1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 namespace { 59 struct RewriteStatepointsForGC : public FunctionPass { 60 static char ID; // Pass identification, replacement for typeid 61 62 RewriteStatepointsForGC() : FunctionPass(ID) { 63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 64 } 65 bool runOnFunction(Function &F) override; 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override { 68 // We add and rewrite a bunch of instructions, but don't really do much 69 // else. We could in theory preserve a lot more analyses here. 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 } 72 }; 73 } // namespace 74 75 char RewriteStatepointsForGC::ID = 0; 76 77 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 78 return new RewriteStatepointsForGC(); 79 } 80 81 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 82 "Make relocations explicit at statepoints", false, false) 83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 84 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 85 "Make relocations explicit at statepoints", false, false) 86 87 namespace { 88 // The type of the internal cache used inside the findBasePointers family 89 // of functions. From the callers perspective, this is an opaque type and 90 // should not be inspected. 91 // 92 // In the actual implementation this caches two relations: 93 // - The base relation itself (i.e. this pointer is based on that one) 94 // - The base defining value relation (i.e. before base_phi insertion) 95 // Generally, after the execution of a full findBasePointer call, only the 96 // base relation will remain. Internally, we add a mixture of the two 97 // types, then update all the second type to the first type 98 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 99 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 100 101 struct PartiallyConstructedSafepointRecord { 102 /// The set of values known to be live accross this safepoint 103 StatepointLiveSetTy liveset; 104 105 /// Mapping from live pointers to a base-defining-value 106 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 107 108 /// Any new values which were added to the IR during base pointer analysis 109 /// for this safepoint 110 DenseSet<llvm::Value *> NewInsertedDefs; 111 112 /// The *new* gc.statepoint instruction itself. This produces the token 113 /// that normal path gc.relocates and the gc.result are tied to. 114 Instruction *StatepointToken; 115 116 /// Instruction to which exceptional gc relocates are attached 117 /// Makes it easier to iterate through them during relocationViaAlloca. 118 Instruction *UnwindToken; 119 }; 120 } 121 122 // TODO: Once we can get to the GCStrategy, this becomes 123 // Optional<bool> isGCManagedPointer(const Value *V) const override { 124 125 static bool isGCPointerType(const Type *T) { 126 if (const PointerType *PT = dyn_cast<PointerType>(T)) 127 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 128 // GC managed heap. We know that a pointer into this heap needs to be 129 // updated and that no other pointer does. 130 return (1 == PT->getAddressSpace()); 131 return false; 132 } 133 134 /// Return true if the Value is a gc reference type which is potentially used 135 /// after the instruction 'loc'. This is only used with the edge reachability 136 /// liveness code. Note: It is assumed the V dominates loc. 137 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, 138 LoopInfo *LI) { 139 if (!isGCPointerType(V.getType())) 140 return false; 141 142 if (V.use_empty()) 143 return false; 144 145 // Given assumption that V dominates loc, this may be live 146 return true; 147 } 148 149 #ifndef NDEBUG 150 static bool isAggWhichContainsGCPtrType(Type *Ty) { 151 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 152 return isGCPointerType(VT->getScalarType()); 153 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 154 return isGCPointerType(AT->getElementType()) || 155 isAggWhichContainsGCPtrType(AT->getElementType()); 156 if (StructType *ST = dyn_cast<StructType>(Ty)) 157 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 158 [](Type *SubType) { 159 return isGCPointerType(SubType) || 160 isAggWhichContainsGCPtrType(SubType); 161 }); 162 return false; 163 } 164 #endif 165 166 // Conservatively identifies any definitions which might be live at the 167 // given instruction. The analysis is performed immediately before the 168 // given instruction. Values defined by that instruction are not considered 169 // live. Values used by that instruction are considered live. 170 // 171 // preconditions: valid IR graph, term is either a terminator instruction or 172 // a call instruction, pred is the basic block of term, DT, LI are valid 173 // 174 // side effects: none, does not mutate IR 175 // 176 // postconditions: populates liveValues as discussed above 177 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 178 DominatorTree &DT, LoopInfo *LI, 179 StatepointLiveSetTy &liveValues) { 180 liveValues.clear(); 181 182 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 183 184 Function *F = pred->getParent(); 185 186 auto is_live_gc_reference = 187 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 188 189 // Are there any gc pointer arguments live over this point? This needs to be 190 // special cased since arguments aren't defined in basic blocks. 191 for (Argument &arg : F->args()) { 192 assert(!isAggWhichContainsGCPtrType(arg.getType()) && 193 "support for FCA unimplemented"); 194 195 if (is_live_gc_reference(arg)) { 196 liveValues.insert(&arg); 197 } 198 } 199 200 // Walk through all dominating blocks - the ones which can contain 201 // definitions used in this block - and check to see if any of the values 202 // they define are used in locations potentially reachable from the 203 // interesting instruction. 204 BasicBlock *BBI = pred; 205 while (true) { 206 if (TraceLSP) { 207 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 208 } 209 assert(DT.dominates(BBI, pred)); 210 assert(isPotentiallyReachable(BBI, pred, &DT) && 211 "dominated block must be reachable"); 212 213 // Walk through the instructions in dominating blocks and keep any 214 // that have a use potentially reachable from the block we're 215 // considering putting the safepoint in 216 for (Instruction &inst : *BBI) { 217 if (TraceLSP) { 218 errs() << "[LSP] Looking at instruction "; 219 inst.dump(); 220 } 221 222 if (pred == BBI && (&inst) == term) { 223 if (TraceLSP) { 224 errs() << "[LSP] stopped because we encountered the safepoint " 225 "instruction.\n"; 226 } 227 228 // If we're in the block which defines the interesting instruction, 229 // we don't want to include any values as live which are defined 230 // _after_ the interesting line or as part of the line itself 231 // i.e. "term" is the call instruction for a call safepoint, the 232 // results of the call should not be considered live in that stackmap 233 break; 234 } 235 236 assert(!isAggWhichContainsGCPtrType(inst.getType()) && 237 "support for FCA unimplemented"); 238 239 if (is_live_gc_reference(inst)) { 240 if (TraceLSP) { 241 errs() << "[LSP] found live value for this safepoint "; 242 inst.dump(); 243 term->dump(); 244 } 245 liveValues.insert(&inst); 246 } 247 } 248 if (!DT.getNode(BBI)->getIDom()) { 249 assert(BBI == &F->getEntryBlock() && 250 "failed to find a dominator for something other than " 251 "the entry block"); 252 break; 253 } 254 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 255 } 256 } 257 258 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 259 if (a->hasName() && b->hasName()) { 260 return -1 == a->getName().compare(b->getName()); 261 } else if (a->hasName() && !b->hasName()) { 262 return true; 263 } else if (!a->hasName() && b->hasName()) { 264 return false; 265 } else { 266 // Better than nothing, but not stable 267 return a < b; 268 } 269 } 270 271 /// Find the initial live set. Note that due to base pointer 272 /// insertion, the live set may be incomplete. 273 static void 274 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 275 PartiallyConstructedSafepointRecord &result) { 276 Instruction *inst = CS.getInstruction(); 277 278 BasicBlock *BB = inst->getParent(); 279 StatepointLiveSetTy liveset; 280 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 281 282 if (PrintLiveSet) { 283 // Note: This output is used by several of the test cases 284 // The order of elemtns in a set is not stable, put them in a vec and sort 285 // by name 286 SmallVector<Value *, 64> temp; 287 temp.insert(temp.end(), liveset.begin(), liveset.end()); 288 std::sort(temp.begin(), temp.end(), order_by_name); 289 errs() << "Live Variables:\n"; 290 for (Value *V : temp) { 291 errs() << " " << V->getName(); // no newline 292 V->dump(); 293 } 294 } 295 if (PrintLiveSetSize) { 296 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 297 errs() << "Number live values: " << liveset.size() << "\n"; 298 } 299 result.liveset = liveset; 300 } 301 302 /// True iff this value is the null pointer constant (of any pointer type) 303 static bool LLVM_ATTRIBUTE_UNUSED isNullConstant(Value *V) { 304 return isa<Constant>(V) && isa<PointerType>(V->getType()) && 305 cast<Constant>(V)->isNullValue(); 306 } 307 308 /// Helper function for findBasePointer - Will return a value which either a) 309 /// defines the base pointer for the input or b) blocks the simple search 310 /// (i.e. a PHI or Select of two derived pointers) 311 static Value *findBaseDefiningValue(Value *I) { 312 assert(I->getType()->isPointerTy() && 313 "Illegal to ask for the base pointer of a non-pointer type"); 314 315 // There are instructions which can never return gc pointer values. Sanity 316 // check 317 // that this is actually true. 318 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && 319 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); 320 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) || 321 !cast<Instruction>(I)->isTerminator()) && 322 "With the exception of invoke terminators don't define values"); 323 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) && 324 "Can't be definitions to start with"); 325 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) && 326 "Comparisons don't give ops"); 327 // There's a bunch of instructions which just don't make sense to apply to 328 // a pointer. The only valid reason for this would be pointer bit 329 // twiddling which we're just not going to support. 330 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) && 331 "Binary ops on pointer values are meaningless. Unless your " 332 "bit-twiddling which we don't support"); 333 334 if (Argument *Arg = dyn_cast<Argument>(I)) { 335 // An incoming argument to the function is a base pointer 336 // We should have never reached here if this argument isn't an gc value 337 assert(Arg->getType()->isPointerTy() && 338 "Base for pointer must be another pointer"); 339 return Arg; 340 } 341 342 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) { 343 // base case 344 assert(global->getType()->isPointerTy() && 345 "Base for pointer must be another pointer"); 346 return global; 347 } 348 349 // inlining could possibly introduce phi node that contains 350 // undef if callee has multiple returns 351 if (UndefValue *undef = dyn_cast<UndefValue>(I)) { 352 assert(undef->getType()->isPointerTy() && 353 "Base for pointer must be another pointer"); 354 return undef; // utterly meaningless, but useful for dealing with 355 // partially optimized code. 356 } 357 358 // Due to inheritance, this must be _after_ the global variable and undef 359 // checks 360 if (Constant *con = dyn_cast<Constant>(I)) { 361 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 362 "order of checks wrong!"); 363 // Note: Finding a constant base for something marked for relocation 364 // doesn't really make sense. The most likely case is either a) some 365 // screwed up the address space usage or b) your validating against 366 // compiled C++ code w/o the proper separation. The only real exception 367 // is a null pointer. You could have generic code written to index of 368 // off a potentially null value and have proven it null. We also use 369 // null pointers in dead paths of relocation phis (which we might later 370 // want to find a base pointer for). 371 assert(con->getType()->isPointerTy() && 372 "Base for pointer must be another pointer"); 373 assert(con->isNullValue() && "null is the only case which makes sense"); 374 return con; 375 } 376 377 if (CastInst *CI = dyn_cast<CastInst>(I)) { 378 Value *def = CI->stripPointerCasts(); 379 assert(def->getType()->isPointerTy() && 380 "Base for pointer must be another pointer"); 381 // If we find a cast instruction here, it means we've found a cast which is 382 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 383 // handle int->ptr conversion. 384 assert(!isa<CastInst>(def) && "shouldn't find another cast here"); 385 return findBaseDefiningValue(def); 386 } 387 388 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 389 if (LI->getType()->isPointerTy()) { 390 Value *Op = LI->getOperand(0); 391 (void)Op; 392 // Has to be a pointer to an gc object, or possibly an array of such? 393 assert(Op->getType()->isPointerTy()); 394 return LI; // The value loaded is an gc base itself 395 } 396 } 397 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 398 Value *Op = GEP->getOperand(0); 399 if (Op->getType()->isPointerTy()) { 400 return findBaseDefiningValue(Op); // The base of this GEP is the base 401 } 402 } 403 404 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) { 405 // An alloca represents a conceptual stack slot. It's the slot itself 406 // that the GC needs to know about, not the value in the slot. 407 assert(alloc->getType()->isPointerTy() && 408 "Base for pointer must be another pointer"); 409 return alloc; 410 } 411 412 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 413 switch (II->getIntrinsicID()) { 414 default: 415 // fall through to general call handling 416 break; 417 case Intrinsic::experimental_gc_statepoint: 418 case Intrinsic::experimental_gc_result_float: 419 case Intrinsic::experimental_gc_result_int: 420 llvm_unreachable("these don't produce pointers"); 421 case Intrinsic::experimental_gc_result_ptr: 422 // This is just a special case of the CallInst check below to handle a 423 // statepoint with deopt args which hasn't been rewritten for GC yet. 424 // TODO: Assert that the statepoint isn't rewritten yet. 425 return II; 426 case Intrinsic::experimental_gc_relocate: { 427 // Rerunning safepoint insertion after safepoints are already 428 // inserted is not supported. It could probably be made to work, 429 // but why are you doing this? There's no good reason. 430 llvm_unreachable("repeat safepoint insertion is not supported"); 431 } 432 case Intrinsic::gcroot: 433 // Currently, this mechanism hasn't been extended to work with gcroot. 434 // There's no reason it couldn't be, but I haven't thought about the 435 // implications much. 436 llvm_unreachable( 437 "interaction with the gcroot mechanism is not supported"); 438 } 439 } 440 // We assume that functions in the source language only return base 441 // pointers. This should probably be generalized via attributes to support 442 // both source language and internal functions. 443 if (CallInst *call = dyn_cast<CallInst>(I)) { 444 assert(call->getType()->isPointerTy() && 445 "Base for pointer must be another pointer"); 446 return call; 447 } 448 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 449 assert(invoke->getType()->isPointerTy() && 450 "Base for pointer must be another pointer"); 451 return invoke; 452 } 453 454 // I have absolutely no idea how to implement this part yet. It's not 455 // neccessarily hard, I just haven't really looked at it yet. 456 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 457 458 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) { 459 // A CAS is effectively a atomic store and load combined under a 460 // predicate. From the perspective of base pointers, we just treat it 461 // like a load. We loaded a pointer from a address in memory, that value 462 // had better be a valid base pointer. 463 return cas->getPointerOperand(); 464 } 465 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) { 466 assert(AtomicRMWInst::Xchg == atomic->getOperation() && 467 "All others are binary ops which don't apply to base pointers"); 468 // semantically, a load, store pair. Treat it the same as a standard load 469 return atomic->getPointerOperand(); 470 } 471 472 // The aggregate ops. Aggregates can either be in the heap or on the 473 // stack, but in either case, this is simply a field load. As a result, 474 // this is a defining definition of the base just like a load is. 475 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) { 476 return ev; 477 } 478 479 // We should never see an insert vector since that would require we be 480 // tracing back a struct value not a pointer value. 481 assert(!isa<InsertValueInst>(I) && 482 "Base pointer for a struct is meaningless"); 483 484 // The last two cases here don't return a base pointer. Instead, they 485 // return a value which dynamically selects from amoung several base 486 // derived pointers (each with it's own base potentially). It's the job of 487 // the caller to resolve these. 488 if (SelectInst *select = dyn_cast<SelectInst>(I)) { 489 return select; 490 } 491 492 return cast<PHINode>(I); 493 } 494 495 /// Returns the base defining value for this value. 496 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { 497 Value *&Cached = cache[I]; 498 if (!Cached) { 499 Cached = findBaseDefiningValue(I); 500 } 501 assert(cache[I] != nullptr); 502 503 if (TraceLSP) { 504 errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 505 << "\n"; 506 } 507 return Cached; 508 } 509 510 /// Return a base pointer for this value if known. Otherwise, return it's 511 /// base defining value. 512 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { 513 Value *def = findBaseDefiningValueCached(I, cache); 514 auto Found = cache.find(def); 515 if (Found != cache.end()) { 516 // Either a base-of relation, or a self reference. Caller must check. 517 return Found->second; 518 } 519 // Only a BDV available 520 return def; 521 } 522 523 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 524 /// is it known to be a base pointer? Or do we need to continue searching. 525 static bool isKnownBaseResult(Value *v) { 526 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) { 527 // no recursion possible 528 return true; 529 } 530 if (cast<Instruction>(v)->getMetadata("is_base_value")) { 531 // This is a previously inserted base phi or select. We know 532 // that this is a base value. 533 return true; 534 } 535 536 // We need to keep searching 537 return false; 538 } 539 540 // TODO: find a better name for this 541 namespace { 542 class PhiState { 543 public: 544 enum Status { Unknown, Base, Conflict }; 545 546 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 547 assert(status != Base || b); 548 } 549 PhiState(Value *b) : status(Base), base(b) {} 550 PhiState() : status(Unknown), base(nullptr) {} 551 PhiState(const PhiState &other) : status(other.status), base(other.base) { 552 assert(status != Base || base); 553 } 554 555 Status getStatus() const { return status; } 556 Value *getBase() const { return base; } 557 558 bool isBase() const { return getStatus() == Base; } 559 bool isUnknown() const { return getStatus() == Unknown; } 560 bool isConflict() const { return getStatus() == Conflict; } 561 562 bool operator==(const PhiState &other) const { 563 return base == other.base && status == other.status; 564 } 565 566 bool operator!=(const PhiState &other) const { return !(*this == other); } 567 568 void dump() { 569 errs() << status << " (" << base << " - " 570 << (base ? base->getName() : "nullptr") << "): "; 571 } 572 573 private: 574 Status status; 575 Value *base; // non null only if status == base 576 }; 577 578 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 579 // Values of type PhiState form a lattice, and this is a helper 580 // class that implementes the meet operation. The meat of the meet 581 // operation is implemented in MeetPhiStates::pureMeet 582 class MeetPhiStates { 583 public: 584 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 585 explicit MeetPhiStates(const ConflictStateMapTy &phiStates) 586 : phiStates(phiStates) {} 587 588 // Destructively meet the current result with the base V. V can 589 // either be a merge instruction (SelectInst / PHINode), in which 590 // case its status is looked up in the phiStates map; or a regular 591 // SSA value, in which case it is assumed to be a base. 592 void meetWith(Value *V) { 593 PhiState otherState = getStateForBDV(V); 594 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 595 MeetPhiStates::pureMeet(currentResult, otherState)) && 596 "math is wrong: meet does not commute!"); 597 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 598 } 599 600 PhiState getResult() const { return currentResult; } 601 602 private: 603 const ConflictStateMapTy &phiStates; 604 PhiState currentResult; 605 606 /// Return a phi state for a base defining value. We'll generate a new 607 /// base state for known bases and expect to find a cached state otherwise 608 PhiState getStateForBDV(Value *baseValue) { 609 if (isKnownBaseResult(baseValue)) { 610 return PhiState(baseValue); 611 } else { 612 return lookupFromMap(baseValue); 613 } 614 } 615 616 PhiState lookupFromMap(Value *V) { 617 auto I = phiStates.find(V); 618 assert(I != phiStates.end() && "lookup failed!"); 619 return I->second; 620 } 621 622 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 623 switch (stateA.getStatus()) { 624 case PhiState::Unknown: 625 return stateB; 626 627 case PhiState::Base: 628 assert(stateA.getBase() && "can't be null"); 629 if (stateB.isUnknown()) 630 return stateA; 631 632 if (stateB.isBase()) { 633 if (stateA.getBase() == stateB.getBase()) { 634 assert(stateA == stateB && "equality broken!"); 635 return stateA; 636 } 637 return PhiState(PhiState::Conflict); 638 } 639 assert(stateB.isConflict() && "only three states!"); 640 return PhiState(PhiState::Conflict); 641 642 case PhiState::Conflict: 643 return stateA; 644 } 645 llvm_unreachable("only three states!"); 646 } 647 }; 648 } 649 /// For a given value or instruction, figure out what base ptr it's derived 650 /// from. For gc objects, this is simply itself. On success, returns a value 651 /// which is the base pointer. (This is reliable and can be used for 652 /// relocation.) On failure, returns nullptr. 653 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 654 DenseSet<llvm::Value *> &NewInsertedDefs) { 655 Value *def = findBaseOrBDV(I, cache); 656 657 if (isKnownBaseResult(def)) { 658 return def; 659 } 660 661 // Here's the rough algorithm: 662 // - For every SSA value, construct a mapping to either an actual base 663 // pointer or a PHI which obscures the base pointer. 664 // - Construct a mapping from PHI to unknown TOP state. Use an 665 // optimistic algorithm to propagate base pointer information. Lattice 666 // looks like: 667 // UNKNOWN 668 // b1 b2 b3 b4 669 // CONFLICT 670 // When algorithm terminates, all PHIs will either have a single concrete 671 // base or be in a conflict state. 672 // - For every conflict, insert a dummy PHI node without arguments. Add 673 // these to the base[Instruction] = BasePtr mapping. For every 674 // non-conflict, add the actual base. 675 // - For every conflict, add arguments for the base[a] of each input 676 // arguments. 677 // 678 // Note: A simpler form of this would be to add the conflict form of all 679 // PHIs without running the optimistic algorithm. This would be 680 // analougous to pessimistic data flow and would likely lead to an 681 // overall worse solution. 682 683 ConflictStateMapTy states; 684 states[def] = PhiState(); 685 // Recursively fill in all phis & selects reachable from the initial one 686 // for which we don't already know a definite base value for 687 // TODO: This should be rewritten with a worklist 688 bool done = false; 689 while (!done) { 690 done = true; 691 // Since we're adding elements to 'states' as we run, we can't keep 692 // iterators into the set. 693 SmallVector<Value*, 16> Keys; 694 Keys.reserve(states.size()); 695 for (auto Pair : states) { 696 Value *V = Pair.first; 697 Keys.push_back(V); 698 } 699 for (Value *v : Keys) { 700 assert(!isKnownBaseResult(v) && "why did it get added?"); 701 if (PHINode *phi = dyn_cast<PHINode>(v)) { 702 assert(phi->getNumIncomingValues() > 0 && 703 "zero input phis are illegal"); 704 for (Value *InVal : phi->incoming_values()) { 705 Value *local = findBaseOrBDV(InVal, cache); 706 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 707 states[local] = PhiState(); 708 done = false; 709 } 710 } 711 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 712 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 713 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 714 states[local] = PhiState(); 715 done = false; 716 } 717 local = findBaseOrBDV(sel->getFalseValue(), cache); 718 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 719 states[local] = PhiState(); 720 done = false; 721 } 722 } 723 } 724 } 725 726 if (TraceLSP) { 727 errs() << "States after initialization:\n"; 728 for (auto Pair : states) { 729 Instruction *v = cast<Instruction>(Pair.first); 730 PhiState state = Pair.second; 731 state.dump(); 732 v->dump(); 733 } 734 } 735 736 // TODO: come back and revisit the state transitions around inputs which 737 // have reached conflict state. The current version seems too conservative. 738 739 bool progress = true; 740 size_t oldSize = 0; 741 while (progress) { 742 oldSize = states.size(); 743 progress = false; 744 // We're only changing keys in this loop, thus safe to keep iterators 745 for (auto Pair : states) { 746 MeetPhiStates calculateMeet(states); 747 Value *v = Pair.first; 748 assert(!isKnownBaseResult(v) && "why did it get added?"); 749 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 750 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 751 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 752 } else 753 for (Value *Val : cast<PHINode>(v)->incoming_values()) 754 calculateMeet.meetWith(findBaseOrBDV(Val, cache)); 755 756 PhiState oldState = states[v]; 757 PhiState newState = calculateMeet.getResult(); 758 if (oldState != newState) { 759 progress = true; 760 states[v] = newState; 761 } 762 } 763 764 assert(oldSize <= states.size()); 765 assert(oldSize == states.size() || progress); 766 } 767 768 if (TraceLSP) { 769 errs() << "States after meet iteration:\n"; 770 for (auto Pair : states) { 771 Instruction *v = cast<Instruction>(Pair.first); 772 PhiState state = Pair.second; 773 state.dump(); 774 v->dump(); 775 } 776 } 777 778 // Insert Phis for all conflicts 779 // Only changing keys in 'states', thus safe to keep iterators 780 for (auto Pair : states) { 781 Instruction *v = cast<Instruction>(Pair.first); 782 PhiState state = Pair.second; 783 assert(!isKnownBaseResult(v) && "why did it get added?"); 784 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 785 if (!state.isConflict()) 786 continue; 787 788 if (isa<PHINode>(v)) { 789 int num_preds = 790 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 791 assert(num_preds > 0 && "how did we reach here"); 792 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 793 NewInsertedDefs.insert(phi); 794 // Add metadata marking this as a base value 795 auto *const_1 = ConstantInt::get( 796 Type::getInt32Ty( 797 v->getParent()->getParent()->getParent()->getContext()), 798 1); 799 auto MDConst = ConstantAsMetadata::get(const_1); 800 MDNode *md = MDNode::get( 801 v->getParent()->getParent()->getParent()->getContext(), MDConst); 802 phi->setMetadata("is_base_value", md); 803 states[v] = PhiState(PhiState::Conflict, phi); 804 } else { 805 SelectInst *sel = cast<SelectInst>(v); 806 // The undef will be replaced later 807 UndefValue *undef = UndefValue::get(sel->getType()); 808 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 809 undef, "base_select", sel); 810 NewInsertedDefs.insert(basesel); 811 // Add metadata marking this as a base value 812 auto *const_1 = ConstantInt::get( 813 Type::getInt32Ty( 814 v->getParent()->getParent()->getParent()->getContext()), 815 1); 816 auto MDConst = ConstantAsMetadata::get(const_1); 817 MDNode *md = MDNode::get( 818 v->getParent()->getParent()->getParent()->getContext(), MDConst); 819 basesel->setMetadata("is_base_value", md); 820 states[v] = PhiState(PhiState::Conflict, basesel); 821 } 822 } 823 824 // Fixup all the inputs of the new PHIs 825 for (auto Pair : states) { 826 Instruction *v = cast<Instruction>(Pair.first); 827 PhiState state = Pair.second; 828 829 assert(!isKnownBaseResult(v) && "why did it get added?"); 830 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 831 if (state.isConflict()) { 832 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 833 PHINode *phi = cast<PHINode>(v); 834 unsigned NumPHIValues = phi->getNumIncomingValues(); 835 for (unsigned i = 0; i < NumPHIValues; i++) { 836 Value *InVal = phi->getIncomingValue(i); 837 BasicBlock *InBB = phi->getIncomingBlock(i); 838 839 // If we've already seen InBB, add the same incoming value 840 // we added for it earlier. The IR verifier requires phi 841 // nodes with multiple entries from the same basic block 842 // to have the same incoming value for each of those 843 // entries. If we don't do this check here and basephi 844 // has a different type than base, we'll end up adding two 845 // bitcasts (and hence two distinct values) as incoming 846 // values for the same basic block. 847 848 int blockIndex = basephi->getBasicBlockIndex(InBB); 849 if (blockIndex != -1) { 850 Value *oldBase = basephi->getIncomingValue(blockIndex); 851 basephi->addIncoming(oldBase, InBB); 852 #ifndef NDEBUG 853 Value *base = findBaseOrBDV(InVal, cache); 854 if (!isKnownBaseResult(base)) { 855 // Either conflict or base. 856 assert(states.count(base)); 857 base = states[base].getBase(); 858 assert(base != nullptr && "unknown PhiState!"); 859 assert(NewInsertedDefs.count(base) && 860 "should have already added this in a prev. iteration!"); 861 } 862 863 // In essense this assert states: the only way two 864 // values incoming from the same basic block may be 865 // different is by being different bitcasts of the same 866 // value. A cleanup that remains TODO is changing 867 // findBaseOrBDV to return an llvm::Value of the correct 868 // type (and still remain pure). This will remove the 869 // need to add bitcasts. 870 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 871 "sanity -- findBaseOrBDV should be pure!"); 872 #endif 873 continue; 874 } 875 876 // Find either the defining value for the PHI or the normal base for 877 // a non-phi node 878 Value *base = findBaseOrBDV(InVal, cache); 879 if (!isKnownBaseResult(base)) { 880 // Either conflict or base. 881 assert(states.count(base)); 882 base = states[base].getBase(); 883 assert(base != nullptr && "unknown PhiState!"); 884 } 885 assert(base && "can't be null"); 886 // Must use original input BB since base may not be Instruction 887 // The cast is needed since base traversal may strip away bitcasts 888 if (base->getType() != basephi->getType()) { 889 base = new BitCastInst(base, basephi->getType(), "cast", 890 InBB->getTerminator()); 891 NewInsertedDefs.insert(base); 892 } 893 basephi->addIncoming(base, InBB); 894 } 895 assert(basephi->getNumIncomingValues() == NumPHIValues); 896 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) { 897 SelectInst *sel = cast<SelectInst>(v); 898 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 899 // something more safe and less hacky. 900 for (int i = 1; i <= 2; i++) { 901 Value *InVal = sel->getOperand(i); 902 // Find either the defining value for the PHI or the normal base for 903 // a non-phi node 904 Value *base = findBaseOrBDV(InVal, cache); 905 if (!isKnownBaseResult(base)) { 906 // Either conflict or base. 907 assert(states.count(base)); 908 base = states[base].getBase(); 909 assert(base != nullptr && "unknown PhiState!"); 910 } 911 assert(base && "can't be null"); 912 // Must use original input BB since base may not be Instruction 913 // The cast is needed since base traversal may strip away bitcasts 914 if (base->getType() != basesel->getType()) { 915 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 916 NewInsertedDefs.insert(base); 917 } 918 basesel->setOperand(i, base); 919 } 920 } else 921 llvm_unreachable("unexpected conflict type"); 922 } 923 } 924 925 // Cache all of our results so we can cheaply reuse them 926 // NOTE: This is actually two caches: one of the base defining value 927 // relation and one of the base pointer relation! FIXME 928 for (auto item : states) { 929 Value *v = item.first; 930 Value *base = item.second.getBase(); 931 assert(v && base); 932 assert(!isKnownBaseResult(v) && "why did it get added?"); 933 934 if (TraceLSP) { 935 std::string fromstr = 936 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 937 : "none"; 938 errs() << "Updating base value cache" 939 << " for: " << (v->hasName() ? v->getName() : "") 940 << " from: " << fromstr 941 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 942 } 943 944 assert(isKnownBaseResult(base) && 945 "must be something we 'know' is a base pointer"); 946 if (cache.count(v)) { 947 // Once we transition from the BDV relation being store in the cache to 948 // the base relation being stored, it must be stable 949 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 950 "base relation should be stable"); 951 } 952 cache[v] = base; 953 } 954 assert(cache.find(def) != cache.end()); 955 return cache[def]; 956 } 957 958 // For a set of live pointers (base and/or derived), identify the base 959 // pointer of the object which they are derived from. This routine will 960 // mutate the IR graph as needed to make the 'base' pointer live at the 961 // definition site of 'derived'. This ensures that any use of 'derived' can 962 // also use 'base'. This may involve the insertion of a number of 963 // additional PHI nodes. 964 // 965 // preconditions: live is a set of pointer type Values 966 // 967 // side effects: may insert PHI nodes into the existing CFG, will preserve 968 // CFG, will not remove or mutate any existing nodes 969 // 970 // post condition: PointerToBase contains one (derived, base) pair for every 971 // pointer in live. Note that derived can be equal to base if the original 972 // pointer was a base pointer. 973 static void findBasePointers(const StatepointLiveSetTy &live, 974 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 975 DominatorTree *DT, DefiningValueMapTy &DVCache, 976 DenseSet<llvm::Value *> &NewInsertedDefs) { 977 for (Value *ptr : live) { 978 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs); 979 assert(base && "failed to find base pointer"); 980 PointerToBase[ptr] = base; 981 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 982 DT->dominates(cast<Instruction>(base)->getParent(), 983 cast<Instruction>(ptr)->getParent())) && 984 "The base we found better dominate the derived pointer"); 985 986 // If you see this trip and like to live really dangerously, the code should 987 // be correct, just with idioms the verifier can't handle. You can try 988 // disabling the verifier at your own substaintial risk. 989 assert(!isNullConstant(base) && "the relocation code needs adjustment to " 990 "handle the relocation of a null pointer " 991 "constant without causing false positives " 992 "in the safepoint ir verifier."); 993 } 994 } 995 996 /// Find the required based pointers (and adjust the live set) for the given 997 /// parse point. 998 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 999 const CallSite &CS, 1000 PartiallyConstructedSafepointRecord &result) { 1001 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1002 DenseSet<llvm::Value *> NewInsertedDefs; 1003 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs); 1004 1005 if (PrintBasePointers) { 1006 // Note: Need to print these in a stable order since this is checked in 1007 // some tests. 1008 errs() << "Base Pairs (w/o Relocation):\n"; 1009 SmallVector<Value*, 64> Temp; 1010 Temp.reserve(PointerToBase.size()); 1011 for (auto Pair : PointerToBase) { 1012 Temp.push_back(Pair.first); 1013 } 1014 std::sort(Temp.begin(), Temp.end(), order_by_name); 1015 for (Value *Ptr : Temp) { 1016 Value *Base = PointerToBase[Ptr]; 1017 errs() << " derived %" << Ptr->getName() << " base %" 1018 << Base->getName() << "\n"; 1019 } 1020 } 1021 1022 result.PointerToBase = PointerToBase; 1023 result.NewInsertedDefs = NewInsertedDefs; 1024 } 1025 1026 /// Check for liveness of items in the insert defs and add them to the live 1027 /// and base pointer sets 1028 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 1029 const DenseSet<Value *> &allInsertedDefs, 1030 PartiallyConstructedSafepointRecord &result) { 1031 Instruction *inst = CS.getInstruction(); 1032 1033 auto liveset = result.liveset; 1034 auto PointerToBase = result.PointerToBase; 1035 1036 auto is_live_gc_reference = 1037 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 1038 1039 // For each new definition, check to see if a) the definition dominates the 1040 // instruction we're interested in, and b) one of the uses of that definition 1041 // is edge-reachable from the instruction we're interested in. This is the 1042 // same definition of liveness we used in the intial liveness analysis 1043 for (Value *newDef : allInsertedDefs) { 1044 if (liveset.count(newDef)) { 1045 // already live, no action needed 1046 continue; 1047 } 1048 1049 // PERF: Use DT to check instruction domination might not be good for 1050 // compilation time, and we could change to optimal solution if this 1051 // turn to be a issue 1052 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1053 // can't possibly be live at inst 1054 continue; 1055 } 1056 1057 if (is_live_gc_reference(*newDef)) { 1058 // Add the live new defs into liveset and PointerToBase 1059 liveset.insert(newDef); 1060 PointerToBase[newDef] = newDef; 1061 } 1062 } 1063 1064 result.liveset = liveset; 1065 result.PointerToBase = PointerToBase; 1066 } 1067 1068 static void fixupLiveReferences( 1069 Function &F, DominatorTree &DT, Pass *P, 1070 const DenseSet<llvm::Value *> &allInsertedDefs, 1071 ArrayRef<CallSite> toUpdate, 1072 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1073 for (size_t i = 0; i < records.size(); i++) { 1074 struct PartiallyConstructedSafepointRecord &info = records[i]; 1075 const CallSite &CS = toUpdate[i]; 1076 fixupLiveness(DT, CS, allInsertedDefs, info); 1077 } 1078 } 1079 1080 // Normalize basic block to make it ready to be target of invoke statepoint. 1081 // It means spliting it to have single predecessor. Return newly created BB 1082 // ready to be successor of invoke statepoint. 1083 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1084 BasicBlock *InvokeParent, 1085 Pass *P) { 1086 BasicBlock *ret = BB; 1087 1088 if (!BB->getUniquePredecessor()) { 1089 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1090 } 1091 1092 // Another requirement for such basic blocks is to not have any phi nodes. 1093 // Since we just ensured that new BB will have single predecessor, 1094 // all phi nodes in it will have one value. Here it would be naturall place 1095 // to 1096 // remove them all. But we can not do this because we are risking to remove 1097 // one of the values stored in liveset of another statepoint. We will do it 1098 // later after placing all safepoints. 1099 1100 return ret; 1101 } 1102 1103 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1104 auto itr = std::find(livevec.begin(), livevec.end(), val); 1105 assert(livevec.end() != itr); 1106 size_t index = std::distance(livevec.begin(), itr); 1107 assert(index < livevec.size()); 1108 return index; 1109 } 1110 1111 // Create new attribute set containing only attributes which can be transfered 1112 // from original call to the safepoint. 1113 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1114 AttributeSet ret; 1115 1116 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1117 unsigned index = AS.getSlotIndex(Slot); 1118 1119 if (index == AttributeSet::ReturnIndex || 1120 index == AttributeSet::FunctionIndex) { 1121 1122 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1123 ++it) { 1124 Attribute attr = *it; 1125 1126 // Do not allow certain attributes - just skip them 1127 // Safepoint can not be read only or read none. 1128 if (attr.hasAttribute(Attribute::ReadNone) || 1129 attr.hasAttribute(Attribute::ReadOnly)) 1130 continue; 1131 1132 ret = ret.addAttributes( 1133 AS.getContext(), index, 1134 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1135 } 1136 } 1137 1138 // Just skip parameter attributes for now 1139 } 1140 1141 return ret; 1142 } 1143 1144 /// Helper function to place all gc relocates necessary for the given 1145 /// statepoint. 1146 /// Inputs: 1147 /// liveVariables - list of variables to be relocated. 1148 /// liveStart - index of the first live variable. 1149 /// basePtrs - base pointers. 1150 /// statepointToken - statepoint instruction to which relocates should be 1151 /// bound. 1152 /// Builder - Llvm IR builder to be used to construct new calls. 1153 void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables, 1154 const int liveStart, 1155 ArrayRef<llvm::Value *> basePtrs, 1156 Instruction *statepointToken, IRBuilder<> Builder) { 1157 1158 SmallVector<Instruction *, 64> NewDefs; 1159 NewDefs.reserve(liveVariables.size()); 1160 1161 Module *M = statepointToken->getParent()->getParent()->getParent(); 1162 1163 for (unsigned i = 0; i < liveVariables.size(); i++) { 1164 // We generate a (potentially) unique declaration for every pointer type 1165 // combination. This results is some blow up the function declarations in 1166 // the IR, but removes the need for argument bitcasts which shrinks the IR 1167 // greatly and makes it much more readable. 1168 SmallVector<Type *, 1> types; // one per 'any' type 1169 types.push_back(liveVariables[i]->getType()); // result type 1170 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1171 M, Intrinsic::experimental_gc_relocate, types); 1172 1173 // Generate the gc.relocate call and save the result 1174 Value *baseIdx = 1175 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1176 liveStart + find_index(liveVariables, basePtrs[i])); 1177 Value *liveIdx = ConstantInt::get( 1178 Type::getInt32Ty(M->getContext()), 1179 liveStart + find_index(liveVariables, liveVariables[i])); 1180 1181 // only specify a debug name if we can give a useful one 1182 Value *reloc = Builder.CreateCall3( 1183 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1184 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1185 : ""); 1186 // Trick CodeGen into thinking there are lots of free registers at this 1187 // fake call. 1188 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1189 1190 NewDefs.push_back(cast<Instruction>(reloc)); 1191 } 1192 assert(NewDefs.size() == liveVariables.size() && 1193 "missing or extra redefinition at safepoint"); 1194 } 1195 1196 static void 1197 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1198 const SmallVectorImpl<llvm::Value *> &basePtrs, 1199 const SmallVectorImpl<llvm::Value *> &liveVariables, 1200 Pass *P, 1201 PartiallyConstructedSafepointRecord &result) { 1202 assert(basePtrs.size() == liveVariables.size()); 1203 assert(isStatepoint(CS) && 1204 "This method expects to be rewriting a statepoint"); 1205 1206 BasicBlock *BB = CS.getInstruction()->getParent(); 1207 assert(BB); 1208 Function *F = BB->getParent(); 1209 assert(F && "must be set"); 1210 Module *M = F->getParent(); 1211 (void)M; 1212 assert(M && "must be set"); 1213 1214 // We're not changing the function signature of the statepoint since the gc 1215 // arguments go into the var args section. 1216 Function *gc_statepoint_decl = CS.getCalledFunction(); 1217 1218 // Then go ahead and use the builder do actually do the inserts. We insert 1219 // immediately before the previous instruction under the assumption that all 1220 // arguments will be available here. We can't insert afterwards since we may 1221 // be replacing a terminator. 1222 Instruction *insertBefore = CS.getInstruction(); 1223 IRBuilder<> Builder(insertBefore); 1224 // Copy all of the arguments from the original statepoint - this includes the 1225 // target, call args, and deopt args 1226 SmallVector<llvm::Value *, 64> args; 1227 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1228 // TODO: Clear the 'needs rewrite' flag 1229 1230 // add all the pointers to be relocated (gc arguments) 1231 // Capture the start of the live variable list for use in the gc_relocates 1232 const int live_start = args.size(); 1233 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1234 1235 // Create the statepoint given all the arguments 1236 Instruction *token = nullptr; 1237 AttributeSet return_attributes; 1238 if (CS.isCall()) { 1239 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1240 CallInst *call = 1241 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1242 call->setTailCall(toReplace->isTailCall()); 1243 call->setCallingConv(toReplace->getCallingConv()); 1244 1245 // Currently we will fail on parameter attributes and on certain 1246 // function attributes. 1247 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1248 // In case if we can handle this set of sttributes - set up function attrs 1249 // directly on statepoint and return attrs later for gc_result intrinsic. 1250 call->setAttributes(new_attrs.getFnAttributes()); 1251 return_attributes = new_attrs.getRetAttributes(); 1252 1253 token = call; 1254 1255 // Put the following gc_result and gc_relocate calls immediately after the 1256 // the old call (which we're about to delete) 1257 BasicBlock::iterator next(toReplace); 1258 assert(BB->end() != next && "not a terminator, must have next"); 1259 next++; 1260 Instruction *IP = &*(next); 1261 Builder.SetInsertPoint(IP); 1262 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1263 1264 } else { 1265 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1266 1267 // Insert the new invoke into the old block. We'll remove the old one in a 1268 // moment at which point this will become the new terminator for the 1269 // original block. 1270 InvokeInst *invoke = InvokeInst::Create( 1271 gc_statepoint_decl, toReplace->getNormalDest(), 1272 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1273 invoke->setCallingConv(toReplace->getCallingConv()); 1274 1275 // Currently we will fail on parameter attributes and on certain 1276 // function attributes. 1277 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1278 // In case if we can handle this set of sttributes - set up function attrs 1279 // directly on statepoint and return attrs later for gc_result intrinsic. 1280 invoke->setAttributes(new_attrs.getFnAttributes()); 1281 return_attributes = new_attrs.getRetAttributes(); 1282 1283 token = invoke; 1284 1285 // Generate gc relocates in exceptional path 1286 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1287 toReplace->getUnwindDest(), invoke->getParent(), P); 1288 1289 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1290 Builder.SetInsertPoint(IP); 1291 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1292 1293 // Extract second element from landingpad return value. We will attach 1294 // exceptional gc relocates to it. 1295 const unsigned idx = 1; 1296 Instruction *exceptional_token = 1297 cast<Instruction>(Builder.CreateExtractValue( 1298 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1299 result.UnwindToken = exceptional_token; 1300 1301 // Just throw away return value. We will use the one we got for normal 1302 // block. 1303 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1304 exceptional_token, Builder); 1305 1306 // Generate gc relocates and returns for normal block 1307 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1308 toReplace->getNormalDest(), invoke->getParent(), P); 1309 1310 IP = &*(normalDest->getFirstInsertionPt()); 1311 Builder.SetInsertPoint(IP); 1312 1313 // gc relocates will be generated later as if it were regular call 1314 // statepoint 1315 } 1316 assert(token); 1317 1318 // Take the name of the original value call if it had one. 1319 token->takeName(CS.getInstruction()); 1320 1321 // The GCResult is already inserted, we just need to find it 1322 #ifndef NDEBUG 1323 Instruction *toReplace = CS.getInstruction(); 1324 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1325 "only valid use before rewrite is gc.result"); 1326 assert(!toReplace->hasOneUse() || 1327 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1328 #endif 1329 1330 // Update the gc.result of the original statepoint (if any) to use the newly 1331 // inserted statepoint. This is safe to do here since the token can't be 1332 // considered a live reference. 1333 CS.getInstruction()->replaceAllUsesWith(token); 1334 1335 result.StatepointToken = token; 1336 1337 // Second, create a gc.relocate for every live variable 1338 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1339 1340 } 1341 1342 namespace { 1343 struct name_ordering { 1344 Value *base; 1345 Value *derived; 1346 bool operator()(name_ordering const &a, name_ordering const &b) { 1347 return -1 == a.derived->getName().compare(b.derived->getName()); 1348 } 1349 }; 1350 } 1351 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1352 SmallVectorImpl<Value *> &livevec) { 1353 assert(basevec.size() == livevec.size()); 1354 1355 SmallVector<name_ordering, 64> temp; 1356 for (size_t i = 0; i < basevec.size(); i++) { 1357 name_ordering v; 1358 v.base = basevec[i]; 1359 v.derived = livevec[i]; 1360 temp.push_back(v); 1361 } 1362 std::sort(temp.begin(), temp.end(), name_ordering()); 1363 for (size_t i = 0; i < basevec.size(); i++) { 1364 basevec[i] = temp[i].base; 1365 livevec[i] = temp[i].derived; 1366 } 1367 } 1368 1369 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1370 // which make the relocations happening at this safepoint explicit. 1371 // 1372 // WARNING: Does not do any fixup to adjust users of the original live 1373 // values. That's the callers responsibility. 1374 static void 1375 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1376 PartiallyConstructedSafepointRecord &result) { 1377 auto liveset = result.liveset; 1378 auto PointerToBase = result.PointerToBase; 1379 1380 // Convert to vector for efficient cross referencing. 1381 SmallVector<Value *, 64> basevec, livevec; 1382 livevec.reserve(liveset.size()); 1383 basevec.reserve(liveset.size()); 1384 for (Value *L : liveset) { 1385 livevec.push_back(L); 1386 1387 assert(PointerToBase.find(L) != PointerToBase.end()); 1388 Value *base = PointerToBase[L]; 1389 basevec.push_back(base); 1390 } 1391 assert(livevec.size() == basevec.size()); 1392 1393 // To make the output IR slightly more stable (for use in diffs), ensure a 1394 // fixed order of the values in the safepoint (by sorting the value name). 1395 // The order is otherwise meaningless. 1396 stablize_order(basevec, livevec); 1397 1398 // Do the actual rewriting and delete the old statepoint 1399 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1400 CS.getInstruction()->eraseFromParent(); 1401 } 1402 1403 // Helper function for the relocationViaAlloca. 1404 // It receives iterator to the statepoint gc relocates and emits store to the 1405 // assigned 1406 // location (via allocaMap) for the each one of them. 1407 // Add visited values into the visitedLiveValues set we will later use them 1408 // for sanity check. 1409 static void 1410 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1411 DenseMap<Value *, Value *> &allocaMap, 1412 DenseSet<Value *> &visitedLiveValues) { 1413 1414 for (User *U : gcRelocs) { 1415 if (!isa<IntrinsicInst>(U)) 1416 continue; 1417 1418 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1419 1420 // We only care about relocates 1421 if (relocatedValue->getIntrinsicID() != 1422 Intrinsic::experimental_gc_relocate) { 1423 continue; 1424 } 1425 1426 GCRelocateOperands relocateOperands(relocatedValue); 1427 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1428 assert(allocaMap.count(originalValue)); 1429 Value *alloca = allocaMap[originalValue]; 1430 1431 // Emit store into the related alloca 1432 StoreInst *store = new StoreInst(relocatedValue, alloca); 1433 store->insertAfter(relocatedValue); 1434 1435 #ifndef NDEBUG 1436 visitedLiveValues.insert(originalValue); 1437 #endif 1438 } 1439 } 1440 1441 /// do all the relocation update via allocas and mem2reg 1442 static void relocationViaAlloca( 1443 Function &F, DominatorTree &DT, ArrayRef<Value *> live, 1444 ArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1445 #ifndef NDEBUG 1446 int initialAllocaNum = 0; 1447 1448 // record initial number of allocas 1449 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1450 itr++) { 1451 if (isa<AllocaInst>(*itr)) 1452 initialAllocaNum++; 1453 } 1454 #endif 1455 1456 // TODO-PERF: change data structures, reserve 1457 DenseMap<Value *, Value *> allocaMap; 1458 SmallVector<AllocaInst *, 200> PromotableAllocas; 1459 PromotableAllocas.reserve(live.size()); 1460 1461 // emit alloca for each live gc pointer 1462 for (unsigned i = 0; i < live.size(); i++) { 1463 Value *liveValue = live[i]; 1464 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1465 F.getEntryBlock().getFirstNonPHI()); 1466 allocaMap[liveValue] = alloca; 1467 PromotableAllocas.push_back(alloca); 1468 } 1469 1470 // The next two loops are part of the same conceptual operation. We need to 1471 // insert a store to the alloca after the original def and at each 1472 // redefinition. We need to insert a load before each use. These are split 1473 // into distinct loops for performance reasons. 1474 1475 // update gc pointer after each statepoint 1476 // either store a relocated value or null (if no relocated value found for 1477 // this gc pointer and it is not a gc_result) 1478 // this must happen before we update the statepoint with load of alloca 1479 // otherwise we lose the link between statepoint and old def 1480 for (size_t i = 0; i < records.size(); i++) { 1481 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1482 Value *Statepoint = info.StatepointToken; 1483 1484 // This will be used for consistency check 1485 DenseSet<Value *> visitedLiveValues; 1486 1487 // Insert stores for normal statepoint gc relocates 1488 insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); 1489 1490 // In case if it was invoke statepoint 1491 // we will insert stores for exceptional path gc relocates. 1492 if (isa<InvokeInst>(Statepoint)) { 1493 insertRelocationStores(info.UnwindToken->users(), 1494 allocaMap, visitedLiveValues); 1495 } 1496 1497 #ifndef NDEBUG 1498 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1499 // the gc.statepoint. This will turn some subtle GC problems into slightly 1500 // easier to debug SEGVs 1501 SmallVector<AllocaInst *, 64> ToClobber; 1502 for (auto Pair : allocaMap) { 1503 Value *Def = Pair.first; 1504 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1505 1506 // This value was relocated 1507 if (visitedLiveValues.count(Def)) { 1508 continue; 1509 } 1510 ToClobber.push_back(Alloca); 1511 } 1512 1513 auto InsertClobbersAt = [&](Instruction *IP) { 1514 for (auto *AI : ToClobber) { 1515 auto AIType = cast<PointerType>(AI->getType()); 1516 auto PT = cast<PointerType>(AIType->getElementType()); 1517 Constant *CPN = ConstantPointerNull::get(PT); 1518 StoreInst *store = new StoreInst(CPN, AI); 1519 store->insertBefore(IP); 1520 } 1521 }; 1522 1523 // Insert the clobbering stores. These may get intermixed with the 1524 // gc.results and gc.relocates, but that's fine. 1525 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1526 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1527 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1528 } else { 1529 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1530 Next++; 1531 InsertClobbersAt(Next); 1532 } 1533 #endif 1534 } 1535 // update use with load allocas and add store for gc_relocated 1536 for (auto Pair : allocaMap) { 1537 Value *def = Pair.first; 1538 Value *alloca = Pair.second; 1539 1540 // we pre-record the uses of allocas so that we dont have to worry about 1541 // later update 1542 // that change the user information. 1543 SmallVector<Instruction *, 20> uses; 1544 // PERF: trade a linear scan for repeated reallocation 1545 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1546 for (User *U : def->users()) { 1547 if (!isa<ConstantExpr>(U)) { 1548 // If the def has a ConstantExpr use, then the def is either a 1549 // ConstantExpr use itself or null. In either case 1550 // (recursively in the first, directly in the second), the oop 1551 // it is ultimately dependent on is null and this particular 1552 // use does not need to be fixed up. 1553 uses.push_back(cast<Instruction>(U)); 1554 } 1555 } 1556 1557 std::sort(uses.begin(), uses.end()); 1558 auto last = std::unique(uses.begin(), uses.end()); 1559 uses.erase(last, uses.end()); 1560 1561 for (Instruction *use : uses) { 1562 if (isa<PHINode>(use)) { 1563 PHINode *phi = cast<PHINode>(use); 1564 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1565 if (def == phi->getIncomingValue(i)) { 1566 LoadInst *load = new LoadInst( 1567 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1568 phi->setIncomingValue(i, load); 1569 } 1570 } 1571 } else { 1572 LoadInst *load = new LoadInst(alloca, "", use); 1573 use->replaceUsesOfWith(def, load); 1574 } 1575 } 1576 1577 // emit store for the initial gc value 1578 // store must be inserted after load, otherwise store will be in alloca's 1579 // use list and an extra load will be inserted before it 1580 StoreInst *store = new StoreInst(def, alloca); 1581 if (isa<Instruction>(def)) { 1582 store->insertAfter(cast<Instruction>(def)); 1583 } else { 1584 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1585 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) && 1586 "Must be argument or global"); 1587 store->insertAfter(cast<Instruction>(alloca)); 1588 } 1589 } 1590 1591 assert(PromotableAllocas.size() == live.size() && 1592 "we must have the same allocas with lives"); 1593 if (!PromotableAllocas.empty()) { 1594 // apply mem2reg to promote alloca to SSA 1595 PromoteMemToReg(PromotableAllocas, DT); 1596 } 1597 1598 #ifndef NDEBUG 1599 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1600 itr++) { 1601 if (isa<AllocaInst>(*itr)) 1602 initialAllocaNum--; 1603 } 1604 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); 1605 #endif 1606 } 1607 1608 /// Implement a unique function which doesn't require we sort the input 1609 /// vector. Doing so has the effect of changing the output of a couple of 1610 /// tests in ways which make them less useful in testing fused safepoints. 1611 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1612 DenseSet<T> Seen; 1613 SmallVector<T, 128> TempVec; 1614 TempVec.reserve(Vec.size()); 1615 for (auto Element : Vec) 1616 TempVec.push_back(Element); 1617 Vec.clear(); 1618 for (auto V : TempVec) { 1619 if (Seen.insert(V).second) { 1620 Vec.push_back(V); 1621 } 1622 } 1623 } 1624 1625 static Function *getUseHolder(Module &M) { 1626 FunctionType *ftype = 1627 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1628 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1629 return Func; 1630 } 1631 1632 /// Insert holders so that each Value is obviously live through the entire 1633 /// liftetime of the call. 1634 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1635 SmallVectorImpl<CallInst *> &holders) { 1636 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1637 Function *Func = getUseHolder(*M); 1638 if (CS.isCall()) { 1639 // For call safepoints insert dummy calls right after safepoint 1640 BasicBlock::iterator next(CS.getInstruction()); 1641 next++; 1642 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1643 holders.push_back(base_holder); 1644 } else if (CS.isInvoke()) { 1645 // For invoke safepooints insert dummy calls both in normal and 1646 // exceptional destination blocks 1647 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1648 CallInst *normal_holder = CallInst::Create( 1649 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1650 CallInst *unwind_holder = CallInst::Create( 1651 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1652 holders.push_back(normal_holder); 1653 holders.push_back(unwind_holder); 1654 } else 1655 llvm_unreachable("unsupported call type"); 1656 } 1657 1658 static void findLiveReferences( 1659 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1660 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1661 for (size_t i = 0; i < records.size(); i++) { 1662 struct PartiallyConstructedSafepointRecord &info = records[i]; 1663 const CallSite &CS = toUpdate[i]; 1664 analyzeParsePointLiveness(DT, CS, info); 1665 } 1666 } 1667 1668 static void addBasesAsLiveValues(StatepointLiveSetTy &liveset, 1669 DenseMap<Value *, Value *> &PointerToBase) { 1670 // Identify any base pointers which are used in this safepoint, but not 1671 // themselves relocated. We need to relocate them so that later inserted 1672 // safepoints can get the properly relocated base register. 1673 DenseSet<Value *> missing; 1674 for (Value *L : liveset) { 1675 assert(PointerToBase.find(L) != PointerToBase.end()); 1676 Value *base = PointerToBase[L]; 1677 assert(base); 1678 if (liveset.find(base) == liveset.end()) { 1679 assert(PointerToBase.find(base) == PointerToBase.end()); 1680 // uniqued by set insert 1681 missing.insert(base); 1682 } 1683 } 1684 1685 // Note that we want these at the end of the list, otherwise 1686 // register placement gets screwed up once we lower to STATEPOINT 1687 // instructions. This is an utter hack, but there doesn't seem to be a 1688 // better one. 1689 for (Value *base : missing) { 1690 assert(base); 1691 liveset.insert(base); 1692 PointerToBase[base] = base; 1693 } 1694 assert(liveset.size() == PointerToBase.size()); 1695 } 1696 1697 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1698 SmallVectorImpl<CallSite> &toUpdate) { 1699 #ifndef NDEBUG 1700 // sanity check the input 1701 std::set<CallSite> uniqued; 1702 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1703 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1704 1705 for (size_t i = 0; i < toUpdate.size(); i++) { 1706 CallSite &CS = toUpdate[i]; 1707 assert(CS.getInstruction()->getParent()->getParent() == &F); 1708 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1709 } 1710 #endif 1711 1712 // A list of dummy calls added to the IR to keep various values obviously 1713 // live in the IR. We'll remove all of these when done. 1714 SmallVector<CallInst *, 64> holders; 1715 1716 // Insert a dummy call with all of the arguments to the vm_state we'll need 1717 // for the actual safepoint insertion. This ensures reference arguments in 1718 // the deopt argument list are considered live through the safepoint (and 1719 // thus makes sure they get relocated.) 1720 for (size_t i = 0; i < toUpdate.size(); i++) { 1721 CallSite &CS = toUpdate[i]; 1722 Statepoint StatepointCS(CS); 1723 1724 SmallVector<Value *, 64> DeoptValues; 1725 for (Use &U : StatepointCS.vm_state_args()) { 1726 Value *Arg = cast<Value>(&U); 1727 if (isGCPointerType(Arg->getType())) 1728 DeoptValues.push_back(Arg); 1729 } 1730 insertUseHolderAfter(CS, DeoptValues, holders); 1731 } 1732 1733 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 1734 records.reserve(toUpdate.size()); 1735 for (size_t i = 0; i < toUpdate.size(); i++) { 1736 struct PartiallyConstructedSafepointRecord info; 1737 records.push_back(info); 1738 } 1739 assert(records.size() == toUpdate.size()); 1740 1741 // A) Identify all gc pointers which are staticly live at the given call 1742 // site. 1743 findLiveReferences(F, DT, P, toUpdate, records); 1744 1745 // B) Find the base pointers for each live pointer 1746 /* scope for caching */ { 1747 // Cache the 'defining value' relation used in the computation and 1748 // insertion of base phis and selects. This ensures that we don't insert 1749 // large numbers of duplicate base_phis. 1750 DefiningValueMapTy DVCache; 1751 1752 for (size_t i = 0; i < records.size(); i++) { 1753 struct PartiallyConstructedSafepointRecord &info = records[i]; 1754 CallSite &CS = toUpdate[i]; 1755 findBasePointers(DT, DVCache, CS, info); 1756 } 1757 } // end of cache scope 1758 1759 // The base phi insertion logic (for any safepoint) may have inserted new 1760 // instructions which are now live at some safepoint. The simplest such 1761 // example is: 1762 // loop: 1763 // phi a <-- will be a new base_phi here 1764 // safepoint 1 <-- that needs to be live here 1765 // gep a + 1 1766 // safepoint 2 1767 // br loop 1768 DenseSet<llvm::Value *> allInsertedDefs; 1769 for (size_t i = 0; i < records.size(); i++) { 1770 struct PartiallyConstructedSafepointRecord &info = records[i]; 1771 allInsertedDefs.insert(info.NewInsertedDefs.begin(), 1772 info.NewInsertedDefs.end()); 1773 } 1774 1775 // We insert some dummy calls after each safepoint to definitely hold live 1776 // the base pointers which were identified for that safepoint. We'll then 1777 // ask liveness for _every_ base inserted to see what is now live. Then we 1778 // remove the dummy calls. 1779 holders.reserve(holders.size() + records.size()); 1780 for (size_t i = 0; i < records.size(); i++) { 1781 struct PartiallyConstructedSafepointRecord &info = records[i]; 1782 CallSite &CS = toUpdate[i]; 1783 1784 SmallVector<Value *, 128> Bases; 1785 for (auto Pair : info.PointerToBase) { 1786 Bases.push_back(Pair.second); 1787 } 1788 insertUseHolderAfter(CS, Bases, holders); 1789 } 1790 1791 // Add the bases explicitly to the live vector set. This may result in a few 1792 // extra relocations, but the base has to be available whenever a pointer 1793 // derived from it is used. Thus, we need it to be part of the statepoint's 1794 // gc arguments list. TODO: Introduce an explicit notion (in the following 1795 // code) of the GC argument list as seperate from the live Values at a 1796 // given statepoint. 1797 for (size_t i = 0; i < records.size(); i++) { 1798 struct PartiallyConstructedSafepointRecord &info = records[i]; 1799 addBasesAsLiveValues(info.liveset, info.PointerToBase); 1800 } 1801 1802 // If we inserted any new values, we need to adjust our notion of what is 1803 // live at a particular safepoint. 1804 if (!allInsertedDefs.empty()) { 1805 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1806 } 1807 if (PrintBasePointers) { 1808 for (size_t i = 0; i < records.size(); i++) { 1809 struct PartiallyConstructedSafepointRecord &info = records[i]; 1810 errs() << "Base Pairs: (w/Relocation)\n"; 1811 for (auto Pair : info.PointerToBase) { 1812 errs() << " derived %" << Pair.first->getName() << " base %" 1813 << Pair.second->getName() << "\n"; 1814 } 1815 } 1816 } 1817 for (size_t i = 0; i < holders.size(); i++) { 1818 holders[i]->eraseFromParent(); 1819 holders[i] = nullptr; 1820 } 1821 holders.clear(); 1822 1823 // Now run through and replace the existing statepoints with new ones with 1824 // the live variables listed. We do not yet update uses of the values being 1825 // relocated. We have references to live variables that need to 1826 // survive to the last iteration of this loop. (By construction, the 1827 // previous statepoint can not be a live variable, thus we can and remove 1828 // the old statepoint calls as we go.) 1829 for (size_t i = 0; i < records.size(); i++) { 1830 struct PartiallyConstructedSafepointRecord &info = records[i]; 1831 CallSite &CS = toUpdate[i]; 1832 makeStatepointExplicit(DT, CS, P, info); 1833 } 1834 toUpdate.clear(); // prevent accident use of invalid CallSites 1835 1836 // In case if we inserted relocates in a different basic block than the 1837 // original safepoint (this can happen for invokes). We need to be sure that 1838 // original values were not used in any of the phi nodes at the 1839 // beginning of basic block containing them. Because we know that all such 1840 // blocks will have single predecessor we can safely assume that all phi 1841 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1842 // Just remove them all here. 1843 for (size_t i = 0; i < records.size(); i++) { 1844 Instruction *I = records[i].StatepointToken; 1845 1846 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 1847 FoldSingleEntryPHINodes(invoke->getNormalDest()); 1848 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 1849 1850 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 1851 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 1852 } 1853 } 1854 1855 // Do all the fixups of the original live variables to their relocated selves 1856 SmallVector<Value *, 128> live; 1857 for (size_t i = 0; i < records.size(); i++) { 1858 struct PartiallyConstructedSafepointRecord &info = records[i]; 1859 // We can't simply save the live set from the original insertion. One of 1860 // the live values might be the result of a call which needs a safepoint. 1861 // That Value* no longer exists and we need to use the new gc_result. 1862 // Thankfully, the liveset is embedded in the statepoint (and updated), so 1863 // we just grab that. 1864 Statepoint statepoint(info.StatepointToken); 1865 live.insert(live.end(), statepoint.gc_args_begin(), 1866 statepoint.gc_args_end()); 1867 } 1868 unique_unsorted(live); 1869 1870 #ifndef NDEBUG 1871 // sanity check 1872 for (auto ptr : live) { 1873 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 1874 } 1875 #endif 1876 1877 relocationViaAlloca(F, DT, live, records); 1878 return !records.empty(); 1879 } 1880 1881 /// Returns true if this function should be rewritten by this pass. The main 1882 /// point of this function is as an extension point for custom logic. 1883 static bool shouldRewriteStatepointsIn(Function &F) { 1884 // TODO: This should check the GCStrategy 1885 if (F.hasGC()) { 1886 const std::string StatepointExampleName("statepoint-example"); 1887 return StatepointExampleName == F.getGC(); 1888 } else 1889 return false; 1890 } 1891 1892 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 1893 // Nothing to do for declarations. 1894 if (F.isDeclaration() || F.empty()) 1895 return false; 1896 1897 // Policy choice says not to rewrite - the most common reason is that we're 1898 // compiling code without a GCStrategy. 1899 if (!shouldRewriteStatepointsIn(F)) 1900 return false; 1901 1902 // Gather all the statepoints which need rewritten. 1903 SmallVector<CallSite, 64> ParsePointNeeded; 1904 for (Instruction &I : inst_range(F)) { 1905 // TODO: only the ones with the flag set! 1906 if (isStatepoint(I)) 1907 ParsePointNeeded.push_back(CallSite(&I)); 1908 } 1909 1910 // Return early if no work to do. 1911 if (ParsePointNeeded.empty()) 1912 return false; 1913 1914 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1915 return insertParsePoints(F, DT, this, ParsePointNeeded); 1916 } 1917