1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueHandle.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 80 81 using namespace llvm; 82 83 // Print the liveset found at the insert location 84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 85 cl::init(false)); 86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 87 cl::init(false)); 88 89 // Print out the base pointers for debugging 90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 91 cl::init(false)); 92 93 // Cost threshold measuring when it is profitable to rematerialize value instead 94 // of relocating it 95 static cl::opt<unsigned> 96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 97 cl::init(6)); 98 99 #ifdef EXPENSIVE_CHECKS 100 static bool ClobberNonLive = true; 101 #else 102 static bool ClobberNonLive = false; 103 #endif 104 105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 106 cl::location(ClobberNonLive), 107 cl::Hidden); 108 109 static cl::opt<bool> 110 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 111 cl::Hidden, cl::init(true)); 112 113 /// The IR fed into RewriteStatepointsForGC may have had attributes and 114 /// metadata implying dereferenceability that are no longer valid/correct after 115 /// RewriteStatepointsForGC has run. This is because semantically, after 116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 117 /// heap. stripNonValidData (conservatively) restores 118 /// correctness by erasing all attributes in the module that externally imply 119 /// dereferenceability. Similar reasoning also applies to the noalias 120 /// attributes and metadata. gc.statepoint can touch the entire heap including 121 /// noalias objects. 122 /// Apart from attributes and metadata, we also remove instructions that imply 123 /// constant physical memory: llvm.invariant.start. 124 static void stripNonValidData(Module &M); 125 126 static bool shouldRewriteStatepointsIn(Function &F); 127 128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 129 ModuleAnalysisManager &AM) { 130 bool Changed = false; 131 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 132 for (Function &F : M) { 133 // Nothing to do for declarations. 134 if (F.isDeclaration() || F.empty()) 135 continue; 136 137 // Policy choice says not to rewrite - the most common reason is that we're 138 // compiling code without a GCStrategy. 139 if (!shouldRewriteStatepointsIn(F)) 140 continue; 141 142 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 143 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 144 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 145 Changed |= runOnFunction(F, DT, TTI, TLI); 146 } 147 if (!Changed) 148 return PreservedAnalyses::all(); 149 150 // stripNonValidData asserts that shouldRewriteStatepointsIn 151 // returns true for at least one function in the module. Since at least 152 // one function changed, we know that the precondition is satisfied. 153 stripNonValidData(M); 154 155 PreservedAnalyses PA; 156 PA.preserve<TargetIRAnalysis>(); 157 PA.preserve<TargetLibraryAnalysis>(); 158 return PA; 159 } 160 161 namespace { 162 163 class RewriteStatepointsForGCLegacyPass : public ModulePass { 164 RewriteStatepointsForGC Impl; 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 170 initializeRewriteStatepointsForGCLegacyPassPass( 171 *PassRegistry::getPassRegistry()); 172 } 173 174 bool runOnModule(Module &M) override { 175 bool Changed = false; 176 for (Function &F : M) { 177 // Nothing to do for declarations. 178 if (F.isDeclaration() || F.empty()) 179 continue; 180 181 // Policy choice says not to rewrite - the most common reason is that 182 // we're compiling code without a GCStrategy. 183 if (!shouldRewriteStatepointsIn(F)) 184 continue; 185 186 TargetTransformInfo &TTI = 187 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 188 const TargetLibraryInfo &TLI = 189 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 190 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 191 192 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 193 } 194 195 if (!Changed) 196 return false; 197 198 // stripNonValidData asserts that shouldRewriteStatepointsIn 199 // returns true for at least one function in the module. Since at least 200 // one function changed, we know that the precondition is satisfied. 201 stripNonValidData(M); 202 return true; 203 } 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 // We add and rewrite a bunch of instructions, but don't really do much 207 // else. We could in theory preserve a lot more analyses here. 208 AU.addRequired<DominatorTreeWrapperPass>(); 209 AU.addRequired<TargetTransformInfoWrapperPass>(); 210 AU.addRequired<TargetLibraryInfoWrapperPass>(); 211 } 212 }; 213 214 } // end anonymous namespace 215 216 char RewriteStatepointsForGCLegacyPass::ID = 0; 217 218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 219 return new RewriteStatepointsForGCLegacyPass(); 220 } 221 222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 223 "rewrite-statepoints-for-gc", 224 "Make relocations explicit at statepoints", false, false) 225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 228 "rewrite-statepoints-for-gc", 229 "Make relocations explicit at statepoints", false, false) 230 231 namespace { 232 233 struct GCPtrLivenessData { 234 /// Values defined in this block. 235 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 236 237 /// Values used in this block (and thus live); does not included values 238 /// killed within this block. 239 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 240 241 /// Values live into this basic block (i.e. used by any 242 /// instruction in this basic block or ones reachable from here) 243 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 244 245 /// Values live out of this basic block (i.e. live into 246 /// any successor block) 247 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 248 }; 249 250 // The type of the internal cache used inside the findBasePointers family 251 // of functions. From the callers perspective, this is an opaque type and 252 // should not be inspected. 253 // 254 // In the actual implementation this caches two relations: 255 // - The base relation itself (i.e. this pointer is based on that one) 256 // - The base defining value relation (i.e. before base_phi insertion) 257 // Generally, after the execution of a full findBasePointer call, only the 258 // base relation will remain. Internally, we add a mixture of the two 259 // types, then update all the second type to the first type 260 using DefiningValueMapTy = MapVector<Value *, Value *>; 261 using StatepointLiveSetTy = SetVector<Value *>; 262 using RematerializedValueMapTy = 263 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 264 265 struct PartiallyConstructedSafepointRecord { 266 /// The set of values known to be live across this safepoint 267 StatepointLiveSetTy LiveSet; 268 269 /// Mapping from live pointers to a base-defining-value 270 MapVector<Value *, Value *> PointerToBase; 271 272 /// The *new* gc.statepoint instruction itself. This produces the token 273 /// that normal path gc.relocates and the gc.result are tied to. 274 GCStatepointInst *StatepointToken; 275 276 /// Instruction to which exceptional gc relocates are attached 277 /// Makes it easier to iterate through them during relocationViaAlloca. 278 Instruction *UnwindToken; 279 280 /// Record live values we are rematerialized instead of relocating. 281 /// They are not included into 'LiveSet' field. 282 /// Maps rematerialized copy to it's original value. 283 RematerializedValueMapTy RematerializedValues; 284 }; 285 286 } // end anonymous namespace 287 288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 289 Optional<OperandBundleUse> DeoptBundle = 290 Call->getOperandBundle(LLVMContext::OB_deopt); 291 292 if (!DeoptBundle.hasValue()) { 293 assert(AllowStatepointWithNoDeoptInfo && 294 "Found non-leaf call without deopt info!"); 295 return None; 296 } 297 298 return DeoptBundle.getValue().Inputs; 299 } 300 301 /// Compute the live-in set for every basic block in the function 302 static void computeLiveInValues(DominatorTree &DT, Function &F, 303 GCPtrLivenessData &Data); 304 305 /// Given results from the dataflow liveness computation, find the set of live 306 /// Values at a particular instruction. 307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 308 StatepointLiveSetTy &out); 309 310 // TODO: Once we can get to the GCStrategy, this becomes 311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 312 313 static bool isGCPointerType(Type *T) { 314 if (auto *PT = dyn_cast<PointerType>(T)) 315 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 316 // GC managed heap. We know that a pointer into this heap needs to be 317 // updated and that no other pointer does. 318 return PT->getAddressSpace() == 1; 319 return false; 320 } 321 322 // Return true if this type is one which a) is a gc pointer or contains a GC 323 // pointer and b) is of a type this code expects to encounter as a live value. 324 // (The insertion code will assert that a type which matches (a) and not (b) 325 // is not encountered.) 326 static bool isHandledGCPointerType(Type *T) { 327 // We fully support gc pointers 328 if (isGCPointerType(T)) 329 return true; 330 // We partially support vectors of gc pointers. The code will assert if it 331 // can't handle something. 332 if (auto VT = dyn_cast<VectorType>(T)) 333 if (isGCPointerType(VT->getElementType())) 334 return true; 335 return false; 336 } 337 338 #ifndef NDEBUG 339 /// Returns true if this type contains a gc pointer whether we know how to 340 /// handle that type or not. 341 static bool containsGCPtrType(Type *Ty) { 342 if (isGCPointerType(Ty)) 343 return true; 344 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 345 return isGCPointerType(VT->getScalarType()); 346 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 347 return containsGCPtrType(AT->getElementType()); 348 if (StructType *ST = dyn_cast<StructType>(Ty)) 349 return llvm::any_of(ST->elements(), containsGCPtrType); 350 return false; 351 } 352 353 // Returns true if this is a type which a) is a gc pointer or contains a GC 354 // pointer and b) is of a type which the code doesn't expect (i.e. first class 355 // aggregates). Used to trip assertions. 356 static bool isUnhandledGCPointerType(Type *Ty) { 357 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 358 } 359 #endif 360 361 // Return the name of the value suffixed with the provided value, or if the 362 // value didn't have a name, the default value specified. 363 static std::string suffixed_name_or(Value *V, StringRef Suffix, 364 StringRef DefaultName) { 365 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 366 } 367 368 // Conservatively identifies any definitions which might be live at the 369 // given instruction. The analysis is performed immediately before the 370 // given instruction. Values defined by that instruction are not considered 371 // live. Values used by that instruction are considered live. 372 static void analyzeParsePointLiveness( 373 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 374 PartiallyConstructedSafepointRecord &Result) { 375 StatepointLiveSetTy LiveSet; 376 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet); 377 378 if (PrintLiveSet) { 379 dbgs() << "Live Variables:\n"; 380 for (Value *V : LiveSet) 381 dbgs() << " " << V->getName() << " " << *V << "\n"; 382 } 383 if (PrintLiveSetSize) { 384 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 385 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 386 } 387 Result.LiveSet = LiveSet; 388 } 389 390 // Returns true is V is a knownBaseResult. 391 static bool isKnownBaseResult(Value *V); 392 393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is 394 // not created by the findBasePointers algorithm. 395 static bool isOriginalBaseResult(Value *V); 396 397 namespace { 398 399 /// A single base defining value - An immediate base defining value for an 400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 401 /// For instructions which have multiple pointer [vector] inputs or that 402 /// transition between vector and scalar types, there is no immediate base 403 /// defining value. The 'base defining value' for 'Def' is the transitive 404 /// closure of this relation stopping at the first instruction which has no 405 /// immediate base defining value. The b.d.v. might itself be a base pointer, 406 /// but it can also be an arbitrary derived pointer. 407 struct BaseDefiningValueResult { 408 /// Contains the value which is the base defining value. 409 Value * const BDV; 410 411 /// True if the base defining value is also known to be an actual base 412 /// pointer. 413 const bool IsKnownBase; 414 415 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 416 : BDV(BDV), IsKnownBase(IsKnownBase) { 417 #ifndef NDEBUG 418 // Check consistency between new and old means of checking whether a BDV is 419 // a base. 420 bool MustBeBase = isKnownBaseResult(BDV); 421 assert(!MustBeBase || MustBeBase == IsKnownBase); 422 #endif 423 } 424 }; 425 426 } // end anonymous namespace 427 428 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 429 430 /// Return a base defining value for the 'Index' element of the given vector 431 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 432 /// 'I'. As an optimization, this method will try to determine when the 433 /// element is known to already be a base pointer. If this can be established, 434 /// the second value in the returned pair will be true. Note that either a 435 /// vector or a pointer typed value can be returned. For the former, the 436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 437 /// If the later, the return pointer is a BDV (or possibly a base) for the 438 /// particular element in 'I'. 439 static BaseDefiningValueResult 440 findBaseDefiningValueOfVector(Value *I) { 441 // Each case parallels findBaseDefiningValue below, see that code for 442 // detailed motivation. 443 444 if (isa<Argument>(I)) 445 // An incoming argument to the function is a base pointer 446 return BaseDefiningValueResult(I, true); 447 448 if (isa<Constant>(I)) 449 // Base of constant vector consists only of constant null pointers. 450 // For reasoning see similar case inside 'findBaseDefiningValue' function. 451 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 452 true); 453 454 if (isa<LoadInst>(I)) 455 return BaseDefiningValueResult(I, true); 456 457 if (isa<InsertElementInst>(I)) 458 // We don't know whether this vector contains entirely base pointers or 459 // not. To be conservatively correct, we treat it as a BDV and will 460 // duplicate code as needed to construct a parallel vector of bases. 461 return BaseDefiningValueResult(I, false); 462 463 if (isa<ShuffleVectorInst>(I)) 464 // We don't know whether this vector contains entirely base pointers or 465 // not. To be conservatively correct, we treat it as a BDV and will 466 // duplicate code as needed to construct a parallel vector of bases. 467 // TODO: There a number of local optimizations which could be applied here 468 // for particular sufflevector patterns. 469 return BaseDefiningValueResult(I, false); 470 471 // The behavior of getelementptr instructions is the same for vector and 472 // non-vector data types. 473 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 474 return findBaseDefiningValue(GEP->getPointerOperand()); 475 476 // If the pointer comes through a bitcast of a vector of pointers to 477 // a vector of another type of pointer, then look through the bitcast 478 if (auto *BC = dyn_cast<BitCastInst>(I)) 479 return findBaseDefiningValue(BC->getOperand(0)); 480 481 // We assume that functions in the source language only return base 482 // pointers. This should probably be generalized via attributes to support 483 // both source language and internal functions. 484 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 485 return BaseDefiningValueResult(I, true); 486 487 // A PHI or Select is a base defining value. The outer findBasePointer 488 // algorithm is responsible for constructing a base value for this BDV. 489 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 490 "unknown vector instruction - no base found for vector element"); 491 return BaseDefiningValueResult(I, false); 492 } 493 494 /// Helper function for findBasePointer - Will return a value which either a) 495 /// defines the base pointer for the input, b) blocks the simple search 496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 497 /// from pointer to vector type or back. 498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 499 assert(I->getType()->isPtrOrPtrVectorTy() && 500 "Illegal to ask for the base pointer of a non-pointer type"); 501 502 if (I->getType()->isVectorTy()) 503 return findBaseDefiningValueOfVector(I); 504 505 if (isa<Argument>(I)) 506 // An incoming argument to the function is a base pointer 507 // We should have never reached here if this argument isn't an gc value 508 return BaseDefiningValueResult(I, true); 509 510 if (isa<Constant>(I)) { 511 // We assume that objects with a constant base (e.g. a global) can't move 512 // and don't need to be reported to the collector because they are always 513 // live. Besides global references, all kinds of constants (e.g. undef, 514 // constant expressions, null pointers) can be introduced by the inliner or 515 // the optimizer, especially on dynamically dead paths. 516 // Here we treat all of them as having single null base. By doing this we 517 // trying to avoid problems reporting various conflicts in a form of 518 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 519 // See constant.ll file for relevant test cases. 520 521 return BaseDefiningValueResult( 522 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 523 } 524 525 if (CastInst *CI = dyn_cast<CastInst>(I)) { 526 Value *Def = CI->stripPointerCasts(); 527 // If stripping pointer casts changes the address space there is an 528 // addrspacecast in between. 529 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 530 cast<PointerType>(CI->getType())->getAddressSpace() && 531 "unsupported addrspacecast"); 532 // If we find a cast instruction here, it means we've found a cast which is 533 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 534 // handle int->ptr conversion. 535 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 536 return findBaseDefiningValue(Def); 537 } 538 539 if (isa<LoadInst>(I)) 540 // The value loaded is an gc base itself 541 return BaseDefiningValueResult(I, true); 542 543 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 544 // The base of this GEP is the base 545 return findBaseDefiningValue(GEP->getPointerOperand()); 546 547 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 548 switch (II->getIntrinsicID()) { 549 default: 550 // fall through to general call handling 551 break; 552 case Intrinsic::experimental_gc_statepoint: 553 llvm_unreachable("statepoints don't produce pointers"); 554 case Intrinsic::experimental_gc_relocate: 555 // Rerunning safepoint insertion after safepoints are already 556 // inserted is not supported. It could probably be made to work, 557 // but why are you doing this? There's no good reason. 558 llvm_unreachable("repeat safepoint insertion is not supported"); 559 case Intrinsic::gcroot: 560 // Currently, this mechanism hasn't been extended to work with gcroot. 561 // There's no reason it couldn't be, but I haven't thought about the 562 // implications much. 563 llvm_unreachable( 564 "interaction with the gcroot mechanism is not supported"); 565 } 566 } 567 // We assume that functions in the source language only return base 568 // pointers. This should probably be generalized via attributes to support 569 // both source language and internal functions. 570 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 571 return BaseDefiningValueResult(I, true); 572 573 // TODO: I have absolutely no idea how to implement this part yet. It's not 574 // necessarily hard, I just haven't really looked at it yet. 575 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 576 577 if (isa<AtomicCmpXchgInst>(I)) 578 // A CAS is effectively a atomic store and load combined under a 579 // predicate. From the perspective of base pointers, we just treat it 580 // like a load. 581 return BaseDefiningValueResult(I, true); 582 583 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 584 "binary ops which don't apply to pointers"); 585 586 // The aggregate ops. Aggregates can either be in the heap or on the 587 // stack, but in either case, this is simply a field load. As a result, 588 // this is a defining definition of the base just like a load is. 589 if (isa<ExtractValueInst>(I)) 590 return BaseDefiningValueResult(I, true); 591 592 // We should never see an insert vector since that would require we be 593 // tracing back a struct value not a pointer value. 594 assert(!isa<InsertValueInst>(I) && 595 "Base pointer for a struct is meaningless"); 596 597 // An extractelement produces a base result exactly when it's input does. 598 // We may need to insert a parallel instruction to extract the appropriate 599 // element out of the base vector corresponding to the input. Given this, 600 // it's analogous to the phi and select case even though it's not a merge. 601 if (isa<ExtractElementInst>(I)) 602 // Note: There a lot of obvious peephole cases here. This are deliberately 603 // handled after the main base pointer inference algorithm to make writing 604 // test cases to exercise that code easier. 605 return BaseDefiningValueResult(I, false); 606 607 // The last two cases here don't return a base pointer. Instead, they 608 // return a value which dynamically selects from among several base 609 // derived pointers (each with it's own base potentially). It's the job of 610 // the caller to resolve these. 611 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 612 "missing instruction case in findBaseDefiningValing"); 613 return BaseDefiningValueResult(I, false); 614 } 615 616 /// Returns the base defining value for this value. 617 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 618 Value *&Cached = Cache[I]; 619 if (!Cached) { 620 Cached = findBaseDefiningValue(I).BDV; 621 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 622 << Cached->getName() << "\n"); 623 } 624 assert(Cache[I] != nullptr); 625 return Cached; 626 } 627 628 /// Return a base pointer for this value if known. Otherwise, return it's 629 /// base defining value. 630 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 631 Value *Def = findBaseDefiningValueCached(I, Cache); 632 auto Found = Cache.find(Def); 633 if (Found != Cache.end()) { 634 // Either a base-of relation, or a self reference. Caller must check. 635 return Found->second; 636 } 637 // Only a BDV available 638 return Def; 639 } 640 641 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 642 /// exists in the code. 643 static bool isOriginalBaseResult(Value *V) { 644 // no recursion possible 645 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 646 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 647 !isa<ShuffleVectorInst>(V); 648 } 649 650 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 651 /// is it known to be a base pointer? Or do we need to continue searching. 652 static bool isKnownBaseResult(Value *V) { 653 if (isOriginalBaseResult(V)) 654 return true; 655 if (isa<Instruction>(V) && 656 cast<Instruction>(V)->getMetadata("is_base_value")) { 657 // This is a previously inserted base phi or select. We know 658 // that this is a base value. 659 return true; 660 } 661 662 // We need to keep searching 663 return false; 664 } 665 666 // Returns true if First and Second values are both scalar or both vector. 667 static bool areBothVectorOrScalar(Value *First, Value *Second) { 668 return isa<VectorType>(First->getType()) == 669 isa<VectorType>(Second->getType()); 670 } 671 672 namespace { 673 674 /// Models the state of a single base defining value in the findBasePointer 675 /// algorithm for determining where a new instruction is needed to propagate 676 /// the base of this BDV. 677 class BDVState { 678 public: 679 enum Status { Unknown, Base, Conflict }; 680 681 BDVState() : BaseValue(nullptr) {} 682 683 explicit BDVState(Status Status, Value *BaseValue = nullptr) 684 : Status(Status), BaseValue(BaseValue) { 685 assert(Status != Base || BaseValue); 686 } 687 688 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 689 690 Status getStatus() const { return Status; } 691 Value *getBaseValue() const { return BaseValue; } 692 693 bool isBase() const { return getStatus() == Base; } 694 bool isUnknown() const { return getStatus() == Unknown; } 695 bool isConflict() const { return getStatus() == Conflict; } 696 697 bool operator==(const BDVState &Other) const { 698 return BaseValue == Other.BaseValue && Status == Other.Status; 699 } 700 701 bool operator!=(const BDVState &other) const { return !(*this == other); } 702 703 LLVM_DUMP_METHOD 704 void dump() const { 705 print(dbgs()); 706 dbgs() << '\n'; 707 } 708 709 void print(raw_ostream &OS) const { 710 switch (getStatus()) { 711 case Unknown: 712 OS << "U"; 713 break; 714 case Base: 715 OS << "B"; 716 break; 717 case Conflict: 718 OS << "C"; 719 break; 720 } 721 OS << " (" << getBaseValue() << " - " 722 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 723 } 724 725 private: 726 Status Status = Unknown; 727 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 728 }; 729 730 } // end anonymous namespace 731 732 #ifndef NDEBUG 733 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 734 State.print(OS); 735 return OS; 736 } 737 #endif 738 739 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 740 switch (LHS.getStatus()) { 741 case BDVState::Unknown: 742 return RHS; 743 744 case BDVState::Base: 745 assert(LHS.getBaseValue() && "can't be null"); 746 if (RHS.isUnknown()) 747 return LHS; 748 749 if (RHS.isBase()) { 750 if (LHS.getBaseValue() == RHS.getBaseValue()) { 751 assert(LHS == RHS && "equality broken!"); 752 return LHS; 753 } 754 return BDVState(BDVState::Conflict); 755 } 756 assert(RHS.isConflict() && "only three states!"); 757 return BDVState(BDVState::Conflict); 758 759 case BDVState::Conflict: 760 return LHS; 761 } 762 llvm_unreachable("only three states!"); 763 } 764 765 // Values of type BDVState form a lattice, and this function implements the meet 766 // operation. 767 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 768 BDVState Result = meetBDVStateImpl(LHS, RHS); 769 assert(Result == meetBDVStateImpl(RHS, LHS) && 770 "Math is wrong: meet does not commute!"); 771 return Result; 772 } 773 774 /// For a given value or instruction, figure out what base ptr its derived from. 775 /// For gc objects, this is simply itself. On success, returns a value which is 776 /// the base pointer. (This is reliable and can be used for relocation.) On 777 /// failure, returns nullptr. 778 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 779 Value *Def = findBaseOrBDV(I, Cache); 780 781 if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I)) 782 return Def; 783 784 // Here's the rough algorithm: 785 // - For every SSA value, construct a mapping to either an actual base 786 // pointer or a PHI which obscures the base pointer. 787 // - Construct a mapping from PHI to unknown TOP state. Use an 788 // optimistic algorithm to propagate base pointer information. Lattice 789 // looks like: 790 // UNKNOWN 791 // b1 b2 b3 b4 792 // CONFLICT 793 // When algorithm terminates, all PHIs will either have a single concrete 794 // base or be in a conflict state. 795 // - For every conflict, insert a dummy PHI node without arguments. Add 796 // these to the base[Instruction] = BasePtr mapping. For every 797 // non-conflict, add the actual base. 798 // - For every conflict, add arguments for the base[a] of each input 799 // arguments. 800 // 801 // Note: A simpler form of this would be to add the conflict form of all 802 // PHIs without running the optimistic algorithm. This would be 803 // analogous to pessimistic data flow and would likely lead to an 804 // overall worse solution. 805 806 #ifndef NDEBUG 807 auto isExpectedBDVType = [](Value *BDV) { 808 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 809 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 810 isa<ShuffleVectorInst>(BDV); 811 }; 812 #endif 813 814 // Once populated, will contain a mapping from each potentially non-base BDV 815 // to a lattice value (described above) which corresponds to that BDV. 816 // We use the order of insertion (DFS over the def/use graph) to provide a 817 // stable deterministic ordering for visiting DenseMaps (which are unordered) 818 // below. This is important for deterministic compilation. 819 MapVector<Value *, BDVState> States; 820 821 // Recursively fill in all base defining values reachable from the initial 822 // one for which we don't already know a definite base value for 823 /* scope */ { 824 SmallVector<Value*, 16> Worklist; 825 Worklist.push_back(Def); 826 States.insert({Def, BDVState()}); 827 while (!Worklist.empty()) { 828 Value *Current = Worklist.pop_back_val(); 829 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 830 831 auto visitIncomingValue = [&](Value *InVal) { 832 Value *Base = findBaseOrBDV(InVal, Cache); 833 if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal)) 834 // Known bases won't need new instructions introduced and can be 835 // ignored safely. However, this can only be done when InVal and Base 836 // are both scalar or both vector. Otherwise, we need to find a 837 // correct BDV for InVal, by creating an entry in the lattice 838 // (States). 839 return; 840 assert(isExpectedBDVType(Base) && "the only non-base values " 841 "we see should be base defining values"); 842 if (States.insert(std::make_pair(Base, BDVState())).second) 843 Worklist.push_back(Base); 844 }; 845 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 846 for (Value *InVal : PN->incoming_values()) 847 visitIncomingValue(InVal); 848 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 849 visitIncomingValue(SI->getTrueValue()); 850 visitIncomingValue(SI->getFalseValue()); 851 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 852 visitIncomingValue(EE->getVectorOperand()); 853 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 854 visitIncomingValue(IE->getOperand(0)); // vector operand 855 visitIncomingValue(IE->getOperand(1)); // scalar operand 856 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 857 visitIncomingValue(SV->getOperand(0)); 858 visitIncomingValue(SV->getOperand(1)); 859 } 860 else { 861 llvm_unreachable("Unimplemented instruction case"); 862 } 863 } 864 } 865 866 #ifndef NDEBUG 867 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 868 for (auto Pair : States) { 869 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 870 } 871 #endif 872 873 // Return a phi state for a base defining value. We'll generate a new 874 // base state for known bases and expect to find a cached state otherwise. 875 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 876 if (isKnownBaseResult(BaseValue) && areBothVectorOrScalar(BaseValue, Input)) 877 return BDVState(BaseValue); 878 auto I = States.find(BaseValue); 879 assert(I != States.end() && "lookup failed!"); 880 return I->second; 881 }; 882 883 bool Progress = true; 884 while (Progress) { 885 #ifndef NDEBUG 886 const size_t OldSize = States.size(); 887 #endif 888 Progress = false; 889 // We're only changing values in this loop, thus safe to keep iterators. 890 // Since this is computing a fixed point, the order of visit does not 891 // effect the result. TODO: We could use a worklist here and make this run 892 // much faster. 893 for (auto Pair : States) { 894 Value *BDV = Pair.first; 895 // Only values that do not have known bases or those that have differing 896 // type (scalar versus vector) from a possible known base should be in the 897 // lattice. 898 assert((!isKnownBaseResult(BDV) || 899 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 900 "why did it get added?"); 901 902 // Given an input value for the current instruction, return a BDVState 903 // instance which represents the BDV of that value. 904 auto getStateForInput = [&](Value *V) mutable { 905 Value *BDV = findBaseOrBDV(V, Cache); 906 return GetStateForBDV(BDV, V); 907 }; 908 909 BDVState NewState; 910 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 911 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 912 NewState = 913 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 914 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 915 for (Value *Val : PN->incoming_values()) 916 NewState = meetBDVState(NewState, getStateForInput(Val)); 917 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 918 // The 'meet' for an extractelement is slightly trivial, but it's still 919 // useful in that it drives us to conflict if our input is. 920 NewState = 921 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 922 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 923 // Given there's a inherent type mismatch between the operands, will 924 // *always* produce Conflict. 925 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 926 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 927 } else { 928 // The only instance this does not return a Conflict is when both the 929 // vector operands are the same vector. 930 auto *SV = cast<ShuffleVectorInst>(BDV); 931 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 932 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 933 } 934 935 BDVState OldState = States[BDV]; 936 if (OldState != NewState) { 937 Progress = true; 938 States[BDV] = NewState; 939 } 940 } 941 942 assert(OldSize == States.size() && 943 "fixed point shouldn't be adding any new nodes to state"); 944 } 945 946 #ifndef NDEBUG 947 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 948 for (auto Pair : States) { 949 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 950 } 951 #endif 952 953 // Handle all instructions that have a vector BDV, but the instruction itself 954 // is of scalar type. 955 for (auto Pair : States) { 956 Instruction *I = cast<Instruction>(Pair.first); 957 BDVState State = Pair.second; 958 auto *BaseValue = State.getBaseValue(); 959 // Only values that do not have known bases or those that have differing 960 // type (scalar versus vector) from a possible known base should be in the 961 // lattice. 962 assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) && 963 "why did it get added?"); 964 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 965 966 if (!State.isBase() || !isa<VectorType>(BaseValue->getType())) 967 continue; 968 // extractelement instructions are a bit special in that we may need to 969 // insert an extract even when we know an exact base for the instruction. 970 // The problem is that we need to convert from a vector base to a scalar 971 // base for the particular indice we're interested in. 972 if (isa<ExtractElementInst>(I)) { 973 auto *EE = cast<ExtractElementInst>(I); 974 // TODO: In many cases, the new instruction is just EE itself. We should 975 // exploit this, but can't do it here since it would break the invariant 976 // about the BDV not being known to be a base. 977 auto *BaseInst = ExtractElementInst::Create( 978 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 979 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 980 States[I] = BDVState(BDVState::Base, BaseInst); 981 } else if (!isa<VectorType>(I->getType())) { 982 // We need to handle cases that have a vector base but the instruction is 983 // a scalar type (these could be phis or selects or any instruction that 984 // are of scalar type, but the base can be a vector type). We 985 // conservatively set this as conflict. Setting the base value for these 986 // conflicts is handled in the next loop which traverses States. 987 States[I] = BDVState(BDVState::Conflict); 988 } 989 } 990 991 // Insert Phis for all conflicts 992 // TODO: adjust naming patterns to avoid this order of iteration dependency 993 for (auto Pair : States) { 994 Instruction *I = cast<Instruction>(Pair.first); 995 BDVState State = Pair.second; 996 // Only values that do not have known bases or those that have differing 997 // type (scalar versus vector) from a possible known base should be in the 998 // lattice. 999 assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) && 1000 "why did it get added?"); 1001 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1002 1003 // Since we're joining a vector and scalar base, they can never be the 1004 // same. As a result, we should always see insert element having reached 1005 // the conflict state. 1006 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1007 1008 if (!State.isConflict()) 1009 continue; 1010 1011 /// Create and insert a new instruction which will represent the base of 1012 /// the given instruction 'I'. 1013 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 1014 if (isa<PHINode>(I)) { 1015 BasicBlock *BB = I->getParent(); 1016 int NumPreds = pred_size(BB); 1017 assert(NumPreds > 0 && "how did we reach here"); 1018 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 1019 return PHINode::Create(I->getType(), NumPreds, Name, I); 1020 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 1021 // The undef will be replaced later 1022 UndefValue *Undef = UndefValue::get(SI->getType()); 1023 std::string Name = suffixed_name_or(I, ".base", "base_select"); 1024 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 1025 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 1026 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 1027 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 1028 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 1029 EE); 1030 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 1031 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 1032 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 1033 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 1034 return InsertElementInst::Create(VecUndef, ScalarUndef, 1035 IE->getOperand(2), Name, IE); 1036 } else { 1037 auto *SV = cast<ShuffleVectorInst>(I); 1038 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 1039 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 1040 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getShuffleMask(), 1041 Name, SV); 1042 } 1043 }; 1044 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 1045 // Add metadata marking this as a base value 1046 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1047 States[I] = BDVState(BDVState::Conflict, BaseInst); 1048 } 1049 1050 // Returns a instruction which produces the base pointer for a given 1051 // instruction. The instruction is assumed to be an input to one of the BDVs 1052 // seen in the inference algorithm above. As such, we must either already 1053 // know it's base defining value is a base, or have inserted a new 1054 // instruction to propagate the base of it's BDV and have entered that newly 1055 // introduced instruction into the state table. In either case, we are 1056 // assured to be able to determine an instruction which produces it's base 1057 // pointer. 1058 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1059 Value *BDV = findBaseOrBDV(Input, Cache); 1060 Value *Base = nullptr; 1061 if (isKnownBaseResult(BDV) && areBothVectorOrScalar(BDV, Input)) { 1062 Base = BDV; 1063 } else { 1064 // Either conflict or base. 1065 assert(States.count(BDV)); 1066 Base = States[BDV].getBaseValue(); 1067 } 1068 assert(Base && "Can't be null"); 1069 // The cast is needed since base traversal may strip away bitcasts 1070 if (Base->getType() != Input->getType() && InsertPt) 1071 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1072 return Base; 1073 }; 1074 1075 // Fixup all the inputs of the new PHIs. Visit order needs to be 1076 // deterministic and predictable because we're naming newly created 1077 // instructions. 1078 for (auto Pair : States) { 1079 Instruction *BDV = cast<Instruction>(Pair.first); 1080 BDVState State = Pair.second; 1081 1082 // Only values that do not have known bases or those that have differing 1083 // type (scalar versus vector) from a possible known base should be in the 1084 // lattice. 1085 assert((!isKnownBaseResult(BDV) || 1086 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1087 "why did it get added?"); 1088 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1089 if (!State.isConflict()) 1090 continue; 1091 1092 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1093 PHINode *PN = cast<PHINode>(BDV); 1094 unsigned NumPHIValues = PN->getNumIncomingValues(); 1095 for (unsigned i = 0; i < NumPHIValues; i++) { 1096 Value *InVal = PN->getIncomingValue(i); 1097 BasicBlock *InBB = PN->getIncomingBlock(i); 1098 1099 // If we've already seen InBB, add the same incoming value 1100 // we added for it earlier. The IR verifier requires phi 1101 // nodes with multiple entries from the same basic block 1102 // to have the same incoming value for each of those 1103 // entries. If we don't do this check here and basephi 1104 // has a different type than base, we'll end up adding two 1105 // bitcasts (and hence two distinct values) as incoming 1106 // values for the same basic block. 1107 1108 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 1109 if (BlockIndex != -1) { 1110 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 1111 BasePHI->addIncoming(OldBase, InBB); 1112 1113 #ifndef NDEBUG 1114 Value *Base = getBaseForInput(InVal, nullptr); 1115 // In essence this assert states: the only way two values 1116 // incoming from the same basic block may be different is by 1117 // being different bitcasts of the same value. A cleanup 1118 // that remains TODO is changing findBaseOrBDV to return an 1119 // llvm::Value of the correct type (and still remain pure). 1120 // This will remove the need to add bitcasts. 1121 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1122 "Sanity -- findBaseOrBDV should be pure!"); 1123 #endif 1124 continue; 1125 } 1126 1127 // Find the instruction which produces the base for each input. We may 1128 // need to insert a bitcast in the incoming block. 1129 // TODO: Need to split critical edges if insertion is needed 1130 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1131 BasePHI->addIncoming(Base, InBB); 1132 } 1133 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 1134 } else if (SelectInst *BaseSI = 1135 dyn_cast<SelectInst>(State.getBaseValue())) { 1136 SelectInst *SI = cast<SelectInst>(BDV); 1137 1138 // Find the instruction which produces the base for each input. 1139 // We may need to insert a bitcast. 1140 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1141 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1142 } else if (auto *BaseEE = 1143 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1144 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1145 // Find the instruction which produces the base for each input. We may 1146 // need to insert a bitcast. 1147 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1148 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1149 auto *BdvIE = cast<InsertElementInst>(BDV); 1150 auto UpdateOperand = [&](int OperandIdx) { 1151 Value *InVal = BdvIE->getOperand(OperandIdx); 1152 Value *Base = getBaseForInput(InVal, BaseIE); 1153 BaseIE->setOperand(OperandIdx, Base); 1154 }; 1155 UpdateOperand(0); // vector operand 1156 UpdateOperand(1); // scalar operand 1157 } else { 1158 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1159 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1160 auto UpdateOperand = [&](int OperandIdx) { 1161 Value *InVal = BdvSV->getOperand(OperandIdx); 1162 Value *Base = getBaseForInput(InVal, BaseSV); 1163 BaseSV->setOperand(OperandIdx, Base); 1164 }; 1165 UpdateOperand(0); // vector operand 1166 UpdateOperand(1); // vector operand 1167 } 1168 } 1169 1170 // Cache all of our results so we can cheaply reuse them 1171 // NOTE: This is actually two caches: one of the base defining value 1172 // relation and one of the base pointer relation! FIXME 1173 for (auto Pair : States) { 1174 auto *BDV = Pair.first; 1175 Value *Base = Pair.second.getBaseValue(); 1176 assert(BDV && Base); 1177 // Only values that do not have known bases or those that have differing 1178 // type (scalar versus vector) from a possible known base should be in the 1179 // lattice. 1180 assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) && 1181 "why did it get added?"); 1182 1183 LLVM_DEBUG( 1184 dbgs() << "Updating base value cache" 1185 << " for: " << BDV->getName() << " from: " 1186 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1187 << " to: " << Base->getName() << "\n"); 1188 1189 if (Cache.count(BDV)) { 1190 assert(isKnownBaseResult(Base) && 1191 "must be something we 'know' is a base pointer"); 1192 // Once we transition from the BDV relation being store in the Cache to 1193 // the base relation being stored, it must be stable 1194 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1195 "base relation should be stable"); 1196 } 1197 Cache[BDV] = Base; 1198 } 1199 assert(Cache.count(Def)); 1200 return Cache[Def]; 1201 } 1202 1203 // For a set of live pointers (base and/or derived), identify the base 1204 // pointer of the object which they are derived from. This routine will 1205 // mutate the IR graph as needed to make the 'base' pointer live at the 1206 // definition site of 'derived'. This ensures that any use of 'derived' can 1207 // also use 'base'. This may involve the insertion of a number of 1208 // additional PHI nodes. 1209 // 1210 // preconditions: live is a set of pointer type Values 1211 // 1212 // side effects: may insert PHI nodes into the existing CFG, will preserve 1213 // CFG, will not remove or mutate any existing nodes 1214 // 1215 // post condition: PointerToBase contains one (derived, base) pair for every 1216 // pointer in live. Note that derived can be equal to base if the original 1217 // pointer was a base pointer. 1218 static void 1219 findBasePointers(const StatepointLiveSetTy &live, 1220 MapVector<Value *, Value *> &PointerToBase, 1221 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1222 for (Value *ptr : live) { 1223 Value *base = findBasePointer(ptr, DVCache); 1224 assert(base && "failed to find base pointer"); 1225 PointerToBase[ptr] = base; 1226 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1227 DT->dominates(cast<Instruction>(base)->getParent(), 1228 cast<Instruction>(ptr)->getParent())) && 1229 "The base we found better dominate the derived pointer"); 1230 } 1231 } 1232 1233 /// Find the required based pointers (and adjust the live set) for the given 1234 /// parse point. 1235 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1236 CallBase *Call, 1237 PartiallyConstructedSafepointRecord &result) { 1238 MapVector<Value *, Value *> PointerToBase; 1239 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1240 1241 if (PrintBasePointers) { 1242 errs() << "Base Pairs (w/o Relocation):\n"; 1243 for (auto &Pair : PointerToBase) { 1244 errs() << " derived "; 1245 Pair.first->printAsOperand(errs(), false); 1246 errs() << " base "; 1247 Pair.second->printAsOperand(errs(), false); 1248 errs() << "\n";; 1249 } 1250 } 1251 1252 result.PointerToBase = PointerToBase; 1253 } 1254 1255 /// Given an updated version of the dataflow liveness results, update the 1256 /// liveset and base pointer maps for the call site CS. 1257 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1258 CallBase *Call, 1259 PartiallyConstructedSafepointRecord &result); 1260 1261 static void recomputeLiveInValues( 1262 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1263 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1264 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1265 // again. The old values are still live and will help it stabilize quickly. 1266 GCPtrLivenessData RevisedLivenessData; 1267 computeLiveInValues(DT, F, RevisedLivenessData); 1268 for (size_t i = 0; i < records.size(); i++) { 1269 struct PartiallyConstructedSafepointRecord &info = records[i]; 1270 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1271 } 1272 } 1273 1274 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1275 // no uses of the original value / return value between the gc.statepoint and 1276 // the gc.relocate / gc.result call. One case which can arise is a phi node 1277 // starting one of the successor blocks. We also need to be able to insert the 1278 // gc.relocates only on the path which goes through the statepoint. We might 1279 // need to split an edge to make this possible. 1280 static BasicBlock * 1281 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1282 DominatorTree &DT) { 1283 BasicBlock *Ret = BB; 1284 if (!BB->getUniquePredecessor()) 1285 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1286 1287 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1288 // from it 1289 FoldSingleEntryPHINodes(Ret); 1290 assert(!isa<PHINode>(Ret->begin()) && 1291 "All PHI nodes should have been removed!"); 1292 1293 // At this point, we can safely insert a gc.relocate or gc.result as the first 1294 // instruction in Ret if needed. 1295 return Ret; 1296 } 1297 1298 // Create new attribute set containing only attributes which can be transferred 1299 // from original call to the safepoint. 1300 static AttributeList legalizeCallAttributes(LLVMContext &Ctx, 1301 AttributeList AL) { 1302 if (AL.isEmpty()) 1303 return AL; 1304 1305 // Remove the readonly, readnone, and statepoint function attributes. 1306 AttrBuilder FnAttrs = AL.getFnAttributes(); 1307 FnAttrs.removeAttribute(Attribute::ReadNone); 1308 FnAttrs.removeAttribute(Attribute::ReadOnly); 1309 for (Attribute A : AL.getFnAttributes()) { 1310 if (isStatepointDirectiveAttr(A)) 1311 FnAttrs.remove(A); 1312 } 1313 1314 // Just skip parameter and return attributes for now 1315 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1316 AttributeSet::get(Ctx, FnAttrs)); 1317 } 1318 1319 /// Helper function to place all gc relocates necessary for the given 1320 /// statepoint. 1321 /// Inputs: 1322 /// liveVariables - list of variables to be relocated. 1323 /// basePtrs - base pointers. 1324 /// statepointToken - statepoint instruction to which relocates should be 1325 /// bound. 1326 /// Builder - Llvm IR builder to be used to construct new calls. 1327 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1328 ArrayRef<Value *> BasePtrs, 1329 Instruction *StatepointToken, 1330 IRBuilder<> &Builder) { 1331 if (LiveVariables.empty()) 1332 return; 1333 1334 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1335 auto ValIt = llvm::find(LiveVec, Val); 1336 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1337 size_t Index = std::distance(LiveVec.begin(), ValIt); 1338 assert(Index < LiveVec.size() && "Bug in std::find?"); 1339 return Index; 1340 }; 1341 Module *M = StatepointToken->getModule(); 1342 1343 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1344 // element type is i8 addrspace(1)*). We originally generated unique 1345 // declarations for each pointer type, but this proved problematic because 1346 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1347 // towards a single unified pointer type anyways, we can just cast everything 1348 // to an i8* of the right address space. A bitcast is added later to convert 1349 // gc_relocate to the actual value's type. 1350 auto getGCRelocateDecl = [&] (Type *Ty) { 1351 assert(isHandledGCPointerType(Ty)); 1352 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1353 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1354 if (auto *VT = dyn_cast<VectorType>(Ty)) 1355 NewTy = FixedVectorType::get(NewTy, 1356 cast<FixedVectorType>(VT)->getNumElements()); 1357 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1358 {NewTy}); 1359 }; 1360 1361 // Lazily populated map from input types to the canonicalized form mentioned 1362 // in the comment above. This should probably be cached somewhere more 1363 // broadly. 1364 DenseMap<Type *, Function *> TypeToDeclMap; 1365 1366 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1367 // Generate the gc.relocate call and save the result 1368 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1369 Value *LiveIdx = Builder.getInt32(i); 1370 1371 Type *Ty = LiveVariables[i]->getType(); 1372 if (!TypeToDeclMap.count(Ty)) 1373 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1374 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1375 1376 // only specify a debug name if we can give a useful one 1377 CallInst *Reloc = Builder.CreateCall( 1378 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1379 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1380 // Trick CodeGen into thinking there are lots of free registers at this 1381 // fake call. 1382 Reloc->setCallingConv(CallingConv::Cold); 1383 } 1384 } 1385 1386 namespace { 1387 1388 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1389 /// avoids having to worry about keeping around dangling pointers to Values. 1390 class DeferredReplacement { 1391 AssertingVH<Instruction> Old; 1392 AssertingVH<Instruction> New; 1393 bool IsDeoptimize = false; 1394 1395 DeferredReplacement() = default; 1396 1397 public: 1398 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1399 assert(Old != New && Old && New && 1400 "Cannot RAUW equal values or to / from null!"); 1401 1402 DeferredReplacement D; 1403 D.Old = Old; 1404 D.New = New; 1405 return D; 1406 } 1407 1408 static DeferredReplacement createDelete(Instruction *ToErase) { 1409 DeferredReplacement D; 1410 D.Old = ToErase; 1411 return D; 1412 } 1413 1414 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1415 #ifndef NDEBUG 1416 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1417 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1418 "Only way to construct a deoptimize deferred replacement"); 1419 #endif 1420 DeferredReplacement D; 1421 D.Old = Old; 1422 D.IsDeoptimize = true; 1423 return D; 1424 } 1425 1426 /// Does the task represented by this instance. 1427 void doReplacement() { 1428 Instruction *OldI = Old; 1429 Instruction *NewI = New; 1430 1431 assert(OldI != NewI && "Disallowed at construction?!"); 1432 assert((!IsDeoptimize || !New) && 1433 "Deoptimize intrinsics are not replaced!"); 1434 1435 Old = nullptr; 1436 New = nullptr; 1437 1438 if (NewI) 1439 OldI->replaceAllUsesWith(NewI); 1440 1441 if (IsDeoptimize) { 1442 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1443 // not necessarily be followed by the matching return. 1444 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1445 new UnreachableInst(RI->getContext(), RI); 1446 RI->eraseFromParent(); 1447 } 1448 1449 OldI->eraseFromParent(); 1450 } 1451 }; 1452 1453 } // end anonymous namespace 1454 1455 static StringRef getDeoptLowering(CallBase *Call) { 1456 const char *DeoptLowering = "deopt-lowering"; 1457 if (Call->hasFnAttr(DeoptLowering)) { 1458 // FIXME: Calls have a *really* confusing interface around attributes 1459 // with values. 1460 const AttributeList &CSAS = Call->getAttributes(); 1461 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1462 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1463 .getValueAsString(); 1464 Function *F = Call->getCalledFunction(); 1465 assert(F && F->hasFnAttribute(DeoptLowering)); 1466 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1467 } 1468 return "live-through"; 1469 } 1470 1471 static void 1472 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1473 const SmallVectorImpl<Value *> &BasePtrs, 1474 const SmallVectorImpl<Value *> &LiveVariables, 1475 PartiallyConstructedSafepointRecord &Result, 1476 std::vector<DeferredReplacement> &Replacements) { 1477 assert(BasePtrs.size() == LiveVariables.size()); 1478 1479 // Then go ahead and use the builder do actually do the inserts. We insert 1480 // immediately before the previous instruction under the assumption that all 1481 // arguments will be available here. We can't insert afterwards since we may 1482 // be replacing a terminator. 1483 IRBuilder<> Builder(Call); 1484 1485 ArrayRef<Value *> GCArgs(LiveVariables); 1486 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1487 uint32_t NumPatchBytes = 0; 1488 uint32_t Flags = uint32_t(StatepointFlags::None); 1489 1490 SmallVector<Value *, 8> CallArgs; 1491 for (Value *Arg : Call->args()) 1492 CallArgs.push_back(Arg); 1493 Optional<ArrayRef<Use>> DeoptArgs; 1494 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1495 DeoptArgs = Bundle->Inputs; 1496 Optional<ArrayRef<Use>> TransitionArgs; 1497 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1498 TransitionArgs = Bundle->Inputs; 1499 // TODO: This flag no longer serves a purpose and can be removed later 1500 Flags |= uint32_t(StatepointFlags::GCTransition); 1501 } 1502 1503 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1504 // with a return value, we lower then as never returning calls to 1505 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1506 bool IsDeoptimize = false; 1507 1508 StatepointDirectives SD = 1509 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1510 if (SD.NumPatchBytes) 1511 NumPatchBytes = *SD.NumPatchBytes; 1512 if (SD.StatepointID) 1513 StatepointID = *SD.StatepointID; 1514 1515 // Pass through the requested lowering if any. The default is live-through. 1516 StringRef DeoptLowering = getDeoptLowering(Call); 1517 if (DeoptLowering.equals("live-in")) 1518 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1519 else { 1520 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1521 } 1522 1523 Value *CallTarget = Call->getCalledOperand(); 1524 if (Function *F = dyn_cast<Function>(CallTarget)) { 1525 auto IID = F->getIntrinsicID(); 1526 if (IID == Intrinsic::experimental_deoptimize) { 1527 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1528 // __llvm_deoptimize symbol. We want to resolve this now, since the 1529 // verifier does not allow taking the address of an intrinsic function. 1530 1531 SmallVector<Type *, 8> DomainTy; 1532 for (Value *Arg : CallArgs) 1533 DomainTy.push_back(Arg->getType()); 1534 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1535 /* isVarArg = */ false); 1536 1537 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1538 // calls to @llvm.experimental.deoptimize with different argument types in 1539 // the same module. This is fine -- we assume the frontend knew what it 1540 // was doing when generating this kind of IR. 1541 CallTarget = F->getParent() 1542 ->getOrInsertFunction("__llvm_deoptimize", FTy) 1543 .getCallee(); 1544 1545 IsDeoptimize = true; 1546 } 1547 } 1548 1549 // Create the statepoint given all the arguments 1550 GCStatepointInst *Token = nullptr; 1551 if (auto *CI = dyn_cast<CallInst>(Call)) { 1552 CallInst *SPCall = Builder.CreateGCStatepointCall( 1553 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1554 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1555 1556 SPCall->setTailCallKind(CI->getTailCallKind()); 1557 SPCall->setCallingConv(CI->getCallingConv()); 1558 1559 // Currently we will fail on parameter attributes and on certain 1560 // function attributes. In case if we can handle this set of attributes - 1561 // set up function attrs directly on statepoint and return attrs later for 1562 // gc_result intrinsic. 1563 SPCall->setAttributes( 1564 legalizeCallAttributes(CI->getContext(), CI->getAttributes())); 1565 1566 Token = cast<GCStatepointInst>(SPCall); 1567 1568 // Put the following gc_result and gc_relocate calls immediately after the 1569 // the old call (which we're about to delete) 1570 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1571 Builder.SetInsertPoint(CI->getNextNode()); 1572 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1573 } else { 1574 auto *II = cast<InvokeInst>(Call); 1575 1576 // Insert the new invoke into the old block. We'll remove the old one in a 1577 // moment at which point this will become the new terminator for the 1578 // original block. 1579 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1580 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1581 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1582 "statepoint_token"); 1583 1584 SPInvoke->setCallingConv(II->getCallingConv()); 1585 1586 // Currently we will fail on parameter attributes and on certain 1587 // function attributes. In case if we can handle this set of attributes - 1588 // set up function attrs directly on statepoint and return attrs later for 1589 // gc_result intrinsic. 1590 SPInvoke->setAttributes( 1591 legalizeCallAttributes(II->getContext(), II->getAttributes())); 1592 1593 Token = cast<GCStatepointInst>(SPInvoke); 1594 1595 // Generate gc relocates in exceptional path 1596 BasicBlock *UnwindBlock = II->getUnwindDest(); 1597 assert(!isa<PHINode>(UnwindBlock->begin()) && 1598 UnwindBlock->getUniquePredecessor() && 1599 "can't safely insert in this block!"); 1600 1601 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1602 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1603 1604 // Attach exceptional gc relocates to the landingpad. 1605 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1606 Result.UnwindToken = ExceptionalToken; 1607 1608 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder); 1609 1610 // Generate gc relocates and returns for normal block 1611 BasicBlock *NormalDest = II->getNormalDest(); 1612 assert(!isa<PHINode>(NormalDest->begin()) && 1613 NormalDest->getUniquePredecessor() && 1614 "can't safely insert in this block!"); 1615 1616 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1617 1618 // gc relocates will be generated later as if it were regular call 1619 // statepoint 1620 } 1621 assert(Token && "Should be set in one of the above branches!"); 1622 1623 if (IsDeoptimize) { 1624 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1625 // transform the tail-call like structure to a call to a void function 1626 // followed by unreachable to get better codegen. 1627 Replacements.push_back( 1628 DeferredReplacement::createDeoptimizeReplacement(Call)); 1629 } else { 1630 Token->setName("statepoint_token"); 1631 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1632 StringRef Name = Call->hasName() ? Call->getName() : ""; 1633 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1634 GCResult->setAttributes( 1635 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1636 Call->getAttributes().getRetAttributes())); 1637 1638 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1639 // live set of some other safepoint, in which case that safepoint's 1640 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1641 // llvm::Instruction. Instead, we defer the replacement and deletion to 1642 // after the live sets have been made explicit in the IR, and we no longer 1643 // have raw pointers to worry about. 1644 Replacements.emplace_back( 1645 DeferredReplacement::createRAUW(Call, GCResult)); 1646 } else { 1647 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1648 } 1649 } 1650 1651 Result.StatepointToken = Token; 1652 1653 // Second, create a gc.relocate for every live variable 1654 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder); 1655 } 1656 1657 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1658 // which make the relocations happening at this safepoint explicit. 1659 // 1660 // WARNING: Does not do any fixup to adjust users of the original live 1661 // values. That's the callers responsibility. 1662 static void 1663 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1664 PartiallyConstructedSafepointRecord &Result, 1665 std::vector<DeferredReplacement> &Replacements) { 1666 const auto &LiveSet = Result.LiveSet; 1667 const auto &PointerToBase = Result.PointerToBase; 1668 1669 // Convert to vector for efficient cross referencing. 1670 SmallVector<Value *, 64> BaseVec, LiveVec; 1671 LiveVec.reserve(LiveSet.size()); 1672 BaseVec.reserve(LiveSet.size()); 1673 for (Value *L : LiveSet) { 1674 LiveVec.push_back(L); 1675 assert(PointerToBase.count(L)); 1676 Value *Base = PointerToBase.find(L)->second; 1677 BaseVec.push_back(Base); 1678 } 1679 assert(LiveVec.size() == BaseVec.size()); 1680 1681 // Do the actual rewriting and delete the old statepoint 1682 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements); 1683 } 1684 1685 // Helper function for the relocationViaAlloca. 1686 // 1687 // It receives iterator to the statepoint gc relocates and emits a store to the 1688 // assigned location (via allocaMap) for the each one of them. It adds the 1689 // visited values into the visitedLiveValues set, which we will later use them 1690 // for sanity checking. 1691 static void 1692 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1693 DenseMap<Value *, AllocaInst *> &AllocaMap, 1694 DenseSet<Value *> &VisitedLiveValues) { 1695 for (User *U : GCRelocs) { 1696 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1697 if (!Relocate) 1698 continue; 1699 1700 Value *OriginalValue = Relocate->getDerivedPtr(); 1701 assert(AllocaMap.count(OriginalValue)); 1702 Value *Alloca = AllocaMap[OriginalValue]; 1703 1704 // Emit store into the related alloca 1705 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1706 // the correct type according to alloca. 1707 assert(Relocate->getNextNode() && 1708 "Should always have one since it's not a terminator"); 1709 IRBuilder<> Builder(Relocate->getNextNode()); 1710 Value *CastedRelocatedValue = 1711 Builder.CreateBitCast(Relocate, 1712 cast<AllocaInst>(Alloca)->getAllocatedType(), 1713 suffixed_name_or(Relocate, ".casted", "")); 1714 1715 new StoreInst(CastedRelocatedValue, Alloca, 1716 cast<Instruction>(CastedRelocatedValue)->getNextNode()); 1717 1718 #ifndef NDEBUG 1719 VisitedLiveValues.insert(OriginalValue); 1720 #endif 1721 } 1722 } 1723 1724 // Helper function for the "relocationViaAlloca". Similar to the 1725 // "insertRelocationStores" but works for rematerialized values. 1726 static void insertRematerializationStores( 1727 const RematerializedValueMapTy &RematerializedValues, 1728 DenseMap<Value *, AllocaInst *> &AllocaMap, 1729 DenseSet<Value *> &VisitedLiveValues) { 1730 for (auto RematerializedValuePair: RematerializedValues) { 1731 Instruction *RematerializedValue = RematerializedValuePair.first; 1732 Value *OriginalValue = RematerializedValuePair.second; 1733 1734 assert(AllocaMap.count(OriginalValue) && 1735 "Can not find alloca for rematerialized value"); 1736 Value *Alloca = AllocaMap[OriginalValue]; 1737 1738 new StoreInst(RematerializedValue, Alloca, 1739 RematerializedValue->getNextNode()); 1740 1741 #ifndef NDEBUG 1742 VisitedLiveValues.insert(OriginalValue); 1743 #endif 1744 } 1745 } 1746 1747 /// Do all the relocation update via allocas and mem2reg 1748 static void relocationViaAlloca( 1749 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1750 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1751 #ifndef NDEBUG 1752 // record initial number of (static) allocas; we'll check we have the same 1753 // number when we get done. 1754 int InitialAllocaNum = 0; 1755 for (Instruction &I : F.getEntryBlock()) 1756 if (isa<AllocaInst>(I)) 1757 InitialAllocaNum++; 1758 #endif 1759 1760 // TODO-PERF: change data structures, reserve 1761 DenseMap<Value *, AllocaInst *> AllocaMap; 1762 SmallVector<AllocaInst *, 200> PromotableAllocas; 1763 // Used later to chack that we have enough allocas to store all values 1764 std::size_t NumRematerializedValues = 0; 1765 PromotableAllocas.reserve(Live.size()); 1766 1767 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1768 // "PromotableAllocas" 1769 const DataLayout &DL = F.getParent()->getDataLayout(); 1770 auto emitAllocaFor = [&](Value *LiveValue) { 1771 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1772 DL.getAllocaAddrSpace(), "", 1773 F.getEntryBlock().getFirstNonPHI()); 1774 AllocaMap[LiveValue] = Alloca; 1775 PromotableAllocas.push_back(Alloca); 1776 }; 1777 1778 // Emit alloca for each live gc pointer 1779 for (Value *V : Live) 1780 emitAllocaFor(V); 1781 1782 // Emit allocas for rematerialized values 1783 for (const auto &Info : Records) 1784 for (auto RematerializedValuePair : Info.RematerializedValues) { 1785 Value *OriginalValue = RematerializedValuePair.second; 1786 if (AllocaMap.count(OriginalValue) != 0) 1787 continue; 1788 1789 emitAllocaFor(OriginalValue); 1790 ++NumRematerializedValues; 1791 } 1792 1793 // The next two loops are part of the same conceptual operation. We need to 1794 // insert a store to the alloca after the original def and at each 1795 // redefinition. We need to insert a load before each use. These are split 1796 // into distinct loops for performance reasons. 1797 1798 // Update gc pointer after each statepoint: either store a relocated value or 1799 // null (if no relocated value was found for this gc pointer and it is not a 1800 // gc_result). This must happen before we update the statepoint with load of 1801 // alloca otherwise we lose the link between statepoint and old def. 1802 for (const auto &Info : Records) { 1803 Value *Statepoint = Info.StatepointToken; 1804 1805 // This will be used for consistency check 1806 DenseSet<Value *> VisitedLiveValues; 1807 1808 // Insert stores for normal statepoint gc relocates 1809 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1810 1811 // In case if it was invoke statepoint 1812 // we will insert stores for exceptional path gc relocates. 1813 if (isa<InvokeInst>(Statepoint)) { 1814 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1815 VisitedLiveValues); 1816 } 1817 1818 // Do similar thing with rematerialized values 1819 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1820 VisitedLiveValues); 1821 1822 if (ClobberNonLive) { 1823 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1824 // the gc.statepoint. This will turn some subtle GC problems into 1825 // slightly easier to debug SEGVs. Note that on large IR files with 1826 // lots of gc.statepoints this is extremely costly both memory and time 1827 // wise. 1828 SmallVector<AllocaInst *, 64> ToClobber; 1829 for (auto Pair : AllocaMap) { 1830 Value *Def = Pair.first; 1831 AllocaInst *Alloca = Pair.second; 1832 1833 // This value was relocated 1834 if (VisitedLiveValues.count(Def)) { 1835 continue; 1836 } 1837 ToClobber.push_back(Alloca); 1838 } 1839 1840 auto InsertClobbersAt = [&](Instruction *IP) { 1841 for (auto *AI : ToClobber) { 1842 auto PT = cast<PointerType>(AI->getAllocatedType()); 1843 Constant *CPN = ConstantPointerNull::get(PT); 1844 new StoreInst(CPN, AI, IP); 1845 } 1846 }; 1847 1848 // Insert the clobbering stores. These may get intermixed with the 1849 // gc.results and gc.relocates, but that's fine. 1850 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1851 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1852 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1853 } else { 1854 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1855 } 1856 } 1857 } 1858 1859 // Update use with load allocas and add store for gc_relocated. 1860 for (auto Pair : AllocaMap) { 1861 Value *Def = Pair.first; 1862 AllocaInst *Alloca = Pair.second; 1863 1864 // We pre-record the uses of allocas so that we dont have to worry about 1865 // later update that changes the user information.. 1866 1867 SmallVector<Instruction *, 20> Uses; 1868 // PERF: trade a linear scan for repeated reallocation 1869 Uses.reserve(Def->getNumUses()); 1870 for (User *U : Def->users()) { 1871 if (!isa<ConstantExpr>(U)) { 1872 // If the def has a ConstantExpr use, then the def is either a 1873 // ConstantExpr use itself or null. In either case 1874 // (recursively in the first, directly in the second), the oop 1875 // it is ultimately dependent on is null and this particular 1876 // use does not need to be fixed up. 1877 Uses.push_back(cast<Instruction>(U)); 1878 } 1879 } 1880 1881 llvm::sort(Uses); 1882 auto Last = std::unique(Uses.begin(), Uses.end()); 1883 Uses.erase(Last, Uses.end()); 1884 1885 for (Instruction *Use : Uses) { 1886 if (isa<PHINode>(Use)) { 1887 PHINode *Phi = cast<PHINode>(Use); 1888 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1889 if (Def == Phi->getIncomingValue(i)) { 1890 LoadInst *Load = 1891 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 1892 Phi->getIncomingBlock(i)->getTerminator()); 1893 Phi->setIncomingValue(i, Load); 1894 } 1895 } 1896 } else { 1897 LoadInst *Load = 1898 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 1899 Use->replaceUsesOfWith(Def, Load); 1900 } 1901 } 1902 1903 // Emit store for the initial gc value. Store must be inserted after load, 1904 // otherwise store will be in alloca's use list and an extra load will be 1905 // inserted before it. 1906 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 1907 DL.getABITypeAlign(Def->getType())); 1908 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1909 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1910 // InvokeInst is a terminator so the store need to be inserted into its 1911 // normal destination block. 1912 BasicBlock *NormalDest = Invoke->getNormalDest(); 1913 Store->insertBefore(NormalDest->getFirstNonPHI()); 1914 } else { 1915 assert(!Inst->isTerminator() && 1916 "The only terminator that can produce a value is " 1917 "InvokeInst which is handled above."); 1918 Store->insertAfter(Inst); 1919 } 1920 } else { 1921 assert(isa<Argument>(Def)); 1922 Store->insertAfter(cast<Instruction>(Alloca)); 1923 } 1924 } 1925 1926 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1927 "we must have the same allocas with lives"); 1928 if (!PromotableAllocas.empty()) { 1929 // Apply mem2reg to promote alloca to SSA 1930 PromoteMemToReg(PromotableAllocas, DT); 1931 } 1932 1933 #ifndef NDEBUG 1934 for (auto &I : F.getEntryBlock()) 1935 if (isa<AllocaInst>(I)) 1936 InitialAllocaNum--; 1937 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1938 #endif 1939 } 1940 1941 /// Implement a unique function which doesn't require we sort the input 1942 /// vector. Doing so has the effect of changing the output of a couple of 1943 /// tests in ways which make them less useful in testing fused safepoints. 1944 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1945 SmallSet<T, 8> Seen; 1946 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1947 Vec.end()); 1948 } 1949 1950 /// Insert holders so that each Value is obviously live through the entire 1951 /// lifetime of the call. 1952 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 1953 SmallVectorImpl<CallInst *> &Holders) { 1954 if (Values.empty()) 1955 // No values to hold live, might as well not insert the empty holder 1956 return; 1957 1958 Module *M = Call->getModule(); 1959 // Use a dummy vararg function to actually hold the values live 1960 FunctionCallee Func = M->getOrInsertFunction( 1961 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 1962 if (isa<CallInst>(Call)) { 1963 // For call safepoints insert dummy calls right after safepoint 1964 Holders.push_back( 1965 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 1966 return; 1967 } 1968 // For invoke safepooints insert dummy calls both in normal and 1969 // exceptional destination blocks 1970 auto *II = cast<InvokeInst>(Call); 1971 Holders.push_back(CallInst::Create( 1972 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1973 Holders.push_back(CallInst::Create( 1974 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1975 } 1976 1977 static void findLiveReferences( 1978 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1979 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1980 GCPtrLivenessData OriginalLivenessData; 1981 computeLiveInValues(DT, F, OriginalLivenessData); 1982 for (size_t i = 0; i < records.size(); i++) { 1983 struct PartiallyConstructedSafepointRecord &info = records[i]; 1984 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1985 } 1986 } 1987 1988 // Helper function for the "rematerializeLiveValues". It walks use chain 1989 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1990 // the base or a value it cannot process. Only "simple" values are processed 1991 // (currently it is GEP's and casts). The returned root is examined by the 1992 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1993 // with all visited values. 1994 static Value* findRematerializableChainToBasePointer( 1995 SmallVectorImpl<Instruction*> &ChainToBase, 1996 Value *CurrentValue) { 1997 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1998 ChainToBase.push_back(GEP); 1999 return findRematerializableChainToBasePointer(ChainToBase, 2000 GEP->getPointerOperand()); 2001 } 2002 2003 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2004 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2005 return CI; 2006 2007 ChainToBase.push_back(CI); 2008 return findRematerializableChainToBasePointer(ChainToBase, 2009 CI->getOperand(0)); 2010 } 2011 2012 // We have reached the root of the chain, which is either equal to the base or 2013 // is the first unsupported value along the use chain. 2014 return CurrentValue; 2015 } 2016 2017 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2018 // chain we are going to rematerialize. 2019 static unsigned 2020 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2021 TargetTransformInfo &TTI) { 2022 unsigned Cost = 0; 2023 2024 for (Instruction *Instr : Chain) { 2025 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2026 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2027 "non noop cast is found during rematerialization"); 2028 2029 Type *SrcTy = CI->getOperand(0)->getType(); 2030 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2031 TTI::getCastContextHint(CI), 2032 TargetTransformInfo::TCK_SizeAndLatency, CI); 2033 2034 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2035 // Cost of the address calculation 2036 Type *ValTy = GEP->getSourceElementType(); 2037 Cost += TTI.getAddressComputationCost(ValTy); 2038 2039 // And cost of the GEP itself 2040 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2041 // allowed for the external usage) 2042 if (!GEP->hasAllConstantIndices()) 2043 Cost += 2; 2044 2045 } else { 2046 llvm_unreachable("unsupported instruction type during rematerialization"); 2047 } 2048 } 2049 2050 return Cost; 2051 } 2052 2053 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2054 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2055 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2056 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2057 return false; 2058 // Map of incoming values and their corresponding basic blocks of 2059 // OrigRootPhi. 2060 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2061 for (unsigned i = 0; i < PhiNum; i++) 2062 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2063 OrigRootPhi.getIncomingBlock(i); 2064 2065 // Both current and base PHIs should have same incoming values and 2066 // the same basic blocks corresponding to the incoming values. 2067 for (unsigned i = 0; i < PhiNum; i++) { 2068 auto CIVI = 2069 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2070 if (CIVI == CurrentIncomingValues.end()) 2071 return false; 2072 BasicBlock *CurrentIncomingBB = CIVI->second; 2073 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2074 return false; 2075 } 2076 return true; 2077 } 2078 2079 // From the statepoint live set pick values that are cheaper to recompute then 2080 // to relocate. Remove this values from the live set, rematerialize them after 2081 // statepoint and record them in "Info" structure. Note that similar to 2082 // relocated values we don't do any user adjustments here. 2083 static void rematerializeLiveValues(CallBase *Call, 2084 PartiallyConstructedSafepointRecord &Info, 2085 TargetTransformInfo &TTI) { 2086 const unsigned int ChainLengthThreshold = 10; 2087 2088 // Record values we are going to delete from this statepoint live set. 2089 // We can not di this in following loop due to iterator invalidation. 2090 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2091 2092 for (Value *LiveValue: Info.LiveSet) { 2093 // For each live pointer find its defining chain 2094 SmallVector<Instruction *, 3> ChainToBase; 2095 assert(Info.PointerToBase.count(LiveValue)); 2096 Value *RootOfChain = 2097 findRematerializableChainToBasePointer(ChainToBase, 2098 LiveValue); 2099 2100 // Nothing to do, or chain is too long 2101 if ( ChainToBase.size() == 0 || 2102 ChainToBase.size() > ChainLengthThreshold) 2103 continue; 2104 2105 // Handle the scenario where the RootOfChain is not equal to the 2106 // Base Value, but they are essentially the same phi values. 2107 if (RootOfChain != Info.PointerToBase[LiveValue]) { 2108 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2109 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 2110 if (!OrigRootPhi || !AlternateRootPhi) 2111 continue; 2112 // PHI nodes that have the same incoming values, and belonging to the same 2113 // basic blocks are essentially the same SSA value. When the original phi 2114 // has incoming values with different base pointers, the original phi is 2115 // marked as conflict, and an additional `AlternateRootPhi` with the same 2116 // incoming values get generated by the findBasePointer function. We need 2117 // to identify the newly generated AlternateRootPhi (.base version of phi) 2118 // and RootOfChain (the original phi node itself) are the same, so that we 2119 // can rematerialize the gep and casts. This is a workaround for the 2120 // deficiency in the findBasePointer algorithm. 2121 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2122 continue; 2123 // Now that the phi nodes are proved to be the same, assert that 2124 // findBasePointer's newly generated AlternateRootPhi is present in the 2125 // liveset of the call. 2126 assert(Info.LiveSet.count(AlternateRootPhi)); 2127 } 2128 // Compute cost of this chain 2129 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2130 // TODO: We can also account for cases when we will be able to remove some 2131 // of the rematerialized values by later optimization passes. I.e if 2132 // we rematerialized several intersecting chains. Or if original values 2133 // don't have any uses besides this statepoint. 2134 2135 // For invokes we need to rematerialize each chain twice - for normal and 2136 // for unwind basic blocks. Model this by multiplying cost by two. 2137 if (isa<InvokeInst>(Call)) { 2138 Cost *= 2; 2139 } 2140 // If it's too expensive - skip it 2141 if (Cost >= RematerializationThreshold) 2142 continue; 2143 2144 // Remove value from the live set 2145 LiveValuesToBeDeleted.push_back(LiveValue); 2146 2147 // Clone instructions and record them inside "Info" structure 2148 2149 // Walk backwards to visit top-most instructions first 2150 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2151 2152 // Utility function which clones all instructions from "ChainToBase" 2153 // and inserts them before "InsertBefore". Returns rematerialized value 2154 // which should be used after statepoint. 2155 auto rematerializeChain = [&ChainToBase]( 2156 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2157 Instruction *LastClonedValue = nullptr; 2158 Instruction *LastValue = nullptr; 2159 for (Instruction *Instr: ChainToBase) { 2160 // Only GEP's and casts are supported as we need to be careful to not 2161 // introduce any new uses of pointers not in the liveset. 2162 // Note that it's fine to introduce new uses of pointers which were 2163 // otherwise not used after this statepoint. 2164 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2165 2166 Instruction *ClonedValue = Instr->clone(); 2167 ClonedValue->insertBefore(InsertBefore); 2168 ClonedValue->setName(Instr->getName() + ".remat"); 2169 2170 // If it is not first instruction in the chain then it uses previously 2171 // cloned value. We should update it to use cloned value. 2172 if (LastClonedValue) { 2173 assert(LastValue); 2174 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2175 #ifndef NDEBUG 2176 for (auto OpValue : ClonedValue->operand_values()) { 2177 // Assert that cloned instruction does not use any instructions from 2178 // this chain other than LastClonedValue 2179 assert(!is_contained(ChainToBase, OpValue) && 2180 "incorrect use in rematerialization chain"); 2181 // Assert that the cloned instruction does not use the RootOfChain 2182 // or the AlternateLiveBase. 2183 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2184 } 2185 #endif 2186 } else { 2187 // For the first instruction, replace the use of unrelocated base i.e. 2188 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2189 // live set. They have been proved to be the same PHI nodes. Note 2190 // that the *only* use of the RootOfChain in the ChainToBase list is 2191 // the first Value in the list. 2192 if (RootOfChain != AlternateLiveBase) 2193 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2194 } 2195 2196 LastClonedValue = ClonedValue; 2197 LastValue = Instr; 2198 } 2199 assert(LastClonedValue); 2200 return LastClonedValue; 2201 }; 2202 2203 // Different cases for calls and invokes. For invokes we need to clone 2204 // instructions both on normal and unwind path. 2205 if (isa<CallInst>(Call)) { 2206 Instruction *InsertBefore = Call->getNextNode(); 2207 assert(InsertBefore); 2208 Instruction *RematerializedValue = rematerializeChain( 2209 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2210 Info.RematerializedValues[RematerializedValue] = LiveValue; 2211 } else { 2212 auto *Invoke = cast<InvokeInst>(Call); 2213 2214 Instruction *NormalInsertBefore = 2215 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2216 Instruction *UnwindInsertBefore = 2217 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2218 2219 Instruction *NormalRematerializedValue = rematerializeChain( 2220 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2221 Instruction *UnwindRematerializedValue = rematerializeChain( 2222 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2223 2224 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2225 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2226 } 2227 } 2228 2229 // Remove rematerializaed values from the live set 2230 for (auto LiveValue: LiveValuesToBeDeleted) { 2231 Info.LiveSet.remove(LiveValue); 2232 } 2233 } 2234 2235 static bool insertParsePoints(Function &F, DominatorTree &DT, 2236 TargetTransformInfo &TTI, 2237 SmallVectorImpl<CallBase *> &ToUpdate) { 2238 #ifndef NDEBUG 2239 // sanity check the input 2240 std::set<CallBase *> Uniqued; 2241 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2242 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2243 2244 for (CallBase *Call : ToUpdate) 2245 assert(Call->getFunction() == &F); 2246 #endif 2247 2248 // When inserting gc.relocates for invokes, we need to be able to insert at 2249 // the top of the successor blocks. See the comment on 2250 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2251 // may restructure the CFG. 2252 for (CallBase *Call : ToUpdate) { 2253 auto *II = dyn_cast<InvokeInst>(Call); 2254 if (!II) 2255 continue; 2256 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2257 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2258 } 2259 2260 // A list of dummy calls added to the IR to keep various values obviously 2261 // live in the IR. We'll remove all of these when done. 2262 SmallVector<CallInst *, 64> Holders; 2263 2264 // Insert a dummy call with all of the deopt operands we'll need for the 2265 // actual safepoint insertion as arguments. This ensures reference operands 2266 // in the deopt argument list are considered live through the safepoint (and 2267 // thus makes sure they get relocated.) 2268 for (CallBase *Call : ToUpdate) { 2269 SmallVector<Value *, 64> DeoptValues; 2270 2271 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2272 assert(!isUnhandledGCPointerType(Arg->getType()) && 2273 "support for FCA unimplemented"); 2274 if (isHandledGCPointerType(Arg->getType())) 2275 DeoptValues.push_back(Arg); 2276 } 2277 2278 insertUseHolderAfter(Call, DeoptValues, Holders); 2279 } 2280 2281 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2282 2283 // A) Identify all gc pointers which are statically live at the given call 2284 // site. 2285 findLiveReferences(F, DT, ToUpdate, Records); 2286 2287 // B) Find the base pointers for each live pointer 2288 /* scope for caching */ { 2289 // Cache the 'defining value' relation used in the computation and 2290 // insertion of base phis and selects. This ensures that we don't insert 2291 // large numbers of duplicate base_phis. 2292 DefiningValueMapTy DVCache; 2293 2294 for (size_t i = 0; i < Records.size(); i++) { 2295 PartiallyConstructedSafepointRecord &info = Records[i]; 2296 findBasePointers(DT, DVCache, ToUpdate[i], info); 2297 } 2298 } // end of cache scope 2299 2300 // The base phi insertion logic (for any safepoint) may have inserted new 2301 // instructions which are now live at some safepoint. The simplest such 2302 // example is: 2303 // loop: 2304 // phi a <-- will be a new base_phi here 2305 // safepoint 1 <-- that needs to be live here 2306 // gep a + 1 2307 // safepoint 2 2308 // br loop 2309 // We insert some dummy calls after each safepoint to definitely hold live 2310 // the base pointers which were identified for that safepoint. We'll then 2311 // ask liveness for _every_ base inserted to see what is now live. Then we 2312 // remove the dummy calls. 2313 Holders.reserve(Holders.size() + Records.size()); 2314 for (size_t i = 0; i < Records.size(); i++) { 2315 PartiallyConstructedSafepointRecord &Info = Records[i]; 2316 2317 SmallVector<Value *, 128> Bases; 2318 for (auto Pair : Info.PointerToBase) 2319 Bases.push_back(Pair.second); 2320 2321 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2322 } 2323 2324 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2325 // need to rerun liveness. We may *also* have inserted new defs, but that's 2326 // not the key issue. 2327 recomputeLiveInValues(F, DT, ToUpdate, Records); 2328 2329 if (PrintBasePointers) { 2330 for (auto &Info : Records) { 2331 errs() << "Base Pairs: (w/Relocation)\n"; 2332 for (auto Pair : Info.PointerToBase) { 2333 errs() << " derived "; 2334 Pair.first->printAsOperand(errs(), false); 2335 errs() << " base "; 2336 Pair.second->printAsOperand(errs(), false); 2337 errs() << "\n"; 2338 } 2339 } 2340 } 2341 2342 // It is possible that non-constant live variables have a constant base. For 2343 // example, a GEP with a variable offset from a global. In this case we can 2344 // remove it from the liveset. We already don't add constants to the liveset 2345 // because we assume they won't move at runtime and the GC doesn't need to be 2346 // informed about them. The same reasoning applies if the base is constant. 2347 // Note that the relocation placement code relies on this filtering for 2348 // correctness as it expects the base to be in the liveset, which isn't true 2349 // if the base is constant. 2350 for (auto &Info : Records) 2351 for (auto &BasePair : Info.PointerToBase) 2352 if (isa<Constant>(BasePair.second)) 2353 Info.LiveSet.remove(BasePair.first); 2354 2355 for (CallInst *CI : Holders) 2356 CI->eraseFromParent(); 2357 2358 Holders.clear(); 2359 2360 // In order to reduce live set of statepoint we might choose to rematerialize 2361 // some values instead of relocating them. This is purely an optimization and 2362 // does not influence correctness. 2363 for (size_t i = 0; i < Records.size(); i++) 2364 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2365 2366 // We need this to safely RAUW and delete call or invoke return values that 2367 // may themselves be live over a statepoint. For details, please see usage in 2368 // makeStatepointExplicitImpl. 2369 std::vector<DeferredReplacement> Replacements; 2370 2371 // Now run through and replace the existing statepoints with new ones with 2372 // the live variables listed. We do not yet update uses of the values being 2373 // relocated. We have references to live variables that need to 2374 // survive to the last iteration of this loop. (By construction, the 2375 // previous statepoint can not be a live variable, thus we can and remove 2376 // the old statepoint calls as we go.) 2377 for (size_t i = 0; i < Records.size(); i++) 2378 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2379 2380 ToUpdate.clear(); // prevent accident use of invalid calls. 2381 2382 for (auto &PR : Replacements) 2383 PR.doReplacement(); 2384 2385 Replacements.clear(); 2386 2387 for (auto &Info : Records) { 2388 // These live sets may contain state Value pointers, since we replaced calls 2389 // with operand bundles with calls wrapped in gc.statepoint, and some of 2390 // those calls may have been def'ing live gc pointers. Clear these out to 2391 // avoid accidentally using them. 2392 // 2393 // TODO: We should create a separate data structure that does not contain 2394 // these live sets, and migrate to using that data structure from this point 2395 // onward. 2396 Info.LiveSet.clear(); 2397 Info.PointerToBase.clear(); 2398 } 2399 2400 // Do all the fixups of the original live variables to their relocated selves 2401 SmallVector<Value *, 128> Live; 2402 for (size_t i = 0; i < Records.size(); i++) { 2403 PartiallyConstructedSafepointRecord &Info = Records[i]; 2404 2405 // We can't simply save the live set from the original insertion. One of 2406 // the live values might be the result of a call which needs a safepoint. 2407 // That Value* no longer exists and we need to use the new gc_result. 2408 // Thankfully, the live set is embedded in the statepoint (and updated), so 2409 // we just grab that. 2410 Live.insert(Live.end(), Info.StatepointToken->gc_args_begin(), 2411 Info.StatepointToken->gc_args_end()); 2412 #ifndef NDEBUG 2413 // Do some basic sanity checks on our liveness results before performing 2414 // relocation. Relocation can and will turn mistakes in liveness results 2415 // into non-sensical code which is must harder to debug. 2416 // TODO: It would be nice to test consistency as well 2417 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2418 "statepoint must be reachable or liveness is meaningless"); 2419 for (Value *V : Info.StatepointToken->gc_args()) { 2420 if (!isa<Instruction>(V)) 2421 // Non-instruction values trivial dominate all possible uses 2422 continue; 2423 auto *LiveInst = cast<Instruction>(V); 2424 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2425 "unreachable values should never be live"); 2426 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2427 "basic SSA liveness expectation violated by liveness analysis"); 2428 } 2429 #endif 2430 } 2431 unique_unsorted(Live); 2432 2433 #ifndef NDEBUG 2434 // sanity check 2435 for (auto *Ptr : Live) 2436 assert(isHandledGCPointerType(Ptr->getType()) && 2437 "must be a gc pointer type"); 2438 #endif 2439 2440 relocationViaAlloca(F, DT, Live, Records); 2441 return !Records.empty(); 2442 } 2443 2444 // Handles both return values and arguments for Functions and calls. 2445 template <typename AttrHolder> 2446 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2447 unsigned Index) { 2448 AttrBuilder R; 2449 if (AH.getDereferenceableBytes(Index)) 2450 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2451 AH.getDereferenceableBytes(Index))); 2452 if (AH.getDereferenceableOrNullBytes(Index)) 2453 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2454 AH.getDereferenceableOrNullBytes(Index))); 2455 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2456 R.addAttribute(Attribute::NoAlias); 2457 2458 if (!R.empty()) 2459 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2460 } 2461 2462 static void stripNonValidAttributesFromPrototype(Function &F) { 2463 LLVMContext &Ctx = F.getContext(); 2464 2465 for (Argument &A : F.args()) 2466 if (isa<PointerType>(A.getType())) 2467 RemoveNonValidAttrAtIndex(Ctx, F, 2468 A.getArgNo() + AttributeList::FirstArgIndex); 2469 2470 if (isa<PointerType>(F.getReturnType())) 2471 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2472 } 2473 2474 /// Certain metadata on instructions are invalid after running RS4GC. 2475 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2476 /// optimize functions. We drop such metadata on the instruction. 2477 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2478 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2479 return; 2480 // These are the attributes that are still valid on loads and stores after 2481 // RS4GC. 2482 // The metadata implying dereferenceability and noalias are (conservatively) 2483 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2484 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2485 // touch the entire heap including noalias objects. Note: The reasoning is 2486 // same as stripping the dereferenceability and noalias attributes that are 2487 // analogous to the metadata counterparts. 2488 // We also drop the invariant.load metadata on the load because that metadata 2489 // implies the address operand to the load points to memory that is never 2490 // changed once it became dereferenceable. This is no longer true after RS4GC. 2491 // Similar reasoning applies to invariant.group metadata, which applies to 2492 // loads within a group. 2493 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2494 LLVMContext::MD_range, 2495 LLVMContext::MD_alias_scope, 2496 LLVMContext::MD_nontemporal, 2497 LLVMContext::MD_nonnull, 2498 LLVMContext::MD_align, 2499 LLVMContext::MD_type}; 2500 2501 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2502 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2503 } 2504 2505 static void stripNonValidDataFromBody(Function &F) { 2506 if (F.empty()) 2507 return; 2508 2509 LLVMContext &Ctx = F.getContext(); 2510 MDBuilder Builder(Ctx); 2511 2512 // Set of invariantstart instructions that we need to remove. 2513 // Use this to avoid invalidating the instruction iterator. 2514 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2515 2516 for (Instruction &I : instructions(F)) { 2517 // invariant.start on memory location implies that the referenced memory 2518 // location is constant and unchanging. This is no longer true after 2519 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2520 // which frees the entire heap and the presence of invariant.start allows 2521 // the optimizer to sink the load of a memory location past a statepoint, 2522 // which is incorrect. 2523 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2524 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2525 InvariantStartInstructions.push_back(II); 2526 continue; 2527 } 2528 2529 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2530 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2531 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2532 } 2533 2534 stripInvalidMetadataFromInstruction(I); 2535 2536 if (auto *Call = dyn_cast<CallBase>(&I)) { 2537 for (int i = 0, e = Call->arg_size(); i != e; i++) 2538 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2539 RemoveNonValidAttrAtIndex(Ctx, *Call, 2540 i + AttributeList::FirstArgIndex); 2541 if (isa<PointerType>(Call->getType())) 2542 RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex); 2543 } 2544 } 2545 2546 // Delete the invariant.start instructions and RAUW undef. 2547 for (auto *II : InvariantStartInstructions) { 2548 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2549 II->eraseFromParent(); 2550 } 2551 } 2552 2553 /// Returns true if this function should be rewritten by this pass. The main 2554 /// point of this function is as an extension point for custom logic. 2555 static bool shouldRewriteStatepointsIn(Function &F) { 2556 // TODO: This should check the GCStrategy 2557 if (F.hasGC()) { 2558 const auto &FunctionGCName = F.getGC(); 2559 const StringRef StatepointExampleName("statepoint-example"); 2560 const StringRef CoreCLRName("coreclr"); 2561 return (StatepointExampleName == FunctionGCName) || 2562 (CoreCLRName == FunctionGCName); 2563 } else 2564 return false; 2565 } 2566 2567 static void stripNonValidData(Module &M) { 2568 #ifndef NDEBUG 2569 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2570 #endif 2571 2572 for (Function &F : M) 2573 stripNonValidAttributesFromPrototype(F); 2574 2575 for (Function &F : M) 2576 stripNonValidDataFromBody(F); 2577 } 2578 2579 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2580 TargetTransformInfo &TTI, 2581 const TargetLibraryInfo &TLI) { 2582 assert(!F.isDeclaration() && !F.empty() && 2583 "need function body to rewrite statepoints in"); 2584 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2585 2586 auto NeedsRewrite = [&TLI](Instruction &I) { 2587 if (const auto *Call = dyn_cast<CallBase>(&I)) 2588 return !callsGCLeafFunction(Call, TLI) && !isa<GCStatepointInst>(Call); 2589 return false; 2590 }; 2591 2592 // Delete any unreachable statepoints so that we don't have unrewritten 2593 // statepoints surviving this pass. This makes testing easier and the 2594 // resulting IR less confusing to human readers. 2595 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2596 bool MadeChange = removeUnreachableBlocks(F, &DTU); 2597 // Flush the Dominator Tree. 2598 DTU.getDomTree(); 2599 2600 // Gather all the statepoints which need rewritten. Be careful to only 2601 // consider those in reachable code since we need to ask dominance queries 2602 // when rewriting. We'll delete the unreachable ones in a moment. 2603 SmallVector<CallBase *, 64> ParsePointNeeded; 2604 for (Instruction &I : instructions(F)) { 2605 // TODO: only the ones with the flag set! 2606 if (NeedsRewrite(I)) { 2607 // NOTE removeUnreachableBlocks() is stronger than 2608 // DominatorTree::isReachableFromEntry(). In other words 2609 // removeUnreachableBlocks can remove some blocks for which 2610 // isReachableFromEntry() returns true. 2611 assert(DT.isReachableFromEntry(I.getParent()) && 2612 "no unreachable blocks expected"); 2613 ParsePointNeeded.push_back(cast<CallBase>(&I)); 2614 } 2615 } 2616 2617 // Return early if no work to do. 2618 if (ParsePointNeeded.empty()) 2619 return MadeChange; 2620 2621 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2622 // These are created by LCSSA. They have the effect of increasing the size 2623 // of liveness sets for no good reason. It may be harder to do this post 2624 // insertion since relocations and base phis can confuse things. 2625 for (BasicBlock &BB : F) 2626 if (BB.getUniquePredecessor()) { 2627 MadeChange = true; 2628 FoldSingleEntryPHINodes(&BB); 2629 } 2630 2631 // Before we start introducing relocations, we want to tweak the IR a bit to 2632 // avoid unfortunate code generation effects. The main example is that we 2633 // want to try to make sure the comparison feeding a branch is after any 2634 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2635 // values feeding a branch after relocation. This is semantically correct, 2636 // but results in extra register pressure since both the pre-relocation and 2637 // post-relocation copies must be available in registers. For code without 2638 // relocations this is handled elsewhere, but teaching the scheduler to 2639 // reverse the transform we're about to do would be slightly complex. 2640 // Note: This may extend the live range of the inputs to the icmp and thus 2641 // increase the liveset of any statepoint we move over. This is profitable 2642 // as long as all statepoints are in rare blocks. If we had in-register 2643 // lowering for live values this would be a much safer transform. 2644 auto getConditionInst = [](Instruction *TI) -> Instruction * { 2645 if (auto *BI = dyn_cast<BranchInst>(TI)) 2646 if (BI->isConditional()) 2647 return dyn_cast<Instruction>(BI->getCondition()); 2648 // TODO: Extend this to handle switches 2649 return nullptr; 2650 }; 2651 for (BasicBlock &BB : F) { 2652 Instruction *TI = BB.getTerminator(); 2653 if (auto *Cond = getConditionInst(TI)) 2654 // TODO: Handle more than just ICmps here. We should be able to move 2655 // most instructions without side effects or memory access. 2656 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2657 MadeChange = true; 2658 Cond->moveBefore(TI); 2659 } 2660 } 2661 2662 // Nasty workaround - The base computation code in the main algorithm doesn't 2663 // consider the fact that a GEP can be used to convert a scalar to a vector. 2664 // The right fix for this is to integrate GEPs into the base rewriting 2665 // algorithm properly, this is just a short term workaround to prevent 2666 // crashes by canonicalizing such GEPs into fully vector GEPs. 2667 for (Instruction &I : instructions(F)) { 2668 if (!isa<GetElementPtrInst>(I)) 2669 continue; 2670 2671 unsigned VF = 0; 2672 for (unsigned i = 0; i < I.getNumOperands(); i++) 2673 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 2674 assert(VF == 0 || 2675 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 2676 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 2677 } 2678 2679 // It's the vector to scalar traversal through the pointer operand which 2680 // confuses base pointer rewriting, so limit ourselves to that case. 2681 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 2682 IRBuilder<> B(&I); 2683 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 2684 I.setOperand(0, Splat); 2685 MadeChange = true; 2686 } 2687 } 2688 2689 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2690 return MadeChange; 2691 } 2692 2693 // liveness computation via standard dataflow 2694 // ------------------------------------------------------------------- 2695 2696 // TODO: Consider using bitvectors for liveness, the set of potentially 2697 // interesting values should be small and easy to pre-compute. 2698 2699 /// Compute the live-in set for the location rbegin starting from 2700 /// the live-out set of the basic block 2701 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2702 BasicBlock::reverse_iterator End, 2703 SetVector<Value *> &LiveTmp) { 2704 for (auto &I : make_range(Begin, End)) { 2705 // KILL/Def - Remove this definition from LiveIn 2706 LiveTmp.remove(&I); 2707 2708 // Don't consider *uses* in PHI nodes, we handle their contribution to 2709 // predecessor blocks when we seed the LiveOut sets 2710 if (isa<PHINode>(I)) 2711 continue; 2712 2713 // USE - Add to the LiveIn set for this instruction 2714 for (Value *V : I.operands()) { 2715 assert(!isUnhandledGCPointerType(V->getType()) && 2716 "support for FCA unimplemented"); 2717 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2718 // The choice to exclude all things constant here is slightly subtle. 2719 // There are two independent reasons: 2720 // - We assume that things which are constant (from LLVM's definition) 2721 // do not move at runtime. For example, the address of a global 2722 // variable is fixed, even though it's contents may not be. 2723 // - Second, we can't disallow arbitrary inttoptr constants even 2724 // if the language frontend does. Optimization passes are free to 2725 // locally exploit facts without respect to global reachability. This 2726 // can create sections of code which are dynamically unreachable and 2727 // contain just about anything. (see constants.ll in tests) 2728 LiveTmp.insert(V); 2729 } 2730 } 2731 } 2732 } 2733 2734 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2735 for (BasicBlock *Succ : successors(BB)) { 2736 for (auto &I : *Succ) { 2737 PHINode *PN = dyn_cast<PHINode>(&I); 2738 if (!PN) 2739 break; 2740 2741 Value *V = PN->getIncomingValueForBlock(BB); 2742 assert(!isUnhandledGCPointerType(V->getType()) && 2743 "support for FCA unimplemented"); 2744 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2745 LiveTmp.insert(V); 2746 } 2747 } 2748 } 2749 2750 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2751 SetVector<Value *> KillSet; 2752 for (Instruction &I : *BB) 2753 if (isHandledGCPointerType(I.getType())) 2754 KillSet.insert(&I); 2755 return KillSet; 2756 } 2757 2758 #ifndef NDEBUG 2759 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2760 /// sanity check for the liveness computation. 2761 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2762 Instruction *TI, bool TermOkay = false) { 2763 for (Value *V : Live) { 2764 if (auto *I = dyn_cast<Instruction>(V)) { 2765 // The terminator can be a member of the LiveOut set. LLVM's definition 2766 // of instruction dominance states that V does not dominate itself. As 2767 // such, we need to special case this to allow it. 2768 if (TermOkay && TI == I) 2769 continue; 2770 assert(DT.dominates(I, TI) && 2771 "basic SSA liveness expectation violated by liveness analysis"); 2772 } 2773 } 2774 } 2775 2776 /// Check that all the liveness sets used during the computation of liveness 2777 /// obey basic SSA properties. This is useful for finding cases where we miss 2778 /// a def. 2779 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2780 BasicBlock &BB) { 2781 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2782 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2783 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2784 } 2785 #endif 2786 2787 static void computeLiveInValues(DominatorTree &DT, Function &F, 2788 GCPtrLivenessData &Data) { 2789 SmallSetVector<BasicBlock *, 32> Worklist; 2790 2791 // Seed the liveness for each individual block 2792 for (BasicBlock &BB : F) { 2793 Data.KillSet[&BB] = computeKillSet(&BB); 2794 Data.LiveSet[&BB].clear(); 2795 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2796 2797 #ifndef NDEBUG 2798 for (Value *Kill : Data.KillSet[&BB]) 2799 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2800 #endif 2801 2802 Data.LiveOut[&BB] = SetVector<Value *>(); 2803 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2804 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2805 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2806 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2807 if (!Data.LiveIn[&BB].empty()) 2808 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2809 } 2810 2811 // Propagate that liveness until stable 2812 while (!Worklist.empty()) { 2813 BasicBlock *BB = Worklist.pop_back_val(); 2814 2815 // Compute our new liveout set, then exit early if it hasn't changed despite 2816 // the contribution of our successor. 2817 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2818 const auto OldLiveOutSize = LiveOut.size(); 2819 for (BasicBlock *Succ : successors(BB)) { 2820 assert(Data.LiveIn.count(Succ)); 2821 LiveOut.set_union(Data.LiveIn[Succ]); 2822 } 2823 // assert OutLiveOut is a subset of LiveOut 2824 if (OldLiveOutSize == LiveOut.size()) { 2825 // If the sets are the same size, then we didn't actually add anything 2826 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2827 // hasn't changed. 2828 continue; 2829 } 2830 Data.LiveOut[BB] = LiveOut; 2831 2832 // Apply the effects of this basic block 2833 SetVector<Value *> LiveTmp = LiveOut; 2834 LiveTmp.set_union(Data.LiveSet[BB]); 2835 LiveTmp.set_subtract(Data.KillSet[BB]); 2836 2837 assert(Data.LiveIn.count(BB)); 2838 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2839 // assert: OldLiveIn is a subset of LiveTmp 2840 if (OldLiveIn.size() != LiveTmp.size()) { 2841 Data.LiveIn[BB] = LiveTmp; 2842 Worklist.insert(pred_begin(BB), pred_end(BB)); 2843 } 2844 } // while (!Worklist.empty()) 2845 2846 #ifndef NDEBUG 2847 // Sanity check our output against SSA properties. This helps catch any 2848 // missing kills during the above iteration. 2849 for (BasicBlock &BB : F) 2850 checkBasicSSA(DT, Data, BB); 2851 #endif 2852 } 2853 2854 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2855 StatepointLiveSetTy &Out) { 2856 BasicBlock *BB = Inst->getParent(); 2857 2858 // Note: The copy is intentional and required 2859 assert(Data.LiveOut.count(BB)); 2860 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2861 2862 // We want to handle the statepoint itself oddly. It's 2863 // call result is not live (normal), nor are it's arguments 2864 // (unless they're used again later). This adjustment is 2865 // specifically what we need to relocate 2866 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2867 LiveOut); 2868 LiveOut.remove(Inst); 2869 Out.insert(LiveOut.begin(), LiveOut.end()); 2870 } 2871 2872 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2873 CallBase *Call, 2874 PartiallyConstructedSafepointRecord &Info) { 2875 StatepointLiveSetTy Updated; 2876 findLiveSetAtInst(Call, RevisedLivenessData, Updated); 2877 2878 // We may have base pointers which are now live that weren't before. We need 2879 // to update the PointerToBase structure to reflect this. 2880 for (auto V : Updated) 2881 if (Info.PointerToBase.insert({V, V}).second) { 2882 assert(isKnownBaseResult(V) && 2883 "Can't find base for unexpected live value!"); 2884 continue; 2885 } 2886 2887 #ifndef NDEBUG 2888 for (auto V : Updated) 2889 assert(Info.PointerToBase.count(V) && 2890 "Must be able to find base for live value!"); 2891 #endif 2892 2893 // Remove any stale base mappings - this can happen since our liveness is 2894 // more precise then the one inherent in the base pointer analysis. 2895 DenseSet<Value *> ToErase; 2896 for (auto KVPair : Info.PointerToBase) 2897 if (!Updated.count(KVPair.first)) 2898 ToErase.insert(KVPair.first); 2899 2900 for (auto *V : ToErase) 2901 Info.PointerToBase.erase(V); 2902 2903 #ifndef NDEBUG 2904 for (auto KVPair : Info.PointerToBase) 2905 assert(Updated.count(KVPair.first) && "record for non-live value"); 2906 #endif 2907 2908 Info.LiveSet = Updated; 2909 } 2910