1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 namespace { 59 struct RewriteStatepointsForGC : public FunctionPass { 60 static char ID; // Pass identification, replacement for typeid 61 62 RewriteStatepointsForGC() : FunctionPass(ID) { 63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 64 } 65 bool runOnFunction(Function &F) override; 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override { 68 // We add and rewrite a bunch of instructions, but don't really do much 69 // else. We could in theory preserve a lot more analyses here. 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 } 72 }; 73 } // namespace 74 75 char RewriteStatepointsForGC::ID = 0; 76 77 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 78 return new RewriteStatepointsForGC(); 79 } 80 81 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 82 "Make relocations explicit at statepoints", false, false) 83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 84 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 85 "Make relocations explicit at statepoints", false, false) 86 87 namespace { 88 // The type of the internal cache used inside the findBasePointers family 89 // of functions. From the callers perspective, this is an opaque type and 90 // should not be inspected. 91 // 92 // In the actual implementation this caches two relations: 93 // - The base relation itself (i.e. this pointer is based on that one) 94 // - The base defining value relation (i.e. before base_phi insertion) 95 // Generally, after the execution of a full findBasePointer call, only the 96 // base relation will remain. Internally, we add a mixture of the two 97 // types, then update all the second type to the first type 98 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 99 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 100 101 struct PartiallyConstructedSafepointRecord { 102 /// The set of values known to be live accross this safepoint 103 StatepointLiveSetTy liveset; 104 105 /// Mapping from live pointers to a base-defining-value 106 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 107 108 /// Any new values which were added to the IR during base pointer analysis 109 /// for this safepoint 110 DenseSet<llvm::Value *> NewInsertedDefs; 111 112 /// The *new* gc.statepoint instruction itself. This produces the token 113 /// that normal path gc.relocates and the gc.result are tied to. 114 Instruction *StatepointToken; 115 116 /// Instruction to which exceptional gc relocates are attached 117 /// Makes it easier to iterate through them during relocationViaAlloca. 118 Instruction *UnwindToken; 119 }; 120 } 121 122 // TODO: Once we can get to the GCStrategy, this becomes 123 // Optional<bool> isGCManagedPointer(const Value *V) const override { 124 125 static bool isGCPointerType(const Type *T) { 126 if (const PointerType *PT = dyn_cast<PointerType>(T)) 127 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 128 // GC managed heap. We know that a pointer into this heap needs to be 129 // updated and that no other pointer does. 130 return (1 == PT->getAddressSpace()); 131 return false; 132 } 133 134 // Return true if this type is one which a) is a gc pointer or contains a GC 135 // pointer and b) is of a type this code expects to encounter as a live value. 136 // (The insertion code will assert that a type which matches (a) and not (b) 137 // is not encountered.) 138 static bool isHandledGCPointerType(Type *T) { 139 // We fully support gc pointers 140 if (isGCPointerType(T)) 141 return true; 142 // We partially support vectors of gc pointers. The code will assert if it 143 // can't handle something. 144 if (auto VT = dyn_cast<VectorType>(T)) 145 if (isGCPointerType(VT->getElementType())) 146 return true; 147 return false; 148 } 149 150 #ifndef NDEBUG 151 /// Returns true if this type contains a gc pointer whether we know how to 152 /// handle that type or not. 153 static bool containsGCPtrType(Type *Ty) { 154 if(isGCPointerType(Ty)) 155 return true; 156 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 157 return isGCPointerType(VT->getScalarType()); 158 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 159 return containsGCPtrType(AT->getElementType()); 160 if (StructType *ST = dyn_cast<StructType>(Ty)) 161 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 162 [](Type *SubType) { 163 return containsGCPtrType(SubType); 164 }); 165 return false; 166 } 167 168 // Returns true if this is a type which a) is a gc pointer or contains a GC 169 // pointer and b) is of a type which the code doesn't expect (i.e. first class 170 // aggregates). Used to trip assertions. 171 static bool isUnhandledGCPointerType(Type *Ty) { 172 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 173 } 174 #endif 175 176 /// Return true if the Value is a gc reference type which is potentially used 177 /// after the instruction 'loc'. This is only used with the edge reachability 178 /// liveness code. Note: It is assumed the V dominates loc. 179 static bool isLiveGCReferenceAt(Value &V, Instruction *Loc, DominatorTree &DT, 180 LoopInfo *LI) { 181 if (!isHandledGCPointerType(V.getType())) 182 return false; 183 184 if (V.use_empty()) 185 return false; 186 187 // Given assumption that V dominates loc, this may be live 188 return true; 189 } 190 191 // Conservatively identifies any definitions which might be live at the 192 // given instruction. The analysis is performed immediately before the 193 // given instruction. Values defined by that instruction are not considered 194 // live. Values used by that instruction are considered live. 195 // 196 // preconditions: valid IR graph, term is either a terminator instruction or 197 // a call instruction, pred is the basic block of term, DT, LI are valid 198 // 199 // side effects: none, does not mutate IR 200 // 201 // postconditions: populates liveValues as discussed above 202 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 203 DominatorTree &DT, LoopInfo *LI, 204 StatepointLiveSetTy &liveValues) { 205 liveValues.clear(); 206 207 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 208 209 Function *F = pred->getParent(); 210 211 auto is_live_gc_reference = 212 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 213 214 // Are there any gc pointer arguments live over this point? This needs to be 215 // special cased since arguments aren't defined in basic blocks. 216 for (Argument &arg : F->args()) { 217 assert(!isUnhandledGCPointerType(arg.getType()) && 218 "support for FCA unimplemented"); 219 220 if (is_live_gc_reference(arg)) { 221 liveValues.insert(&arg); 222 } 223 } 224 225 // Walk through all dominating blocks - the ones which can contain 226 // definitions used in this block - and check to see if any of the values 227 // they define are used in locations potentially reachable from the 228 // interesting instruction. 229 BasicBlock *BBI = pred; 230 while (true) { 231 if (TraceLSP) { 232 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 233 } 234 assert(DT.dominates(BBI, pred)); 235 assert(isPotentiallyReachable(BBI, pred, &DT) && 236 "dominated block must be reachable"); 237 238 // Walk through the instructions in dominating blocks and keep any 239 // that have a use potentially reachable from the block we're 240 // considering putting the safepoint in 241 for (Instruction &inst : *BBI) { 242 if (TraceLSP) { 243 errs() << "[LSP] Looking at instruction "; 244 inst.dump(); 245 } 246 247 if (pred == BBI && (&inst) == term) { 248 if (TraceLSP) { 249 errs() << "[LSP] stopped because we encountered the safepoint " 250 "instruction.\n"; 251 } 252 253 // If we're in the block which defines the interesting instruction, 254 // we don't want to include any values as live which are defined 255 // _after_ the interesting line or as part of the line itself 256 // i.e. "term" is the call instruction for a call safepoint, the 257 // results of the call should not be considered live in that stackmap 258 break; 259 } 260 261 assert(!isUnhandledGCPointerType(inst.getType()) && 262 "support for FCA unimplemented"); 263 264 if (is_live_gc_reference(inst)) { 265 if (TraceLSP) { 266 errs() << "[LSP] found live value for this safepoint "; 267 inst.dump(); 268 term->dump(); 269 } 270 liveValues.insert(&inst); 271 } 272 } 273 if (!DT.getNode(BBI)->getIDom()) { 274 assert(BBI == &F->getEntryBlock() && 275 "failed to find a dominator for something other than " 276 "the entry block"); 277 break; 278 } 279 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 280 } 281 } 282 283 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 284 if (a->hasName() && b->hasName()) { 285 return -1 == a->getName().compare(b->getName()); 286 } else if (a->hasName() && !b->hasName()) { 287 return true; 288 } else if (!a->hasName() && b->hasName()) { 289 return false; 290 } else { 291 // Better than nothing, but not stable 292 return a < b; 293 } 294 } 295 296 /// Find the initial live set. Note that due to base pointer 297 /// insertion, the live set may be incomplete. 298 static void 299 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 300 PartiallyConstructedSafepointRecord &result) { 301 Instruction *inst = CS.getInstruction(); 302 303 BasicBlock *BB = inst->getParent(); 304 StatepointLiveSetTy liveset; 305 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 306 307 if (PrintLiveSet) { 308 // Note: This output is used by several of the test cases 309 // The order of elemtns in a set is not stable, put them in a vec and sort 310 // by name 311 SmallVector<Value *, 64> temp; 312 temp.insert(temp.end(), liveset.begin(), liveset.end()); 313 std::sort(temp.begin(), temp.end(), order_by_name); 314 errs() << "Live Variables:\n"; 315 for (Value *V : temp) { 316 errs() << " " << V->getName(); // no newline 317 V->dump(); 318 } 319 } 320 if (PrintLiveSetSize) { 321 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 322 errs() << "Number live values: " << liveset.size() << "\n"; 323 } 324 result.liveset = liveset; 325 } 326 327 /// If we can trivially determine that this vector contains only base pointers, 328 /// return the base instruction. 329 static Value *findBaseOfVector(Value *I) { 330 assert(I->getType()->isVectorTy() && 331 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 332 "Illegal to ask for the base pointer of a non-pointer type"); 333 334 // Each case parallels findBaseDefiningValue below, see that code for 335 // detailed motivation. 336 337 if (isa<Argument>(I)) 338 // An incoming argument to the function is a base pointer 339 return I; 340 341 // We shouldn't see the address of a global as a vector value? 342 assert(!isa<GlobalVariable>(I) && 343 "unexpected global variable found in base of vector"); 344 345 // inlining could possibly introduce phi node that contains 346 // undef if callee has multiple returns 347 if (isa<UndefValue>(I)) 348 // utterly meaningless, but useful for dealing with partially optimized 349 // code. 350 return I; 351 352 // Due to inheritance, this must be _after_ the global variable and undef 353 // checks 354 if (Constant *Con = dyn_cast<Constant>(I)) { 355 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 356 "order of checks wrong!"); 357 assert(Con->isNullValue() && "null is the only case which makes sense"); 358 return Con; 359 } 360 361 if (isa<LoadInst>(I)) 362 return I; 363 364 // Note: This code is currently rather incomplete. We are essentially only 365 // handling cases where the vector element is trivially a base pointer. We 366 // need to update the entire base pointer construction algorithm to know how 367 // to track vector elements and potentially scalarize, but the case which 368 // would motivate the work hasn't shown up in real workloads yet. 369 llvm_unreachable("no base found for vector element"); 370 } 371 372 /// Helper function for findBasePointer - Will return a value which either a) 373 /// defines the base pointer for the input or b) blocks the simple search 374 /// (i.e. a PHI or Select of two derived pointers) 375 static Value *findBaseDefiningValue(Value *I) { 376 assert(I->getType()->isPointerTy() && 377 "Illegal to ask for the base pointer of a non-pointer type"); 378 379 // This case is a bit of a hack - it only handles extracts from vectors which 380 // trivially contain only base pointers. See note inside the function for 381 // how to improve this. 382 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { 383 Value *VectorOperand = EEI->getVectorOperand(); 384 Value *VectorBase = findBaseOfVector(VectorOperand); 385 (void)VectorBase; 386 assert(VectorBase && "extract element not known to be a trivial base"); 387 return EEI; 388 } 389 390 if (isa<Argument>(I)) 391 // An incoming argument to the function is a base pointer 392 // We should have never reached here if this argument isn't an gc value 393 return I; 394 395 if (isa<GlobalVariable>(I)) 396 // base case 397 return I; 398 399 // inlining could possibly introduce phi node that contains 400 // undef if callee has multiple returns 401 if (isa<UndefValue>(I)) 402 // utterly meaningless, but useful for dealing with 403 // partially optimized code. 404 return I; 405 406 // Due to inheritance, this must be _after_ the global variable and undef 407 // checks 408 if (Constant *Con = dyn_cast<Constant>(I)) { 409 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 410 "order of checks wrong!"); 411 // Note: Finding a constant base for something marked for relocation 412 // doesn't really make sense. The most likely case is either a) some 413 // screwed up the address space usage or b) your validating against 414 // compiled C++ code w/o the proper separation. The only real exception 415 // is a null pointer. You could have generic code written to index of 416 // off a potentially null value and have proven it null. We also use 417 // null pointers in dead paths of relocation phis (which we might later 418 // want to find a base pointer for). 419 assert(isa<ConstantPointerNull>(Con) && 420 "null is the only case which makes sense"); 421 return Con; 422 } 423 424 if (CastInst *CI = dyn_cast<CastInst>(I)) { 425 Value *Def = CI->stripPointerCasts(); 426 // If we find a cast instruction here, it means we've found a cast which is 427 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 428 // handle int->ptr conversion. 429 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 430 return findBaseDefiningValue(Def); 431 } 432 433 if (isa<LoadInst>(I)) 434 return I; // The value loaded is an gc base itself 435 436 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 437 // The base of this GEP is the base 438 return findBaseDefiningValue(GEP->getPointerOperand()); 439 440 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 441 switch (II->getIntrinsicID()) { 442 case Intrinsic::experimental_gc_result_ptr: 443 default: 444 // fall through to general call handling 445 break; 446 case Intrinsic::experimental_gc_statepoint: 447 case Intrinsic::experimental_gc_result_float: 448 case Intrinsic::experimental_gc_result_int: 449 llvm_unreachable("these don't produce pointers"); 450 case Intrinsic::experimental_gc_relocate: { 451 // Rerunning safepoint insertion after safepoints are already 452 // inserted is not supported. It could probably be made to work, 453 // but why are you doing this? There's no good reason. 454 llvm_unreachable("repeat safepoint insertion is not supported"); 455 } 456 case Intrinsic::gcroot: 457 // Currently, this mechanism hasn't been extended to work with gcroot. 458 // There's no reason it couldn't be, but I haven't thought about the 459 // implications much. 460 llvm_unreachable( 461 "interaction with the gcroot mechanism is not supported"); 462 } 463 } 464 // We assume that functions in the source language only return base 465 // pointers. This should probably be generalized via attributes to support 466 // both source language and internal functions. 467 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 468 return I; 469 470 // I have absolutely no idea how to implement this part yet. It's not 471 // neccessarily hard, I just haven't really looked at it yet. 472 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 473 474 if (isa<AtomicCmpXchgInst>(I)) 475 // A CAS is effectively a atomic store and load combined under a 476 // predicate. From the perspective of base pointers, we just treat it 477 // like a load. 478 return I; 479 480 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 481 "binary ops which don't apply to pointers"); 482 483 // The aggregate ops. Aggregates can either be in the heap or on the 484 // stack, but in either case, this is simply a field load. As a result, 485 // this is a defining definition of the base just like a load is. 486 if (isa<ExtractValueInst>(I)) 487 return I; 488 489 // We should never see an insert vector since that would require we be 490 // tracing back a struct value not a pointer value. 491 assert(!isa<InsertValueInst>(I) && 492 "Base pointer for a struct is meaningless"); 493 494 // The last two cases here don't return a base pointer. Instead, they 495 // return a value which dynamically selects from amoung several base 496 // derived pointers (each with it's own base potentially). It's the job of 497 // the caller to resolve these. 498 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 499 "missing instruction case in findBaseDefiningValing"); 500 return I; 501 } 502 503 /// Returns the base defining value for this value. 504 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 505 Value *&Cached = Cache[I]; 506 if (!Cached) { 507 Cached = findBaseDefiningValue(I); 508 } 509 assert(Cache[I] != nullptr); 510 511 if (TraceLSP) { 512 dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 513 << "\n"; 514 } 515 return Cached; 516 } 517 518 /// Return a base pointer for this value if known. Otherwise, return it's 519 /// base defining value. 520 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 521 Value *Def = findBaseDefiningValueCached(I, Cache); 522 auto Found = Cache.find(Def); 523 if (Found != Cache.end()) { 524 // Either a base-of relation, or a self reference. Caller must check. 525 return Found->second; 526 } 527 // Only a BDV available 528 return Def; 529 } 530 531 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 532 /// is it known to be a base pointer? Or do we need to continue searching. 533 static bool isKnownBaseResult(Value *V) { 534 if (!isa<PHINode>(V) && !isa<SelectInst>(V)) { 535 // no recursion possible 536 return true; 537 } 538 if (isa<Instruction>(V) && 539 cast<Instruction>(V)->getMetadata("is_base_value")) { 540 // This is a previously inserted base phi or select. We know 541 // that this is a base value. 542 return true; 543 } 544 545 // We need to keep searching 546 return false; 547 } 548 549 // TODO: find a better name for this 550 namespace { 551 class PhiState { 552 public: 553 enum Status { Unknown, Base, Conflict }; 554 555 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 556 assert(status != Base || b); 557 } 558 PhiState(Value *b) : status(Base), base(b) {} 559 PhiState() : status(Unknown), base(nullptr) {} 560 561 Status getStatus() const { return status; } 562 Value *getBase() const { return base; } 563 564 bool isBase() const { return getStatus() == Base; } 565 bool isUnknown() const { return getStatus() == Unknown; } 566 bool isConflict() const { return getStatus() == Conflict; } 567 568 bool operator==(const PhiState &other) const { 569 return base == other.base && status == other.status; 570 } 571 572 bool operator!=(const PhiState &other) const { return !(*this == other); } 573 574 void dump() { 575 errs() << status << " (" << base << " - " 576 << (base ? base->getName() : "nullptr") << "): "; 577 } 578 579 private: 580 Status status; 581 Value *base; // non null only if status == base 582 }; 583 584 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 585 // Values of type PhiState form a lattice, and this is a helper 586 // class that implementes the meet operation. The meat of the meet 587 // operation is implemented in MeetPhiStates::pureMeet 588 class MeetPhiStates { 589 public: 590 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 591 explicit MeetPhiStates(const ConflictStateMapTy &phiStates) 592 : phiStates(phiStates) {} 593 594 // Destructively meet the current result with the base V. V can 595 // either be a merge instruction (SelectInst / PHINode), in which 596 // case its status is looked up in the phiStates map; or a regular 597 // SSA value, in which case it is assumed to be a base. 598 void meetWith(Value *V) { 599 PhiState otherState = getStateForBDV(V); 600 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 601 MeetPhiStates::pureMeet(currentResult, otherState)) && 602 "math is wrong: meet does not commute!"); 603 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 604 } 605 606 PhiState getResult() const { return currentResult; } 607 608 private: 609 const ConflictStateMapTy &phiStates; 610 PhiState currentResult; 611 612 /// Return a phi state for a base defining value. We'll generate a new 613 /// base state for known bases and expect to find a cached state otherwise 614 PhiState getStateForBDV(Value *baseValue) { 615 if (isKnownBaseResult(baseValue)) { 616 return PhiState(baseValue); 617 } else { 618 return lookupFromMap(baseValue); 619 } 620 } 621 622 PhiState lookupFromMap(Value *V) { 623 auto I = phiStates.find(V); 624 assert(I != phiStates.end() && "lookup failed!"); 625 return I->second; 626 } 627 628 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 629 switch (stateA.getStatus()) { 630 case PhiState::Unknown: 631 return stateB; 632 633 case PhiState::Base: 634 assert(stateA.getBase() && "can't be null"); 635 if (stateB.isUnknown()) 636 return stateA; 637 638 if (stateB.isBase()) { 639 if (stateA.getBase() == stateB.getBase()) { 640 assert(stateA == stateB && "equality broken!"); 641 return stateA; 642 } 643 return PhiState(PhiState::Conflict); 644 } 645 assert(stateB.isConflict() && "only three states!"); 646 return PhiState(PhiState::Conflict); 647 648 case PhiState::Conflict: 649 return stateA; 650 } 651 llvm_unreachable("only three states!"); 652 } 653 }; 654 } 655 /// For a given value or instruction, figure out what base ptr it's derived 656 /// from. For gc objects, this is simply itself. On success, returns a value 657 /// which is the base pointer. (This is reliable and can be used for 658 /// relocation.) On failure, returns nullptr. 659 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 660 DenseSet<llvm::Value *> &NewInsertedDefs) { 661 Value *def = findBaseOrBDV(I, cache); 662 663 if (isKnownBaseResult(def)) { 664 return def; 665 } 666 667 // Here's the rough algorithm: 668 // - For every SSA value, construct a mapping to either an actual base 669 // pointer or a PHI which obscures the base pointer. 670 // - Construct a mapping from PHI to unknown TOP state. Use an 671 // optimistic algorithm to propagate base pointer information. Lattice 672 // looks like: 673 // UNKNOWN 674 // b1 b2 b3 b4 675 // CONFLICT 676 // When algorithm terminates, all PHIs will either have a single concrete 677 // base or be in a conflict state. 678 // - For every conflict, insert a dummy PHI node without arguments. Add 679 // these to the base[Instruction] = BasePtr mapping. For every 680 // non-conflict, add the actual base. 681 // - For every conflict, add arguments for the base[a] of each input 682 // arguments. 683 // 684 // Note: A simpler form of this would be to add the conflict form of all 685 // PHIs without running the optimistic algorithm. This would be 686 // analougous to pessimistic data flow and would likely lead to an 687 // overall worse solution. 688 689 ConflictStateMapTy states; 690 states[def] = PhiState(); 691 // Recursively fill in all phis & selects reachable from the initial one 692 // for which we don't already know a definite base value for 693 // TODO: This should be rewritten with a worklist 694 bool done = false; 695 while (!done) { 696 done = true; 697 // Since we're adding elements to 'states' as we run, we can't keep 698 // iterators into the set. 699 SmallVector<Value*, 16> Keys; 700 Keys.reserve(states.size()); 701 for (auto Pair : states) { 702 Value *V = Pair.first; 703 Keys.push_back(V); 704 } 705 for (Value *v : Keys) { 706 assert(!isKnownBaseResult(v) && "why did it get added?"); 707 if (PHINode *phi = dyn_cast<PHINode>(v)) { 708 assert(phi->getNumIncomingValues() > 0 && 709 "zero input phis are illegal"); 710 for (Value *InVal : phi->incoming_values()) { 711 Value *local = findBaseOrBDV(InVal, cache); 712 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 713 states[local] = PhiState(); 714 done = false; 715 } 716 } 717 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 718 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 719 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 720 states[local] = PhiState(); 721 done = false; 722 } 723 local = findBaseOrBDV(sel->getFalseValue(), cache); 724 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 725 states[local] = PhiState(); 726 done = false; 727 } 728 } 729 } 730 } 731 732 if (TraceLSP) { 733 errs() << "States after initialization:\n"; 734 for (auto Pair : states) { 735 Instruction *v = cast<Instruction>(Pair.first); 736 PhiState state = Pair.second; 737 state.dump(); 738 v->dump(); 739 } 740 } 741 742 // TODO: come back and revisit the state transitions around inputs which 743 // have reached conflict state. The current version seems too conservative. 744 745 bool progress = true; 746 while (progress) { 747 #ifndef NDEBUG 748 size_t oldSize = states.size(); 749 #endif 750 progress = false; 751 // We're only changing keys in this loop, thus safe to keep iterators 752 for (auto Pair : states) { 753 MeetPhiStates calculateMeet(states); 754 Value *v = Pair.first; 755 assert(!isKnownBaseResult(v) && "why did it get added?"); 756 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 757 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 758 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 759 } else 760 for (Value *Val : cast<PHINode>(v)->incoming_values()) 761 calculateMeet.meetWith(findBaseOrBDV(Val, cache)); 762 763 PhiState oldState = states[v]; 764 PhiState newState = calculateMeet.getResult(); 765 if (oldState != newState) { 766 progress = true; 767 states[v] = newState; 768 } 769 } 770 771 assert(oldSize <= states.size()); 772 assert(oldSize == states.size() || progress); 773 } 774 775 if (TraceLSP) { 776 errs() << "States after meet iteration:\n"; 777 for (auto Pair : states) { 778 Instruction *v = cast<Instruction>(Pair.first); 779 PhiState state = Pair.second; 780 state.dump(); 781 v->dump(); 782 } 783 } 784 785 // Insert Phis for all conflicts 786 // We want to keep naming deterministic in the loop that follows, so 787 // sort the keys before iteration. This is useful in allowing us to 788 // write stable tests. Note that there is no invalidation issue here. 789 SmallVector<Value*, 16> Keys; 790 Keys.reserve(states.size()); 791 for (auto Pair : states) { 792 Value *V = Pair.first; 793 Keys.push_back(V); 794 } 795 std::sort(Keys.begin(), Keys.end(), order_by_name); 796 // TODO: adjust naming patterns to avoid this order of iteration dependency 797 for (Value *V : Keys) { 798 Instruction *v = cast<Instruction>(V); 799 PhiState state = states[V]; 800 assert(!isKnownBaseResult(v) && "why did it get added?"); 801 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 802 if (!state.isConflict()) 803 continue; 804 805 if (isa<PHINode>(v)) { 806 int num_preds = 807 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 808 assert(num_preds > 0 && "how did we reach here"); 809 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 810 NewInsertedDefs.insert(phi); 811 // Add metadata marking this as a base value 812 auto *const_1 = ConstantInt::get( 813 Type::getInt32Ty( 814 v->getParent()->getParent()->getParent()->getContext()), 815 1); 816 auto MDConst = ConstantAsMetadata::get(const_1); 817 MDNode *md = MDNode::get( 818 v->getParent()->getParent()->getParent()->getContext(), MDConst); 819 phi->setMetadata("is_base_value", md); 820 states[v] = PhiState(PhiState::Conflict, phi); 821 } else { 822 SelectInst *sel = cast<SelectInst>(v); 823 // The undef will be replaced later 824 UndefValue *undef = UndefValue::get(sel->getType()); 825 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 826 undef, "base_select", sel); 827 NewInsertedDefs.insert(basesel); 828 // Add metadata marking this as a base value 829 auto *const_1 = ConstantInt::get( 830 Type::getInt32Ty( 831 v->getParent()->getParent()->getParent()->getContext()), 832 1); 833 auto MDConst = ConstantAsMetadata::get(const_1); 834 MDNode *md = MDNode::get( 835 v->getParent()->getParent()->getParent()->getContext(), MDConst); 836 basesel->setMetadata("is_base_value", md); 837 states[v] = PhiState(PhiState::Conflict, basesel); 838 } 839 } 840 841 // Fixup all the inputs of the new PHIs 842 for (auto Pair : states) { 843 Instruction *v = cast<Instruction>(Pair.first); 844 PhiState state = Pair.second; 845 846 assert(!isKnownBaseResult(v) && "why did it get added?"); 847 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 848 if (!state.isConflict()) 849 continue; 850 851 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 852 PHINode *phi = cast<PHINode>(v); 853 unsigned NumPHIValues = phi->getNumIncomingValues(); 854 for (unsigned i = 0; i < NumPHIValues; i++) { 855 Value *InVal = phi->getIncomingValue(i); 856 BasicBlock *InBB = phi->getIncomingBlock(i); 857 858 // If we've already seen InBB, add the same incoming value 859 // we added for it earlier. The IR verifier requires phi 860 // nodes with multiple entries from the same basic block 861 // to have the same incoming value for each of those 862 // entries. If we don't do this check here and basephi 863 // has a different type than base, we'll end up adding two 864 // bitcasts (and hence two distinct values) as incoming 865 // values for the same basic block. 866 867 int blockIndex = basephi->getBasicBlockIndex(InBB); 868 if (blockIndex != -1) { 869 Value *oldBase = basephi->getIncomingValue(blockIndex); 870 basephi->addIncoming(oldBase, InBB); 871 #ifndef NDEBUG 872 Value *base = findBaseOrBDV(InVal, cache); 873 if (!isKnownBaseResult(base)) { 874 // Either conflict or base. 875 assert(states.count(base)); 876 base = states[base].getBase(); 877 assert(base != nullptr && "unknown PhiState!"); 878 assert(NewInsertedDefs.count(base) && 879 "should have already added this in a prev. iteration!"); 880 } 881 882 // In essense this assert states: the only way two 883 // values incoming from the same basic block may be 884 // different is by being different bitcasts of the same 885 // value. A cleanup that remains TODO is changing 886 // findBaseOrBDV to return an llvm::Value of the correct 887 // type (and still remain pure). This will remove the 888 // need to add bitcasts. 889 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 890 "sanity -- findBaseOrBDV should be pure!"); 891 #endif 892 continue; 893 } 894 895 // Find either the defining value for the PHI or the normal base for 896 // a non-phi node 897 Value *base = findBaseOrBDV(InVal, cache); 898 if (!isKnownBaseResult(base)) { 899 // Either conflict or base. 900 assert(states.count(base)); 901 base = states[base].getBase(); 902 assert(base != nullptr && "unknown PhiState!"); 903 } 904 assert(base && "can't be null"); 905 // Must use original input BB since base may not be Instruction 906 // The cast is needed since base traversal may strip away bitcasts 907 if (base->getType() != basephi->getType()) { 908 base = new BitCastInst(base, basephi->getType(), "cast", 909 InBB->getTerminator()); 910 NewInsertedDefs.insert(base); 911 } 912 basephi->addIncoming(base, InBB); 913 } 914 assert(basephi->getNumIncomingValues() == NumPHIValues); 915 } else { 916 SelectInst *basesel = cast<SelectInst>(state.getBase()); 917 SelectInst *sel = cast<SelectInst>(v); 918 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 919 // something more safe and less hacky. 920 for (int i = 1; i <= 2; i++) { 921 Value *InVal = sel->getOperand(i); 922 // Find either the defining value for the PHI or the normal base for 923 // a non-phi node 924 Value *base = findBaseOrBDV(InVal, cache); 925 if (!isKnownBaseResult(base)) { 926 // Either conflict or base. 927 assert(states.count(base)); 928 base = states[base].getBase(); 929 assert(base != nullptr && "unknown PhiState!"); 930 } 931 assert(base && "can't be null"); 932 // Must use original input BB since base may not be Instruction 933 // The cast is needed since base traversal may strip away bitcasts 934 if (base->getType() != basesel->getType()) { 935 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 936 NewInsertedDefs.insert(base); 937 } 938 basesel->setOperand(i, base); 939 } 940 } 941 } 942 943 // Cache all of our results so we can cheaply reuse them 944 // NOTE: This is actually two caches: one of the base defining value 945 // relation and one of the base pointer relation! FIXME 946 for (auto item : states) { 947 Value *v = item.first; 948 Value *base = item.second.getBase(); 949 assert(v && base); 950 assert(!isKnownBaseResult(v) && "why did it get added?"); 951 952 if (TraceLSP) { 953 std::string fromstr = 954 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 955 : "none"; 956 errs() << "Updating base value cache" 957 << " for: " << (v->hasName() ? v->getName() : "") 958 << " from: " << fromstr 959 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 960 } 961 962 assert(isKnownBaseResult(base) && 963 "must be something we 'know' is a base pointer"); 964 if (cache.count(v)) { 965 // Once we transition from the BDV relation being store in the cache to 966 // the base relation being stored, it must be stable 967 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 968 "base relation should be stable"); 969 } 970 cache[v] = base; 971 } 972 assert(cache.find(def) != cache.end()); 973 return cache[def]; 974 } 975 976 // For a set of live pointers (base and/or derived), identify the base 977 // pointer of the object which they are derived from. This routine will 978 // mutate the IR graph as needed to make the 'base' pointer live at the 979 // definition site of 'derived'. This ensures that any use of 'derived' can 980 // also use 'base'. This may involve the insertion of a number of 981 // additional PHI nodes. 982 // 983 // preconditions: live is a set of pointer type Values 984 // 985 // side effects: may insert PHI nodes into the existing CFG, will preserve 986 // CFG, will not remove or mutate any existing nodes 987 // 988 // post condition: PointerToBase contains one (derived, base) pair for every 989 // pointer in live. Note that derived can be equal to base if the original 990 // pointer was a base pointer. 991 static void findBasePointers(const StatepointLiveSetTy &live, 992 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 993 DominatorTree *DT, DefiningValueMapTy &DVCache, 994 DenseSet<llvm::Value *> &NewInsertedDefs) { 995 // For the naming of values inserted to be deterministic - which makes for 996 // much cleaner and more stable tests - we need to assign an order to the 997 // live values. DenseSets do not provide a deterministic order across runs. 998 SmallVector<Value*, 64> Temp; 999 Temp.insert(Temp.end(), live.begin(), live.end()); 1000 std::sort(Temp.begin(), Temp.end(), order_by_name); 1001 for (Value *ptr : Temp) { 1002 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs); 1003 assert(base && "failed to find base pointer"); 1004 PointerToBase[ptr] = base; 1005 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1006 DT->dominates(cast<Instruction>(base)->getParent(), 1007 cast<Instruction>(ptr)->getParent())) && 1008 "The base we found better dominate the derived pointer"); 1009 1010 // If you see this trip and like to live really dangerously, the code should 1011 // be correct, just with idioms the verifier can't handle. You can try 1012 // disabling the verifier at your own substaintial risk. 1013 assert(!isa<ConstantPointerNull>(base) && 1014 "the relocation code needs adjustment to handle the relocation of " 1015 "a null pointer constant without causing false positives in the " 1016 "safepoint ir verifier."); 1017 } 1018 } 1019 1020 /// Find the required based pointers (and adjust the live set) for the given 1021 /// parse point. 1022 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1023 const CallSite &CS, 1024 PartiallyConstructedSafepointRecord &result) { 1025 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1026 DenseSet<llvm::Value *> NewInsertedDefs; 1027 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs); 1028 1029 if (PrintBasePointers) { 1030 // Note: Need to print these in a stable order since this is checked in 1031 // some tests. 1032 errs() << "Base Pairs (w/o Relocation):\n"; 1033 SmallVector<Value*, 64> Temp; 1034 Temp.reserve(PointerToBase.size()); 1035 for (auto Pair : PointerToBase) { 1036 Temp.push_back(Pair.first); 1037 } 1038 std::sort(Temp.begin(), Temp.end(), order_by_name); 1039 for (Value *Ptr : Temp) { 1040 Value *Base = PointerToBase[Ptr]; 1041 errs() << " derived %" << Ptr->getName() << " base %" 1042 << Base->getName() << "\n"; 1043 } 1044 } 1045 1046 result.PointerToBase = PointerToBase; 1047 result.NewInsertedDefs = NewInsertedDefs; 1048 } 1049 1050 /// Check for liveness of items in the insert defs and add them to the live 1051 /// and base pointer sets 1052 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 1053 const DenseSet<Value *> &allInsertedDefs, 1054 PartiallyConstructedSafepointRecord &result) { 1055 Instruction *inst = CS.getInstruction(); 1056 1057 auto liveset = result.liveset; 1058 auto PointerToBase = result.PointerToBase; 1059 1060 auto is_live_gc_reference = 1061 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 1062 1063 // For each new definition, check to see if a) the definition dominates the 1064 // instruction we're interested in, and b) one of the uses of that definition 1065 // is edge-reachable from the instruction we're interested in. This is the 1066 // same definition of liveness we used in the intial liveness analysis 1067 for (Value *newDef : allInsertedDefs) { 1068 if (liveset.count(newDef)) { 1069 // already live, no action needed 1070 continue; 1071 } 1072 1073 // PERF: Use DT to check instruction domination might not be good for 1074 // compilation time, and we could change to optimal solution if this 1075 // turn to be a issue 1076 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1077 // can't possibly be live at inst 1078 continue; 1079 } 1080 1081 if (is_live_gc_reference(*newDef)) { 1082 // Add the live new defs into liveset and PointerToBase 1083 liveset.insert(newDef); 1084 PointerToBase[newDef] = newDef; 1085 } 1086 } 1087 1088 result.liveset = liveset; 1089 result.PointerToBase = PointerToBase; 1090 } 1091 1092 static void fixupLiveReferences( 1093 Function &F, DominatorTree &DT, Pass *P, 1094 const DenseSet<llvm::Value *> &allInsertedDefs, 1095 ArrayRef<CallSite> toUpdate, 1096 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1097 for (size_t i = 0; i < records.size(); i++) { 1098 struct PartiallyConstructedSafepointRecord &info = records[i]; 1099 const CallSite &CS = toUpdate[i]; 1100 fixupLiveness(DT, CS, allInsertedDefs, info); 1101 } 1102 } 1103 1104 // Normalize basic block to make it ready to be target of invoke statepoint. 1105 // It means spliting it to have single predecessor. Return newly created BB 1106 // ready to be successor of invoke statepoint. 1107 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1108 BasicBlock *InvokeParent, 1109 Pass *P) { 1110 BasicBlock *ret = BB; 1111 1112 if (!BB->getUniquePredecessor()) { 1113 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1114 } 1115 1116 // Another requirement for such basic blocks is to not have any phi nodes. 1117 // Since we just ensured that new BB will have single predecessor, 1118 // all phi nodes in it will have one value. Here it would be naturall place 1119 // to 1120 // remove them all. But we can not do this because we are risking to remove 1121 // one of the values stored in liveset of another statepoint. We will do it 1122 // later after placing all safepoints. 1123 1124 return ret; 1125 } 1126 1127 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1128 auto itr = std::find(livevec.begin(), livevec.end(), val); 1129 assert(livevec.end() != itr); 1130 size_t index = std::distance(livevec.begin(), itr); 1131 assert(index < livevec.size()); 1132 return index; 1133 } 1134 1135 // Create new attribute set containing only attributes which can be transfered 1136 // from original call to the safepoint. 1137 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1138 AttributeSet ret; 1139 1140 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1141 unsigned index = AS.getSlotIndex(Slot); 1142 1143 if (index == AttributeSet::ReturnIndex || 1144 index == AttributeSet::FunctionIndex) { 1145 1146 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1147 ++it) { 1148 Attribute attr = *it; 1149 1150 // Do not allow certain attributes - just skip them 1151 // Safepoint can not be read only or read none. 1152 if (attr.hasAttribute(Attribute::ReadNone) || 1153 attr.hasAttribute(Attribute::ReadOnly)) 1154 continue; 1155 1156 ret = ret.addAttributes( 1157 AS.getContext(), index, 1158 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1159 } 1160 } 1161 1162 // Just skip parameter attributes for now 1163 } 1164 1165 return ret; 1166 } 1167 1168 /// Helper function to place all gc relocates necessary for the given 1169 /// statepoint. 1170 /// Inputs: 1171 /// liveVariables - list of variables to be relocated. 1172 /// liveStart - index of the first live variable. 1173 /// basePtrs - base pointers. 1174 /// statepointToken - statepoint instruction to which relocates should be 1175 /// bound. 1176 /// Builder - Llvm IR builder to be used to construct new calls. 1177 static void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables, 1178 const int liveStart, 1179 ArrayRef<llvm::Value *> basePtrs, 1180 Instruction *statepointToken, 1181 IRBuilder<> Builder) { 1182 SmallVector<Instruction *, 64> NewDefs; 1183 NewDefs.reserve(liveVariables.size()); 1184 1185 Module *M = statepointToken->getParent()->getParent()->getParent(); 1186 1187 for (unsigned i = 0; i < liveVariables.size(); i++) { 1188 // We generate a (potentially) unique declaration for every pointer type 1189 // combination. This results is some blow up the function declarations in 1190 // the IR, but removes the need for argument bitcasts which shrinks the IR 1191 // greatly and makes it much more readable. 1192 SmallVector<Type *, 1> types; // one per 'any' type 1193 types.push_back(liveVariables[i]->getType()); // result type 1194 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1195 M, Intrinsic::experimental_gc_relocate, types); 1196 1197 // Generate the gc.relocate call and save the result 1198 Value *baseIdx = 1199 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1200 liveStart + find_index(liveVariables, basePtrs[i])); 1201 Value *liveIdx = ConstantInt::get( 1202 Type::getInt32Ty(M->getContext()), 1203 liveStart + find_index(liveVariables, liveVariables[i])); 1204 1205 // only specify a debug name if we can give a useful one 1206 Value *reloc = Builder.CreateCall3( 1207 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1208 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1209 : ""); 1210 // Trick CodeGen into thinking there are lots of free registers at this 1211 // fake call. 1212 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1213 1214 NewDefs.push_back(cast<Instruction>(reloc)); 1215 } 1216 assert(NewDefs.size() == liveVariables.size() && 1217 "missing or extra redefinition at safepoint"); 1218 } 1219 1220 static void 1221 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1222 const SmallVectorImpl<llvm::Value *> &basePtrs, 1223 const SmallVectorImpl<llvm::Value *> &liveVariables, 1224 Pass *P, 1225 PartiallyConstructedSafepointRecord &result) { 1226 assert(basePtrs.size() == liveVariables.size()); 1227 assert(isStatepoint(CS) && 1228 "This method expects to be rewriting a statepoint"); 1229 1230 BasicBlock *BB = CS.getInstruction()->getParent(); 1231 assert(BB); 1232 Function *F = BB->getParent(); 1233 assert(F && "must be set"); 1234 Module *M = F->getParent(); 1235 (void)M; 1236 assert(M && "must be set"); 1237 1238 // We're not changing the function signature of the statepoint since the gc 1239 // arguments go into the var args section. 1240 Function *gc_statepoint_decl = CS.getCalledFunction(); 1241 1242 // Then go ahead and use the builder do actually do the inserts. We insert 1243 // immediately before the previous instruction under the assumption that all 1244 // arguments will be available here. We can't insert afterwards since we may 1245 // be replacing a terminator. 1246 Instruction *insertBefore = CS.getInstruction(); 1247 IRBuilder<> Builder(insertBefore); 1248 // Copy all of the arguments from the original statepoint - this includes the 1249 // target, call args, and deopt args 1250 SmallVector<llvm::Value *, 64> args; 1251 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1252 // TODO: Clear the 'needs rewrite' flag 1253 1254 // add all the pointers to be relocated (gc arguments) 1255 // Capture the start of the live variable list for use in the gc_relocates 1256 const int live_start = args.size(); 1257 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1258 1259 // Create the statepoint given all the arguments 1260 Instruction *token = nullptr; 1261 AttributeSet return_attributes; 1262 if (CS.isCall()) { 1263 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1264 CallInst *call = 1265 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1266 call->setTailCall(toReplace->isTailCall()); 1267 call->setCallingConv(toReplace->getCallingConv()); 1268 1269 // Currently we will fail on parameter attributes and on certain 1270 // function attributes. 1271 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1272 // In case if we can handle this set of sttributes - set up function attrs 1273 // directly on statepoint and return attrs later for gc_result intrinsic. 1274 call->setAttributes(new_attrs.getFnAttributes()); 1275 return_attributes = new_attrs.getRetAttributes(); 1276 1277 token = call; 1278 1279 // Put the following gc_result and gc_relocate calls immediately after the 1280 // the old call (which we're about to delete) 1281 BasicBlock::iterator next(toReplace); 1282 assert(BB->end() != next && "not a terminator, must have next"); 1283 next++; 1284 Instruction *IP = &*(next); 1285 Builder.SetInsertPoint(IP); 1286 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1287 1288 } else { 1289 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1290 1291 // Insert the new invoke into the old block. We'll remove the old one in a 1292 // moment at which point this will become the new terminator for the 1293 // original block. 1294 InvokeInst *invoke = InvokeInst::Create( 1295 gc_statepoint_decl, toReplace->getNormalDest(), 1296 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1297 invoke->setCallingConv(toReplace->getCallingConv()); 1298 1299 // Currently we will fail on parameter attributes and on certain 1300 // function attributes. 1301 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1302 // In case if we can handle this set of sttributes - set up function attrs 1303 // directly on statepoint and return attrs later for gc_result intrinsic. 1304 invoke->setAttributes(new_attrs.getFnAttributes()); 1305 return_attributes = new_attrs.getRetAttributes(); 1306 1307 token = invoke; 1308 1309 // Generate gc relocates in exceptional path 1310 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1311 toReplace->getUnwindDest(), invoke->getParent(), P); 1312 1313 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1314 Builder.SetInsertPoint(IP); 1315 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1316 1317 // Extract second element from landingpad return value. We will attach 1318 // exceptional gc relocates to it. 1319 const unsigned idx = 1; 1320 Instruction *exceptional_token = 1321 cast<Instruction>(Builder.CreateExtractValue( 1322 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1323 result.UnwindToken = exceptional_token; 1324 1325 // Just throw away return value. We will use the one we got for normal 1326 // block. 1327 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1328 exceptional_token, Builder); 1329 1330 // Generate gc relocates and returns for normal block 1331 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1332 toReplace->getNormalDest(), invoke->getParent(), P); 1333 1334 IP = &*(normalDest->getFirstInsertionPt()); 1335 Builder.SetInsertPoint(IP); 1336 1337 // gc relocates will be generated later as if it were regular call 1338 // statepoint 1339 } 1340 assert(token); 1341 1342 // Take the name of the original value call if it had one. 1343 token->takeName(CS.getInstruction()); 1344 1345 // The GCResult is already inserted, we just need to find it 1346 #ifndef NDEBUG 1347 Instruction *toReplace = CS.getInstruction(); 1348 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1349 "only valid use before rewrite is gc.result"); 1350 assert(!toReplace->hasOneUse() || 1351 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1352 #endif 1353 1354 // Update the gc.result of the original statepoint (if any) to use the newly 1355 // inserted statepoint. This is safe to do here since the token can't be 1356 // considered a live reference. 1357 CS.getInstruction()->replaceAllUsesWith(token); 1358 1359 result.StatepointToken = token; 1360 1361 // Second, create a gc.relocate for every live variable 1362 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1363 1364 } 1365 1366 namespace { 1367 struct name_ordering { 1368 Value *base; 1369 Value *derived; 1370 bool operator()(name_ordering const &a, name_ordering const &b) { 1371 return -1 == a.derived->getName().compare(b.derived->getName()); 1372 } 1373 }; 1374 } 1375 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1376 SmallVectorImpl<Value *> &livevec) { 1377 assert(basevec.size() == livevec.size()); 1378 1379 SmallVector<name_ordering, 64> temp; 1380 for (size_t i = 0; i < basevec.size(); i++) { 1381 name_ordering v; 1382 v.base = basevec[i]; 1383 v.derived = livevec[i]; 1384 temp.push_back(v); 1385 } 1386 std::sort(temp.begin(), temp.end(), name_ordering()); 1387 for (size_t i = 0; i < basevec.size(); i++) { 1388 basevec[i] = temp[i].base; 1389 livevec[i] = temp[i].derived; 1390 } 1391 } 1392 1393 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1394 // which make the relocations happening at this safepoint explicit. 1395 // 1396 // WARNING: Does not do any fixup to adjust users of the original live 1397 // values. That's the callers responsibility. 1398 static void 1399 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1400 PartiallyConstructedSafepointRecord &result) { 1401 auto liveset = result.liveset; 1402 auto PointerToBase = result.PointerToBase; 1403 1404 // Convert to vector for efficient cross referencing. 1405 SmallVector<Value *, 64> basevec, livevec; 1406 livevec.reserve(liveset.size()); 1407 basevec.reserve(liveset.size()); 1408 for (Value *L : liveset) { 1409 livevec.push_back(L); 1410 1411 assert(PointerToBase.find(L) != PointerToBase.end()); 1412 Value *base = PointerToBase[L]; 1413 basevec.push_back(base); 1414 } 1415 assert(livevec.size() == basevec.size()); 1416 1417 // To make the output IR slightly more stable (for use in diffs), ensure a 1418 // fixed order of the values in the safepoint (by sorting the value name). 1419 // The order is otherwise meaningless. 1420 stablize_order(basevec, livevec); 1421 1422 // Do the actual rewriting and delete the old statepoint 1423 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1424 CS.getInstruction()->eraseFromParent(); 1425 } 1426 1427 // Helper function for the relocationViaAlloca. 1428 // It receives iterator to the statepoint gc relocates and emits store to the 1429 // assigned 1430 // location (via allocaMap) for the each one of them. 1431 // Add visited values into the visitedLiveValues set we will later use them 1432 // for sanity check. 1433 static void 1434 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1435 DenseMap<Value *, Value *> &allocaMap, 1436 DenseSet<Value *> &visitedLiveValues) { 1437 1438 for (User *U : gcRelocs) { 1439 if (!isa<IntrinsicInst>(U)) 1440 continue; 1441 1442 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1443 1444 // We only care about relocates 1445 if (relocatedValue->getIntrinsicID() != 1446 Intrinsic::experimental_gc_relocate) { 1447 continue; 1448 } 1449 1450 GCRelocateOperands relocateOperands(relocatedValue); 1451 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1452 assert(allocaMap.count(originalValue)); 1453 Value *alloca = allocaMap[originalValue]; 1454 1455 // Emit store into the related alloca 1456 StoreInst *store = new StoreInst(relocatedValue, alloca); 1457 store->insertAfter(relocatedValue); 1458 1459 #ifndef NDEBUG 1460 visitedLiveValues.insert(originalValue); 1461 #endif 1462 } 1463 } 1464 1465 /// do all the relocation update via allocas and mem2reg 1466 static void relocationViaAlloca( 1467 Function &F, DominatorTree &DT, ArrayRef<Value *> live, 1468 ArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1469 #ifndef NDEBUG 1470 // record initial number of (static) allocas; we'll check we have the same 1471 // number when we get done. 1472 int InitialAllocaNum = 0; 1473 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); 1474 I != E; I++) 1475 if (isa<AllocaInst>(*I)) 1476 InitialAllocaNum++; 1477 #endif 1478 1479 // TODO-PERF: change data structures, reserve 1480 DenseMap<Value *, Value *> allocaMap; 1481 SmallVector<AllocaInst *, 200> PromotableAllocas; 1482 PromotableAllocas.reserve(live.size()); 1483 1484 // emit alloca for each live gc pointer 1485 for (unsigned i = 0; i < live.size(); i++) { 1486 Value *liveValue = live[i]; 1487 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1488 F.getEntryBlock().getFirstNonPHI()); 1489 allocaMap[liveValue] = alloca; 1490 PromotableAllocas.push_back(alloca); 1491 } 1492 1493 // The next two loops are part of the same conceptual operation. We need to 1494 // insert a store to the alloca after the original def and at each 1495 // redefinition. We need to insert a load before each use. These are split 1496 // into distinct loops for performance reasons. 1497 1498 // update gc pointer after each statepoint 1499 // either store a relocated value or null (if no relocated value found for 1500 // this gc pointer and it is not a gc_result) 1501 // this must happen before we update the statepoint with load of alloca 1502 // otherwise we lose the link between statepoint and old def 1503 for (size_t i = 0; i < records.size(); i++) { 1504 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1505 Value *Statepoint = info.StatepointToken; 1506 1507 // This will be used for consistency check 1508 DenseSet<Value *> visitedLiveValues; 1509 1510 // Insert stores for normal statepoint gc relocates 1511 insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); 1512 1513 // In case if it was invoke statepoint 1514 // we will insert stores for exceptional path gc relocates. 1515 if (isa<InvokeInst>(Statepoint)) { 1516 insertRelocationStores(info.UnwindToken->users(), 1517 allocaMap, visitedLiveValues); 1518 } 1519 1520 #ifndef NDEBUG 1521 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1522 // the gc.statepoint. This will turn some subtle GC problems into slightly 1523 // easier to debug SEGVs 1524 SmallVector<AllocaInst *, 64> ToClobber; 1525 for (auto Pair : allocaMap) { 1526 Value *Def = Pair.first; 1527 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1528 1529 // This value was relocated 1530 if (visitedLiveValues.count(Def)) { 1531 continue; 1532 } 1533 ToClobber.push_back(Alloca); 1534 } 1535 1536 auto InsertClobbersAt = [&](Instruction *IP) { 1537 for (auto *AI : ToClobber) { 1538 auto AIType = cast<PointerType>(AI->getType()); 1539 auto PT = cast<PointerType>(AIType->getElementType()); 1540 Constant *CPN = ConstantPointerNull::get(PT); 1541 StoreInst *store = new StoreInst(CPN, AI); 1542 store->insertBefore(IP); 1543 } 1544 }; 1545 1546 // Insert the clobbering stores. These may get intermixed with the 1547 // gc.results and gc.relocates, but that's fine. 1548 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1549 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1550 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1551 } else { 1552 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1553 Next++; 1554 InsertClobbersAt(Next); 1555 } 1556 #endif 1557 } 1558 // update use with load allocas and add store for gc_relocated 1559 for (auto Pair : allocaMap) { 1560 Value *def = Pair.first; 1561 Value *alloca = Pair.second; 1562 1563 // we pre-record the uses of allocas so that we dont have to worry about 1564 // later update 1565 // that change the user information. 1566 SmallVector<Instruction *, 20> uses; 1567 // PERF: trade a linear scan for repeated reallocation 1568 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1569 for (User *U : def->users()) { 1570 if (!isa<ConstantExpr>(U)) { 1571 // If the def has a ConstantExpr use, then the def is either a 1572 // ConstantExpr use itself or null. In either case 1573 // (recursively in the first, directly in the second), the oop 1574 // it is ultimately dependent on is null and this particular 1575 // use does not need to be fixed up. 1576 uses.push_back(cast<Instruction>(U)); 1577 } 1578 } 1579 1580 std::sort(uses.begin(), uses.end()); 1581 auto last = std::unique(uses.begin(), uses.end()); 1582 uses.erase(last, uses.end()); 1583 1584 for (Instruction *use : uses) { 1585 if (isa<PHINode>(use)) { 1586 PHINode *phi = cast<PHINode>(use); 1587 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1588 if (def == phi->getIncomingValue(i)) { 1589 LoadInst *load = new LoadInst( 1590 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1591 phi->setIncomingValue(i, load); 1592 } 1593 } 1594 } else { 1595 LoadInst *load = new LoadInst(alloca, "", use); 1596 use->replaceUsesOfWith(def, load); 1597 } 1598 } 1599 1600 // emit store for the initial gc value 1601 // store must be inserted after load, otherwise store will be in alloca's 1602 // use list and an extra load will be inserted before it 1603 StoreInst *store = new StoreInst(def, alloca); 1604 if (Instruction *inst = dyn_cast<Instruction>(def)) { 1605 if (InvokeInst *invoke = dyn_cast<InvokeInst>(inst)) { 1606 // InvokeInst is a TerminatorInst so the store need to be inserted 1607 // into its normal destination block. 1608 BasicBlock *normalDest = invoke->getNormalDest(); 1609 store->insertBefore(normalDest->getFirstNonPHI()); 1610 } else { 1611 assert(!inst->isTerminator() && 1612 "The only TerminatorInst that can produce a value is " 1613 "InvokeInst which is handled above."); 1614 store->insertAfter(inst); 1615 } 1616 } else { 1617 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1618 isa<ConstantPointerNull>(def)) && 1619 "Must be argument or global"); 1620 store->insertAfter(cast<Instruction>(alloca)); 1621 } 1622 } 1623 1624 assert(PromotableAllocas.size() == live.size() && 1625 "we must have the same allocas with lives"); 1626 if (!PromotableAllocas.empty()) { 1627 // apply mem2reg to promote alloca to SSA 1628 PromoteMemToReg(PromotableAllocas, DT); 1629 } 1630 1631 #ifndef NDEBUG 1632 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); 1633 I != E; I++) 1634 if (isa<AllocaInst>(*I)) 1635 InitialAllocaNum--; 1636 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1637 #endif 1638 } 1639 1640 /// Implement a unique function which doesn't require we sort the input 1641 /// vector. Doing so has the effect of changing the output of a couple of 1642 /// tests in ways which make them less useful in testing fused safepoints. 1643 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1644 DenseSet<T> Seen; 1645 SmallVector<T, 128> TempVec; 1646 TempVec.reserve(Vec.size()); 1647 for (auto Element : Vec) 1648 TempVec.push_back(Element); 1649 Vec.clear(); 1650 for (auto V : TempVec) { 1651 if (Seen.insert(V).second) { 1652 Vec.push_back(V); 1653 } 1654 } 1655 } 1656 1657 static Function *getUseHolder(Module &M) { 1658 FunctionType *ftype = 1659 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1660 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1661 return Func; 1662 } 1663 1664 /// Insert holders so that each Value is obviously live through the entire 1665 /// liftetime of the call. 1666 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1667 SmallVectorImpl<CallInst *> &holders) { 1668 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1669 Function *Func = getUseHolder(*M); 1670 if (CS.isCall()) { 1671 // For call safepoints insert dummy calls right after safepoint 1672 BasicBlock::iterator next(CS.getInstruction()); 1673 next++; 1674 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1675 holders.push_back(base_holder); 1676 } else if (CS.isInvoke()) { 1677 // For invoke safepooints insert dummy calls both in normal and 1678 // exceptional destination blocks 1679 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1680 CallInst *normal_holder = CallInst::Create( 1681 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1682 CallInst *unwind_holder = CallInst::Create( 1683 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1684 holders.push_back(normal_holder); 1685 holders.push_back(unwind_holder); 1686 } else 1687 llvm_unreachable("unsupported call type"); 1688 } 1689 1690 static void findLiveReferences( 1691 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1692 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1693 for (size_t i = 0; i < records.size(); i++) { 1694 struct PartiallyConstructedSafepointRecord &info = records[i]; 1695 const CallSite &CS = toUpdate[i]; 1696 analyzeParsePointLiveness(DT, CS, info); 1697 } 1698 } 1699 1700 static void addBasesAsLiveValues(StatepointLiveSetTy &liveset, 1701 DenseMap<Value *, Value *> &PointerToBase) { 1702 // Identify any base pointers which are used in this safepoint, but not 1703 // themselves relocated. We need to relocate them so that later inserted 1704 // safepoints can get the properly relocated base register. 1705 DenseSet<Value *> missing; 1706 for (Value *L : liveset) { 1707 assert(PointerToBase.find(L) != PointerToBase.end()); 1708 Value *base = PointerToBase[L]; 1709 assert(base); 1710 if (liveset.find(base) == liveset.end()) { 1711 assert(PointerToBase.find(base) == PointerToBase.end()); 1712 // uniqued by set insert 1713 missing.insert(base); 1714 } 1715 } 1716 1717 // Note that we want these at the end of the list, otherwise 1718 // register placement gets screwed up once we lower to STATEPOINT 1719 // instructions. This is an utter hack, but there doesn't seem to be a 1720 // better one. 1721 for (Value *base : missing) { 1722 assert(base); 1723 liveset.insert(base); 1724 PointerToBase[base] = base; 1725 } 1726 assert(liveset.size() == PointerToBase.size()); 1727 } 1728 1729 /// Remove any vector of pointers from the liveset by scalarizing them over the 1730 /// statepoint instruction. Adds the scalarized pieces to the liveset. It 1731 /// would be preferrable to include the vector in the statepoint itself, but 1732 /// the lowering code currently does not handle that. Extending it would be 1733 /// slightly non-trivial since it requires a format change. Given how rare 1734 /// such cases are (for the moment?) scalarizing is an acceptable comprimise. 1735 static void splitVectorValues(Instruction *StatepointInst, 1736 StatepointLiveSetTy& LiveSet, DominatorTree &DT) { 1737 SmallVector<Value *, 16> ToSplit; 1738 for (Value *V : LiveSet) 1739 if (isa<VectorType>(V->getType())) 1740 ToSplit.push_back(V); 1741 1742 if (ToSplit.empty()) 1743 return; 1744 1745 Function &F = *(StatepointInst->getParent()->getParent()); 1746 1747 DenseMap<Value*, AllocaInst*> AllocaMap; 1748 // First is normal return, second is exceptional return (invoke only) 1749 DenseMap<Value*, std::pair<Value*,Value*>> Replacements; 1750 for (Value *V : ToSplit) { 1751 LiveSet.erase(V); 1752 1753 AllocaInst *Alloca = new AllocaInst(V->getType(), "", 1754 F.getEntryBlock().getFirstNonPHI()); 1755 AllocaMap[V] = Alloca; 1756 1757 VectorType *VT = cast<VectorType>(V->getType()); 1758 IRBuilder<> Builder(StatepointInst); 1759 SmallVector<Value*, 16> Elements; 1760 for (unsigned i = 0; i < VT->getNumElements(); i++) 1761 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1762 LiveSet.insert(Elements.begin(), Elements.end()); 1763 1764 auto InsertVectorReform = [&](Instruction *IP) { 1765 Builder.SetInsertPoint(IP); 1766 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1767 Value *ResultVec = UndefValue::get(VT); 1768 for (unsigned i = 0; i < VT->getNumElements(); i++) 1769 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1770 Builder.getInt32(i)); 1771 return ResultVec; 1772 }; 1773 1774 if (isa<CallInst>(StatepointInst)) { 1775 BasicBlock::iterator Next(StatepointInst); 1776 Next++; 1777 Instruction *IP = &*(Next); 1778 Replacements[V].first = InsertVectorReform(IP); 1779 Replacements[V].second = nullptr; 1780 } else { 1781 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1782 // We've already normalized - check that we don't have shared destination 1783 // blocks 1784 BasicBlock *NormalDest = Invoke->getNormalDest(); 1785 assert(!isa<PHINode>(NormalDest->begin())); 1786 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1787 assert(!isa<PHINode>(UnwindDest->begin())); 1788 // Insert insert element sequences in both successors 1789 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1790 Replacements[V].first = InsertVectorReform(IP); 1791 IP = &*(UnwindDest->getFirstInsertionPt()); 1792 Replacements[V].second = InsertVectorReform(IP); 1793 } 1794 } 1795 for (Value *V : ToSplit) { 1796 AllocaInst *Alloca = AllocaMap[V]; 1797 1798 // Capture all users before we start mutating use lists 1799 SmallVector<Instruction*, 16> Users; 1800 for (User *U : V->users()) 1801 Users.push_back(cast<Instruction>(U)); 1802 1803 for (Instruction *I : Users) { 1804 if (auto Phi = dyn_cast<PHINode>(I)) { 1805 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1806 if (V == Phi->getIncomingValue(i)) { 1807 LoadInst *Load = new LoadInst(Alloca, "", 1808 Phi->getIncomingBlock(i)->getTerminator()); 1809 Phi->setIncomingValue(i, Load); 1810 } 1811 } else { 1812 LoadInst *Load = new LoadInst(Alloca, "", I); 1813 I->replaceUsesOfWith(V, Load); 1814 } 1815 } 1816 1817 // Store the original value and the replacement value into the alloca 1818 StoreInst *Store = new StoreInst(V, Alloca); 1819 if (auto I = dyn_cast<Instruction>(V)) 1820 Store->insertAfter(I); 1821 else 1822 Store->insertAfter(Alloca); 1823 1824 // Normal return for invoke, or call return 1825 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1826 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1827 // Unwind return for invoke only 1828 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1829 if (Replacement) 1830 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1831 } 1832 1833 // apply mem2reg to promote alloca to SSA 1834 SmallVector<AllocaInst*, 16> Allocas; 1835 for (Value *V : ToSplit) 1836 Allocas.push_back(AllocaMap[V]); 1837 PromoteMemToReg(Allocas, DT); 1838 } 1839 1840 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1841 SmallVectorImpl<CallSite> &toUpdate) { 1842 #ifndef NDEBUG 1843 // sanity check the input 1844 std::set<CallSite> uniqued; 1845 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1846 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1847 1848 for (size_t i = 0; i < toUpdate.size(); i++) { 1849 CallSite &CS = toUpdate[i]; 1850 assert(CS.getInstruction()->getParent()->getParent() == &F); 1851 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1852 } 1853 #endif 1854 1855 // A list of dummy calls added to the IR to keep various values obviously 1856 // live in the IR. We'll remove all of these when done. 1857 SmallVector<CallInst *, 64> holders; 1858 1859 // Insert a dummy call with all of the arguments to the vm_state we'll need 1860 // for the actual safepoint insertion. This ensures reference arguments in 1861 // the deopt argument list are considered live through the safepoint (and 1862 // thus makes sure they get relocated.) 1863 for (size_t i = 0; i < toUpdate.size(); i++) { 1864 CallSite &CS = toUpdate[i]; 1865 Statepoint StatepointCS(CS); 1866 1867 SmallVector<Value *, 64> DeoptValues; 1868 for (Use &U : StatepointCS.vm_state_args()) { 1869 Value *Arg = cast<Value>(&U); 1870 assert(!isUnhandledGCPointerType(Arg->getType()) && 1871 "support for FCA unimplemented"); 1872 if (isHandledGCPointerType(Arg->getType())) 1873 DeoptValues.push_back(Arg); 1874 } 1875 insertUseHolderAfter(CS, DeoptValues, holders); 1876 } 1877 1878 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 1879 records.reserve(toUpdate.size()); 1880 for (size_t i = 0; i < toUpdate.size(); i++) { 1881 struct PartiallyConstructedSafepointRecord info; 1882 records.push_back(info); 1883 } 1884 assert(records.size() == toUpdate.size()); 1885 1886 // A) Identify all gc pointers which are staticly live at the given call 1887 // site. 1888 findLiveReferences(F, DT, P, toUpdate, records); 1889 1890 // Do a limited scalarization of any live at safepoint vector values which 1891 // contain pointers. This enables this pass to run after vectorization at 1892 // the cost of some possible performance loss. TODO: it would be nice to 1893 // natively support vectors all the way through the backend so we don't need 1894 // to scalarize here. 1895 for (size_t i = 0; i < records.size(); i++) { 1896 struct PartiallyConstructedSafepointRecord &info = records[i]; 1897 Instruction *statepoint = toUpdate[i].getInstruction(); 1898 splitVectorValues(cast<Instruction>(statepoint), info.liveset, DT); 1899 } 1900 1901 // B) Find the base pointers for each live pointer 1902 /* scope for caching */ { 1903 // Cache the 'defining value' relation used in the computation and 1904 // insertion of base phis and selects. This ensures that we don't insert 1905 // large numbers of duplicate base_phis. 1906 DefiningValueMapTy DVCache; 1907 1908 for (size_t i = 0; i < records.size(); i++) { 1909 struct PartiallyConstructedSafepointRecord &info = records[i]; 1910 CallSite &CS = toUpdate[i]; 1911 findBasePointers(DT, DVCache, CS, info); 1912 } 1913 } // end of cache scope 1914 1915 // The base phi insertion logic (for any safepoint) may have inserted new 1916 // instructions which are now live at some safepoint. The simplest such 1917 // example is: 1918 // loop: 1919 // phi a <-- will be a new base_phi here 1920 // safepoint 1 <-- that needs to be live here 1921 // gep a + 1 1922 // safepoint 2 1923 // br loop 1924 DenseSet<llvm::Value *> allInsertedDefs; 1925 for (size_t i = 0; i < records.size(); i++) { 1926 struct PartiallyConstructedSafepointRecord &info = records[i]; 1927 allInsertedDefs.insert(info.NewInsertedDefs.begin(), 1928 info.NewInsertedDefs.end()); 1929 } 1930 1931 // We insert some dummy calls after each safepoint to definitely hold live 1932 // the base pointers which were identified for that safepoint. We'll then 1933 // ask liveness for _every_ base inserted to see what is now live. Then we 1934 // remove the dummy calls. 1935 holders.reserve(holders.size() + records.size()); 1936 for (size_t i = 0; i < records.size(); i++) { 1937 struct PartiallyConstructedSafepointRecord &info = records[i]; 1938 CallSite &CS = toUpdate[i]; 1939 1940 SmallVector<Value *, 128> Bases; 1941 for (auto Pair : info.PointerToBase) { 1942 Bases.push_back(Pair.second); 1943 } 1944 insertUseHolderAfter(CS, Bases, holders); 1945 } 1946 1947 // Add the bases explicitly to the live vector set. This may result in a few 1948 // extra relocations, but the base has to be available whenever a pointer 1949 // derived from it is used. Thus, we need it to be part of the statepoint's 1950 // gc arguments list. TODO: Introduce an explicit notion (in the following 1951 // code) of the GC argument list as seperate from the live Values at a 1952 // given statepoint. 1953 for (size_t i = 0; i < records.size(); i++) { 1954 struct PartiallyConstructedSafepointRecord &info = records[i]; 1955 addBasesAsLiveValues(info.liveset, info.PointerToBase); 1956 } 1957 1958 // If we inserted any new values, we need to adjust our notion of what is 1959 // live at a particular safepoint. 1960 if (!allInsertedDefs.empty()) { 1961 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1962 } 1963 if (PrintBasePointers) { 1964 for (size_t i = 0; i < records.size(); i++) { 1965 struct PartiallyConstructedSafepointRecord &info = records[i]; 1966 errs() << "Base Pairs: (w/Relocation)\n"; 1967 for (auto Pair : info.PointerToBase) { 1968 errs() << " derived %" << Pair.first->getName() << " base %" 1969 << Pair.second->getName() << "\n"; 1970 } 1971 } 1972 } 1973 for (size_t i = 0; i < holders.size(); i++) { 1974 holders[i]->eraseFromParent(); 1975 holders[i] = nullptr; 1976 } 1977 holders.clear(); 1978 1979 // Now run through and replace the existing statepoints with new ones with 1980 // the live variables listed. We do not yet update uses of the values being 1981 // relocated. We have references to live variables that need to 1982 // survive to the last iteration of this loop. (By construction, the 1983 // previous statepoint can not be a live variable, thus we can and remove 1984 // the old statepoint calls as we go.) 1985 for (size_t i = 0; i < records.size(); i++) { 1986 struct PartiallyConstructedSafepointRecord &info = records[i]; 1987 CallSite &CS = toUpdate[i]; 1988 makeStatepointExplicit(DT, CS, P, info); 1989 } 1990 toUpdate.clear(); // prevent accident use of invalid CallSites 1991 1992 // In case if we inserted relocates in a different basic block than the 1993 // original safepoint (this can happen for invokes). We need to be sure that 1994 // original values were not used in any of the phi nodes at the 1995 // beginning of basic block containing them. Because we know that all such 1996 // blocks will have single predecessor we can safely assume that all phi 1997 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1998 // Just remove them all here. 1999 for (size_t i = 0; i < records.size(); i++) { 2000 Instruction *I = records[i].StatepointToken; 2001 2002 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 2003 FoldSingleEntryPHINodes(invoke->getNormalDest()); 2004 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 2005 2006 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 2007 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 2008 } 2009 } 2010 2011 // Do all the fixups of the original live variables to their relocated selves 2012 SmallVector<Value *, 128> live; 2013 for (size_t i = 0; i < records.size(); i++) { 2014 struct PartiallyConstructedSafepointRecord &info = records[i]; 2015 // We can't simply save the live set from the original insertion. One of 2016 // the live values might be the result of a call which needs a safepoint. 2017 // That Value* no longer exists and we need to use the new gc_result. 2018 // Thankfully, the liveset is embedded in the statepoint (and updated), so 2019 // we just grab that. 2020 Statepoint statepoint(info.StatepointToken); 2021 live.insert(live.end(), statepoint.gc_args_begin(), 2022 statepoint.gc_args_end()); 2023 } 2024 unique_unsorted(live); 2025 2026 #ifndef NDEBUG 2027 // sanity check 2028 for (auto ptr : live) { 2029 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 2030 } 2031 #endif 2032 2033 relocationViaAlloca(F, DT, live, records); 2034 return !records.empty(); 2035 } 2036 2037 /// Returns true if this function should be rewritten by this pass. The main 2038 /// point of this function is as an extension point for custom logic. 2039 static bool shouldRewriteStatepointsIn(Function &F) { 2040 // TODO: This should check the GCStrategy 2041 if (F.hasGC()) { 2042 const std::string StatepointExampleName("statepoint-example"); 2043 return StatepointExampleName == F.getGC(); 2044 } else 2045 return false; 2046 } 2047 2048 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2049 // Nothing to do for declarations. 2050 if (F.isDeclaration() || F.empty()) 2051 return false; 2052 2053 // Policy choice says not to rewrite - the most common reason is that we're 2054 // compiling code without a GCStrategy. 2055 if (!shouldRewriteStatepointsIn(F)) 2056 return false; 2057 2058 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2059 2060 // Gather all the statepoints which need rewritten. Be careful to only 2061 // consider those in reachable code since we need to ask dominance queries 2062 // when rewriting. We'll delete the unreachable ones in a moment. 2063 SmallVector<CallSite, 64> ParsePointNeeded; 2064 bool HasUnreachableStatepoint = false; 2065 for (Instruction &I : inst_range(F)) { 2066 // TODO: only the ones with the flag set! 2067 if (isStatepoint(I)) { 2068 if (DT.isReachableFromEntry(I.getParent())) 2069 ParsePointNeeded.push_back(CallSite(&I)); 2070 else 2071 HasUnreachableStatepoint = true; 2072 } 2073 } 2074 2075 bool MadeChange = false; 2076 2077 // Delete any unreachable statepoints so that we don't have unrewritten 2078 // statepoints surviving this pass. This makes testing easier and the 2079 // resulting IR less confusing to human readers. Rather than be fancy, we 2080 // just reuse a utility function which removes the unreachable blocks. 2081 if (HasUnreachableStatepoint) 2082 MadeChange |= removeUnreachableBlocks(F); 2083 2084 // Return early if no work to do. 2085 if (ParsePointNeeded.empty()) 2086 return MadeChange; 2087 2088 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2089 // These are created by LCSSA. They have the effect of increasing the size 2090 // of liveness sets for no good reason. It may be harder to do this post 2091 // insertion since relocations and base phis can confuse things. 2092 for (BasicBlock &BB : F) 2093 if (BB.getUniquePredecessor()) { 2094 MadeChange = true; 2095 FoldSingleEntryPHINodes(&BB); 2096 } 2097 2098 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2099 return MadeChange; 2100 } 2101