoint StatepointCS(CS); 1765 1766 SmallVector<Value *, 64> DeoptValues; 1767 for (Use &U : StatepointCS.vm_state_args()) { 1768 Value *Arg = cast<Value>(&U); 1769 if (isGCPointerType(Arg->getType())) 1770 DeoptValues.push_back(Arg); 1771 } 1772 insertUseHolderAfter(CS, DeoptValues, holders); 1773 } 1774 1775 std::vector<struct PartiallyConstructedSafepointRecord> records; 1776 records.reserve(toUpdate.size()); 1777 for (size_t i = 0; i < toUpdate.size(); i++) { 1778 struct PartiallyConstructedSafepointRecord info; 1779 records.push_back(info); 1780 } 1781 assert(records.size() == toUpdate.size()); 1782 1783 // A) Identify all gc pointers which are staticly live at the given call 1784 // site. 1785 findLiveReferences(F, DT, P, toUpdate, records); 1786 1787 // B) Find the base pointers for each live pointer 1788 /* scope for caching */ { 1789 // Cache the 'defining value' relation used in the computation and 1790 // insertion of base phis and selects. This ensures that we don't insert 1791 // large numbers of duplicate base_phis. 1792 DefiningValueMapTy DVCache; 1793 1794 for (size_t i = 0; i < records.size(); i++) { 1795 struct PartiallyConstructedSafepointRecord &info = records[i]; 1796 CallSite &CS = toUpdate[i]; 1797 findBasePointers(DT, DVCache, CS, info); 1798 } 1799 } // end of cache scope 1800 1801 // The base phi insertion logic (for any safepoint) may have inserted new 1802 // instructions which are now live at some safepoint. The simplest such 1803 // example is: 1804 // loop: 1805 // phi a <-- will be a new base_phi here 1806 // safepoint 1 <-- that needs to be live here 1807 // gep a + 1 1808 // safepoint 2 1809 // br loop 1810 std::set<llvm::Value *> allInsertedDefs; 1811 for (size_t i = 0; i < records.size(); i++) { 1812 struct PartiallyConstructedSafepointRecord &info = records[i]; 1813 allInsertedDefs.insert(info.NewInsertedDefs.begin(), 1814 info.NewInsertedDefs.end()); 1815 } 1816 1817 // We insert some dummy calls after each safepoint to definitely hold live 1818 // the base pointers which were identified for that safepoint. We'll then 1819 // ask liveness for _every_ base inserted to see what is now live. Then we 1820 // remove the dummy calls. 1821 holders.reserve(holders.size() + records.size()); 1822 for (size_t i = 0; i < records.size(); i++) { 1823 struct PartiallyConstructedSafepointRecord &info = records[i]; 1824 CallSite &CS = toUpdate[i]; 1825 1826 SmallVector<Value *, 128> Bases; 1827 for (auto Pair : info.PointerToBase) { 1828 Bases.push_back(Pair.second); 1829 } 1830 insertUseHolderAfter(CS, Bases, holders); 1831 } 1832 1833 // Add the bases explicitly to the live vector set. This may result in a few 1834 // extra relocations, but the base has to be available whenever a pointer 1835 // derived from it is used. Thus, we need it to be part of the statepoint's 1836 // gc arguments list. TODO: Introduce an explicit notion (in the following 1837 // code) of the GC argument list as seperate from the live Values at a 1838 // given statepoint. 1839 for (size_t i = 0; i < records.size(); i++) { 1840 struct PartiallyConstructedSafepointRecord &info = records[i]; 1841 addBasesAsLiveValues(info.liveset, info.PointerToBase); 1842 } 1843 1844 // If we inserted any new values, we need to adjust our notion of what is 1845 // live at a particular safepoint. 1846 if (!allInsertedDefs.empty()) { 1847 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1848 } 1849 if (PrintBasePointers) { 1850 for (size_t i = 0; i < records.size(); i++) { 1851 struct PartiallyConstructedSafepointRecord &info = records[i]; 1852 errs() << "Base Pairs: (w/Relocation)\n"; 1853 for (auto Pair : info.PointerToBase) { 1854 errs() << " derived %" << Pair.first->getName() << " base %" 1855 << Pair.second->getName() << "\n"; 1856 } 1857 } 1858 } 1859 for (size_t i = 0; i < holders.size(); i++) { 1860 holders[i]->eraseFromParent(); 1861 holders[i] = nullptr; 1862 } 1863 holders.clear(); 1864 1865 // Now run through and replace the existing statepoints with new ones with 1866 // the live variables listed. We do not yet update uses of the values being 1867 // relocated. We have references to live variables that need to 1868 // survive to the last iteration of this loop. (By construction, the 1869 // previous statepoint can not be a live variable, thus we can and remove 1870 // the old statepoint calls as we go.) 1871 for (size_t i = 0; i < records.size(); i++) { 1872 struct PartiallyConstructedSafepointRecord &info = records[i]; 1873 CallSite &CS = toUpdate[i]; 1874 makeStatepointExplicit(DT, CS, P, info); 1875 } 1876 toUpdate.clear(); // prevent accident use of invalid CallSites 1877 1878 // In case if we inserted relocates in a different basic block than the 1879 // original safepoint (this can happen for invokes). We need to be sure that 1880 // original values were not used in any of the phi nodes at the 1881 // beginning of basic block containing them. Because we know that all such 1882 // blocks will have single predecessor we can safely assume that all phi 1883 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1884 // Just remove them all here. 1885 for (size_t i = 0; i < records.size(); i++) { 1886 Instruction *I = records[i].SafepointBounds.first; 1887 1888 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 1889 FoldSingleEntryPHINodes(invoke->getNormalDest()); 1890 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 1891 1892 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 1893 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 1894 } 1895 } 1896 1897 // Do all the fixups of the original live variables to their relocated selves 1898 std::vector<Value *> live; 1899 for (size_t i = 0; i < records.size(); i++) { 1900 struct PartiallyConstructedSafepointRecord &info = records[i]; 1901 // We can't simply save the live set from the original insertion. One of 1902 // the live values might be the result of a call which needs a safepoint. 1903 // That Value* no longer exists and we need to use the new gc_result. 1904 // Thankfully, the liveset is embedded in the statepoint (and updated), so 1905 // we just grab that. 1906 Statepoint statepoint(info.SafepointBounds.first); 1907 live.insert(live.end(), statepoint.gc_args_begin(), 1908 statepoint.gc_args_end()); 1909 } 1910 unique_unsorted(live); 1911 1912 #ifndef NDEBUG 1913 // sanity check 1914 for (auto ptr : live) { 1915 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 1916 } 1917 #endif 1918 1919 relocationViaAlloca(F, DT, live, records); 1920 return !records.empty(); 1921 } 1922 1923 /// Returns true if this function should be rewritten by this pass. The main 1924 /// point of this function is as an extension point for custom logic. 1925 static bool shouldRewriteStatepointsIn(Function &F) { 1926 // TODO: This should check the GCStrategy 1927 if (F.hasGC()) { 1928 const std::string StatepointExampleName("statepoint-example"); 1929 return StatepointExampleName == F.getGC(); 1930 } else 1931 return false; 1932 } 1933 1934 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 1935 // Nothing to do for declarations. 1936 if (F.isDeclaration() || F.empty()) 1937 return false; 1938 1939 // Policy choice says not to rewrite - the most common reason is that we're 1940 // compiling code without a GCStrategy. 1941 if (!shouldRewriteStatepointsIn(F)) 1942 return false; 1943 1944 // Gather all the statepoints which need rewritten. 1945 std::vector<CallSite> ParsePointNeeded; 1946 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1947 itr++) { 1948 // TODO: only the ones with the flag set! 1949 if (isStatepoint(*itr)) 1950 ParsePointNeeded.push_back(CallSite(&*itr)); 1951 } 1952 1953 // Return early if no work to do. 1954 if (ParsePointNeeded.empty()) 1955 return false; 1956 1957 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1958 return insertParsePoints(F, DT, this, ParsePointNeeded); 1959 } 1960