1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstIterator.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/Statepoint.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Transforms/Scalar.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 44 45 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 46 47 using namespace llvm; 48 49 // Print tracing output 50 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 51 cl::init(false)); 52 53 // Print the liveset found at the insert location 54 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 55 cl::init(false)); 56 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 57 cl::init(false)); 58 // Print out the base pointers for debugging 59 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 60 cl::init(false)); 61 62 // Cost threshold measuring when it is profitable to rematerialize value instead 63 // of relocating it 64 static cl::opt<unsigned> 65 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 66 cl::init(6)); 67 68 #ifdef XDEBUG 69 static bool ClobberNonLive = true; 70 #else 71 static bool ClobberNonLive = false; 72 #endif 73 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 74 cl::location(ClobberNonLive), 75 cl::Hidden); 76 77 namespace { 78 struct RewriteStatepointsForGC : public ModulePass { 79 static char ID; // Pass identification, replacement for typeid 80 81 RewriteStatepointsForGC() : ModulePass(ID) { 82 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 83 } 84 bool runOnFunction(Function &F); 85 bool runOnModule(Module &M) override { 86 bool Changed = false; 87 for (Function &F : M) 88 Changed |= runOnFunction(F); 89 90 if (Changed) { 91 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn 92 // returns true for at least one function in the module. Since at least 93 // one function changed, we know that the precondition is satisfied. 94 stripDereferenceabilityInfo(M); 95 } 96 97 return Changed; 98 } 99 100 void getAnalysisUsage(AnalysisUsage &AU) const override { 101 // We add and rewrite a bunch of instructions, but don't really do much 102 // else. We could in theory preserve a lot more analyses here. 103 AU.addRequired<DominatorTreeWrapperPass>(); 104 AU.addRequired<TargetTransformInfoWrapperPass>(); 105 } 106 107 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 108 /// dereferenceability that are no longer valid/correct after 109 /// RewriteStatepointsForGC has run. This is because semantically, after 110 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 111 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness 112 /// by erasing all attributes in the module that externally imply 113 /// dereferenceability. 114 /// 115 void stripDereferenceabilityInfo(Module &M); 116 117 // Helpers for stripDereferenceabilityInfo 118 void stripDereferenceabilityInfoFromBody(Function &F); 119 void stripDereferenceabilityInfoFromPrototype(Function &F); 120 }; 121 } // namespace 122 123 char RewriteStatepointsForGC::ID = 0; 124 125 ModulePass *llvm::createRewriteStatepointsForGCPass() { 126 return new RewriteStatepointsForGC(); 127 } 128 129 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 130 "Make relocations explicit at statepoints", false, false) 131 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 132 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 133 "Make relocations explicit at statepoints", false, false) 134 135 namespace { 136 struct GCPtrLivenessData { 137 /// Values defined in this block. 138 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 139 /// Values used in this block (and thus live); does not included values 140 /// killed within this block. 141 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 142 143 /// Values live into this basic block (i.e. used by any 144 /// instruction in this basic block or ones reachable from here) 145 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 146 147 /// Values live out of this basic block (i.e. live into 148 /// any successor block) 149 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 150 }; 151 152 // The type of the internal cache used inside the findBasePointers family 153 // of functions. From the callers perspective, this is an opaque type and 154 // should not be inspected. 155 // 156 // In the actual implementation this caches two relations: 157 // - The base relation itself (i.e. this pointer is based on that one) 158 // - The base defining value relation (i.e. before base_phi insertion) 159 // Generally, after the execution of a full findBasePointer call, only the 160 // base relation will remain. Internally, we add a mixture of the two 161 // types, then update all the second type to the first type 162 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 163 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 164 typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy; 165 166 struct PartiallyConstructedSafepointRecord { 167 /// The set of values known to be live accross this safepoint 168 StatepointLiveSetTy liveset; 169 170 /// Mapping from live pointers to a base-defining-value 171 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 172 173 /// The *new* gc.statepoint instruction itself. This produces the token 174 /// that normal path gc.relocates and the gc.result are tied to. 175 Instruction *StatepointToken; 176 177 /// Instruction to which exceptional gc relocates are attached 178 /// Makes it easier to iterate through them during relocationViaAlloca. 179 Instruction *UnwindToken; 180 181 /// Record live values we are rematerialized instead of relocating. 182 /// They are not included into 'liveset' field. 183 /// Maps rematerialized copy to it's original value. 184 RematerializedValueMapTy RematerializedValues; 185 }; 186 } 187 188 /// Compute the live-in set for every basic block in the function 189 static void computeLiveInValues(DominatorTree &DT, Function &F, 190 GCPtrLivenessData &Data); 191 192 /// Given results from the dataflow liveness computation, find the set of live 193 /// Values at a particular instruction. 194 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 195 StatepointLiveSetTy &out); 196 197 // TODO: Once we can get to the GCStrategy, this becomes 198 // Optional<bool> isGCManagedPointer(const Value *V) const override { 199 200 static bool isGCPointerType(const Type *T) { 201 if (const PointerType *PT = dyn_cast<PointerType>(T)) 202 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 203 // GC managed heap. We know that a pointer into this heap needs to be 204 // updated and that no other pointer does. 205 return (1 == PT->getAddressSpace()); 206 return false; 207 } 208 209 // Return true if this type is one which a) is a gc pointer or contains a GC 210 // pointer and b) is of a type this code expects to encounter as a live value. 211 // (The insertion code will assert that a type which matches (a) and not (b) 212 // is not encountered.) 213 static bool isHandledGCPointerType(Type *T) { 214 // We fully support gc pointers 215 if (isGCPointerType(T)) 216 return true; 217 // We partially support vectors of gc pointers. The code will assert if it 218 // can't handle something. 219 if (auto VT = dyn_cast<VectorType>(T)) 220 if (isGCPointerType(VT->getElementType())) 221 return true; 222 return false; 223 } 224 225 #ifndef NDEBUG 226 /// Returns true if this type contains a gc pointer whether we know how to 227 /// handle that type or not. 228 static bool containsGCPtrType(Type *Ty) { 229 if (isGCPointerType(Ty)) 230 return true; 231 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 232 return isGCPointerType(VT->getScalarType()); 233 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 234 return containsGCPtrType(AT->getElementType()); 235 if (StructType *ST = dyn_cast<StructType>(Ty)) 236 return std::any_of( 237 ST->subtypes().begin(), ST->subtypes().end(), 238 [](Type *SubType) { return containsGCPtrType(SubType); }); 239 return false; 240 } 241 242 // Returns true if this is a type which a) is a gc pointer or contains a GC 243 // pointer and b) is of a type which the code doesn't expect (i.e. first class 244 // aggregates). Used to trip assertions. 245 static bool isUnhandledGCPointerType(Type *Ty) { 246 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 247 } 248 #endif 249 250 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 251 if (a->hasName() && b->hasName()) { 252 return -1 == a->getName().compare(b->getName()); 253 } else if (a->hasName() && !b->hasName()) { 254 return true; 255 } else if (!a->hasName() && b->hasName()) { 256 return false; 257 } else { 258 // Better than nothing, but not stable 259 return a < b; 260 } 261 } 262 263 // Conservatively identifies any definitions which might be live at the 264 // given instruction. The analysis is performed immediately before the 265 // given instruction. Values defined by that instruction are not considered 266 // live. Values used by that instruction are considered live. 267 static void analyzeParsePointLiveness( 268 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 269 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 270 Instruction *inst = CS.getInstruction(); 271 272 StatepointLiveSetTy liveset; 273 findLiveSetAtInst(inst, OriginalLivenessData, liveset); 274 275 if (PrintLiveSet) { 276 // Note: This output is used by several of the test cases 277 // The order of elemtns in a set is not stable, put them in a vec and sort 278 // by name 279 SmallVector<Value *, 64> temp; 280 temp.insert(temp.end(), liveset.begin(), liveset.end()); 281 std::sort(temp.begin(), temp.end(), order_by_name); 282 errs() << "Live Variables:\n"; 283 for (Value *V : temp) { 284 errs() << " " << V->getName(); // no newline 285 V->dump(); 286 } 287 } 288 if (PrintLiveSetSize) { 289 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 290 errs() << "Number live values: " << liveset.size() << "\n"; 291 } 292 result.liveset = liveset; 293 } 294 295 static Value *findBaseDefiningValue(Value *I); 296 297 /// Return a base defining value for the 'Index' element of the given vector 298 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 299 /// 'I'. As an optimization, this method will try to determine when the 300 /// element is known to already be a base pointer. If this can be established, 301 /// the second value in the returned pair will be true. Note that either a 302 /// vector or a pointer typed value can be returned. For the former, the 303 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 304 /// If the later, the return pointer is a BDV (or possibly a base) for the 305 /// particular element in 'I'. 306 static std::pair<Value *, bool> 307 findBaseDefiningValueOfVector(Value *I, Value *Index = nullptr) { 308 assert(I->getType()->isVectorTy() && 309 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 310 "Illegal to ask for the base pointer of a non-pointer type"); 311 312 // Each case parallels findBaseDefiningValue below, see that code for 313 // detailed motivation. 314 315 if (isa<Argument>(I)) 316 // An incoming argument to the function is a base pointer 317 return std::make_pair(I, true); 318 319 // We shouldn't see the address of a global as a vector value? 320 assert(!isa<GlobalVariable>(I) && 321 "unexpected global variable found in base of vector"); 322 323 // inlining could possibly introduce phi node that contains 324 // undef if callee has multiple returns 325 if (isa<UndefValue>(I)) 326 // utterly meaningless, but useful for dealing with partially optimized 327 // code. 328 return std::make_pair(I, true); 329 330 // Due to inheritance, this must be _after_ the global variable and undef 331 // checks 332 if (Constant *Con = dyn_cast<Constant>(I)) { 333 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 334 "order of checks wrong!"); 335 assert(Con->isNullValue() && "null is the only case which makes sense"); 336 return std::make_pair(Con, true); 337 } 338 339 if (isa<LoadInst>(I)) 340 return std::make_pair(I, true); 341 342 // For an insert element, we might be able to look through it if we know 343 // something about the indexes. 344 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) { 345 if (Index) { 346 Value *InsertIndex = IEI->getOperand(2); 347 // This index is inserting the value, look for its BDV 348 if (InsertIndex == Index) 349 return std::make_pair(findBaseDefiningValue(IEI->getOperand(1)), false); 350 // Both constant, and can't be equal per above. This insert is definitely 351 // not relevant, look back at the rest of the vector and keep trying. 352 if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex)) 353 return findBaseDefiningValueOfVector(IEI->getOperand(0), Index); 354 } 355 356 // We don't know whether this vector contains entirely base pointers or 357 // not. To be conservatively correct, we treat it as a BDV and will 358 // duplicate code as needed to construct a parallel vector of bases. 359 return std::make_pair(IEI, false); 360 } 361 362 if (isa<ShuffleVectorInst>(I)) 363 // We don't know whether this vector contains entirely base pointers or 364 // not. To be conservatively correct, we treat it as a BDV and will 365 // duplicate code as needed to construct a parallel vector of bases. 366 // TODO: There a number of local optimizations which could be applied here 367 // for particular sufflevector patterns. 368 return std::make_pair(I, false); 369 370 // A PHI or Select is a base defining value. The outer findBasePointer 371 // algorithm is responsible for constructing a base value for this BDV. 372 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 373 "unknown vector instruction - no base found for vector element"); 374 return std::make_pair(I, false); 375 } 376 377 static bool isKnownBaseResult(Value *V); 378 379 /// Helper function for findBasePointer - Will return a value which either a) 380 /// defines the base pointer for the input or b) blocks the simple search 381 /// (i.e. a PHI or Select of two derived pointers) 382 static Value *findBaseDefiningValue(Value *I) { 383 if (I->getType()->isVectorTy()) 384 return findBaseDefiningValueOfVector(I).first; 385 386 assert(I->getType()->isPointerTy() && 387 "Illegal to ask for the base pointer of a non-pointer type"); 388 389 // This case is a bit of a hack - it only handles extracts from vectors which 390 // trivially contain only base pointers or cases where we can directly match 391 // the index of the original extract element to an insertion into the vector. 392 // See note inside the function for how to improve this. 393 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { 394 Value *VectorOperand = EEI->getVectorOperand(); 395 Value *Index = EEI->getIndexOperand(); 396 std::pair<Value *, bool> pair = 397 findBaseDefiningValueOfVector(VectorOperand, Index); 398 Value *VectorBase = pair.first; 399 if (VectorBase->getType()->isPointerTy()) 400 // We found a BDV for this specific element with the vector. This is an 401 // optimization, but in practice it covers most of the useful cases 402 // created via scalarization. 403 return VectorBase; 404 else { 405 assert(VectorBase->getType()->isVectorTy()); 406 if (pair.second) 407 // If the entire vector returned is known to be entirely base pointers, 408 // then the extractelement is valid base for this value. 409 return EEI; 410 else { 411 // Otherwise, we have an instruction which potentially produces a 412 // derived pointer and we need findBasePointers to clone code for us 413 // such that we can create an instruction which produces the 414 // accompanying base pointer. 415 // Note: This code is currently rather incomplete. We don't currently 416 // support the general form of shufflevector of insertelement. 417 // Conceptually, these are just 'base defining values' of the same 418 // variety as phi or select instructions. We need to update the 419 // findBasePointers algorithm to insert new 'base-only' versions of the 420 // original instructions. This is relative straight forward to do, but 421 // the case which would motivate the work hasn't shown up in real 422 // workloads yet. 423 assert((isa<PHINode>(VectorBase) || isa<SelectInst>(VectorBase)) && 424 "need to extend findBasePointers for generic vector" 425 "instruction cases"); 426 return VectorBase; 427 } 428 } 429 } 430 431 if (isa<Argument>(I)) 432 // An incoming argument to the function is a base pointer 433 // We should have never reached here if this argument isn't an gc value 434 return I; 435 436 if (isa<GlobalVariable>(I)) 437 // base case 438 return I; 439 440 // inlining could possibly introduce phi node that contains 441 // undef if callee has multiple returns 442 if (isa<UndefValue>(I)) 443 // utterly meaningless, but useful for dealing with 444 // partially optimized code. 445 return I; 446 447 // Due to inheritance, this must be _after_ the global variable and undef 448 // checks 449 if (Constant *Con = dyn_cast<Constant>(I)) { 450 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 451 "order of checks wrong!"); 452 // Note: Finding a constant base for something marked for relocation 453 // doesn't really make sense. The most likely case is either a) some 454 // screwed up the address space usage or b) your validating against 455 // compiled C++ code w/o the proper separation. The only real exception 456 // is a null pointer. You could have generic code written to index of 457 // off a potentially null value and have proven it null. We also use 458 // null pointers in dead paths of relocation phis (which we might later 459 // want to find a base pointer for). 460 assert(isa<ConstantPointerNull>(Con) && 461 "null is the only case which makes sense"); 462 return Con; 463 } 464 465 if (CastInst *CI = dyn_cast<CastInst>(I)) { 466 Value *Def = CI->stripPointerCasts(); 467 // If we find a cast instruction here, it means we've found a cast which is 468 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 469 // handle int->ptr conversion. 470 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 471 return findBaseDefiningValue(Def); 472 } 473 474 if (isa<LoadInst>(I)) 475 return I; // The value loaded is an gc base itself 476 477 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 478 // The base of this GEP is the base 479 return findBaseDefiningValue(GEP->getPointerOperand()); 480 481 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 482 switch (II->getIntrinsicID()) { 483 case Intrinsic::experimental_gc_result_ptr: 484 default: 485 // fall through to general call handling 486 break; 487 case Intrinsic::experimental_gc_statepoint: 488 case Intrinsic::experimental_gc_result_float: 489 case Intrinsic::experimental_gc_result_int: 490 llvm_unreachable("these don't produce pointers"); 491 case Intrinsic::experimental_gc_relocate: { 492 // Rerunning safepoint insertion after safepoints are already 493 // inserted is not supported. It could probably be made to work, 494 // but why are you doing this? There's no good reason. 495 llvm_unreachable("repeat safepoint insertion is not supported"); 496 } 497 case Intrinsic::gcroot: 498 // Currently, this mechanism hasn't been extended to work with gcroot. 499 // There's no reason it couldn't be, but I haven't thought about the 500 // implications much. 501 llvm_unreachable( 502 "interaction with the gcroot mechanism is not supported"); 503 } 504 } 505 // We assume that functions in the source language only return base 506 // pointers. This should probably be generalized via attributes to support 507 // both source language and internal functions. 508 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 509 return I; 510 511 // I have absolutely no idea how to implement this part yet. It's not 512 // neccessarily hard, I just haven't really looked at it yet. 513 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 514 515 if (isa<AtomicCmpXchgInst>(I)) 516 // A CAS is effectively a atomic store and load combined under a 517 // predicate. From the perspective of base pointers, we just treat it 518 // like a load. 519 return I; 520 521 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 522 "binary ops which don't apply to pointers"); 523 524 // The aggregate ops. Aggregates can either be in the heap or on the 525 // stack, but in either case, this is simply a field load. As a result, 526 // this is a defining definition of the base just like a load is. 527 if (isa<ExtractValueInst>(I)) 528 return I; 529 530 // We should never see an insert vector since that would require we be 531 // tracing back a struct value not a pointer value. 532 assert(!isa<InsertValueInst>(I) && 533 "Base pointer for a struct is meaningless"); 534 535 // The last two cases here don't return a base pointer. Instead, they 536 // return a value which dynamically selects from amoung several base 537 // derived pointers (each with it's own base potentially). It's the job of 538 // the caller to resolve these. 539 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 540 "missing instruction case in findBaseDefiningValing"); 541 return I; 542 } 543 544 /// Returns the base defining value for this value. 545 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 546 Value *&Cached = Cache[I]; 547 if (!Cached) { 548 Cached = findBaseDefiningValue(I); 549 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 550 << Cached->getName() << "\n"); 551 } 552 assert(Cache[I] != nullptr); 553 return Cached; 554 } 555 556 /// Return a base pointer for this value if known. Otherwise, return it's 557 /// base defining value. 558 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 559 Value *Def = findBaseDefiningValueCached(I, Cache); 560 auto Found = Cache.find(Def); 561 if (Found != Cache.end()) { 562 // Either a base-of relation, or a self reference. Caller must check. 563 return Found->second; 564 } 565 // Only a BDV available 566 return Def; 567 } 568 569 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 570 /// is it known to be a base pointer? Or do we need to continue searching. 571 static bool isKnownBaseResult(Value *V) { 572 if (!isa<PHINode>(V) && !isa<SelectInst>(V)) { 573 // no recursion possible 574 return true; 575 } 576 if (isa<Instruction>(V) && 577 cast<Instruction>(V)->getMetadata("is_base_value")) { 578 // This is a previously inserted base phi or select. We know 579 // that this is a base value. 580 return true; 581 } 582 583 // We need to keep searching 584 return false; 585 } 586 587 namespace { 588 /// Models the state of a single base defining value in the findBasePointer 589 /// algorithm for determining where a new instruction is needed to propagate 590 /// the base of this BDV. 591 class BDVState { 592 public: 593 enum Status { Unknown, Base, Conflict }; 594 595 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 596 assert(status != Base || b); 597 } 598 explicit BDVState(Value *b) : status(Base), base(b) {} 599 BDVState() : status(Unknown), base(nullptr) {} 600 601 Status getStatus() const { return status; } 602 Value *getBase() const { return base; } 603 604 bool isBase() const { return getStatus() == Base; } 605 bool isUnknown() const { return getStatus() == Unknown; } 606 bool isConflict() const { return getStatus() == Conflict; } 607 608 bool operator==(const BDVState &other) const { 609 return base == other.base && status == other.status; 610 } 611 612 bool operator!=(const BDVState &other) const { return !(*this == other); } 613 614 LLVM_DUMP_METHOD 615 void dump() const { print(dbgs()); dbgs() << '\n'; } 616 617 void print(raw_ostream &OS) const { 618 OS << status << " (" << base << " - " 619 << (base ? base->getName() : "nullptr") << "): "; 620 } 621 622 private: 623 Status status; 624 Value *base; // non null only if status == base 625 }; 626 627 inline raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 628 State.print(OS); 629 return OS; 630 } 631 632 633 typedef DenseMap<Value *, BDVState> ConflictStateMapTy; 634 // Values of type BDVState form a lattice, and this is a helper 635 // class that implementes the meet operation. The meat of the meet 636 // operation is implemented in MeetBDVStates::pureMeet 637 class MeetBDVStates { 638 public: 639 /// Initializes the currentResult to the TOP state so that if can be met with 640 /// any other state to produce that state. 641 MeetBDVStates() {} 642 643 // Destructively meet the current result with the given BDVState 644 void meetWith(BDVState otherState) { 645 currentResult = meet(otherState, currentResult); 646 } 647 648 BDVState getResult() const { return currentResult; } 649 650 private: 651 BDVState currentResult; 652 653 /// Perform a meet operation on two elements of the BDVState lattice. 654 static BDVState meet(BDVState LHS, BDVState RHS) { 655 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 656 "math is wrong: meet does not commute!"); 657 BDVState Result = pureMeet(LHS, RHS); 658 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 659 << " produced " << Result << "\n"); 660 return Result; 661 } 662 663 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 664 switch (stateA.getStatus()) { 665 case BDVState::Unknown: 666 return stateB; 667 668 case BDVState::Base: 669 assert(stateA.getBase() && "can't be null"); 670 if (stateB.isUnknown()) 671 return stateA; 672 673 if (stateB.isBase()) { 674 if (stateA.getBase() == stateB.getBase()) { 675 assert(stateA == stateB && "equality broken!"); 676 return stateA; 677 } 678 return BDVState(BDVState::Conflict); 679 } 680 assert(stateB.isConflict() && "only three states!"); 681 return BDVState(BDVState::Conflict); 682 683 case BDVState::Conflict: 684 return stateA; 685 } 686 llvm_unreachable("only three states!"); 687 } 688 }; 689 } 690 /// For a given value or instruction, figure out what base ptr it's derived 691 /// from. For gc objects, this is simply itself. On success, returns a value 692 /// which is the base pointer. (This is reliable and can be used for 693 /// relocation.) On failure, returns nullptr. 694 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 695 Value *def = findBaseOrBDV(I, cache); 696 697 if (isKnownBaseResult(def)) { 698 return def; 699 } 700 701 // Here's the rough algorithm: 702 // - For every SSA value, construct a mapping to either an actual base 703 // pointer or a PHI which obscures the base pointer. 704 // - Construct a mapping from PHI to unknown TOP state. Use an 705 // optimistic algorithm to propagate base pointer information. Lattice 706 // looks like: 707 // UNKNOWN 708 // b1 b2 b3 b4 709 // CONFLICT 710 // When algorithm terminates, all PHIs will either have a single concrete 711 // base or be in a conflict state. 712 // - For every conflict, insert a dummy PHI node without arguments. Add 713 // these to the base[Instruction] = BasePtr mapping. For every 714 // non-conflict, add the actual base. 715 // - For every conflict, add arguments for the base[a] of each input 716 // arguments. 717 // 718 // Note: A simpler form of this would be to add the conflict form of all 719 // PHIs without running the optimistic algorithm. This would be 720 // analougous to pessimistic data flow and would likely lead to an 721 // overall worse solution. 722 723 #ifndef NDEBUG 724 auto isExpectedBDVType = [](Value *BDV) { 725 return isa<PHINode>(BDV) || isa<SelectInst>(BDV); 726 }; 727 #endif 728 729 // Once populated, will contain a mapping from each potentially non-base BDV 730 // to a lattice value (described above) which corresponds to that BDV. 731 ConflictStateMapTy states; 732 // Recursively fill in all phis & selects reachable from the initial one 733 // for which we don't already know a definite base value for 734 /* scope */ { 735 DenseSet<Value *> Visited; 736 SmallVector<Value*, 16> Worklist; 737 Worklist.push_back(def); 738 Visited.insert(def); 739 while (!Worklist.empty()) { 740 Value *Current = Worklist.pop_back_val(); 741 assert(!isKnownBaseResult(Current) && "why did it get added?"); 742 743 auto visitIncomingValue = [&](Value *InVal) { 744 Value *Base = findBaseOrBDV(InVal, cache); 745 if (isKnownBaseResult(Base)) 746 // Known bases won't need new instructions introduced and can be 747 // ignored safely 748 return; 749 assert(isExpectedBDVType(Base) && "the only non-base values " 750 "we see should be base defining values"); 751 if (Visited.insert(Base).second) 752 Worklist.push_back(Base); 753 }; 754 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 755 for (Value *InVal : Phi->incoming_values()) 756 visitIncomingValue(InVal); 757 } else { 758 SelectInst *Sel = cast<SelectInst>(Current); 759 visitIncomingValue(Sel->getTrueValue()); 760 visitIncomingValue(Sel->getFalseValue()); 761 } 762 } 763 // The frontier of visited instructions are the ones we might need to 764 // duplicate, so fill in the starting state for the optimistic algorithm 765 // that follows. 766 for (Value *BDV : Visited) { 767 states[BDV] = BDVState(); 768 } 769 } 770 771 if (TraceLSP) { 772 errs() << "States after initialization:\n"; 773 for (auto Pair : states) 774 dbgs() << " " << Pair.second << " for " << Pair.first << "\n"; 775 } 776 777 // TODO: come back and revisit the state transitions around inputs which 778 // have reached conflict state. The current version seems too conservative. 779 780 // Return a phi state for a base defining value. We'll generate a new 781 // base state for known bases and expect to find a cached state otherwise. 782 auto getStateForBDV = [&](Value *baseValue) { 783 if (isKnownBaseResult(baseValue)) 784 return BDVState(baseValue); 785 auto I = states.find(baseValue); 786 assert(I != states.end() && "lookup failed!"); 787 return I->second; 788 }; 789 790 bool progress = true; 791 while (progress) { 792 #ifndef NDEBUG 793 size_t oldSize = states.size(); 794 #endif 795 progress = false; 796 // We're only changing keys in this loop, thus safe to keep iterators 797 for (auto Pair : states) { 798 Value *v = Pair.first; 799 assert(!isKnownBaseResult(v) && "why did it get added?"); 800 801 // Given an input value for the current instruction, return a BDVState 802 // instance which represents the BDV of that value. 803 auto getStateForInput = [&](Value *V) mutable { 804 Value *BDV = findBaseOrBDV(V, cache); 805 return getStateForBDV(BDV); 806 }; 807 808 MeetBDVStates calculateMeet; 809 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 810 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 811 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 812 } else 813 for (Value *Val : cast<PHINode>(v)->incoming_values()) 814 calculateMeet.meetWith(getStateForInput(Val)); 815 816 BDVState oldState = states[v]; 817 BDVState newState = calculateMeet.getResult(); 818 if (oldState != newState) { 819 progress = true; 820 states[v] = newState; 821 } 822 } 823 824 assert(oldSize <= states.size()); 825 assert(oldSize == states.size() || progress); 826 } 827 828 if (TraceLSP) { 829 errs() << "States after meet iteration:\n"; 830 for (auto Pair : states) 831 dbgs() << " " << Pair.second << " for " << Pair.first << "\n"; 832 } 833 834 // Insert Phis for all conflicts 835 // We want to keep naming deterministic in the loop that follows, so 836 // sort the keys before iteration. This is useful in allowing us to 837 // write stable tests. Note that there is no invalidation issue here. 838 SmallVector<Value *, 16> Keys; 839 Keys.reserve(states.size()); 840 for (auto Pair : states) { 841 Value *V = Pair.first; 842 Keys.push_back(V); 843 } 844 std::sort(Keys.begin(), Keys.end(), order_by_name); 845 // TODO: adjust naming patterns to avoid this order of iteration dependency 846 for (Value *V : Keys) { 847 Instruction *I = cast<Instruction>(V); 848 BDVState State = states[I]; 849 assert(!isKnownBaseResult(I) && "why did it get added?"); 850 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 851 if (!State.isConflict()) 852 continue; 853 854 /// Create and insert a new instruction which will represent the base of 855 /// the given instruction 'I'. 856 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 857 if (isa<PHINode>(I)) { 858 BasicBlock *BB = I->getParent(); 859 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 860 assert(NumPreds > 0 && "how did we reach here"); 861 std::string Name = I->hasName() ? 862 (I->getName() + ".base").str() : "base_phi"; 863 return PHINode::Create(I->getType(), NumPreds, Name, I); 864 } 865 SelectInst *Sel = cast<SelectInst>(I); 866 // The undef will be replaced later 867 UndefValue *Undef = UndefValue::get(Sel->getType()); 868 std::string Name = I->hasName() ? 869 (I->getName() + ".base").str() : "base_select"; 870 return SelectInst::Create(Sel->getCondition(), Undef, 871 Undef, Name, Sel); 872 }; 873 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 874 // Add metadata marking this as a base value 875 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 876 states[I] = BDVState(BDVState::Conflict, BaseInst); 877 } 878 879 // Fixup all the inputs of the new PHIs 880 for (auto Pair : states) { 881 Instruction *v = cast<Instruction>(Pair.first); 882 BDVState state = Pair.second; 883 884 assert(!isKnownBaseResult(v) && "why did it get added?"); 885 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 886 if (!state.isConflict()) 887 continue; 888 889 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 890 PHINode *phi = cast<PHINode>(v); 891 unsigned NumPHIValues = phi->getNumIncomingValues(); 892 for (unsigned i = 0; i < NumPHIValues; i++) { 893 Value *InVal = phi->getIncomingValue(i); 894 BasicBlock *InBB = phi->getIncomingBlock(i); 895 896 // If we've already seen InBB, add the same incoming value 897 // we added for it earlier. The IR verifier requires phi 898 // nodes with multiple entries from the same basic block 899 // to have the same incoming value for each of those 900 // entries. If we don't do this check here and basephi 901 // has a different type than base, we'll end up adding two 902 // bitcasts (and hence two distinct values) as incoming 903 // values for the same basic block. 904 905 int blockIndex = basephi->getBasicBlockIndex(InBB); 906 if (blockIndex != -1) { 907 Value *oldBase = basephi->getIncomingValue(blockIndex); 908 basephi->addIncoming(oldBase, InBB); 909 #ifndef NDEBUG 910 Value *base = findBaseOrBDV(InVal, cache); 911 if (!isKnownBaseResult(base)) { 912 // Either conflict or base. 913 assert(states.count(base)); 914 base = states[base].getBase(); 915 assert(base != nullptr && "unknown BDVState!"); 916 } 917 918 // In essense this assert states: the only way two 919 // values incoming from the same basic block may be 920 // different is by being different bitcasts of the same 921 // value. A cleanup that remains TODO is changing 922 // findBaseOrBDV to return an llvm::Value of the correct 923 // type (and still remain pure). This will remove the 924 // need to add bitcasts. 925 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 926 "sanity -- findBaseOrBDV should be pure!"); 927 #endif 928 continue; 929 } 930 931 // Find either the defining value for the PHI or the normal base for 932 // a non-phi node 933 Value *base = findBaseOrBDV(InVal, cache); 934 if (!isKnownBaseResult(base)) { 935 // Either conflict or base. 936 assert(states.count(base)); 937 base = states[base].getBase(); 938 assert(base != nullptr && "unknown BDVState!"); 939 } 940 assert(base && "can't be null"); 941 // Must use original input BB since base may not be Instruction 942 // The cast is needed since base traversal may strip away bitcasts 943 if (base->getType() != basephi->getType()) { 944 base = new BitCastInst(base, basephi->getType(), "cast", 945 InBB->getTerminator()); 946 } 947 basephi->addIncoming(base, InBB); 948 } 949 assert(basephi->getNumIncomingValues() == NumPHIValues); 950 } else { 951 SelectInst *basesel = cast<SelectInst>(state.getBase()); 952 SelectInst *sel = cast<SelectInst>(v); 953 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 954 // something more safe and less hacky. 955 for (int i = 1; i <= 2; i++) { 956 Value *InVal = sel->getOperand(i); 957 // Find either the defining value for the PHI or the normal base for 958 // a non-phi node 959 Value *base = findBaseOrBDV(InVal, cache); 960 if (!isKnownBaseResult(base)) { 961 // Either conflict or base. 962 assert(states.count(base)); 963 base = states[base].getBase(); 964 assert(base != nullptr && "unknown BDVState!"); 965 } 966 assert(base && "can't be null"); 967 // Must use original input BB since base may not be Instruction 968 // The cast is needed since base traversal may strip away bitcasts 969 if (base->getType() != basesel->getType()) { 970 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 971 } 972 basesel->setOperand(i, base); 973 } 974 } 975 } 976 977 // Cache all of our results so we can cheaply reuse them 978 // NOTE: This is actually two caches: one of the base defining value 979 // relation and one of the base pointer relation! FIXME 980 for (auto item : states) { 981 Value *v = item.first; 982 Value *base = item.second.getBase(); 983 assert(v && base); 984 assert(!isKnownBaseResult(v) && "why did it get added?"); 985 986 if (TraceLSP) { 987 std::string fromstr = 988 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 989 : "none"; 990 errs() << "Updating base value cache" 991 << " for: " << (v->hasName() ? v->getName() : "") 992 << " from: " << fromstr 993 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 994 } 995 996 assert(isKnownBaseResult(base) && 997 "must be something we 'know' is a base pointer"); 998 if (cache.count(v)) { 999 // Once we transition from the BDV relation being store in the cache to 1000 // the base relation being stored, it must be stable 1001 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 1002 "base relation should be stable"); 1003 } 1004 cache[v] = base; 1005 } 1006 assert(cache.find(def) != cache.end()); 1007 return cache[def]; 1008 } 1009 1010 // For a set of live pointers (base and/or derived), identify the base 1011 // pointer of the object which they are derived from. This routine will 1012 // mutate the IR graph as needed to make the 'base' pointer live at the 1013 // definition site of 'derived'. This ensures that any use of 'derived' can 1014 // also use 'base'. This may involve the insertion of a number of 1015 // additional PHI nodes. 1016 // 1017 // preconditions: live is a set of pointer type Values 1018 // 1019 // side effects: may insert PHI nodes into the existing CFG, will preserve 1020 // CFG, will not remove or mutate any existing nodes 1021 // 1022 // post condition: PointerToBase contains one (derived, base) pair for every 1023 // pointer in live. Note that derived can be equal to base if the original 1024 // pointer was a base pointer. 1025 static void 1026 findBasePointers(const StatepointLiveSetTy &live, 1027 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 1028 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1029 // For the naming of values inserted to be deterministic - which makes for 1030 // much cleaner and more stable tests - we need to assign an order to the 1031 // live values. DenseSets do not provide a deterministic order across runs. 1032 SmallVector<Value *, 64> Temp; 1033 Temp.insert(Temp.end(), live.begin(), live.end()); 1034 std::sort(Temp.begin(), Temp.end(), order_by_name); 1035 for (Value *ptr : Temp) { 1036 Value *base = findBasePointer(ptr, DVCache); 1037 assert(base && "failed to find base pointer"); 1038 PointerToBase[ptr] = base; 1039 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1040 DT->dominates(cast<Instruction>(base)->getParent(), 1041 cast<Instruction>(ptr)->getParent())) && 1042 "The base we found better dominate the derived pointer"); 1043 1044 // If you see this trip and like to live really dangerously, the code should 1045 // be correct, just with idioms the verifier can't handle. You can try 1046 // disabling the verifier at your own substaintial risk. 1047 assert(!isa<ConstantPointerNull>(base) && 1048 "the relocation code needs adjustment to handle the relocation of " 1049 "a null pointer constant without causing false positives in the " 1050 "safepoint ir verifier."); 1051 } 1052 } 1053 1054 /// Find the required based pointers (and adjust the live set) for the given 1055 /// parse point. 1056 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1057 const CallSite &CS, 1058 PartiallyConstructedSafepointRecord &result) { 1059 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1060 findBasePointers(result.liveset, PointerToBase, &DT, DVCache); 1061 1062 if (PrintBasePointers) { 1063 // Note: Need to print these in a stable order since this is checked in 1064 // some tests. 1065 errs() << "Base Pairs (w/o Relocation):\n"; 1066 SmallVector<Value *, 64> Temp; 1067 Temp.reserve(PointerToBase.size()); 1068 for (auto Pair : PointerToBase) { 1069 Temp.push_back(Pair.first); 1070 } 1071 std::sort(Temp.begin(), Temp.end(), order_by_name); 1072 for (Value *Ptr : Temp) { 1073 Value *Base = PointerToBase[Ptr]; 1074 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1075 << "\n"; 1076 } 1077 } 1078 1079 result.PointerToBase = PointerToBase; 1080 } 1081 1082 /// Given an updated version of the dataflow liveness results, update the 1083 /// liveset and base pointer maps for the call site CS. 1084 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1085 const CallSite &CS, 1086 PartiallyConstructedSafepointRecord &result); 1087 1088 static void recomputeLiveInValues( 1089 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1090 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1091 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1092 // again. The old values are still live and will help it stablize quickly. 1093 GCPtrLivenessData RevisedLivenessData; 1094 computeLiveInValues(DT, F, RevisedLivenessData); 1095 for (size_t i = 0; i < records.size(); i++) { 1096 struct PartiallyConstructedSafepointRecord &info = records[i]; 1097 const CallSite &CS = toUpdate[i]; 1098 recomputeLiveInValues(RevisedLivenessData, CS, info); 1099 } 1100 } 1101 1102 // When inserting gc.relocate calls, we need to ensure there are no uses 1103 // of the original value between the gc.statepoint and the gc.relocate call. 1104 // One case which can arise is a phi node starting one of the successor blocks. 1105 // We also need to be able to insert the gc.relocates only on the path which 1106 // goes through the statepoint. We might need to split an edge to make this 1107 // possible. 1108 static BasicBlock * 1109 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1110 DominatorTree &DT) { 1111 BasicBlock *Ret = BB; 1112 if (!BB->getUniquePredecessor()) { 1113 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1114 } 1115 1116 // Now that 'ret' has unique predecessor we can safely remove all phi nodes 1117 // from it 1118 FoldSingleEntryPHINodes(Ret); 1119 assert(!isa<PHINode>(Ret->begin())); 1120 1121 // At this point, we can safely insert a gc.relocate as the first instruction 1122 // in Ret if needed. 1123 return Ret; 1124 } 1125 1126 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1127 auto itr = std::find(livevec.begin(), livevec.end(), val); 1128 assert(livevec.end() != itr); 1129 size_t index = std::distance(livevec.begin(), itr); 1130 assert(index < livevec.size()); 1131 return index; 1132 } 1133 1134 // Create new attribute set containing only attributes which can be transfered 1135 // from original call to the safepoint. 1136 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1137 AttributeSet ret; 1138 1139 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1140 unsigned index = AS.getSlotIndex(Slot); 1141 1142 if (index == AttributeSet::ReturnIndex || 1143 index == AttributeSet::FunctionIndex) { 1144 1145 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1146 ++it) { 1147 Attribute attr = *it; 1148 1149 // Do not allow certain attributes - just skip them 1150 // Safepoint can not be read only or read none. 1151 if (attr.hasAttribute(Attribute::ReadNone) || 1152 attr.hasAttribute(Attribute::ReadOnly)) 1153 continue; 1154 1155 ret = ret.addAttributes( 1156 AS.getContext(), index, 1157 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1158 } 1159 } 1160 1161 // Just skip parameter attributes for now 1162 } 1163 1164 return ret; 1165 } 1166 1167 /// Helper function to place all gc relocates necessary for the given 1168 /// statepoint. 1169 /// Inputs: 1170 /// liveVariables - list of variables to be relocated. 1171 /// liveStart - index of the first live variable. 1172 /// basePtrs - base pointers. 1173 /// statepointToken - statepoint instruction to which relocates should be 1174 /// bound. 1175 /// Builder - Llvm IR builder to be used to construct new calls. 1176 static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables, 1177 const int LiveStart, 1178 ArrayRef<llvm::Value *> BasePtrs, 1179 Instruction *StatepointToken, 1180 IRBuilder<> Builder) { 1181 if (LiveVariables.empty()) 1182 return; 1183 1184 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1185 // unique declarations for each pointer type, but this proved problematic 1186 // because the intrinsic mangling code is incomplete and fragile. Since 1187 // we're moving towards a single unified pointer type anyways, we can just 1188 // cast everything to an i8* of the right address space. A bitcast is added 1189 // later to convert gc_relocate to the actual value's type. 1190 Module *M = StatepointToken->getModule(); 1191 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1192 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1193 Value *GCRelocateDecl = 1194 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1195 1196 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1197 // Generate the gc.relocate call and save the result 1198 Value *BaseIdx = 1199 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i])); 1200 Value *LiveIdx = 1201 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i])); 1202 1203 // only specify a debug name if we can give a useful one 1204 CallInst *Reloc = Builder.CreateCall( 1205 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1206 LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated" 1207 : ""); 1208 // Trick CodeGen into thinking there are lots of free registers at this 1209 // fake call. 1210 Reloc->setCallingConv(CallingConv::Cold); 1211 } 1212 } 1213 1214 static void 1215 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1216 const SmallVectorImpl<llvm::Value *> &basePtrs, 1217 const SmallVectorImpl<llvm::Value *> &liveVariables, 1218 Pass *P, 1219 PartiallyConstructedSafepointRecord &result) { 1220 assert(basePtrs.size() == liveVariables.size()); 1221 assert(isStatepoint(CS) && 1222 "This method expects to be rewriting a statepoint"); 1223 1224 BasicBlock *BB = CS.getInstruction()->getParent(); 1225 assert(BB); 1226 Function *F = BB->getParent(); 1227 assert(F && "must be set"); 1228 Module *M = F->getParent(); 1229 (void)M; 1230 assert(M && "must be set"); 1231 1232 // We're not changing the function signature of the statepoint since the gc 1233 // arguments go into the var args section. 1234 Function *gc_statepoint_decl = CS.getCalledFunction(); 1235 1236 // Then go ahead and use the builder do actually do the inserts. We insert 1237 // immediately before the previous instruction under the assumption that all 1238 // arguments will be available here. We can't insert afterwards since we may 1239 // be replacing a terminator. 1240 Instruction *insertBefore = CS.getInstruction(); 1241 IRBuilder<> Builder(insertBefore); 1242 // Copy all of the arguments from the original statepoint - this includes the 1243 // target, call args, and deopt args 1244 SmallVector<llvm::Value *, 64> args; 1245 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1246 // TODO: Clear the 'needs rewrite' flag 1247 1248 // add all the pointers to be relocated (gc arguments) 1249 // Capture the start of the live variable list for use in the gc_relocates 1250 const int live_start = args.size(); 1251 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1252 1253 // Create the statepoint given all the arguments 1254 Instruction *token = nullptr; 1255 AttributeSet return_attributes; 1256 if (CS.isCall()) { 1257 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1258 CallInst *call = 1259 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1260 call->setTailCall(toReplace->isTailCall()); 1261 call->setCallingConv(toReplace->getCallingConv()); 1262 1263 // Currently we will fail on parameter attributes and on certain 1264 // function attributes. 1265 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1266 // In case if we can handle this set of sttributes - set up function attrs 1267 // directly on statepoint and return attrs later for gc_result intrinsic. 1268 call->setAttributes(new_attrs.getFnAttributes()); 1269 return_attributes = new_attrs.getRetAttributes(); 1270 1271 token = call; 1272 1273 // Put the following gc_result and gc_relocate calls immediately after the 1274 // the old call (which we're about to delete) 1275 BasicBlock::iterator next(toReplace); 1276 assert(BB->end() != next && "not a terminator, must have next"); 1277 next++; 1278 Instruction *IP = &*(next); 1279 Builder.SetInsertPoint(IP); 1280 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1281 1282 } else { 1283 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1284 1285 // Insert the new invoke into the old block. We'll remove the old one in a 1286 // moment at which point this will become the new terminator for the 1287 // original block. 1288 InvokeInst *invoke = InvokeInst::Create( 1289 gc_statepoint_decl, toReplace->getNormalDest(), 1290 toReplace->getUnwindDest(), args, "statepoint_token", toReplace->getParent()); 1291 invoke->setCallingConv(toReplace->getCallingConv()); 1292 1293 // Currently we will fail on parameter attributes and on certain 1294 // function attributes. 1295 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1296 // In case if we can handle this set of sttributes - set up function attrs 1297 // directly on statepoint and return attrs later for gc_result intrinsic. 1298 invoke->setAttributes(new_attrs.getFnAttributes()); 1299 return_attributes = new_attrs.getRetAttributes(); 1300 1301 token = invoke; 1302 1303 // Generate gc relocates in exceptional path 1304 BasicBlock *unwindBlock = toReplace->getUnwindDest(); 1305 assert(!isa<PHINode>(unwindBlock->begin()) && 1306 unwindBlock->getUniquePredecessor() && 1307 "can't safely insert in this block!"); 1308 1309 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1310 Builder.SetInsertPoint(IP); 1311 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1312 1313 // Extract second element from landingpad return value. We will attach 1314 // exceptional gc relocates to it. 1315 const unsigned idx = 1; 1316 Instruction *exceptional_token = 1317 cast<Instruction>(Builder.CreateExtractValue( 1318 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1319 result.UnwindToken = exceptional_token; 1320 1321 CreateGCRelocates(liveVariables, live_start, basePtrs, 1322 exceptional_token, Builder); 1323 1324 // Generate gc relocates and returns for normal block 1325 BasicBlock *normalDest = toReplace->getNormalDest(); 1326 assert(!isa<PHINode>(normalDest->begin()) && 1327 normalDest->getUniquePredecessor() && 1328 "can't safely insert in this block!"); 1329 1330 IP = &*(normalDest->getFirstInsertionPt()); 1331 Builder.SetInsertPoint(IP); 1332 1333 // gc relocates will be generated later as if it were regular call 1334 // statepoint 1335 } 1336 assert(token); 1337 1338 // Take the name of the original value call if it had one. 1339 token->takeName(CS.getInstruction()); 1340 1341 // The GCResult is already inserted, we just need to find it 1342 #ifndef NDEBUG 1343 Instruction *toReplace = CS.getInstruction(); 1344 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1345 "only valid use before rewrite is gc.result"); 1346 assert(!toReplace->hasOneUse() || 1347 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1348 #endif 1349 1350 // Update the gc.result of the original statepoint (if any) to use the newly 1351 // inserted statepoint. This is safe to do here since the token can't be 1352 // considered a live reference. 1353 CS.getInstruction()->replaceAllUsesWith(token); 1354 1355 result.StatepointToken = token; 1356 1357 // Second, create a gc.relocate for every live variable 1358 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1359 } 1360 1361 namespace { 1362 struct name_ordering { 1363 Value *base; 1364 Value *derived; 1365 bool operator()(name_ordering const &a, name_ordering const &b) { 1366 return -1 == a.derived->getName().compare(b.derived->getName()); 1367 } 1368 }; 1369 } 1370 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1371 SmallVectorImpl<Value *> &livevec) { 1372 assert(basevec.size() == livevec.size()); 1373 1374 SmallVector<name_ordering, 64> temp; 1375 for (size_t i = 0; i < basevec.size(); i++) { 1376 name_ordering v; 1377 v.base = basevec[i]; 1378 v.derived = livevec[i]; 1379 temp.push_back(v); 1380 } 1381 std::sort(temp.begin(), temp.end(), name_ordering()); 1382 for (size_t i = 0; i < basevec.size(); i++) { 1383 basevec[i] = temp[i].base; 1384 livevec[i] = temp[i].derived; 1385 } 1386 } 1387 1388 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1389 // which make the relocations happening at this safepoint explicit. 1390 // 1391 // WARNING: Does not do any fixup to adjust users of the original live 1392 // values. That's the callers responsibility. 1393 static void 1394 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1395 PartiallyConstructedSafepointRecord &result) { 1396 auto liveset = result.liveset; 1397 auto PointerToBase = result.PointerToBase; 1398 1399 // Convert to vector for efficient cross referencing. 1400 SmallVector<Value *, 64> basevec, livevec; 1401 livevec.reserve(liveset.size()); 1402 basevec.reserve(liveset.size()); 1403 for (Value *L : liveset) { 1404 livevec.push_back(L); 1405 assert(PointerToBase.count(L)); 1406 Value *base = PointerToBase[L]; 1407 basevec.push_back(base); 1408 } 1409 assert(livevec.size() == basevec.size()); 1410 1411 // To make the output IR slightly more stable (for use in diffs), ensure a 1412 // fixed order of the values in the safepoint (by sorting the value name). 1413 // The order is otherwise meaningless. 1414 stablize_order(basevec, livevec); 1415 1416 // Do the actual rewriting and delete the old statepoint 1417 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1418 CS.getInstruction()->eraseFromParent(); 1419 } 1420 1421 // Helper function for the relocationViaAlloca. 1422 // It receives iterator to the statepoint gc relocates and emits store to the 1423 // assigned 1424 // location (via allocaMap) for the each one of them. 1425 // Add visited values into the visitedLiveValues set we will later use them 1426 // for sanity check. 1427 static void 1428 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1429 DenseMap<Value *, Value *> &AllocaMap, 1430 DenseSet<Value *> &VisitedLiveValues) { 1431 1432 for (User *U : GCRelocs) { 1433 if (!isa<IntrinsicInst>(U)) 1434 continue; 1435 1436 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1437 1438 // We only care about relocates 1439 if (RelocatedValue->getIntrinsicID() != 1440 Intrinsic::experimental_gc_relocate) { 1441 continue; 1442 } 1443 1444 GCRelocateOperands RelocateOperands(RelocatedValue); 1445 Value *OriginalValue = 1446 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1447 assert(AllocaMap.count(OriginalValue)); 1448 Value *Alloca = AllocaMap[OriginalValue]; 1449 1450 // Emit store into the related alloca 1451 // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to 1452 // the correct type according to alloca. 1453 assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator"); 1454 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1455 Value *CastedRelocatedValue = 1456 Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(), 1457 RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : ""); 1458 1459 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1460 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1461 1462 #ifndef NDEBUG 1463 VisitedLiveValues.insert(OriginalValue); 1464 #endif 1465 } 1466 } 1467 1468 // Helper function for the "relocationViaAlloca". Similar to the 1469 // "insertRelocationStores" but works for rematerialized values. 1470 static void 1471 insertRematerializationStores( 1472 RematerializedValueMapTy RematerializedValues, 1473 DenseMap<Value *, Value *> &AllocaMap, 1474 DenseSet<Value *> &VisitedLiveValues) { 1475 1476 for (auto RematerializedValuePair: RematerializedValues) { 1477 Instruction *RematerializedValue = RematerializedValuePair.first; 1478 Value *OriginalValue = RematerializedValuePair.second; 1479 1480 assert(AllocaMap.count(OriginalValue) && 1481 "Can not find alloca for rematerialized value"); 1482 Value *Alloca = AllocaMap[OriginalValue]; 1483 1484 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1485 Store->insertAfter(RematerializedValue); 1486 1487 #ifndef NDEBUG 1488 VisitedLiveValues.insert(OriginalValue); 1489 #endif 1490 } 1491 } 1492 1493 /// do all the relocation update via allocas and mem2reg 1494 static void relocationViaAlloca( 1495 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1496 ArrayRef<struct PartiallyConstructedSafepointRecord> Records) { 1497 #ifndef NDEBUG 1498 // record initial number of (static) allocas; we'll check we have the same 1499 // number when we get done. 1500 int InitialAllocaNum = 0; 1501 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1502 I++) 1503 if (isa<AllocaInst>(*I)) 1504 InitialAllocaNum++; 1505 #endif 1506 1507 // TODO-PERF: change data structures, reserve 1508 DenseMap<Value *, Value *> AllocaMap; 1509 SmallVector<AllocaInst *, 200> PromotableAllocas; 1510 // Used later to chack that we have enough allocas to store all values 1511 std::size_t NumRematerializedValues = 0; 1512 PromotableAllocas.reserve(Live.size()); 1513 1514 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1515 // "PromotableAllocas" 1516 auto emitAllocaFor = [&](Value *LiveValue) { 1517 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1518 F.getEntryBlock().getFirstNonPHI()); 1519 AllocaMap[LiveValue] = Alloca; 1520 PromotableAllocas.push_back(Alloca); 1521 }; 1522 1523 // emit alloca for each live gc pointer 1524 for (unsigned i = 0; i < Live.size(); i++) { 1525 emitAllocaFor(Live[i]); 1526 } 1527 1528 // emit allocas for rematerialized values 1529 for (size_t i = 0; i < Records.size(); i++) { 1530 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1531 1532 for (auto RematerializedValuePair : Info.RematerializedValues) { 1533 Value *OriginalValue = RematerializedValuePair.second; 1534 if (AllocaMap.count(OriginalValue) != 0) 1535 continue; 1536 1537 emitAllocaFor(OriginalValue); 1538 ++NumRematerializedValues; 1539 } 1540 } 1541 1542 // The next two loops are part of the same conceptual operation. We need to 1543 // insert a store to the alloca after the original def and at each 1544 // redefinition. We need to insert a load before each use. These are split 1545 // into distinct loops for performance reasons. 1546 1547 // update gc pointer after each statepoint 1548 // either store a relocated value or null (if no relocated value found for 1549 // this gc pointer and it is not a gc_result) 1550 // this must happen before we update the statepoint with load of alloca 1551 // otherwise we lose the link between statepoint and old def 1552 for (size_t i = 0; i < Records.size(); i++) { 1553 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1554 Value *Statepoint = Info.StatepointToken; 1555 1556 // This will be used for consistency check 1557 DenseSet<Value *> VisitedLiveValues; 1558 1559 // Insert stores for normal statepoint gc relocates 1560 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1561 1562 // In case if it was invoke statepoint 1563 // we will insert stores for exceptional path gc relocates. 1564 if (isa<InvokeInst>(Statepoint)) { 1565 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1566 VisitedLiveValues); 1567 } 1568 1569 // Do similar thing with rematerialized values 1570 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1571 VisitedLiveValues); 1572 1573 if (ClobberNonLive) { 1574 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1575 // the gc.statepoint. This will turn some subtle GC problems into 1576 // slightly easier to debug SEGVs. Note that on large IR files with 1577 // lots of gc.statepoints this is extremely costly both memory and time 1578 // wise. 1579 SmallVector<AllocaInst *, 64> ToClobber; 1580 for (auto Pair : AllocaMap) { 1581 Value *Def = Pair.first; 1582 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1583 1584 // This value was relocated 1585 if (VisitedLiveValues.count(Def)) { 1586 continue; 1587 } 1588 ToClobber.push_back(Alloca); 1589 } 1590 1591 auto InsertClobbersAt = [&](Instruction *IP) { 1592 for (auto *AI : ToClobber) { 1593 auto AIType = cast<PointerType>(AI->getType()); 1594 auto PT = cast<PointerType>(AIType->getElementType()); 1595 Constant *CPN = ConstantPointerNull::get(PT); 1596 StoreInst *Store = new StoreInst(CPN, AI); 1597 Store->insertBefore(IP); 1598 } 1599 }; 1600 1601 // Insert the clobbering stores. These may get intermixed with the 1602 // gc.results and gc.relocates, but that's fine. 1603 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1604 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1605 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1606 } else { 1607 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1608 Next++; 1609 InsertClobbersAt(Next); 1610 } 1611 } 1612 } 1613 // update use with load allocas and add store for gc_relocated 1614 for (auto Pair : AllocaMap) { 1615 Value *Def = Pair.first; 1616 Value *Alloca = Pair.second; 1617 1618 // we pre-record the uses of allocas so that we dont have to worry about 1619 // later update 1620 // that change the user information. 1621 SmallVector<Instruction *, 20> Uses; 1622 // PERF: trade a linear scan for repeated reallocation 1623 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1624 for (User *U : Def->users()) { 1625 if (!isa<ConstantExpr>(U)) { 1626 // If the def has a ConstantExpr use, then the def is either a 1627 // ConstantExpr use itself or null. In either case 1628 // (recursively in the first, directly in the second), the oop 1629 // it is ultimately dependent on is null and this particular 1630 // use does not need to be fixed up. 1631 Uses.push_back(cast<Instruction>(U)); 1632 } 1633 } 1634 1635 std::sort(Uses.begin(), Uses.end()); 1636 auto Last = std::unique(Uses.begin(), Uses.end()); 1637 Uses.erase(Last, Uses.end()); 1638 1639 for (Instruction *Use : Uses) { 1640 if (isa<PHINode>(Use)) { 1641 PHINode *Phi = cast<PHINode>(Use); 1642 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1643 if (Def == Phi->getIncomingValue(i)) { 1644 LoadInst *Load = new LoadInst( 1645 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1646 Phi->setIncomingValue(i, Load); 1647 } 1648 } 1649 } else { 1650 LoadInst *Load = new LoadInst(Alloca, "", Use); 1651 Use->replaceUsesOfWith(Def, Load); 1652 } 1653 } 1654 1655 // emit store for the initial gc value 1656 // store must be inserted after load, otherwise store will be in alloca's 1657 // use list and an extra load will be inserted before it 1658 StoreInst *Store = new StoreInst(Def, Alloca); 1659 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1660 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1661 // InvokeInst is a TerminatorInst so the store need to be inserted 1662 // into its normal destination block. 1663 BasicBlock *NormalDest = Invoke->getNormalDest(); 1664 Store->insertBefore(NormalDest->getFirstNonPHI()); 1665 } else { 1666 assert(!Inst->isTerminator() && 1667 "The only TerminatorInst that can produce a value is " 1668 "InvokeInst which is handled above."); 1669 Store->insertAfter(Inst); 1670 } 1671 } else { 1672 assert(isa<Argument>(Def)); 1673 Store->insertAfter(cast<Instruction>(Alloca)); 1674 } 1675 } 1676 1677 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1678 "we must have the same allocas with lives"); 1679 if (!PromotableAllocas.empty()) { 1680 // apply mem2reg to promote alloca to SSA 1681 PromoteMemToReg(PromotableAllocas, DT); 1682 } 1683 1684 #ifndef NDEBUG 1685 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1686 I++) 1687 if (isa<AllocaInst>(*I)) 1688 InitialAllocaNum--; 1689 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1690 #endif 1691 } 1692 1693 /// Implement a unique function which doesn't require we sort the input 1694 /// vector. Doing so has the effect of changing the output of a couple of 1695 /// tests in ways which make them less useful in testing fused safepoints. 1696 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1697 SmallSet<T, 8> Seen; 1698 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1699 return !Seen.insert(V).second; 1700 }), Vec.end()); 1701 } 1702 1703 /// Insert holders so that each Value is obviously live through the entire 1704 /// lifetime of the call. 1705 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1706 SmallVectorImpl<CallInst *> &Holders) { 1707 if (Values.empty()) 1708 // No values to hold live, might as well not insert the empty holder 1709 return; 1710 1711 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1712 // Use a dummy vararg function to actually hold the values live 1713 Function *Func = cast<Function>(M->getOrInsertFunction( 1714 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1715 if (CS.isCall()) { 1716 // For call safepoints insert dummy calls right after safepoint 1717 BasicBlock::iterator Next(CS.getInstruction()); 1718 Next++; 1719 Holders.push_back(CallInst::Create(Func, Values, "", Next)); 1720 return; 1721 } 1722 // For invoke safepooints insert dummy calls both in normal and 1723 // exceptional destination blocks 1724 auto *II = cast<InvokeInst>(CS.getInstruction()); 1725 Holders.push_back(CallInst::Create( 1726 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 1727 Holders.push_back(CallInst::Create( 1728 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 1729 } 1730 1731 static void findLiveReferences( 1732 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1733 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1734 GCPtrLivenessData OriginalLivenessData; 1735 computeLiveInValues(DT, F, OriginalLivenessData); 1736 for (size_t i = 0; i < records.size(); i++) { 1737 struct PartiallyConstructedSafepointRecord &info = records[i]; 1738 const CallSite &CS = toUpdate[i]; 1739 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1740 } 1741 } 1742 1743 /// Remove any vector of pointers from the liveset by scalarizing them over the 1744 /// statepoint instruction. Adds the scalarized pieces to the liveset. It 1745 /// would be preferrable to include the vector in the statepoint itself, but 1746 /// the lowering code currently does not handle that. Extending it would be 1747 /// slightly non-trivial since it requires a format change. Given how rare 1748 /// such cases are (for the moment?) scalarizing is an acceptable comprimise. 1749 static void splitVectorValues(Instruction *StatepointInst, 1750 StatepointLiveSetTy &LiveSet, 1751 DenseMap<Value *, Value *>& PointerToBase, 1752 DominatorTree &DT) { 1753 SmallVector<Value *, 16> ToSplit; 1754 for (Value *V : LiveSet) 1755 if (isa<VectorType>(V->getType())) 1756 ToSplit.push_back(V); 1757 1758 if (ToSplit.empty()) 1759 return; 1760 1761 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1762 1763 Function &F = *(StatepointInst->getParent()->getParent()); 1764 1765 DenseMap<Value *, AllocaInst *> AllocaMap; 1766 // First is normal return, second is exceptional return (invoke only) 1767 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1768 for (Value *V : ToSplit) { 1769 AllocaInst *Alloca = 1770 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1771 AllocaMap[V] = Alloca; 1772 1773 VectorType *VT = cast<VectorType>(V->getType()); 1774 IRBuilder<> Builder(StatepointInst); 1775 SmallVector<Value *, 16> Elements; 1776 for (unsigned i = 0; i < VT->getNumElements(); i++) 1777 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1778 ElementMapping[V] = Elements; 1779 1780 auto InsertVectorReform = [&](Instruction *IP) { 1781 Builder.SetInsertPoint(IP); 1782 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1783 Value *ResultVec = UndefValue::get(VT); 1784 for (unsigned i = 0; i < VT->getNumElements(); i++) 1785 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1786 Builder.getInt32(i)); 1787 return ResultVec; 1788 }; 1789 1790 if (isa<CallInst>(StatepointInst)) { 1791 BasicBlock::iterator Next(StatepointInst); 1792 Next++; 1793 Instruction *IP = &*(Next); 1794 Replacements[V].first = InsertVectorReform(IP); 1795 Replacements[V].second = nullptr; 1796 } else { 1797 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1798 // We've already normalized - check that we don't have shared destination 1799 // blocks 1800 BasicBlock *NormalDest = Invoke->getNormalDest(); 1801 assert(!isa<PHINode>(NormalDest->begin())); 1802 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1803 assert(!isa<PHINode>(UnwindDest->begin())); 1804 // Insert insert element sequences in both successors 1805 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1806 Replacements[V].first = InsertVectorReform(IP); 1807 IP = &*(UnwindDest->getFirstInsertionPt()); 1808 Replacements[V].second = InsertVectorReform(IP); 1809 } 1810 } 1811 1812 for (Value *V : ToSplit) { 1813 AllocaInst *Alloca = AllocaMap[V]; 1814 1815 // Capture all users before we start mutating use lists 1816 SmallVector<Instruction *, 16> Users; 1817 for (User *U : V->users()) 1818 Users.push_back(cast<Instruction>(U)); 1819 1820 for (Instruction *I : Users) { 1821 if (auto Phi = dyn_cast<PHINode>(I)) { 1822 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1823 if (V == Phi->getIncomingValue(i)) { 1824 LoadInst *Load = new LoadInst( 1825 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1826 Phi->setIncomingValue(i, Load); 1827 } 1828 } else { 1829 LoadInst *Load = new LoadInst(Alloca, "", I); 1830 I->replaceUsesOfWith(V, Load); 1831 } 1832 } 1833 1834 // Store the original value and the replacement value into the alloca 1835 StoreInst *Store = new StoreInst(V, Alloca); 1836 if (auto I = dyn_cast<Instruction>(V)) 1837 Store->insertAfter(I); 1838 else 1839 Store->insertAfter(Alloca); 1840 1841 // Normal return for invoke, or call return 1842 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1843 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1844 // Unwind return for invoke only 1845 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1846 if (Replacement) 1847 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1848 } 1849 1850 // apply mem2reg to promote alloca to SSA 1851 SmallVector<AllocaInst *, 16> Allocas; 1852 for (Value *V : ToSplit) 1853 Allocas.push_back(AllocaMap[V]); 1854 PromoteMemToReg(Allocas, DT); 1855 1856 // Update our tracking of live pointers and base mappings to account for the 1857 // changes we just made. 1858 for (Value *V : ToSplit) { 1859 auto &Elements = ElementMapping[V]; 1860 1861 LiveSet.erase(V); 1862 LiveSet.insert(Elements.begin(), Elements.end()); 1863 // We need to update the base mapping as well. 1864 assert(PointerToBase.count(V)); 1865 Value *OldBase = PointerToBase[V]; 1866 auto &BaseElements = ElementMapping[OldBase]; 1867 PointerToBase.erase(V); 1868 assert(Elements.size() == BaseElements.size()); 1869 for (unsigned i = 0; i < Elements.size(); i++) { 1870 Value *Elem = Elements[i]; 1871 PointerToBase[Elem] = BaseElements[i]; 1872 } 1873 } 1874 } 1875 1876 // Helper function for the "rematerializeLiveValues". It walks use chain 1877 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1878 // values are visited (currently it is GEP's and casts). Returns true if it 1879 // sucessfully reached "BaseValue" and false otherwise. 1880 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1881 // recorded. 1882 static bool findRematerializableChainToBasePointer( 1883 SmallVectorImpl<Instruction*> &ChainToBase, 1884 Value *CurrentValue, Value *BaseValue) { 1885 1886 // We have found a base value 1887 if (CurrentValue == BaseValue) { 1888 return true; 1889 } 1890 1891 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1892 ChainToBase.push_back(GEP); 1893 return findRematerializableChainToBasePointer(ChainToBase, 1894 GEP->getPointerOperand(), 1895 BaseValue); 1896 } 1897 1898 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1899 Value *Def = CI->stripPointerCasts(); 1900 1901 // This two checks are basically similar. First one is here for the 1902 // consistency with findBasePointers logic. 1903 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 1904 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1905 return false; 1906 1907 ChainToBase.push_back(CI); 1908 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 1909 } 1910 1911 // Not supported instruction in the chain 1912 return false; 1913 } 1914 1915 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1916 // chain we are going to rematerialize. 1917 static unsigned 1918 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1919 TargetTransformInfo &TTI) { 1920 unsigned Cost = 0; 1921 1922 for (Instruction *Instr : Chain) { 1923 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1924 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1925 "non noop cast is found during rematerialization"); 1926 1927 Type *SrcTy = CI->getOperand(0)->getType(); 1928 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1929 1930 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1931 // Cost of the address calculation 1932 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 1933 Cost += TTI.getAddressComputationCost(ValTy); 1934 1935 // And cost of the GEP itself 1936 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1937 // allowed for the external usage) 1938 if (!GEP->hasAllConstantIndices()) 1939 Cost += 2; 1940 1941 } else { 1942 llvm_unreachable("unsupported instruciton type during rematerialization"); 1943 } 1944 } 1945 1946 return Cost; 1947 } 1948 1949 // From the statepoint liveset pick values that are cheaper to recompute then to 1950 // relocate. Remove this values from the liveset, rematerialize them after 1951 // statepoint and record them in "Info" structure. Note that similar to 1952 // relocated values we don't do any user adjustments here. 1953 static void rematerializeLiveValues(CallSite CS, 1954 PartiallyConstructedSafepointRecord &Info, 1955 TargetTransformInfo &TTI) { 1956 const unsigned int ChainLengthThreshold = 10; 1957 1958 // Record values we are going to delete from this statepoint live set. 1959 // We can not di this in following loop due to iterator invalidation. 1960 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1961 1962 for (Value *LiveValue: Info.liveset) { 1963 // For each live pointer find it's defining chain 1964 SmallVector<Instruction *, 3> ChainToBase; 1965 assert(Info.PointerToBase.count(LiveValue)); 1966 bool FoundChain = 1967 findRematerializableChainToBasePointer(ChainToBase, 1968 LiveValue, 1969 Info.PointerToBase[LiveValue]); 1970 // Nothing to do, or chain is too long 1971 if (!FoundChain || 1972 ChainToBase.size() == 0 || 1973 ChainToBase.size() > ChainLengthThreshold) 1974 continue; 1975 1976 // Compute cost of this chain 1977 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1978 // TODO: We can also account for cases when we will be able to remove some 1979 // of the rematerialized values by later optimization passes. I.e if 1980 // we rematerialized several intersecting chains. Or if original values 1981 // don't have any uses besides this statepoint. 1982 1983 // For invokes we need to rematerialize each chain twice - for normal and 1984 // for unwind basic blocks. Model this by multiplying cost by two. 1985 if (CS.isInvoke()) { 1986 Cost *= 2; 1987 } 1988 // If it's too expensive - skip it 1989 if (Cost >= RematerializationThreshold) 1990 continue; 1991 1992 // Remove value from the live set 1993 LiveValuesToBeDeleted.push_back(LiveValue); 1994 1995 // Clone instructions and record them inside "Info" structure 1996 1997 // Walk backwards to visit top-most instructions first 1998 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1999 2000 // Utility function which clones all instructions from "ChainToBase" 2001 // and inserts them before "InsertBefore". Returns rematerialized value 2002 // which should be used after statepoint. 2003 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2004 Instruction *LastClonedValue = nullptr; 2005 Instruction *LastValue = nullptr; 2006 for (Instruction *Instr: ChainToBase) { 2007 // Only GEP's and casts are suported as we need to be careful to not 2008 // introduce any new uses of pointers not in the liveset. 2009 // Note that it's fine to introduce new uses of pointers which were 2010 // otherwise not used after this statepoint. 2011 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2012 2013 Instruction *ClonedValue = Instr->clone(); 2014 ClonedValue->insertBefore(InsertBefore); 2015 ClonedValue->setName(Instr->getName() + ".remat"); 2016 2017 // If it is not first instruction in the chain then it uses previously 2018 // cloned value. We should update it to use cloned value. 2019 if (LastClonedValue) { 2020 assert(LastValue); 2021 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2022 #ifndef NDEBUG 2023 // Assert that cloned instruction does not use any instructions from 2024 // this chain other than LastClonedValue 2025 for (auto OpValue : ClonedValue->operand_values()) { 2026 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2027 ChainToBase.end() && 2028 "incorrect use in rematerialization chain"); 2029 } 2030 #endif 2031 } 2032 2033 LastClonedValue = ClonedValue; 2034 LastValue = Instr; 2035 } 2036 assert(LastClonedValue); 2037 return LastClonedValue; 2038 }; 2039 2040 // Different cases for calls and invokes. For invokes we need to clone 2041 // instructions both on normal and unwind path. 2042 if (CS.isCall()) { 2043 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2044 assert(InsertBefore); 2045 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2046 Info.RematerializedValues[RematerializedValue] = LiveValue; 2047 } else { 2048 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2049 2050 Instruction *NormalInsertBefore = 2051 Invoke->getNormalDest()->getFirstInsertionPt(); 2052 Instruction *UnwindInsertBefore = 2053 Invoke->getUnwindDest()->getFirstInsertionPt(); 2054 2055 Instruction *NormalRematerializedValue = 2056 rematerializeChain(NormalInsertBefore); 2057 Instruction *UnwindRematerializedValue = 2058 rematerializeChain(UnwindInsertBefore); 2059 2060 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2061 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2062 } 2063 } 2064 2065 // Remove rematerializaed values from the live set 2066 for (auto LiveValue: LiveValuesToBeDeleted) { 2067 Info.liveset.erase(LiveValue); 2068 } 2069 } 2070 2071 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2072 SmallVectorImpl<CallSite> &toUpdate) { 2073 #ifndef NDEBUG 2074 // sanity check the input 2075 std::set<CallSite> uniqued; 2076 uniqued.insert(toUpdate.begin(), toUpdate.end()); 2077 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 2078 2079 for (size_t i = 0; i < toUpdate.size(); i++) { 2080 CallSite &CS = toUpdate[i]; 2081 assert(CS.getInstruction()->getParent()->getParent() == &F); 2082 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 2083 } 2084 #endif 2085 2086 // When inserting gc.relocates for invokes, we need to be able to insert at 2087 // the top of the successor blocks. See the comment on 2088 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2089 // may restructure the CFG. 2090 for (CallSite CS : toUpdate) { 2091 if (!CS.isInvoke()) 2092 continue; 2093 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 2094 normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), 2095 DT); 2096 normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), 2097 DT); 2098 } 2099 2100 // A list of dummy calls added to the IR to keep various values obviously 2101 // live in the IR. We'll remove all of these when done. 2102 SmallVector<CallInst *, 64> holders; 2103 2104 // Insert a dummy call with all of the arguments to the vm_state we'll need 2105 // for the actual safepoint insertion. This ensures reference arguments in 2106 // the deopt argument list are considered live through the safepoint (and 2107 // thus makes sure they get relocated.) 2108 for (size_t i = 0; i < toUpdate.size(); i++) { 2109 CallSite &CS = toUpdate[i]; 2110 Statepoint StatepointCS(CS); 2111 2112 SmallVector<Value *, 64> DeoptValues; 2113 for (Use &U : StatepointCS.vm_state_args()) { 2114 Value *Arg = cast<Value>(&U); 2115 assert(!isUnhandledGCPointerType(Arg->getType()) && 2116 "support for FCA unimplemented"); 2117 if (isHandledGCPointerType(Arg->getType())) 2118 DeoptValues.push_back(Arg); 2119 } 2120 insertUseHolderAfter(CS, DeoptValues, holders); 2121 } 2122 2123 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 2124 records.reserve(toUpdate.size()); 2125 for (size_t i = 0; i < toUpdate.size(); i++) { 2126 struct PartiallyConstructedSafepointRecord info; 2127 records.push_back(info); 2128 } 2129 assert(records.size() == toUpdate.size()); 2130 2131 // A) Identify all gc pointers which are staticly live at the given call 2132 // site. 2133 findLiveReferences(F, DT, P, toUpdate, records); 2134 2135 // B) Find the base pointers for each live pointer 2136 /* scope for caching */ { 2137 // Cache the 'defining value' relation used in the computation and 2138 // insertion of base phis and selects. This ensures that we don't insert 2139 // large numbers of duplicate base_phis. 2140 DefiningValueMapTy DVCache; 2141 2142 for (size_t i = 0; i < records.size(); i++) { 2143 struct PartiallyConstructedSafepointRecord &info = records[i]; 2144 CallSite &CS = toUpdate[i]; 2145 findBasePointers(DT, DVCache, CS, info); 2146 } 2147 } // end of cache scope 2148 2149 // The base phi insertion logic (for any safepoint) may have inserted new 2150 // instructions which are now live at some safepoint. The simplest such 2151 // example is: 2152 // loop: 2153 // phi a <-- will be a new base_phi here 2154 // safepoint 1 <-- that needs to be live here 2155 // gep a + 1 2156 // safepoint 2 2157 // br loop 2158 // We insert some dummy calls after each safepoint to definitely hold live 2159 // the base pointers which were identified for that safepoint. We'll then 2160 // ask liveness for _every_ base inserted to see what is now live. Then we 2161 // remove the dummy calls. 2162 holders.reserve(holders.size() + records.size()); 2163 for (size_t i = 0; i < records.size(); i++) { 2164 struct PartiallyConstructedSafepointRecord &info = records[i]; 2165 CallSite &CS = toUpdate[i]; 2166 2167 SmallVector<Value *, 128> Bases; 2168 for (auto Pair : info.PointerToBase) { 2169 Bases.push_back(Pair.second); 2170 } 2171 insertUseHolderAfter(CS, Bases, holders); 2172 } 2173 2174 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2175 // need to rerun liveness. We may *also* have inserted new defs, but that's 2176 // not the key issue. 2177 recomputeLiveInValues(F, DT, P, toUpdate, records); 2178 2179 if (PrintBasePointers) { 2180 for (size_t i = 0; i < records.size(); i++) { 2181 struct PartiallyConstructedSafepointRecord &info = records[i]; 2182 errs() << "Base Pairs: (w/Relocation)\n"; 2183 for (auto Pair : info.PointerToBase) { 2184 errs() << " derived %" << Pair.first->getName() << " base %" 2185 << Pair.second->getName() << "\n"; 2186 } 2187 } 2188 } 2189 for (size_t i = 0; i < holders.size(); i++) { 2190 holders[i]->eraseFromParent(); 2191 holders[i] = nullptr; 2192 } 2193 holders.clear(); 2194 2195 // Do a limited scalarization of any live at safepoint vector values which 2196 // contain pointers. This enables this pass to run after vectorization at 2197 // the cost of some possible performance loss. TODO: it would be nice to 2198 // natively support vectors all the way through the backend so we don't need 2199 // to scalarize here. 2200 for (size_t i = 0; i < records.size(); i++) { 2201 struct PartiallyConstructedSafepointRecord &info = records[i]; 2202 Instruction *statepoint = toUpdate[i].getInstruction(); 2203 splitVectorValues(cast<Instruction>(statepoint), info.liveset, 2204 info.PointerToBase, DT); 2205 } 2206 2207 // In order to reduce live set of statepoint we might choose to rematerialize 2208 // some values instead of relocating them. This is purelly an optimization and 2209 // does not influence correctness. 2210 TargetTransformInfo &TTI = 2211 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2212 2213 for (size_t i = 0; i < records.size(); i++) { 2214 struct PartiallyConstructedSafepointRecord &info = records[i]; 2215 CallSite &CS = toUpdate[i]; 2216 2217 rematerializeLiveValues(CS, info, TTI); 2218 } 2219 2220 // Now run through and replace the existing statepoints with new ones with 2221 // the live variables listed. We do not yet update uses of the values being 2222 // relocated. We have references to live variables that need to 2223 // survive to the last iteration of this loop. (By construction, the 2224 // previous statepoint can not be a live variable, thus we can and remove 2225 // the old statepoint calls as we go.) 2226 for (size_t i = 0; i < records.size(); i++) { 2227 struct PartiallyConstructedSafepointRecord &info = records[i]; 2228 CallSite &CS = toUpdate[i]; 2229 makeStatepointExplicit(DT, CS, P, info); 2230 } 2231 toUpdate.clear(); // prevent accident use of invalid CallSites 2232 2233 // Do all the fixups of the original live variables to their relocated selves 2234 SmallVector<Value *, 128> live; 2235 for (size_t i = 0; i < records.size(); i++) { 2236 struct PartiallyConstructedSafepointRecord &info = records[i]; 2237 // We can't simply save the live set from the original insertion. One of 2238 // the live values might be the result of a call which needs a safepoint. 2239 // That Value* no longer exists and we need to use the new gc_result. 2240 // Thankfully, the liveset is embedded in the statepoint (and updated), so 2241 // we just grab that. 2242 Statepoint statepoint(info.StatepointToken); 2243 live.insert(live.end(), statepoint.gc_args_begin(), 2244 statepoint.gc_args_end()); 2245 #ifndef NDEBUG 2246 // Do some basic sanity checks on our liveness results before performing 2247 // relocation. Relocation can and will turn mistakes in liveness results 2248 // into non-sensical code which is must harder to debug. 2249 // TODO: It would be nice to test consistency as well 2250 assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && 2251 "statepoint must be reachable or liveness is meaningless"); 2252 for (Value *V : statepoint.gc_args()) { 2253 if (!isa<Instruction>(V)) 2254 // Non-instruction values trivial dominate all possible uses 2255 continue; 2256 auto LiveInst = cast<Instruction>(V); 2257 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2258 "unreachable values should never be live"); 2259 assert(DT.dominates(LiveInst, info.StatepointToken) && 2260 "basic SSA liveness expectation violated by liveness analysis"); 2261 } 2262 #endif 2263 } 2264 unique_unsorted(live); 2265 2266 #ifndef NDEBUG 2267 // sanity check 2268 for (auto ptr : live) { 2269 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 2270 } 2271 #endif 2272 2273 relocationViaAlloca(F, DT, live, records); 2274 return !records.empty(); 2275 } 2276 2277 // Handles both return values and arguments for Functions and CallSites. 2278 template <typename AttrHolder> 2279 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2280 unsigned Index) { 2281 AttrBuilder R; 2282 if (AH.getDereferenceableBytes(Index)) 2283 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2284 AH.getDereferenceableBytes(Index))); 2285 if (AH.getDereferenceableOrNullBytes(Index)) 2286 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2287 AH.getDereferenceableOrNullBytes(Index))); 2288 2289 if (!R.empty()) 2290 AH.setAttributes(AH.getAttributes().removeAttributes( 2291 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2292 } 2293 2294 void 2295 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) { 2296 LLVMContext &Ctx = F.getContext(); 2297 2298 for (Argument &A : F.args()) 2299 if (isa<PointerType>(A.getType())) 2300 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2301 2302 if (isa<PointerType>(F.getReturnType())) 2303 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2304 } 2305 2306 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) { 2307 if (F.empty()) 2308 return; 2309 2310 LLVMContext &Ctx = F.getContext(); 2311 MDBuilder Builder(Ctx); 2312 2313 for (Instruction &I : inst_range(F)) { 2314 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2315 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2316 bool IsImmutableTBAA = 2317 MD->getNumOperands() == 4 && 2318 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2319 2320 if (!IsImmutableTBAA) 2321 continue; // no work to do, MD_tbaa is already marked mutable 2322 2323 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2324 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2325 uint64_t Offset = 2326 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2327 2328 MDNode *MutableTBAA = 2329 Builder.createTBAAStructTagNode(Base, Access, Offset); 2330 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2331 } 2332 2333 if (CallSite CS = CallSite(&I)) { 2334 for (int i = 0, e = CS.arg_size(); i != e; i++) 2335 if (isa<PointerType>(CS.getArgument(i)->getType())) 2336 RemoveDerefAttrAtIndex(Ctx, CS, i + 1); 2337 if (isa<PointerType>(CS.getType())) 2338 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2339 } 2340 } 2341 } 2342 2343 /// Returns true if this function should be rewritten by this pass. The main 2344 /// point of this function is as an extension point for custom logic. 2345 static bool shouldRewriteStatepointsIn(Function &F) { 2346 // TODO: This should check the GCStrategy 2347 if (F.hasGC()) { 2348 const char *FunctionGCName = F.getGC(); 2349 const StringRef StatepointExampleName("statepoint-example"); 2350 const StringRef CoreCLRName("coreclr"); 2351 return (StatepointExampleName == FunctionGCName) || 2352 (CoreCLRName == FunctionGCName); 2353 } else 2354 return false; 2355 } 2356 2357 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) { 2358 #ifndef NDEBUG 2359 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2360 "precondition!"); 2361 #endif 2362 2363 for (Function &F : M) 2364 stripDereferenceabilityInfoFromPrototype(F); 2365 2366 for (Function &F : M) 2367 stripDereferenceabilityInfoFromBody(F); 2368 } 2369 2370 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2371 // Nothing to do for declarations. 2372 if (F.isDeclaration() || F.empty()) 2373 return false; 2374 2375 // Policy choice says not to rewrite - the most common reason is that we're 2376 // compiling code without a GCStrategy. 2377 if (!shouldRewriteStatepointsIn(F)) 2378 return false; 2379 2380 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2381 2382 // Gather all the statepoints which need rewritten. Be careful to only 2383 // consider those in reachable code since we need to ask dominance queries 2384 // when rewriting. We'll delete the unreachable ones in a moment. 2385 SmallVector<CallSite, 64> ParsePointNeeded; 2386 bool HasUnreachableStatepoint = false; 2387 for (Instruction &I : inst_range(F)) { 2388 // TODO: only the ones with the flag set! 2389 if (isStatepoint(I)) { 2390 if (DT.isReachableFromEntry(I.getParent())) 2391 ParsePointNeeded.push_back(CallSite(&I)); 2392 else 2393 HasUnreachableStatepoint = true; 2394 } 2395 } 2396 2397 bool MadeChange = false; 2398 2399 // Delete any unreachable statepoints so that we don't have unrewritten 2400 // statepoints surviving this pass. This makes testing easier and the 2401 // resulting IR less confusing to human readers. Rather than be fancy, we 2402 // just reuse a utility function which removes the unreachable blocks. 2403 if (HasUnreachableStatepoint) 2404 MadeChange |= removeUnreachableBlocks(F); 2405 2406 // Return early if no work to do. 2407 if (ParsePointNeeded.empty()) 2408 return MadeChange; 2409 2410 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2411 // These are created by LCSSA. They have the effect of increasing the size 2412 // of liveness sets for no good reason. It may be harder to do this post 2413 // insertion since relocations and base phis can confuse things. 2414 for (BasicBlock &BB : F) 2415 if (BB.getUniquePredecessor()) { 2416 MadeChange = true; 2417 FoldSingleEntryPHINodes(&BB); 2418 } 2419 2420 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2421 return MadeChange; 2422 } 2423 2424 // liveness computation via standard dataflow 2425 // ------------------------------------------------------------------- 2426 2427 // TODO: Consider using bitvectors for liveness, the set of potentially 2428 // interesting values should be small and easy to pre-compute. 2429 2430 /// Compute the live-in set for the location rbegin starting from 2431 /// the live-out set of the basic block 2432 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2433 BasicBlock::reverse_iterator rend, 2434 DenseSet<Value *> &LiveTmp) { 2435 2436 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2437 Instruction *I = &*ritr; 2438 2439 // KILL/Def - Remove this definition from LiveIn 2440 LiveTmp.erase(I); 2441 2442 // Don't consider *uses* in PHI nodes, we handle their contribution to 2443 // predecessor blocks when we seed the LiveOut sets 2444 if (isa<PHINode>(I)) 2445 continue; 2446 2447 // USE - Add to the LiveIn set for this instruction 2448 for (Value *V : I->operands()) { 2449 assert(!isUnhandledGCPointerType(V->getType()) && 2450 "support for FCA unimplemented"); 2451 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2452 // The choice to exclude all things constant here is slightly subtle. 2453 // There are two idependent reasons: 2454 // - We assume that things which are constant (from LLVM's definition) 2455 // do not move at runtime. For example, the address of a global 2456 // variable is fixed, even though it's contents may not be. 2457 // - Second, we can't disallow arbitrary inttoptr constants even 2458 // if the language frontend does. Optimization passes are free to 2459 // locally exploit facts without respect to global reachability. This 2460 // can create sections of code which are dynamically unreachable and 2461 // contain just about anything. (see constants.ll in tests) 2462 LiveTmp.insert(V); 2463 } 2464 } 2465 } 2466 } 2467 2468 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2469 2470 for (BasicBlock *Succ : successors(BB)) { 2471 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2472 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2473 PHINode *Phi = cast<PHINode>(&*I); 2474 Value *V = Phi->getIncomingValueForBlock(BB); 2475 assert(!isUnhandledGCPointerType(V->getType()) && 2476 "support for FCA unimplemented"); 2477 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2478 LiveTmp.insert(V); 2479 } 2480 } 2481 } 2482 } 2483 2484 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2485 DenseSet<Value *> KillSet; 2486 for (Instruction &I : *BB) 2487 if (isHandledGCPointerType(I.getType())) 2488 KillSet.insert(&I); 2489 return KillSet; 2490 } 2491 2492 #ifndef NDEBUG 2493 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2494 /// sanity check for the liveness computation. 2495 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2496 TerminatorInst *TI, bool TermOkay = false) { 2497 for (Value *V : Live) { 2498 if (auto *I = dyn_cast<Instruction>(V)) { 2499 // The terminator can be a member of the LiveOut set. LLVM's definition 2500 // of instruction dominance states that V does not dominate itself. As 2501 // such, we need to special case this to allow it. 2502 if (TermOkay && TI == I) 2503 continue; 2504 assert(DT.dominates(I, TI) && 2505 "basic SSA liveness expectation violated by liveness analysis"); 2506 } 2507 } 2508 } 2509 2510 /// Check that all the liveness sets used during the computation of liveness 2511 /// obey basic SSA properties. This is useful for finding cases where we miss 2512 /// a def. 2513 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2514 BasicBlock &BB) { 2515 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2516 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2517 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2518 } 2519 #endif 2520 2521 static void computeLiveInValues(DominatorTree &DT, Function &F, 2522 GCPtrLivenessData &Data) { 2523 2524 SmallSetVector<BasicBlock *, 200> Worklist; 2525 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2526 // We use a SetVector so that we don't have duplicates in the worklist. 2527 Worklist.insert(pred_begin(BB), pred_end(BB)); 2528 }; 2529 auto NextItem = [&]() { 2530 BasicBlock *BB = Worklist.back(); 2531 Worklist.pop_back(); 2532 return BB; 2533 }; 2534 2535 // Seed the liveness for each individual block 2536 for (BasicBlock &BB : F) { 2537 Data.KillSet[&BB] = computeKillSet(&BB); 2538 Data.LiveSet[&BB].clear(); 2539 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2540 2541 #ifndef NDEBUG 2542 for (Value *Kill : Data.KillSet[&BB]) 2543 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2544 #endif 2545 2546 Data.LiveOut[&BB] = DenseSet<Value *>(); 2547 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2548 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2549 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2550 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2551 if (!Data.LiveIn[&BB].empty()) 2552 AddPredsToWorklist(&BB); 2553 } 2554 2555 // Propagate that liveness until stable 2556 while (!Worklist.empty()) { 2557 BasicBlock *BB = NextItem(); 2558 2559 // Compute our new liveout set, then exit early if it hasn't changed 2560 // despite the contribution of our successor. 2561 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2562 const auto OldLiveOutSize = LiveOut.size(); 2563 for (BasicBlock *Succ : successors(BB)) { 2564 assert(Data.LiveIn.count(Succ)); 2565 set_union(LiveOut, Data.LiveIn[Succ]); 2566 } 2567 // assert OutLiveOut is a subset of LiveOut 2568 if (OldLiveOutSize == LiveOut.size()) { 2569 // If the sets are the same size, then we didn't actually add anything 2570 // when unioning our successors LiveIn Thus, the LiveIn of this block 2571 // hasn't changed. 2572 continue; 2573 } 2574 Data.LiveOut[BB] = LiveOut; 2575 2576 // Apply the effects of this basic block 2577 DenseSet<Value *> LiveTmp = LiveOut; 2578 set_union(LiveTmp, Data.LiveSet[BB]); 2579 set_subtract(LiveTmp, Data.KillSet[BB]); 2580 2581 assert(Data.LiveIn.count(BB)); 2582 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2583 // assert: OldLiveIn is a subset of LiveTmp 2584 if (OldLiveIn.size() != LiveTmp.size()) { 2585 Data.LiveIn[BB] = LiveTmp; 2586 AddPredsToWorklist(BB); 2587 } 2588 } // while( !worklist.empty() ) 2589 2590 #ifndef NDEBUG 2591 // Sanity check our ouput against SSA properties. This helps catch any 2592 // missing kills during the above iteration. 2593 for (BasicBlock &BB : F) { 2594 checkBasicSSA(DT, Data, BB); 2595 } 2596 #endif 2597 } 2598 2599 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2600 StatepointLiveSetTy &Out) { 2601 2602 BasicBlock *BB = Inst->getParent(); 2603 2604 // Note: The copy is intentional and required 2605 assert(Data.LiveOut.count(BB)); 2606 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2607 2608 // We want to handle the statepoint itself oddly. It's 2609 // call result is not live (normal), nor are it's arguments 2610 // (unless they're used again later). This adjustment is 2611 // specifically what we need to relocate 2612 BasicBlock::reverse_iterator rend(Inst); 2613 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2614 LiveOut.erase(Inst); 2615 Out.insert(LiveOut.begin(), LiveOut.end()); 2616 } 2617 2618 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2619 const CallSite &CS, 2620 PartiallyConstructedSafepointRecord &Info) { 2621 Instruction *Inst = CS.getInstruction(); 2622 StatepointLiveSetTy Updated; 2623 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2624 2625 #ifndef NDEBUG 2626 DenseSet<Value *> Bases; 2627 for (auto KVPair : Info.PointerToBase) { 2628 Bases.insert(KVPair.second); 2629 } 2630 #endif 2631 // We may have base pointers which are now live that weren't before. We need 2632 // to update the PointerToBase structure to reflect this. 2633 for (auto V : Updated) 2634 if (!Info.PointerToBase.count(V)) { 2635 assert(Bases.count(V) && "can't find base for unexpected live value"); 2636 Info.PointerToBase[V] = V; 2637 continue; 2638 } 2639 2640 #ifndef NDEBUG 2641 for (auto V : Updated) { 2642 assert(Info.PointerToBase.count(V) && 2643 "must be able to find base for live value"); 2644 } 2645 #endif 2646 2647 // Remove any stale base mappings - this can happen since our liveness is 2648 // more precise then the one inherent in the base pointer analysis 2649 DenseSet<Value *> ToErase; 2650 for (auto KVPair : Info.PointerToBase) 2651 if (!Updated.count(KVPair.first)) 2652 ToErase.insert(KVPair.first); 2653 for (auto V : ToErase) 2654 Info.PointerToBase.erase(V); 2655 2656 #ifndef NDEBUG 2657 for (auto KVPair : Info.PointerToBase) 2658 assert(Updated.count(KVPair.first) && "record for non-live value"); 2659 #endif 2660 2661 Info.liveset = Updated; 2662 } 2663