1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite call/invoke instructions so as to make potential relocations 11 // performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstIterator.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Statepoint.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef EXPENSIVE_CHECKS 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 static cl::opt<bool> 75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 76 cl::Hidden, cl::init(true)); 77 78 namespace { 79 struct RewriteStatepointsForGC : public ModulePass { 80 static char ID; // Pass identification, replacement for typeid 81 82 RewriteStatepointsForGC() : ModulePass(ID) { 83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 84 } 85 bool runOnFunction(Function &F); 86 bool runOnModule(Module &M) override { 87 bool Changed = false; 88 for (Function &F : M) 89 Changed |= runOnFunction(F); 90 91 if (Changed) { 92 // stripNonValidAttributesAndMetadata asserts that shouldRewriteStatepointsIn 93 // returns true for at least one function in the module. Since at least 94 // one function changed, we know that the precondition is satisfied. 95 stripNonValidAttributesAndMetadata(M); 96 } 97 98 return Changed; 99 } 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 // We add and rewrite a bunch of instructions, but don't really do much 103 // else. We could in theory preserve a lot more analyses here. 104 AU.addRequired<DominatorTreeWrapperPass>(); 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// The IR fed into RewriteStatepointsForGC may have had attributes and 109 /// metadata implying dereferenceability that are no longer valid/correct after 110 /// RewriteStatepointsForGC has run. This is because semantically, after 111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 112 /// heap. stripNonValidAttributesAndMetadata (conservatively) restores 113 /// correctness by erasing all attributes in the module that externally imply 114 /// dereferenceability. Similar reasoning also applies to the noalias 115 /// attributes and metadata. gc.statepoint can touch the entire heap including 116 /// noalias objects. 117 void stripNonValidAttributesAndMetadata(Module &M); 118 119 // Helpers for stripNonValidAttributesAndMetadata 120 void stripNonValidAttributesAndMetadataFromBody(Function &F); 121 void stripNonValidAttributesFromPrototype(Function &F); 122 // Certain metadata on instructions are invalid after running RS4GC. 123 // Optimizations that run after RS4GC can incorrectly use this metadata to 124 // optimize functions. We drop such metadata on the instruction. 125 void stripInvalidMetadataFromInstruction(Instruction &I); 126 }; 127 } // namespace 128 129 char RewriteStatepointsForGC::ID = 0; 130 131 ModulePass *llvm::createRewriteStatepointsForGCPass() { 132 return new RewriteStatepointsForGC(); 133 } 134 135 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 136 "Make relocations explicit at statepoints", false, false) 137 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 138 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 139 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 140 "Make relocations explicit at statepoints", false, false) 141 142 namespace { 143 struct GCPtrLivenessData { 144 /// Values defined in this block. 145 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 146 /// Values used in this block (and thus live); does not included values 147 /// killed within this block. 148 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 149 150 /// Values live into this basic block (i.e. used by any 151 /// instruction in this basic block or ones reachable from here) 152 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 153 154 /// Values live out of this basic block (i.e. live into 155 /// any successor block) 156 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 157 }; 158 159 // The type of the internal cache used inside the findBasePointers family 160 // of functions. From the callers perspective, this is an opaque type and 161 // should not be inspected. 162 // 163 // In the actual implementation this caches two relations: 164 // - The base relation itself (i.e. this pointer is based on that one) 165 // - The base defining value relation (i.e. before base_phi insertion) 166 // Generally, after the execution of a full findBasePointer call, only the 167 // base relation will remain. Internally, we add a mixture of the two 168 // types, then update all the second type to the first type 169 typedef MapVector<Value *, Value *> DefiningValueMapTy; 170 typedef SetVector<Value *> StatepointLiveSetTy; 171 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>> 172 RematerializedValueMapTy; 173 174 struct PartiallyConstructedSafepointRecord { 175 /// The set of values known to be live across this safepoint 176 StatepointLiveSetTy LiveSet; 177 178 /// Mapping from live pointers to a base-defining-value 179 MapVector<Value *, Value *> PointerToBase; 180 181 /// The *new* gc.statepoint instruction itself. This produces the token 182 /// that normal path gc.relocates and the gc.result are tied to. 183 Instruction *StatepointToken; 184 185 /// Instruction to which exceptional gc relocates are attached 186 /// Makes it easier to iterate through them during relocationViaAlloca. 187 Instruction *UnwindToken; 188 189 /// Record live values we are rematerialized instead of relocating. 190 /// They are not included into 'LiveSet' field. 191 /// Maps rematerialized copy to it's original value. 192 RematerializedValueMapTy RematerializedValues; 193 }; 194 } 195 196 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 197 Optional<OperandBundleUse> DeoptBundle = 198 CS.getOperandBundle(LLVMContext::OB_deopt); 199 200 if (!DeoptBundle.hasValue()) { 201 assert(AllowStatepointWithNoDeoptInfo && 202 "Found non-leaf call without deopt info!"); 203 return None; 204 } 205 206 return DeoptBundle.getValue().Inputs; 207 } 208 209 /// Compute the live-in set for every basic block in the function 210 static void computeLiveInValues(DominatorTree &DT, Function &F, 211 GCPtrLivenessData &Data); 212 213 /// Given results from the dataflow liveness computation, find the set of live 214 /// Values at a particular instruction. 215 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 216 StatepointLiveSetTy &out); 217 218 // TODO: Once we can get to the GCStrategy, this becomes 219 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 220 221 static bool isGCPointerType(Type *T) { 222 if (auto *PT = dyn_cast<PointerType>(T)) 223 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 224 // GC managed heap. We know that a pointer into this heap needs to be 225 // updated and that no other pointer does. 226 return PT->getAddressSpace() == 1; 227 return false; 228 } 229 230 // Return true if this type is one which a) is a gc pointer or contains a GC 231 // pointer and b) is of a type this code expects to encounter as a live value. 232 // (The insertion code will assert that a type which matches (a) and not (b) 233 // is not encountered.) 234 static bool isHandledGCPointerType(Type *T) { 235 // We fully support gc pointers 236 if (isGCPointerType(T)) 237 return true; 238 // We partially support vectors of gc pointers. The code will assert if it 239 // can't handle something. 240 if (auto VT = dyn_cast<VectorType>(T)) 241 if (isGCPointerType(VT->getElementType())) 242 return true; 243 return false; 244 } 245 246 #ifndef NDEBUG 247 /// Returns true if this type contains a gc pointer whether we know how to 248 /// handle that type or not. 249 static bool containsGCPtrType(Type *Ty) { 250 if (isGCPointerType(Ty)) 251 return true; 252 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 253 return isGCPointerType(VT->getScalarType()); 254 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 255 return containsGCPtrType(AT->getElementType()); 256 if (StructType *ST = dyn_cast<StructType>(Ty)) 257 return any_of(ST->subtypes(), containsGCPtrType); 258 return false; 259 } 260 261 // Returns true if this is a type which a) is a gc pointer or contains a GC 262 // pointer and b) is of a type which the code doesn't expect (i.e. first class 263 // aggregates). Used to trip assertions. 264 static bool isUnhandledGCPointerType(Type *Ty) { 265 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 266 } 267 #endif 268 269 // Return the name of the value suffixed with the provided value, or if the 270 // value didn't have a name, the default value specified. 271 static std::string suffixed_name_or(Value *V, StringRef Suffix, 272 StringRef DefaultName) { 273 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 274 } 275 276 // Conservatively identifies any definitions which might be live at the 277 // given instruction. The analysis is performed immediately before the 278 // given instruction. Values defined by that instruction are not considered 279 // live. Values used by that instruction are considered live. 280 static void 281 analyzeParsePointLiveness(DominatorTree &DT, 282 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 283 PartiallyConstructedSafepointRecord &Result) { 284 Instruction *Inst = CS.getInstruction(); 285 286 StatepointLiveSetTy LiveSet; 287 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet); 288 289 if (PrintLiveSet) { 290 dbgs() << "Live Variables:\n"; 291 for (Value *V : LiveSet) 292 dbgs() << " " << V->getName() << " " << *V << "\n"; 293 } 294 if (PrintLiveSetSize) { 295 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 296 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 297 } 298 Result.LiveSet = LiveSet; 299 } 300 301 static bool isKnownBaseResult(Value *V); 302 namespace { 303 /// A single base defining value - An immediate base defining value for an 304 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 305 /// For instructions which have multiple pointer [vector] inputs or that 306 /// transition between vector and scalar types, there is no immediate base 307 /// defining value. The 'base defining value' for 'Def' is the transitive 308 /// closure of this relation stopping at the first instruction which has no 309 /// immediate base defining value. The b.d.v. might itself be a base pointer, 310 /// but it can also be an arbitrary derived pointer. 311 struct BaseDefiningValueResult { 312 /// Contains the value which is the base defining value. 313 Value * const BDV; 314 /// True if the base defining value is also known to be an actual base 315 /// pointer. 316 const bool IsKnownBase; 317 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 318 : BDV(BDV), IsKnownBase(IsKnownBase) { 319 #ifndef NDEBUG 320 // Check consistency between new and old means of checking whether a BDV is 321 // a base. 322 bool MustBeBase = isKnownBaseResult(BDV); 323 assert(!MustBeBase || MustBeBase == IsKnownBase); 324 #endif 325 } 326 }; 327 } 328 329 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 330 331 /// Return a base defining value for the 'Index' element of the given vector 332 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 333 /// 'I'. As an optimization, this method will try to determine when the 334 /// element is known to already be a base pointer. If this can be established, 335 /// the second value in the returned pair will be true. Note that either a 336 /// vector or a pointer typed value can be returned. For the former, the 337 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 338 /// If the later, the return pointer is a BDV (or possibly a base) for the 339 /// particular element in 'I'. 340 static BaseDefiningValueResult 341 findBaseDefiningValueOfVector(Value *I) { 342 // Each case parallels findBaseDefiningValue below, see that code for 343 // detailed motivation. 344 345 if (isa<Argument>(I)) 346 // An incoming argument to the function is a base pointer 347 return BaseDefiningValueResult(I, true); 348 349 if (isa<Constant>(I)) 350 // Base of constant vector consists only of constant null pointers. 351 // For reasoning see similar case inside 'findBaseDefiningValue' function. 352 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 353 true); 354 355 if (isa<LoadInst>(I)) 356 return BaseDefiningValueResult(I, true); 357 358 if (isa<InsertElementInst>(I)) 359 // We don't know whether this vector contains entirely base pointers or 360 // not. To be conservatively correct, we treat it as a BDV and will 361 // duplicate code as needed to construct a parallel vector of bases. 362 return BaseDefiningValueResult(I, false); 363 364 if (isa<ShuffleVectorInst>(I)) 365 // We don't know whether this vector contains entirely base pointers or 366 // not. To be conservatively correct, we treat it as a BDV and will 367 // duplicate code as needed to construct a parallel vector of bases. 368 // TODO: There a number of local optimizations which could be applied here 369 // for particular sufflevector patterns. 370 return BaseDefiningValueResult(I, false); 371 372 // The behavior of getelementptr instructions is the same for vector and 373 // non-vector data types. 374 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 375 return findBaseDefiningValue(GEP->getPointerOperand()); 376 377 // A PHI or Select is a base defining value. The outer findBasePointer 378 // algorithm is responsible for constructing a base value for this BDV. 379 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 380 "unknown vector instruction - no base found for vector element"); 381 return BaseDefiningValueResult(I, false); 382 } 383 384 /// Helper function for findBasePointer - Will return a value which either a) 385 /// defines the base pointer for the input, b) blocks the simple search 386 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 387 /// from pointer to vector type or back. 388 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 389 assert(I->getType()->isPtrOrPtrVectorTy() && 390 "Illegal to ask for the base pointer of a non-pointer type"); 391 392 if (I->getType()->isVectorTy()) 393 return findBaseDefiningValueOfVector(I); 394 395 if (isa<Argument>(I)) 396 // An incoming argument to the function is a base pointer 397 // We should have never reached here if this argument isn't an gc value 398 return BaseDefiningValueResult(I, true); 399 400 if (isa<Constant>(I)) { 401 // We assume that objects with a constant base (e.g. a global) can't move 402 // and don't need to be reported to the collector because they are always 403 // live. Besides global references, all kinds of constants (e.g. undef, 404 // constant expressions, null pointers) can be introduced by the inliner or 405 // the optimizer, especially on dynamically dead paths. 406 // Here we treat all of them as having single null base. By doing this we 407 // trying to avoid problems reporting various conflicts in a form of 408 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 409 // See constant.ll file for relevant test cases. 410 411 return BaseDefiningValueResult( 412 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 413 } 414 415 if (CastInst *CI = dyn_cast<CastInst>(I)) { 416 Value *Def = CI->stripPointerCasts(); 417 // If stripping pointer casts changes the address space there is an 418 // addrspacecast in between. 419 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 420 cast<PointerType>(CI->getType())->getAddressSpace() && 421 "unsupported addrspacecast"); 422 // If we find a cast instruction here, it means we've found a cast which is 423 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 424 // handle int->ptr conversion. 425 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 426 return findBaseDefiningValue(Def); 427 } 428 429 if (isa<LoadInst>(I)) 430 // The value loaded is an gc base itself 431 return BaseDefiningValueResult(I, true); 432 433 434 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 435 // The base of this GEP is the base 436 return findBaseDefiningValue(GEP->getPointerOperand()); 437 438 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 439 switch (II->getIntrinsicID()) { 440 default: 441 // fall through to general call handling 442 break; 443 case Intrinsic::experimental_gc_statepoint: 444 llvm_unreachable("statepoints don't produce pointers"); 445 case Intrinsic::experimental_gc_relocate: { 446 // Rerunning safepoint insertion after safepoints are already 447 // inserted is not supported. It could probably be made to work, 448 // but why are you doing this? There's no good reason. 449 llvm_unreachable("repeat safepoint insertion is not supported"); 450 } 451 case Intrinsic::gcroot: 452 // Currently, this mechanism hasn't been extended to work with gcroot. 453 // There's no reason it couldn't be, but I haven't thought about the 454 // implications much. 455 llvm_unreachable( 456 "interaction with the gcroot mechanism is not supported"); 457 } 458 } 459 // We assume that functions in the source language only return base 460 // pointers. This should probably be generalized via attributes to support 461 // both source language and internal functions. 462 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 463 return BaseDefiningValueResult(I, true); 464 465 // TODO: I have absolutely no idea how to implement this part yet. It's not 466 // necessarily hard, I just haven't really looked at it yet. 467 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 468 469 if (isa<AtomicCmpXchgInst>(I)) 470 // A CAS is effectively a atomic store and load combined under a 471 // predicate. From the perspective of base pointers, we just treat it 472 // like a load. 473 return BaseDefiningValueResult(I, true); 474 475 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 476 "binary ops which don't apply to pointers"); 477 478 // The aggregate ops. Aggregates can either be in the heap or on the 479 // stack, but in either case, this is simply a field load. As a result, 480 // this is a defining definition of the base just like a load is. 481 if (isa<ExtractValueInst>(I)) 482 return BaseDefiningValueResult(I, true); 483 484 // We should never see an insert vector since that would require we be 485 // tracing back a struct value not a pointer value. 486 assert(!isa<InsertValueInst>(I) && 487 "Base pointer for a struct is meaningless"); 488 489 // An extractelement produces a base result exactly when it's input does. 490 // We may need to insert a parallel instruction to extract the appropriate 491 // element out of the base vector corresponding to the input. Given this, 492 // it's analogous to the phi and select case even though it's not a merge. 493 if (isa<ExtractElementInst>(I)) 494 // Note: There a lot of obvious peephole cases here. This are deliberately 495 // handled after the main base pointer inference algorithm to make writing 496 // test cases to exercise that code easier. 497 return BaseDefiningValueResult(I, false); 498 499 // The last two cases here don't return a base pointer. Instead, they 500 // return a value which dynamically selects from among several base 501 // derived pointers (each with it's own base potentially). It's the job of 502 // the caller to resolve these. 503 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 504 "missing instruction case in findBaseDefiningValing"); 505 return BaseDefiningValueResult(I, false); 506 } 507 508 /// Returns the base defining value for this value. 509 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 510 Value *&Cached = Cache[I]; 511 if (!Cached) { 512 Cached = findBaseDefiningValue(I).BDV; 513 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 514 << Cached->getName() << "\n"); 515 } 516 assert(Cache[I] != nullptr); 517 return Cached; 518 } 519 520 /// Return a base pointer for this value if known. Otherwise, return it's 521 /// base defining value. 522 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 523 Value *Def = findBaseDefiningValueCached(I, Cache); 524 auto Found = Cache.find(Def); 525 if (Found != Cache.end()) { 526 // Either a base-of relation, or a self reference. Caller must check. 527 return Found->second; 528 } 529 // Only a BDV available 530 return Def; 531 } 532 533 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 534 /// is it known to be a base pointer? Or do we need to continue searching. 535 static bool isKnownBaseResult(Value *V) { 536 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 537 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 538 !isa<ShuffleVectorInst>(V)) { 539 // no recursion possible 540 return true; 541 } 542 if (isa<Instruction>(V) && 543 cast<Instruction>(V)->getMetadata("is_base_value")) { 544 // This is a previously inserted base phi or select. We know 545 // that this is a base value. 546 return true; 547 } 548 549 // We need to keep searching 550 return false; 551 } 552 553 namespace { 554 /// Models the state of a single base defining value in the findBasePointer 555 /// algorithm for determining where a new instruction is needed to propagate 556 /// the base of this BDV. 557 class BDVState { 558 public: 559 enum Status { Unknown, Base, Conflict }; 560 561 BDVState() : Status(Unknown), BaseValue(nullptr) {} 562 563 explicit BDVState(Status Status, Value *BaseValue = nullptr) 564 : Status(Status), BaseValue(BaseValue) { 565 assert(Status != Base || BaseValue); 566 } 567 568 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 569 570 Status getStatus() const { return Status; } 571 Value *getBaseValue() const { return BaseValue; } 572 573 bool isBase() const { return getStatus() == Base; } 574 bool isUnknown() const { return getStatus() == Unknown; } 575 bool isConflict() const { return getStatus() == Conflict; } 576 577 bool operator==(const BDVState &Other) const { 578 return BaseValue == Other.BaseValue && Status == Other.Status; 579 } 580 581 bool operator!=(const BDVState &other) const { return !(*this == other); } 582 583 LLVM_DUMP_METHOD 584 void dump() const { 585 print(dbgs()); 586 dbgs() << '\n'; 587 } 588 589 void print(raw_ostream &OS) const { 590 switch (getStatus()) { 591 case Unknown: 592 OS << "U"; 593 break; 594 case Base: 595 OS << "B"; 596 break; 597 case Conflict: 598 OS << "C"; 599 break; 600 }; 601 OS << " (" << getBaseValue() << " - " 602 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 603 } 604 605 private: 606 Status Status; 607 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 608 }; 609 } 610 611 #ifndef NDEBUG 612 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 613 State.print(OS); 614 return OS; 615 } 616 #endif 617 618 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 619 switch (LHS.getStatus()) { 620 case BDVState::Unknown: 621 return RHS; 622 623 case BDVState::Base: 624 assert(LHS.getBaseValue() && "can't be null"); 625 if (RHS.isUnknown()) 626 return LHS; 627 628 if (RHS.isBase()) { 629 if (LHS.getBaseValue() == RHS.getBaseValue()) { 630 assert(LHS == RHS && "equality broken!"); 631 return LHS; 632 } 633 return BDVState(BDVState::Conflict); 634 } 635 assert(RHS.isConflict() && "only three states!"); 636 return BDVState(BDVState::Conflict); 637 638 case BDVState::Conflict: 639 return LHS; 640 } 641 llvm_unreachable("only three states!"); 642 } 643 644 // Values of type BDVState form a lattice, and this function implements the meet 645 // operation. 646 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 647 BDVState Result = meetBDVStateImpl(LHS, RHS); 648 assert(Result == meetBDVStateImpl(RHS, LHS) && 649 "Math is wrong: meet does not commute!"); 650 return Result; 651 } 652 653 /// For a given value or instruction, figure out what base ptr its derived from. 654 /// For gc objects, this is simply itself. On success, returns a value which is 655 /// the base pointer. (This is reliable and can be used for relocation.) On 656 /// failure, returns nullptr. 657 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 658 Value *Def = findBaseOrBDV(I, Cache); 659 660 if (isKnownBaseResult(Def)) 661 return Def; 662 663 // Here's the rough algorithm: 664 // - For every SSA value, construct a mapping to either an actual base 665 // pointer or a PHI which obscures the base pointer. 666 // - Construct a mapping from PHI to unknown TOP state. Use an 667 // optimistic algorithm to propagate base pointer information. Lattice 668 // looks like: 669 // UNKNOWN 670 // b1 b2 b3 b4 671 // CONFLICT 672 // When algorithm terminates, all PHIs will either have a single concrete 673 // base or be in a conflict state. 674 // - For every conflict, insert a dummy PHI node without arguments. Add 675 // these to the base[Instruction] = BasePtr mapping. For every 676 // non-conflict, add the actual base. 677 // - For every conflict, add arguments for the base[a] of each input 678 // arguments. 679 // 680 // Note: A simpler form of this would be to add the conflict form of all 681 // PHIs without running the optimistic algorithm. This would be 682 // analogous to pessimistic data flow and would likely lead to an 683 // overall worse solution. 684 685 #ifndef NDEBUG 686 auto isExpectedBDVType = [](Value *BDV) { 687 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 688 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 689 isa<ShuffleVectorInst>(BDV); 690 }; 691 #endif 692 693 // Once populated, will contain a mapping from each potentially non-base BDV 694 // to a lattice value (described above) which corresponds to that BDV. 695 // We use the order of insertion (DFS over the def/use graph) to provide a 696 // stable deterministic ordering for visiting DenseMaps (which are unordered) 697 // below. This is important for deterministic compilation. 698 MapVector<Value *, BDVState> States; 699 700 // Recursively fill in all base defining values reachable from the initial 701 // one for which we don't already know a definite base value for 702 /* scope */ { 703 SmallVector<Value*, 16> Worklist; 704 Worklist.push_back(Def); 705 States.insert({Def, BDVState()}); 706 while (!Worklist.empty()) { 707 Value *Current = Worklist.pop_back_val(); 708 assert(!isKnownBaseResult(Current) && "why did it get added?"); 709 710 auto visitIncomingValue = [&](Value *InVal) { 711 Value *Base = findBaseOrBDV(InVal, Cache); 712 if (isKnownBaseResult(Base)) 713 // Known bases won't need new instructions introduced and can be 714 // ignored safely 715 return; 716 assert(isExpectedBDVType(Base) && "the only non-base values " 717 "we see should be base defining values"); 718 if (States.insert(std::make_pair(Base, BDVState())).second) 719 Worklist.push_back(Base); 720 }; 721 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 722 for (Value *InVal : PN->incoming_values()) 723 visitIncomingValue(InVal); 724 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 725 visitIncomingValue(SI->getTrueValue()); 726 visitIncomingValue(SI->getFalseValue()); 727 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 728 visitIncomingValue(EE->getVectorOperand()); 729 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 730 visitIncomingValue(IE->getOperand(0)); // vector operand 731 visitIncomingValue(IE->getOperand(1)); // scalar operand 732 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 733 visitIncomingValue(SV->getOperand(0)); 734 visitIncomingValue(SV->getOperand(1)); 735 } 736 else { 737 llvm_unreachable("Unimplemented instruction case"); 738 } 739 } 740 } 741 742 #ifndef NDEBUG 743 DEBUG(dbgs() << "States after initialization:\n"); 744 for (auto Pair : States) { 745 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 746 } 747 #endif 748 749 // Return a phi state for a base defining value. We'll generate a new 750 // base state for known bases and expect to find a cached state otherwise. 751 auto getStateForBDV = [&](Value *baseValue) { 752 if (isKnownBaseResult(baseValue)) 753 return BDVState(baseValue); 754 auto I = States.find(baseValue); 755 assert(I != States.end() && "lookup failed!"); 756 return I->second; 757 }; 758 759 bool Progress = true; 760 while (Progress) { 761 #ifndef NDEBUG 762 const size_t OldSize = States.size(); 763 #endif 764 Progress = false; 765 // We're only changing values in this loop, thus safe to keep iterators. 766 // Since this is computing a fixed point, the order of visit does not 767 // effect the result. TODO: We could use a worklist here and make this run 768 // much faster. 769 for (auto Pair : States) { 770 Value *BDV = Pair.first; 771 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 772 773 // Given an input value for the current instruction, return a BDVState 774 // instance which represents the BDV of that value. 775 auto getStateForInput = [&](Value *V) mutable { 776 Value *BDV = findBaseOrBDV(V, Cache); 777 return getStateForBDV(BDV); 778 }; 779 780 BDVState NewState; 781 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 782 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 783 NewState = 784 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 785 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 786 for (Value *Val : PN->incoming_values()) 787 NewState = meetBDVState(NewState, getStateForInput(Val)); 788 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 789 // The 'meet' for an extractelement is slightly trivial, but it's still 790 // useful in that it drives us to conflict if our input is. 791 NewState = 792 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 793 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 794 // Given there's a inherent type mismatch between the operands, will 795 // *always* produce Conflict. 796 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 797 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 798 } else { 799 // The only instance this does not return a Conflict is when both the 800 // vector operands are the same vector. 801 auto *SV = cast<ShuffleVectorInst>(BDV); 802 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 803 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 804 } 805 806 BDVState OldState = States[BDV]; 807 if (OldState != NewState) { 808 Progress = true; 809 States[BDV] = NewState; 810 } 811 } 812 813 assert(OldSize == States.size() && 814 "fixed point shouldn't be adding any new nodes to state"); 815 } 816 817 #ifndef NDEBUG 818 DEBUG(dbgs() << "States after meet iteration:\n"); 819 for (auto Pair : States) { 820 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 821 } 822 #endif 823 824 // Insert Phis for all conflicts 825 // TODO: adjust naming patterns to avoid this order of iteration dependency 826 for (auto Pair : States) { 827 Instruction *I = cast<Instruction>(Pair.first); 828 BDVState State = Pair.second; 829 assert(!isKnownBaseResult(I) && "why did it get added?"); 830 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 831 832 // extractelement instructions are a bit special in that we may need to 833 // insert an extract even when we know an exact base for the instruction. 834 // The problem is that we need to convert from a vector base to a scalar 835 // base for the particular indice we're interested in. 836 if (State.isBase() && isa<ExtractElementInst>(I) && 837 isa<VectorType>(State.getBaseValue()->getType())) { 838 auto *EE = cast<ExtractElementInst>(I); 839 // TODO: In many cases, the new instruction is just EE itself. We should 840 // exploit this, but can't do it here since it would break the invariant 841 // about the BDV not being known to be a base. 842 auto *BaseInst = ExtractElementInst::Create( 843 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 844 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 845 States[I] = BDVState(BDVState::Base, BaseInst); 846 } 847 848 // Since we're joining a vector and scalar base, they can never be the 849 // same. As a result, we should always see insert element having reached 850 // the conflict state. 851 assert(!isa<InsertElementInst>(I) || State.isConflict()); 852 853 if (!State.isConflict()) 854 continue; 855 856 /// Create and insert a new instruction which will represent the base of 857 /// the given instruction 'I'. 858 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 859 if (isa<PHINode>(I)) { 860 BasicBlock *BB = I->getParent(); 861 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 862 assert(NumPreds > 0 && "how did we reach here"); 863 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 864 return PHINode::Create(I->getType(), NumPreds, Name, I); 865 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 866 // The undef will be replaced later 867 UndefValue *Undef = UndefValue::get(SI->getType()); 868 std::string Name = suffixed_name_or(I, ".base", "base_select"); 869 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 870 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 871 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 872 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 873 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 874 EE); 875 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 876 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 877 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 878 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 879 return InsertElementInst::Create(VecUndef, ScalarUndef, 880 IE->getOperand(2), Name, IE); 881 } else { 882 auto *SV = cast<ShuffleVectorInst>(I); 883 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 884 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 885 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), 886 Name, SV); 887 } 888 }; 889 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 890 // Add metadata marking this as a base value 891 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 892 States[I] = BDVState(BDVState::Conflict, BaseInst); 893 } 894 895 // Returns a instruction which produces the base pointer for a given 896 // instruction. The instruction is assumed to be an input to one of the BDVs 897 // seen in the inference algorithm above. As such, we must either already 898 // know it's base defining value is a base, or have inserted a new 899 // instruction to propagate the base of it's BDV and have entered that newly 900 // introduced instruction into the state table. In either case, we are 901 // assured to be able to determine an instruction which produces it's base 902 // pointer. 903 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 904 Value *BDV = findBaseOrBDV(Input, Cache); 905 Value *Base = nullptr; 906 if (isKnownBaseResult(BDV)) { 907 Base = BDV; 908 } else { 909 // Either conflict or base. 910 assert(States.count(BDV)); 911 Base = States[BDV].getBaseValue(); 912 } 913 assert(Base && "Can't be null"); 914 // The cast is needed since base traversal may strip away bitcasts 915 if (Base->getType() != Input->getType() && InsertPt) 916 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 917 return Base; 918 }; 919 920 // Fixup all the inputs of the new PHIs. Visit order needs to be 921 // deterministic and predictable because we're naming newly created 922 // instructions. 923 for (auto Pair : States) { 924 Instruction *BDV = cast<Instruction>(Pair.first); 925 BDVState State = Pair.second; 926 927 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 928 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 929 if (!State.isConflict()) 930 continue; 931 932 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 933 PHINode *PN = cast<PHINode>(BDV); 934 unsigned NumPHIValues = PN->getNumIncomingValues(); 935 for (unsigned i = 0; i < NumPHIValues; i++) { 936 Value *InVal = PN->getIncomingValue(i); 937 BasicBlock *InBB = PN->getIncomingBlock(i); 938 939 // If we've already seen InBB, add the same incoming value 940 // we added for it earlier. The IR verifier requires phi 941 // nodes with multiple entries from the same basic block 942 // to have the same incoming value for each of those 943 // entries. If we don't do this check here and basephi 944 // has a different type than base, we'll end up adding two 945 // bitcasts (and hence two distinct values) as incoming 946 // values for the same basic block. 947 948 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 949 if (BlockIndex != -1) { 950 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 951 BasePHI->addIncoming(OldBase, InBB); 952 953 #ifndef NDEBUG 954 Value *Base = getBaseForInput(InVal, nullptr); 955 // In essence this assert states: the only way two values 956 // incoming from the same basic block may be different is by 957 // being different bitcasts of the same value. A cleanup 958 // that remains TODO is changing findBaseOrBDV to return an 959 // llvm::Value of the correct type (and still remain pure). 960 // This will remove the need to add bitcasts. 961 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 962 "Sanity -- findBaseOrBDV should be pure!"); 963 #endif 964 continue; 965 } 966 967 // Find the instruction which produces the base for each input. We may 968 // need to insert a bitcast in the incoming block. 969 // TODO: Need to split critical edges if insertion is needed 970 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 971 BasePHI->addIncoming(Base, InBB); 972 } 973 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 974 } else if (SelectInst *BaseSI = 975 dyn_cast<SelectInst>(State.getBaseValue())) { 976 SelectInst *SI = cast<SelectInst>(BDV); 977 978 // Find the instruction which produces the base for each input. 979 // We may need to insert a bitcast. 980 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 981 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 982 } else if (auto *BaseEE = 983 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 984 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 985 // Find the instruction which produces the base for each input. We may 986 // need to insert a bitcast. 987 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 988 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 989 auto *BdvIE = cast<InsertElementInst>(BDV); 990 auto UpdateOperand = [&](int OperandIdx) { 991 Value *InVal = BdvIE->getOperand(OperandIdx); 992 Value *Base = getBaseForInput(InVal, BaseIE); 993 BaseIE->setOperand(OperandIdx, Base); 994 }; 995 UpdateOperand(0); // vector operand 996 UpdateOperand(1); // scalar operand 997 } else { 998 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 999 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1000 auto UpdateOperand = [&](int OperandIdx) { 1001 Value *InVal = BdvSV->getOperand(OperandIdx); 1002 Value *Base = getBaseForInput(InVal, BaseSV); 1003 BaseSV->setOperand(OperandIdx, Base); 1004 }; 1005 UpdateOperand(0); // vector operand 1006 UpdateOperand(1); // vector operand 1007 } 1008 } 1009 1010 // Cache all of our results so we can cheaply reuse them 1011 // NOTE: This is actually two caches: one of the base defining value 1012 // relation and one of the base pointer relation! FIXME 1013 for (auto Pair : States) { 1014 auto *BDV = Pair.first; 1015 Value *Base = Pair.second.getBaseValue(); 1016 assert(BDV && Base); 1017 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1018 1019 DEBUG(dbgs() << "Updating base value cache" 1020 << " for: " << BDV->getName() << " from: " 1021 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1022 << " to: " << Base->getName() << "\n"); 1023 1024 if (Cache.count(BDV)) { 1025 assert(isKnownBaseResult(Base) && 1026 "must be something we 'know' is a base pointer"); 1027 // Once we transition from the BDV relation being store in the Cache to 1028 // the base relation being stored, it must be stable 1029 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1030 "base relation should be stable"); 1031 } 1032 Cache[BDV] = Base; 1033 } 1034 assert(Cache.count(Def)); 1035 return Cache[Def]; 1036 } 1037 1038 // For a set of live pointers (base and/or derived), identify the base 1039 // pointer of the object which they are derived from. This routine will 1040 // mutate the IR graph as needed to make the 'base' pointer live at the 1041 // definition site of 'derived'. This ensures that any use of 'derived' can 1042 // also use 'base'. This may involve the insertion of a number of 1043 // additional PHI nodes. 1044 // 1045 // preconditions: live is a set of pointer type Values 1046 // 1047 // side effects: may insert PHI nodes into the existing CFG, will preserve 1048 // CFG, will not remove or mutate any existing nodes 1049 // 1050 // post condition: PointerToBase contains one (derived, base) pair for every 1051 // pointer in live. Note that derived can be equal to base if the original 1052 // pointer was a base pointer. 1053 static void 1054 findBasePointers(const StatepointLiveSetTy &live, 1055 MapVector<Value *, Value *> &PointerToBase, 1056 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1057 for (Value *ptr : live) { 1058 Value *base = findBasePointer(ptr, DVCache); 1059 assert(base && "failed to find base pointer"); 1060 PointerToBase[ptr] = base; 1061 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1062 DT->dominates(cast<Instruction>(base)->getParent(), 1063 cast<Instruction>(ptr)->getParent())) && 1064 "The base we found better dominate the derived pointer"); 1065 } 1066 } 1067 1068 /// Find the required based pointers (and adjust the live set) for the given 1069 /// parse point. 1070 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1071 CallSite CS, 1072 PartiallyConstructedSafepointRecord &result) { 1073 MapVector<Value *, Value *> PointerToBase; 1074 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1075 1076 if (PrintBasePointers) { 1077 errs() << "Base Pairs (w/o Relocation):\n"; 1078 for (auto &Pair : PointerToBase) { 1079 errs() << " derived "; 1080 Pair.first->printAsOperand(errs(), false); 1081 errs() << " base "; 1082 Pair.second->printAsOperand(errs(), false); 1083 errs() << "\n";; 1084 } 1085 } 1086 1087 result.PointerToBase = PointerToBase; 1088 } 1089 1090 /// Given an updated version of the dataflow liveness results, update the 1091 /// liveset and base pointer maps for the call site CS. 1092 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1093 CallSite CS, 1094 PartiallyConstructedSafepointRecord &result); 1095 1096 static void recomputeLiveInValues( 1097 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1098 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1099 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1100 // again. The old values are still live and will help it stabilize quickly. 1101 GCPtrLivenessData RevisedLivenessData; 1102 computeLiveInValues(DT, F, RevisedLivenessData); 1103 for (size_t i = 0; i < records.size(); i++) { 1104 struct PartiallyConstructedSafepointRecord &info = records[i]; 1105 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1106 } 1107 } 1108 1109 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1110 // no uses of the original value / return value between the gc.statepoint and 1111 // the gc.relocate / gc.result call. One case which can arise is a phi node 1112 // starting one of the successor blocks. We also need to be able to insert the 1113 // gc.relocates only on the path which goes through the statepoint. We might 1114 // need to split an edge to make this possible. 1115 static BasicBlock * 1116 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1117 DominatorTree &DT) { 1118 BasicBlock *Ret = BB; 1119 if (!BB->getUniquePredecessor()) 1120 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1121 1122 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1123 // from it 1124 FoldSingleEntryPHINodes(Ret); 1125 assert(!isa<PHINode>(Ret->begin()) && 1126 "All PHI nodes should have been removed!"); 1127 1128 // At this point, we can safely insert a gc.relocate or gc.result as the first 1129 // instruction in Ret if needed. 1130 return Ret; 1131 } 1132 1133 // Create new attribute set containing only attributes which can be transferred 1134 // from original call to the safepoint. 1135 static AttributeList legalizeCallAttributes(AttributeList AL) { 1136 if (AL.isEmpty()) 1137 return AL; 1138 1139 // Remove the readonly, readnone, and statepoint function attributes. 1140 AttrBuilder FnAttrs = AL.getFnAttributes(); 1141 FnAttrs.removeAttribute(Attribute::ReadNone); 1142 FnAttrs.removeAttribute(Attribute::ReadOnly); 1143 for (Attribute A : AL.getFnAttributes()) { 1144 if (isStatepointDirectiveAttr(A)) 1145 FnAttrs.remove(A); 1146 } 1147 1148 // Just skip parameter and return attributes for now 1149 LLVMContext &Ctx = AL.getContext(); 1150 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1151 AttributeSet::get(Ctx, FnAttrs)); 1152 } 1153 1154 /// Helper function to place all gc relocates necessary for the given 1155 /// statepoint. 1156 /// Inputs: 1157 /// liveVariables - list of variables to be relocated. 1158 /// liveStart - index of the first live variable. 1159 /// basePtrs - base pointers. 1160 /// statepointToken - statepoint instruction to which relocates should be 1161 /// bound. 1162 /// Builder - Llvm IR builder to be used to construct new calls. 1163 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1164 const int LiveStart, 1165 ArrayRef<Value *> BasePtrs, 1166 Instruction *StatepointToken, 1167 IRBuilder<> Builder) { 1168 if (LiveVariables.empty()) 1169 return; 1170 1171 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1172 auto ValIt = find(LiveVec, Val); 1173 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1174 size_t Index = std::distance(LiveVec.begin(), ValIt); 1175 assert(Index < LiveVec.size() && "Bug in std::find?"); 1176 return Index; 1177 }; 1178 Module *M = StatepointToken->getModule(); 1179 1180 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1181 // element type is i8 addrspace(1)*). We originally generated unique 1182 // declarations for each pointer type, but this proved problematic because 1183 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1184 // towards a single unified pointer type anyways, we can just cast everything 1185 // to an i8* of the right address space. A bitcast is added later to convert 1186 // gc_relocate to the actual value's type. 1187 auto getGCRelocateDecl = [&] (Type *Ty) { 1188 assert(isHandledGCPointerType(Ty)); 1189 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1190 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1191 if (auto *VT = dyn_cast<VectorType>(Ty)) 1192 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1193 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1194 {NewTy}); 1195 }; 1196 1197 // Lazily populated map from input types to the canonicalized form mentioned 1198 // in the comment above. This should probably be cached somewhere more 1199 // broadly. 1200 DenseMap<Type*, Value*> TypeToDeclMap; 1201 1202 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1203 // Generate the gc.relocate call and save the result 1204 Value *BaseIdx = 1205 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1206 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1207 1208 Type *Ty = LiveVariables[i]->getType(); 1209 if (!TypeToDeclMap.count(Ty)) 1210 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1211 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1212 1213 // only specify a debug name if we can give a useful one 1214 CallInst *Reloc = Builder.CreateCall( 1215 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1216 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1217 // Trick CodeGen into thinking there are lots of free registers at this 1218 // fake call. 1219 Reloc->setCallingConv(CallingConv::Cold); 1220 } 1221 } 1222 1223 namespace { 1224 1225 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1226 /// avoids having to worry about keeping around dangling pointers to Values. 1227 class DeferredReplacement { 1228 AssertingVH<Instruction> Old; 1229 AssertingVH<Instruction> New; 1230 bool IsDeoptimize = false; 1231 1232 DeferredReplacement() {} 1233 1234 public: 1235 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1236 assert(Old != New && Old && New && 1237 "Cannot RAUW equal values or to / from null!"); 1238 1239 DeferredReplacement D; 1240 D.Old = Old; 1241 D.New = New; 1242 return D; 1243 } 1244 1245 static DeferredReplacement createDelete(Instruction *ToErase) { 1246 DeferredReplacement D; 1247 D.Old = ToErase; 1248 return D; 1249 } 1250 1251 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1252 #ifndef NDEBUG 1253 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1254 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1255 "Only way to construct a deoptimize deferred replacement"); 1256 #endif 1257 DeferredReplacement D; 1258 D.Old = Old; 1259 D.IsDeoptimize = true; 1260 return D; 1261 } 1262 1263 /// Does the task represented by this instance. 1264 void doReplacement() { 1265 Instruction *OldI = Old; 1266 Instruction *NewI = New; 1267 1268 assert(OldI != NewI && "Disallowed at construction?!"); 1269 assert((!IsDeoptimize || !New) && 1270 "Deoptimize instrinsics are not replaced!"); 1271 1272 Old = nullptr; 1273 New = nullptr; 1274 1275 if (NewI) 1276 OldI->replaceAllUsesWith(NewI); 1277 1278 if (IsDeoptimize) { 1279 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1280 // not necessarilly be followed by the matching return. 1281 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1282 new UnreachableInst(RI->getContext(), RI); 1283 RI->eraseFromParent(); 1284 } 1285 1286 OldI->eraseFromParent(); 1287 } 1288 }; 1289 } 1290 1291 static StringRef getDeoptLowering(CallSite CS) { 1292 const char *DeoptLowering = "deopt-lowering"; 1293 if (CS.hasFnAttr(DeoptLowering)) { 1294 // FIXME: CallSite has a *really* confusing interface around attributes 1295 // with values. 1296 const AttributeList &CSAS = CS.getAttributes(); 1297 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1298 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1299 .getValueAsString(); 1300 Function *F = CS.getCalledFunction(); 1301 assert(F && F->hasFnAttribute(DeoptLowering)); 1302 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1303 } 1304 return "live-through"; 1305 } 1306 1307 1308 static void 1309 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1310 const SmallVectorImpl<Value *> &BasePtrs, 1311 const SmallVectorImpl<Value *> &LiveVariables, 1312 PartiallyConstructedSafepointRecord &Result, 1313 std::vector<DeferredReplacement> &Replacements) { 1314 assert(BasePtrs.size() == LiveVariables.size()); 1315 1316 // Then go ahead and use the builder do actually do the inserts. We insert 1317 // immediately before the previous instruction under the assumption that all 1318 // arguments will be available here. We can't insert afterwards since we may 1319 // be replacing a terminator. 1320 Instruction *InsertBefore = CS.getInstruction(); 1321 IRBuilder<> Builder(InsertBefore); 1322 1323 ArrayRef<Value *> GCArgs(LiveVariables); 1324 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1325 uint32_t NumPatchBytes = 0; 1326 uint32_t Flags = uint32_t(StatepointFlags::None); 1327 1328 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1329 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1330 ArrayRef<Use> TransitionArgs; 1331 if (auto TransitionBundle = 1332 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1333 Flags |= uint32_t(StatepointFlags::GCTransition); 1334 TransitionArgs = TransitionBundle->Inputs; 1335 } 1336 1337 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1338 // with a return value, we lower then as never returning calls to 1339 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1340 bool IsDeoptimize = false; 1341 1342 StatepointDirectives SD = 1343 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1344 if (SD.NumPatchBytes) 1345 NumPatchBytes = *SD.NumPatchBytes; 1346 if (SD.StatepointID) 1347 StatepointID = *SD.StatepointID; 1348 1349 // Pass through the requested lowering if any. The default is live-through. 1350 StringRef DeoptLowering = getDeoptLowering(CS); 1351 if (DeoptLowering.equals("live-in")) 1352 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1353 else { 1354 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1355 } 1356 1357 Value *CallTarget = CS.getCalledValue(); 1358 if (Function *F = dyn_cast<Function>(CallTarget)) { 1359 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1360 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1361 // __llvm_deoptimize symbol. We want to resolve this now, since the 1362 // verifier does not allow taking the address of an intrinsic function. 1363 1364 SmallVector<Type *, 8> DomainTy; 1365 for (Value *Arg : CallArgs) 1366 DomainTy.push_back(Arg->getType()); 1367 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1368 /* isVarArg = */ false); 1369 1370 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1371 // calls to @llvm.experimental.deoptimize with different argument types in 1372 // the same module. This is fine -- we assume the frontend knew what it 1373 // was doing when generating this kind of IR. 1374 CallTarget = 1375 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1376 1377 IsDeoptimize = true; 1378 } 1379 } 1380 1381 // Create the statepoint given all the arguments 1382 Instruction *Token = nullptr; 1383 if (CS.isCall()) { 1384 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1385 CallInst *Call = Builder.CreateGCStatepointCall( 1386 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1387 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1388 1389 Call->setTailCallKind(ToReplace->getTailCallKind()); 1390 Call->setCallingConv(ToReplace->getCallingConv()); 1391 1392 // Currently we will fail on parameter attributes and on certain 1393 // function attributes. In case if we can handle this set of attributes - 1394 // set up function attrs directly on statepoint and return attrs later for 1395 // gc_result intrinsic. 1396 Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1397 1398 Token = Call; 1399 1400 // Put the following gc_result and gc_relocate calls immediately after the 1401 // the old call (which we're about to delete) 1402 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1403 Builder.SetInsertPoint(ToReplace->getNextNode()); 1404 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1405 } else { 1406 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1407 1408 // Insert the new invoke into the old block. We'll remove the old one in a 1409 // moment at which point this will become the new terminator for the 1410 // original block. 1411 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1412 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1413 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1414 GCArgs, "statepoint_token"); 1415 1416 Invoke->setCallingConv(ToReplace->getCallingConv()); 1417 1418 // Currently we will fail on parameter attributes and on certain 1419 // function attributes. In case if we can handle this set of attributes - 1420 // set up function attrs directly on statepoint and return attrs later for 1421 // gc_result intrinsic. 1422 Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1423 1424 Token = Invoke; 1425 1426 // Generate gc relocates in exceptional path 1427 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1428 assert(!isa<PHINode>(UnwindBlock->begin()) && 1429 UnwindBlock->getUniquePredecessor() && 1430 "can't safely insert in this block!"); 1431 1432 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1433 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1434 1435 // Attach exceptional gc relocates to the landingpad. 1436 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1437 Result.UnwindToken = ExceptionalToken; 1438 1439 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1440 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1441 Builder); 1442 1443 // Generate gc relocates and returns for normal block 1444 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1445 assert(!isa<PHINode>(NormalDest->begin()) && 1446 NormalDest->getUniquePredecessor() && 1447 "can't safely insert in this block!"); 1448 1449 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1450 1451 // gc relocates will be generated later as if it were regular call 1452 // statepoint 1453 } 1454 assert(Token && "Should be set in one of the above branches!"); 1455 1456 if (IsDeoptimize) { 1457 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1458 // transform the tail-call like structure to a call to a void function 1459 // followed by unreachable to get better codegen. 1460 Replacements.push_back( 1461 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1462 } else { 1463 Token->setName("statepoint_token"); 1464 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1465 StringRef Name = 1466 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1467 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1468 GCResult->setAttributes( 1469 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1470 CS.getAttributes().getRetAttributes())); 1471 1472 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1473 // live set of some other safepoint, in which case that safepoint's 1474 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1475 // llvm::Instruction. Instead, we defer the replacement and deletion to 1476 // after the live sets have been made explicit in the IR, and we no longer 1477 // have raw pointers to worry about. 1478 Replacements.emplace_back( 1479 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1480 } else { 1481 Replacements.emplace_back( 1482 DeferredReplacement::createDelete(CS.getInstruction())); 1483 } 1484 } 1485 1486 Result.StatepointToken = Token; 1487 1488 // Second, create a gc.relocate for every live variable 1489 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1490 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1491 } 1492 1493 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1494 // which make the relocations happening at this safepoint explicit. 1495 // 1496 // WARNING: Does not do any fixup to adjust users of the original live 1497 // values. That's the callers responsibility. 1498 static void 1499 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1500 PartiallyConstructedSafepointRecord &Result, 1501 std::vector<DeferredReplacement> &Replacements) { 1502 const auto &LiveSet = Result.LiveSet; 1503 const auto &PointerToBase = Result.PointerToBase; 1504 1505 // Convert to vector for efficient cross referencing. 1506 SmallVector<Value *, 64> BaseVec, LiveVec; 1507 LiveVec.reserve(LiveSet.size()); 1508 BaseVec.reserve(LiveSet.size()); 1509 for (Value *L : LiveSet) { 1510 LiveVec.push_back(L); 1511 assert(PointerToBase.count(L)); 1512 Value *Base = PointerToBase.find(L)->second; 1513 BaseVec.push_back(Base); 1514 } 1515 assert(LiveVec.size() == BaseVec.size()); 1516 1517 // Do the actual rewriting and delete the old statepoint 1518 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1519 } 1520 1521 // Helper function for the relocationViaAlloca. 1522 // 1523 // It receives iterator to the statepoint gc relocates and emits a store to the 1524 // assigned location (via allocaMap) for the each one of them. It adds the 1525 // visited values into the visitedLiveValues set, which we will later use them 1526 // for sanity checking. 1527 static void 1528 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1529 DenseMap<Value *, Value *> &AllocaMap, 1530 DenseSet<Value *> &VisitedLiveValues) { 1531 1532 for (User *U : GCRelocs) { 1533 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1534 if (!Relocate) 1535 continue; 1536 1537 Value *OriginalValue = Relocate->getDerivedPtr(); 1538 assert(AllocaMap.count(OriginalValue)); 1539 Value *Alloca = AllocaMap[OriginalValue]; 1540 1541 // Emit store into the related alloca 1542 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1543 // the correct type according to alloca. 1544 assert(Relocate->getNextNode() && 1545 "Should always have one since it's not a terminator"); 1546 IRBuilder<> Builder(Relocate->getNextNode()); 1547 Value *CastedRelocatedValue = 1548 Builder.CreateBitCast(Relocate, 1549 cast<AllocaInst>(Alloca)->getAllocatedType(), 1550 suffixed_name_or(Relocate, ".casted", "")); 1551 1552 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1553 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1554 1555 #ifndef NDEBUG 1556 VisitedLiveValues.insert(OriginalValue); 1557 #endif 1558 } 1559 } 1560 1561 // Helper function for the "relocationViaAlloca". Similar to the 1562 // "insertRelocationStores" but works for rematerialized values. 1563 static void insertRematerializationStores( 1564 const RematerializedValueMapTy &RematerializedValues, 1565 DenseMap<Value *, Value *> &AllocaMap, 1566 DenseSet<Value *> &VisitedLiveValues) { 1567 1568 for (auto RematerializedValuePair: RematerializedValues) { 1569 Instruction *RematerializedValue = RematerializedValuePair.first; 1570 Value *OriginalValue = RematerializedValuePair.second; 1571 1572 assert(AllocaMap.count(OriginalValue) && 1573 "Can not find alloca for rematerialized value"); 1574 Value *Alloca = AllocaMap[OriginalValue]; 1575 1576 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1577 Store->insertAfter(RematerializedValue); 1578 1579 #ifndef NDEBUG 1580 VisitedLiveValues.insert(OriginalValue); 1581 #endif 1582 } 1583 } 1584 1585 /// Do all the relocation update via allocas and mem2reg 1586 static void relocationViaAlloca( 1587 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1588 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1589 #ifndef NDEBUG 1590 // record initial number of (static) allocas; we'll check we have the same 1591 // number when we get done. 1592 int InitialAllocaNum = 0; 1593 for (Instruction &I : F.getEntryBlock()) 1594 if (isa<AllocaInst>(I)) 1595 InitialAllocaNum++; 1596 #endif 1597 1598 // TODO-PERF: change data structures, reserve 1599 DenseMap<Value *, Value *> AllocaMap; 1600 SmallVector<AllocaInst *, 200> PromotableAllocas; 1601 // Used later to chack that we have enough allocas to store all values 1602 std::size_t NumRematerializedValues = 0; 1603 PromotableAllocas.reserve(Live.size()); 1604 1605 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1606 // "PromotableAllocas" 1607 const DataLayout &DL = F.getParent()->getDataLayout(); 1608 auto emitAllocaFor = [&](Value *LiveValue) { 1609 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1610 DL.getAllocaAddrSpace(), "", 1611 F.getEntryBlock().getFirstNonPHI()); 1612 AllocaMap[LiveValue] = Alloca; 1613 PromotableAllocas.push_back(Alloca); 1614 }; 1615 1616 // Emit alloca for each live gc pointer 1617 for (Value *V : Live) 1618 emitAllocaFor(V); 1619 1620 // Emit allocas for rematerialized values 1621 for (const auto &Info : Records) 1622 for (auto RematerializedValuePair : Info.RematerializedValues) { 1623 Value *OriginalValue = RematerializedValuePair.second; 1624 if (AllocaMap.count(OriginalValue) != 0) 1625 continue; 1626 1627 emitAllocaFor(OriginalValue); 1628 ++NumRematerializedValues; 1629 } 1630 1631 // The next two loops are part of the same conceptual operation. We need to 1632 // insert a store to the alloca after the original def and at each 1633 // redefinition. We need to insert a load before each use. These are split 1634 // into distinct loops for performance reasons. 1635 1636 // Update gc pointer after each statepoint: either store a relocated value or 1637 // null (if no relocated value was found for this gc pointer and it is not a 1638 // gc_result). This must happen before we update the statepoint with load of 1639 // alloca otherwise we lose the link between statepoint and old def. 1640 for (const auto &Info : Records) { 1641 Value *Statepoint = Info.StatepointToken; 1642 1643 // This will be used for consistency check 1644 DenseSet<Value *> VisitedLiveValues; 1645 1646 // Insert stores for normal statepoint gc relocates 1647 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1648 1649 // In case if it was invoke statepoint 1650 // we will insert stores for exceptional path gc relocates. 1651 if (isa<InvokeInst>(Statepoint)) { 1652 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1653 VisitedLiveValues); 1654 } 1655 1656 // Do similar thing with rematerialized values 1657 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1658 VisitedLiveValues); 1659 1660 if (ClobberNonLive) { 1661 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1662 // the gc.statepoint. This will turn some subtle GC problems into 1663 // slightly easier to debug SEGVs. Note that on large IR files with 1664 // lots of gc.statepoints this is extremely costly both memory and time 1665 // wise. 1666 SmallVector<AllocaInst *, 64> ToClobber; 1667 for (auto Pair : AllocaMap) { 1668 Value *Def = Pair.first; 1669 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1670 1671 // This value was relocated 1672 if (VisitedLiveValues.count(Def)) { 1673 continue; 1674 } 1675 ToClobber.push_back(Alloca); 1676 } 1677 1678 auto InsertClobbersAt = [&](Instruction *IP) { 1679 for (auto *AI : ToClobber) { 1680 auto PT = cast<PointerType>(AI->getAllocatedType()); 1681 Constant *CPN = ConstantPointerNull::get(PT); 1682 StoreInst *Store = new StoreInst(CPN, AI); 1683 Store->insertBefore(IP); 1684 } 1685 }; 1686 1687 // Insert the clobbering stores. These may get intermixed with the 1688 // gc.results and gc.relocates, but that's fine. 1689 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1690 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1691 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1692 } else { 1693 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1694 } 1695 } 1696 } 1697 1698 // Update use with load allocas and add store for gc_relocated. 1699 for (auto Pair : AllocaMap) { 1700 Value *Def = Pair.first; 1701 Value *Alloca = Pair.second; 1702 1703 // We pre-record the uses of allocas so that we dont have to worry about 1704 // later update that changes the user information.. 1705 1706 SmallVector<Instruction *, 20> Uses; 1707 // PERF: trade a linear scan for repeated reallocation 1708 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1709 for (User *U : Def->users()) { 1710 if (!isa<ConstantExpr>(U)) { 1711 // If the def has a ConstantExpr use, then the def is either a 1712 // ConstantExpr use itself or null. In either case 1713 // (recursively in the first, directly in the second), the oop 1714 // it is ultimately dependent on is null and this particular 1715 // use does not need to be fixed up. 1716 Uses.push_back(cast<Instruction>(U)); 1717 } 1718 } 1719 1720 std::sort(Uses.begin(), Uses.end()); 1721 auto Last = std::unique(Uses.begin(), Uses.end()); 1722 Uses.erase(Last, Uses.end()); 1723 1724 for (Instruction *Use : Uses) { 1725 if (isa<PHINode>(Use)) { 1726 PHINode *Phi = cast<PHINode>(Use); 1727 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1728 if (Def == Phi->getIncomingValue(i)) { 1729 LoadInst *Load = new LoadInst( 1730 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1731 Phi->setIncomingValue(i, Load); 1732 } 1733 } 1734 } else { 1735 LoadInst *Load = new LoadInst(Alloca, "", Use); 1736 Use->replaceUsesOfWith(Def, Load); 1737 } 1738 } 1739 1740 // Emit store for the initial gc value. Store must be inserted after load, 1741 // otherwise store will be in alloca's use list and an extra load will be 1742 // inserted before it. 1743 StoreInst *Store = new StoreInst(Def, Alloca); 1744 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1745 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1746 // InvokeInst is a TerminatorInst so the store need to be inserted 1747 // into its normal destination block. 1748 BasicBlock *NormalDest = Invoke->getNormalDest(); 1749 Store->insertBefore(NormalDest->getFirstNonPHI()); 1750 } else { 1751 assert(!Inst->isTerminator() && 1752 "The only TerminatorInst that can produce a value is " 1753 "InvokeInst which is handled above."); 1754 Store->insertAfter(Inst); 1755 } 1756 } else { 1757 assert(isa<Argument>(Def)); 1758 Store->insertAfter(cast<Instruction>(Alloca)); 1759 } 1760 } 1761 1762 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1763 "we must have the same allocas with lives"); 1764 if (!PromotableAllocas.empty()) { 1765 // Apply mem2reg to promote alloca to SSA 1766 PromoteMemToReg(PromotableAllocas, DT); 1767 } 1768 1769 #ifndef NDEBUG 1770 for (auto &I : F.getEntryBlock()) 1771 if (isa<AllocaInst>(I)) 1772 InitialAllocaNum--; 1773 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1774 #endif 1775 } 1776 1777 /// Implement a unique function which doesn't require we sort the input 1778 /// vector. Doing so has the effect of changing the output of a couple of 1779 /// tests in ways which make them less useful in testing fused safepoints. 1780 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1781 SmallSet<T, 8> Seen; 1782 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1783 Vec.end()); 1784 } 1785 1786 /// Insert holders so that each Value is obviously live through the entire 1787 /// lifetime of the call. 1788 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1789 SmallVectorImpl<CallInst *> &Holders) { 1790 if (Values.empty()) 1791 // No values to hold live, might as well not insert the empty holder 1792 return; 1793 1794 Module *M = CS.getInstruction()->getModule(); 1795 // Use a dummy vararg function to actually hold the values live 1796 Function *Func = cast<Function>(M->getOrInsertFunction( 1797 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1798 if (CS.isCall()) { 1799 // For call safepoints insert dummy calls right after safepoint 1800 Holders.push_back(CallInst::Create(Func, Values, "", 1801 &*++CS.getInstruction()->getIterator())); 1802 return; 1803 } 1804 // For invoke safepooints insert dummy calls both in normal and 1805 // exceptional destination blocks 1806 auto *II = cast<InvokeInst>(CS.getInstruction()); 1807 Holders.push_back(CallInst::Create( 1808 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1809 Holders.push_back(CallInst::Create( 1810 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1811 } 1812 1813 static void findLiveReferences( 1814 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1815 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1816 GCPtrLivenessData OriginalLivenessData; 1817 computeLiveInValues(DT, F, OriginalLivenessData); 1818 for (size_t i = 0; i < records.size(); i++) { 1819 struct PartiallyConstructedSafepointRecord &info = records[i]; 1820 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1821 } 1822 } 1823 1824 // Helper function for the "rematerializeLiveValues". It walks use chain 1825 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1826 // the base or a value it cannot process. Only "simple" values are processed 1827 // (currently it is GEP's and casts). The returned root is examined by the 1828 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1829 // with all visited values. 1830 static Value* findRematerializableChainToBasePointer( 1831 SmallVectorImpl<Instruction*> &ChainToBase, 1832 Value *CurrentValue) { 1833 1834 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1835 ChainToBase.push_back(GEP); 1836 return findRematerializableChainToBasePointer(ChainToBase, 1837 GEP->getPointerOperand()); 1838 } 1839 1840 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1841 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1842 return CI; 1843 1844 ChainToBase.push_back(CI); 1845 return findRematerializableChainToBasePointer(ChainToBase, 1846 CI->getOperand(0)); 1847 } 1848 1849 // We have reached the root of the chain, which is either equal to the base or 1850 // is the first unsupported value along the use chain. 1851 return CurrentValue; 1852 } 1853 1854 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1855 // chain we are going to rematerialize. 1856 static unsigned 1857 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1858 TargetTransformInfo &TTI) { 1859 unsigned Cost = 0; 1860 1861 for (Instruction *Instr : Chain) { 1862 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1863 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1864 "non noop cast is found during rematerialization"); 1865 1866 Type *SrcTy = CI->getOperand(0)->getType(); 1867 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI); 1868 1869 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1870 // Cost of the address calculation 1871 Type *ValTy = GEP->getSourceElementType(); 1872 Cost += TTI.getAddressComputationCost(ValTy); 1873 1874 // And cost of the GEP itself 1875 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1876 // allowed for the external usage) 1877 if (!GEP->hasAllConstantIndices()) 1878 Cost += 2; 1879 1880 } else { 1881 llvm_unreachable("unsupported instruciton type during rematerialization"); 1882 } 1883 } 1884 1885 return Cost; 1886 } 1887 1888 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 1889 1890 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 1891 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 1892 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 1893 return false; 1894 // Map of incoming values and their corresponding basic blocks of 1895 // OrigRootPhi. 1896 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 1897 for (unsigned i = 0; i < PhiNum; i++) 1898 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 1899 OrigRootPhi.getIncomingBlock(i); 1900 1901 // Both current and base PHIs should have same incoming values and 1902 // the same basic blocks corresponding to the incoming values. 1903 for (unsigned i = 0; i < PhiNum; i++) { 1904 auto CIVI = 1905 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 1906 if (CIVI == CurrentIncomingValues.end()) 1907 return false; 1908 BasicBlock *CurrentIncomingBB = CIVI->second; 1909 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 1910 return false; 1911 } 1912 return true; 1913 1914 } 1915 1916 // From the statepoint live set pick values that are cheaper to recompute then 1917 // to relocate. Remove this values from the live set, rematerialize them after 1918 // statepoint and record them in "Info" structure. Note that similar to 1919 // relocated values we don't do any user adjustments here. 1920 static void rematerializeLiveValues(CallSite CS, 1921 PartiallyConstructedSafepointRecord &Info, 1922 TargetTransformInfo &TTI) { 1923 const unsigned int ChainLengthThreshold = 10; 1924 1925 // Record values we are going to delete from this statepoint live set. 1926 // We can not di this in following loop due to iterator invalidation. 1927 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1928 1929 for (Value *LiveValue: Info.LiveSet) { 1930 // For each live pointer find it's defining chain 1931 SmallVector<Instruction *, 3> ChainToBase; 1932 assert(Info.PointerToBase.count(LiveValue)); 1933 Value *RootOfChain = 1934 findRematerializableChainToBasePointer(ChainToBase, 1935 LiveValue); 1936 1937 // Nothing to do, or chain is too long 1938 if ( ChainToBase.size() == 0 || 1939 ChainToBase.size() > ChainLengthThreshold) 1940 continue; 1941 1942 // Handle the scenario where the RootOfChain is not equal to the 1943 // Base Value, but they are essentially the same phi values. 1944 if (RootOfChain != Info.PointerToBase[LiveValue]) { 1945 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 1946 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 1947 if (!OrigRootPhi || !AlternateRootPhi) 1948 continue; 1949 // PHI nodes that have the same incoming values, and belonging to the same 1950 // basic blocks are essentially the same SSA value. When the original phi 1951 // has incoming values with different base pointers, the original phi is 1952 // marked as conflict, and an additional `AlternateRootPhi` with the same 1953 // incoming values get generated by the findBasePointer function. We need 1954 // to identify the newly generated AlternateRootPhi (.base version of phi) 1955 // and RootOfChain (the original phi node itself) are the same, so that we 1956 // can rematerialize the gep and casts. This is a workaround for the 1957 // deficiency in the findBasePointer algorithm. 1958 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 1959 continue; 1960 // Now that the phi nodes are proved to be the same, assert that 1961 // findBasePointer's newly generated AlternateRootPhi is present in the 1962 // liveset of the call. 1963 assert(Info.LiveSet.count(AlternateRootPhi)); 1964 } 1965 // Compute cost of this chain 1966 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1967 // TODO: We can also account for cases when we will be able to remove some 1968 // of the rematerialized values by later optimization passes. I.e if 1969 // we rematerialized several intersecting chains. Or if original values 1970 // don't have any uses besides this statepoint. 1971 1972 // For invokes we need to rematerialize each chain twice - for normal and 1973 // for unwind basic blocks. Model this by multiplying cost by two. 1974 if (CS.isInvoke()) { 1975 Cost *= 2; 1976 } 1977 // If it's too expensive - skip it 1978 if (Cost >= RematerializationThreshold) 1979 continue; 1980 1981 // Remove value from the live set 1982 LiveValuesToBeDeleted.push_back(LiveValue); 1983 1984 // Clone instructions and record them inside "Info" structure 1985 1986 // Walk backwards to visit top-most instructions first 1987 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1988 1989 // Utility function which clones all instructions from "ChainToBase" 1990 // and inserts them before "InsertBefore". Returns rematerialized value 1991 // which should be used after statepoint. 1992 auto rematerializeChain = [&ChainToBase]( 1993 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 1994 Instruction *LastClonedValue = nullptr; 1995 Instruction *LastValue = nullptr; 1996 for (Instruction *Instr: ChainToBase) { 1997 // Only GEP's and casts are suported as we need to be careful to not 1998 // introduce any new uses of pointers not in the liveset. 1999 // Note that it's fine to introduce new uses of pointers which were 2000 // otherwise not used after this statepoint. 2001 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2002 2003 Instruction *ClonedValue = Instr->clone(); 2004 ClonedValue->insertBefore(InsertBefore); 2005 ClonedValue->setName(Instr->getName() + ".remat"); 2006 2007 // If it is not first instruction in the chain then it uses previously 2008 // cloned value. We should update it to use cloned value. 2009 if (LastClonedValue) { 2010 assert(LastValue); 2011 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2012 #ifndef NDEBUG 2013 for (auto OpValue : ClonedValue->operand_values()) { 2014 // Assert that cloned instruction does not use any instructions from 2015 // this chain other than LastClonedValue 2016 assert(!is_contained(ChainToBase, OpValue) && 2017 "incorrect use in rematerialization chain"); 2018 // Assert that the cloned instruction does not use the RootOfChain 2019 // or the AlternateLiveBase. 2020 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2021 } 2022 #endif 2023 } else { 2024 // For the first instruction, replace the use of unrelocated base i.e. 2025 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2026 // live set. They have been proved to be the same PHI nodes. Note 2027 // that the *only* use of the RootOfChain in the ChainToBase list is 2028 // the first Value in the list. 2029 if (RootOfChain != AlternateLiveBase) 2030 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2031 } 2032 2033 LastClonedValue = ClonedValue; 2034 LastValue = Instr; 2035 } 2036 assert(LastClonedValue); 2037 return LastClonedValue; 2038 }; 2039 2040 // Different cases for calls and invokes. For invokes we need to clone 2041 // instructions both on normal and unwind path. 2042 if (CS.isCall()) { 2043 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2044 assert(InsertBefore); 2045 Instruction *RematerializedValue = rematerializeChain( 2046 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2047 Info.RematerializedValues[RematerializedValue] = LiveValue; 2048 } else { 2049 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2050 2051 Instruction *NormalInsertBefore = 2052 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2053 Instruction *UnwindInsertBefore = 2054 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2055 2056 Instruction *NormalRematerializedValue = rematerializeChain( 2057 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2058 Instruction *UnwindRematerializedValue = rematerializeChain( 2059 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2060 2061 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2062 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2063 } 2064 } 2065 2066 // Remove rematerializaed values from the live set 2067 for (auto LiveValue: LiveValuesToBeDeleted) { 2068 Info.LiveSet.remove(LiveValue); 2069 } 2070 } 2071 2072 static bool insertParsePoints(Function &F, DominatorTree &DT, 2073 TargetTransformInfo &TTI, 2074 SmallVectorImpl<CallSite> &ToUpdate) { 2075 #ifndef NDEBUG 2076 // sanity check the input 2077 std::set<CallSite> Uniqued; 2078 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2079 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2080 2081 for (CallSite CS : ToUpdate) 2082 assert(CS.getInstruction()->getFunction() == &F); 2083 #endif 2084 2085 // When inserting gc.relocates for invokes, we need to be able to insert at 2086 // the top of the successor blocks. See the comment on 2087 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2088 // may restructure the CFG. 2089 for (CallSite CS : ToUpdate) { 2090 if (!CS.isInvoke()) 2091 continue; 2092 auto *II = cast<InvokeInst>(CS.getInstruction()); 2093 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2094 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2095 } 2096 2097 // A list of dummy calls added to the IR to keep various values obviously 2098 // live in the IR. We'll remove all of these when done. 2099 SmallVector<CallInst *, 64> Holders; 2100 2101 // Insert a dummy call with all of the deopt operands we'll need for the 2102 // actual safepoint insertion as arguments. This ensures reference operands 2103 // in the deopt argument list are considered live through the safepoint (and 2104 // thus makes sure they get relocated.) 2105 for (CallSite CS : ToUpdate) { 2106 SmallVector<Value *, 64> DeoptValues; 2107 2108 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2109 assert(!isUnhandledGCPointerType(Arg->getType()) && 2110 "support for FCA unimplemented"); 2111 if (isHandledGCPointerType(Arg->getType())) 2112 DeoptValues.push_back(Arg); 2113 } 2114 2115 insertUseHolderAfter(CS, DeoptValues, Holders); 2116 } 2117 2118 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2119 2120 // A) Identify all gc pointers which are statically live at the given call 2121 // site. 2122 findLiveReferences(F, DT, ToUpdate, Records); 2123 2124 // B) Find the base pointers for each live pointer 2125 /* scope for caching */ { 2126 // Cache the 'defining value' relation used in the computation and 2127 // insertion of base phis and selects. This ensures that we don't insert 2128 // large numbers of duplicate base_phis. 2129 DefiningValueMapTy DVCache; 2130 2131 for (size_t i = 0; i < Records.size(); i++) { 2132 PartiallyConstructedSafepointRecord &info = Records[i]; 2133 findBasePointers(DT, DVCache, ToUpdate[i], info); 2134 } 2135 } // end of cache scope 2136 2137 // The base phi insertion logic (for any safepoint) may have inserted new 2138 // instructions which are now live at some safepoint. The simplest such 2139 // example is: 2140 // loop: 2141 // phi a <-- will be a new base_phi here 2142 // safepoint 1 <-- that needs to be live here 2143 // gep a + 1 2144 // safepoint 2 2145 // br loop 2146 // We insert some dummy calls after each safepoint to definitely hold live 2147 // the base pointers which were identified for that safepoint. We'll then 2148 // ask liveness for _every_ base inserted to see what is now live. Then we 2149 // remove the dummy calls. 2150 Holders.reserve(Holders.size() + Records.size()); 2151 for (size_t i = 0; i < Records.size(); i++) { 2152 PartiallyConstructedSafepointRecord &Info = Records[i]; 2153 2154 SmallVector<Value *, 128> Bases; 2155 for (auto Pair : Info.PointerToBase) 2156 Bases.push_back(Pair.second); 2157 2158 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2159 } 2160 2161 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2162 // need to rerun liveness. We may *also* have inserted new defs, but that's 2163 // not the key issue. 2164 recomputeLiveInValues(F, DT, ToUpdate, Records); 2165 2166 if (PrintBasePointers) { 2167 for (auto &Info : Records) { 2168 errs() << "Base Pairs: (w/Relocation)\n"; 2169 for (auto Pair : Info.PointerToBase) { 2170 errs() << " derived "; 2171 Pair.first->printAsOperand(errs(), false); 2172 errs() << " base "; 2173 Pair.second->printAsOperand(errs(), false); 2174 errs() << "\n"; 2175 } 2176 } 2177 } 2178 2179 // It is possible that non-constant live variables have a constant base. For 2180 // example, a GEP with a variable offset from a global. In this case we can 2181 // remove it from the liveset. We already don't add constants to the liveset 2182 // because we assume they won't move at runtime and the GC doesn't need to be 2183 // informed about them. The same reasoning applies if the base is constant. 2184 // Note that the relocation placement code relies on this filtering for 2185 // correctness as it expects the base to be in the liveset, which isn't true 2186 // if the base is constant. 2187 for (auto &Info : Records) 2188 for (auto &BasePair : Info.PointerToBase) 2189 if (isa<Constant>(BasePair.second)) 2190 Info.LiveSet.remove(BasePair.first); 2191 2192 for (CallInst *CI : Holders) 2193 CI->eraseFromParent(); 2194 2195 Holders.clear(); 2196 2197 // In order to reduce live set of statepoint we might choose to rematerialize 2198 // some values instead of relocating them. This is purely an optimization and 2199 // does not influence correctness. 2200 for (size_t i = 0; i < Records.size(); i++) 2201 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2202 2203 // We need this to safely RAUW and delete call or invoke return values that 2204 // may themselves be live over a statepoint. For details, please see usage in 2205 // makeStatepointExplicitImpl. 2206 std::vector<DeferredReplacement> Replacements; 2207 2208 // Now run through and replace the existing statepoints with new ones with 2209 // the live variables listed. We do not yet update uses of the values being 2210 // relocated. We have references to live variables that need to 2211 // survive to the last iteration of this loop. (By construction, the 2212 // previous statepoint can not be a live variable, thus we can and remove 2213 // the old statepoint calls as we go.) 2214 for (size_t i = 0; i < Records.size(); i++) 2215 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2216 2217 ToUpdate.clear(); // prevent accident use of invalid CallSites 2218 2219 for (auto &PR : Replacements) 2220 PR.doReplacement(); 2221 2222 Replacements.clear(); 2223 2224 for (auto &Info : Records) { 2225 // These live sets may contain state Value pointers, since we replaced calls 2226 // with operand bundles with calls wrapped in gc.statepoint, and some of 2227 // those calls may have been def'ing live gc pointers. Clear these out to 2228 // avoid accidentally using them. 2229 // 2230 // TODO: We should create a separate data structure that does not contain 2231 // these live sets, and migrate to using that data structure from this point 2232 // onward. 2233 Info.LiveSet.clear(); 2234 Info.PointerToBase.clear(); 2235 } 2236 2237 // Do all the fixups of the original live variables to their relocated selves 2238 SmallVector<Value *, 128> Live; 2239 for (size_t i = 0; i < Records.size(); i++) { 2240 PartiallyConstructedSafepointRecord &Info = Records[i]; 2241 2242 // We can't simply save the live set from the original insertion. One of 2243 // the live values might be the result of a call which needs a safepoint. 2244 // That Value* no longer exists and we need to use the new gc_result. 2245 // Thankfully, the live set is embedded in the statepoint (and updated), so 2246 // we just grab that. 2247 Statepoint Statepoint(Info.StatepointToken); 2248 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2249 Statepoint.gc_args_end()); 2250 #ifndef NDEBUG 2251 // Do some basic sanity checks on our liveness results before performing 2252 // relocation. Relocation can and will turn mistakes in liveness results 2253 // into non-sensical code which is must harder to debug. 2254 // TODO: It would be nice to test consistency as well 2255 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2256 "statepoint must be reachable or liveness is meaningless"); 2257 for (Value *V : Statepoint.gc_args()) { 2258 if (!isa<Instruction>(V)) 2259 // Non-instruction values trivial dominate all possible uses 2260 continue; 2261 auto *LiveInst = cast<Instruction>(V); 2262 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2263 "unreachable values should never be live"); 2264 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2265 "basic SSA liveness expectation violated by liveness analysis"); 2266 } 2267 #endif 2268 } 2269 unique_unsorted(Live); 2270 2271 #ifndef NDEBUG 2272 // sanity check 2273 for (auto *Ptr : Live) 2274 assert(isHandledGCPointerType(Ptr->getType()) && 2275 "must be a gc pointer type"); 2276 #endif 2277 2278 relocationViaAlloca(F, DT, Live, Records); 2279 return !Records.empty(); 2280 } 2281 2282 // Handles both return values and arguments for Functions and CallSites. 2283 template <typename AttrHolder> 2284 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2285 unsigned Index) { 2286 AttrBuilder R; 2287 if (AH.getDereferenceableBytes(Index)) 2288 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2289 AH.getDereferenceableBytes(Index))); 2290 if (AH.getDereferenceableOrNullBytes(Index)) 2291 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2292 AH.getDereferenceableOrNullBytes(Index))); 2293 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2294 R.addAttribute(Attribute::NoAlias); 2295 2296 if (!R.empty()) 2297 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2298 } 2299 2300 void 2301 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2302 LLVMContext &Ctx = F.getContext(); 2303 2304 for (Argument &A : F.args()) 2305 if (isa<PointerType>(A.getType())) 2306 RemoveNonValidAttrAtIndex(Ctx, F, 2307 A.getArgNo() + AttributeList::FirstArgIndex); 2308 2309 if (isa<PointerType>(F.getReturnType())) 2310 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2311 } 2312 2313 void RewriteStatepointsForGC::stripInvalidMetadataFromInstruction(Instruction &I) { 2314 2315 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2316 return; 2317 // These are the attributes that are still valid on loads and stores after 2318 // RS4GC. 2319 // The metadata implying dereferenceability and noalias are (conservatively) 2320 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2321 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2322 // touch the entire heap including noalias objects. Note: The reasoning is 2323 // same as stripping the dereferenceability and noalias attributes that are 2324 // analogous to the metadata counterparts. 2325 // We also drop the invariant.load metadata on the load because that metadata 2326 // implies the address operand to the load points to memory that is never 2327 // changed once it became dereferenceable. This is no longer true after RS4GC. 2328 // Similar reasoning applies to invariant.group metadata, which applies to 2329 // loads within a group. 2330 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2331 LLVMContext::MD_range, 2332 LLVMContext::MD_alias_scope, 2333 LLVMContext::MD_nontemporal, 2334 LLVMContext::MD_nonnull, 2335 LLVMContext::MD_align, 2336 LLVMContext::MD_type}; 2337 2338 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2339 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2340 2341 } 2342 2343 void RewriteStatepointsForGC::stripNonValidAttributesAndMetadataFromBody(Function &F) { 2344 if (F.empty()) 2345 return; 2346 2347 LLVMContext &Ctx = F.getContext(); 2348 MDBuilder Builder(Ctx); 2349 2350 2351 for (Instruction &I : instructions(F)) { 2352 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2353 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2354 bool IsImmutableTBAA = 2355 MD->getNumOperands() == 4 && 2356 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2357 2358 if (!IsImmutableTBAA) 2359 continue; // no work to do, MD_tbaa is already marked mutable 2360 2361 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2362 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2363 uint64_t Offset = 2364 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2365 2366 MDNode *MutableTBAA = 2367 Builder.createTBAAStructTagNode(Base, Access, Offset); 2368 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2369 } 2370 2371 stripInvalidMetadataFromInstruction(I); 2372 2373 if (CallSite CS = CallSite(&I)) { 2374 for (int i = 0, e = CS.arg_size(); i != e; i++) 2375 if (isa<PointerType>(CS.getArgument(i)->getType())) 2376 RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex); 2377 if (isa<PointerType>(CS.getType())) 2378 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex); 2379 } 2380 } 2381 } 2382 2383 /// Returns true if this function should be rewritten by this pass. The main 2384 /// point of this function is as an extension point for custom logic. 2385 static bool shouldRewriteStatepointsIn(Function &F) { 2386 // TODO: This should check the GCStrategy 2387 if (F.hasGC()) { 2388 const auto &FunctionGCName = F.getGC(); 2389 const StringRef StatepointExampleName("statepoint-example"); 2390 const StringRef CoreCLRName("coreclr"); 2391 return (StatepointExampleName == FunctionGCName) || 2392 (CoreCLRName == FunctionGCName); 2393 } else 2394 return false; 2395 } 2396 2397 void RewriteStatepointsForGC::stripNonValidAttributesAndMetadata(Module &M) { 2398 #ifndef NDEBUG 2399 assert(any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2400 #endif 2401 2402 for (Function &F : M) 2403 stripNonValidAttributesFromPrototype(F); 2404 2405 for (Function &F : M) 2406 stripNonValidAttributesAndMetadataFromBody(F); 2407 } 2408 2409 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2410 // Nothing to do for declarations. 2411 if (F.isDeclaration() || F.empty()) 2412 return false; 2413 2414 // Policy choice says not to rewrite - the most common reason is that we're 2415 // compiling code without a GCStrategy. 2416 if (!shouldRewriteStatepointsIn(F)) 2417 return false; 2418 2419 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2420 TargetTransformInfo &TTI = 2421 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2422 2423 auto NeedsRewrite = [](Instruction &I) { 2424 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2425 return !callsGCLeafFunction(CS) && !isStatepoint(CS); 2426 return false; 2427 }; 2428 2429 // Gather all the statepoints which need rewritten. Be careful to only 2430 // consider those in reachable code since we need to ask dominance queries 2431 // when rewriting. We'll delete the unreachable ones in a moment. 2432 SmallVector<CallSite, 64> ParsePointNeeded; 2433 bool HasUnreachableStatepoint = false; 2434 for (Instruction &I : instructions(F)) { 2435 // TODO: only the ones with the flag set! 2436 if (NeedsRewrite(I)) { 2437 if (DT.isReachableFromEntry(I.getParent())) 2438 ParsePointNeeded.push_back(CallSite(&I)); 2439 else 2440 HasUnreachableStatepoint = true; 2441 } 2442 } 2443 2444 bool MadeChange = false; 2445 2446 // Delete any unreachable statepoints so that we don't have unrewritten 2447 // statepoints surviving this pass. This makes testing easier and the 2448 // resulting IR less confusing to human readers. Rather than be fancy, we 2449 // just reuse a utility function which removes the unreachable blocks. 2450 if (HasUnreachableStatepoint) 2451 MadeChange |= removeUnreachableBlocks(F); 2452 2453 // Return early if no work to do. 2454 if (ParsePointNeeded.empty()) 2455 return MadeChange; 2456 2457 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2458 // These are created by LCSSA. They have the effect of increasing the size 2459 // of liveness sets for no good reason. It may be harder to do this post 2460 // insertion since relocations and base phis can confuse things. 2461 for (BasicBlock &BB : F) 2462 if (BB.getUniquePredecessor()) { 2463 MadeChange = true; 2464 FoldSingleEntryPHINodes(&BB); 2465 } 2466 2467 // Before we start introducing relocations, we want to tweak the IR a bit to 2468 // avoid unfortunate code generation effects. The main example is that we 2469 // want to try to make sure the comparison feeding a branch is after any 2470 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2471 // values feeding a branch after relocation. This is semantically correct, 2472 // but results in extra register pressure since both the pre-relocation and 2473 // post-relocation copies must be available in registers. For code without 2474 // relocations this is handled elsewhere, but teaching the scheduler to 2475 // reverse the transform we're about to do would be slightly complex. 2476 // Note: This may extend the live range of the inputs to the icmp and thus 2477 // increase the liveset of any statepoint we move over. This is profitable 2478 // as long as all statepoints are in rare blocks. If we had in-register 2479 // lowering for live values this would be a much safer transform. 2480 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2481 if (auto *BI = dyn_cast<BranchInst>(TI)) 2482 if (BI->isConditional()) 2483 return dyn_cast<Instruction>(BI->getCondition()); 2484 // TODO: Extend this to handle switches 2485 return nullptr; 2486 }; 2487 for (BasicBlock &BB : F) { 2488 TerminatorInst *TI = BB.getTerminator(); 2489 if (auto *Cond = getConditionInst(TI)) 2490 // TODO: Handle more than just ICmps here. We should be able to move 2491 // most instructions without side effects or memory access. 2492 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2493 MadeChange = true; 2494 Cond->moveBefore(TI); 2495 } 2496 } 2497 2498 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2499 return MadeChange; 2500 } 2501 2502 // liveness computation via standard dataflow 2503 // ------------------------------------------------------------------- 2504 2505 // TODO: Consider using bitvectors for liveness, the set of potentially 2506 // interesting values should be small and easy to pre-compute. 2507 2508 /// Compute the live-in set for the location rbegin starting from 2509 /// the live-out set of the basic block 2510 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2511 BasicBlock::reverse_iterator End, 2512 SetVector<Value *> &LiveTmp) { 2513 for (auto &I : make_range(Begin, End)) { 2514 // KILL/Def - Remove this definition from LiveIn 2515 LiveTmp.remove(&I); 2516 2517 // Don't consider *uses* in PHI nodes, we handle their contribution to 2518 // predecessor blocks when we seed the LiveOut sets 2519 if (isa<PHINode>(I)) 2520 continue; 2521 2522 // USE - Add to the LiveIn set for this instruction 2523 for (Value *V : I.operands()) { 2524 assert(!isUnhandledGCPointerType(V->getType()) && 2525 "support for FCA unimplemented"); 2526 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2527 // The choice to exclude all things constant here is slightly subtle. 2528 // There are two independent reasons: 2529 // - We assume that things which are constant (from LLVM's definition) 2530 // do not move at runtime. For example, the address of a global 2531 // variable is fixed, even though it's contents may not be. 2532 // - Second, we can't disallow arbitrary inttoptr constants even 2533 // if the language frontend does. Optimization passes are free to 2534 // locally exploit facts without respect to global reachability. This 2535 // can create sections of code which are dynamically unreachable and 2536 // contain just about anything. (see constants.ll in tests) 2537 LiveTmp.insert(V); 2538 } 2539 } 2540 } 2541 } 2542 2543 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2544 for (BasicBlock *Succ : successors(BB)) { 2545 for (auto &I : *Succ) { 2546 PHINode *PN = dyn_cast<PHINode>(&I); 2547 if (!PN) 2548 break; 2549 2550 Value *V = PN->getIncomingValueForBlock(BB); 2551 assert(!isUnhandledGCPointerType(V->getType()) && 2552 "support for FCA unimplemented"); 2553 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2554 LiveTmp.insert(V); 2555 } 2556 } 2557 } 2558 2559 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2560 SetVector<Value *> KillSet; 2561 for (Instruction &I : *BB) 2562 if (isHandledGCPointerType(I.getType())) 2563 KillSet.insert(&I); 2564 return KillSet; 2565 } 2566 2567 #ifndef NDEBUG 2568 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2569 /// sanity check for the liveness computation. 2570 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2571 TerminatorInst *TI, bool TermOkay = false) { 2572 for (Value *V : Live) { 2573 if (auto *I = dyn_cast<Instruction>(V)) { 2574 // The terminator can be a member of the LiveOut set. LLVM's definition 2575 // of instruction dominance states that V does not dominate itself. As 2576 // such, we need to special case this to allow it. 2577 if (TermOkay && TI == I) 2578 continue; 2579 assert(DT.dominates(I, TI) && 2580 "basic SSA liveness expectation violated by liveness analysis"); 2581 } 2582 } 2583 } 2584 2585 /// Check that all the liveness sets used during the computation of liveness 2586 /// obey basic SSA properties. This is useful for finding cases where we miss 2587 /// a def. 2588 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2589 BasicBlock &BB) { 2590 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2591 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2592 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2593 } 2594 #endif 2595 2596 static void computeLiveInValues(DominatorTree &DT, Function &F, 2597 GCPtrLivenessData &Data) { 2598 SmallSetVector<BasicBlock *, 32> Worklist; 2599 2600 // Seed the liveness for each individual block 2601 for (BasicBlock &BB : F) { 2602 Data.KillSet[&BB] = computeKillSet(&BB); 2603 Data.LiveSet[&BB].clear(); 2604 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2605 2606 #ifndef NDEBUG 2607 for (Value *Kill : Data.KillSet[&BB]) 2608 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2609 #endif 2610 2611 Data.LiveOut[&BB] = SetVector<Value *>(); 2612 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2613 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2614 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2615 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2616 if (!Data.LiveIn[&BB].empty()) 2617 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2618 } 2619 2620 // Propagate that liveness until stable 2621 while (!Worklist.empty()) { 2622 BasicBlock *BB = Worklist.pop_back_val(); 2623 2624 // Compute our new liveout set, then exit early if it hasn't changed despite 2625 // the contribution of our successor. 2626 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2627 const auto OldLiveOutSize = LiveOut.size(); 2628 for (BasicBlock *Succ : successors(BB)) { 2629 assert(Data.LiveIn.count(Succ)); 2630 LiveOut.set_union(Data.LiveIn[Succ]); 2631 } 2632 // assert OutLiveOut is a subset of LiveOut 2633 if (OldLiveOutSize == LiveOut.size()) { 2634 // If the sets are the same size, then we didn't actually add anything 2635 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2636 // hasn't changed. 2637 continue; 2638 } 2639 Data.LiveOut[BB] = LiveOut; 2640 2641 // Apply the effects of this basic block 2642 SetVector<Value *> LiveTmp = LiveOut; 2643 LiveTmp.set_union(Data.LiveSet[BB]); 2644 LiveTmp.set_subtract(Data.KillSet[BB]); 2645 2646 assert(Data.LiveIn.count(BB)); 2647 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2648 // assert: OldLiveIn is a subset of LiveTmp 2649 if (OldLiveIn.size() != LiveTmp.size()) { 2650 Data.LiveIn[BB] = LiveTmp; 2651 Worklist.insert(pred_begin(BB), pred_end(BB)); 2652 } 2653 } // while (!Worklist.empty()) 2654 2655 #ifndef NDEBUG 2656 // Sanity check our output against SSA properties. This helps catch any 2657 // missing kills during the above iteration. 2658 for (BasicBlock &BB : F) 2659 checkBasicSSA(DT, Data, BB); 2660 #endif 2661 } 2662 2663 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2664 StatepointLiveSetTy &Out) { 2665 2666 BasicBlock *BB = Inst->getParent(); 2667 2668 // Note: The copy is intentional and required 2669 assert(Data.LiveOut.count(BB)); 2670 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2671 2672 // We want to handle the statepoint itself oddly. It's 2673 // call result is not live (normal), nor are it's arguments 2674 // (unless they're used again later). This adjustment is 2675 // specifically what we need to relocate 2676 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2677 LiveOut); 2678 LiveOut.remove(Inst); 2679 Out.insert(LiveOut.begin(), LiveOut.end()); 2680 } 2681 2682 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2683 CallSite CS, 2684 PartiallyConstructedSafepointRecord &Info) { 2685 Instruction *Inst = CS.getInstruction(); 2686 StatepointLiveSetTy Updated; 2687 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2688 2689 #ifndef NDEBUG 2690 DenseSet<Value *> Bases; 2691 for (auto KVPair : Info.PointerToBase) 2692 Bases.insert(KVPair.second); 2693 #endif 2694 2695 // We may have base pointers which are now live that weren't before. We need 2696 // to update the PointerToBase structure to reflect this. 2697 for (auto V : Updated) 2698 if (Info.PointerToBase.insert({V, V}).second) { 2699 assert(Bases.count(V) && "Can't find base for unexpected live value!"); 2700 continue; 2701 } 2702 2703 #ifndef NDEBUG 2704 for (auto V : Updated) 2705 assert(Info.PointerToBase.count(V) && 2706 "Must be able to find base for live value!"); 2707 #endif 2708 2709 // Remove any stale base mappings - this can happen since our liveness is 2710 // more precise then the one inherent in the base pointer analysis. 2711 DenseSet<Value *> ToErase; 2712 for (auto KVPair : Info.PointerToBase) 2713 if (!Updated.count(KVPair.first)) 2714 ToErase.insert(KVPair.first); 2715 2716 for (auto *V : ToErase) 2717 Info.PointerToBase.erase(V); 2718 2719 #ifndef NDEBUG 2720 for (auto KVPair : Info.PointerToBase) 2721 assert(Updated.count(KVPair.first) && "record for non-live value"); 2722 #endif 2723 2724 Info.LiveSet = Updated; 2725 } 2726