1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 namespace { 59 struct RewriteStatepointsForGC : public FunctionPass { 60 static char ID; // Pass identification, replacement for typeid 61 62 RewriteStatepointsForGC() : FunctionPass(ID) { 63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 64 } 65 bool runOnFunction(Function &F) override; 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override { 68 // We add and rewrite a bunch of instructions, but don't really do much 69 // else. We could in theory preserve a lot more analyses here. 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 } 72 }; 73 } // namespace 74 75 char RewriteStatepointsForGC::ID = 0; 76 77 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 78 return new RewriteStatepointsForGC(); 79 } 80 81 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 82 "Make relocations explicit at statepoints", false, false) 83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 84 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 85 "Make relocations explicit at statepoints", false, false) 86 87 namespace { 88 // The type of the internal cache used inside the findBasePointers family 89 // of functions. From the callers perspective, this is an opaque type and 90 // should not be inspected. 91 // 92 // In the actual implementation this caches two relations: 93 // - The base relation itself (i.e. this pointer is based on that one) 94 // - The base defining value relation (i.e. before base_phi insertion) 95 // Generally, after the execution of a full findBasePointer call, only the 96 // base relation will remain. Internally, we add a mixture of the two 97 // types, then update all the second type to the first type 98 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 99 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 100 101 struct PartiallyConstructedSafepointRecord { 102 /// The set of values known to be live accross this safepoint 103 StatepointLiveSetTy liveset; 104 105 /// Mapping from live pointers to a base-defining-value 106 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 107 108 /// Any new values which were added to the IR during base pointer analysis 109 /// for this safepoint 110 DenseSet<llvm::Value *> NewInsertedDefs; 111 112 /// The *new* gc.statepoint instruction itself. This produces the token 113 /// that normal path gc.relocates and the gc.result are tied to. 114 Instruction *StatepointToken; 115 116 /// Instruction to which exceptional gc relocates are attached 117 /// Makes it easier to iterate through them during relocationViaAlloca. 118 Instruction *UnwindToken; 119 }; 120 } 121 122 // TODO: Once we can get to the GCStrategy, this becomes 123 // Optional<bool> isGCManagedPointer(const Value *V) const override { 124 125 static bool isGCPointerType(const Type *T) { 126 if (const PointerType *PT = dyn_cast<PointerType>(T)) 127 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 128 // GC managed heap. We know that a pointer into this heap needs to be 129 // updated and that no other pointer does. 130 return (1 == PT->getAddressSpace()); 131 return false; 132 } 133 134 /// Return true if the Value is a gc reference type which is potentially used 135 /// after the instruction 'loc'. This is only used with the edge reachability 136 /// liveness code. Note: It is assumed the V dominates loc. 137 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, 138 LoopInfo *LI) { 139 if (!isGCPointerType(V.getType())) 140 return false; 141 142 if (V.use_empty()) 143 return false; 144 145 // Given assumption that V dominates loc, this may be live 146 return true; 147 } 148 149 #ifndef NDEBUG 150 static bool isAggWhichContainsGCPtrType(Type *Ty) { 151 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 152 return isGCPointerType(VT->getScalarType()); 153 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 154 return isGCPointerType(AT->getElementType()) || 155 isAggWhichContainsGCPtrType(AT->getElementType()); 156 if (StructType *ST = dyn_cast<StructType>(Ty)) 157 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 158 [](Type *SubType) { 159 return isGCPointerType(SubType) || 160 isAggWhichContainsGCPtrType(SubType); 161 }); 162 return false; 163 } 164 #endif 165 166 // Conservatively identifies any definitions which might be live at the 167 // given instruction. The analysis is performed immediately before the 168 // given instruction. Values defined by that instruction are not considered 169 // live. Values used by that instruction are considered live. 170 // 171 // preconditions: valid IR graph, term is either a terminator instruction or 172 // a call instruction, pred is the basic block of term, DT, LI are valid 173 // 174 // side effects: none, does not mutate IR 175 // 176 // postconditions: populates liveValues as discussed above 177 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 178 DominatorTree &DT, LoopInfo *LI, 179 StatepointLiveSetTy &liveValues) { 180 liveValues.clear(); 181 182 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 183 184 Function *F = pred->getParent(); 185 186 auto is_live_gc_reference = 187 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 188 189 // Are there any gc pointer arguments live over this point? This needs to be 190 // special cased since arguments aren't defined in basic blocks. 191 for (Argument &arg : F->args()) { 192 assert(!isAggWhichContainsGCPtrType(arg.getType()) && 193 "support for FCA unimplemented"); 194 195 if (is_live_gc_reference(arg)) { 196 liveValues.insert(&arg); 197 } 198 } 199 200 // Walk through all dominating blocks - the ones which can contain 201 // definitions used in this block - and check to see if any of the values 202 // they define are used in locations potentially reachable from the 203 // interesting instruction. 204 BasicBlock *BBI = pred; 205 while (true) { 206 if (TraceLSP) { 207 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 208 } 209 assert(DT.dominates(BBI, pred)); 210 assert(isPotentiallyReachable(BBI, pred, &DT) && 211 "dominated block must be reachable"); 212 213 // Walk through the instructions in dominating blocks and keep any 214 // that have a use potentially reachable from the block we're 215 // considering putting the safepoint in 216 for (Instruction &inst : *BBI) { 217 if (TraceLSP) { 218 errs() << "[LSP] Looking at instruction "; 219 inst.dump(); 220 } 221 222 if (pred == BBI && (&inst) == term) { 223 if (TraceLSP) { 224 errs() << "[LSP] stopped because we encountered the safepoint " 225 "instruction.\n"; 226 } 227 228 // If we're in the block which defines the interesting instruction, 229 // we don't want to include any values as live which are defined 230 // _after_ the interesting line or as part of the line itself 231 // i.e. "term" is the call instruction for a call safepoint, the 232 // results of the call should not be considered live in that stackmap 233 break; 234 } 235 236 assert(!isAggWhichContainsGCPtrType(inst.getType()) && 237 "support for FCA unimplemented"); 238 239 if (is_live_gc_reference(inst)) { 240 if (TraceLSP) { 241 errs() << "[LSP] found live value for this safepoint "; 242 inst.dump(); 243 term->dump(); 244 } 245 liveValues.insert(&inst); 246 } 247 } 248 if (!DT.getNode(BBI)->getIDom()) { 249 assert(BBI == &F->getEntryBlock() && 250 "failed to find a dominator for something other than " 251 "the entry block"); 252 break; 253 } 254 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 255 } 256 } 257 258 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 259 if (a->hasName() && b->hasName()) { 260 return -1 == a->getName().compare(b->getName()); 261 } else if (a->hasName() && !b->hasName()) { 262 return true; 263 } else if (!a->hasName() && b->hasName()) { 264 return false; 265 } else { 266 // Better than nothing, but not stable 267 return a < b; 268 } 269 } 270 271 /// Find the initial live set. Note that due to base pointer 272 /// insertion, the live set may be incomplete. 273 static void 274 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 275 PartiallyConstructedSafepointRecord &result) { 276 Instruction *inst = CS.getInstruction(); 277 278 BasicBlock *BB = inst->getParent(); 279 StatepointLiveSetTy liveset; 280 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 281 282 if (PrintLiveSet) { 283 // Note: This output is used by several of the test cases 284 // The order of elemtns in a set is not stable, put them in a vec and sort 285 // by name 286 SmallVector<Value *, 64> temp; 287 temp.insert(temp.end(), liveset.begin(), liveset.end()); 288 std::sort(temp.begin(), temp.end(), order_by_name); 289 errs() << "Live Variables:\n"; 290 for (Value *V : temp) { 291 errs() << " " << V->getName(); // no newline 292 V->dump(); 293 } 294 } 295 if (PrintLiveSetSize) { 296 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 297 errs() << "Number live values: " << liveset.size() << "\n"; 298 } 299 result.liveset = liveset; 300 } 301 302 /// True iff this value is the null pointer constant (of any pointer type) 303 static bool LLVM_ATTRIBUTE_UNUSED isNullConstant(Value *V) { 304 return isa<Constant>(V) && isa<PointerType>(V->getType()) && 305 cast<Constant>(V)->isNullValue(); 306 } 307 308 /// Helper function for findBasePointer - Will return a value which either a) 309 /// defines the base pointer for the input or b) blocks the simple search 310 /// (i.e. a PHI or Select of two derived pointers) 311 static Value *findBaseDefiningValue(Value *I) { 312 assert(I->getType()->isPointerTy() && 313 "Illegal to ask for the base pointer of a non-pointer type"); 314 315 // There are instructions which can never return gc pointer values. Sanity 316 // check 317 // that this is actually true. 318 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && 319 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); 320 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) || 321 !cast<Instruction>(I)->isTerminator()) && 322 "With the exception of invoke terminators don't define values"); 323 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) && 324 "Can't be definitions to start with"); 325 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) && 326 "Comparisons don't give ops"); 327 // There's a bunch of instructions which just don't make sense to apply to 328 // a pointer. The only valid reason for this would be pointer bit 329 // twiddling which we're just not going to support. 330 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) && 331 "Binary ops on pointer values are meaningless. Unless your " 332 "bit-twiddling which we don't support"); 333 334 if (Argument *Arg = dyn_cast<Argument>(I)) { 335 // An incoming argument to the function is a base pointer 336 // We should have never reached here if this argument isn't an gc value 337 assert(Arg->getType()->isPointerTy() && 338 "Base for pointer must be another pointer"); 339 return Arg; 340 } 341 342 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) { 343 // base case 344 assert(global->getType()->isPointerTy() && 345 "Base for pointer must be another pointer"); 346 return global; 347 } 348 349 // inlining could possibly introduce phi node that contains 350 // undef if callee has multiple returns 351 if (UndefValue *undef = dyn_cast<UndefValue>(I)) { 352 assert(undef->getType()->isPointerTy() && 353 "Base for pointer must be another pointer"); 354 return undef; // utterly meaningless, but useful for dealing with 355 // partially optimized code. 356 } 357 358 // Due to inheritance, this must be _after_ the global variable and undef 359 // checks 360 if (Constant *con = dyn_cast<Constant>(I)) { 361 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 362 "order of checks wrong!"); 363 // Note: Finding a constant base for something marked for relocation 364 // doesn't really make sense. The most likely case is either a) some 365 // screwed up the address space usage or b) your validating against 366 // compiled C++ code w/o the proper separation. The only real exception 367 // is a null pointer. You could have generic code written to index of 368 // off a potentially null value and have proven it null. We also use 369 // null pointers in dead paths of relocation phis (which we might later 370 // want to find a base pointer for). 371 assert(con->getType()->isPointerTy() && 372 "Base for pointer must be another pointer"); 373 assert(con->isNullValue() && "null is the only case which makes sense"); 374 return con; 375 } 376 377 if (CastInst *CI = dyn_cast<CastInst>(I)) { 378 Value *def = CI->stripPointerCasts(); 379 assert(def->getType()->isPointerTy() && 380 "Base for pointer must be another pointer"); 381 // If we find a cast instruction here, it means we've found a cast which is 382 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 383 // handle int->ptr conversion. 384 assert(!isa<CastInst>(def) && "shouldn't find another cast here"); 385 return findBaseDefiningValue(def); 386 } 387 388 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 389 if (LI->getType()->isPointerTy()) { 390 Value *Op = LI->getOperand(0); 391 (void)Op; 392 // Has to be a pointer to an gc object, or possibly an array of such? 393 assert(Op->getType()->isPointerTy()); 394 return LI; // The value loaded is an gc base itself 395 } 396 } 397 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 398 Value *Op = GEP->getOperand(0); 399 if (Op->getType()->isPointerTy()) { 400 return findBaseDefiningValue(Op); // The base of this GEP is the base 401 } 402 } 403 404 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) { 405 // An alloca represents a conceptual stack slot. It's the slot itself 406 // that the GC needs to know about, not the value in the slot. 407 assert(alloc->getType()->isPointerTy() && 408 "Base for pointer must be another pointer"); 409 return alloc; 410 } 411 412 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 413 switch (II->getIntrinsicID()) { 414 default: 415 // fall through to general call handling 416 break; 417 case Intrinsic::experimental_gc_statepoint: 418 case Intrinsic::experimental_gc_result_float: 419 case Intrinsic::experimental_gc_result_int: 420 llvm_unreachable("these don't produce pointers"); 421 case Intrinsic::experimental_gc_result_ptr: 422 // This is just a special case of the CallInst check below to handle a 423 // statepoint with deopt args which hasn't been rewritten for GC yet. 424 // TODO: Assert that the statepoint isn't rewritten yet. 425 return II; 426 case Intrinsic::experimental_gc_relocate: { 427 // Rerunning safepoint insertion after safepoints are already 428 // inserted is not supported. It could probably be made to work, 429 // but why are you doing this? There's no good reason. 430 llvm_unreachable("repeat safepoint insertion is not supported"); 431 } 432 case Intrinsic::gcroot: 433 // Currently, this mechanism hasn't been extended to work with gcroot. 434 // There's no reason it couldn't be, but I haven't thought about the 435 // implications much. 436 llvm_unreachable( 437 "interaction with the gcroot mechanism is not supported"); 438 } 439 } 440 // We assume that functions in the source language only return base 441 // pointers. This should probably be generalized via attributes to support 442 // both source language and internal functions. 443 if (CallInst *call = dyn_cast<CallInst>(I)) { 444 assert(call->getType()->isPointerTy() && 445 "Base for pointer must be another pointer"); 446 return call; 447 } 448 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 449 assert(invoke->getType()->isPointerTy() && 450 "Base for pointer must be another pointer"); 451 return invoke; 452 } 453 454 // I have absolutely no idea how to implement this part yet. It's not 455 // neccessarily hard, I just haven't really looked at it yet. 456 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 457 458 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) { 459 // A CAS is effectively a atomic store and load combined under a 460 // predicate. From the perspective of base pointers, we just treat it 461 // like a load. We loaded a pointer from a address in memory, that value 462 // had better be a valid base pointer. 463 return cas->getPointerOperand(); 464 } 465 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) { 466 assert(AtomicRMWInst::Xchg == atomic->getOperation() && 467 "All others are binary ops which don't apply to base pointers"); 468 // semantically, a load, store pair. Treat it the same as a standard load 469 return atomic->getPointerOperand(); 470 } 471 472 // The aggregate ops. Aggregates can either be in the heap or on the 473 // stack, but in either case, this is simply a field load. As a result, 474 // this is a defining definition of the base just like a load is. 475 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) { 476 return ev; 477 } 478 479 // We should never see an insert vector since that would require we be 480 // tracing back a struct value not a pointer value. 481 assert(!isa<InsertValueInst>(I) && 482 "Base pointer for a struct is meaningless"); 483 484 // The last two cases here don't return a base pointer. Instead, they 485 // return a value which dynamically selects from amoung several base 486 // derived pointers (each with it's own base potentially). It's the job of 487 // the caller to resolve these. 488 if (SelectInst *select = dyn_cast<SelectInst>(I)) { 489 return select; 490 } 491 492 return cast<PHINode>(I); 493 } 494 495 /// Returns the base defining value for this value. 496 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { 497 Value *&Cached = cache[I]; 498 if (!Cached) { 499 Cached = findBaseDefiningValue(I); 500 } 501 assert(cache[I] != nullptr); 502 503 if (TraceLSP) { 504 errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 505 << "\n"; 506 } 507 return Cached; 508 } 509 510 /// Return a base pointer for this value if known. Otherwise, return it's 511 /// base defining value. 512 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { 513 Value *def = findBaseDefiningValueCached(I, cache); 514 auto Found = cache.find(def); 515 if (Found != cache.end()) { 516 // Either a base-of relation, or a self reference. Caller must check. 517 return Found->second; 518 } 519 // Only a BDV available 520 return def; 521 } 522 523 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 524 /// is it known to be a base pointer? Or do we need to continue searching. 525 static bool isKnownBaseResult(Value *v) { 526 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) { 527 // no recursion possible 528 return true; 529 } 530 if (cast<Instruction>(v)->getMetadata("is_base_value")) { 531 // This is a previously inserted base phi or select. We know 532 // that this is a base value. 533 return true; 534 } 535 536 // We need to keep searching 537 return false; 538 } 539 540 // TODO: find a better name for this 541 namespace { 542 class PhiState { 543 public: 544 enum Status { Unknown, Base, Conflict }; 545 546 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 547 assert(status != Base || b); 548 } 549 PhiState(Value *b) : status(Base), base(b) {} 550 PhiState() : status(Unknown), base(nullptr) {} 551 552 Status getStatus() const { return status; } 553 Value *getBase() const { return base; } 554 555 bool isBase() const { return getStatus() == Base; } 556 bool isUnknown() const { return getStatus() == Unknown; } 557 bool isConflict() const { return getStatus() == Conflict; } 558 559 bool operator==(const PhiState &other) const { 560 return base == other.base && status == other.status; 561 } 562 563 bool operator!=(const PhiState &other) const { return !(*this == other); } 564 565 void dump() { 566 errs() << status << " (" << base << " - " 567 << (base ? base->getName() : "nullptr") << "): "; 568 } 569 570 private: 571 Status status; 572 Value *base; // non null only if status == base 573 }; 574 575 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 576 // Values of type PhiState form a lattice, and this is a helper 577 // class that implementes the meet operation. The meat of the meet 578 // operation is implemented in MeetPhiStates::pureMeet 579 class MeetPhiStates { 580 public: 581 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 582 explicit MeetPhiStates(const ConflictStateMapTy &phiStates) 583 : phiStates(phiStates) {} 584 585 // Destructively meet the current result with the base V. V can 586 // either be a merge instruction (SelectInst / PHINode), in which 587 // case its status is looked up in the phiStates map; or a regular 588 // SSA value, in which case it is assumed to be a base. 589 void meetWith(Value *V) { 590 PhiState otherState = getStateForBDV(V); 591 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 592 MeetPhiStates::pureMeet(currentResult, otherState)) && 593 "math is wrong: meet does not commute!"); 594 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 595 } 596 597 PhiState getResult() const { return currentResult; } 598 599 private: 600 const ConflictStateMapTy &phiStates; 601 PhiState currentResult; 602 603 /// Return a phi state for a base defining value. We'll generate a new 604 /// base state for known bases and expect to find a cached state otherwise 605 PhiState getStateForBDV(Value *baseValue) { 606 if (isKnownBaseResult(baseValue)) { 607 return PhiState(baseValue); 608 } else { 609 return lookupFromMap(baseValue); 610 } 611 } 612 613 PhiState lookupFromMap(Value *V) { 614 auto I = phiStates.find(V); 615 assert(I != phiStates.end() && "lookup failed!"); 616 return I->second; 617 } 618 619 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 620 switch (stateA.getStatus()) { 621 case PhiState::Unknown: 622 return stateB; 623 624 case PhiState::Base: 625 assert(stateA.getBase() && "can't be null"); 626 if (stateB.isUnknown()) 627 return stateA; 628 629 if (stateB.isBase()) { 630 if (stateA.getBase() == stateB.getBase()) { 631 assert(stateA == stateB && "equality broken!"); 632 return stateA; 633 } 634 return PhiState(PhiState::Conflict); 635 } 636 assert(stateB.isConflict() && "only three states!"); 637 return PhiState(PhiState::Conflict); 638 639 case PhiState::Conflict: 640 return stateA; 641 } 642 llvm_unreachable("only three states!"); 643 } 644 }; 645 } 646 /// For a given value or instruction, figure out what base ptr it's derived 647 /// from. For gc objects, this is simply itself. On success, returns a value 648 /// which is the base pointer. (This is reliable and can be used for 649 /// relocation.) On failure, returns nullptr. 650 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 651 DenseSet<llvm::Value *> &NewInsertedDefs) { 652 Value *def = findBaseOrBDV(I, cache); 653 654 if (isKnownBaseResult(def)) { 655 return def; 656 } 657 658 // Here's the rough algorithm: 659 // - For every SSA value, construct a mapping to either an actual base 660 // pointer or a PHI which obscures the base pointer. 661 // - Construct a mapping from PHI to unknown TOP state. Use an 662 // optimistic algorithm to propagate base pointer information. Lattice 663 // looks like: 664 // UNKNOWN 665 // b1 b2 b3 b4 666 // CONFLICT 667 // When algorithm terminates, all PHIs will either have a single concrete 668 // base or be in a conflict state. 669 // - For every conflict, insert a dummy PHI node without arguments. Add 670 // these to the base[Instruction] = BasePtr mapping. For every 671 // non-conflict, add the actual base. 672 // - For every conflict, add arguments for the base[a] of each input 673 // arguments. 674 // 675 // Note: A simpler form of this would be to add the conflict form of all 676 // PHIs without running the optimistic algorithm. This would be 677 // analougous to pessimistic data flow and would likely lead to an 678 // overall worse solution. 679 680 ConflictStateMapTy states; 681 states[def] = PhiState(); 682 // Recursively fill in all phis & selects reachable from the initial one 683 // for which we don't already know a definite base value for 684 // TODO: This should be rewritten with a worklist 685 bool done = false; 686 while (!done) { 687 done = true; 688 // Since we're adding elements to 'states' as we run, we can't keep 689 // iterators into the set. 690 SmallVector<Value*, 16> Keys; 691 Keys.reserve(states.size()); 692 for (auto Pair : states) { 693 Value *V = Pair.first; 694 Keys.push_back(V); 695 } 696 for (Value *v : Keys) { 697 assert(!isKnownBaseResult(v) && "why did it get added?"); 698 if (PHINode *phi = dyn_cast<PHINode>(v)) { 699 assert(phi->getNumIncomingValues() > 0 && 700 "zero input phis are illegal"); 701 for (Value *InVal : phi->incoming_values()) { 702 Value *local = findBaseOrBDV(InVal, cache); 703 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 704 states[local] = PhiState(); 705 done = false; 706 } 707 } 708 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 709 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 710 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 711 states[local] = PhiState(); 712 done = false; 713 } 714 local = findBaseOrBDV(sel->getFalseValue(), cache); 715 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 716 states[local] = PhiState(); 717 done = false; 718 } 719 } 720 } 721 } 722 723 if (TraceLSP) { 724 errs() << "States after initialization:\n"; 725 for (auto Pair : states) { 726 Instruction *v = cast<Instruction>(Pair.first); 727 PhiState state = Pair.second; 728 state.dump(); 729 v->dump(); 730 } 731 } 732 733 // TODO: come back and revisit the state transitions around inputs which 734 // have reached conflict state. The current version seems too conservative. 735 736 bool progress = true; 737 while (progress) { 738 #ifndef NDEBUG 739 size_t oldSize = states.size(); 740 #endif 741 progress = false; 742 // We're only changing keys in this loop, thus safe to keep iterators 743 for (auto Pair : states) { 744 MeetPhiStates calculateMeet(states); 745 Value *v = Pair.first; 746 assert(!isKnownBaseResult(v) && "why did it get added?"); 747 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 748 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 749 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 750 } else 751 for (Value *Val : cast<PHINode>(v)->incoming_values()) 752 calculateMeet.meetWith(findBaseOrBDV(Val, cache)); 753 754 PhiState oldState = states[v]; 755 PhiState newState = calculateMeet.getResult(); 756 if (oldState != newState) { 757 progress = true; 758 states[v] = newState; 759 } 760 } 761 762 assert(oldSize <= states.size()); 763 assert(oldSize == states.size() || progress); 764 } 765 766 if (TraceLSP) { 767 errs() << "States after meet iteration:\n"; 768 for (auto Pair : states) { 769 Instruction *v = cast<Instruction>(Pair.first); 770 PhiState state = Pair.second; 771 state.dump(); 772 v->dump(); 773 } 774 } 775 776 // Insert Phis for all conflicts 777 // We want to keep naming deterministic in the loop that follows, so 778 // sort the keys before iteration. This is useful in allowing us to 779 // write stable tests. Note that there is no invalidation issue here. 780 SmallVector<Value*, 16> Keys; 781 Keys.reserve(states.size()); 782 for (auto Pair : states) { 783 Value *V = Pair.first; 784 Keys.push_back(V); 785 } 786 std::sort(Keys.begin(), Keys.end(), order_by_name); 787 // TODO: adjust naming patterns to avoid this order of iteration dependency 788 for (Value *V : Keys) { 789 Instruction *v = cast<Instruction>(V); 790 PhiState state = states[V]; 791 assert(!isKnownBaseResult(v) && "why did it get added?"); 792 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 793 if (!state.isConflict()) 794 continue; 795 796 if (isa<PHINode>(v)) { 797 int num_preds = 798 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 799 assert(num_preds > 0 && "how did we reach here"); 800 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 801 NewInsertedDefs.insert(phi); 802 // Add metadata marking this as a base value 803 auto *const_1 = ConstantInt::get( 804 Type::getInt32Ty( 805 v->getParent()->getParent()->getParent()->getContext()), 806 1); 807 auto MDConst = ConstantAsMetadata::get(const_1); 808 MDNode *md = MDNode::get( 809 v->getParent()->getParent()->getParent()->getContext(), MDConst); 810 phi->setMetadata("is_base_value", md); 811 states[v] = PhiState(PhiState::Conflict, phi); 812 } else { 813 SelectInst *sel = cast<SelectInst>(v); 814 // The undef will be replaced later 815 UndefValue *undef = UndefValue::get(sel->getType()); 816 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 817 undef, "base_select", sel); 818 NewInsertedDefs.insert(basesel); 819 // Add metadata marking this as a base value 820 auto *const_1 = ConstantInt::get( 821 Type::getInt32Ty( 822 v->getParent()->getParent()->getParent()->getContext()), 823 1); 824 auto MDConst = ConstantAsMetadata::get(const_1); 825 MDNode *md = MDNode::get( 826 v->getParent()->getParent()->getParent()->getContext(), MDConst); 827 basesel->setMetadata("is_base_value", md); 828 states[v] = PhiState(PhiState::Conflict, basesel); 829 } 830 } 831 832 // Fixup all the inputs of the new PHIs 833 for (auto Pair : states) { 834 Instruction *v = cast<Instruction>(Pair.first); 835 PhiState state = Pair.second; 836 837 assert(!isKnownBaseResult(v) && "why did it get added?"); 838 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 839 if (!state.isConflict()) 840 continue; 841 842 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 843 PHINode *phi = cast<PHINode>(v); 844 unsigned NumPHIValues = phi->getNumIncomingValues(); 845 for (unsigned i = 0; i < NumPHIValues; i++) { 846 Value *InVal = phi->getIncomingValue(i); 847 BasicBlock *InBB = phi->getIncomingBlock(i); 848 849 // If we've already seen InBB, add the same incoming value 850 // we added for it earlier. The IR verifier requires phi 851 // nodes with multiple entries from the same basic block 852 // to have the same incoming value for each of those 853 // entries. If we don't do this check here and basephi 854 // has a different type than base, we'll end up adding two 855 // bitcasts (and hence two distinct values) as incoming 856 // values for the same basic block. 857 858 int blockIndex = basephi->getBasicBlockIndex(InBB); 859 if (blockIndex != -1) { 860 Value *oldBase = basephi->getIncomingValue(blockIndex); 861 basephi->addIncoming(oldBase, InBB); 862 #ifndef NDEBUG 863 Value *base = findBaseOrBDV(InVal, cache); 864 if (!isKnownBaseResult(base)) { 865 // Either conflict or base. 866 assert(states.count(base)); 867 base = states[base].getBase(); 868 assert(base != nullptr && "unknown PhiState!"); 869 assert(NewInsertedDefs.count(base) && 870 "should have already added this in a prev. iteration!"); 871 } 872 873 // In essense this assert states: the only way two 874 // values incoming from the same basic block may be 875 // different is by being different bitcasts of the same 876 // value. A cleanup that remains TODO is changing 877 // findBaseOrBDV to return an llvm::Value of the correct 878 // type (and still remain pure). This will remove the 879 // need to add bitcasts. 880 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 881 "sanity -- findBaseOrBDV should be pure!"); 882 #endif 883 continue; 884 } 885 886 // Find either the defining value for the PHI or the normal base for 887 // a non-phi node 888 Value *base = findBaseOrBDV(InVal, cache); 889 if (!isKnownBaseResult(base)) { 890 // Either conflict or base. 891 assert(states.count(base)); 892 base = states[base].getBase(); 893 assert(base != nullptr && "unknown PhiState!"); 894 } 895 assert(base && "can't be null"); 896 // Must use original input BB since base may not be Instruction 897 // The cast is needed since base traversal may strip away bitcasts 898 if (base->getType() != basephi->getType()) { 899 base = new BitCastInst(base, basephi->getType(), "cast", 900 InBB->getTerminator()); 901 NewInsertedDefs.insert(base); 902 } 903 basephi->addIncoming(base, InBB); 904 } 905 assert(basephi->getNumIncomingValues() == NumPHIValues); 906 } else { 907 SelectInst *basesel = cast<SelectInst>(state.getBase()); 908 SelectInst *sel = cast<SelectInst>(v); 909 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 910 // something more safe and less hacky. 911 for (int i = 1; i <= 2; i++) { 912 Value *InVal = sel->getOperand(i); 913 // Find either the defining value for the PHI or the normal base for 914 // a non-phi node 915 Value *base = findBaseOrBDV(InVal, cache); 916 if (!isKnownBaseResult(base)) { 917 // Either conflict or base. 918 assert(states.count(base)); 919 base = states[base].getBase(); 920 assert(base != nullptr && "unknown PhiState!"); 921 } 922 assert(base && "can't be null"); 923 // Must use original input BB since base may not be Instruction 924 // The cast is needed since base traversal may strip away bitcasts 925 if (base->getType() != basesel->getType()) { 926 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 927 NewInsertedDefs.insert(base); 928 } 929 basesel->setOperand(i, base); 930 } 931 } 932 } 933 934 // Cache all of our results so we can cheaply reuse them 935 // NOTE: This is actually two caches: one of the base defining value 936 // relation and one of the base pointer relation! FIXME 937 for (auto item : states) { 938 Value *v = item.first; 939 Value *base = item.second.getBase(); 940 assert(v && base); 941 assert(!isKnownBaseResult(v) && "why did it get added?"); 942 943 if (TraceLSP) { 944 std::string fromstr = 945 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 946 : "none"; 947 errs() << "Updating base value cache" 948 << " for: " << (v->hasName() ? v->getName() : "") 949 << " from: " << fromstr 950 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 951 } 952 953 assert(isKnownBaseResult(base) && 954 "must be something we 'know' is a base pointer"); 955 if (cache.count(v)) { 956 // Once we transition from the BDV relation being store in the cache to 957 // the base relation being stored, it must be stable 958 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 959 "base relation should be stable"); 960 } 961 cache[v] = base; 962 } 963 assert(cache.find(def) != cache.end()); 964 return cache[def]; 965 } 966 967 // For a set of live pointers (base and/or derived), identify the base 968 // pointer of the object which they are derived from. This routine will 969 // mutate the IR graph as needed to make the 'base' pointer live at the 970 // definition site of 'derived'. This ensures that any use of 'derived' can 971 // also use 'base'. This may involve the insertion of a number of 972 // additional PHI nodes. 973 // 974 // preconditions: live is a set of pointer type Values 975 // 976 // side effects: may insert PHI nodes into the existing CFG, will preserve 977 // CFG, will not remove or mutate any existing nodes 978 // 979 // post condition: PointerToBase contains one (derived, base) pair for every 980 // pointer in live. Note that derived can be equal to base if the original 981 // pointer was a base pointer. 982 static void findBasePointers(const StatepointLiveSetTy &live, 983 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 984 DominatorTree *DT, DefiningValueMapTy &DVCache, 985 DenseSet<llvm::Value *> &NewInsertedDefs) { 986 // For the naming of values inserted to be deterministic - which makes for 987 // much cleaner and more stable tests - we need to assign an order to the 988 // live values. DenseSets do not provide a deterministic order across runs. 989 SmallVector<Value*, 64> Temp; 990 Temp.insert(Temp.end(), live.begin(), live.end()); 991 std::sort(Temp.begin(), Temp.end(), order_by_name); 992 for (Value *ptr : Temp) { 993 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs); 994 assert(base && "failed to find base pointer"); 995 PointerToBase[ptr] = base; 996 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 997 DT->dominates(cast<Instruction>(base)->getParent(), 998 cast<Instruction>(ptr)->getParent())) && 999 "The base we found better dominate the derived pointer"); 1000 1001 // If you see this trip and like to live really dangerously, the code should 1002 // be correct, just with idioms the verifier can't handle. You can try 1003 // disabling the verifier at your own substaintial risk. 1004 assert(!isNullConstant(base) && "the relocation code needs adjustment to " 1005 "handle the relocation of a null pointer " 1006 "constant without causing false positives " 1007 "in the safepoint ir verifier."); 1008 } 1009 } 1010 1011 /// Find the required based pointers (and adjust the live set) for the given 1012 /// parse point. 1013 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1014 const CallSite &CS, 1015 PartiallyConstructedSafepointRecord &result) { 1016 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1017 DenseSet<llvm::Value *> NewInsertedDefs; 1018 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs); 1019 1020 if (PrintBasePointers) { 1021 // Note: Need to print these in a stable order since this is checked in 1022 // some tests. 1023 errs() << "Base Pairs (w/o Relocation):\n"; 1024 SmallVector<Value*, 64> Temp; 1025 Temp.reserve(PointerToBase.size()); 1026 for (auto Pair : PointerToBase) { 1027 Temp.push_back(Pair.first); 1028 } 1029 std::sort(Temp.begin(), Temp.end(), order_by_name); 1030 for (Value *Ptr : Temp) { 1031 Value *Base = PointerToBase[Ptr]; 1032 errs() << " derived %" << Ptr->getName() << " base %" 1033 << Base->getName() << "\n"; 1034 } 1035 } 1036 1037 result.PointerToBase = PointerToBase; 1038 result.NewInsertedDefs = NewInsertedDefs; 1039 } 1040 1041 /// Check for liveness of items in the insert defs and add them to the live 1042 /// and base pointer sets 1043 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 1044 const DenseSet<Value *> &allInsertedDefs, 1045 PartiallyConstructedSafepointRecord &result) { 1046 Instruction *inst = CS.getInstruction(); 1047 1048 auto liveset = result.liveset; 1049 auto PointerToBase = result.PointerToBase; 1050 1051 auto is_live_gc_reference = 1052 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 1053 1054 // For each new definition, check to see if a) the definition dominates the 1055 // instruction we're interested in, and b) one of the uses of that definition 1056 // is edge-reachable from the instruction we're interested in. This is the 1057 // same definition of liveness we used in the intial liveness analysis 1058 for (Value *newDef : allInsertedDefs) { 1059 if (liveset.count(newDef)) { 1060 // already live, no action needed 1061 continue; 1062 } 1063 1064 // PERF: Use DT to check instruction domination might not be good for 1065 // compilation time, and we could change to optimal solution if this 1066 // turn to be a issue 1067 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1068 // can't possibly be live at inst 1069 continue; 1070 } 1071 1072 if (is_live_gc_reference(*newDef)) { 1073 // Add the live new defs into liveset and PointerToBase 1074 liveset.insert(newDef); 1075 PointerToBase[newDef] = newDef; 1076 } 1077 } 1078 1079 result.liveset = liveset; 1080 result.PointerToBase = PointerToBase; 1081 } 1082 1083 static void fixupLiveReferences( 1084 Function &F, DominatorTree &DT, Pass *P, 1085 const DenseSet<llvm::Value *> &allInsertedDefs, 1086 ArrayRef<CallSite> toUpdate, 1087 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1088 for (size_t i = 0; i < records.size(); i++) { 1089 struct PartiallyConstructedSafepointRecord &info = records[i]; 1090 const CallSite &CS = toUpdate[i]; 1091 fixupLiveness(DT, CS, allInsertedDefs, info); 1092 } 1093 } 1094 1095 // Normalize basic block to make it ready to be target of invoke statepoint. 1096 // It means spliting it to have single predecessor. Return newly created BB 1097 // ready to be successor of invoke statepoint. 1098 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1099 BasicBlock *InvokeParent, 1100 Pass *P) { 1101 BasicBlock *ret = BB; 1102 1103 if (!BB->getUniquePredecessor()) { 1104 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1105 } 1106 1107 // Another requirement for such basic blocks is to not have any phi nodes. 1108 // Since we just ensured that new BB will have single predecessor, 1109 // all phi nodes in it will have one value. Here it would be naturall place 1110 // to 1111 // remove them all. But we can not do this because we are risking to remove 1112 // one of the values stored in liveset of another statepoint. We will do it 1113 // later after placing all safepoints. 1114 1115 return ret; 1116 } 1117 1118 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1119 auto itr = std::find(livevec.begin(), livevec.end(), val); 1120 assert(livevec.end() != itr); 1121 size_t index = std::distance(livevec.begin(), itr); 1122 assert(index < livevec.size()); 1123 return index; 1124 } 1125 1126 // Create new attribute set containing only attributes which can be transfered 1127 // from original call to the safepoint. 1128 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1129 AttributeSet ret; 1130 1131 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1132 unsigned index = AS.getSlotIndex(Slot); 1133 1134 if (index == AttributeSet::ReturnIndex || 1135 index == AttributeSet::FunctionIndex) { 1136 1137 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1138 ++it) { 1139 Attribute attr = *it; 1140 1141 // Do not allow certain attributes - just skip them 1142 // Safepoint can not be read only or read none. 1143 if (attr.hasAttribute(Attribute::ReadNone) || 1144 attr.hasAttribute(Attribute::ReadOnly)) 1145 continue; 1146 1147 ret = ret.addAttributes( 1148 AS.getContext(), index, 1149 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1150 } 1151 } 1152 1153 // Just skip parameter attributes for now 1154 } 1155 1156 return ret; 1157 } 1158 1159 /// Helper function to place all gc relocates necessary for the given 1160 /// statepoint. 1161 /// Inputs: 1162 /// liveVariables - list of variables to be relocated. 1163 /// liveStart - index of the first live variable. 1164 /// basePtrs - base pointers. 1165 /// statepointToken - statepoint instruction to which relocates should be 1166 /// bound. 1167 /// Builder - Llvm IR builder to be used to construct new calls. 1168 static void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables, 1169 const int liveStart, 1170 ArrayRef<llvm::Value *> basePtrs, 1171 Instruction *statepointToken, 1172 IRBuilder<> Builder) { 1173 SmallVector<Instruction *, 64> NewDefs; 1174 NewDefs.reserve(liveVariables.size()); 1175 1176 Module *M = statepointToken->getParent()->getParent()->getParent(); 1177 1178 for (unsigned i = 0; i < liveVariables.size(); i++) { 1179 // We generate a (potentially) unique declaration for every pointer type 1180 // combination. This results is some blow up the function declarations in 1181 // the IR, but removes the need for argument bitcasts which shrinks the IR 1182 // greatly and makes it much more readable. 1183 SmallVector<Type *, 1> types; // one per 'any' type 1184 types.push_back(liveVariables[i]->getType()); // result type 1185 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1186 M, Intrinsic::experimental_gc_relocate, types); 1187 1188 // Generate the gc.relocate call and save the result 1189 Value *baseIdx = 1190 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1191 liveStart + find_index(liveVariables, basePtrs[i])); 1192 Value *liveIdx = ConstantInt::get( 1193 Type::getInt32Ty(M->getContext()), 1194 liveStart + find_index(liveVariables, liveVariables[i])); 1195 1196 // only specify a debug name if we can give a useful one 1197 Value *reloc = Builder.CreateCall3( 1198 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1199 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1200 : ""); 1201 // Trick CodeGen into thinking there are lots of free registers at this 1202 // fake call. 1203 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1204 1205 NewDefs.push_back(cast<Instruction>(reloc)); 1206 } 1207 assert(NewDefs.size() == liveVariables.size() && 1208 "missing or extra redefinition at safepoint"); 1209 } 1210 1211 static void 1212 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1213 const SmallVectorImpl<llvm::Value *> &basePtrs, 1214 const SmallVectorImpl<llvm::Value *> &liveVariables, 1215 Pass *P, 1216 PartiallyConstructedSafepointRecord &result) { 1217 assert(basePtrs.size() == liveVariables.size()); 1218 assert(isStatepoint(CS) && 1219 "This method expects to be rewriting a statepoint"); 1220 1221 BasicBlock *BB = CS.getInstruction()->getParent(); 1222 assert(BB); 1223 Function *F = BB->getParent(); 1224 assert(F && "must be set"); 1225 Module *M = F->getParent(); 1226 (void)M; 1227 assert(M && "must be set"); 1228 1229 // We're not changing the function signature of the statepoint since the gc 1230 // arguments go into the var args section. 1231 Function *gc_statepoint_decl = CS.getCalledFunction(); 1232 1233 // Then go ahead and use the builder do actually do the inserts. We insert 1234 // immediately before the previous instruction under the assumption that all 1235 // arguments will be available here. We can't insert afterwards since we may 1236 // be replacing a terminator. 1237 Instruction *insertBefore = CS.getInstruction(); 1238 IRBuilder<> Builder(insertBefore); 1239 // Copy all of the arguments from the original statepoint - this includes the 1240 // target, call args, and deopt args 1241 SmallVector<llvm::Value *, 64> args; 1242 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1243 // TODO: Clear the 'needs rewrite' flag 1244 1245 // add all the pointers to be relocated (gc arguments) 1246 // Capture the start of the live variable list for use in the gc_relocates 1247 const int live_start = args.size(); 1248 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1249 1250 // Create the statepoint given all the arguments 1251 Instruction *token = nullptr; 1252 AttributeSet return_attributes; 1253 if (CS.isCall()) { 1254 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1255 CallInst *call = 1256 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1257 call->setTailCall(toReplace->isTailCall()); 1258 call->setCallingConv(toReplace->getCallingConv()); 1259 1260 // Currently we will fail on parameter attributes and on certain 1261 // function attributes. 1262 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1263 // In case if we can handle this set of sttributes - set up function attrs 1264 // directly on statepoint and return attrs later for gc_result intrinsic. 1265 call->setAttributes(new_attrs.getFnAttributes()); 1266 return_attributes = new_attrs.getRetAttributes(); 1267 1268 token = call; 1269 1270 // Put the following gc_result and gc_relocate calls immediately after the 1271 // the old call (which we're about to delete) 1272 BasicBlock::iterator next(toReplace); 1273 assert(BB->end() != next && "not a terminator, must have next"); 1274 next++; 1275 Instruction *IP = &*(next); 1276 Builder.SetInsertPoint(IP); 1277 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1278 1279 } else { 1280 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1281 1282 // Insert the new invoke into the old block. We'll remove the old one in a 1283 // moment at which point this will become the new terminator for the 1284 // original block. 1285 InvokeInst *invoke = InvokeInst::Create( 1286 gc_statepoint_decl, toReplace->getNormalDest(), 1287 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1288 invoke->setCallingConv(toReplace->getCallingConv()); 1289 1290 // Currently we will fail on parameter attributes and on certain 1291 // function attributes. 1292 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1293 // In case if we can handle this set of sttributes - set up function attrs 1294 // directly on statepoint and return attrs later for gc_result intrinsic. 1295 invoke->setAttributes(new_attrs.getFnAttributes()); 1296 return_attributes = new_attrs.getRetAttributes(); 1297 1298 token = invoke; 1299 1300 // Generate gc relocates in exceptional path 1301 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1302 toReplace->getUnwindDest(), invoke->getParent(), P); 1303 1304 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1305 Builder.SetInsertPoint(IP); 1306 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1307 1308 // Extract second element from landingpad return value. We will attach 1309 // exceptional gc relocates to it. 1310 const unsigned idx = 1; 1311 Instruction *exceptional_token = 1312 cast<Instruction>(Builder.CreateExtractValue( 1313 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1314 result.UnwindToken = exceptional_token; 1315 1316 // Just throw away return value. We will use the one we got for normal 1317 // block. 1318 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1319 exceptional_token, Builder); 1320 1321 // Generate gc relocates and returns for normal block 1322 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1323 toReplace->getNormalDest(), invoke->getParent(), P); 1324 1325 IP = &*(normalDest->getFirstInsertionPt()); 1326 Builder.SetInsertPoint(IP); 1327 1328 // gc relocates will be generated later as if it were regular call 1329 // statepoint 1330 } 1331 assert(token); 1332 1333 // Take the name of the original value call if it had one. 1334 token->takeName(CS.getInstruction()); 1335 1336 // The GCResult is already inserted, we just need to find it 1337 #ifndef NDEBUG 1338 Instruction *toReplace = CS.getInstruction(); 1339 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1340 "only valid use before rewrite is gc.result"); 1341 assert(!toReplace->hasOneUse() || 1342 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1343 #endif 1344 1345 // Update the gc.result of the original statepoint (if any) to use the newly 1346 // inserted statepoint. This is safe to do here since the token can't be 1347 // considered a live reference. 1348 CS.getInstruction()->replaceAllUsesWith(token); 1349 1350 result.StatepointToken = token; 1351 1352 // Second, create a gc.relocate for every live variable 1353 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1354 1355 } 1356 1357 namespace { 1358 struct name_ordering { 1359 Value *base; 1360 Value *derived; 1361 bool operator()(name_ordering const &a, name_ordering const &b) { 1362 return -1 == a.derived->getName().compare(b.derived->getName()); 1363 } 1364 }; 1365 } 1366 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1367 SmallVectorImpl<Value *> &livevec) { 1368 assert(basevec.size() == livevec.size()); 1369 1370 SmallVector<name_ordering, 64> temp; 1371 for (size_t i = 0; i < basevec.size(); i++) { 1372 name_ordering v; 1373 v.base = basevec[i]; 1374 v.derived = livevec[i]; 1375 temp.push_back(v); 1376 } 1377 std::sort(temp.begin(), temp.end(), name_ordering()); 1378 for (size_t i = 0; i < basevec.size(); i++) { 1379 basevec[i] = temp[i].base; 1380 livevec[i] = temp[i].derived; 1381 } 1382 } 1383 1384 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1385 // which make the relocations happening at this safepoint explicit. 1386 // 1387 // WARNING: Does not do any fixup to adjust users of the original live 1388 // values. That's the callers responsibility. 1389 static void 1390 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1391 PartiallyConstructedSafepointRecord &result) { 1392 auto liveset = result.liveset; 1393 auto PointerToBase = result.PointerToBase; 1394 1395 // Convert to vector for efficient cross referencing. 1396 SmallVector<Value *, 64> basevec, livevec; 1397 livevec.reserve(liveset.size()); 1398 basevec.reserve(liveset.size()); 1399 for (Value *L : liveset) { 1400 livevec.push_back(L); 1401 1402 assert(PointerToBase.find(L) != PointerToBase.end()); 1403 Value *base = PointerToBase[L]; 1404 basevec.push_back(base); 1405 } 1406 assert(livevec.size() == basevec.size()); 1407 1408 // To make the output IR slightly more stable (for use in diffs), ensure a 1409 // fixed order of the values in the safepoint (by sorting the value name). 1410 // The order is otherwise meaningless. 1411 stablize_order(basevec, livevec); 1412 1413 // Do the actual rewriting and delete the old statepoint 1414 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1415 CS.getInstruction()->eraseFromParent(); 1416 } 1417 1418 // Helper function for the relocationViaAlloca. 1419 // It receives iterator to the statepoint gc relocates and emits store to the 1420 // assigned 1421 // location (via allocaMap) for the each one of them. 1422 // Add visited values into the visitedLiveValues set we will later use them 1423 // for sanity check. 1424 static void 1425 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1426 DenseMap<Value *, Value *> &allocaMap, 1427 DenseSet<Value *> &visitedLiveValues) { 1428 1429 for (User *U : gcRelocs) { 1430 if (!isa<IntrinsicInst>(U)) 1431 continue; 1432 1433 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1434 1435 // We only care about relocates 1436 if (relocatedValue->getIntrinsicID() != 1437 Intrinsic::experimental_gc_relocate) { 1438 continue; 1439 } 1440 1441 GCRelocateOperands relocateOperands(relocatedValue); 1442 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1443 assert(allocaMap.count(originalValue)); 1444 Value *alloca = allocaMap[originalValue]; 1445 1446 // Emit store into the related alloca 1447 StoreInst *store = new StoreInst(relocatedValue, alloca); 1448 store->insertAfter(relocatedValue); 1449 1450 #ifndef NDEBUG 1451 visitedLiveValues.insert(originalValue); 1452 #endif 1453 } 1454 } 1455 1456 /// do all the relocation update via allocas and mem2reg 1457 static void relocationViaAlloca( 1458 Function &F, DominatorTree &DT, ArrayRef<Value *> live, 1459 ArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1460 #ifndef NDEBUG 1461 int initialAllocaNum = 0; 1462 1463 // record initial number of allocas 1464 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1465 itr++) { 1466 if (isa<AllocaInst>(*itr)) 1467 initialAllocaNum++; 1468 } 1469 #endif 1470 1471 // TODO-PERF: change data structures, reserve 1472 DenseMap<Value *, Value *> allocaMap; 1473 SmallVector<AllocaInst *, 200> PromotableAllocas; 1474 PromotableAllocas.reserve(live.size()); 1475 1476 // emit alloca for each live gc pointer 1477 for (unsigned i = 0; i < live.size(); i++) { 1478 Value *liveValue = live[i]; 1479 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1480 F.getEntryBlock().getFirstNonPHI()); 1481 allocaMap[liveValue] = alloca; 1482 PromotableAllocas.push_back(alloca); 1483 } 1484 1485 // The next two loops are part of the same conceptual operation. We need to 1486 // insert a store to the alloca after the original def and at each 1487 // redefinition. We need to insert a load before each use. These are split 1488 // into distinct loops for performance reasons. 1489 1490 // update gc pointer after each statepoint 1491 // either store a relocated value or null (if no relocated value found for 1492 // this gc pointer and it is not a gc_result) 1493 // this must happen before we update the statepoint with load of alloca 1494 // otherwise we lose the link between statepoint and old def 1495 for (size_t i = 0; i < records.size(); i++) { 1496 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1497 Value *Statepoint = info.StatepointToken; 1498 1499 // This will be used for consistency check 1500 DenseSet<Value *> visitedLiveValues; 1501 1502 // Insert stores for normal statepoint gc relocates 1503 insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); 1504 1505 // In case if it was invoke statepoint 1506 // we will insert stores for exceptional path gc relocates. 1507 if (isa<InvokeInst>(Statepoint)) { 1508 insertRelocationStores(info.UnwindToken->users(), 1509 allocaMap, visitedLiveValues); 1510 } 1511 1512 #ifndef NDEBUG 1513 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1514 // the gc.statepoint. This will turn some subtle GC problems into slightly 1515 // easier to debug SEGVs 1516 SmallVector<AllocaInst *, 64> ToClobber; 1517 for (auto Pair : allocaMap) { 1518 Value *Def = Pair.first; 1519 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1520 1521 // This value was relocated 1522 if (visitedLiveValues.count(Def)) { 1523 continue; 1524 } 1525 ToClobber.push_back(Alloca); 1526 } 1527 1528 auto InsertClobbersAt = [&](Instruction *IP) { 1529 for (auto *AI : ToClobber) { 1530 auto AIType = cast<PointerType>(AI->getType()); 1531 auto PT = cast<PointerType>(AIType->getElementType()); 1532 Constant *CPN = ConstantPointerNull::get(PT); 1533 StoreInst *store = new StoreInst(CPN, AI); 1534 store->insertBefore(IP); 1535 } 1536 }; 1537 1538 // Insert the clobbering stores. These may get intermixed with the 1539 // gc.results and gc.relocates, but that's fine. 1540 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1541 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1542 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1543 } else { 1544 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1545 Next++; 1546 InsertClobbersAt(Next); 1547 } 1548 #endif 1549 } 1550 // update use with load allocas and add store for gc_relocated 1551 for (auto Pair : allocaMap) { 1552 Value *def = Pair.first; 1553 Value *alloca = Pair.second; 1554 1555 // we pre-record the uses of allocas so that we dont have to worry about 1556 // later update 1557 // that change the user information. 1558 SmallVector<Instruction *, 20> uses; 1559 // PERF: trade a linear scan for repeated reallocation 1560 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1561 for (User *U : def->users()) { 1562 if (!isa<ConstantExpr>(U)) { 1563 // If the def has a ConstantExpr use, then the def is either a 1564 // ConstantExpr use itself or null. In either case 1565 // (recursively in the first, directly in the second), the oop 1566 // it is ultimately dependent on is null and this particular 1567 // use does not need to be fixed up. 1568 uses.push_back(cast<Instruction>(U)); 1569 } 1570 } 1571 1572 std::sort(uses.begin(), uses.end()); 1573 auto last = std::unique(uses.begin(), uses.end()); 1574 uses.erase(last, uses.end()); 1575 1576 for (Instruction *use : uses) { 1577 if (isa<PHINode>(use)) { 1578 PHINode *phi = cast<PHINode>(use); 1579 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1580 if (def == phi->getIncomingValue(i)) { 1581 LoadInst *load = new LoadInst( 1582 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1583 phi->setIncomingValue(i, load); 1584 } 1585 } 1586 } else { 1587 LoadInst *load = new LoadInst(alloca, "", use); 1588 use->replaceUsesOfWith(def, load); 1589 } 1590 } 1591 1592 // emit store for the initial gc value 1593 // store must be inserted after load, otherwise store will be in alloca's 1594 // use list and an extra load will be inserted before it 1595 StoreInst *store = new StoreInst(def, alloca); 1596 if (Instruction *inst = dyn_cast<Instruction>(def)) { 1597 if (InvokeInst *invoke = dyn_cast<InvokeInst>(inst)) { 1598 // InvokeInst is a TerminatorInst so the store need to be inserted 1599 // into its normal destination block. 1600 BasicBlock *normalDest = invoke->getNormalDest(); 1601 store->insertBefore(normalDest->getFirstNonPHI()); 1602 } else { 1603 assert(!inst->isTerminator() && 1604 "The only TerminatorInst that can produce a value is " 1605 "InvokeInst which is handled above."); 1606 store->insertAfter(inst); 1607 } 1608 } else { 1609 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1610 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) && 1611 "Must be argument or global"); 1612 store->insertAfter(cast<Instruction>(alloca)); 1613 } 1614 } 1615 1616 assert(PromotableAllocas.size() == live.size() && 1617 "we must have the same allocas with lives"); 1618 if (!PromotableAllocas.empty()) { 1619 // apply mem2reg to promote alloca to SSA 1620 PromoteMemToReg(PromotableAllocas, DT); 1621 } 1622 1623 #ifndef NDEBUG 1624 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1625 itr++) { 1626 if (isa<AllocaInst>(*itr)) 1627 initialAllocaNum--; 1628 } 1629 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); 1630 #endif 1631 } 1632 1633 /// Implement a unique function which doesn't require we sort the input 1634 /// vector. Doing so has the effect of changing the output of a couple of 1635 /// tests in ways which make them less useful in testing fused safepoints. 1636 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1637 DenseSet<T> Seen; 1638 SmallVector<T, 128> TempVec; 1639 TempVec.reserve(Vec.size()); 1640 for (auto Element : Vec) 1641 TempVec.push_back(Element); 1642 Vec.clear(); 1643 for (auto V : TempVec) { 1644 if (Seen.insert(V).second) { 1645 Vec.push_back(V); 1646 } 1647 } 1648 } 1649 1650 static Function *getUseHolder(Module &M) { 1651 FunctionType *ftype = 1652 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1653 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1654 return Func; 1655 } 1656 1657 /// Insert holders so that each Value is obviously live through the entire 1658 /// liftetime of the call. 1659 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1660 SmallVectorImpl<CallInst *> &holders) { 1661 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1662 Function *Func = getUseHolder(*M); 1663 if (CS.isCall()) { 1664 // For call safepoints insert dummy calls right after safepoint 1665 BasicBlock::iterator next(CS.getInstruction()); 1666 next++; 1667 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1668 holders.push_back(base_holder); 1669 } else if (CS.isInvoke()) { 1670 // For invoke safepooints insert dummy calls both in normal and 1671 // exceptional destination blocks 1672 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1673 CallInst *normal_holder = CallInst::Create( 1674 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1675 CallInst *unwind_holder = CallInst::Create( 1676 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1677 holders.push_back(normal_holder); 1678 holders.push_back(unwind_holder); 1679 } else 1680 llvm_unreachable("unsupported call type"); 1681 } 1682 1683 static void findLiveReferences( 1684 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1685 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1686 for (size_t i = 0; i < records.size(); i++) { 1687 struct PartiallyConstructedSafepointRecord &info = records[i]; 1688 const CallSite &CS = toUpdate[i]; 1689 analyzeParsePointLiveness(DT, CS, info); 1690 } 1691 } 1692 1693 static void addBasesAsLiveValues(StatepointLiveSetTy &liveset, 1694 DenseMap<Value *, Value *> &PointerToBase) { 1695 // Identify any base pointers which are used in this safepoint, but not 1696 // themselves relocated. We need to relocate them so that later inserted 1697 // safepoints can get the properly relocated base register. 1698 DenseSet<Value *> missing; 1699 for (Value *L : liveset) { 1700 assert(PointerToBase.find(L) != PointerToBase.end()); 1701 Value *base = PointerToBase[L]; 1702 assert(base); 1703 if (liveset.find(base) == liveset.end()) { 1704 assert(PointerToBase.find(base) == PointerToBase.end()); 1705 // uniqued by set insert 1706 missing.insert(base); 1707 } 1708 } 1709 1710 // Note that we want these at the end of the list, otherwise 1711 // register placement gets screwed up once we lower to STATEPOINT 1712 // instructions. This is an utter hack, but there doesn't seem to be a 1713 // better one. 1714 for (Value *base : missing) { 1715 assert(base); 1716 liveset.insert(base); 1717 PointerToBase[base] = base; 1718 } 1719 assert(liveset.size() == PointerToBase.size()); 1720 } 1721 1722 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1723 SmallVectorImpl<CallSite> &toUpdate) { 1724 #ifndef NDEBUG 1725 // sanity check the input 1726 std::set<CallSite> uniqued; 1727 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1728 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1729 1730 for (size_t i = 0; i < toUpdate.size(); i++) { 1731 CallSite &CS = toUpdate[i]; 1732 assert(CS.getInstruction()->getParent()->getParent() == &F); 1733 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1734 } 1735 #endif 1736 1737 // A list of dummy calls added to the IR to keep various values obviously 1738 // live in the IR. We'll remove all of these when done. 1739 SmallVector<CallInst *, 64> holders; 1740 1741 // Insert a dummy call with all of the arguments to the vm_state we'll need 1742 // for the actual safepoint insertion. This ensures reference arguments in 1743 // the deopt argument list are considered live through the safepoint (and 1744 // thus makes sure they get relocated.) 1745 for (size_t i = 0; i < toUpdate.size(); i++) { 1746 CallSite &CS = toUpdate[i]; 1747 Statepoint StatepointCS(CS); 1748 1749 SmallVector<Value *, 64> DeoptValues; 1750 for (Use &U : StatepointCS.vm_state_args()) { 1751 Value *Arg = cast<Value>(&U); 1752 if (isGCPointerType(Arg->getType())) 1753 DeoptValues.push_back(Arg); 1754 } 1755 insertUseHolderAfter(CS, DeoptValues, holders); 1756 } 1757 1758 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 1759 records.reserve(toUpdate.size()); 1760 for (size_t i = 0; i < toUpdate.size(); i++) { 1761 struct PartiallyConstructedSafepointRecord info; 1762 records.push_back(info); 1763 } 1764 assert(records.size() == toUpdate.size()); 1765 1766 // A) Identify all gc pointers which are staticly live at the given call 1767 // site. 1768 findLiveReferences(F, DT, P, toUpdate, records); 1769 1770 // B) Find the base pointers for each live pointer 1771 /* scope for caching */ { 1772 // Cache the 'defining value' relation used in the computation and 1773 // insertion of base phis and selects. This ensures that we don't insert 1774 // large numbers of duplicate base_phis. 1775 DefiningValueMapTy DVCache; 1776 1777 for (size_t i = 0; i < records.size(); i++) { 1778 struct PartiallyConstructedSafepointRecord &info = records[i]; 1779 CallSite &CS = toUpdate[i]; 1780 findBasePointers(DT, DVCache, CS, info); 1781 } 1782 } // end of cache scope 1783 1784 // The base phi insertion logic (for any safepoint) may have inserted new 1785 // instructions which are now live at some safepoint. The simplest such 1786 // example is: 1787 // loop: 1788 // phi a <-- will be a new base_phi here 1789 // safepoint 1 <-- that needs to be live here 1790 // gep a + 1 1791 // safepoint 2 1792 // br loop 1793 DenseSet<llvm::Value *> allInsertedDefs; 1794 for (size_t i = 0; i < records.size(); i++) { 1795 struct PartiallyConstructedSafepointRecord &info = records[i]; 1796 allInsertedDefs.insert(info.NewInsertedDefs.begin(), 1797 info.NewInsertedDefs.end()); 1798 } 1799 1800 // We insert some dummy calls after each safepoint to definitely hold live 1801 // the base pointers which were identified for that safepoint. We'll then 1802 // ask liveness for _every_ base inserted to see what is now live. Then we 1803 // remove the dummy calls. 1804 holders.reserve(holders.size() + records.size()); 1805 for (size_t i = 0; i < records.size(); i++) { 1806 struct PartiallyConstructedSafepointRecord &info = records[i]; 1807 CallSite &CS = toUpdate[i]; 1808 1809 SmallVector<Value *, 128> Bases; 1810 for (auto Pair : info.PointerToBase) { 1811 Bases.push_back(Pair.second); 1812 } 1813 insertUseHolderAfter(CS, Bases, holders); 1814 } 1815 1816 // Add the bases explicitly to the live vector set. This may result in a few 1817 // extra relocations, but the base has to be available whenever a pointer 1818 // derived from it is used. Thus, we need it to be part of the statepoint's 1819 // gc arguments list. TODO: Introduce an explicit notion (in the following 1820 // code) of the GC argument list as seperate from the live Values at a 1821 // given statepoint. 1822 for (size_t i = 0; i < records.size(); i++) { 1823 struct PartiallyConstructedSafepointRecord &info = records[i]; 1824 addBasesAsLiveValues(info.liveset, info.PointerToBase); 1825 } 1826 1827 // If we inserted any new values, we need to adjust our notion of what is 1828 // live at a particular safepoint. 1829 if (!allInsertedDefs.empty()) { 1830 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1831 } 1832 if (PrintBasePointers) { 1833 for (size_t i = 0; i < records.size(); i++) { 1834 struct PartiallyConstructedSafepointRecord &info = records[i]; 1835 errs() << "Base Pairs: (w/Relocation)\n"; 1836 for (auto Pair : info.PointerToBase) { 1837 errs() << " derived %" << Pair.first->getName() << " base %" 1838 << Pair.second->getName() << "\n"; 1839 } 1840 } 1841 } 1842 for (size_t i = 0; i < holders.size(); i++) { 1843 holders[i]->eraseFromParent(); 1844 holders[i] = nullptr; 1845 } 1846 holders.clear(); 1847 1848 // Now run through and replace the existing statepoints with new ones with 1849 // the live variables listed. We do not yet update uses of the values being 1850 // relocated. We have references to live variables that need to 1851 // survive to the last iteration of this loop. (By construction, the 1852 // previous statepoint can not be a live variable, thus we can and remove 1853 // the old statepoint calls as we go.) 1854 for (size_t i = 0; i < records.size(); i++) { 1855 struct PartiallyConstructedSafepointRecord &info = records[i]; 1856 CallSite &CS = toUpdate[i]; 1857 makeStatepointExplicit(DT, CS, P, info); 1858 } 1859 toUpdate.clear(); // prevent accident use of invalid CallSites 1860 1861 // In case if we inserted relocates in a different basic block than the 1862 // original safepoint (this can happen for invokes). We need to be sure that 1863 // original values were not used in any of the phi nodes at the 1864 // beginning of basic block containing them. Because we know that all such 1865 // blocks will have single predecessor we can safely assume that all phi 1866 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1867 // Just remove them all here. 1868 for (size_t i = 0; i < records.size(); i++) { 1869 Instruction *I = records[i].StatepointToken; 1870 1871 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 1872 FoldSingleEntryPHINodes(invoke->getNormalDest()); 1873 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 1874 1875 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 1876 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 1877 } 1878 } 1879 1880 // Do all the fixups of the original live variables to their relocated selves 1881 SmallVector<Value *, 128> live; 1882 for (size_t i = 0; i < records.size(); i++) { 1883 struct PartiallyConstructedSafepointRecord &info = records[i]; 1884 // We can't simply save the live set from the original insertion. One of 1885 // the live values might be the result of a call which needs a safepoint. 1886 // That Value* no longer exists and we need to use the new gc_result. 1887 // Thankfully, the liveset is embedded in the statepoint (and updated), so 1888 // we just grab that. 1889 Statepoint statepoint(info.StatepointToken); 1890 live.insert(live.end(), statepoint.gc_args_begin(), 1891 statepoint.gc_args_end()); 1892 } 1893 unique_unsorted(live); 1894 1895 #ifndef NDEBUG 1896 // sanity check 1897 for (auto ptr : live) { 1898 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 1899 } 1900 #endif 1901 1902 relocationViaAlloca(F, DT, live, records); 1903 return !records.empty(); 1904 } 1905 1906 /// Returns true if this function should be rewritten by this pass. The main 1907 /// point of this function is as an extension point for custom logic. 1908 static bool shouldRewriteStatepointsIn(Function &F) { 1909 // TODO: This should check the GCStrategy 1910 if (F.hasGC()) { 1911 const std::string StatepointExampleName("statepoint-example"); 1912 return StatepointExampleName == F.getGC(); 1913 } else 1914 return false; 1915 } 1916 1917 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 1918 // Nothing to do for declarations. 1919 if (F.isDeclaration() || F.empty()) 1920 return false; 1921 1922 // Policy choice says not to rewrite - the most common reason is that we're 1923 // compiling code without a GCStrategy. 1924 if (!shouldRewriteStatepointsIn(F)) 1925 return false; 1926 1927 // Gather all the statepoints which need rewritten. 1928 SmallVector<CallSite, 64> ParsePointNeeded; 1929 for (Instruction &I : inst_range(F)) { 1930 // TODO: only the ones with the flag set! 1931 if (isStatepoint(I)) 1932 ParsePointNeeded.push_back(CallSite(&I)); 1933 } 1934 1935 // Return early if no work to do. 1936 if (ParsePointNeeded.empty()) 1937 return false; 1938 1939 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1940 return insertParsePoints(F, DT, this, ParsePointNeeded); 1941 } 1942