1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 struct RewriteStatepointsForGC : public FunctionPass { 59 static char ID; // Pass identification, replacement for typeid 60 61 RewriteStatepointsForGC() : FunctionPass(ID) { 62 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 63 } 64 bool runOnFunction(Function &F) override; 65 66 void getAnalysisUsage(AnalysisUsage &AU) const override { 67 // We add and rewrite a bunch of instructions, but don't really do much 68 // else. We could in theory preserve a lot more analyses here. 69 AU.addRequired<DominatorTreeWrapperPass>(); 70 } 71 }; 72 73 char RewriteStatepointsForGC::ID = 0; 74 75 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 76 return new RewriteStatepointsForGC(); 77 } 78 79 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 80 "Make relocations explicit at statepoints", false, false) 81 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 82 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 83 "Make relocations explicit at statepoints", false, false) 84 85 namespace { 86 // The type of the internal cache used inside the findBasePointers family 87 // of functions. From the callers perspective, this is an opaque type and 88 // should not be inspected. 89 // 90 // In the actual implementation this caches two relations: 91 // - The base relation itself (i.e. this pointer is based on that one) 92 // - The base defining value relation (i.e. before base_phi insertion) 93 // Generally, after the execution of a full findBasePointer call, only the 94 // base relation will remain. Internally, we add a mixture of the two 95 // types, then update all the second type to the first type 96 typedef std::map<Value *, Value *> DefiningValueMapTy; 97 } 98 99 namespace { 100 struct PartiallyConstructedSafepointRecord { 101 /// The set of values known to be live accross this safepoint 102 std::set<llvm::Value *> liveset; 103 104 /// Mapping from live pointers to a base-defining-value 105 std::map<llvm::Value *, llvm::Value *> base_pairs; 106 107 /// Any new values which were added to the IR during base pointer analysis 108 /// for this safepoint 109 std::set<llvm::Value *> newInsertedDefs; 110 111 /// The bounds of the inserted code for the safepoint 112 std::pair<Instruction *, Instruction *> safepoint; 113 114 // Instruction to which exceptional gc relocates are attached 115 // Makes it easier to iterate through them during relocationViaAlloca. 116 Instruction *exceptional_relocates_token; 117 118 /// The result of the safepointing call (or nullptr) 119 Value *result; 120 }; 121 } 122 123 // TODO: Once we can get to the GCStrategy, this becomes 124 // Optional<bool> isGCManagedPointer(const Value *V) const override { 125 126 static bool isGCPointerType(const Type *T) { 127 if (const PointerType *PT = dyn_cast<PointerType>(T)) 128 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 129 // GC managed heap. We know that a pointer into this heap needs to be 130 // updated and that no other pointer does. 131 return (1 == PT->getAddressSpace()); 132 return false; 133 } 134 135 /// Return true if the Value is a gc reference type which is potentially used 136 /// after the instruction 'loc'. This is only used with the edge reachability 137 /// liveness code. Note: It is assumed the V dominates loc. 138 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, 139 LoopInfo *LI) { 140 if (!isGCPointerType(V.getType())) 141 return false; 142 143 if (V.use_empty()) 144 return false; 145 146 // Given assumption that V dominates loc, this may be live 147 return true; 148 } 149 static bool isAggWhichContainsGCPtrType(Type *Ty) { 150 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 151 return isGCPointerType(VT->getScalarType()); 152 else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 153 return isGCPointerType(AT->getElementType()) || 154 isAggWhichContainsGCPtrType(AT->getElementType()); 155 } else if (StructType *ST = dyn_cast<StructType>(Ty)) { 156 bool UnsupportedType = false; 157 for (Type *SubType : ST->subtypes()) 158 UnsupportedType |= isGCPointerType(SubType) || isAggWhichContainsGCPtrType(SubType); 159 return UnsupportedType; 160 } else 161 return false; 162 } 163 164 // Conservatively identifies any definitions which might be live at the 165 // given instruction. The analysis is performed immediately before the 166 // given instruction. Values defined by that instruction are not considered 167 // live. Values used by that instruction are considered live. 168 // 169 // preconditions: valid IR graph, term is either a terminator instruction or 170 // a call instruction, pred is the basic block of term, DT, LI are valid 171 // 172 // side effects: none, does not mutate IR 173 // 174 // postconditions: populates liveValues as discussed above 175 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 176 DominatorTree &DT, LoopInfo *LI, 177 std::set<llvm::Value *> &liveValues) { 178 liveValues.clear(); 179 180 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 181 182 Function *F = pred->getParent(); 183 184 auto is_live_gc_reference = 185 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 186 187 // Are there any gc pointer arguments live over this point? This needs to be 188 // special cased since arguments aren't defined in basic blocks. 189 for (Argument &arg : F->args()) { 190 assert(!isAggWhichContainsGCPtrType(arg.getType()) && 191 "support for FCA unimplemented"); 192 193 if (is_live_gc_reference(arg)) { 194 liveValues.insert(&arg); 195 } 196 } 197 198 // Walk through all dominating blocks - the ones which can contain 199 // definitions used in this block - and check to see if any of the values 200 // they define are used in locations potentially reachable from the 201 // interesting instruction. 202 BasicBlock *BBI = pred; 203 while (true) { 204 if (TraceLSP) { 205 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 206 } 207 assert(DT.dominates(BBI, pred)); 208 assert(isPotentiallyReachable(BBI, pred, &DT) && 209 "dominated block must be reachable"); 210 211 // Walk through the instructions in dominating blocks and keep any 212 // that have a use potentially reachable from the block we're 213 // considering putting the safepoint in 214 for (Instruction &inst : *BBI) { 215 if (TraceLSP) { 216 errs() << "[LSP] Looking at instruction "; 217 inst.dump(); 218 } 219 220 if (pred == BBI && (&inst) == term) { 221 if (TraceLSP) { 222 errs() << "[LSP] stopped because we encountered the safepoint " 223 "instruction.\n"; 224 } 225 226 // If we're in the block which defines the interesting instruction, 227 // we don't want to include any values as live which are defined 228 // _after_ the interesting line or as part of the line itself 229 // i.e. "term" is the call instruction for a call safepoint, the 230 // results of the call should not be considered live in that stackmap 231 break; 232 } 233 234 assert(!isAggWhichContainsGCPtrType(inst.getType()) && 235 "support for FCA unimplemented"); 236 237 if (is_live_gc_reference(inst)) { 238 if (TraceLSP) { 239 errs() << "[LSP] found live value for this safepoint "; 240 inst.dump(); 241 term->dump(); 242 } 243 liveValues.insert(&inst); 244 } 245 } 246 if (!DT.getNode(BBI)->getIDom()) { 247 assert(BBI == &F->getEntryBlock() && 248 "failed to find a dominator for something other than " 249 "the entry block"); 250 break; 251 } 252 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 253 } 254 } 255 256 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 257 if (a->hasName() && b->hasName()) { 258 return -1 == a->getName().compare(b->getName()); 259 } else if (a->hasName() && !b->hasName()) { 260 return true; 261 } else if (!a->hasName() && b->hasName()) { 262 return false; 263 } else { 264 // Better than nothing, but not stable 265 return a < b; 266 } 267 } 268 269 /// Find the initial live set. Note that due to base pointer 270 /// insertion, the live set may be incomplete. 271 static void 272 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 273 PartiallyConstructedSafepointRecord &result) { 274 Instruction *inst = CS.getInstruction(); 275 276 BasicBlock *BB = inst->getParent(); 277 std::set<Value *> liveset; 278 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 279 280 if (PrintLiveSet) { 281 // Note: This output is used by several of the test cases 282 // The order of elemtns in a set is not stable, put them in a vec and sort 283 // by name 284 std::vector<Value *> temp; 285 temp.insert(temp.end(), liveset.begin(), liveset.end()); 286 std::sort(temp.begin(), temp.end(), order_by_name); 287 errs() << "Live Variables:\n"; 288 for (Value *V : temp) { 289 errs() << " " << V->getName(); // no newline 290 V->dump(); 291 } 292 } 293 if (PrintLiveSetSize) { 294 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 295 errs() << "Number live values: " << liveset.size() << "\n"; 296 } 297 result.liveset = liveset; 298 } 299 300 /// True iff this value is the null pointer constant (of any pointer type) 301 static bool isNullConstant(Value *V) { 302 return isa<Constant>(V) && isa<PointerType>(V->getType()) && 303 cast<Constant>(V)->isNullValue(); 304 } 305 306 /// Helper function for findBasePointer - Will return a value which either a) 307 /// defines the base pointer for the input or b) blocks the simple search 308 /// (i.e. a PHI or Select of two derived pointers) 309 static Value *findBaseDefiningValue(Value *I) { 310 assert(I->getType()->isPointerTy() && 311 "Illegal to ask for the base pointer of a non-pointer type"); 312 313 // There are instructions which can never return gc pointer values. Sanity 314 // check 315 // that this is actually true. 316 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && 317 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); 318 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) || 319 !cast<Instruction>(I)->isTerminator()) && 320 "With the exception of invoke terminators don't define values"); 321 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) && 322 "Can't be definitions to start with"); 323 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) && 324 "Comparisons don't give ops"); 325 // There's a bunch of instructions which just don't make sense to apply to 326 // a pointer. The only valid reason for this would be pointer bit 327 // twiddling which we're just not going to support. 328 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) && 329 "Binary ops on pointer values are meaningless. Unless your " 330 "bit-twiddling which we don't support"); 331 332 if (Argument *Arg = dyn_cast<Argument>(I)) { 333 // An incoming argument to the function is a base pointer 334 // We should have never reached here if this argument isn't an gc value 335 assert(Arg->getType()->isPointerTy() && 336 "Base for pointer must be another pointer"); 337 return Arg; 338 } 339 340 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) { 341 // base case 342 assert(global->getType()->isPointerTy() && 343 "Base for pointer must be another pointer"); 344 return global; 345 } 346 347 // inlining could possibly introduce phi node that contains 348 // undef if callee has multiple returns 349 if (UndefValue *undef = dyn_cast<UndefValue>(I)) { 350 assert(undef->getType()->isPointerTy() && 351 "Base for pointer must be another pointer"); 352 return undef; // utterly meaningless, but useful for dealing with 353 // partially optimized code. 354 } 355 356 // Due to inheritance, this must be _after_ the global variable and undef 357 // checks 358 if (Constant *con = dyn_cast<Constant>(I)) { 359 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 360 "order of checks wrong!"); 361 // Note: Finding a constant base for something marked for relocation 362 // doesn't really make sense. The most likely case is either a) some 363 // screwed up the address space usage or b) your validating against 364 // compiled C++ code w/o the proper separation. The only real exception 365 // is a null pointer. You could have generic code written to index of 366 // off a potentially null value and have proven it null. We also use 367 // null pointers in dead paths of relocation phis (which we might later 368 // want to find a base pointer for). 369 assert(con->getType()->isPointerTy() && 370 "Base for pointer must be another pointer"); 371 assert(con->isNullValue() && "null is the only case which makes sense"); 372 return con; 373 } 374 375 if (CastInst *CI = dyn_cast<CastInst>(I)) { 376 Value *def = CI->stripPointerCasts(); 377 assert(def->getType()->isPointerTy() && 378 "Base for pointer must be another pointer"); 379 if (isa<CastInst>(def)) { 380 // If we find a cast instruction here, it means we've found a cast 381 // which is not simply a pointer cast (i.e. an inttoptr). We don't 382 // know how to handle int->ptr conversion. 383 llvm_unreachable("Can not find the base pointers for an inttoptr cast"); 384 } 385 assert(!isa<CastInst>(def) && "shouldn't find another cast here"); 386 return findBaseDefiningValue(def); 387 } 388 389 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 390 if (LI->getType()->isPointerTy()) { 391 Value *Op = LI->getOperand(0); 392 (void)Op; 393 // Has to be a pointer to an gc object, or possibly an array of such? 394 assert(Op->getType()->isPointerTy()); 395 return LI; // The value loaded is an gc base itself 396 } 397 } 398 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 399 Value *Op = GEP->getOperand(0); 400 if (Op->getType()->isPointerTy()) { 401 return findBaseDefiningValue(Op); // The base of this GEP is the base 402 } 403 } 404 405 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) { 406 // An alloca represents a conceptual stack slot. It's the slot itself 407 // that the GC needs to know about, not the value in the slot. 408 assert(alloc->getType()->isPointerTy() && 409 "Base for pointer must be another pointer"); 410 return alloc; 411 } 412 413 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 414 switch (II->getIntrinsicID()) { 415 default: 416 // fall through to general call handling 417 break; 418 case Intrinsic::experimental_gc_statepoint: 419 case Intrinsic::experimental_gc_result_float: 420 case Intrinsic::experimental_gc_result_int: 421 llvm_unreachable("these don't produce pointers"); 422 case Intrinsic::experimental_gc_result_ptr: 423 // This is just a special case of the CallInst check below to handle a 424 // statepoint with deopt args which hasn't been rewritten for GC yet. 425 // TODO: Assert that the statepoint isn't rewritten yet. 426 return II; 427 case Intrinsic::experimental_gc_relocate: { 428 // Rerunning safepoint insertion after safepoints are already 429 // inserted is not supported. It could probably be made to work, 430 // but why are you doing this? There's no good reason. 431 llvm_unreachable("repeat safepoint insertion is not supported"); 432 } 433 case Intrinsic::gcroot: 434 // Currently, this mechanism hasn't been extended to work with gcroot. 435 // There's no reason it couldn't be, but I haven't thought about the 436 // implications much. 437 llvm_unreachable( 438 "interaction with the gcroot mechanism is not supported"); 439 } 440 } 441 // We assume that functions in the source language only return base 442 // pointers. This should probably be generalized via attributes to support 443 // both source language and internal functions. 444 if (CallInst *call = dyn_cast<CallInst>(I)) { 445 assert(call->getType()->isPointerTy() && 446 "Base for pointer must be another pointer"); 447 return call; 448 } 449 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 450 assert(invoke->getType()->isPointerTy() && 451 "Base for pointer must be another pointer"); 452 return invoke; 453 } 454 455 // I have absolutely no idea how to implement this part yet. It's not 456 // neccessarily hard, I just haven't really looked at it yet. 457 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 458 459 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) { 460 // A CAS is effectively a atomic store and load combined under a 461 // predicate. From the perspective of base pointers, we just treat it 462 // like a load. We loaded a pointer from a address in memory, that value 463 // had better be a valid base pointer. 464 return cas->getPointerOperand(); 465 } 466 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) { 467 assert(AtomicRMWInst::Xchg == atomic->getOperation() && 468 "All others are binary ops which don't apply to base pointers"); 469 // semantically, a load, store pair. Treat it the same as a standard load 470 return atomic->getPointerOperand(); 471 } 472 473 // The aggregate ops. Aggregates can either be in the heap or on the 474 // stack, but in either case, this is simply a field load. As a result, 475 // this is a defining definition of the base just like a load is. 476 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) { 477 return ev; 478 } 479 480 // We should never see an insert vector since that would require we be 481 // tracing back a struct value not a pointer value. 482 assert(!isa<InsertValueInst>(I) && 483 "Base pointer for a struct is meaningless"); 484 485 // The last two cases here don't return a base pointer. Instead, they 486 // return a value which dynamically selects from amoung several base 487 // derived pointers (each with it's own base potentially). It's the job of 488 // the caller to resolve these. 489 if (SelectInst *select = dyn_cast<SelectInst>(I)) { 490 return select; 491 } 492 if (PHINode *phi = dyn_cast<PHINode>(I)) { 493 return phi; 494 } 495 496 errs() << "unknown type: " << *I << "\n"; 497 llvm_unreachable("unknown type"); 498 return nullptr; 499 } 500 501 /// Returns the base defining value for this value. 502 Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { 503 if (cache.find(I) == cache.end()) { 504 cache[I] = findBaseDefiningValue(I); 505 } 506 assert(cache.find(I) != cache.end()); 507 508 if (TraceLSP) { 509 errs() << "fBDV-cached: " << I->getName() << " -> " << cache[I]->getName() 510 << "\n"; 511 } 512 return cache[I]; 513 } 514 515 /// Return a base pointer for this value if known. Otherwise, return it's 516 /// base defining value. 517 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { 518 Value *def = findBaseDefiningValueCached(I, cache); 519 if (cache.count(def)) { 520 // Either a base-of relation, or a self reference. Caller must check. 521 return cache[def]; 522 } 523 // Only a BDV available 524 return def; 525 } 526 527 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 528 /// is it known to be a base pointer? Or do we need to continue searching. 529 static bool isKnownBaseResult(Value *v) { 530 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) { 531 // no recursion possible 532 return true; 533 } 534 if (cast<Instruction>(v)->getMetadata("is_base_value")) { 535 // This is a previously inserted base phi or select. We know 536 // that this is a base value. 537 return true; 538 } 539 540 // We need to keep searching 541 return false; 542 } 543 544 // TODO: find a better name for this 545 namespace { 546 class PhiState { 547 public: 548 enum Status { Unknown, Base, Conflict }; 549 550 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 551 assert(status != Base || b); 552 } 553 PhiState(Value *b) : status(Base), base(b) {} 554 PhiState() : status(Unknown), base(nullptr) {} 555 PhiState(const PhiState &other) : status(other.status), base(other.base) { 556 assert(status != Base || base); 557 } 558 559 Status getStatus() const { return status; } 560 Value *getBase() const { return base; } 561 562 bool isBase() const { return getStatus() == Base; } 563 bool isUnknown() const { return getStatus() == Unknown; } 564 bool isConflict() const { return getStatus() == Conflict; } 565 566 bool operator==(const PhiState &other) const { 567 return base == other.base && status == other.status; 568 } 569 570 bool operator!=(const PhiState &other) const { return !(*this == other); } 571 572 void dump() { 573 errs() << status << " (" << base << " - " 574 << (base ? base->getName() : "nullptr") << "): "; 575 } 576 577 private: 578 Status status; 579 Value *base; // non null only if status == base 580 }; 581 582 // Values of type PhiState form a lattice, and this is a helper 583 // class that implementes the meet operation. The meat of the meet 584 // operation is implemented in MeetPhiStates::pureMeet 585 class MeetPhiStates { 586 public: 587 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 588 explicit MeetPhiStates(const std::map<Value *, PhiState> &phiStates) 589 : phiStates(phiStates) {} 590 591 // Destructively meet the current result with the base V. V can 592 // either be a merge instruction (SelectInst / PHINode), in which 593 // case its status is looked up in the phiStates map; or a regular 594 // SSA value, in which case it is assumed to be a base. 595 void meetWith(Value *V) { 596 PhiState otherState = getStateForBDV(V); 597 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 598 MeetPhiStates::pureMeet(currentResult, otherState)) && 599 "math is wrong: meet does not commute!"); 600 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 601 } 602 603 PhiState getResult() const { return currentResult; } 604 605 private: 606 const std::map<Value *, PhiState> &phiStates; 607 PhiState currentResult; 608 609 /// Return a phi state for a base defining value. We'll generate a new 610 /// base state for known bases and expect to find a cached state otherwise 611 PhiState getStateForBDV(Value *baseValue) { 612 if (isKnownBaseResult(baseValue)) { 613 return PhiState(baseValue); 614 } else { 615 return lookupFromMap(baseValue); 616 } 617 } 618 619 PhiState lookupFromMap(Value *V) { 620 auto I = phiStates.find(V); 621 assert(I != phiStates.end() && "lookup failed!"); 622 return I->second; 623 } 624 625 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 626 switch (stateA.getStatus()) { 627 case PhiState::Unknown: 628 return stateB; 629 630 case PhiState::Base: 631 assert(stateA.getBase() && "can't be null"); 632 if (stateB.isUnknown()) { 633 return stateA; 634 } else if (stateB.isBase()) { 635 if (stateA.getBase() == stateB.getBase()) { 636 assert(stateA == stateB && "equality broken!"); 637 return stateA; 638 } 639 return PhiState(PhiState::Conflict); 640 } else { 641 assert(stateB.isConflict() && "only three states!"); 642 return PhiState(PhiState::Conflict); 643 } 644 645 case PhiState::Conflict: 646 return stateA; 647 } 648 assert(false && "only three states!"); 649 } 650 }; 651 } 652 /// For a given value or instruction, figure out what base ptr it's derived 653 /// from. For gc objects, this is simply itself. On success, returns a value 654 /// which is the base pointer. (This is reliable and can be used for 655 /// relocation.) On failure, returns nullptr. 656 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 657 std::set<llvm::Value *> &newInsertedDefs) { 658 Value *def = findBaseOrBDV(I, cache); 659 660 if (isKnownBaseResult(def)) { 661 return def; 662 } 663 664 // Here's the rough algorithm: 665 // - For every SSA value, construct a mapping to either an actual base 666 // pointer or a PHI which obscures the base pointer. 667 // - Construct a mapping from PHI to unknown TOP state. Use an 668 // optimistic algorithm to propagate base pointer information. Lattice 669 // looks like: 670 // UNKNOWN 671 // b1 b2 b3 b4 672 // CONFLICT 673 // When algorithm terminates, all PHIs will either have a single concrete 674 // base or be in a conflict state. 675 // - For every conflict, insert a dummy PHI node without arguments. Add 676 // these to the base[Instruction] = BasePtr mapping. For every 677 // non-conflict, add the actual base. 678 // - For every conflict, add arguments for the base[a] of each input 679 // arguments. 680 // 681 // Note: A simpler form of this would be to add the conflict form of all 682 // PHIs without running the optimistic algorithm. This would be 683 // analougous to pessimistic data flow and would likely lead to an 684 // overall worse solution. 685 686 std::map<Value *, PhiState> states; 687 states[def] = PhiState(); 688 // Recursively fill in all phis & selects reachable from the initial one 689 // for which we don't already know a definite base value for 690 // PERF: Yes, this is as horribly inefficient as it looks. 691 bool done = false; 692 while (!done) { 693 done = true; 694 for (auto Pair : states) { 695 Value *v = Pair.first; 696 assert(!isKnownBaseResult(v) && "why did it get added?"); 697 if (PHINode *phi = dyn_cast<PHINode>(v)) { 698 unsigned NumPHIValues = phi->getNumIncomingValues(); 699 assert(NumPHIValues > 0 && "zero input phis are illegal"); 700 for (unsigned i = 0; i != NumPHIValues; ++i) { 701 Value *InVal = phi->getIncomingValue(i); 702 Value *local = findBaseOrBDV(InVal, cache); 703 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 704 states[local] = PhiState(); 705 done = false; 706 } 707 } 708 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 709 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 710 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 711 states[local] = PhiState(); 712 done = false; 713 } 714 local = findBaseOrBDV(sel->getFalseValue(), cache); 715 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 716 states[local] = PhiState(); 717 done = false; 718 } 719 } 720 } 721 } 722 723 if (TraceLSP) { 724 errs() << "States after initialization:\n"; 725 for (auto Pair : states) { 726 Instruction *v = cast<Instruction>(Pair.first); 727 PhiState state = Pair.second; 728 state.dump(); 729 v->dump(); 730 } 731 } 732 733 // TODO: come back and revisit the state transitions around inputs which 734 // have reached conflict state. The current version seems too conservative. 735 736 bool progress = true; 737 size_t oldSize = 0; 738 while (progress) { 739 oldSize = states.size(); 740 progress = false; 741 for (auto Pair : states) { 742 MeetPhiStates calculateMeet(states); 743 Value *v = Pair.first; 744 assert(!isKnownBaseResult(v) && "why did it get added?"); 745 assert(isa<SelectInst>(v) || isa<PHINode>(v)); 746 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 747 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 748 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 749 } else if (PHINode *phi = dyn_cast<PHINode>(v)) { 750 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 751 calculateMeet.meetWith( 752 findBaseOrBDV(phi->getIncomingValue(i), cache)); 753 } 754 } else { 755 llvm_unreachable("no such state expected"); 756 } 757 758 PhiState oldState = states[v]; 759 PhiState newState = calculateMeet.getResult(); 760 if (oldState != newState) { 761 progress = true; 762 states[v] = newState; 763 } 764 } 765 766 assert(oldSize <= states.size()); 767 assert(oldSize == states.size() || progress); 768 } 769 770 if (TraceLSP) { 771 errs() << "States after meet iteration:\n"; 772 for (auto Pair : states) { 773 Instruction *v = cast<Instruction>(Pair.first); 774 PhiState state = Pair.second; 775 state.dump(); 776 v->dump(); 777 } 778 } 779 780 // Insert Phis for all conflicts 781 for (auto Pair : states) { 782 Instruction *v = cast<Instruction>(Pair.first); 783 PhiState state = Pair.second; 784 assert(!isKnownBaseResult(v) && "why did it get added?"); 785 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 786 if (state.isConflict()) { 787 if (isa<PHINode>(v)) { 788 int num_preds = 789 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 790 assert(num_preds > 0 && "how did we reach here"); 791 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 792 newInsertedDefs.insert(phi); 793 // Add metadata marking this as a base value 794 auto *const_1 = ConstantInt::get( 795 Type::getInt32Ty( 796 v->getParent()->getParent()->getParent()->getContext()), 797 1); 798 auto MDConst = ConstantAsMetadata::get(const_1); 799 MDNode *md = MDNode::get( 800 v->getParent()->getParent()->getParent()->getContext(), MDConst); 801 phi->setMetadata("is_base_value", md); 802 states[v] = PhiState(PhiState::Conflict, phi); 803 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 804 // The undef will be replaced later 805 UndefValue *undef = UndefValue::get(sel->getType()); 806 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 807 undef, "base_select", sel); 808 newInsertedDefs.insert(basesel); 809 // Add metadata marking this as a base value 810 auto *const_1 = ConstantInt::get( 811 Type::getInt32Ty( 812 v->getParent()->getParent()->getParent()->getContext()), 813 1); 814 auto MDConst = ConstantAsMetadata::get(const_1); 815 MDNode *md = MDNode::get( 816 v->getParent()->getParent()->getParent()->getContext(), MDConst); 817 basesel->setMetadata("is_base_value", md); 818 states[v] = PhiState(PhiState::Conflict, basesel); 819 } else { 820 assert(false); 821 } 822 } 823 } 824 825 // Fixup all the inputs of the new PHIs 826 for (auto Pair : states) { 827 Instruction *v = cast<Instruction>(Pair.first); 828 PhiState state = Pair.second; 829 830 assert(!isKnownBaseResult(v) && "why did it get added?"); 831 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 832 if (state.isConflict()) { 833 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 834 PHINode *phi = cast<PHINode>(v); 835 unsigned NumPHIValues = phi->getNumIncomingValues(); 836 for (unsigned i = 0; i < NumPHIValues; i++) { 837 Value *InVal = phi->getIncomingValue(i); 838 BasicBlock *InBB = phi->getIncomingBlock(i); 839 840 // If we've already seen InBB, add the same incoming value 841 // we added for it earlier. The IR verifier requires phi 842 // nodes with multiple entries from the same basic block 843 // to have the same incoming value for each of those 844 // entries. If we don't do this check here and basephi 845 // has a different type than base, we'll end up adding two 846 // bitcasts (and hence two distinct values) as incoming 847 // values for the same basic block. 848 849 int blockIndex = basephi->getBasicBlockIndex(InBB); 850 if (blockIndex != -1) { 851 Value *oldBase = basephi->getIncomingValue(blockIndex); 852 basephi->addIncoming(oldBase, InBB); 853 #ifndef NDEBUG 854 Value *base = findBaseOrBDV(InVal, cache); 855 if (!isKnownBaseResult(base)) { 856 // Either conflict or base. 857 assert(states.count(base)); 858 base = states[base].getBase(); 859 assert(base != nullptr && "unknown PhiState!"); 860 assert(newInsertedDefs.count(base) && 861 "should have already added this in a prev. iteration!"); 862 } 863 864 // In essense this assert states: the only way two 865 // values incoming from the same basic block may be 866 // different is by being different bitcasts of the same 867 // value. A cleanup that remains TODO is changing 868 // findBaseOrBDV to return an llvm::Value of the correct 869 // type (and still remain pure). This will remove the 870 // need to add bitcasts. 871 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 872 "sanity -- findBaseOrBDV should be pure!"); 873 #endif 874 continue; 875 } 876 877 // Find either the defining value for the PHI or the normal base for 878 // a non-phi node 879 Value *base = findBaseOrBDV(InVal, cache); 880 if (!isKnownBaseResult(base)) { 881 // Either conflict or base. 882 assert(states.count(base)); 883 base = states[base].getBase(); 884 assert(base != nullptr && "unknown PhiState!"); 885 } 886 assert(base && "can't be null"); 887 // Must use original input BB since base may not be Instruction 888 // The cast is needed since base traversal may strip away bitcasts 889 if (base->getType() != basephi->getType()) { 890 base = new BitCastInst(base, basephi->getType(), "cast", 891 InBB->getTerminator()); 892 newInsertedDefs.insert(base); 893 } 894 basephi->addIncoming(base, InBB); 895 } 896 assert(basephi->getNumIncomingValues() == NumPHIValues); 897 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) { 898 SelectInst *sel = cast<SelectInst>(v); 899 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 900 // something more safe and less hacky. 901 for (int i = 1; i <= 2; i++) { 902 Value *InVal = sel->getOperand(i); 903 // Find either the defining value for the PHI or the normal base for 904 // a non-phi node 905 Value *base = findBaseOrBDV(InVal, cache); 906 if (!isKnownBaseResult(base)) { 907 // Either conflict or base. 908 assert(states.count(base)); 909 base = states[base].getBase(); 910 assert(base != nullptr && "unknown PhiState!"); 911 } 912 assert(base && "can't be null"); 913 // Must use original input BB since base may not be Instruction 914 // The cast is needed since base traversal may strip away bitcasts 915 if (base->getType() != basesel->getType()) { 916 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 917 newInsertedDefs.insert(base); 918 } 919 basesel->setOperand(i, base); 920 } 921 } else { 922 assert(false && "unexpected type"); 923 } 924 } 925 } 926 927 // Cache all of our results so we can cheaply reuse them 928 // NOTE: This is actually two caches: one of the base defining value 929 // relation and one of the base pointer relation! FIXME 930 for (auto item : states) { 931 Value *v = item.first; 932 Value *base = item.second.getBase(); 933 assert(v && base); 934 assert(!isKnownBaseResult(v) && "why did it get added?"); 935 936 if (TraceLSP) { 937 std::string fromstr = 938 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 939 : "none"; 940 errs() << "Updating base value cache" 941 << " for: " << (v->hasName() ? v->getName() : "") 942 << " from: " << fromstr 943 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 944 } 945 946 assert(isKnownBaseResult(base) && 947 "must be something we 'know' is a base pointer"); 948 if (cache.count(v)) { 949 // Once we transition from the BDV relation being store in the cache to 950 // the base relation being stored, it must be stable 951 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 952 "base relation should be stable"); 953 } 954 cache[v] = base; 955 } 956 assert(cache.find(def) != cache.end()); 957 return cache[def]; 958 } 959 960 // For a set of live pointers (base and/or derived), identify the base 961 // pointer of the object which they are derived from. This routine will 962 // mutate the IR graph as needed to make the 'base' pointer live at the 963 // definition site of 'derived'. This ensures that any use of 'derived' can 964 // also use 'base'. This may involve the insertion of a number of 965 // additional PHI nodes. 966 // 967 // preconditions: live is a set of pointer type Values 968 // 969 // side effects: may insert PHI nodes into the existing CFG, will preserve 970 // CFG, will not remove or mutate any existing nodes 971 // 972 // post condition: base_pairs contains one (derived, base) pair for every 973 // pointer in live. Note that derived can be equal to base if the original 974 // pointer was a base pointer. 975 static void findBasePointers(const std::set<llvm::Value *> &live, 976 std::map<llvm::Value *, llvm::Value *> &base_pairs, 977 DominatorTree *DT, DefiningValueMapTy &DVCache, 978 std::set<llvm::Value *> &newInsertedDefs) { 979 for (Value *ptr : live) { 980 Value *base = findBasePointer(ptr, DVCache, newInsertedDefs); 981 assert(base && "failed to find base pointer"); 982 base_pairs[ptr] = base; 983 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 984 DT->dominates(cast<Instruction>(base)->getParent(), 985 cast<Instruction>(ptr)->getParent())) && 986 "The base we found better dominate the derived pointer"); 987 988 if (isNullConstant(base)) 989 // If you see this trip and like to live really dangerously, the code 990 // should be correct, just with idioms the verifier can't handle. You 991 // can try disabling the verifier at your own substaintial risk. 992 llvm_unreachable("the relocation code needs adjustment to handle the" 993 "relocation of a null pointer constant without causing" 994 "false positives in the safepoint ir verifier."); 995 } 996 } 997 998 /// Find the required based pointers (and adjust the live set) for the given 999 /// parse point. 1000 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1001 const CallSite &CS, 1002 PartiallyConstructedSafepointRecord &result) { 1003 std::map<llvm::Value *, llvm::Value *> base_pairs; 1004 std::set<llvm::Value *> newInsertedDefs; 1005 findBasePointers(result.liveset, base_pairs, &DT, DVCache, newInsertedDefs); 1006 1007 if (PrintBasePointers) { 1008 errs() << "Base Pairs (w/o Relocation):\n"; 1009 for (auto Pair : base_pairs) { 1010 errs() << " derived %" << Pair.first->getName() << " base %" 1011 << Pair.second->getName() << "\n"; 1012 } 1013 } 1014 1015 result.base_pairs = base_pairs; 1016 result.newInsertedDefs = newInsertedDefs; 1017 } 1018 1019 /// Check for liveness of items in the insert defs and add them to the live 1020 /// and base pointer sets 1021 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 1022 const std::set<Value *> &allInsertedDefs, 1023 PartiallyConstructedSafepointRecord &result) { 1024 Instruction *inst = CS.getInstruction(); 1025 1026 std::set<llvm::Value *> liveset = result.liveset; 1027 std::map<llvm::Value *, llvm::Value *> base_pairs = result.base_pairs; 1028 1029 auto is_live_gc_reference = 1030 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 1031 1032 // For each new definition, check to see if a) the definition dominates the 1033 // instruction we're interested in, and b) one of the uses of that definition 1034 // is edge-reachable from the instruction we're interested in. This is the 1035 // same definition of liveness we used in the intial liveness analysis 1036 for (Value *newDef : allInsertedDefs) { 1037 if (liveset.count(newDef)) { 1038 // already live, no action needed 1039 continue; 1040 } 1041 1042 // PERF: Use DT to check instruction domination might not be good for 1043 // compilation time, and we could change to optimal solution if this 1044 // turn to be a issue 1045 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1046 // can't possibly be live at inst 1047 continue; 1048 } 1049 1050 if (is_live_gc_reference(*newDef)) { 1051 // Add the live new defs into liveset and base_pairs 1052 liveset.insert(newDef); 1053 base_pairs[newDef] = newDef; 1054 } 1055 } 1056 1057 result.liveset = liveset; 1058 result.base_pairs = base_pairs; 1059 } 1060 1061 static void fixupLiveReferences( 1062 Function &F, DominatorTree &DT, Pass *P, 1063 const std::set<llvm::Value *> &allInsertedDefs, 1064 std::vector<CallSite> &toUpdate, 1065 std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1066 for (size_t i = 0; i < records.size(); i++) { 1067 struct PartiallyConstructedSafepointRecord &info = records[i]; 1068 CallSite &CS = toUpdate[i]; 1069 fixupLiveness(DT, CS, allInsertedDefs, info); 1070 } 1071 } 1072 1073 // Normalize basic block to make it ready to be target of invoke statepoint. 1074 // It means spliting it to have single predecessor. Return newly created BB 1075 // ready to be successor of invoke statepoint. 1076 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1077 BasicBlock *InvokeParent, 1078 Pass *P) { 1079 BasicBlock *ret = BB; 1080 1081 if (!BB->getUniquePredecessor()) { 1082 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1083 } 1084 1085 // Another requirement for such basic blocks is to not have any phi nodes. 1086 // Since we just ensured that new BB will have single predecessor, 1087 // all phi nodes in it will have one value. Here it would be naturall place 1088 // to 1089 // remove them all. But we can not do this because we are risking to remove 1090 // one of the values stored in liveset of another statepoint. We will do it 1091 // later after placing all safepoints. 1092 1093 return ret; 1094 } 1095 1096 static void 1097 VerifySafepointBounds(const std::pair<Instruction *, Instruction *> &bounds) { 1098 assert(bounds.first->getParent() && bounds.second->getParent() && 1099 "both must belong to basic blocks"); 1100 if (bounds.first->getParent() == bounds.second->getParent()) { 1101 // This is a call safepoint 1102 // TODO: scan the range to find the statepoint 1103 // TODO: check that the following instruction is not a gc_relocate or 1104 // gc_result 1105 } else { 1106 // This is an invoke safepoint 1107 InvokeInst *invoke = dyn_cast<InvokeInst>(bounds.first); 1108 (void)invoke; 1109 assert(invoke && "only continues over invokes!"); 1110 assert(invoke->getNormalDest() == bounds.second->getParent() && 1111 "safepoint should continue into normal exit block"); 1112 } 1113 } 1114 1115 static int find_index(const SmallVectorImpl<Value *> &livevec, Value *val) { 1116 auto itr = std::find(livevec.begin(), livevec.end(), val); 1117 assert(livevec.end() != itr); 1118 size_t index = std::distance(livevec.begin(), itr); 1119 assert(index < livevec.size()); 1120 return index; 1121 } 1122 1123 // Create new attribute set containing only attributes which can be transfered 1124 // from original call to the safepoint. 1125 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1126 AttributeSet ret; 1127 1128 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1129 unsigned index = AS.getSlotIndex(Slot); 1130 1131 if (index == AttributeSet::ReturnIndex || 1132 index == AttributeSet::FunctionIndex) { 1133 1134 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1135 ++it) { 1136 Attribute attr = *it; 1137 1138 // Do not allow certain attributes - just skip them 1139 // Safepoint can not be read only or read none. 1140 if (attr.hasAttribute(Attribute::ReadNone) || 1141 attr.hasAttribute(Attribute::ReadOnly)) 1142 continue; 1143 1144 ret = ret.addAttributes( 1145 AS.getContext(), index, 1146 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1147 } 1148 } 1149 1150 // Just skip parameter attributes for now 1151 } 1152 1153 return ret; 1154 } 1155 1156 /// Helper function to place all gc relocates necessary for the given 1157 /// statepoint. 1158 /// Inputs: 1159 /// liveVariables - list of variables to be relocated. 1160 /// liveStart - index of the first live variable. 1161 /// basePtrs - base pointers. 1162 /// statepointToken - statepoint instruction to which relocates should be 1163 /// bound. 1164 /// Builder - Llvm IR builder to be used to construct new calls. 1165 /// Returns array with newly created relocates. 1166 static std::vector<llvm::Instruction *> 1167 CreateGCRelocates(const SmallVectorImpl<llvm::Value *> &liveVariables, 1168 const int liveStart, 1169 const SmallVectorImpl<llvm::Value *> &basePtrs, 1170 Instruction *statepointToken, IRBuilder<> Builder) { 1171 1172 std::vector<llvm::Instruction *> newDefs; 1173 1174 Module *M = statepointToken->getParent()->getParent()->getParent(); 1175 1176 for (unsigned i = 0; i < liveVariables.size(); i++) { 1177 // We generate a (potentially) unique declaration for every pointer type 1178 // combination. This results is some blow up the function declarations in 1179 // the IR, but removes the need for argument bitcasts which shrinks the IR 1180 // greatly and makes it much more readable. 1181 std::vector<Type *> types; // one per 'any' type 1182 types.push_back(liveVariables[i]->getType()); // result type 1183 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1184 M, Intrinsic::experimental_gc_relocate, types); 1185 1186 // Generate the gc.relocate call and save the result 1187 Value *baseIdx = 1188 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1189 liveStart + find_index(liveVariables, basePtrs[i])); 1190 Value *liveIdx = ConstantInt::get( 1191 Type::getInt32Ty(M->getContext()), 1192 liveStart + find_index(liveVariables, liveVariables[i])); 1193 1194 // only specify a debug name if we can give a useful one 1195 Value *reloc = Builder.CreateCall3( 1196 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1197 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1198 : ""); 1199 // Trick CodeGen into thinking there are lots of free registers at this 1200 // fake call. 1201 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1202 1203 newDefs.push_back(cast<Instruction>(reloc)); 1204 } 1205 assert(newDefs.size() == liveVariables.size() && 1206 "missing or extra redefinition at safepoint"); 1207 1208 return newDefs; 1209 } 1210 1211 static void 1212 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1213 const SmallVectorImpl<llvm::Value *> &basePtrs, 1214 const SmallVectorImpl<llvm::Value *> &liveVariables, 1215 Pass *P, 1216 PartiallyConstructedSafepointRecord &result) { 1217 assert(basePtrs.size() == liveVariables.size()); 1218 assert(isStatepoint(CS) && 1219 "This method expects to be rewriting a statepoint"); 1220 1221 BasicBlock *BB = CS.getInstruction()->getParent(); 1222 assert(BB); 1223 Function *F = BB->getParent(); 1224 assert(F && "must be set"); 1225 Module *M = F->getParent(); 1226 (void)M; 1227 assert(M && "must be set"); 1228 1229 // We're not changing the function signature of the statepoint since the gc 1230 // arguments go into the var args section. 1231 Function *gc_statepoint_decl = CS.getCalledFunction(); 1232 1233 // Then go ahead and use the builder do actually do the inserts. We insert 1234 // immediately before the previous instruction under the assumption that all 1235 // arguments will be available here. We can't insert afterwards since we may 1236 // be replacing a terminator. 1237 Instruction *insertBefore = CS.getInstruction(); 1238 IRBuilder<> Builder(insertBefore); 1239 // Copy all of the arguments from the original statepoint - this includes the 1240 // target, call args, and deopt args 1241 std::vector<llvm::Value *> args; 1242 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1243 // TODO: Clear the 'needs rewrite' flag 1244 1245 // add all the pointers to be relocated (gc arguments) 1246 // Capture the start of the live variable list for use in the gc_relocates 1247 const int live_start = args.size(); 1248 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1249 1250 // Create the statepoint given all the arguments 1251 Instruction *token = nullptr; 1252 AttributeSet return_attributes; 1253 if (CS.isCall()) { 1254 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1255 CallInst *call = 1256 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1257 call->setTailCall(toReplace->isTailCall()); 1258 call->setCallingConv(toReplace->getCallingConv()); 1259 1260 // Currently we will fail on parameter attributes and on certain 1261 // function attributes. 1262 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1263 // In case if we can handle this set of sttributes - set up function attrs 1264 // directly on statepoint and return attrs later for gc_result intrinsic. 1265 call->setAttributes(new_attrs.getFnAttributes()); 1266 return_attributes = new_attrs.getRetAttributes(); 1267 1268 token = call; 1269 1270 // Put the following gc_result and gc_relocate calls immediately after the 1271 // the old call (which we're about to delete) 1272 BasicBlock::iterator next(toReplace); 1273 assert(BB->end() != next && "not a terminator, must have next"); 1274 next++; 1275 Instruction *IP = &*(next); 1276 Builder.SetInsertPoint(IP); 1277 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1278 1279 } else if (CS.isInvoke()) { 1280 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1281 1282 // Insert the new invoke into the old block. We'll remove the old one in a 1283 // moment at which point this will become the new terminator for the 1284 // original block. 1285 InvokeInst *invoke = InvokeInst::Create( 1286 gc_statepoint_decl, toReplace->getNormalDest(), 1287 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1288 invoke->setCallingConv(toReplace->getCallingConv()); 1289 1290 // Currently we will fail on parameter attributes and on certain 1291 // function attributes. 1292 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1293 // In case if we can handle this set of sttributes - set up function attrs 1294 // directly on statepoint and return attrs later for gc_result intrinsic. 1295 invoke->setAttributes(new_attrs.getFnAttributes()); 1296 return_attributes = new_attrs.getRetAttributes(); 1297 1298 token = invoke; 1299 1300 // Generate gc relocates in exceptional path 1301 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1302 toReplace->getUnwindDest(), invoke->getParent(), P); 1303 1304 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1305 Builder.SetInsertPoint(IP); 1306 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1307 1308 // Extract second element from landingpad return value. We will attach 1309 // exceptional gc relocates to it. 1310 const unsigned idx = 1; 1311 Instruction *exceptional_token = 1312 cast<Instruction>(Builder.CreateExtractValue( 1313 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1314 result.exceptional_relocates_token = exceptional_token; 1315 1316 // Just throw away return value. We will use the one we got for normal 1317 // block. 1318 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1319 exceptional_token, Builder); 1320 1321 // Generate gc relocates and returns for normal block 1322 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1323 toReplace->getNormalDest(), invoke->getParent(), P); 1324 1325 IP = &*(normalDest->getFirstInsertionPt()); 1326 Builder.SetInsertPoint(IP); 1327 1328 // gc relocates will be generated later as if it were regular call 1329 // statepoint 1330 } else { 1331 llvm_unreachable("unexpect type of CallSite"); 1332 } 1333 assert(token); 1334 1335 // Take the name of the original value call if it had one. 1336 token->takeName(CS.getInstruction()); 1337 1338 // The GCResult is already inserted, we just need to find it 1339 Instruction *gc_result = nullptr; 1340 /* scope */ { 1341 Instruction *toReplace = CS.getInstruction(); 1342 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1343 "only valid use before rewrite is gc.result"); 1344 if (toReplace->hasOneUse()) { 1345 Instruction *GCResult = cast<Instruction>(*toReplace->user_begin()); 1346 assert(isGCResult(GCResult)); 1347 gc_result = GCResult; 1348 } 1349 } 1350 1351 // Update the gc.result of the original statepoint (if any) to use the newly 1352 // inserted statepoint. This is safe to do here since the token can't be 1353 // considered a live reference. 1354 CS.getInstruction()->replaceAllUsesWith(token); 1355 1356 // Second, create a gc.relocate for every live variable 1357 std::vector<llvm::Instruction *> newDefs = 1358 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1359 1360 // Need to pass through the last part of the safepoint block so that we 1361 // don't accidentally update uses in a following gc.relocate which is 1362 // still conceptually part of the same safepoint. Gah. 1363 Instruction *last = nullptr; 1364 if (!newDefs.empty()) { 1365 last = newDefs.back(); 1366 } else if (gc_result) { 1367 last = gc_result; 1368 } else { 1369 last = token; 1370 } 1371 assert(last && "can't be null"); 1372 const auto bounds = std::make_pair(token, last); 1373 1374 // Sanity check our results - this is slightly non-trivial due to invokes 1375 VerifySafepointBounds(bounds); 1376 1377 result.safepoint = bounds; 1378 } 1379 1380 namespace { 1381 struct name_ordering { 1382 Value *base; 1383 Value *derived; 1384 bool operator()(name_ordering const &a, name_ordering const &b) { 1385 return -1 == a.derived->getName().compare(b.derived->getName()); 1386 } 1387 }; 1388 } 1389 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1390 SmallVectorImpl<Value *> &livevec) { 1391 assert(basevec.size() == livevec.size()); 1392 1393 std::vector<name_ordering> temp; 1394 for (size_t i = 0; i < basevec.size(); i++) { 1395 name_ordering v; 1396 v.base = basevec[i]; 1397 v.derived = livevec[i]; 1398 temp.push_back(v); 1399 } 1400 std::sort(temp.begin(), temp.end(), name_ordering()); 1401 for (size_t i = 0; i < basevec.size(); i++) { 1402 basevec[i] = temp[i].base; 1403 livevec[i] = temp[i].derived; 1404 } 1405 } 1406 1407 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1408 // which make the relocations happening at this safepoint explicit. 1409 // 1410 // WARNING: Does not do any fixup to adjust users of the original live 1411 // values. That's the callers responsibility. 1412 static void 1413 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1414 PartiallyConstructedSafepointRecord &result) { 1415 std::set<llvm::Value *> liveset = result.liveset; 1416 std::map<llvm::Value *, llvm::Value *> base_pairs = result.base_pairs; 1417 1418 // Convert to vector for efficient cross referencing. 1419 SmallVector<Value *, 64> basevec, livevec; 1420 livevec.reserve(liveset.size()); 1421 basevec.reserve(liveset.size()); 1422 for (Value *L : liveset) { 1423 livevec.push_back(L); 1424 1425 assert(base_pairs.find(L) != base_pairs.end()); 1426 Value *base = base_pairs[L]; 1427 basevec.push_back(base); 1428 } 1429 assert(livevec.size() == basevec.size()); 1430 1431 // To make the output IR slightly more stable (for use in diffs), ensure a 1432 // fixed order of the values in the safepoint (by sorting the value name). 1433 // The order is otherwise meaningless. 1434 stablize_order(basevec, livevec); 1435 1436 // Do the actual rewriting and delete the old statepoint 1437 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1438 CS.getInstruction()->eraseFromParent(); 1439 } 1440 1441 // Helper function for the relocationViaAlloca. 1442 // It receives iterator to the statepoint gc relocates and emits store to the 1443 // assigned 1444 // location (via allocaMap) for the each one of them. 1445 // Add visited values into the visitedLiveValues set we will later use them 1446 // for sanity check. 1447 static void 1448 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1449 DenseMap<Value *, Value *> &allocaMap, 1450 DenseSet<Value *> &visitedLiveValues) { 1451 1452 for (User *U : gcRelocs) { 1453 if (!isa<IntrinsicInst>(U)) 1454 continue; 1455 1456 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1457 1458 // We only care about relocates 1459 if (relocatedValue->getIntrinsicID() != 1460 Intrinsic::experimental_gc_relocate) { 1461 continue; 1462 } 1463 1464 GCRelocateOperands relocateOperands(relocatedValue); 1465 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1466 assert(allocaMap.count(originalValue)); 1467 Value *alloca = allocaMap[originalValue]; 1468 1469 // Emit store into the related alloca 1470 StoreInst *store = new StoreInst(relocatedValue, alloca); 1471 store->insertAfter(relocatedValue); 1472 1473 #ifndef NDEBUG 1474 visitedLiveValues.insert(originalValue); 1475 #endif 1476 } 1477 } 1478 1479 /// do all the relocation update via allocas and mem2reg 1480 static void relocationViaAlloca( 1481 Function &F, DominatorTree &DT, const std::vector<Value *> &live, 1482 const std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1483 #ifndef NDEBUG 1484 int initialAllocaNum = 0; 1485 1486 // record initial number of allocas 1487 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1488 itr++) { 1489 if (isa<AllocaInst>(*itr)) 1490 initialAllocaNum++; 1491 } 1492 #endif 1493 1494 // TODO-PERF: change data structures, reserve 1495 DenseMap<Value *, Value *> allocaMap; 1496 SmallVector<AllocaInst *, 200> PromotableAllocas; 1497 PromotableAllocas.reserve(live.size()); 1498 1499 // emit alloca for each live gc pointer 1500 for (unsigned i = 0; i < live.size(); i++) { 1501 Value *liveValue = live[i]; 1502 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1503 F.getEntryBlock().getFirstNonPHI()); 1504 allocaMap[liveValue] = alloca; 1505 PromotableAllocas.push_back(alloca); 1506 } 1507 1508 // The next two loops are part of the same conceptual operation. We need to 1509 // insert a store to the alloca after the original def and at each 1510 // redefinition. We need to insert a load before each use. These are split 1511 // into distinct loops for performance reasons. 1512 1513 // update gc pointer after each statepoint 1514 // either store a relocated value or null (if no relocated value found for 1515 // this gc pointer and it is not a gc_result) 1516 // this must happen before we update the statepoint with load of alloca 1517 // otherwise we lose the link between statepoint and old def 1518 for (size_t i = 0; i < records.size(); i++) { 1519 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1520 Value *statepoint = info.safepoint.first; 1521 1522 // This will be used for consistency check 1523 DenseSet<Value *> visitedLiveValues; 1524 1525 // Insert stores for normal statepoint gc relocates 1526 insertRelocationStores(statepoint->users(), allocaMap, visitedLiveValues); 1527 1528 // In case if it was invoke statepoint 1529 // we will insert stores for exceptional path gc relocates. 1530 if (isa<InvokeInst>(statepoint)) { 1531 insertRelocationStores(info.exceptional_relocates_token->users(), 1532 allocaMap, visitedLiveValues); 1533 } 1534 1535 #ifndef NDEBUG 1536 // For consistency check store null's into allocas for values that are not 1537 // relocated 1538 // by this statepoint. 1539 for (auto Pair : allocaMap) { 1540 Value *def = Pair.first; 1541 Value *alloca = Pair.second; 1542 1543 // This value was relocated 1544 if (visitedLiveValues.count(def)) { 1545 continue; 1546 } 1547 // Result should not be relocated 1548 if (def == info.result) { 1549 continue; 1550 } 1551 1552 Constant *CPN = 1553 ConstantPointerNull::get(cast<PointerType>(def->getType())); 1554 StoreInst *store = new StoreInst(CPN, alloca); 1555 store->insertBefore(info.safepoint.second); 1556 } 1557 #endif 1558 } 1559 // update use with load allocas and add store for gc_relocated 1560 for (auto Pair : allocaMap) { 1561 Value *def = Pair.first; 1562 Value *alloca = Pair.second; 1563 1564 // we pre-record the uses of allocas so that we dont have to worry about 1565 // later update 1566 // that change the user information. 1567 SmallVector<Instruction *, 20> uses; 1568 // PERF: trade a linear scan for repeated reallocation 1569 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1570 for (User *U : def->users()) { 1571 if (!isa<ConstantExpr>(U)) { 1572 // If the def has a ConstantExpr use, then the def is either a 1573 // ConstantExpr use itself or null. In either case 1574 // (recursively in the first, directly in the second), the oop 1575 // it is ultimately dependent on is null and this particular 1576 // use does not need to be fixed up. 1577 uses.push_back(cast<Instruction>(U)); 1578 } 1579 } 1580 1581 std::sort(uses.begin(), uses.end()); 1582 auto last = std::unique(uses.begin(), uses.end()); 1583 uses.erase(last, uses.end()); 1584 1585 for (Instruction *use : uses) { 1586 if (isa<PHINode>(use)) { 1587 PHINode *phi = cast<PHINode>(use); 1588 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1589 if (def == phi->getIncomingValue(i)) { 1590 LoadInst *load = new LoadInst( 1591 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1592 phi->setIncomingValue(i, load); 1593 } 1594 } 1595 } else { 1596 LoadInst *load = new LoadInst(alloca, "", use); 1597 use->replaceUsesOfWith(def, load); 1598 } 1599 } 1600 1601 // emit store for the initial gc value 1602 // store must be inserted after load, otherwise store will be in alloca's 1603 // use list and an extra load will be inserted before it 1604 StoreInst *store = new StoreInst(def, alloca); 1605 if (isa<Instruction>(def)) { 1606 store->insertAfter(cast<Instruction>(def)); 1607 } else { 1608 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1609 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) && 1610 "Must be argument or global"); 1611 store->insertAfter(cast<Instruction>(alloca)); 1612 } 1613 } 1614 1615 assert(PromotableAllocas.size() == live.size() && 1616 "we must have the same allocas with lives"); 1617 if (!PromotableAllocas.empty()) { 1618 // apply mem2reg to promote alloca to SSA 1619 PromoteMemToReg(PromotableAllocas, DT); 1620 } 1621 1622 #ifndef NDEBUG 1623 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1624 itr++) { 1625 if (isa<AllocaInst>(*itr)) 1626 initialAllocaNum--; 1627 } 1628 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); 1629 #endif 1630 } 1631 1632 /// Implement a unique function which doesn't require we sort the input 1633 /// vector. Doing so has the effect of changing the output of a couple of 1634 /// tests in ways which make them less useful in testing fused safepoints. 1635 template <typename T> static void unique_unsorted(std::vector<T> &vec) { 1636 DenseSet<T> seen; 1637 std::vector<T> tmp; 1638 vec.reserve(vec.size()); 1639 std::swap(tmp, vec); 1640 for (auto V : tmp) { 1641 if (seen.insert(V).second) { 1642 vec.push_back(V); 1643 } 1644 } 1645 } 1646 1647 static Function *getUseHolder(Module &M) { 1648 FunctionType *ftype = 1649 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1650 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1651 return Func; 1652 } 1653 1654 /// Insert holders so that each Value is obviously live through the entire 1655 /// liftetime of the call. 1656 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1657 std::vector<CallInst *> &holders) { 1658 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1659 Function *Func = getUseHolder(*M); 1660 if (CS.isCall()) { 1661 // For call safepoints insert dummy calls right after safepoint 1662 BasicBlock::iterator next(CS.getInstruction()); 1663 next++; 1664 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1665 holders.push_back(base_holder); 1666 } else if (CS.isInvoke()) { 1667 // For invoke safepooints insert dummy calls both in normal and 1668 // exceptional destination blocks 1669 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1670 CallInst *normal_holder = CallInst::Create( 1671 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1672 CallInst *unwind_holder = CallInst::Create( 1673 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1674 holders.push_back(normal_holder); 1675 holders.push_back(unwind_holder); 1676 } else { 1677 assert(false && "Unsupported"); 1678 } 1679 } 1680 1681 static void findLiveReferences( 1682 Function &F, DominatorTree &DT, Pass *P, std::vector<CallSite> &toUpdate, 1683 std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1684 for (size_t i = 0; i < records.size(); i++) { 1685 struct PartiallyConstructedSafepointRecord &info = records[i]; 1686 CallSite &CS = toUpdate[i]; 1687 analyzeParsePointLiveness(DT, CS, info); 1688 } 1689 } 1690 1691 static void addBasesAsLiveValues(std::set<Value *> &liveset, 1692 std::map<Value *, Value *> &base_pairs) { 1693 // Identify any base pointers which are used in this safepoint, but not 1694 // themselves relocated. We need to relocate them so that later inserted 1695 // safepoints can get the properly relocated base register. 1696 DenseSet<Value *> missing; 1697 for (Value *L : liveset) { 1698 assert(base_pairs.find(L) != base_pairs.end()); 1699 Value *base = base_pairs[L]; 1700 assert(base); 1701 if (liveset.find(base) == liveset.end()) { 1702 assert(base_pairs.find(base) == base_pairs.end()); 1703 // uniqued by set insert 1704 missing.insert(base); 1705 } 1706 } 1707 1708 // Note that we want these at the end of the list, otherwise 1709 // register placement gets screwed up once we lower to STATEPOINT 1710 // instructions. This is an utter hack, but there doesn't seem to be a 1711 // better one. 1712 for (Value *base : missing) { 1713 assert(base); 1714 liveset.insert(base); 1715 base_pairs[base] = base; 1716 } 1717 assert(liveset.size() == base_pairs.size()); 1718 } 1719 1720 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1721 std::vector<CallSite> &toUpdate) { 1722 #ifndef NDEBUG 1723 // sanity check the input 1724 std::set<CallSite> uniqued; 1725 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1726 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1727 1728 for (size_t i = 0; i < toUpdate.size(); i++) { 1729 CallSite &CS = toUpdate[i]; 1730 assert(CS.getInstruction()->getParent()->getParent() == &F); 1731 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1732 } 1733 #endif 1734 1735 // A list of dummy calls added to the IR to keep various values obviously 1736 // live in the IR. We'll remove all of these when done. 1737 std::vector<CallInst *> holders; 1738 1739 // Insert a dummy call with all of the arguments to the vm_state we'll need 1740 // for the actual safepoint insertion. This ensures reference arguments in 1741 // the deopt argument list are considered live through the safepoint (and 1742 // thus makes sure they get relocated.) 1743 for (size_t i = 0; i < toUpdate.size(); i++) { 1744 CallSite &CS = toUpdate[i]; 1745 Statepoint StatepointCS(CS); 1746 1747 SmallVector<Value *, 64> DeoptValues; 1748 for (Use &U : StatepointCS.vm_state_args()) { 1749 Value *Arg = cast<Value>(&U); 1750 if (isGCPointerType(Arg->getType())) 1751 DeoptValues.push_back(Arg); 1752 } 1753 insertUseHolderAfter(CS, DeoptValues, holders); 1754 } 1755 1756 std::vector<struct PartiallyConstructedSafepointRecord> records; 1757 records.reserve(toUpdate.size()); 1758 for (size_t i = 0; i < toUpdate.size(); i++) { 1759 struct PartiallyConstructedSafepointRecord info; 1760 records.push_back(info); 1761 } 1762 assert(records.size() == toUpdate.size()); 1763 1764 // A) Identify all gc pointers which are staticly live at the given call 1765 // site. 1766 findLiveReferences(F, DT, P, toUpdate, records); 1767 1768 // B) Find the base pointers for each live pointer 1769 /* scope for caching */ { 1770 // Cache the 'defining value' relation used in the computation and 1771 // insertion of base phis and selects. This ensures that we don't insert 1772 // large numbers of duplicate base_phis. 1773 DefiningValueMapTy DVCache; 1774 1775 for (size_t i = 0; i < records.size(); i++) { 1776 struct PartiallyConstructedSafepointRecord &info = records[i]; 1777 CallSite &CS = toUpdate[i]; 1778 findBasePointers(DT, DVCache, CS, info); 1779 } 1780 } // end of cache scope 1781 1782 // The base phi insertion logic (for any safepoint) may have inserted new 1783 // instructions which are now live at some safepoint. The simplest such 1784 // example is: 1785 // loop: 1786 // phi a <-- will be a new base_phi here 1787 // safepoint 1 <-- that needs to be live here 1788 // gep a + 1 1789 // safepoint 2 1790 // br loop 1791 std::set<llvm::Value *> allInsertedDefs; 1792 for (size_t i = 0; i < records.size(); i++) { 1793 struct PartiallyConstructedSafepointRecord &info = records[i]; 1794 allInsertedDefs.insert(info.newInsertedDefs.begin(), 1795 info.newInsertedDefs.end()); 1796 } 1797 1798 // We insert some dummy calls after each safepoint to definitely hold live 1799 // the base pointers which were identified for that safepoint. We'll then 1800 // ask liveness for _every_ base inserted to see what is now live. Then we 1801 // remove the dummy calls. 1802 holders.reserve(holders.size() + records.size()); 1803 for (size_t i = 0; i < records.size(); i++) { 1804 struct PartiallyConstructedSafepointRecord &info = records[i]; 1805 CallSite &CS = toUpdate[i]; 1806 1807 SmallVector<Value *, 128> Bases; 1808 for (auto Pair : info.base_pairs) { 1809 Bases.push_back(Pair.second); 1810 } 1811 insertUseHolderAfter(CS, Bases, holders); 1812 } 1813 1814 // Add the bases explicitly to the live vector set. This may result in a few 1815 // extra relocations, but the base has to be available whenever a pointer 1816 // derived from it is used. Thus, we need it to be part of the statepoint's 1817 // gc arguments list. TODO: Introduce an explicit notion (in the following 1818 // code) of the GC argument list as seperate from the live Values at a 1819 // given statepoint. 1820 for (size_t i = 0; i < records.size(); i++) { 1821 struct PartiallyConstructedSafepointRecord &info = records[i]; 1822 addBasesAsLiveValues(info.liveset, info.base_pairs); 1823 } 1824 1825 // If we inserted any new values, we need to adjust our notion of what is 1826 // live at a particular safepoint. 1827 if (!allInsertedDefs.empty()) { 1828 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1829 } 1830 if (PrintBasePointers) { 1831 for (size_t i = 0; i < records.size(); i++) { 1832 struct PartiallyConstructedSafepointRecord &info = records[i]; 1833 errs() << "Base Pairs: (w/Relocation)\n"; 1834 for (auto Pair : info.base_pairs) { 1835 errs() << " derived %" << Pair.first->getName() << " base %" 1836 << Pair.second->getName() << "\n"; 1837 } 1838 } 1839 } 1840 for (size_t i = 0; i < holders.size(); i++) { 1841 holders[i]->eraseFromParent(); 1842 holders[i] = nullptr; 1843 } 1844 holders.clear(); 1845 1846 // Now run through and replace the existing statepoints with new ones with 1847 // the live variables listed. We do not yet update uses of the values being 1848 // relocated. We have references to live variables that need to 1849 // survive to the last iteration of this loop. (By construction, the 1850 // previous statepoint can not be a live variable, thus we can and remove 1851 // the old statepoint calls as we go.) 1852 for (size_t i = 0; i < records.size(); i++) { 1853 struct PartiallyConstructedSafepointRecord &info = records[i]; 1854 CallSite &CS = toUpdate[i]; 1855 makeStatepointExplicit(DT, CS, P, info); 1856 } 1857 toUpdate.clear(); // prevent accident use of invalid CallSites 1858 1859 // In case if we inserted relocates in a different basic block than the 1860 // original safepoint (this can happen for invokes). We need to be sure that 1861 // original values were not used in any of the phi nodes at the 1862 // beginning of basic block containing them. Because we know that all such 1863 // blocks will have single predecessor we can safely assume that all phi 1864 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1865 // Just remove them all here. 1866 for (size_t i = 0; i < records.size(); i++) { 1867 Instruction *I = records[i].safepoint.first; 1868 1869 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 1870 FoldSingleEntryPHINodes(invoke->getNormalDest()); 1871 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 1872 1873 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 1874 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 1875 } 1876 } 1877 1878 // Do all the fixups of the original live variables to their relocated selves 1879 std::vector<Value *> live; 1880 for (size_t i = 0; i < records.size(); i++) { 1881 struct PartiallyConstructedSafepointRecord &info = records[i]; 1882 // We can't simply save the live set from the original insertion. One of 1883 // the live values might be the result of a call which needs a safepoint. 1884 // That Value* no longer exists and we need to use the new gc_result. 1885 // Thankfully, the liveset is embedded in the statepoint (and updated), so 1886 // we just grab that. 1887 Statepoint statepoint(info.safepoint.first); 1888 live.insert(live.end(), statepoint.gc_args_begin(), 1889 statepoint.gc_args_end()); 1890 } 1891 unique_unsorted(live); 1892 1893 #ifndef NDEBUG 1894 // sanity check 1895 for (auto ptr : live) { 1896 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 1897 } 1898 #endif 1899 1900 relocationViaAlloca(F, DT, live, records); 1901 return !records.empty(); 1902 } 1903 1904 /// Returns true if this function should be rewritten by this pass. The main 1905 /// point of this function is as an extension point for custom logic. 1906 static bool shouldRewriteStatepointsIn(Function &F) { 1907 // TODO: This should check the GCStrategy 1908 const std::string StatepointExampleName("statepoint-example"); 1909 return StatepointExampleName == F.getGC(); 1910 } 1911 1912 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 1913 // Nothing to do for declarations. 1914 if (F.isDeclaration() || F.empty()) 1915 return false; 1916 1917 // Policy choice says not to rewrite - the most common reason is that we're 1918 // compiling code without a GCStrategy. 1919 if (!shouldRewriteStatepointsIn(F)) 1920 return false; 1921 1922 // Gather all the statepoints which need rewritten. 1923 std::vector<CallSite> ParsePointNeeded; 1924 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1925 itr++) { 1926 // TODO: only the ones with the flag set! 1927 if (isStatepoint(*itr)) 1928 ParsePointNeeded.push_back(CallSite(&*itr)); 1929 } 1930 1931 // Return early if no work to do. 1932 if (ParsePointNeeded.empty()) 1933 return false; 1934 1935 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1936 return insertParsePoints(F, DT, this, ParsePointNeeded); 1937 } 1938