1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite call/invoke instructions so as to make potential relocations 11 // performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueHandle.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <iterator> 72 #include <set> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 78 79 using namespace llvm; 80 81 // Print the liveset found at the insert location 82 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 83 cl::init(false)); 84 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 85 cl::init(false)); 86 87 // Print out the base pointers for debugging 88 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 89 cl::init(false)); 90 91 // Cost threshold measuring when it is profitable to rematerialize value instead 92 // of relocating it 93 static cl::opt<unsigned> 94 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 95 cl::init(6)); 96 97 #ifdef EXPENSIVE_CHECKS 98 static bool ClobberNonLive = true; 99 #else 100 static bool ClobberNonLive = false; 101 #endif 102 103 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 104 cl::location(ClobberNonLive), 105 cl::Hidden); 106 107 static cl::opt<bool> 108 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 109 cl::Hidden, cl::init(true)); 110 111 namespace { 112 113 struct RewriteStatepointsForGC : public ModulePass { 114 static char ID; // Pass identification, replacement for typeid 115 116 RewriteStatepointsForGC() : ModulePass(ID) { 117 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 118 } 119 120 bool runOnFunction(Function &F); 121 122 bool runOnModule(Module &M) override { 123 bool Changed = false; 124 for (Function &F : M) 125 Changed |= runOnFunction(F); 126 127 if (Changed) { 128 // stripNonValidAttributesAndMetadata asserts that shouldRewriteStatepointsIn 129 // returns true for at least one function in the module. Since at least 130 // one function changed, we know that the precondition is satisfied. 131 stripNonValidAttributesAndMetadata(M); 132 } 133 134 return Changed; 135 } 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override { 138 // We add and rewrite a bunch of instructions, but don't really do much 139 // else. We could in theory preserve a lot more analyses here. 140 AU.addRequired<DominatorTreeWrapperPass>(); 141 AU.addRequired<TargetTransformInfoWrapperPass>(); 142 AU.addRequired<TargetLibraryInfoWrapperPass>(); 143 } 144 145 /// The IR fed into RewriteStatepointsForGC may have had attributes and 146 /// metadata implying dereferenceability that are no longer valid/correct after 147 /// RewriteStatepointsForGC has run. This is because semantically, after 148 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 149 /// heap. stripNonValidAttributesAndMetadata (conservatively) restores 150 /// correctness by erasing all attributes in the module that externally imply 151 /// dereferenceability. Similar reasoning also applies to the noalias 152 /// attributes and metadata. gc.statepoint can touch the entire heap including 153 /// noalias objects. 154 void stripNonValidAttributesAndMetadata(Module &M); 155 156 // Helpers for stripNonValidAttributesAndMetadata 157 void stripNonValidAttributesAndMetadataFromBody(Function &F); 158 void stripNonValidAttributesFromPrototype(Function &F); 159 160 // Certain metadata on instructions are invalid after running RS4GC. 161 // Optimizations that run after RS4GC can incorrectly use this metadata to 162 // optimize functions. We drop such metadata on the instruction. 163 void stripInvalidMetadataFromInstruction(Instruction &I); 164 }; 165 166 } // end anonymous namespace 167 168 char RewriteStatepointsForGC::ID = 0; 169 170 ModulePass *llvm::createRewriteStatepointsForGCPass() { 171 return new RewriteStatepointsForGC(); 172 } 173 174 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 175 "Make relocations explicit at statepoints", false, false) 176 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 177 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 178 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 179 "Make relocations explicit at statepoints", false, false) 180 181 namespace { 182 183 struct GCPtrLivenessData { 184 /// Values defined in this block. 185 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 186 187 /// Values used in this block (and thus live); does not included values 188 /// killed within this block. 189 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 190 191 /// Values live into this basic block (i.e. used by any 192 /// instruction in this basic block or ones reachable from here) 193 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 194 195 /// Values live out of this basic block (i.e. live into 196 /// any successor block) 197 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 198 }; 199 200 // The type of the internal cache used inside the findBasePointers family 201 // of functions. From the callers perspective, this is an opaque type and 202 // should not be inspected. 203 // 204 // In the actual implementation this caches two relations: 205 // - The base relation itself (i.e. this pointer is based on that one) 206 // - The base defining value relation (i.e. before base_phi insertion) 207 // Generally, after the execution of a full findBasePointer call, only the 208 // base relation will remain. Internally, we add a mixture of the two 209 // types, then update all the second type to the first type 210 using DefiningValueMapTy = MapVector<Value *, Value *>; 211 using StatepointLiveSetTy = SetVector<Value *>; 212 using RematerializedValueMapTy = 213 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 214 215 struct PartiallyConstructedSafepointRecord { 216 /// The set of values known to be live across this safepoint 217 StatepointLiveSetTy LiveSet; 218 219 /// Mapping from live pointers to a base-defining-value 220 MapVector<Value *, Value *> PointerToBase; 221 222 /// The *new* gc.statepoint instruction itself. This produces the token 223 /// that normal path gc.relocates and the gc.result are tied to. 224 Instruction *StatepointToken; 225 226 /// Instruction to which exceptional gc relocates are attached 227 /// Makes it easier to iterate through them during relocationViaAlloca. 228 Instruction *UnwindToken; 229 230 /// Record live values we are rematerialized instead of relocating. 231 /// They are not included into 'LiveSet' field. 232 /// Maps rematerialized copy to it's original value. 233 RematerializedValueMapTy RematerializedValues; 234 }; 235 236 } // end anonymous namespace 237 238 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 239 Optional<OperandBundleUse> DeoptBundle = 240 CS.getOperandBundle(LLVMContext::OB_deopt); 241 242 if (!DeoptBundle.hasValue()) { 243 assert(AllowStatepointWithNoDeoptInfo && 244 "Found non-leaf call without deopt info!"); 245 return None; 246 } 247 248 return DeoptBundle.getValue().Inputs; 249 } 250 251 /// Compute the live-in set for every basic block in the function 252 static void computeLiveInValues(DominatorTree &DT, Function &F, 253 GCPtrLivenessData &Data); 254 255 /// Given results from the dataflow liveness computation, find the set of live 256 /// Values at a particular instruction. 257 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 258 StatepointLiveSetTy &out); 259 260 // TODO: Once we can get to the GCStrategy, this becomes 261 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 262 263 static bool isGCPointerType(Type *T) { 264 if (auto *PT = dyn_cast<PointerType>(T)) 265 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 266 // GC managed heap. We know that a pointer into this heap needs to be 267 // updated and that no other pointer does. 268 return PT->getAddressSpace() == 1; 269 return false; 270 } 271 272 // Return true if this type is one which a) is a gc pointer or contains a GC 273 // pointer and b) is of a type this code expects to encounter as a live value. 274 // (The insertion code will assert that a type which matches (a) and not (b) 275 // is not encountered.) 276 static bool isHandledGCPointerType(Type *T) { 277 // We fully support gc pointers 278 if (isGCPointerType(T)) 279 return true; 280 // We partially support vectors of gc pointers. The code will assert if it 281 // can't handle something. 282 if (auto VT = dyn_cast<VectorType>(T)) 283 if (isGCPointerType(VT->getElementType())) 284 return true; 285 return false; 286 } 287 288 #ifndef NDEBUG 289 /// Returns true if this type contains a gc pointer whether we know how to 290 /// handle that type or not. 291 static bool containsGCPtrType(Type *Ty) { 292 if (isGCPointerType(Ty)) 293 return true; 294 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 295 return isGCPointerType(VT->getScalarType()); 296 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 297 return containsGCPtrType(AT->getElementType()); 298 if (StructType *ST = dyn_cast<StructType>(Ty)) 299 return llvm::any_of(ST->subtypes(), containsGCPtrType); 300 return false; 301 } 302 303 // Returns true if this is a type which a) is a gc pointer or contains a GC 304 // pointer and b) is of a type which the code doesn't expect (i.e. first class 305 // aggregates). Used to trip assertions. 306 static bool isUnhandledGCPointerType(Type *Ty) { 307 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 308 } 309 #endif 310 311 // Return the name of the value suffixed with the provided value, or if the 312 // value didn't have a name, the default value specified. 313 static std::string suffixed_name_or(Value *V, StringRef Suffix, 314 StringRef DefaultName) { 315 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 316 } 317 318 // Conservatively identifies any definitions which might be live at the 319 // given instruction. The analysis is performed immediately before the 320 // given instruction. Values defined by that instruction are not considered 321 // live. Values used by that instruction are considered live. 322 static void 323 analyzeParsePointLiveness(DominatorTree &DT, 324 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 325 PartiallyConstructedSafepointRecord &Result) { 326 Instruction *Inst = CS.getInstruction(); 327 328 StatepointLiveSetTy LiveSet; 329 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet); 330 331 if (PrintLiveSet) { 332 dbgs() << "Live Variables:\n"; 333 for (Value *V : LiveSet) 334 dbgs() << " " << V->getName() << " " << *V << "\n"; 335 } 336 if (PrintLiveSetSize) { 337 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 338 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 339 } 340 Result.LiveSet = LiveSet; 341 } 342 343 static bool isKnownBaseResult(Value *V); 344 345 namespace { 346 347 /// A single base defining value - An immediate base defining value for an 348 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 349 /// For instructions which have multiple pointer [vector] inputs or that 350 /// transition between vector and scalar types, there is no immediate base 351 /// defining value. The 'base defining value' for 'Def' is the transitive 352 /// closure of this relation stopping at the first instruction which has no 353 /// immediate base defining value. The b.d.v. might itself be a base pointer, 354 /// but it can also be an arbitrary derived pointer. 355 struct BaseDefiningValueResult { 356 /// Contains the value which is the base defining value. 357 Value * const BDV; 358 359 /// True if the base defining value is also known to be an actual base 360 /// pointer. 361 const bool IsKnownBase; 362 363 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 364 : BDV(BDV), IsKnownBase(IsKnownBase) { 365 #ifndef NDEBUG 366 // Check consistency between new and old means of checking whether a BDV is 367 // a base. 368 bool MustBeBase = isKnownBaseResult(BDV); 369 assert(!MustBeBase || MustBeBase == IsKnownBase); 370 #endif 371 } 372 }; 373 374 } // end anonymous namespace 375 376 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 377 378 /// Return a base defining value for the 'Index' element of the given vector 379 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 380 /// 'I'. As an optimization, this method will try to determine when the 381 /// element is known to already be a base pointer. If this can be established, 382 /// the second value in the returned pair will be true. Note that either a 383 /// vector or a pointer typed value can be returned. For the former, the 384 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 385 /// If the later, the return pointer is a BDV (or possibly a base) for the 386 /// particular element in 'I'. 387 static BaseDefiningValueResult 388 findBaseDefiningValueOfVector(Value *I) { 389 // Each case parallels findBaseDefiningValue below, see that code for 390 // detailed motivation. 391 392 if (isa<Argument>(I)) 393 // An incoming argument to the function is a base pointer 394 return BaseDefiningValueResult(I, true); 395 396 if (isa<Constant>(I)) 397 // Base of constant vector consists only of constant null pointers. 398 // For reasoning see similar case inside 'findBaseDefiningValue' function. 399 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 400 true); 401 402 if (isa<LoadInst>(I)) 403 return BaseDefiningValueResult(I, true); 404 405 if (isa<InsertElementInst>(I)) 406 // We don't know whether this vector contains entirely base pointers or 407 // not. To be conservatively correct, we treat it as a BDV and will 408 // duplicate code as needed to construct a parallel vector of bases. 409 return BaseDefiningValueResult(I, false); 410 411 if (isa<ShuffleVectorInst>(I)) 412 // We don't know whether this vector contains entirely base pointers or 413 // not. To be conservatively correct, we treat it as a BDV and will 414 // duplicate code as needed to construct a parallel vector of bases. 415 // TODO: There a number of local optimizations which could be applied here 416 // for particular sufflevector patterns. 417 return BaseDefiningValueResult(I, false); 418 419 // The behavior of getelementptr instructions is the same for vector and 420 // non-vector data types. 421 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 422 return findBaseDefiningValue(GEP->getPointerOperand()); 423 424 // If the pointer comes through a bitcast of a vector of pointers to 425 // a vector of another type of pointer, then look through the bitcast 426 if (auto *BC = dyn_cast<BitCastInst>(I)) 427 return findBaseDefiningValue(BC->getOperand(0)); 428 429 // A PHI or Select is a base defining value. The outer findBasePointer 430 // algorithm is responsible for constructing a base value for this BDV. 431 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 432 "unknown vector instruction - no base found for vector element"); 433 return BaseDefiningValueResult(I, false); 434 } 435 436 /// Helper function for findBasePointer - Will return a value which either a) 437 /// defines the base pointer for the input, b) blocks the simple search 438 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 439 /// from pointer to vector type or back. 440 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 441 assert(I->getType()->isPtrOrPtrVectorTy() && 442 "Illegal to ask for the base pointer of a non-pointer type"); 443 444 if (I->getType()->isVectorTy()) 445 return findBaseDefiningValueOfVector(I); 446 447 if (isa<Argument>(I)) 448 // An incoming argument to the function is a base pointer 449 // We should have never reached here if this argument isn't an gc value 450 return BaseDefiningValueResult(I, true); 451 452 if (isa<Constant>(I)) { 453 // We assume that objects with a constant base (e.g. a global) can't move 454 // and don't need to be reported to the collector because they are always 455 // live. Besides global references, all kinds of constants (e.g. undef, 456 // constant expressions, null pointers) can be introduced by the inliner or 457 // the optimizer, especially on dynamically dead paths. 458 // Here we treat all of them as having single null base. By doing this we 459 // trying to avoid problems reporting various conflicts in a form of 460 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 461 // See constant.ll file for relevant test cases. 462 463 return BaseDefiningValueResult( 464 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 465 } 466 467 if (CastInst *CI = dyn_cast<CastInst>(I)) { 468 Value *Def = CI->stripPointerCasts(); 469 // If stripping pointer casts changes the address space there is an 470 // addrspacecast in between. 471 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 472 cast<PointerType>(CI->getType())->getAddressSpace() && 473 "unsupported addrspacecast"); 474 // If we find a cast instruction here, it means we've found a cast which is 475 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 476 // handle int->ptr conversion. 477 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 478 return findBaseDefiningValue(Def); 479 } 480 481 if (isa<LoadInst>(I)) 482 // The value loaded is an gc base itself 483 return BaseDefiningValueResult(I, true); 484 485 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 486 // The base of this GEP is the base 487 return findBaseDefiningValue(GEP->getPointerOperand()); 488 489 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 490 switch (II->getIntrinsicID()) { 491 default: 492 // fall through to general call handling 493 break; 494 case Intrinsic::experimental_gc_statepoint: 495 llvm_unreachable("statepoints don't produce pointers"); 496 case Intrinsic::experimental_gc_relocate: 497 // Rerunning safepoint insertion after safepoints are already 498 // inserted is not supported. It could probably be made to work, 499 // but why are you doing this? There's no good reason. 500 llvm_unreachable("repeat safepoint insertion is not supported"); 501 case Intrinsic::gcroot: 502 // Currently, this mechanism hasn't been extended to work with gcroot. 503 // There's no reason it couldn't be, but I haven't thought about the 504 // implications much. 505 llvm_unreachable( 506 "interaction with the gcroot mechanism is not supported"); 507 } 508 } 509 // We assume that functions in the source language only return base 510 // pointers. This should probably be generalized via attributes to support 511 // both source language and internal functions. 512 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 513 return BaseDefiningValueResult(I, true); 514 515 // TODO: I have absolutely no idea how to implement this part yet. It's not 516 // necessarily hard, I just haven't really looked at it yet. 517 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 518 519 if (isa<AtomicCmpXchgInst>(I)) 520 // A CAS is effectively a atomic store and load combined under a 521 // predicate. From the perspective of base pointers, we just treat it 522 // like a load. 523 return BaseDefiningValueResult(I, true); 524 525 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 526 "binary ops which don't apply to pointers"); 527 528 // The aggregate ops. Aggregates can either be in the heap or on the 529 // stack, but in either case, this is simply a field load. As a result, 530 // this is a defining definition of the base just like a load is. 531 if (isa<ExtractValueInst>(I)) 532 return BaseDefiningValueResult(I, true); 533 534 // We should never see an insert vector since that would require we be 535 // tracing back a struct value not a pointer value. 536 assert(!isa<InsertValueInst>(I) && 537 "Base pointer for a struct is meaningless"); 538 539 // An extractelement produces a base result exactly when it's input does. 540 // We may need to insert a parallel instruction to extract the appropriate 541 // element out of the base vector corresponding to the input. Given this, 542 // it's analogous to the phi and select case even though it's not a merge. 543 if (isa<ExtractElementInst>(I)) 544 // Note: There a lot of obvious peephole cases here. This are deliberately 545 // handled after the main base pointer inference algorithm to make writing 546 // test cases to exercise that code easier. 547 return BaseDefiningValueResult(I, false); 548 549 // The last two cases here don't return a base pointer. Instead, they 550 // return a value which dynamically selects from among several base 551 // derived pointers (each with it's own base potentially). It's the job of 552 // the caller to resolve these. 553 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 554 "missing instruction case in findBaseDefiningValing"); 555 return BaseDefiningValueResult(I, false); 556 } 557 558 /// Returns the base defining value for this value. 559 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 560 Value *&Cached = Cache[I]; 561 if (!Cached) { 562 Cached = findBaseDefiningValue(I).BDV; 563 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 564 << Cached->getName() << "\n"); 565 } 566 assert(Cache[I] != nullptr); 567 return Cached; 568 } 569 570 /// Return a base pointer for this value if known. Otherwise, return it's 571 /// base defining value. 572 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 573 Value *Def = findBaseDefiningValueCached(I, Cache); 574 auto Found = Cache.find(Def); 575 if (Found != Cache.end()) { 576 // Either a base-of relation, or a self reference. Caller must check. 577 return Found->second; 578 } 579 // Only a BDV available 580 return Def; 581 } 582 583 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 584 /// is it known to be a base pointer? Or do we need to continue searching. 585 static bool isKnownBaseResult(Value *V) { 586 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 587 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 588 !isa<ShuffleVectorInst>(V)) { 589 // no recursion possible 590 return true; 591 } 592 if (isa<Instruction>(V) && 593 cast<Instruction>(V)->getMetadata("is_base_value")) { 594 // This is a previously inserted base phi or select. We know 595 // that this is a base value. 596 return true; 597 } 598 599 // We need to keep searching 600 return false; 601 } 602 603 namespace { 604 605 /// Models the state of a single base defining value in the findBasePointer 606 /// algorithm for determining where a new instruction is needed to propagate 607 /// the base of this BDV. 608 class BDVState { 609 public: 610 enum Status { Unknown, Base, Conflict }; 611 612 BDVState() : BaseValue(nullptr) {} 613 614 explicit BDVState(Status Status, Value *BaseValue = nullptr) 615 : Status(Status), BaseValue(BaseValue) { 616 assert(Status != Base || BaseValue); 617 } 618 619 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 620 621 Status getStatus() const { return Status; } 622 Value *getBaseValue() const { return BaseValue; } 623 624 bool isBase() const { return getStatus() == Base; } 625 bool isUnknown() const { return getStatus() == Unknown; } 626 bool isConflict() const { return getStatus() == Conflict; } 627 628 bool operator==(const BDVState &Other) const { 629 return BaseValue == Other.BaseValue && Status == Other.Status; 630 } 631 632 bool operator!=(const BDVState &other) const { return !(*this == other); } 633 634 LLVM_DUMP_METHOD 635 void dump() const { 636 print(dbgs()); 637 dbgs() << '\n'; 638 } 639 640 void print(raw_ostream &OS) const { 641 switch (getStatus()) { 642 case Unknown: 643 OS << "U"; 644 break; 645 case Base: 646 OS << "B"; 647 break; 648 case Conflict: 649 OS << "C"; 650 break; 651 } 652 OS << " (" << getBaseValue() << " - " 653 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 654 } 655 656 private: 657 Status Status = Unknown; 658 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 659 }; 660 661 } // end anonymous namespace 662 663 #ifndef NDEBUG 664 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 665 State.print(OS); 666 return OS; 667 } 668 #endif 669 670 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 671 switch (LHS.getStatus()) { 672 case BDVState::Unknown: 673 return RHS; 674 675 case BDVState::Base: 676 assert(LHS.getBaseValue() && "can't be null"); 677 if (RHS.isUnknown()) 678 return LHS; 679 680 if (RHS.isBase()) { 681 if (LHS.getBaseValue() == RHS.getBaseValue()) { 682 assert(LHS == RHS && "equality broken!"); 683 return LHS; 684 } 685 return BDVState(BDVState::Conflict); 686 } 687 assert(RHS.isConflict() && "only three states!"); 688 return BDVState(BDVState::Conflict); 689 690 case BDVState::Conflict: 691 return LHS; 692 } 693 llvm_unreachable("only three states!"); 694 } 695 696 // Values of type BDVState form a lattice, and this function implements the meet 697 // operation. 698 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 699 BDVState Result = meetBDVStateImpl(LHS, RHS); 700 assert(Result == meetBDVStateImpl(RHS, LHS) && 701 "Math is wrong: meet does not commute!"); 702 return Result; 703 } 704 705 /// For a given value or instruction, figure out what base ptr its derived from. 706 /// For gc objects, this is simply itself. On success, returns a value which is 707 /// the base pointer. (This is reliable and can be used for relocation.) On 708 /// failure, returns nullptr. 709 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 710 Value *Def = findBaseOrBDV(I, Cache); 711 712 if (isKnownBaseResult(Def)) 713 return Def; 714 715 // Here's the rough algorithm: 716 // - For every SSA value, construct a mapping to either an actual base 717 // pointer or a PHI which obscures the base pointer. 718 // - Construct a mapping from PHI to unknown TOP state. Use an 719 // optimistic algorithm to propagate base pointer information. Lattice 720 // looks like: 721 // UNKNOWN 722 // b1 b2 b3 b4 723 // CONFLICT 724 // When algorithm terminates, all PHIs will either have a single concrete 725 // base or be in a conflict state. 726 // - For every conflict, insert a dummy PHI node without arguments. Add 727 // these to the base[Instruction] = BasePtr mapping. For every 728 // non-conflict, add the actual base. 729 // - For every conflict, add arguments for the base[a] of each input 730 // arguments. 731 // 732 // Note: A simpler form of this would be to add the conflict form of all 733 // PHIs without running the optimistic algorithm. This would be 734 // analogous to pessimistic data flow and would likely lead to an 735 // overall worse solution. 736 737 #ifndef NDEBUG 738 auto isExpectedBDVType = [](Value *BDV) { 739 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 740 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 741 isa<ShuffleVectorInst>(BDV); 742 }; 743 #endif 744 745 // Once populated, will contain a mapping from each potentially non-base BDV 746 // to a lattice value (described above) which corresponds to that BDV. 747 // We use the order of insertion (DFS over the def/use graph) to provide a 748 // stable deterministic ordering for visiting DenseMaps (which are unordered) 749 // below. This is important for deterministic compilation. 750 MapVector<Value *, BDVState> States; 751 752 // Recursively fill in all base defining values reachable from the initial 753 // one for which we don't already know a definite base value for 754 /* scope */ { 755 SmallVector<Value*, 16> Worklist; 756 Worklist.push_back(Def); 757 States.insert({Def, BDVState()}); 758 while (!Worklist.empty()) { 759 Value *Current = Worklist.pop_back_val(); 760 assert(!isKnownBaseResult(Current) && "why did it get added?"); 761 762 auto visitIncomingValue = [&](Value *InVal) { 763 Value *Base = findBaseOrBDV(InVal, Cache); 764 if (isKnownBaseResult(Base)) 765 // Known bases won't need new instructions introduced and can be 766 // ignored safely 767 return; 768 assert(isExpectedBDVType(Base) && "the only non-base values " 769 "we see should be base defining values"); 770 if (States.insert(std::make_pair(Base, BDVState())).second) 771 Worklist.push_back(Base); 772 }; 773 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 774 for (Value *InVal : PN->incoming_values()) 775 visitIncomingValue(InVal); 776 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 777 visitIncomingValue(SI->getTrueValue()); 778 visitIncomingValue(SI->getFalseValue()); 779 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 780 visitIncomingValue(EE->getVectorOperand()); 781 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 782 visitIncomingValue(IE->getOperand(0)); // vector operand 783 visitIncomingValue(IE->getOperand(1)); // scalar operand 784 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 785 visitIncomingValue(SV->getOperand(0)); 786 visitIncomingValue(SV->getOperand(1)); 787 } 788 else { 789 llvm_unreachable("Unimplemented instruction case"); 790 } 791 } 792 } 793 794 #ifndef NDEBUG 795 DEBUG(dbgs() << "States after initialization:\n"); 796 for (auto Pair : States) { 797 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 798 } 799 #endif 800 801 // Return a phi state for a base defining value. We'll generate a new 802 // base state for known bases and expect to find a cached state otherwise. 803 auto getStateForBDV = [&](Value *baseValue) { 804 if (isKnownBaseResult(baseValue)) 805 return BDVState(baseValue); 806 auto I = States.find(baseValue); 807 assert(I != States.end() && "lookup failed!"); 808 return I->second; 809 }; 810 811 bool Progress = true; 812 while (Progress) { 813 #ifndef NDEBUG 814 const size_t OldSize = States.size(); 815 #endif 816 Progress = false; 817 // We're only changing values in this loop, thus safe to keep iterators. 818 // Since this is computing a fixed point, the order of visit does not 819 // effect the result. TODO: We could use a worklist here and make this run 820 // much faster. 821 for (auto Pair : States) { 822 Value *BDV = Pair.first; 823 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 824 825 // Given an input value for the current instruction, return a BDVState 826 // instance which represents the BDV of that value. 827 auto getStateForInput = [&](Value *V) mutable { 828 Value *BDV = findBaseOrBDV(V, Cache); 829 return getStateForBDV(BDV); 830 }; 831 832 BDVState NewState; 833 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 834 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 835 NewState = 836 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 837 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 838 for (Value *Val : PN->incoming_values()) 839 NewState = meetBDVState(NewState, getStateForInput(Val)); 840 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 841 // The 'meet' for an extractelement is slightly trivial, but it's still 842 // useful in that it drives us to conflict if our input is. 843 NewState = 844 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 845 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 846 // Given there's a inherent type mismatch between the operands, will 847 // *always* produce Conflict. 848 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 849 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 850 } else { 851 // The only instance this does not return a Conflict is when both the 852 // vector operands are the same vector. 853 auto *SV = cast<ShuffleVectorInst>(BDV); 854 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 855 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 856 } 857 858 BDVState OldState = States[BDV]; 859 if (OldState != NewState) { 860 Progress = true; 861 States[BDV] = NewState; 862 } 863 } 864 865 assert(OldSize == States.size() && 866 "fixed point shouldn't be adding any new nodes to state"); 867 } 868 869 #ifndef NDEBUG 870 DEBUG(dbgs() << "States after meet iteration:\n"); 871 for (auto Pair : States) { 872 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 873 } 874 #endif 875 876 // Insert Phis for all conflicts 877 // TODO: adjust naming patterns to avoid this order of iteration dependency 878 for (auto Pair : States) { 879 Instruction *I = cast<Instruction>(Pair.first); 880 BDVState State = Pair.second; 881 assert(!isKnownBaseResult(I) && "why did it get added?"); 882 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 883 884 // extractelement instructions are a bit special in that we may need to 885 // insert an extract even when we know an exact base for the instruction. 886 // The problem is that we need to convert from a vector base to a scalar 887 // base for the particular indice we're interested in. 888 if (State.isBase() && isa<ExtractElementInst>(I) && 889 isa<VectorType>(State.getBaseValue()->getType())) { 890 auto *EE = cast<ExtractElementInst>(I); 891 // TODO: In many cases, the new instruction is just EE itself. We should 892 // exploit this, but can't do it here since it would break the invariant 893 // about the BDV not being known to be a base. 894 auto *BaseInst = ExtractElementInst::Create( 895 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 896 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 897 States[I] = BDVState(BDVState::Base, BaseInst); 898 } 899 900 // Since we're joining a vector and scalar base, they can never be the 901 // same. As a result, we should always see insert element having reached 902 // the conflict state. 903 assert(!isa<InsertElementInst>(I) || State.isConflict()); 904 905 if (!State.isConflict()) 906 continue; 907 908 /// Create and insert a new instruction which will represent the base of 909 /// the given instruction 'I'. 910 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 911 if (isa<PHINode>(I)) { 912 BasicBlock *BB = I->getParent(); 913 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 914 assert(NumPreds > 0 && "how did we reach here"); 915 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 916 return PHINode::Create(I->getType(), NumPreds, Name, I); 917 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 918 // The undef will be replaced later 919 UndefValue *Undef = UndefValue::get(SI->getType()); 920 std::string Name = suffixed_name_or(I, ".base", "base_select"); 921 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 922 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 923 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 924 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 925 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 926 EE); 927 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 928 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 929 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 930 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 931 return InsertElementInst::Create(VecUndef, ScalarUndef, 932 IE->getOperand(2), Name, IE); 933 } else { 934 auto *SV = cast<ShuffleVectorInst>(I); 935 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 936 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 937 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), 938 Name, SV); 939 } 940 }; 941 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 942 // Add metadata marking this as a base value 943 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 944 States[I] = BDVState(BDVState::Conflict, BaseInst); 945 } 946 947 // Returns a instruction which produces the base pointer for a given 948 // instruction. The instruction is assumed to be an input to one of the BDVs 949 // seen in the inference algorithm above. As such, we must either already 950 // know it's base defining value is a base, or have inserted a new 951 // instruction to propagate the base of it's BDV and have entered that newly 952 // introduced instruction into the state table. In either case, we are 953 // assured to be able to determine an instruction which produces it's base 954 // pointer. 955 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 956 Value *BDV = findBaseOrBDV(Input, Cache); 957 Value *Base = nullptr; 958 if (isKnownBaseResult(BDV)) { 959 Base = BDV; 960 } else { 961 // Either conflict or base. 962 assert(States.count(BDV)); 963 Base = States[BDV].getBaseValue(); 964 } 965 assert(Base && "Can't be null"); 966 // The cast is needed since base traversal may strip away bitcasts 967 if (Base->getType() != Input->getType() && InsertPt) 968 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 969 return Base; 970 }; 971 972 // Fixup all the inputs of the new PHIs. Visit order needs to be 973 // deterministic and predictable because we're naming newly created 974 // instructions. 975 for (auto Pair : States) { 976 Instruction *BDV = cast<Instruction>(Pair.first); 977 BDVState State = Pair.second; 978 979 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 980 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 981 if (!State.isConflict()) 982 continue; 983 984 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 985 PHINode *PN = cast<PHINode>(BDV); 986 unsigned NumPHIValues = PN->getNumIncomingValues(); 987 for (unsigned i = 0; i < NumPHIValues; i++) { 988 Value *InVal = PN->getIncomingValue(i); 989 BasicBlock *InBB = PN->getIncomingBlock(i); 990 991 // If we've already seen InBB, add the same incoming value 992 // we added for it earlier. The IR verifier requires phi 993 // nodes with multiple entries from the same basic block 994 // to have the same incoming value for each of those 995 // entries. If we don't do this check here and basephi 996 // has a different type than base, we'll end up adding two 997 // bitcasts (and hence two distinct values) as incoming 998 // values for the same basic block. 999 1000 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 1001 if (BlockIndex != -1) { 1002 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 1003 BasePHI->addIncoming(OldBase, InBB); 1004 1005 #ifndef NDEBUG 1006 Value *Base = getBaseForInput(InVal, nullptr); 1007 // In essence this assert states: the only way two values 1008 // incoming from the same basic block may be different is by 1009 // being different bitcasts of the same value. A cleanup 1010 // that remains TODO is changing findBaseOrBDV to return an 1011 // llvm::Value of the correct type (and still remain pure). 1012 // This will remove the need to add bitcasts. 1013 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1014 "Sanity -- findBaseOrBDV should be pure!"); 1015 #endif 1016 continue; 1017 } 1018 1019 // Find the instruction which produces the base for each input. We may 1020 // need to insert a bitcast in the incoming block. 1021 // TODO: Need to split critical edges if insertion is needed 1022 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1023 BasePHI->addIncoming(Base, InBB); 1024 } 1025 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 1026 } else if (SelectInst *BaseSI = 1027 dyn_cast<SelectInst>(State.getBaseValue())) { 1028 SelectInst *SI = cast<SelectInst>(BDV); 1029 1030 // Find the instruction which produces the base for each input. 1031 // We may need to insert a bitcast. 1032 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1033 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1034 } else if (auto *BaseEE = 1035 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1036 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1037 // Find the instruction which produces the base for each input. We may 1038 // need to insert a bitcast. 1039 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1040 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1041 auto *BdvIE = cast<InsertElementInst>(BDV); 1042 auto UpdateOperand = [&](int OperandIdx) { 1043 Value *InVal = BdvIE->getOperand(OperandIdx); 1044 Value *Base = getBaseForInput(InVal, BaseIE); 1045 BaseIE->setOperand(OperandIdx, Base); 1046 }; 1047 UpdateOperand(0); // vector operand 1048 UpdateOperand(1); // scalar operand 1049 } else { 1050 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1051 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1052 auto UpdateOperand = [&](int OperandIdx) { 1053 Value *InVal = BdvSV->getOperand(OperandIdx); 1054 Value *Base = getBaseForInput(InVal, BaseSV); 1055 BaseSV->setOperand(OperandIdx, Base); 1056 }; 1057 UpdateOperand(0); // vector operand 1058 UpdateOperand(1); // vector operand 1059 } 1060 } 1061 1062 // Cache all of our results so we can cheaply reuse them 1063 // NOTE: This is actually two caches: one of the base defining value 1064 // relation and one of the base pointer relation! FIXME 1065 for (auto Pair : States) { 1066 auto *BDV = Pair.first; 1067 Value *Base = Pair.second.getBaseValue(); 1068 assert(BDV && Base); 1069 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1070 1071 DEBUG(dbgs() << "Updating base value cache" 1072 << " for: " << BDV->getName() << " from: " 1073 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1074 << " to: " << Base->getName() << "\n"); 1075 1076 if (Cache.count(BDV)) { 1077 assert(isKnownBaseResult(Base) && 1078 "must be something we 'know' is a base pointer"); 1079 // Once we transition from the BDV relation being store in the Cache to 1080 // the base relation being stored, it must be stable 1081 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1082 "base relation should be stable"); 1083 } 1084 Cache[BDV] = Base; 1085 } 1086 assert(Cache.count(Def)); 1087 return Cache[Def]; 1088 } 1089 1090 // For a set of live pointers (base and/or derived), identify the base 1091 // pointer of the object which they are derived from. This routine will 1092 // mutate the IR graph as needed to make the 'base' pointer live at the 1093 // definition site of 'derived'. This ensures that any use of 'derived' can 1094 // also use 'base'. This may involve the insertion of a number of 1095 // additional PHI nodes. 1096 // 1097 // preconditions: live is a set of pointer type Values 1098 // 1099 // side effects: may insert PHI nodes into the existing CFG, will preserve 1100 // CFG, will not remove or mutate any existing nodes 1101 // 1102 // post condition: PointerToBase contains one (derived, base) pair for every 1103 // pointer in live. Note that derived can be equal to base if the original 1104 // pointer was a base pointer. 1105 static void 1106 findBasePointers(const StatepointLiveSetTy &live, 1107 MapVector<Value *, Value *> &PointerToBase, 1108 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1109 for (Value *ptr : live) { 1110 Value *base = findBasePointer(ptr, DVCache); 1111 assert(base && "failed to find base pointer"); 1112 PointerToBase[ptr] = base; 1113 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1114 DT->dominates(cast<Instruction>(base)->getParent(), 1115 cast<Instruction>(ptr)->getParent())) && 1116 "The base we found better dominate the derived pointer"); 1117 } 1118 } 1119 1120 /// Find the required based pointers (and adjust the live set) for the given 1121 /// parse point. 1122 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1123 CallSite CS, 1124 PartiallyConstructedSafepointRecord &result) { 1125 MapVector<Value *, Value *> PointerToBase; 1126 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1127 1128 if (PrintBasePointers) { 1129 errs() << "Base Pairs (w/o Relocation):\n"; 1130 for (auto &Pair : PointerToBase) { 1131 errs() << " derived "; 1132 Pair.first->printAsOperand(errs(), false); 1133 errs() << " base "; 1134 Pair.second->printAsOperand(errs(), false); 1135 errs() << "\n";; 1136 } 1137 } 1138 1139 result.PointerToBase = PointerToBase; 1140 } 1141 1142 /// Given an updated version of the dataflow liveness results, update the 1143 /// liveset and base pointer maps for the call site CS. 1144 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1145 CallSite CS, 1146 PartiallyConstructedSafepointRecord &result); 1147 1148 static void recomputeLiveInValues( 1149 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1150 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1151 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1152 // again. The old values are still live and will help it stabilize quickly. 1153 GCPtrLivenessData RevisedLivenessData; 1154 computeLiveInValues(DT, F, RevisedLivenessData); 1155 for (size_t i = 0; i < records.size(); i++) { 1156 struct PartiallyConstructedSafepointRecord &info = records[i]; 1157 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1158 } 1159 } 1160 1161 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1162 // no uses of the original value / return value between the gc.statepoint and 1163 // the gc.relocate / gc.result call. One case which can arise is a phi node 1164 // starting one of the successor blocks. We also need to be able to insert the 1165 // gc.relocates only on the path which goes through the statepoint. We might 1166 // need to split an edge to make this possible. 1167 static BasicBlock * 1168 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1169 DominatorTree &DT) { 1170 BasicBlock *Ret = BB; 1171 if (!BB->getUniquePredecessor()) 1172 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1173 1174 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1175 // from it 1176 FoldSingleEntryPHINodes(Ret); 1177 assert(!isa<PHINode>(Ret->begin()) && 1178 "All PHI nodes should have been removed!"); 1179 1180 // At this point, we can safely insert a gc.relocate or gc.result as the first 1181 // instruction in Ret if needed. 1182 return Ret; 1183 } 1184 1185 // Create new attribute set containing only attributes which can be transferred 1186 // from original call to the safepoint. 1187 static AttributeList legalizeCallAttributes(AttributeList AL) { 1188 if (AL.isEmpty()) 1189 return AL; 1190 1191 // Remove the readonly, readnone, and statepoint function attributes. 1192 AttrBuilder FnAttrs = AL.getFnAttributes(); 1193 FnAttrs.removeAttribute(Attribute::ReadNone); 1194 FnAttrs.removeAttribute(Attribute::ReadOnly); 1195 for (Attribute A : AL.getFnAttributes()) { 1196 if (isStatepointDirectiveAttr(A)) 1197 FnAttrs.remove(A); 1198 } 1199 1200 // Just skip parameter and return attributes for now 1201 LLVMContext &Ctx = AL.getContext(); 1202 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1203 AttributeSet::get(Ctx, FnAttrs)); 1204 } 1205 1206 /// Helper function to place all gc relocates necessary for the given 1207 /// statepoint. 1208 /// Inputs: 1209 /// liveVariables - list of variables to be relocated. 1210 /// liveStart - index of the first live variable. 1211 /// basePtrs - base pointers. 1212 /// statepointToken - statepoint instruction to which relocates should be 1213 /// bound. 1214 /// Builder - Llvm IR builder to be used to construct new calls. 1215 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1216 const int LiveStart, 1217 ArrayRef<Value *> BasePtrs, 1218 Instruction *StatepointToken, 1219 IRBuilder<> Builder) { 1220 if (LiveVariables.empty()) 1221 return; 1222 1223 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1224 auto ValIt = llvm::find(LiveVec, Val); 1225 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1226 size_t Index = std::distance(LiveVec.begin(), ValIt); 1227 assert(Index < LiveVec.size() && "Bug in std::find?"); 1228 return Index; 1229 }; 1230 Module *M = StatepointToken->getModule(); 1231 1232 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1233 // element type is i8 addrspace(1)*). We originally generated unique 1234 // declarations for each pointer type, but this proved problematic because 1235 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1236 // towards a single unified pointer type anyways, we can just cast everything 1237 // to an i8* of the right address space. A bitcast is added later to convert 1238 // gc_relocate to the actual value's type. 1239 auto getGCRelocateDecl = [&] (Type *Ty) { 1240 assert(isHandledGCPointerType(Ty)); 1241 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1242 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1243 if (auto *VT = dyn_cast<VectorType>(Ty)) 1244 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1245 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1246 {NewTy}); 1247 }; 1248 1249 // Lazily populated map from input types to the canonicalized form mentioned 1250 // in the comment above. This should probably be cached somewhere more 1251 // broadly. 1252 DenseMap<Type*, Value*> TypeToDeclMap; 1253 1254 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1255 // Generate the gc.relocate call and save the result 1256 Value *BaseIdx = 1257 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1258 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1259 1260 Type *Ty = LiveVariables[i]->getType(); 1261 if (!TypeToDeclMap.count(Ty)) 1262 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1263 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1264 1265 // only specify a debug name if we can give a useful one 1266 CallInst *Reloc = Builder.CreateCall( 1267 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1268 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1269 // Trick CodeGen into thinking there are lots of free registers at this 1270 // fake call. 1271 Reloc->setCallingConv(CallingConv::Cold); 1272 } 1273 } 1274 1275 namespace { 1276 1277 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1278 /// avoids having to worry about keeping around dangling pointers to Values. 1279 class DeferredReplacement { 1280 AssertingVH<Instruction> Old; 1281 AssertingVH<Instruction> New; 1282 bool IsDeoptimize = false; 1283 1284 DeferredReplacement() = default; 1285 1286 public: 1287 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1288 assert(Old != New && Old && New && 1289 "Cannot RAUW equal values or to / from null!"); 1290 1291 DeferredReplacement D; 1292 D.Old = Old; 1293 D.New = New; 1294 return D; 1295 } 1296 1297 static DeferredReplacement createDelete(Instruction *ToErase) { 1298 DeferredReplacement D; 1299 D.Old = ToErase; 1300 return D; 1301 } 1302 1303 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1304 #ifndef NDEBUG 1305 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1306 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1307 "Only way to construct a deoptimize deferred replacement"); 1308 #endif 1309 DeferredReplacement D; 1310 D.Old = Old; 1311 D.IsDeoptimize = true; 1312 return D; 1313 } 1314 1315 /// Does the task represented by this instance. 1316 void doReplacement() { 1317 Instruction *OldI = Old; 1318 Instruction *NewI = New; 1319 1320 assert(OldI != NewI && "Disallowed at construction?!"); 1321 assert((!IsDeoptimize || !New) && 1322 "Deoptimize instrinsics are not replaced!"); 1323 1324 Old = nullptr; 1325 New = nullptr; 1326 1327 if (NewI) 1328 OldI->replaceAllUsesWith(NewI); 1329 1330 if (IsDeoptimize) { 1331 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1332 // not necessarilly be followed by the matching return. 1333 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1334 new UnreachableInst(RI->getContext(), RI); 1335 RI->eraseFromParent(); 1336 } 1337 1338 OldI->eraseFromParent(); 1339 } 1340 }; 1341 1342 } // end anonymous namespace 1343 1344 static StringRef getDeoptLowering(CallSite CS) { 1345 const char *DeoptLowering = "deopt-lowering"; 1346 if (CS.hasFnAttr(DeoptLowering)) { 1347 // FIXME: CallSite has a *really* confusing interface around attributes 1348 // with values. 1349 const AttributeList &CSAS = CS.getAttributes(); 1350 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1351 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1352 .getValueAsString(); 1353 Function *F = CS.getCalledFunction(); 1354 assert(F && F->hasFnAttribute(DeoptLowering)); 1355 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1356 } 1357 return "live-through"; 1358 } 1359 1360 static void 1361 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1362 const SmallVectorImpl<Value *> &BasePtrs, 1363 const SmallVectorImpl<Value *> &LiveVariables, 1364 PartiallyConstructedSafepointRecord &Result, 1365 std::vector<DeferredReplacement> &Replacements) { 1366 assert(BasePtrs.size() == LiveVariables.size()); 1367 1368 // Then go ahead and use the builder do actually do the inserts. We insert 1369 // immediately before the previous instruction under the assumption that all 1370 // arguments will be available here. We can't insert afterwards since we may 1371 // be replacing a terminator. 1372 Instruction *InsertBefore = CS.getInstruction(); 1373 IRBuilder<> Builder(InsertBefore); 1374 1375 ArrayRef<Value *> GCArgs(LiveVariables); 1376 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1377 uint32_t NumPatchBytes = 0; 1378 uint32_t Flags = uint32_t(StatepointFlags::None); 1379 1380 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1381 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1382 ArrayRef<Use> TransitionArgs; 1383 if (auto TransitionBundle = 1384 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1385 Flags |= uint32_t(StatepointFlags::GCTransition); 1386 TransitionArgs = TransitionBundle->Inputs; 1387 } 1388 1389 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1390 // with a return value, we lower then as never returning calls to 1391 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1392 bool IsDeoptimize = false; 1393 1394 StatepointDirectives SD = 1395 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1396 if (SD.NumPatchBytes) 1397 NumPatchBytes = *SD.NumPatchBytes; 1398 if (SD.StatepointID) 1399 StatepointID = *SD.StatepointID; 1400 1401 // Pass through the requested lowering if any. The default is live-through. 1402 StringRef DeoptLowering = getDeoptLowering(CS); 1403 if (DeoptLowering.equals("live-in")) 1404 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1405 else { 1406 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1407 } 1408 1409 Value *CallTarget = CS.getCalledValue(); 1410 if (Function *F = dyn_cast<Function>(CallTarget)) { 1411 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1412 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1413 // __llvm_deoptimize symbol. We want to resolve this now, since the 1414 // verifier does not allow taking the address of an intrinsic function. 1415 1416 SmallVector<Type *, 8> DomainTy; 1417 for (Value *Arg : CallArgs) 1418 DomainTy.push_back(Arg->getType()); 1419 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1420 /* isVarArg = */ false); 1421 1422 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1423 // calls to @llvm.experimental.deoptimize with different argument types in 1424 // the same module. This is fine -- we assume the frontend knew what it 1425 // was doing when generating this kind of IR. 1426 CallTarget = 1427 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1428 1429 IsDeoptimize = true; 1430 } 1431 } 1432 1433 // Create the statepoint given all the arguments 1434 Instruction *Token = nullptr; 1435 if (CS.isCall()) { 1436 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1437 CallInst *Call = Builder.CreateGCStatepointCall( 1438 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1439 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1440 1441 Call->setTailCallKind(ToReplace->getTailCallKind()); 1442 Call->setCallingConv(ToReplace->getCallingConv()); 1443 1444 // Currently we will fail on parameter attributes and on certain 1445 // function attributes. In case if we can handle this set of attributes - 1446 // set up function attrs directly on statepoint and return attrs later for 1447 // gc_result intrinsic. 1448 Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1449 1450 Token = Call; 1451 1452 // Put the following gc_result and gc_relocate calls immediately after the 1453 // the old call (which we're about to delete) 1454 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1455 Builder.SetInsertPoint(ToReplace->getNextNode()); 1456 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1457 } else { 1458 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1459 1460 // Insert the new invoke into the old block. We'll remove the old one in a 1461 // moment at which point this will become the new terminator for the 1462 // original block. 1463 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1464 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1465 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1466 GCArgs, "statepoint_token"); 1467 1468 Invoke->setCallingConv(ToReplace->getCallingConv()); 1469 1470 // Currently we will fail on parameter attributes and on certain 1471 // function attributes. In case if we can handle this set of attributes - 1472 // set up function attrs directly on statepoint and return attrs later for 1473 // gc_result intrinsic. 1474 Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1475 1476 Token = Invoke; 1477 1478 // Generate gc relocates in exceptional path 1479 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1480 assert(!isa<PHINode>(UnwindBlock->begin()) && 1481 UnwindBlock->getUniquePredecessor() && 1482 "can't safely insert in this block!"); 1483 1484 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1485 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1486 1487 // Attach exceptional gc relocates to the landingpad. 1488 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1489 Result.UnwindToken = ExceptionalToken; 1490 1491 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1492 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1493 Builder); 1494 1495 // Generate gc relocates and returns for normal block 1496 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1497 assert(!isa<PHINode>(NormalDest->begin()) && 1498 NormalDest->getUniquePredecessor() && 1499 "can't safely insert in this block!"); 1500 1501 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1502 1503 // gc relocates will be generated later as if it were regular call 1504 // statepoint 1505 } 1506 assert(Token && "Should be set in one of the above branches!"); 1507 1508 if (IsDeoptimize) { 1509 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1510 // transform the tail-call like structure to a call to a void function 1511 // followed by unreachable to get better codegen. 1512 Replacements.push_back( 1513 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1514 } else { 1515 Token->setName("statepoint_token"); 1516 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1517 StringRef Name = 1518 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1519 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1520 GCResult->setAttributes( 1521 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1522 CS.getAttributes().getRetAttributes())); 1523 1524 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1525 // live set of some other safepoint, in which case that safepoint's 1526 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1527 // llvm::Instruction. Instead, we defer the replacement and deletion to 1528 // after the live sets have been made explicit in the IR, and we no longer 1529 // have raw pointers to worry about. 1530 Replacements.emplace_back( 1531 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1532 } else { 1533 Replacements.emplace_back( 1534 DeferredReplacement::createDelete(CS.getInstruction())); 1535 } 1536 } 1537 1538 Result.StatepointToken = Token; 1539 1540 // Second, create a gc.relocate for every live variable 1541 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1542 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1543 } 1544 1545 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1546 // which make the relocations happening at this safepoint explicit. 1547 // 1548 // WARNING: Does not do any fixup to adjust users of the original live 1549 // values. That's the callers responsibility. 1550 static void 1551 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1552 PartiallyConstructedSafepointRecord &Result, 1553 std::vector<DeferredReplacement> &Replacements) { 1554 const auto &LiveSet = Result.LiveSet; 1555 const auto &PointerToBase = Result.PointerToBase; 1556 1557 // Convert to vector for efficient cross referencing. 1558 SmallVector<Value *, 64> BaseVec, LiveVec; 1559 LiveVec.reserve(LiveSet.size()); 1560 BaseVec.reserve(LiveSet.size()); 1561 for (Value *L : LiveSet) { 1562 LiveVec.push_back(L); 1563 assert(PointerToBase.count(L)); 1564 Value *Base = PointerToBase.find(L)->second; 1565 BaseVec.push_back(Base); 1566 } 1567 assert(LiveVec.size() == BaseVec.size()); 1568 1569 // Do the actual rewriting and delete the old statepoint 1570 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1571 } 1572 1573 // Helper function for the relocationViaAlloca. 1574 // 1575 // It receives iterator to the statepoint gc relocates and emits a store to the 1576 // assigned location (via allocaMap) for the each one of them. It adds the 1577 // visited values into the visitedLiveValues set, which we will later use them 1578 // for sanity checking. 1579 static void 1580 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1581 DenseMap<Value *, Value *> &AllocaMap, 1582 DenseSet<Value *> &VisitedLiveValues) { 1583 for (User *U : GCRelocs) { 1584 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1585 if (!Relocate) 1586 continue; 1587 1588 Value *OriginalValue = Relocate->getDerivedPtr(); 1589 assert(AllocaMap.count(OriginalValue)); 1590 Value *Alloca = AllocaMap[OriginalValue]; 1591 1592 // Emit store into the related alloca 1593 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1594 // the correct type according to alloca. 1595 assert(Relocate->getNextNode() && 1596 "Should always have one since it's not a terminator"); 1597 IRBuilder<> Builder(Relocate->getNextNode()); 1598 Value *CastedRelocatedValue = 1599 Builder.CreateBitCast(Relocate, 1600 cast<AllocaInst>(Alloca)->getAllocatedType(), 1601 suffixed_name_or(Relocate, ".casted", "")); 1602 1603 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1604 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1605 1606 #ifndef NDEBUG 1607 VisitedLiveValues.insert(OriginalValue); 1608 #endif 1609 } 1610 } 1611 1612 // Helper function for the "relocationViaAlloca". Similar to the 1613 // "insertRelocationStores" but works for rematerialized values. 1614 static void insertRematerializationStores( 1615 const RematerializedValueMapTy &RematerializedValues, 1616 DenseMap<Value *, Value *> &AllocaMap, 1617 DenseSet<Value *> &VisitedLiveValues) { 1618 for (auto RematerializedValuePair: RematerializedValues) { 1619 Instruction *RematerializedValue = RematerializedValuePair.first; 1620 Value *OriginalValue = RematerializedValuePair.second; 1621 1622 assert(AllocaMap.count(OriginalValue) && 1623 "Can not find alloca for rematerialized value"); 1624 Value *Alloca = AllocaMap[OriginalValue]; 1625 1626 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1627 Store->insertAfter(RematerializedValue); 1628 1629 #ifndef NDEBUG 1630 VisitedLiveValues.insert(OriginalValue); 1631 #endif 1632 } 1633 } 1634 1635 /// Do all the relocation update via allocas and mem2reg 1636 static void relocationViaAlloca( 1637 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1638 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1639 #ifndef NDEBUG 1640 // record initial number of (static) allocas; we'll check we have the same 1641 // number when we get done. 1642 int InitialAllocaNum = 0; 1643 for (Instruction &I : F.getEntryBlock()) 1644 if (isa<AllocaInst>(I)) 1645 InitialAllocaNum++; 1646 #endif 1647 1648 // TODO-PERF: change data structures, reserve 1649 DenseMap<Value *, Value *> AllocaMap; 1650 SmallVector<AllocaInst *, 200> PromotableAllocas; 1651 // Used later to chack that we have enough allocas to store all values 1652 std::size_t NumRematerializedValues = 0; 1653 PromotableAllocas.reserve(Live.size()); 1654 1655 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1656 // "PromotableAllocas" 1657 const DataLayout &DL = F.getParent()->getDataLayout(); 1658 auto emitAllocaFor = [&](Value *LiveValue) { 1659 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1660 DL.getAllocaAddrSpace(), "", 1661 F.getEntryBlock().getFirstNonPHI()); 1662 AllocaMap[LiveValue] = Alloca; 1663 PromotableAllocas.push_back(Alloca); 1664 }; 1665 1666 // Emit alloca for each live gc pointer 1667 for (Value *V : Live) 1668 emitAllocaFor(V); 1669 1670 // Emit allocas for rematerialized values 1671 for (const auto &Info : Records) 1672 for (auto RematerializedValuePair : Info.RematerializedValues) { 1673 Value *OriginalValue = RematerializedValuePair.second; 1674 if (AllocaMap.count(OriginalValue) != 0) 1675 continue; 1676 1677 emitAllocaFor(OriginalValue); 1678 ++NumRematerializedValues; 1679 } 1680 1681 // The next two loops are part of the same conceptual operation. We need to 1682 // insert a store to the alloca after the original def and at each 1683 // redefinition. We need to insert a load before each use. These are split 1684 // into distinct loops for performance reasons. 1685 1686 // Update gc pointer after each statepoint: either store a relocated value or 1687 // null (if no relocated value was found for this gc pointer and it is not a 1688 // gc_result). This must happen before we update the statepoint with load of 1689 // alloca otherwise we lose the link between statepoint and old def. 1690 for (const auto &Info : Records) { 1691 Value *Statepoint = Info.StatepointToken; 1692 1693 // This will be used for consistency check 1694 DenseSet<Value *> VisitedLiveValues; 1695 1696 // Insert stores for normal statepoint gc relocates 1697 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1698 1699 // In case if it was invoke statepoint 1700 // we will insert stores for exceptional path gc relocates. 1701 if (isa<InvokeInst>(Statepoint)) { 1702 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1703 VisitedLiveValues); 1704 } 1705 1706 // Do similar thing with rematerialized values 1707 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1708 VisitedLiveValues); 1709 1710 if (ClobberNonLive) { 1711 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1712 // the gc.statepoint. This will turn some subtle GC problems into 1713 // slightly easier to debug SEGVs. Note that on large IR files with 1714 // lots of gc.statepoints this is extremely costly both memory and time 1715 // wise. 1716 SmallVector<AllocaInst *, 64> ToClobber; 1717 for (auto Pair : AllocaMap) { 1718 Value *Def = Pair.first; 1719 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1720 1721 // This value was relocated 1722 if (VisitedLiveValues.count(Def)) { 1723 continue; 1724 } 1725 ToClobber.push_back(Alloca); 1726 } 1727 1728 auto InsertClobbersAt = [&](Instruction *IP) { 1729 for (auto *AI : ToClobber) { 1730 auto PT = cast<PointerType>(AI->getAllocatedType()); 1731 Constant *CPN = ConstantPointerNull::get(PT); 1732 StoreInst *Store = new StoreInst(CPN, AI); 1733 Store->insertBefore(IP); 1734 } 1735 }; 1736 1737 // Insert the clobbering stores. These may get intermixed with the 1738 // gc.results and gc.relocates, but that's fine. 1739 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1740 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1741 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1742 } else { 1743 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1744 } 1745 } 1746 } 1747 1748 // Update use with load allocas and add store for gc_relocated. 1749 for (auto Pair : AllocaMap) { 1750 Value *Def = Pair.first; 1751 Value *Alloca = Pair.second; 1752 1753 // We pre-record the uses of allocas so that we dont have to worry about 1754 // later update that changes the user information.. 1755 1756 SmallVector<Instruction *, 20> Uses; 1757 // PERF: trade a linear scan for repeated reallocation 1758 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1759 for (User *U : Def->users()) { 1760 if (!isa<ConstantExpr>(U)) { 1761 // If the def has a ConstantExpr use, then the def is either a 1762 // ConstantExpr use itself or null. In either case 1763 // (recursively in the first, directly in the second), the oop 1764 // it is ultimately dependent on is null and this particular 1765 // use does not need to be fixed up. 1766 Uses.push_back(cast<Instruction>(U)); 1767 } 1768 } 1769 1770 std::sort(Uses.begin(), Uses.end()); 1771 auto Last = std::unique(Uses.begin(), Uses.end()); 1772 Uses.erase(Last, Uses.end()); 1773 1774 for (Instruction *Use : Uses) { 1775 if (isa<PHINode>(Use)) { 1776 PHINode *Phi = cast<PHINode>(Use); 1777 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1778 if (Def == Phi->getIncomingValue(i)) { 1779 LoadInst *Load = new LoadInst( 1780 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1781 Phi->setIncomingValue(i, Load); 1782 } 1783 } 1784 } else { 1785 LoadInst *Load = new LoadInst(Alloca, "", Use); 1786 Use->replaceUsesOfWith(Def, Load); 1787 } 1788 } 1789 1790 // Emit store for the initial gc value. Store must be inserted after load, 1791 // otherwise store will be in alloca's use list and an extra load will be 1792 // inserted before it. 1793 StoreInst *Store = new StoreInst(Def, Alloca); 1794 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1795 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1796 // InvokeInst is a TerminatorInst so the store need to be inserted 1797 // into its normal destination block. 1798 BasicBlock *NormalDest = Invoke->getNormalDest(); 1799 Store->insertBefore(NormalDest->getFirstNonPHI()); 1800 } else { 1801 assert(!Inst->isTerminator() && 1802 "The only TerminatorInst that can produce a value is " 1803 "InvokeInst which is handled above."); 1804 Store->insertAfter(Inst); 1805 } 1806 } else { 1807 assert(isa<Argument>(Def)); 1808 Store->insertAfter(cast<Instruction>(Alloca)); 1809 } 1810 } 1811 1812 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1813 "we must have the same allocas with lives"); 1814 if (!PromotableAllocas.empty()) { 1815 // Apply mem2reg to promote alloca to SSA 1816 PromoteMemToReg(PromotableAllocas, DT); 1817 } 1818 1819 #ifndef NDEBUG 1820 for (auto &I : F.getEntryBlock()) 1821 if (isa<AllocaInst>(I)) 1822 InitialAllocaNum--; 1823 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1824 #endif 1825 } 1826 1827 /// Implement a unique function which doesn't require we sort the input 1828 /// vector. Doing so has the effect of changing the output of a couple of 1829 /// tests in ways which make them less useful in testing fused safepoints. 1830 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1831 SmallSet<T, 8> Seen; 1832 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1833 Vec.end()); 1834 } 1835 1836 /// Insert holders so that each Value is obviously live through the entire 1837 /// lifetime of the call. 1838 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1839 SmallVectorImpl<CallInst *> &Holders) { 1840 if (Values.empty()) 1841 // No values to hold live, might as well not insert the empty holder 1842 return; 1843 1844 Module *M = CS.getInstruction()->getModule(); 1845 // Use a dummy vararg function to actually hold the values live 1846 Function *Func = cast<Function>(M->getOrInsertFunction( 1847 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1848 if (CS.isCall()) { 1849 // For call safepoints insert dummy calls right after safepoint 1850 Holders.push_back(CallInst::Create(Func, Values, "", 1851 &*++CS.getInstruction()->getIterator())); 1852 return; 1853 } 1854 // For invoke safepooints insert dummy calls both in normal and 1855 // exceptional destination blocks 1856 auto *II = cast<InvokeInst>(CS.getInstruction()); 1857 Holders.push_back(CallInst::Create( 1858 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1859 Holders.push_back(CallInst::Create( 1860 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1861 } 1862 1863 static void findLiveReferences( 1864 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1865 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1866 GCPtrLivenessData OriginalLivenessData; 1867 computeLiveInValues(DT, F, OriginalLivenessData); 1868 for (size_t i = 0; i < records.size(); i++) { 1869 struct PartiallyConstructedSafepointRecord &info = records[i]; 1870 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1871 } 1872 } 1873 1874 // Helper function for the "rematerializeLiveValues". It walks use chain 1875 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1876 // the base or a value it cannot process. Only "simple" values are processed 1877 // (currently it is GEP's and casts). The returned root is examined by the 1878 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1879 // with all visited values. 1880 static Value* findRematerializableChainToBasePointer( 1881 SmallVectorImpl<Instruction*> &ChainToBase, 1882 Value *CurrentValue) { 1883 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1884 ChainToBase.push_back(GEP); 1885 return findRematerializableChainToBasePointer(ChainToBase, 1886 GEP->getPointerOperand()); 1887 } 1888 1889 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1890 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1891 return CI; 1892 1893 ChainToBase.push_back(CI); 1894 return findRematerializableChainToBasePointer(ChainToBase, 1895 CI->getOperand(0)); 1896 } 1897 1898 // We have reached the root of the chain, which is either equal to the base or 1899 // is the first unsupported value along the use chain. 1900 return CurrentValue; 1901 } 1902 1903 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1904 // chain we are going to rematerialize. 1905 static unsigned 1906 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1907 TargetTransformInfo &TTI) { 1908 unsigned Cost = 0; 1909 1910 for (Instruction *Instr : Chain) { 1911 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1912 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1913 "non noop cast is found during rematerialization"); 1914 1915 Type *SrcTy = CI->getOperand(0)->getType(); 1916 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI); 1917 1918 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1919 // Cost of the address calculation 1920 Type *ValTy = GEP->getSourceElementType(); 1921 Cost += TTI.getAddressComputationCost(ValTy); 1922 1923 // And cost of the GEP itself 1924 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1925 // allowed for the external usage) 1926 if (!GEP->hasAllConstantIndices()) 1927 Cost += 2; 1928 1929 } else { 1930 llvm_unreachable("unsupported instruciton type during rematerialization"); 1931 } 1932 } 1933 1934 return Cost; 1935 } 1936 1937 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 1938 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 1939 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 1940 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 1941 return false; 1942 // Map of incoming values and their corresponding basic blocks of 1943 // OrigRootPhi. 1944 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 1945 for (unsigned i = 0; i < PhiNum; i++) 1946 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 1947 OrigRootPhi.getIncomingBlock(i); 1948 1949 // Both current and base PHIs should have same incoming values and 1950 // the same basic blocks corresponding to the incoming values. 1951 for (unsigned i = 0; i < PhiNum; i++) { 1952 auto CIVI = 1953 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 1954 if (CIVI == CurrentIncomingValues.end()) 1955 return false; 1956 BasicBlock *CurrentIncomingBB = CIVI->second; 1957 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 1958 return false; 1959 } 1960 return true; 1961 } 1962 1963 // From the statepoint live set pick values that are cheaper to recompute then 1964 // to relocate. Remove this values from the live set, rematerialize them after 1965 // statepoint and record them in "Info" structure. Note that similar to 1966 // relocated values we don't do any user adjustments here. 1967 static void rematerializeLiveValues(CallSite CS, 1968 PartiallyConstructedSafepointRecord &Info, 1969 TargetTransformInfo &TTI) { 1970 const unsigned int ChainLengthThreshold = 10; 1971 1972 // Record values we are going to delete from this statepoint live set. 1973 // We can not di this in following loop due to iterator invalidation. 1974 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1975 1976 for (Value *LiveValue: Info.LiveSet) { 1977 // For each live pointer find it's defining chain 1978 SmallVector<Instruction *, 3> ChainToBase; 1979 assert(Info.PointerToBase.count(LiveValue)); 1980 Value *RootOfChain = 1981 findRematerializableChainToBasePointer(ChainToBase, 1982 LiveValue); 1983 1984 // Nothing to do, or chain is too long 1985 if ( ChainToBase.size() == 0 || 1986 ChainToBase.size() > ChainLengthThreshold) 1987 continue; 1988 1989 // Handle the scenario where the RootOfChain is not equal to the 1990 // Base Value, but they are essentially the same phi values. 1991 if (RootOfChain != Info.PointerToBase[LiveValue]) { 1992 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 1993 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 1994 if (!OrigRootPhi || !AlternateRootPhi) 1995 continue; 1996 // PHI nodes that have the same incoming values, and belonging to the same 1997 // basic blocks are essentially the same SSA value. When the original phi 1998 // has incoming values with different base pointers, the original phi is 1999 // marked as conflict, and an additional `AlternateRootPhi` with the same 2000 // incoming values get generated by the findBasePointer function. We need 2001 // to identify the newly generated AlternateRootPhi (.base version of phi) 2002 // and RootOfChain (the original phi node itself) are the same, so that we 2003 // can rematerialize the gep and casts. This is a workaround for the 2004 // deficiency in the findBasePointer algorithm. 2005 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2006 continue; 2007 // Now that the phi nodes are proved to be the same, assert that 2008 // findBasePointer's newly generated AlternateRootPhi is present in the 2009 // liveset of the call. 2010 assert(Info.LiveSet.count(AlternateRootPhi)); 2011 } 2012 // Compute cost of this chain 2013 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2014 // TODO: We can also account for cases when we will be able to remove some 2015 // of the rematerialized values by later optimization passes. I.e if 2016 // we rematerialized several intersecting chains. Or if original values 2017 // don't have any uses besides this statepoint. 2018 2019 // For invokes we need to rematerialize each chain twice - for normal and 2020 // for unwind basic blocks. Model this by multiplying cost by two. 2021 if (CS.isInvoke()) { 2022 Cost *= 2; 2023 } 2024 // If it's too expensive - skip it 2025 if (Cost >= RematerializationThreshold) 2026 continue; 2027 2028 // Remove value from the live set 2029 LiveValuesToBeDeleted.push_back(LiveValue); 2030 2031 // Clone instructions and record them inside "Info" structure 2032 2033 // Walk backwards to visit top-most instructions first 2034 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2035 2036 // Utility function which clones all instructions from "ChainToBase" 2037 // and inserts them before "InsertBefore". Returns rematerialized value 2038 // which should be used after statepoint. 2039 auto rematerializeChain = [&ChainToBase]( 2040 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2041 Instruction *LastClonedValue = nullptr; 2042 Instruction *LastValue = nullptr; 2043 for (Instruction *Instr: ChainToBase) { 2044 // Only GEP's and casts are supported as we need to be careful to not 2045 // introduce any new uses of pointers not in the liveset. 2046 // Note that it's fine to introduce new uses of pointers which were 2047 // otherwise not used after this statepoint. 2048 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2049 2050 Instruction *ClonedValue = Instr->clone(); 2051 ClonedValue->insertBefore(InsertBefore); 2052 ClonedValue->setName(Instr->getName() + ".remat"); 2053 2054 // If it is not first instruction in the chain then it uses previously 2055 // cloned value. We should update it to use cloned value. 2056 if (LastClonedValue) { 2057 assert(LastValue); 2058 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2059 #ifndef NDEBUG 2060 for (auto OpValue : ClonedValue->operand_values()) { 2061 // Assert that cloned instruction does not use any instructions from 2062 // this chain other than LastClonedValue 2063 assert(!is_contained(ChainToBase, OpValue) && 2064 "incorrect use in rematerialization chain"); 2065 // Assert that the cloned instruction does not use the RootOfChain 2066 // or the AlternateLiveBase. 2067 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2068 } 2069 #endif 2070 } else { 2071 // For the first instruction, replace the use of unrelocated base i.e. 2072 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2073 // live set. They have been proved to be the same PHI nodes. Note 2074 // that the *only* use of the RootOfChain in the ChainToBase list is 2075 // the first Value in the list. 2076 if (RootOfChain != AlternateLiveBase) 2077 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2078 } 2079 2080 LastClonedValue = ClonedValue; 2081 LastValue = Instr; 2082 } 2083 assert(LastClonedValue); 2084 return LastClonedValue; 2085 }; 2086 2087 // Different cases for calls and invokes. For invokes we need to clone 2088 // instructions both on normal and unwind path. 2089 if (CS.isCall()) { 2090 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2091 assert(InsertBefore); 2092 Instruction *RematerializedValue = rematerializeChain( 2093 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2094 Info.RematerializedValues[RematerializedValue] = LiveValue; 2095 } else { 2096 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2097 2098 Instruction *NormalInsertBefore = 2099 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2100 Instruction *UnwindInsertBefore = 2101 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2102 2103 Instruction *NormalRematerializedValue = rematerializeChain( 2104 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2105 Instruction *UnwindRematerializedValue = rematerializeChain( 2106 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2107 2108 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2109 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2110 } 2111 } 2112 2113 // Remove rematerializaed values from the live set 2114 for (auto LiveValue: LiveValuesToBeDeleted) { 2115 Info.LiveSet.remove(LiveValue); 2116 } 2117 } 2118 2119 static bool insertParsePoints(Function &F, DominatorTree &DT, 2120 TargetTransformInfo &TTI, 2121 SmallVectorImpl<CallSite> &ToUpdate) { 2122 #ifndef NDEBUG 2123 // sanity check the input 2124 std::set<CallSite> Uniqued; 2125 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2126 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2127 2128 for (CallSite CS : ToUpdate) 2129 assert(CS.getInstruction()->getFunction() == &F); 2130 #endif 2131 2132 // When inserting gc.relocates for invokes, we need to be able to insert at 2133 // the top of the successor blocks. See the comment on 2134 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2135 // may restructure the CFG. 2136 for (CallSite CS : ToUpdate) { 2137 if (!CS.isInvoke()) 2138 continue; 2139 auto *II = cast<InvokeInst>(CS.getInstruction()); 2140 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2141 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2142 } 2143 2144 // A list of dummy calls added to the IR to keep various values obviously 2145 // live in the IR. We'll remove all of these when done. 2146 SmallVector<CallInst *, 64> Holders; 2147 2148 // Insert a dummy call with all of the deopt operands we'll need for the 2149 // actual safepoint insertion as arguments. This ensures reference operands 2150 // in the deopt argument list are considered live through the safepoint (and 2151 // thus makes sure they get relocated.) 2152 for (CallSite CS : ToUpdate) { 2153 SmallVector<Value *, 64> DeoptValues; 2154 2155 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2156 assert(!isUnhandledGCPointerType(Arg->getType()) && 2157 "support for FCA unimplemented"); 2158 if (isHandledGCPointerType(Arg->getType())) 2159 DeoptValues.push_back(Arg); 2160 } 2161 2162 insertUseHolderAfter(CS, DeoptValues, Holders); 2163 } 2164 2165 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2166 2167 // A) Identify all gc pointers which are statically live at the given call 2168 // site. 2169 findLiveReferences(F, DT, ToUpdate, Records); 2170 2171 // B) Find the base pointers for each live pointer 2172 /* scope for caching */ { 2173 // Cache the 'defining value' relation used in the computation and 2174 // insertion of base phis and selects. This ensures that we don't insert 2175 // large numbers of duplicate base_phis. 2176 DefiningValueMapTy DVCache; 2177 2178 for (size_t i = 0; i < Records.size(); i++) { 2179 PartiallyConstructedSafepointRecord &info = Records[i]; 2180 findBasePointers(DT, DVCache, ToUpdate[i], info); 2181 } 2182 } // end of cache scope 2183 2184 // The base phi insertion logic (for any safepoint) may have inserted new 2185 // instructions which are now live at some safepoint. The simplest such 2186 // example is: 2187 // loop: 2188 // phi a <-- will be a new base_phi here 2189 // safepoint 1 <-- that needs to be live here 2190 // gep a + 1 2191 // safepoint 2 2192 // br loop 2193 // We insert some dummy calls after each safepoint to definitely hold live 2194 // the base pointers which were identified for that safepoint. We'll then 2195 // ask liveness for _every_ base inserted to see what is now live. Then we 2196 // remove the dummy calls. 2197 Holders.reserve(Holders.size() + Records.size()); 2198 for (size_t i = 0; i < Records.size(); i++) { 2199 PartiallyConstructedSafepointRecord &Info = Records[i]; 2200 2201 SmallVector<Value *, 128> Bases; 2202 for (auto Pair : Info.PointerToBase) 2203 Bases.push_back(Pair.second); 2204 2205 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2206 } 2207 2208 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2209 // need to rerun liveness. We may *also* have inserted new defs, but that's 2210 // not the key issue. 2211 recomputeLiveInValues(F, DT, ToUpdate, Records); 2212 2213 if (PrintBasePointers) { 2214 for (auto &Info : Records) { 2215 errs() << "Base Pairs: (w/Relocation)\n"; 2216 for (auto Pair : Info.PointerToBase) { 2217 errs() << " derived "; 2218 Pair.first->printAsOperand(errs(), false); 2219 errs() << " base "; 2220 Pair.second->printAsOperand(errs(), false); 2221 errs() << "\n"; 2222 } 2223 } 2224 } 2225 2226 // It is possible that non-constant live variables have a constant base. For 2227 // example, a GEP with a variable offset from a global. In this case we can 2228 // remove it from the liveset. We already don't add constants to the liveset 2229 // because we assume they won't move at runtime and the GC doesn't need to be 2230 // informed about them. The same reasoning applies if the base is constant. 2231 // Note that the relocation placement code relies on this filtering for 2232 // correctness as it expects the base to be in the liveset, which isn't true 2233 // if the base is constant. 2234 for (auto &Info : Records) 2235 for (auto &BasePair : Info.PointerToBase) 2236 if (isa<Constant>(BasePair.second)) 2237 Info.LiveSet.remove(BasePair.first); 2238 2239 for (CallInst *CI : Holders) 2240 CI->eraseFromParent(); 2241 2242 Holders.clear(); 2243 2244 // In order to reduce live set of statepoint we might choose to rematerialize 2245 // some values instead of relocating them. This is purely an optimization and 2246 // does not influence correctness. 2247 for (size_t i = 0; i < Records.size(); i++) 2248 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2249 2250 // We need this to safely RAUW and delete call or invoke return values that 2251 // may themselves be live over a statepoint. For details, please see usage in 2252 // makeStatepointExplicitImpl. 2253 std::vector<DeferredReplacement> Replacements; 2254 2255 // Now run through and replace the existing statepoints with new ones with 2256 // the live variables listed. We do not yet update uses of the values being 2257 // relocated. We have references to live variables that need to 2258 // survive to the last iteration of this loop. (By construction, the 2259 // previous statepoint can not be a live variable, thus we can and remove 2260 // the old statepoint calls as we go.) 2261 for (size_t i = 0; i < Records.size(); i++) 2262 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2263 2264 ToUpdate.clear(); // prevent accident use of invalid CallSites 2265 2266 for (auto &PR : Replacements) 2267 PR.doReplacement(); 2268 2269 Replacements.clear(); 2270 2271 for (auto &Info : Records) { 2272 // These live sets may contain state Value pointers, since we replaced calls 2273 // with operand bundles with calls wrapped in gc.statepoint, and some of 2274 // those calls may have been def'ing live gc pointers. Clear these out to 2275 // avoid accidentally using them. 2276 // 2277 // TODO: We should create a separate data structure that does not contain 2278 // these live sets, and migrate to using that data structure from this point 2279 // onward. 2280 Info.LiveSet.clear(); 2281 Info.PointerToBase.clear(); 2282 } 2283 2284 // Do all the fixups of the original live variables to their relocated selves 2285 SmallVector<Value *, 128> Live; 2286 for (size_t i = 0; i < Records.size(); i++) { 2287 PartiallyConstructedSafepointRecord &Info = Records[i]; 2288 2289 // We can't simply save the live set from the original insertion. One of 2290 // the live values might be the result of a call which needs a safepoint. 2291 // That Value* no longer exists and we need to use the new gc_result. 2292 // Thankfully, the live set is embedded in the statepoint (and updated), so 2293 // we just grab that. 2294 Statepoint Statepoint(Info.StatepointToken); 2295 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2296 Statepoint.gc_args_end()); 2297 #ifndef NDEBUG 2298 // Do some basic sanity checks on our liveness results before performing 2299 // relocation. Relocation can and will turn mistakes in liveness results 2300 // into non-sensical code which is must harder to debug. 2301 // TODO: It would be nice to test consistency as well 2302 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2303 "statepoint must be reachable or liveness is meaningless"); 2304 for (Value *V : Statepoint.gc_args()) { 2305 if (!isa<Instruction>(V)) 2306 // Non-instruction values trivial dominate all possible uses 2307 continue; 2308 auto *LiveInst = cast<Instruction>(V); 2309 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2310 "unreachable values should never be live"); 2311 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2312 "basic SSA liveness expectation violated by liveness analysis"); 2313 } 2314 #endif 2315 } 2316 unique_unsorted(Live); 2317 2318 #ifndef NDEBUG 2319 // sanity check 2320 for (auto *Ptr : Live) 2321 assert(isHandledGCPointerType(Ptr->getType()) && 2322 "must be a gc pointer type"); 2323 #endif 2324 2325 relocationViaAlloca(F, DT, Live, Records); 2326 return !Records.empty(); 2327 } 2328 2329 // Handles both return values and arguments for Functions and CallSites. 2330 template <typename AttrHolder> 2331 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2332 unsigned Index) { 2333 AttrBuilder R; 2334 if (AH.getDereferenceableBytes(Index)) 2335 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2336 AH.getDereferenceableBytes(Index))); 2337 if (AH.getDereferenceableOrNullBytes(Index)) 2338 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2339 AH.getDereferenceableOrNullBytes(Index))); 2340 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2341 R.addAttribute(Attribute::NoAlias); 2342 2343 if (!R.empty()) 2344 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2345 } 2346 2347 void 2348 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2349 LLVMContext &Ctx = F.getContext(); 2350 2351 for (Argument &A : F.args()) 2352 if (isa<PointerType>(A.getType())) 2353 RemoveNonValidAttrAtIndex(Ctx, F, 2354 A.getArgNo() + AttributeList::FirstArgIndex); 2355 2356 if (isa<PointerType>(F.getReturnType())) 2357 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2358 } 2359 2360 void RewriteStatepointsForGC::stripInvalidMetadataFromInstruction(Instruction &I) { 2361 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2362 return; 2363 // These are the attributes that are still valid on loads and stores after 2364 // RS4GC. 2365 // The metadata implying dereferenceability and noalias are (conservatively) 2366 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2367 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2368 // touch the entire heap including noalias objects. Note: The reasoning is 2369 // same as stripping the dereferenceability and noalias attributes that are 2370 // analogous to the metadata counterparts. 2371 // We also drop the invariant.load metadata on the load because that metadata 2372 // implies the address operand to the load points to memory that is never 2373 // changed once it became dereferenceable. This is no longer true after RS4GC. 2374 // Similar reasoning applies to invariant.group metadata, which applies to 2375 // loads within a group. 2376 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2377 LLVMContext::MD_range, 2378 LLVMContext::MD_alias_scope, 2379 LLVMContext::MD_nontemporal, 2380 LLVMContext::MD_nonnull, 2381 LLVMContext::MD_align, 2382 LLVMContext::MD_type}; 2383 2384 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2385 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2386 } 2387 2388 void RewriteStatepointsForGC::stripNonValidAttributesAndMetadataFromBody(Function &F) { 2389 if (F.empty()) 2390 return; 2391 2392 LLVMContext &Ctx = F.getContext(); 2393 MDBuilder Builder(Ctx); 2394 2395 for (Instruction &I : instructions(F)) { 2396 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2397 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2398 bool IsImmutableTBAA = 2399 MD->getNumOperands() == 4 && 2400 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2401 2402 if (!IsImmutableTBAA) 2403 continue; // no work to do, MD_tbaa is already marked mutable 2404 2405 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2406 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2407 uint64_t Offset = 2408 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2409 2410 MDNode *MutableTBAA = 2411 Builder.createTBAAStructTagNode(Base, Access, Offset); 2412 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2413 } 2414 2415 stripInvalidMetadataFromInstruction(I); 2416 2417 if (CallSite CS = CallSite(&I)) { 2418 for (int i = 0, e = CS.arg_size(); i != e; i++) 2419 if (isa<PointerType>(CS.getArgument(i)->getType())) 2420 RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex); 2421 if (isa<PointerType>(CS.getType())) 2422 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex); 2423 } 2424 } 2425 } 2426 2427 /// Returns true if this function should be rewritten by this pass. The main 2428 /// point of this function is as an extension point for custom logic. 2429 static bool shouldRewriteStatepointsIn(Function &F) { 2430 // TODO: This should check the GCStrategy 2431 if (F.hasGC()) { 2432 const auto &FunctionGCName = F.getGC(); 2433 const StringRef StatepointExampleName("statepoint-example"); 2434 const StringRef CoreCLRName("coreclr"); 2435 return (StatepointExampleName == FunctionGCName) || 2436 (CoreCLRName == FunctionGCName); 2437 } else 2438 return false; 2439 } 2440 2441 void RewriteStatepointsForGC::stripNonValidAttributesAndMetadata(Module &M) { 2442 #ifndef NDEBUG 2443 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2444 #endif 2445 2446 for (Function &F : M) 2447 stripNonValidAttributesFromPrototype(F); 2448 2449 for (Function &F : M) 2450 stripNonValidAttributesAndMetadataFromBody(F); 2451 } 2452 2453 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2454 // Nothing to do for declarations. 2455 if (F.isDeclaration() || F.empty()) 2456 return false; 2457 2458 // Policy choice says not to rewrite - the most common reason is that we're 2459 // compiling code without a GCStrategy. 2460 if (!shouldRewriteStatepointsIn(F)) 2461 return false; 2462 2463 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2464 TargetTransformInfo &TTI = 2465 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2466 const TargetLibraryInfo &TLI = 2467 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2468 2469 auto NeedsRewrite = [&TLI](Instruction &I) { 2470 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2471 return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS); 2472 return false; 2473 }; 2474 2475 // Gather all the statepoints which need rewritten. Be careful to only 2476 // consider those in reachable code since we need to ask dominance queries 2477 // when rewriting. We'll delete the unreachable ones in a moment. 2478 SmallVector<CallSite, 64> ParsePointNeeded; 2479 bool HasUnreachableStatepoint = false; 2480 for (Instruction &I : instructions(F)) { 2481 // TODO: only the ones with the flag set! 2482 if (NeedsRewrite(I)) { 2483 if (DT.isReachableFromEntry(I.getParent())) 2484 ParsePointNeeded.push_back(CallSite(&I)); 2485 else 2486 HasUnreachableStatepoint = true; 2487 } 2488 } 2489 2490 bool MadeChange = false; 2491 2492 // Delete any unreachable statepoints so that we don't have unrewritten 2493 // statepoints surviving this pass. This makes testing easier and the 2494 // resulting IR less confusing to human readers. Rather than be fancy, we 2495 // just reuse a utility function which removes the unreachable blocks. 2496 if (HasUnreachableStatepoint) 2497 MadeChange |= removeUnreachableBlocks(F); 2498 2499 // Return early if no work to do. 2500 if (ParsePointNeeded.empty()) 2501 return MadeChange; 2502 2503 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2504 // These are created by LCSSA. They have the effect of increasing the size 2505 // of liveness sets for no good reason. It may be harder to do this post 2506 // insertion since relocations and base phis can confuse things. 2507 for (BasicBlock &BB : F) 2508 if (BB.getUniquePredecessor()) { 2509 MadeChange = true; 2510 FoldSingleEntryPHINodes(&BB); 2511 } 2512 2513 // Before we start introducing relocations, we want to tweak the IR a bit to 2514 // avoid unfortunate code generation effects. The main example is that we 2515 // want to try to make sure the comparison feeding a branch is after any 2516 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2517 // values feeding a branch after relocation. This is semantically correct, 2518 // but results in extra register pressure since both the pre-relocation and 2519 // post-relocation copies must be available in registers. For code without 2520 // relocations this is handled elsewhere, but teaching the scheduler to 2521 // reverse the transform we're about to do would be slightly complex. 2522 // Note: This may extend the live range of the inputs to the icmp and thus 2523 // increase the liveset of any statepoint we move over. This is profitable 2524 // as long as all statepoints are in rare blocks. If we had in-register 2525 // lowering for live values this would be a much safer transform. 2526 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2527 if (auto *BI = dyn_cast<BranchInst>(TI)) 2528 if (BI->isConditional()) 2529 return dyn_cast<Instruction>(BI->getCondition()); 2530 // TODO: Extend this to handle switches 2531 return nullptr; 2532 }; 2533 for (BasicBlock &BB : F) { 2534 TerminatorInst *TI = BB.getTerminator(); 2535 if (auto *Cond = getConditionInst(TI)) 2536 // TODO: Handle more than just ICmps here. We should be able to move 2537 // most instructions without side effects or memory access. 2538 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2539 MadeChange = true; 2540 Cond->moveBefore(TI); 2541 } 2542 } 2543 2544 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2545 return MadeChange; 2546 } 2547 2548 // liveness computation via standard dataflow 2549 // ------------------------------------------------------------------- 2550 2551 // TODO: Consider using bitvectors for liveness, the set of potentially 2552 // interesting values should be small and easy to pre-compute. 2553 2554 /// Compute the live-in set for the location rbegin starting from 2555 /// the live-out set of the basic block 2556 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2557 BasicBlock::reverse_iterator End, 2558 SetVector<Value *> &LiveTmp) { 2559 for (auto &I : make_range(Begin, End)) { 2560 // KILL/Def - Remove this definition from LiveIn 2561 LiveTmp.remove(&I); 2562 2563 // Don't consider *uses* in PHI nodes, we handle their contribution to 2564 // predecessor blocks when we seed the LiveOut sets 2565 if (isa<PHINode>(I)) 2566 continue; 2567 2568 // USE - Add to the LiveIn set for this instruction 2569 for (Value *V : I.operands()) { 2570 assert(!isUnhandledGCPointerType(V->getType()) && 2571 "support for FCA unimplemented"); 2572 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2573 // The choice to exclude all things constant here is slightly subtle. 2574 // There are two independent reasons: 2575 // - We assume that things which are constant (from LLVM's definition) 2576 // do not move at runtime. For example, the address of a global 2577 // variable is fixed, even though it's contents may not be. 2578 // - Second, we can't disallow arbitrary inttoptr constants even 2579 // if the language frontend does. Optimization passes are free to 2580 // locally exploit facts without respect to global reachability. This 2581 // can create sections of code which are dynamically unreachable and 2582 // contain just about anything. (see constants.ll in tests) 2583 LiveTmp.insert(V); 2584 } 2585 } 2586 } 2587 } 2588 2589 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2590 for (BasicBlock *Succ : successors(BB)) { 2591 for (auto &I : *Succ) { 2592 PHINode *PN = dyn_cast<PHINode>(&I); 2593 if (!PN) 2594 break; 2595 2596 Value *V = PN->getIncomingValueForBlock(BB); 2597 assert(!isUnhandledGCPointerType(V->getType()) && 2598 "support for FCA unimplemented"); 2599 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2600 LiveTmp.insert(V); 2601 } 2602 } 2603 } 2604 2605 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2606 SetVector<Value *> KillSet; 2607 for (Instruction &I : *BB) 2608 if (isHandledGCPointerType(I.getType())) 2609 KillSet.insert(&I); 2610 return KillSet; 2611 } 2612 2613 #ifndef NDEBUG 2614 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2615 /// sanity check for the liveness computation. 2616 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2617 TerminatorInst *TI, bool TermOkay = false) { 2618 for (Value *V : Live) { 2619 if (auto *I = dyn_cast<Instruction>(V)) { 2620 // The terminator can be a member of the LiveOut set. LLVM's definition 2621 // of instruction dominance states that V does not dominate itself. As 2622 // such, we need to special case this to allow it. 2623 if (TermOkay && TI == I) 2624 continue; 2625 assert(DT.dominates(I, TI) && 2626 "basic SSA liveness expectation violated by liveness analysis"); 2627 } 2628 } 2629 } 2630 2631 /// Check that all the liveness sets used during the computation of liveness 2632 /// obey basic SSA properties. This is useful for finding cases where we miss 2633 /// a def. 2634 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2635 BasicBlock &BB) { 2636 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2637 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2638 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2639 } 2640 #endif 2641 2642 static void computeLiveInValues(DominatorTree &DT, Function &F, 2643 GCPtrLivenessData &Data) { 2644 SmallSetVector<BasicBlock *, 32> Worklist; 2645 2646 // Seed the liveness for each individual block 2647 for (BasicBlock &BB : F) { 2648 Data.KillSet[&BB] = computeKillSet(&BB); 2649 Data.LiveSet[&BB].clear(); 2650 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2651 2652 #ifndef NDEBUG 2653 for (Value *Kill : Data.KillSet[&BB]) 2654 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2655 #endif 2656 2657 Data.LiveOut[&BB] = SetVector<Value *>(); 2658 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2659 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2660 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2661 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2662 if (!Data.LiveIn[&BB].empty()) 2663 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2664 } 2665 2666 // Propagate that liveness until stable 2667 while (!Worklist.empty()) { 2668 BasicBlock *BB = Worklist.pop_back_val(); 2669 2670 // Compute our new liveout set, then exit early if it hasn't changed despite 2671 // the contribution of our successor. 2672 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2673 const auto OldLiveOutSize = LiveOut.size(); 2674 for (BasicBlock *Succ : successors(BB)) { 2675 assert(Data.LiveIn.count(Succ)); 2676 LiveOut.set_union(Data.LiveIn[Succ]); 2677 } 2678 // assert OutLiveOut is a subset of LiveOut 2679 if (OldLiveOutSize == LiveOut.size()) { 2680 // If the sets are the same size, then we didn't actually add anything 2681 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2682 // hasn't changed. 2683 continue; 2684 } 2685 Data.LiveOut[BB] = LiveOut; 2686 2687 // Apply the effects of this basic block 2688 SetVector<Value *> LiveTmp = LiveOut; 2689 LiveTmp.set_union(Data.LiveSet[BB]); 2690 LiveTmp.set_subtract(Data.KillSet[BB]); 2691 2692 assert(Data.LiveIn.count(BB)); 2693 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2694 // assert: OldLiveIn is a subset of LiveTmp 2695 if (OldLiveIn.size() != LiveTmp.size()) { 2696 Data.LiveIn[BB] = LiveTmp; 2697 Worklist.insert(pred_begin(BB), pred_end(BB)); 2698 } 2699 } // while (!Worklist.empty()) 2700 2701 #ifndef NDEBUG 2702 // Sanity check our output against SSA properties. This helps catch any 2703 // missing kills during the above iteration. 2704 for (BasicBlock &BB : F) 2705 checkBasicSSA(DT, Data, BB); 2706 #endif 2707 } 2708 2709 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2710 StatepointLiveSetTy &Out) { 2711 BasicBlock *BB = Inst->getParent(); 2712 2713 // Note: The copy is intentional and required 2714 assert(Data.LiveOut.count(BB)); 2715 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2716 2717 // We want to handle the statepoint itself oddly. It's 2718 // call result is not live (normal), nor are it's arguments 2719 // (unless they're used again later). This adjustment is 2720 // specifically what we need to relocate 2721 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2722 LiveOut); 2723 LiveOut.remove(Inst); 2724 Out.insert(LiveOut.begin(), LiveOut.end()); 2725 } 2726 2727 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2728 CallSite CS, 2729 PartiallyConstructedSafepointRecord &Info) { 2730 Instruction *Inst = CS.getInstruction(); 2731 StatepointLiveSetTy Updated; 2732 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2733 2734 #ifndef NDEBUG 2735 DenseSet<Value *> Bases; 2736 for (auto KVPair : Info.PointerToBase) 2737 Bases.insert(KVPair.second); 2738 #endif 2739 2740 // We may have base pointers which are now live that weren't before. We need 2741 // to update the PointerToBase structure to reflect this. 2742 for (auto V : Updated) 2743 if (Info.PointerToBase.insert({V, V}).second) { 2744 assert(Bases.count(V) && "Can't find base for unexpected live value!"); 2745 continue; 2746 } 2747 2748 #ifndef NDEBUG 2749 for (auto V : Updated) 2750 assert(Info.PointerToBase.count(V) && 2751 "Must be able to find base for live value!"); 2752 #endif 2753 2754 // Remove any stale base mappings - this can happen since our liveness is 2755 // more precise then the one inherent in the base pointer analysis. 2756 DenseSet<Value *> ToErase; 2757 for (auto KVPair : Info.PointerToBase) 2758 if (!Updated.count(KVPair.first)) 2759 ToErase.insert(KVPair.first); 2760 2761 for (auto *V : ToErase) 2762 Info.PointerToBase.erase(V); 2763 2764 #ifndef NDEBUG 2765 for (auto KVPair : Info.PointerToBase) 2766 assert(Updated.count(KVPair.first) && "record for non-live value"); 2767 #endif 2768 2769 Info.LiveSet = Updated; 2770 } 2771