1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Sequence.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/AttributeMask.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GCStrategy.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/IR/InstIterator.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/Statepoint.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueHandle.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <iterator> 72 #include <optional> 73 #include <set> 74 #include <string> 75 #include <utility> 76 #include <vector> 77 78 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 79 80 using namespace llvm; 81 82 // Print the liveset found at the insert location 83 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 84 cl::init(false)); 85 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 86 cl::init(false)); 87 88 // Print out the base pointers for debugging 89 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 90 cl::init(false)); 91 92 // Cost threshold measuring when it is profitable to rematerialize value instead 93 // of relocating it 94 static cl::opt<unsigned> 95 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 96 cl::init(6)); 97 98 #ifdef EXPENSIVE_CHECKS 99 static bool ClobberNonLive = true; 100 #else 101 static bool ClobberNonLive = false; 102 #endif 103 104 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 105 cl::location(ClobberNonLive), 106 cl::Hidden); 107 108 static cl::opt<bool> 109 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 110 cl::Hidden, cl::init(true)); 111 112 static cl::opt<bool> RematDerivedAtUses("rs4gc-remat-derived-at-uses", 113 cl::Hidden, cl::init(true)); 114 115 /// The IR fed into RewriteStatepointsForGC may have had attributes and 116 /// metadata implying dereferenceability that are no longer valid/correct after 117 /// RewriteStatepointsForGC has run. This is because semantically, after 118 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 119 /// heap. stripNonValidData (conservatively) restores 120 /// correctness by erasing all attributes in the module that externally imply 121 /// dereferenceability. Similar reasoning also applies to the noalias 122 /// attributes and metadata. gc.statepoint can touch the entire heap including 123 /// noalias objects. 124 /// Apart from attributes and metadata, we also remove instructions that imply 125 /// constant physical memory: llvm.invariant.start. 126 static void stripNonValidData(Module &M); 127 128 // Find the GC strategy for a function, or null if it doesn't have one. 129 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F); 130 131 static bool shouldRewriteStatepointsIn(Function &F); 132 133 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 134 ModuleAnalysisManager &AM) { 135 bool Changed = false; 136 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 137 for (Function &F : M) { 138 // Nothing to do for declarations. 139 if (F.isDeclaration() || F.empty()) 140 continue; 141 142 // Policy choice says not to rewrite - the most common reason is that we're 143 // compiling code without a GCStrategy. 144 if (!shouldRewriteStatepointsIn(F)) 145 continue; 146 147 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 148 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 149 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 150 Changed |= runOnFunction(F, DT, TTI, TLI); 151 } 152 if (!Changed) 153 return PreservedAnalyses::all(); 154 155 // stripNonValidData asserts that shouldRewriteStatepointsIn 156 // returns true for at least one function in the module. Since at least 157 // one function changed, we know that the precondition is satisfied. 158 stripNonValidData(M); 159 160 PreservedAnalyses PA; 161 PA.preserve<TargetIRAnalysis>(); 162 PA.preserve<TargetLibraryAnalysis>(); 163 return PA; 164 } 165 166 namespace { 167 168 struct GCPtrLivenessData { 169 /// Values defined in this block. 170 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 171 172 /// Values used in this block (and thus live); does not included values 173 /// killed within this block. 174 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 175 176 /// Values live into this basic block (i.e. used by any 177 /// instruction in this basic block or ones reachable from here) 178 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 179 180 /// Values live out of this basic block (i.e. live into 181 /// any successor block) 182 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 183 }; 184 185 // The type of the internal cache used inside the findBasePointers family 186 // of functions. From the callers perspective, this is an opaque type and 187 // should not be inspected. 188 // 189 // In the actual implementation this caches two relations: 190 // - The base relation itself (i.e. this pointer is based on that one) 191 // - The base defining value relation (i.e. before base_phi insertion) 192 // Generally, after the execution of a full findBasePointer call, only the 193 // base relation will remain. Internally, we add a mixture of the two 194 // types, then update all the second type to the first type 195 using DefiningValueMapTy = MapVector<Value *, Value *>; 196 using IsKnownBaseMapTy = MapVector<Value *, bool>; 197 using PointerToBaseTy = MapVector<Value *, Value *>; 198 using StatepointLiveSetTy = SetVector<Value *>; 199 using RematerializedValueMapTy = 200 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 201 202 struct PartiallyConstructedSafepointRecord { 203 /// The set of values known to be live across this safepoint 204 StatepointLiveSetTy LiveSet; 205 206 /// The *new* gc.statepoint instruction itself. This produces the token 207 /// that normal path gc.relocates and the gc.result are tied to. 208 GCStatepointInst *StatepointToken; 209 210 /// Instruction to which exceptional gc relocates are attached 211 /// Makes it easier to iterate through them during relocationViaAlloca. 212 Instruction *UnwindToken; 213 214 /// Record live values we are rematerialized instead of relocating. 215 /// They are not included into 'LiveSet' field. 216 /// Maps rematerialized copy to it's original value. 217 RematerializedValueMapTy RematerializedValues; 218 }; 219 220 struct RematerizlizationCandidateRecord { 221 // Chain from derived pointer to base. 222 SmallVector<Instruction *, 3> ChainToBase; 223 // Original base. 224 Value *RootOfChain; 225 // Cost of chain. 226 InstructionCost Cost; 227 }; 228 using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>; 229 230 } // end anonymous namespace 231 232 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 233 std::optional<OperandBundleUse> DeoptBundle = 234 Call->getOperandBundle(LLVMContext::OB_deopt); 235 236 if (!DeoptBundle) { 237 assert(AllowStatepointWithNoDeoptInfo && 238 "Found non-leaf call without deopt info!"); 239 return std::nullopt; 240 } 241 242 return DeoptBundle->Inputs; 243 } 244 245 /// Compute the live-in set for every basic block in the function 246 static void computeLiveInValues(DominatorTree &DT, Function &F, 247 GCPtrLivenessData &Data, GCStrategy *GC); 248 249 /// Given results from the dataflow liveness computation, find the set of live 250 /// Values at a particular instruction. 251 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 252 StatepointLiveSetTy &out, GCStrategy *GC); 253 254 static bool isGCPointerType(Type *T, GCStrategy *GC) { 255 assert(GC && "GC Strategy for isGCPointerType cannot be null"); 256 257 if (!isa<PointerType>(T)) 258 return false; 259 260 // conservative - same as StatepointLowering 261 return GC->isGCManagedPointer(T).value_or(true); 262 } 263 264 // Return true if this type is one which a) is a gc pointer or contains a GC 265 // pointer and b) is of a type this code expects to encounter as a live value. 266 // (The insertion code will assert that a type which matches (a) and not (b) 267 // is not encountered.) 268 static bool isHandledGCPointerType(Type *T, GCStrategy *GC) { 269 // We fully support gc pointers 270 if (isGCPointerType(T, GC)) 271 return true; 272 // We partially support vectors of gc pointers. The code will assert if it 273 // can't handle something. 274 if (auto VT = dyn_cast<VectorType>(T)) 275 if (isGCPointerType(VT->getElementType(), GC)) 276 return true; 277 return false; 278 } 279 280 #ifndef NDEBUG 281 /// Returns true if this type contains a gc pointer whether we know how to 282 /// handle that type or not. 283 static bool containsGCPtrType(Type *Ty, GCStrategy *GC) { 284 if (isGCPointerType(Ty, GC)) 285 return true; 286 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 287 return isGCPointerType(VT->getScalarType(), GC); 288 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 289 return containsGCPtrType(AT->getElementType(), GC); 290 if (StructType *ST = dyn_cast<StructType>(Ty)) 291 return llvm::any_of(ST->elements(), 292 [GC](Type *Ty) { return containsGCPtrType(Ty, GC); }); 293 return false; 294 } 295 296 // Returns true if this is a type which a) is a gc pointer or contains a GC 297 // pointer and b) is of a type which the code doesn't expect (i.e. first class 298 // aggregates). Used to trip assertions. 299 static bool isUnhandledGCPointerType(Type *Ty, GCStrategy *GC) { 300 return containsGCPtrType(Ty, GC) && !isHandledGCPointerType(Ty, GC); 301 } 302 #endif 303 304 // Return the name of the value suffixed with the provided value, or if the 305 // value didn't have a name, the default value specified. 306 static std::string suffixed_name_or(Value *V, StringRef Suffix, 307 StringRef DefaultName) { 308 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 309 } 310 311 // Conservatively identifies any definitions which might be live at the 312 // given instruction. The analysis is performed immediately before the 313 // given instruction. Values defined by that instruction are not considered 314 // live. Values used by that instruction are considered live. 315 static void analyzeParsePointLiveness( 316 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 317 PartiallyConstructedSafepointRecord &Result, GCStrategy *GC) { 318 StatepointLiveSetTy LiveSet; 319 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet, GC); 320 321 if (PrintLiveSet) { 322 dbgs() << "Live Variables:\n"; 323 for (Value *V : LiveSet) 324 dbgs() << " " << V->getName() << " " << *V << "\n"; 325 } 326 if (PrintLiveSetSize) { 327 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 328 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 329 } 330 Result.LiveSet = LiveSet; 331 } 332 333 /// Returns true if V is a known base. 334 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases); 335 336 /// Caches the IsKnownBase flag for a value and asserts that it wasn't present 337 /// in the cache before. 338 static void setKnownBase(Value *V, bool IsKnownBase, 339 IsKnownBaseMapTy &KnownBases); 340 341 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 342 IsKnownBaseMapTy &KnownBases); 343 344 /// Return a base defining value for the 'Index' element of the given vector 345 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 346 /// 'I'. As an optimization, this method will try to determine when the 347 /// element is known to already be a base pointer. If this can be established, 348 /// the second value in the returned pair will be true. Note that either a 349 /// vector or a pointer typed value can be returned. For the former, the 350 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 351 /// If the later, the return pointer is a BDV (or possibly a base) for the 352 /// particular element in 'I'. 353 static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache, 354 IsKnownBaseMapTy &KnownBases) { 355 // Each case parallels findBaseDefiningValue below, see that code for 356 // detailed motivation. 357 358 auto Cached = Cache.find(I); 359 if (Cached != Cache.end()) 360 return Cached->second; 361 362 if (isa<Argument>(I)) { 363 // An incoming argument to the function is a base pointer 364 Cache[I] = I; 365 setKnownBase(I, /* IsKnownBase */true, KnownBases); 366 return I; 367 } 368 369 if (isa<Constant>(I)) { 370 // Base of constant vector consists only of constant null pointers. 371 // For reasoning see similar case inside 'findBaseDefiningValue' function. 372 auto *CAZ = ConstantAggregateZero::get(I->getType()); 373 Cache[I] = CAZ; 374 setKnownBase(CAZ, /* IsKnownBase */true, KnownBases); 375 return CAZ; 376 } 377 378 if (isa<LoadInst>(I)) { 379 Cache[I] = I; 380 setKnownBase(I, /* IsKnownBase */true, KnownBases); 381 return I; 382 } 383 384 if (isa<InsertElementInst>(I)) { 385 // We don't know whether this vector contains entirely base pointers or 386 // not. To be conservatively correct, we treat it as a BDV and will 387 // duplicate code as needed to construct a parallel vector of bases. 388 Cache[I] = I; 389 setKnownBase(I, /* IsKnownBase */false, KnownBases); 390 return I; 391 } 392 393 if (isa<ShuffleVectorInst>(I)) { 394 // We don't know whether this vector contains entirely base pointers or 395 // not. To be conservatively correct, we treat it as a BDV and will 396 // duplicate code as needed to construct a parallel vector of bases. 397 // TODO: There a number of local optimizations which could be applied here 398 // for particular sufflevector patterns. 399 Cache[I] = I; 400 setKnownBase(I, /* IsKnownBase */false, KnownBases); 401 return I; 402 } 403 404 // The behavior of getelementptr instructions is the same for vector and 405 // non-vector data types. 406 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 407 auto *BDV = 408 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 409 Cache[GEP] = BDV; 410 return BDV; 411 } 412 413 // The behavior of freeze instructions is the same for vector and 414 // non-vector data types. 415 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 416 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 417 Cache[Freeze] = BDV; 418 return BDV; 419 } 420 421 // If the pointer comes through a bitcast of a vector of pointers to 422 // a vector of another type of pointer, then look through the bitcast 423 if (auto *BC = dyn_cast<BitCastInst>(I)) { 424 auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases); 425 Cache[BC] = BDV; 426 return BDV; 427 } 428 429 // We assume that functions in the source language only return base 430 // pointers. This should probably be generalized via attributes to support 431 // both source language and internal functions. 432 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 433 Cache[I] = I; 434 setKnownBase(I, /* IsKnownBase */true, KnownBases); 435 return I; 436 } 437 438 // A PHI or Select is a base defining value. The outer findBasePointer 439 // algorithm is responsible for constructing a base value for this BDV. 440 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 441 "unknown vector instruction - no base found for vector element"); 442 Cache[I] = I; 443 setKnownBase(I, /* IsKnownBase */false, KnownBases); 444 return I; 445 } 446 447 /// Helper function for findBasePointer - Will return a value which either a) 448 /// defines the base pointer for the input, b) blocks the simple search 449 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 450 /// from pointer to vector type or back. 451 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 452 IsKnownBaseMapTy &KnownBases) { 453 assert(I->getType()->isPtrOrPtrVectorTy() && 454 "Illegal to ask for the base pointer of a non-pointer type"); 455 auto Cached = Cache.find(I); 456 if (Cached != Cache.end()) 457 return Cached->second; 458 459 if (I->getType()->isVectorTy()) 460 return findBaseDefiningValueOfVector(I, Cache, KnownBases); 461 462 if (isa<Argument>(I)) { 463 // An incoming argument to the function is a base pointer 464 // We should have never reached here if this argument isn't an gc value 465 Cache[I] = I; 466 setKnownBase(I, /* IsKnownBase */true, KnownBases); 467 return I; 468 } 469 470 if (isa<Constant>(I)) { 471 // We assume that objects with a constant base (e.g. a global) can't move 472 // and don't need to be reported to the collector because they are always 473 // live. Besides global references, all kinds of constants (e.g. undef, 474 // constant expressions, null pointers) can be introduced by the inliner or 475 // the optimizer, especially on dynamically dead paths. 476 // Here we treat all of them as having single null base. By doing this we 477 // trying to avoid problems reporting various conflicts in a form of 478 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 479 // See constant.ll file for relevant test cases. 480 481 auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType())); 482 Cache[I] = CPN; 483 setKnownBase(CPN, /* IsKnownBase */true, KnownBases); 484 return CPN; 485 } 486 487 // inttoptrs in an integral address space are currently ill-defined. We 488 // treat them as defining base pointers here for consistency with the 489 // constant rule above and because we don't really have a better semantic 490 // to give them. Note that the optimizer is always free to insert undefined 491 // behavior on dynamically dead paths as well. 492 if (isa<IntToPtrInst>(I)) { 493 Cache[I] = I; 494 setKnownBase(I, /* IsKnownBase */true, KnownBases); 495 return I; 496 } 497 498 if (CastInst *CI = dyn_cast<CastInst>(I)) { 499 Value *Def = CI->stripPointerCasts(); 500 // If stripping pointer casts changes the address space there is an 501 // addrspacecast in between. 502 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 503 cast<PointerType>(CI->getType())->getAddressSpace() && 504 "unsupported addrspacecast"); 505 // If we find a cast instruction here, it means we've found a cast which is 506 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 507 // handle int->ptr conversion. 508 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 509 auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases); 510 Cache[CI] = BDV; 511 return BDV; 512 } 513 514 if (isa<LoadInst>(I)) { 515 // The value loaded is an gc base itself 516 Cache[I] = I; 517 setKnownBase(I, /* IsKnownBase */true, KnownBases); 518 return I; 519 } 520 521 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 522 // The base of this GEP is the base 523 auto *BDV = 524 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 525 Cache[GEP] = BDV; 526 return BDV; 527 } 528 529 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 530 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 531 Cache[Freeze] = BDV; 532 return BDV; 533 } 534 535 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 536 switch (II->getIntrinsicID()) { 537 default: 538 // fall through to general call handling 539 break; 540 case Intrinsic::experimental_gc_statepoint: 541 llvm_unreachable("statepoints don't produce pointers"); 542 case Intrinsic::experimental_gc_relocate: 543 // Rerunning safepoint insertion after safepoints are already 544 // inserted is not supported. It could probably be made to work, 545 // but why are you doing this? There's no good reason. 546 llvm_unreachable("repeat safepoint insertion is not supported"); 547 case Intrinsic::gcroot: 548 // Currently, this mechanism hasn't been extended to work with gcroot. 549 // There's no reason it couldn't be, but I haven't thought about the 550 // implications much. 551 llvm_unreachable( 552 "interaction with the gcroot mechanism is not supported"); 553 case Intrinsic::experimental_gc_get_pointer_base: 554 auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases); 555 Cache[II] = BDV; 556 return BDV; 557 } 558 } 559 // We assume that functions in the source language only return base 560 // pointers. This should probably be generalized via attributes to support 561 // both source language and internal functions. 562 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 563 Cache[I] = I; 564 setKnownBase(I, /* IsKnownBase */true, KnownBases); 565 return I; 566 } 567 568 // TODO: I have absolutely no idea how to implement this part yet. It's not 569 // necessarily hard, I just haven't really looked at it yet. 570 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 571 572 if (isa<AtomicCmpXchgInst>(I)) { 573 // A CAS is effectively a atomic store and load combined under a 574 // predicate. From the perspective of base pointers, we just treat it 575 // like a load. 576 Cache[I] = I; 577 setKnownBase(I, /* IsKnownBase */true, KnownBases); 578 return I; 579 } 580 581 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 582 "binary ops which don't apply to pointers"); 583 584 // The aggregate ops. Aggregates can either be in the heap or on the 585 // stack, but in either case, this is simply a field load. As a result, 586 // this is a defining definition of the base just like a load is. 587 if (isa<ExtractValueInst>(I)) { 588 Cache[I] = I; 589 setKnownBase(I, /* IsKnownBase */true, KnownBases); 590 return I; 591 } 592 593 // We should never see an insert vector since that would require we be 594 // tracing back a struct value not a pointer value. 595 assert(!isa<InsertValueInst>(I) && 596 "Base pointer for a struct is meaningless"); 597 598 // This value might have been generated by findBasePointer() called when 599 // substituting gc.get.pointer.base() intrinsic. 600 bool IsKnownBase = 601 isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value"); 602 setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases); 603 Cache[I] = I; 604 605 // An extractelement produces a base result exactly when it's input does. 606 // We may need to insert a parallel instruction to extract the appropriate 607 // element out of the base vector corresponding to the input. Given this, 608 // it's analogous to the phi and select case even though it's not a merge. 609 if (isa<ExtractElementInst>(I)) 610 // Note: There a lot of obvious peephole cases here. This are deliberately 611 // handled after the main base pointer inference algorithm to make writing 612 // test cases to exercise that code easier. 613 return I; 614 615 // The last two cases here don't return a base pointer. Instead, they 616 // return a value which dynamically selects from among several base 617 // derived pointers (each with it's own base potentially). It's the job of 618 // the caller to resolve these. 619 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 620 "missing instruction case in findBaseDefiningValue"); 621 return I; 622 } 623 624 /// Returns the base defining value for this value. 625 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache, 626 IsKnownBaseMapTy &KnownBases) { 627 if (!Cache.contains(I)) { 628 auto *BDV = findBaseDefiningValue(I, Cache, KnownBases); 629 Cache[I] = BDV; 630 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 631 << Cache[I]->getName() << ", is known base = " 632 << KnownBases[I] << "\n"); 633 } 634 assert(Cache[I] != nullptr); 635 assert(KnownBases.contains(Cache[I]) && 636 "Cached value must be present in known bases map"); 637 return Cache[I]; 638 } 639 640 /// Return a base pointer for this value if known. Otherwise, return it's 641 /// base defining value. 642 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache, 643 IsKnownBaseMapTy &KnownBases) { 644 Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases); 645 auto Found = Cache.find(Def); 646 if (Found != Cache.end()) { 647 // Either a base-of relation, or a self reference. Caller must check. 648 return Found->second; 649 } 650 // Only a BDV available 651 return Def; 652 } 653 654 #ifndef NDEBUG 655 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 656 /// exists in the code. 657 static bool isOriginalBaseResult(Value *V) { 658 // no recursion possible 659 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 660 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 661 !isa<ShuffleVectorInst>(V); 662 } 663 #endif 664 665 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) { 666 auto It = KnownBases.find(V); 667 assert(It != KnownBases.end() && "Value not present in the map"); 668 return It->second; 669 } 670 671 static void setKnownBase(Value *V, bool IsKnownBase, 672 IsKnownBaseMapTy &KnownBases) { 673 #ifndef NDEBUG 674 auto It = KnownBases.find(V); 675 if (It != KnownBases.end()) 676 assert(It->second == IsKnownBase && "Changing already present value"); 677 #endif 678 KnownBases[V] = IsKnownBase; 679 } 680 681 // Returns true if First and Second values are both scalar or both vector. 682 static bool areBothVectorOrScalar(Value *First, Value *Second) { 683 return isa<VectorType>(First->getType()) == 684 isa<VectorType>(Second->getType()); 685 } 686 687 namespace { 688 689 /// Models the state of a single base defining value in the findBasePointer 690 /// algorithm for determining where a new instruction is needed to propagate 691 /// the base of this BDV. 692 class BDVState { 693 public: 694 enum StatusTy { 695 // Starting state of lattice 696 Unknown, 697 // Some specific base value -- does *not* mean that instruction 698 // propagates the base of the object 699 // ex: gep %arg, 16 -> %arg is the base value 700 Base, 701 // Need to insert a node to represent a merge. 702 Conflict 703 }; 704 705 BDVState() { 706 llvm_unreachable("missing state in map"); 707 } 708 709 explicit BDVState(Value *OriginalValue) 710 : OriginalValue(OriginalValue) {} 711 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) 712 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { 713 assert(Status != Base || BaseValue); 714 } 715 716 StatusTy getStatus() const { return Status; } 717 Value *getOriginalValue() const { return OriginalValue; } 718 Value *getBaseValue() const { return BaseValue; } 719 720 bool isBase() const { return getStatus() == Base; } 721 bool isUnknown() const { return getStatus() == Unknown; } 722 bool isConflict() const { return getStatus() == Conflict; } 723 724 // Values of type BDVState form a lattice, and this function implements the 725 // meet 726 // operation. 727 void meet(const BDVState &Other) { 728 auto markConflict = [&]() { 729 Status = BDVState::Conflict; 730 BaseValue = nullptr; 731 }; 732 // Conflict is a final state. 733 if (isConflict()) 734 return; 735 // if we are not known - just take other state. 736 if (isUnknown()) { 737 Status = Other.getStatus(); 738 BaseValue = Other.getBaseValue(); 739 return; 740 } 741 // We are base. 742 assert(isBase() && "Unknown state"); 743 // If other is unknown - just keep our state. 744 if (Other.isUnknown()) 745 return; 746 // If other is conflict - it is a final state. 747 if (Other.isConflict()) 748 return markConflict(); 749 // Other is base as well. 750 assert(Other.isBase() && "Unknown state"); 751 // If bases are different - Conflict. 752 if (getBaseValue() != Other.getBaseValue()) 753 return markConflict(); 754 // We are identical, do nothing. 755 } 756 757 bool operator==(const BDVState &Other) const { 758 return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue && 759 Status == Other.Status; 760 } 761 762 bool operator!=(const BDVState &other) const { return !(*this == other); } 763 764 LLVM_DUMP_METHOD 765 void dump() const { 766 print(dbgs()); 767 dbgs() << '\n'; 768 } 769 770 void print(raw_ostream &OS) const { 771 switch (getStatus()) { 772 case Unknown: 773 OS << "U"; 774 break; 775 case Base: 776 OS << "B"; 777 break; 778 case Conflict: 779 OS << "C"; 780 break; 781 } 782 OS << " (base " << getBaseValue() << " - " 783 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" 784 << " for " << OriginalValue->getName() << ":"; 785 } 786 787 private: 788 AssertingVH<Value> OriginalValue; // instruction this state corresponds to 789 StatusTy Status = Unknown; 790 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. 791 }; 792 793 } // end anonymous namespace 794 795 #ifndef NDEBUG 796 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 797 State.print(OS); 798 return OS; 799 } 800 #endif 801 802 /// For a given value or instruction, figure out what base ptr its derived from. 803 /// For gc objects, this is simply itself. On success, returns a value which is 804 /// the base pointer. (This is reliable and can be used for relocation.) On 805 /// failure, returns nullptr. 806 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache, 807 IsKnownBaseMapTy &KnownBases) { 808 Value *Def = findBaseOrBDV(I, Cache, KnownBases); 809 810 if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I)) 811 return Def; 812 813 // Here's the rough algorithm: 814 // - For every SSA value, construct a mapping to either an actual base 815 // pointer or a PHI which obscures the base pointer. 816 // - Construct a mapping from PHI to unknown TOP state. Use an 817 // optimistic algorithm to propagate base pointer information. Lattice 818 // looks like: 819 // UNKNOWN 820 // b1 b2 b3 b4 821 // CONFLICT 822 // When algorithm terminates, all PHIs will either have a single concrete 823 // base or be in a conflict state. 824 // - For every conflict, insert a dummy PHI node without arguments. Add 825 // these to the base[Instruction] = BasePtr mapping. For every 826 // non-conflict, add the actual base. 827 // - For every conflict, add arguments for the base[a] of each input 828 // arguments. 829 // 830 // Note: A simpler form of this would be to add the conflict form of all 831 // PHIs without running the optimistic algorithm. This would be 832 // analogous to pessimistic data flow and would likely lead to an 833 // overall worse solution. 834 835 #ifndef NDEBUG 836 auto isExpectedBDVType = [](Value *BDV) { 837 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 838 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 839 isa<ShuffleVectorInst>(BDV); 840 }; 841 #endif 842 843 // Once populated, will contain a mapping from each potentially non-base BDV 844 // to a lattice value (described above) which corresponds to that BDV. 845 // We use the order of insertion (DFS over the def/use graph) to provide a 846 // stable deterministic ordering for visiting DenseMaps (which are unordered) 847 // below. This is important for deterministic compilation. 848 MapVector<Value *, BDVState> States; 849 850 #ifndef NDEBUG 851 auto VerifyStates = [&]() { 852 for (auto &Entry : States) { 853 assert(Entry.first == Entry.second.getOriginalValue()); 854 } 855 }; 856 #endif 857 858 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { 859 if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 860 for (Value *InVal : PN->incoming_values()) 861 F(InVal); 862 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 863 F(SI->getTrueValue()); 864 F(SI->getFalseValue()); 865 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 866 F(EE->getVectorOperand()); 867 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) { 868 F(IE->getOperand(0)); 869 F(IE->getOperand(1)); 870 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) { 871 // For a canonical broadcast, ignore the undef argument 872 // (without this, we insert a parallel base shuffle for every broadcast) 873 F(SV->getOperand(0)); 874 if (!SV->isZeroEltSplat()) 875 F(SV->getOperand(1)); 876 } else { 877 llvm_unreachable("unexpected BDV type"); 878 } 879 }; 880 881 882 // Recursively fill in all base defining values reachable from the initial 883 // one for which we don't already know a definite base value for 884 /* scope */ { 885 SmallVector<Value*, 16> Worklist; 886 Worklist.push_back(Def); 887 States.insert({Def, BDVState(Def)}); 888 while (!Worklist.empty()) { 889 Value *Current = Worklist.pop_back_val(); 890 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 891 892 auto visitIncomingValue = [&](Value *InVal) { 893 Value *Base = findBaseOrBDV(InVal, Cache, KnownBases); 894 if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal)) 895 // Known bases won't need new instructions introduced and can be 896 // ignored safely. However, this can only be done when InVal and Base 897 // are both scalar or both vector. Otherwise, we need to find a 898 // correct BDV for InVal, by creating an entry in the lattice 899 // (States). 900 return; 901 assert(isExpectedBDVType(Base) && "the only non-base values " 902 "we see should be base defining values"); 903 if (States.insert(std::make_pair(Base, BDVState(Base))).second) 904 Worklist.push_back(Base); 905 }; 906 907 visitBDVOperands(Current, visitIncomingValue); 908 } 909 } 910 911 #ifndef NDEBUG 912 VerifyStates(); 913 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 914 for (const auto &Pair : States) { 915 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 916 } 917 #endif 918 919 // Iterate forward through the value graph pruning any node from the state 920 // list where all of the inputs are base pointers. The purpose of this is to 921 // reuse existing values when the derived pointer we were asked to materialize 922 // a base pointer for happens to be a base pointer itself. (Or a sub-graph 923 // feeding it does.) 924 SmallVector<Value *> ToRemove; 925 do { 926 ToRemove.clear(); 927 for (auto Pair : States) { 928 Value *BDV = Pair.first; 929 auto canPruneInput = [&](Value *V) { 930 // If the input of the BDV is the BDV itself we can prune it. This is 931 // only possible if the BDV is a PHI node. 932 if (V->stripPointerCasts() == BDV) 933 return true; 934 Value *VBDV = findBaseOrBDV(V, Cache, KnownBases); 935 if (V->stripPointerCasts() != VBDV) 936 return false; 937 // The assumption is that anything not in the state list is 938 // propagates a base pointer. 939 return States.count(VBDV) == 0; 940 }; 941 942 bool CanPrune = true; 943 visitBDVOperands(BDV, [&](Value *Op) { 944 CanPrune = CanPrune && canPruneInput(Op); 945 }); 946 if (CanPrune) 947 ToRemove.push_back(BDV); 948 } 949 for (Value *V : ToRemove) { 950 States.erase(V); 951 // Cache the fact V is it's own base for later usage. 952 Cache[V] = V; 953 } 954 } while (!ToRemove.empty()); 955 956 // Did we manage to prove that Def itself must be a base pointer? 957 if (!States.count(Def)) 958 return Def; 959 960 // Return a phi state for a base defining value. We'll generate a new 961 // base state for known bases and expect to find a cached state otherwise. 962 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 963 auto I = States.find(BaseValue); 964 if (I != States.end()) 965 return I->second; 966 assert(areBothVectorOrScalar(BaseValue, Input)); 967 return BDVState(BaseValue, BDVState::Base, BaseValue); 968 }; 969 970 bool Progress = true; 971 while (Progress) { 972 #ifndef NDEBUG 973 const size_t OldSize = States.size(); 974 #endif 975 Progress = false; 976 // We're only changing values in this loop, thus safe to keep iterators. 977 // Since this is computing a fixed point, the order of visit does not 978 // effect the result. TODO: We could use a worklist here and make this run 979 // much faster. 980 for (auto Pair : States) { 981 Value *BDV = Pair.first; 982 // Only values that do not have known bases or those that have differing 983 // type (scalar versus vector) from a possible known base should be in the 984 // lattice. 985 assert((!isKnownBase(BDV, KnownBases) || 986 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 987 "why did it get added?"); 988 989 BDVState NewState(BDV); 990 visitBDVOperands(BDV, [&](Value *Op) { 991 Value *BDV = findBaseOrBDV(Op, Cache, KnownBases); 992 auto OpState = GetStateForBDV(BDV, Op); 993 NewState.meet(OpState); 994 }); 995 996 BDVState OldState = States[BDV]; 997 if (OldState != NewState) { 998 Progress = true; 999 States[BDV] = NewState; 1000 } 1001 } 1002 1003 assert(OldSize == States.size() && 1004 "fixed point shouldn't be adding any new nodes to state"); 1005 } 1006 1007 #ifndef NDEBUG 1008 VerifyStates(); 1009 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 1010 for (const auto &Pair : States) { 1011 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 1012 } 1013 #endif 1014 1015 // Handle all instructions that have a vector BDV, but the instruction itself 1016 // is of scalar type. 1017 for (auto Pair : States) { 1018 Instruction *I = cast<Instruction>(Pair.first); 1019 BDVState State = Pair.second; 1020 auto *BaseValue = State.getBaseValue(); 1021 // Only values that do not have known bases or those that have differing 1022 // type (scalar versus vector) from a possible known base should be in the 1023 // lattice. 1024 assert( 1025 (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) && 1026 "why did it get added?"); 1027 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1028 1029 if (!State.isBase() || !isa<VectorType>(BaseValue->getType())) 1030 continue; 1031 // extractelement instructions are a bit special in that we may need to 1032 // insert an extract even when we know an exact base for the instruction. 1033 // The problem is that we need to convert from a vector base to a scalar 1034 // base for the particular indice we're interested in. 1035 if (isa<ExtractElementInst>(I)) { 1036 auto *EE = cast<ExtractElementInst>(I); 1037 // TODO: In many cases, the new instruction is just EE itself. We should 1038 // exploit this, but can't do it here since it would break the invariant 1039 // about the BDV not being known to be a base. 1040 auto *BaseInst = ExtractElementInst::Create( 1041 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 1042 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1043 States[I] = BDVState(I, BDVState::Base, BaseInst); 1044 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1045 } else if (!isa<VectorType>(I->getType())) { 1046 // We need to handle cases that have a vector base but the instruction is 1047 // a scalar type (these could be phis or selects or any instruction that 1048 // are of scalar type, but the base can be a vector type). We 1049 // conservatively set this as conflict. Setting the base value for these 1050 // conflicts is handled in the next loop which traverses States. 1051 States[I] = BDVState(I, BDVState::Conflict); 1052 } 1053 } 1054 1055 #ifndef NDEBUG 1056 VerifyStates(); 1057 #endif 1058 1059 // Insert Phis for all conflicts 1060 // TODO: adjust naming patterns to avoid this order of iteration dependency 1061 for (auto Pair : States) { 1062 Instruction *I = cast<Instruction>(Pair.first); 1063 BDVState State = Pair.second; 1064 // Only values that do not have known bases or those that have differing 1065 // type (scalar versus vector) from a possible known base should be in the 1066 // lattice. 1067 assert((!isKnownBase(I, KnownBases) || 1068 !areBothVectorOrScalar(I, State.getBaseValue())) && 1069 "why did it get added?"); 1070 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1071 1072 // Since we're joining a vector and scalar base, they can never be the 1073 // same. As a result, we should always see insert element having reached 1074 // the conflict state. 1075 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1076 1077 if (!State.isConflict()) 1078 continue; 1079 1080 auto getMangledName = [](Instruction *I) -> std::string { 1081 if (isa<PHINode>(I)) { 1082 return suffixed_name_or(I, ".base", "base_phi"); 1083 } else if (isa<SelectInst>(I)) { 1084 return suffixed_name_or(I, ".base", "base_select"); 1085 } else if (isa<ExtractElementInst>(I)) { 1086 return suffixed_name_or(I, ".base", "base_ee"); 1087 } else if (isa<InsertElementInst>(I)) { 1088 return suffixed_name_or(I, ".base", "base_ie"); 1089 } else { 1090 return suffixed_name_or(I, ".base", "base_sv"); 1091 } 1092 }; 1093 1094 Instruction *BaseInst = I->clone(); 1095 BaseInst->insertBefore(I); 1096 BaseInst->setName(getMangledName(I)); 1097 // Add metadata marking this as a base value 1098 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1099 States[I] = BDVState(I, BDVState::Conflict, BaseInst); 1100 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1101 } 1102 1103 #ifndef NDEBUG 1104 VerifyStates(); 1105 #endif 1106 1107 // Returns a instruction which produces the base pointer for a given 1108 // instruction. The instruction is assumed to be an input to one of the BDVs 1109 // seen in the inference algorithm above. As such, we must either already 1110 // know it's base defining value is a base, or have inserted a new 1111 // instruction to propagate the base of it's BDV and have entered that newly 1112 // introduced instruction into the state table. In either case, we are 1113 // assured to be able to determine an instruction which produces it's base 1114 // pointer. 1115 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1116 Value *BDV = findBaseOrBDV(Input, Cache, KnownBases); 1117 Value *Base = nullptr; 1118 if (!States.count(BDV)) { 1119 assert(areBothVectorOrScalar(BDV, Input)); 1120 Base = BDV; 1121 } else { 1122 // Either conflict or base. 1123 assert(States.count(BDV)); 1124 Base = States[BDV].getBaseValue(); 1125 } 1126 assert(Base && "Can't be null"); 1127 // The cast is needed since base traversal may strip away bitcasts 1128 if (Base->getType() != Input->getType() && InsertPt) 1129 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1130 return Base; 1131 }; 1132 1133 // Fixup all the inputs of the new PHIs. Visit order needs to be 1134 // deterministic and predictable because we're naming newly created 1135 // instructions. 1136 for (auto Pair : States) { 1137 Instruction *BDV = cast<Instruction>(Pair.first); 1138 BDVState State = Pair.second; 1139 1140 // Only values that do not have known bases or those that have differing 1141 // type (scalar versus vector) from a possible known base should be in the 1142 // lattice. 1143 assert((!isKnownBase(BDV, KnownBases) || 1144 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1145 "why did it get added?"); 1146 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1147 if (!State.isConflict()) 1148 continue; 1149 1150 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1151 PHINode *PN = cast<PHINode>(BDV); 1152 const unsigned NumPHIValues = PN->getNumIncomingValues(); 1153 1154 // The IR verifier requires phi nodes with multiple entries from the 1155 // same basic block to have the same incoming value for each of those 1156 // entries. Since we're inserting bitcasts in the loop, make sure we 1157 // do so at least once per incoming block. 1158 DenseMap<BasicBlock *, Value*> BlockToValue; 1159 for (unsigned i = 0; i < NumPHIValues; i++) { 1160 Value *InVal = PN->getIncomingValue(i); 1161 BasicBlock *InBB = PN->getIncomingBlock(i); 1162 if (!BlockToValue.count(InBB)) 1163 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); 1164 else { 1165 #ifndef NDEBUG 1166 Value *OldBase = BlockToValue[InBB]; 1167 Value *Base = getBaseForInput(InVal, nullptr); 1168 1169 // We can't use `stripPointerCasts` instead of this function because 1170 // `stripPointerCasts` doesn't handle vectors of pointers. 1171 auto StripBitCasts = [](Value *V) -> Value * { 1172 while (auto *BC = dyn_cast<BitCastInst>(V)) 1173 V = BC->getOperand(0); 1174 return V; 1175 }; 1176 // In essence this assert states: the only way two values 1177 // incoming from the same basic block may be different is by 1178 // being different bitcasts of the same value. A cleanup 1179 // that remains TODO is changing findBaseOrBDV to return an 1180 // llvm::Value of the correct type (and still remain pure). 1181 // This will remove the need to add bitcasts. 1182 assert(StripBitCasts(Base) == StripBitCasts(OldBase) && 1183 "findBaseOrBDV should be pure!"); 1184 #endif 1185 } 1186 Value *Base = BlockToValue[InBB]; 1187 BasePHI->setIncomingValue(i, Base); 1188 } 1189 } else if (SelectInst *BaseSI = 1190 dyn_cast<SelectInst>(State.getBaseValue())) { 1191 SelectInst *SI = cast<SelectInst>(BDV); 1192 1193 // Find the instruction which produces the base for each input. 1194 // We may need to insert a bitcast. 1195 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1196 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1197 } else if (auto *BaseEE = 1198 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1199 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1200 // Find the instruction which produces the base for each input. We may 1201 // need to insert a bitcast. 1202 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1203 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1204 auto *BdvIE = cast<InsertElementInst>(BDV); 1205 auto UpdateOperand = [&](int OperandIdx) { 1206 Value *InVal = BdvIE->getOperand(OperandIdx); 1207 Value *Base = getBaseForInput(InVal, BaseIE); 1208 BaseIE->setOperand(OperandIdx, Base); 1209 }; 1210 UpdateOperand(0); // vector operand 1211 UpdateOperand(1); // scalar operand 1212 } else { 1213 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1214 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1215 auto UpdateOperand = [&](int OperandIdx) { 1216 Value *InVal = BdvSV->getOperand(OperandIdx); 1217 Value *Base = getBaseForInput(InVal, BaseSV); 1218 BaseSV->setOperand(OperandIdx, Base); 1219 }; 1220 UpdateOperand(0); // vector operand 1221 if (!BdvSV->isZeroEltSplat()) 1222 UpdateOperand(1); // vector operand 1223 else { 1224 // Never read, so just use poison 1225 Value *InVal = BdvSV->getOperand(1); 1226 BaseSV->setOperand(1, PoisonValue::get(InVal->getType())); 1227 } 1228 } 1229 } 1230 1231 #ifndef NDEBUG 1232 VerifyStates(); 1233 #endif 1234 1235 // Cache all of our results so we can cheaply reuse them 1236 // NOTE: This is actually two caches: one of the base defining value 1237 // relation and one of the base pointer relation! FIXME 1238 for (auto Pair : States) { 1239 auto *BDV = Pair.first; 1240 Value *Base = Pair.second.getBaseValue(); 1241 assert(BDV && Base); 1242 // Only values that do not have known bases or those that have differing 1243 // type (scalar versus vector) from a possible known base should be in the 1244 // lattice. 1245 assert( 1246 (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) && 1247 "why did it get added?"); 1248 1249 LLVM_DEBUG( 1250 dbgs() << "Updating base value cache" 1251 << " for: " << BDV->getName() << " from: " 1252 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1253 << " to: " << Base->getName() << "\n"); 1254 1255 Cache[BDV] = Base; 1256 } 1257 assert(Cache.count(Def)); 1258 return Cache[Def]; 1259 } 1260 1261 // For a set of live pointers (base and/or derived), identify the base 1262 // pointer of the object which they are derived from. This routine will 1263 // mutate the IR graph as needed to make the 'base' pointer live at the 1264 // definition site of 'derived'. This ensures that any use of 'derived' can 1265 // also use 'base'. This may involve the insertion of a number of 1266 // additional PHI nodes. 1267 // 1268 // preconditions: live is a set of pointer type Values 1269 // 1270 // side effects: may insert PHI nodes into the existing CFG, will preserve 1271 // CFG, will not remove or mutate any existing nodes 1272 // 1273 // post condition: PointerToBase contains one (derived, base) pair for every 1274 // pointer in live. Note that derived can be equal to base if the original 1275 // pointer was a base pointer. 1276 static void findBasePointers(const StatepointLiveSetTy &live, 1277 PointerToBaseTy &PointerToBase, DominatorTree *DT, 1278 DefiningValueMapTy &DVCache, 1279 IsKnownBaseMapTy &KnownBases) { 1280 for (Value *ptr : live) { 1281 Value *base = findBasePointer(ptr, DVCache, KnownBases); 1282 assert(base && "failed to find base pointer"); 1283 PointerToBase[ptr] = base; 1284 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1285 DT->dominates(cast<Instruction>(base)->getParent(), 1286 cast<Instruction>(ptr)->getParent())) && 1287 "The base we found better dominate the derived pointer"); 1288 } 1289 } 1290 1291 /// Find the required based pointers (and adjust the live set) for the given 1292 /// parse point. 1293 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1294 CallBase *Call, 1295 PartiallyConstructedSafepointRecord &result, 1296 PointerToBaseTy &PointerToBase, 1297 IsKnownBaseMapTy &KnownBases) { 1298 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; 1299 // We assume that all pointers passed to deopt are base pointers; as an 1300 // optimization, we can use this to avoid seperately materializing the base 1301 // pointer graph. This is only relevant since we're very conservative about 1302 // generating new conflict nodes during base pointer insertion. If we were 1303 // smarter there, this would be irrelevant. 1304 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) 1305 for (Value *V : Opt->Inputs) { 1306 if (!PotentiallyDerivedPointers.count(V)) 1307 continue; 1308 PotentiallyDerivedPointers.remove(V); 1309 PointerToBase[V] = V; 1310 } 1311 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache, 1312 KnownBases); 1313 } 1314 1315 /// Given an updated version of the dataflow liveness results, update the 1316 /// liveset and base pointer maps for the call site CS. 1317 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1318 CallBase *Call, 1319 PartiallyConstructedSafepointRecord &result, 1320 PointerToBaseTy &PointerToBase, 1321 GCStrategy *GC); 1322 1323 static void recomputeLiveInValues( 1324 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1325 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 1326 PointerToBaseTy &PointerToBase, GCStrategy *GC) { 1327 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1328 // again. The old values are still live and will help it stabilize quickly. 1329 GCPtrLivenessData RevisedLivenessData; 1330 computeLiveInValues(DT, F, RevisedLivenessData, GC); 1331 for (size_t i = 0; i < records.size(); i++) { 1332 struct PartiallyConstructedSafepointRecord &info = records[i]; 1333 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info, PointerToBase, 1334 GC); 1335 } 1336 } 1337 1338 // Utility function which clones all instructions from "ChainToBase" 1339 // and inserts them before "InsertBefore". Returns rematerialized value 1340 // which should be used after statepoint. 1341 static Instruction *rematerializeChain(ArrayRef<Instruction *> ChainToBase, 1342 Instruction *InsertBefore, 1343 Value *RootOfChain, 1344 Value *AlternateLiveBase) { 1345 Instruction *LastClonedValue = nullptr; 1346 Instruction *LastValue = nullptr; 1347 // Walk backwards to visit top-most instructions first. 1348 for (Instruction *Instr : 1349 make_range(ChainToBase.rbegin(), ChainToBase.rend())) { 1350 // Only GEP's and casts are supported as we need to be careful to not 1351 // introduce any new uses of pointers not in the liveset. 1352 // Note that it's fine to introduce new uses of pointers which were 1353 // otherwise not used after this statepoint. 1354 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1355 1356 Instruction *ClonedValue = Instr->clone(); 1357 ClonedValue->insertBefore(InsertBefore); 1358 ClonedValue->setName(Instr->getName() + ".remat"); 1359 1360 // If it is not first instruction in the chain then it uses previously 1361 // cloned value. We should update it to use cloned value. 1362 if (LastClonedValue) { 1363 assert(LastValue); 1364 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1365 #ifndef NDEBUG 1366 for (auto *OpValue : ClonedValue->operand_values()) { 1367 // Assert that cloned instruction does not use any instructions from 1368 // this chain other than LastClonedValue 1369 assert(!is_contained(ChainToBase, OpValue) && 1370 "incorrect use in rematerialization chain"); 1371 // Assert that the cloned instruction does not use the RootOfChain 1372 // or the AlternateLiveBase. 1373 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 1374 } 1375 #endif 1376 } else { 1377 // For the first instruction, replace the use of unrelocated base i.e. 1378 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 1379 // live set. They have been proved to be the same PHI nodes. Note 1380 // that the *only* use of the RootOfChain in the ChainToBase list is 1381 // the first Value in the list. 1382 if (RootOfChain != AlternateLiveBase) 1383 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 1384 } 1385 1386 LastClonedValue = ClonedValue; 1387 LastValue = Instr; 1388 } 1389 assert(LastClonedValue); 1390 return LastClonedValue; 1391 } 1392 1393 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1394 // no uses of the original value / return value between the gc.statepoint and 1395 // the gc.relocate / gc.result call. One case which can arise is a phi node 1396 // starting one of the successor blocks. We also need to be able to insert the 1397 // gc.relocates only on the path which goes through the statepoint. We might 1398 // need to split an edge to make this possible. 1399 static BasicBlock * 1400 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1401 DominatorTree &DT) { 1402 BasicBlock *Ret = BB; 1403 if (!BB->getUniquePredecessor()) 1404 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1405 1406 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1407 // from it 1408 FoldSingleEntryPHINodes(Ret); 1409 assert(!isa<PHINode>(Ret->begin()) && 1410 "All PHI nodes should have been removed!"); 1411 1412 // At this point, we can safely insert a gc.relocate or gc.result as the first 1413 // instruction in Ret if needed. 1414 return Ret; 1415 } 1416 1417 // List of all function attributes which must be stripped when lowering from 1418 // abstract machine model to physical machine model. Essentially, these are 1419 // all the effects a safepoint might have which we ignored in the abstract 1420 // machine model for purposes of optimization. We have to strip these on 1421 // both function declarations and call sites. 1422 static constexpr Attribute::AttrKind FnAttrsToStrip[] = 1423 {Attribute::Memory, Attribute::NoSync, Attribute::NoFree}; 1424 1425 // Create new attribute set containing only attributes which can be transferred 1426 // from the original call to the safepoint. 1427 static AttributeList legalizeCallAttributes(CallBase *Call, bool IsMemIntrinsic, 1428 AttributeList StatepointAL) { 1429 AttributeList OrigAL = Call->getAttributes(); 1430 if (OrigAL.isEmpty()) 1431 return StatepointAL; 1432 1433 // Remove the readonly, readnone, and statepoint function attributes. 1434 LLVMContext &Ctx = Call->getContext(); 1435 AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs()); 1436 for (auto Attr : FnAttrsToStrip) 1437 FnAttrs.removeAttribute(Attr); 1438 1439 for (Attribute A : OrigAL.getFnAttrs()) { 1440 if (isStatepointDirectiveAttr(A)) 1441 FnAttrs.removeAttribute(A); 1442 } 1443 1444 StatepointAL = StatepointAL.addFnAttributes(Ctx, FnAttrs); 1445 1446 // The memory intrinsics do not have a 1:1 correspondence of the original 1447 // call arguments to the produced statepoint. Do not transfer the argument 1448 // attributes to avoid putting them on incorrect arguments. 1449 if (IsMemIntrinsic) 1450 return StatepointAL; 1451 1452 // Attach the argument attributes from the original call at the corresponding 1453 // arguments in the statepoint. Note that any argument attributes that are 1454 // invalid after lowering are stripped in stripNonValidDataFromBody. 1455 for (unsigned I : llvm::seq(Call->arg_size())) 1456 StatepointAL = StatepointAL.addParamAttributes( 1457 Ctx, GCStatepointInst::CallArgsBeginPos + I, 1458 AttrBuilder(Ctx, OrigAL.getParamAttrs(I))); 1459 1460 // Return attributes are later attached to the gc.result intrinsic. 1461 return StatepointAL; 1462 } 1463 1464 /// Helper function to place all gc relocates necessary for the given 1465 /// statepoint. 1466 /// Inputs: 1467 /// liveVariables - list of variables to be relocated. 1468 /// basePtrs - base pointers. 1469 /// statepointToken - statepoint instruction to which relocates should be 1470 /// bound. 1471 /// Builder - Llvm IR builder to be used to construct new calls. 1472 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1473 ArrayRef<Value *> BasePtrs, 1474 Instruction *StatepointToken, 1475 IRBuilder<> &Builder, GCStrategy *GC) { 1476 if (LiveVariables.empty()) 1477 return; 1478 1479 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1480 auto ValIt = llvm::find(LiveVec, Val); 1481 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1482 size_t Index = std::distance(LiveVec.begin(), ValIt); 1483 assert(Index < LiveVec.size() && "Bug in std::find?"); 1484 return Index; 1485 }; 1486 Module *M = StatepointToken->getModule(); 1487 1488 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1489 // element type is i8 addrspace(1)*). We originally generated unique 1490 // declarations for each pointer type, but this proved problematic because 1491 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1492 // towards a single unified pointer type anyways, we can just cast everything 1493 // to an i8* of the right address space. A bitcast is added later to convert 1494 // gc_relocate to the actual value's type. 1495 auto getGCRelocateDecl = [&](Type *Ty) { 1496 assert(isHandledGCPointerType(Ty, GC)); 1497 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1498 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1499 if (auto *VT = dyn_cast<VectorType>(Ty)) 1500 NewTy = FixedVectorType::get(NewTy, 1501 cast<FixedVectorType>(VT)->getNumElements()); 1502 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1503 {NewTy}); 1504 }; 1505 1506 // Lazily populated map from input types to the canonicalized form mentioned 1507 // in the comment above. This should probably be cached somewhere more 1508 // broadly. 1509 DenseMap<Type *, Function *> TypeToDeclMap; 1510 1511 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1512 // Generate the gc.relocate call and save the result 1513 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1514 Value *LiveIdx = Builder.getInt32(i); 1515 1516 Type *Ty = LiveVariables[i]->getType(); 1517 if (!TypeToDeclMap.count(Ty)) 1518 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1519 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1520 1521 // only specify a debug name if we can give a useful one 1522 CallInst *Reloc = Builder.CreateCall( 1523 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1524 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1525 // Trick CodeGen into thinking there are lots of free registers at this 1526 // fake call. 1527 Reloc->setCallingConv(CallingConv::Cold); 1528 } 1529 } 1530 1531 namespace { 1532 1533 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1534 /// avoids having to worry about keeping around dangling pointers to Values. 1535 class DeferredReplacement { 1536 AssertingVH<Instruction> Old; 1537 AssertingVH<Instruction> New; 1538 bool IsDeoptimize = false; 1539 1540 DeferredReplacement() = default; 1541 1542 public: 1543 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1544 assert(Old != New && Old && New && 1545 "Cannot RAUW equal values or to / from null!"); 1546 1547 DeferredReplacement D; 1548 D.Old = Old; 1549 D.New = New; 1550 return D; 1551 } 1552 1553 static DeferredReplacement createDelete(Instruction *ToErase) { 1554 DeferredReplacement D; 1555 D.Old = ToErase; 1556 return D; 1557 } 1558 1559 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1560 #ifndef NDEBUG 1561 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1562 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1563 "Only way to construct a deoptimize deferred replacement"); 1564 #endif 1565 DeferredReplacement D; 1566 D.Old = Old; 1567 D.IsDeoptimize = true; 1568 return D; 1569 } 1570 1571 /// Does the task represented by this instance. 1572 void doReplacement() { 1573 Instruction *OldI = Old; 1574 Instruction *NewI = New; 1575 1576 assert(OldI != NewI && "Disallowed at construction?!"); 1577 assert((!IsDeoptimize || !New) && 1578 "Deoptimize intrinsics are not replaced!"); 1579 1580 Old = nullptr; 1581 New = nullptr; 1582 1583 if (NewI) 1584 OldI->replaceAllUsesWith(NewI); 1585 1586 if (IsDeoptimize) { 1587 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1588 // not necessarily be followed by the matching return. 1589 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1590 new UnreachableInst(RI->getContext(), RI); 1591 RI->eraseFromParent(); 1592 } 1593 1594 OldI->eraseFromParent(); 1595 } 1596 }; 1597 1598 } // end anonymous namespace 1599 1600 static StringRef getDeoptLowering(CallBase *Call) { 1601 const char *DeoptLowering = "deopt-lowering"; 1602 if (Call->hasFnAttr(DeoptLowering)) { 1603 // FIXME: Calls have a *really* confusing interface around attributes 1604 // with values. 1605 const AttributeList &CSAS = Call->getAttributes(); 1606 if (CSAS.hasFnAttr(DeoptLowering)) 1607 return CSAS.getFnAttr(DeoptLowering).getValueAsString(); 1608 Function *F = Call->getCalledFunction(); 1609 assert(F && F->hasFnAttribute(DeoptLowering)); 1610 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1611 } 1612 return "live-through"; 1613 } 1614 1615 static void 1616 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1617 const SmallVectorImpl<Value *> &BasePtrs, 1618 const SmallVectorImpl<Value *> &LiveVariables, 1619 PartiallyConstructedSafepointRecord &Result, 1620 std::vector<DeferredReplacement> &Replacements, 1621 const PointerToBaseTy &PointerToBase, 1622 GCStrategy *GC) { 1623 assert(BasePtrs.size() == LiveVariables.size()); 1624 1625 // Then go ahead and use the builder do actually do the inserts. We insert 1626 // immediately before the previous instruction under the assumption that all 1627 // arguments will be available here. We can't insert afterwards since we may 1628 // be replacing a terminator. 1629 IRBuilder<> Builder(Call); 1630 1631 ArrayRef<Value *> GCArgs(LiveVariables); 1632 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1633 uint32_t NumPatchBytes = 0; 1634 uint32_t Flags = uint32_t(StatepointFlags::None); 1635 1636 SmallVector<Value *, 8> CallArgs(Call->args()); 1637 std::optional<ArrayRef<Use>> DeoptArgs; 1638 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1639 DeoptArgs = Bundle->Inputs; 1640 std::optional<ArrayRef<Use>> TransitionArgs; 1641 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1642 TransitionArgs = Bundle->Inputs; 1643 // TODO: This flag no longer serves a purpose and can be removed later 1644 Flags |= uint32_t(StatepointFlags::GCTransition); 1645 } 1646 1647 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1648 // with a return value, we lower then as never returning calls to 1649 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1650 bool IsDeoptimize = false; 1651 bool IsMemIntrinsic = false; 1652 1653 StatepointDirectives SD = 1654 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1655 if (SD.NumPatchBytes) 1656 NumPatchBytes = *SD.NumPatchBytes; 1657 if (SD.StatepointID) 1658 StatepointID = *SD.StatepointID; 1659 1660 // Pass through the requested lowering if any. The default is live-through. 1661 StringRef DeoptLowering = getDeoptLowering(Call); 1662 if (DeoptLowering.equals("live-in")) 1663 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1664 else { 1665 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1666 } 1667 1668 FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand()); 1669 if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) { 1670 auto IID = F->getIntrinsicID(); 1671 if (IID == Intrinsic::experimental_deoptimize) { 1672 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1673 // __llvm_deoptimize symbol. We want to resolve this now, since the 1674 // verifier does not allow taking the address of an intrinsic function. 1675 1676 SmallVector<Type *, 8> DomainTy; 1677 for (Value *Arg : CallArgs) 1678 DomainTy.push_back(Arg->getType()); 1679 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1680 /* isVarArg = */ false); 1681 1682 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1683 // calls to @llvm.experimental.deoptimize with different argument types in 1684 // the same module. This is fine -- we assume the frontend knew what it 1685 // was doing when generating this kind of IR. 1686 CallTarget = F->getParent() 1687 ->getOrInsertFunction("__llvm_deoptimize", FTy); 1688 1689 IsDeoptimize = true; 1690 } else if (IID == Intrinsic::memcpy_element_unordered_atomic || 1691 IID == Intrinsic::memmove_element_unordered_atomic) { 1692 IsMemIntrinsic = true; 1693 1694 // Unordered atomic memcpy and memmove intrinsics which are not explicitly 1695 // marked as "gc-leaf-function" should be lowered in a GC parseable way. 1696 // Specifically, these calls should be lowered to the 1697 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. 1698 // Similarly to __llvm_deoptimize we want to resolve this now, since the 1699 // verifier does not allow taking the address of an intrinsic function. 1700 // 1701 // Moreover we need to shuffle the arguments for the call in order to 1702 // accommodate GC. The underlying source and destination objects might be 1703 // relocated during copy operation should the GC occur. To relocate the 1704 // derived source and destination pointers the implementation of the 1705 // intrinsic should know the corresponding base pointers. 1706 // 1707 // To make the base pointers available pass them explicitly as arguments: 1708 // memcpy(dest_derived, source_derived, ...) => 1709 // memcpy(dest_base, dest_offset, source_base, source_offset, ...) 1710 auto &Context = Call->getContext(); 1711 auto &DL = Call->getModule()->getDataLayout(); 1712 auto GetBaseAndOffset = [&](Value *Derived) { 1713 Value *Base = nullptr; 1714 // Optimizations in unreachable code might substitute the real pointer 1715 // with undef, poison or null-derived constant. Return null base for 1716 // them to be consistent with the handling in the main algorithm in 1717 // findBaseDefiningValue. 1718 if (isa<Constant>(Derived)) 1719 Base = 1720 ConstantPointerNull::get(cast<PointerType>(Derived->getType())); 1721 else { 1722 assert(PointerToBase.count(Derived)); 1723 Base = PointerToBase.find(Derived)->second; 1724 } 1725 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 1726 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 1727 Value *Base_int = Builder.CreatePtrToInt( 1728 Base, Type::getIntNTy(Context, IntPtrSize)); 1729 Value *Derived_int = Builder.CreatePtrToInt( 1730 Derived, Type::getIntNTy(Context, IntPtrSize)); 1731 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); 1732 }; 1733 1734 auto *Dest = CallArgs[0]; 1735 Value *DestBase, *DestOffset; 1736 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); 1737 1738 auto *Source = CallArgs[1]; 1739 Value *SourceBase, *SourceOffset; 1740 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); 1741 1742 auto *LengthInBytes = CallArgs[2]; 1743 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]); 1744 1745 CallArgs.clear(); 1746 CallArgs.push_back(DestBase); 1747 CallArgs.push_back(DestOffset); 1748 CallArgs.push_back(SourceBase); 1749 CallArgs.push_back(SourceOffset); 1750 CallArgs.push_back(LengthInBytes); 1751 1752 SmallVector<Type *, 8> DomainTy; 1753 for (Value *Arg : CallArgs) 1754 DomainTy.push_back(Arg->getType()); 1755 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1756 /* isVarArg = */ false); 1757 1758 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { 1759 uint64_t ElementSize = ElementSizeCI->getZExtValue(); 1760 if (IID == Intrinsic::memcpy_element_unordered_atomic) { 1761 switch (ElementSize) { 1762 case 1: 1763 return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; 1764 case 2: 1765 return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; 1766 case 4: 1767 return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; 1768 case 8: 1769 return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; 1770 case 16: 1771 return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; 1772 default: 1773 llvm_unreachable("unexpected element size!"); 1774 } 1775 } 1776 assert(IID == Intrinsic::memmove_element_unordered_atomic); 1777 switch (ElementSize) { 1778 case 1: 1779 return "__llvm_memmove_element_unordered_atomic_safepoint_1"; 1780 case 2: 1781 return "__llvm_memmove_element_unordered_atomic_safepoint_2"; 1782 case 4: 1783 return "__llvm_memmove_element_unordered_atomic_safepoint_4"; 1784 case 8: 1785 return "__llvm_memmove_element_unordered_atomic_safepoint_8"; 1786 case 16: 1787 return "__llvm_memmove_element_unordered_atomic_safepoint_16"; 1788 default: 1789 llvm_unreachable("unexpected element size!"); 1790 } 1791 }; 1792 1793 CallTarget = 1794 F->getParent() 1795 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy); 1796 } 1797 } 1798 1799 // Create the statepoint given all the arguments 1800 GCStatepointInst *Token = nullptr; 1801 if (auto *CI = dyn_cast<CallInst>(Call)) { 1802 CallInst *SPCall = Builder.CreateGCStatepointCall( 1803 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1804 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1805 1806 SPCall->setTailCallKind(CI->getTailCallKind()); 1807 SPCall->setCallingConv(CI->getCallingConv()); 1808 1809 // Set up function attrs directly on statepoint and return attrs later for 1810 // gc_result intrinsic. 1811 SPCall->setAttributes( 1812 legalizeCallAttributes(CI, IsMemIntrinsic, SPCall->getAttributes())); 1813 1814 Token = cast<GCStatepointInst>(SPCall); 1815 1816 // Put the following gc_result and gc_relocate calls immediately after the 1817 // the old call (which we're about to delete) 1818 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1819 Builder.SetInsertPoint(CI->getNextNode()); 1820 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1821 } else { 1822 auto *II = cast<InvokeInst>(Call); 1823 1824 // Insert the new invoke into the old block. We'll remove the old one in a 1825 // moment at which point this will become the new terminator for the 1826 // original block. 1827 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1828 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1829 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1830 "statepoint_token"); 1831 1832 SPInvoke->setCallingConv(II->getCallingConv()); 1833 1834 // Set up function attrs directly on statepoint and return attrs later for 1835 // gc_result intrinsic. 1836 SPInvoke->setAttributes( 1837 legalizeCallAttributes(II, IsMemIntrinsic, SPInvoke->getAttributes())); 1838 1839 Token = cast<GCStatepointInst>(SPInvoke); 1840 1841 // Generate gc relocates in exceptional path 1842 BasicBlock *UnwindBlock = II->getUnwindDest(); 1843 assert(!isa<PHINode>(UnwindBlock->begin()) && 1844 UnwindBlock->getUniquePredecessor() && 1845 "can't safely insert in this block!"); 1846 1847 Builder.SetInsertPoint(UnwindBlock, UnwindBlock->getFirstInsertionPt()); 1848 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1849 1850 // Attach exceptional gc relocates to the landingpad. 1851 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1852 Result.UnwindToken = ExceptionalToken; 1853 1854 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder, GC); 1855 1856 // Generate gc relocates and returns for normal block 1857 BasicBlock *NormalDest = II->getNormalDest(); 1858 assert(!isa<PHINode>(NormalDest->begin()) && 1859 NormalDest->getUniquePredecessor() && 1860 "can't safely insert in this block!"); 1861 1862 Builder.SetInsertPoint(NormalDest, NormalDest->getFirstInsertionPt()); 1863 1864 // gc relocates will be generated later as if it were regular call 1865 // statepoint 1866 } 1867 assert(Token && "Should be set in one of the above branches!"); 1868 1869 if (IsDeoptimize) { 1870 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1871 // transform the tail-call like structure to a call to a void function 1872 // followed by unreachable to get better codegen. 1873 Replacements.push_back( 1874 DeferredReplacement::createDeoptimizeReplacement(Call)); 1875 } else { 1876 Token->setName("statepoint_token"); 1877 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1878 StringRef Name = Call->hasName() ? Call->getName() : ""; 1879 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1880 GCResult->setAttributes( 1881 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1882 Call->getAttributes().getRetAttrs())); 1883 1884 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1885 // live set of some other safepoint, in which case that safepoint's 1886 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1887 // llvm::Instruction. Instead, we defer the replacement and deletion to 1888 // after the live sets have been made explicit in the IR, and we no longer 1889 // have raw pointers to worry about. 1890 Replacements.emplace_back( 1891 DeferredReplacement::createRAUW(Call, GCResult)); 1892 } else { 1893 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1894 } 1895 } 1896 1897 Result.StatepointToken = Token; 1898 1899 // Second, create a gc.relocate for every live variable 1900 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder, GC); 1901 } 1902 1903 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1904 // which make the relocations happening at this safepoint explicit. 1905 // 1906 // WARNING: Does not do any fixup to adjust users of the original live 1907 // values. That's the callers responsibility. 1908 static void 1909 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1910 PartiallyConstructedSafepointRecord &Result, 1911 std::vector<DeferredReplacement> &Replacements, 1912 const PointerToBaseTy &PointerToBase, GCStrategy *GC) { 1913 const auto &LiveSet = Result.LiveSet; 1914 1915 // Convert to vector for efficient cross referencing. 1916 SmallVector<Value *, 64> BaseVec, LiveVec; 1917 LiveVec.reserve(LiveSet.size()); 1918 BaseVec.reserve(LiveSet.size()); 1919 for (Value *L : LiveSet) { 1920 LiveVec.push_back(L); 1921 assert(PointerToBase.count(L)); 1922 Value *Base = PointerToBase.find(L)->second; 1923 BaseVec.push_back(Base); 1924 } 1925 assert(LiveVec.size() == BaseVec.size()); 1926 1927 // Do the actual rewriting and delete the old statepoint 1928 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements, 1929 PointerToBase, GC); 1930 } 1931 1932 // Helper function for the relocationViaAlloca. 1933 // 1934 // It receives iterator to the statepoint gc relocates and emits a store to the 1935 // assigned location (via allocaMap) for the each one of them. It adds the 1936 // visited values into the visitedLiveValues set, which we will later use them 1937 // for validation checking. 1938 static void 1939 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1940 DenseMap<Value *, AllocaInst *> &AllocaMap, 1941 DenseSet<Value *> &VisitedLiveValues) { 1942 for (User *U : GCRelocs) { 1943 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1944 if (!Relocate) 1945 continue; 1946 1947 Value *OriginalValue = Relocate->getDerivedPtr(); 1948 assert(AllocaMap.count(OriginalValue)); 1949 Value *Alloca = AllocaMap[OriginalValue]; 1950 1951 // Emit store into the related alloca 1952 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1953 // the correct type according to alloca. 1954 assert(Relocate->getNextNode() && 1955 "Should always have one since it's not a terminator"); 1956 IRBuilder<> Builder(Relocate->getNextNode()); 1957 Value *CastedRelocatedValue = 1958 Builder.CreateBitCast(Relocate, 1959 cast<AllocaInst>(Alloca)->getAllocatedType(), 1960 suffixed_name_or(Relocate, ".casted", "")); 1961 1962 new StoreInst(CastedRelocatedValue, Alloca, 1963 cast<Instruction>(CastedRelocatedValue)->getNextNode()); 1964 1965 #ifndef NDEBUG 1966 VisitedLiveValues.insert(OriginalValue); 1967 #endif 1968 } 1969 } 1970 1971 // Helper function for the "relocationViaAlloca". Similar to the 1972 // "insertRelocationStores" but works for rematerialized values. 1973 static void insertRematerializationStores( 1974 const RematerializedValueMapTy &RematerializedValues, 1975 DenseMap<Value *, AllocaInst *> &AllocaMap, 1976 DenseSet<Value *> &VisitedLiveValues) { 1977 for (auto RematerializedValuePair: RematerializedValues) { 1978 Instruction *RematerializedValue = RematerializedValuePair.first; 1979 Value *OriginalValue = RematerializedValuePair.second; 1980 1981 assert(AllocaMap.count(OriginalValue) && 1982 "Can not find alloca for rematerialized value"); 1983 Value *Alloca = AllocaMap[OriginalValue]; 1984 1985 new StoreInst(RematerializedValue, Alloca, 1986 RematerializedValue->getNextNode()); 1987 1988 #ifndef NDEBUG 1989 VisitedLiveValues.insert(OriginalValue); 1990 #endif 1991 } 1992 } 1993 1994 /// Do all the relocation update via allocas and mem2reg 1995 static void relocationViaAlloca( 1996 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1997 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1998 #ifndef NDEBUG 1999 // record initial number of (static) allocas; we'll check we have the same 2000 // number when we get done. 2001 int InitialAllocaNum = 0; 2002 for (Instruction &I : F.getEntryBlock()) 2003 if (isa<AllocaInst>(I)) 2004 InitialAllocaNum++; 2005 #endif 2006 2007 // TODO-PERF: change data structures, reserve 2008 DenseMap<Value *, AllocaInst *> AllocaMap; 2009 SmallVector<AllocaInst *, 200> PromotableAllocas; 2010 // Used later to chack that we have enough allocas to store all values 2011 std::size_t NumRematerializedValues = 0; 2012 PromotableAllocas.reserve(Live.size()); 2013 2014 // Emit alloca for "LiveValue" and record it in "allocaMap" and 2015 // "PromotableAllocas" 2016 const DataLayout &DL = F.getParent()->getDataLayout(); 2017 auto emitAllocaFor = [&](Value *LiveValue) { 2018 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 2019 DL.getAllocaAddrSpace(), "", 2020 F.getEntryBlock().getFirstNonPHI()); 2021 AllocaMap[LiveValue] = Alloca; 2022 PromotableAllocas.push_back(Alloca); 2023 }; 2024 2025 // Emit alloca for each live gc pointer 2026 for (Value *V : Live) 2027 emitAllocaFor(V); 2028 2029 // Emit allocas for rematerialized values 2030 for (const auto &Info : Records) 2031 for (auto RematerializedValuePair : Info.RematerializedValues) { 2032 Value *OriginalValue = RematerializedValuePair.second; 2033 if (AllocaMap.count(OriginalValue) != 0) 2034 continue; 2035 2036 emitAllocaFor(OriginalValue); 2037 ++NumRematerializedValues; 2038 } 2039 2040 // The next two loops are part of the same conceptual operation. We need to 2041 // insert a store to the alloca after the original def and at each 2042 // redefinition. We need to insert a load before each use. These are split 2043 // into distinct loops for performance reasons. 2044 2045 // Update gc pointer after each statepoint: either store a relocated value or 2046 // null (if no relocated value was found for this gc pointer and it is not a 2047 // gc_result). This must happen before we update the statepoint with load of 2048 // alloca otherwise we lose the link between statepoint and old def. 2049 for (const auto &Info : Records) { 2050 Value *Statepoint = Info.StatepointToken; 2051 2052 // This will be used for consistency check 2053 DenseSet<Value *> VisitedLiveValues; 2054 2055 // Insert stores for normal statepoint gc relocates 2056 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 2057 2058 // In case if it was invoke statepoint 2059 // we will insert stores for exceptional path gc relocates. 2060 if (isa<InvokeInst>(Statepoint)) { 2061 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 2062 VisitedLiveValues); 2063 } 2064 2065 // Do similar thing with rematerialized values 2066 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 2067 VisitedLiveValues); 2068 2069 if (ClobberNonLive) { 2070 // As a debugging aid, pretend that an unrelocated pointer becomes null at 2071 // the gc.statepoint. This will turn some subtle GC problems into 2072 // slightly easier to debug SEGVs. Note that on large IR files with 2073 // lots of gc.statepoints this is extremely costly both memory and time 2074 // wise. 2075 SmallVector<AllocaInst *, 64> ToClobber; 2076 for (auto Pair : AllocaMap) { 2077 Value *Def = Pair.first; 2078 AllocaInst *Alloca = Pair.second; 2079 2080 // This value was relocated 2081 if (VisitedLiveValues.count(Def)) { 2082 continue; 2083 } 2084 ToClobber.push_back(Alloca); 2085 } 2086 2087 auto InsertClobbersAt = [&](Instruction *IP) { 2088 for (auto *AI : ToClobber) { 2089 auto AT = AI->getAllocatedType(); 2090 Constant *CPN; 2091 if (AT->isVectorTy()) 2092 CPN = ConstantAggregateZero::get(AT); 2093 else 2094 CPN = ConstantPointerNull::get(cast<PointerType>(AT)); 2095 new StoreInst(CPN, AI, IP); 2096 } 2097 }; 2098 2099 // Insert the clobbering stores. These may get intermixed with the 2100 // gc.results and gc.relocates, but that's fine. 2101 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 2102 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 2103 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 2104 } else { 2105 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 2106 } 2107 } 2108 } 2109 2110 // Update use with load allocas and add store for gc_relocated. 2111 for (auto Pair : AllocaMap) { 2112 Value *Def = Pair.first; 2113 AllocaInst *Alloca = Pair.second; 2114 2115 // We pre-record the uses of allocas so that we dont have to worry about 2116 // later update that changes the user information.. 2117 2118 SmallVector<Instruction *, 20> Uses; 2119 // PERF: trade a linear scan for repeated reallocation 2120 Uses.reserve(Def->getNumUses()); 2121 for (User *U : Def->users()) { 2122 if (!isa<ConstantExpr>(U)) { 2123 // If the def has a ConstantExpr use, then the def is either a 2124 // ConstantExpr use itself or null. In either case 2125 // (recursively in the first, directly in the second), the oop 2126 // it is ultimately dependent on is null and this particular 2127 // use does not need to be fixed up. 2128 Uses.push_back(cast<Instruction>(U)); 2129 } 2130 } 2131 2132 llvm::sort(Uses); 2133 auto Last = std::unique(Uses.begin(), Uses.end()); 2134 Uses.erase(Last, Uses.end()); 2135 2136 for (Instruction *Use : Uses) { 2137 if (isa<PHINode>(Use)) { 2138 PHINode *Phi = cast<PHINode>(Use); 2139 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 2140 if (Def == Phi->getIncomingValue(i)) { 2141 LoadInst *Load = 2142 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 2143 Phi->getIncomingBlock(i)->getTerminator()); 2144 Phi->setIncomingValue(i, Load); 2145 } 2146 } 2147 } else { 2148 LoadInst *Load = 2149 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 2150 Use->replaceUsesOfWith(Def, Load); 2151 } 2152 } 2153 2154 // Emit store for the initial gc value. Store must be inserted after load, 2155 // otherwise store will be in alloca's use list and an extra load will be 2156 // inserted before it. 2157 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 2158 DL.getABITypeAlign(Def->getType())); 2159 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 2160 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 2161 // InvokeInst is a terminator so the store need to be inserted into its 2162 // normal destination block. 2163 BasicBlock *NormalDest = Invoke->getNormalDest(); 2164 Store->insertBefore(NormalDest->getFirstNonPHI()); 2165 } else { 2166 assert(!Inst->isTerminator() && 2167 "The only terminator that can produce a value is " 2168 "InvokeInst which is handled above."); 2169 Store->insertAfter(Inst); 2170 } 2171 } else { 2172 assert(isa<Argument>(Def)); 2173 Store->insertAfter(cast<Instruction>(Alloca)); 2174 } 2175 } 2176 2177 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 2178 "we must have the same allocas with lives"); 2179 (void) NumRematerializedValues; 2180 if (!PromotableAllocas.empty()) { 2181 // Apply mem2reg to promote alloca to SSA 2182 PromoteMemToReg(PromotableAllocas, DT); 2183 } 2184 2185 #ifndef NDEBUG 2186 for (auto &I : F.getEntryBlock()) 2187 if (isa<AllocaInst>(I)) 2188 InitialAllocaNum--; 2189 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 2190 #endif 2191 } 2192 2193 /// Implement a unique function which doesn't require we sort the input 2194 /// vector. Doing so has the effect of changing the output of a couple of 2195 /// tests in ways which make them less useful in testing fused safepoints. 2196 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 2197 SmallSet<T, 8> Seen; 2198 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); 2199 } 2200 2201 /// Insert holders so that each Value is obviously live through the entire 2202 /// lifetime of the call. 2203 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 2204 SmallVectorImpl<CallInst *> &Holders) { 2205 if (Values.empty()) 2206 // No values to hold live, might as well not insert the empty holder 2207 return; 2208 2209 Module *M = Call->getModule(); 2210 // Use a dummy vararg function to actually hold the values live 2211 FunctionCallee Func = M->getOrInsertFunction( 2212 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 2213 if (isa<CallInst>(Call)) { 2214 // For call safepoints insert dummy calls right after safepoint 2215 Holders.push_back( 2216 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 2217 return; 2218 } 2219 // For invoke safepooints insert dummy calls both in normal and 2220 // exceptional destination blocks 2221 auto *II = cast<InvokeInst>(Call); 2222 Holders.push_back(CallInst::Create( 2223 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 2224 Holders.push_back(CallInst::Create( 2225 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 2226 } 2227 2228 static void findLiveReferences( 2229 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 2230 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 2231 GCStrategy *GC) { 2232 GCPtrLivenessData OriginalLivenessData; 2233 computeLiveInValues(DT, F, OriginalLivenessData, GC); 2234 for (size_t i = 0; i < records.size(); i++) { 2235 struct PartiallyConstructedSafepointRecord &info = records[i]; 2236 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info, GC); 2237 } 2238 } 2239 2240 // Helper function for the "rematerializeLiveValues". It walks use chain 2241 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 2242 // the base or a value it cannot process. Only "simple" values are processed 2243 // (currently it is GEP's and casts). The returned root is examined by the 2244 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 2245 // with all visited values. 2246 static Value* findRematerializableChainToBasePointer( 2247 SmallVectorImpl<Instruction*> &ChainToBase, 2248 Value *CurrentValue) { 2249 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2250 ChainToBase.push_back(GEP); 2251 return findRematerializableChainToBasePointer(ChainToBase, 2252 GEP->getPointerOperand()); 2253 } 2254 2255 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2256 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2257 return CI; 2258 2259 ChainToBase.push_back(CI); 2260 return findRematerializableChainToBasePointer(ChainToBase, 2261 CI->getOperand(0)); 2262 } 2263 2264 // We have reached the root of the chain, which is either equal to the base or 2265 // is the first unsupported value along the use chain. 2266 return CurrentValue; 2267 } 2268 2269 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2270 // chain we are going to rematerialize. 2271 static InstructionCost 2272 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, 2273 TargetTransformInfo &TTI) { 2274 InstructionCost Cost = 0; 2275 2276 for (Instruction *Instr : Chain) { 2277 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2278 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2279 "non noop cast is found during rematerialization"); 2280 2281 Type *SrcTy = CI->getOperand(0)->getType(); 2282 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2283 TTI::getCastContextHint(CI), 2284 TargetTransformInfo::TCK_SizeAndLatency, CI); 2285 2286 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2287 // Cost of the address calculation 2288 Type *ValTy = GEP->getSourceElementType(); 2289 Cost += TTI.getAddressComputationCost(ValTy); 2290 2291 // And cost of the GEP itself 2292 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2293 // allowed for the external usage) 2294 if (!GEP->hasAllConstantIndices()) 2295 Cost += 2; 2296 2297 } else { 2298 llvm_unreachable("unsupported instruction type during rematerialization"); 2299 } 2300 } 2301 2302 return Cost; 2303 } 2304 2305 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2306 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2307 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2308 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2309 return false; 2310 // Map of incoming values and their corresponding basic blocks of 2311 // OrigRootPhi. 2312 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2313 for (unsigned i = 0; i < PhiNum; i++) 2314 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2315 OrigRootPhi.getIncomingBlock(i); 2316 2317 // Both current and base PHIs should have same incoming values and 2318 // the same basic blocks corresponding to the incoming values. 2319 for (unsigned i = 0; i < PhiNum; i++) { 2320 auto CIVI = 2321 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2322 if (CIVI == CurrentIncomingValues.end()) 2323 return false; 2324 BasicBlock *CurrentIncomingBB = CIVI->second; 2325 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2326 return false; 2327 } 2328 return true; 2329 } 2330 2331 // Find derived pointers that can be recomputed cheap enough and fill 2332 // RematerizationCandidates with such candidates. 2333 static void 2334 findRematerializationCandidates(PointerToBaseTy PointerToBase, 2335 RematCandTy &RematerizationCandidates, 2336 TargetTransformInfo &TTI) { 2337 const unsigned int ChainLengthThreshold = 10; 2338 2339 for (auto P2B : PointerToBase) { 2340 auto *Derived = P2B.first; 2341 auto *Base = P2B.second; 2342 // Consider only derived pointers. 2343 if (Derived == Base) 2344 continue; 2345 2346 // For each live pointer find its defining chain. 2347 SmallVector<Instruction *, 3> ChainToBase; 2348 Value *RootOfChain = 2349 findRematerializableChainToBasePointer(ChainToBase, Derived); 2350 2351 // Nothing to do, or chain is too long 2352 if ( ChainToBase.size() == 0 || 2353 ChainToBase.size() > ChainLengthThreshold) 2354 continue; 2355 2356 // Handle the scenario where the RootOfChain is not equal to the 2357 // Base Value, but they are essentially the same phi values. 2358 if (RootOfChain != PointerToBase[Derived]) { 2359 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2360 PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]); 2361 if (!OrigRootPhi || !AlternateRootPhi) 2362 continue; 2363 // PHI nodes that have the same incoming values, and belonging to the same 2364 // basic blocks are essentially the same SSA value. When the original phi 2365 // has incoming values with different base pointers, the original phi is 2366 // marked as conflict, and an additional `AlternateRootPhi` with the same 2367 // incoming values get generated by the findBasePointer function. We need 2368 // to identify the newly generated AlternateRootPhi (.base version of phi) 2369 // and RootOfChain (the original phi node itself) are the same, so that we 2370 // can rematerialize the gep and casts. This is a workaround for the 2371 // deficiency in the findBasePointer algorithm. 2372 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2373 continue; 2374 } 2375 // Compute cost of this chain. 2376 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); 2377 // TODO: We can also account for cases when we will be able to remove some 2378 // of the rematerialized values by later optimization passes. I.e if 2379 // we rematerialized several intersecting chains. Or if original values 2380 // don't have any uses besides this statepoint. 2381 2382 // Ok, there is a candidate. 2383 RematerizlizationCandidateRecord Record; 2384 Record.ChainToBase = ChainToBase; 2385 Record.RootOfChain = RootOfChain; 2386 Record.Cost = Cost; 2387 RematerizationCandidates.insert({ Derived, Record }); 2388 } 2389 } 2390 2391 // Try to rematerialize derived pointers immediately before their uses 2392 // (instead of rematerializing after every statepoint it is live through). 2393 // This can be beneficial when derived pointer is live across many 2394 // statepoints, but uses are rare. 2395 static void rematerializeLiveValuesAtUses( 2396 RematCandTy &RematerizationCandidates, 2397 MutableArrayRef<PartiallyConstructedSafepointRecord> Records, 2398 PointerToBaseTy &PointerToBase) { 2399 if (!RematDerivedAtUses) 2400 return; 2401 2402 SmallVector<Instruction *, 32> LiveValuesToBeDeleted; 2403 2404 LLVM_DEBUG(dbgs() << "Rematerialize derived pointers at uses, " 2405 << "Num statepoints: " << Records.size() << '\n'); 2406 2407 for (auto &It : RematerizationCandidates) { 2408 Instruction *Cand = cast<Instruction>(It.first); 2409 auto &Record = It.second; 2410 2411 if (Record.Cost >= RematerializationThreshold) 2412 continue; 2413 2414 if (Cand->user_empty()) 2415 continue; 2416 2417 if (Cand->hasOneUse()) 2418 if (auto *U = dyn_cast<Instruction>(Cand->getUniqueUndroppableUser())) 2419 if (U->getParent() == Cand->getParent()) 2420 continue; 2421 2422 // Rematerialization before PHI nodes is not implemented. 2423 if (llvm::any_of(Cand->users(), 2424 [](const auto *U) { return isa<PHINode>(U); })) 2425 continue; 2426 2427 LLVM_DEBUG(dbgs() << "Trying cand " << *Cand << " ... "); 2428 2429 // Count of rematerialization instructions we introduce is equal to number 2430 // of candidate uses. 2431 // Count of rematerialization instructions we eliminate is equal to number 2432 // of statepoints it is live through. 2433 // Consider transformation profitable if latter is greater than former 2434 // (in other words, we create less than eliminate). 2435 unsigned NumLiveStatepoints = llvm::count_if( 2436 Records, [Cand](const auto &R) { return R.LiveSet.contains(Cand); }); 2437 unsigned NumUses = Cand->getNumUses(); 2438 2439 LLVM_DEBUG(dbgs() << "Num uses: " << NumUses << " Num live statepoints: " 2440 << NumLiveStatepoints << " "); 2441 2442 if (NumLiveStatepoints < NumUses) { 2443 LLVM_DEBUG(dbgs() << "not profitable\n"); 2444 continue; 2445 } 2446 2447 // If rematerialization is 'free', then favor rematerialization at 2448 // uses as it generally shortens live ranges. 2449 // TODO: Short (size ==1) chains only? 2450 if (NumLiveStatepoints == NumUses && Record.Cost > 0) { 2451 LLVM_DEBUG(dbgs() << "not profitable\n"); 2452 continue; 2453 } 2454 2455 LLVM_DEBUG(dbgs() << "looks profitable\n"); 2456 2457 // ChainToBase may contain another remat candidate (as a sub chain) which 2458 // has been rewritten by now. Need to recollect chain to have up to date 2459 // value. 2460 // TODO: sort records in findRematerializationCandidates() in 2461 // decreasing chain size order? 2462 if (Record.ChainToBase.size() > 1) { 2463 Record.ChainToBase.clear(); 2464 findRematerializableChainToBasePointer(Record.ChainToBase, Cand); 2465 } 2466 2467 // Current rematerialization algorithm is very simple: we rematerialize 2468 // immediately before EVERY use, even if there are several uses in same 2469 // block or if use is local to Cand Def. The reason is that this allows 2470 // us to avoid recomputing liveness without complicated analysis: 2471 // - If we did not eliminate all uses of original Candidate, we do not 2472 // know exaclty in what BBs it is still live. 2473 // - If we rematerialize once per BB, we need to find proper insertion 2474 // place (first use in block, but after Def) and analyze if there is 2475 // statepoint between uses in the block. 2476 while (!Cand->user_empty()) { 2477 Instruction *UserI = cast<Instruction>(*Cand->user_begin()); 2478 Instruction *RematChain = rematerializeChain( 2479 Record.ChainToBase, UserI, Record.RootOfChain, PointerToBase[Cand]); 2480 UserI->replaceUsesOfWith(Cand, RematChain); 2481 PointerToBase[RematChain] = PointerToBase[Cand]; 2482 } 2483 LiveValuesToBeDeleted.push_back(Cand); 2484 } 2485 2486 LLVM_DEBUG(dbgs() << "Rematerialized " << LiveValuesToBeDeleted.size() 2487 << " derived pointers\n"); 2488 for (auto *Cand : LiveValuesToBeDeleted) { 2489 assert(Cand->use_empty() && "Unexpected user remain"); 2490 RematerizationCandidates.erase(Cand); 2491 for (auto &R : Records) { 2492 assert(!R.LiveSet.contains(Cand) || 2493 R.LiveSet.contains(PointerToBase[Cand])); 2494 R.LiveSet.remove(Cand); 2495 } 2496 } 2497 2498 // Recollect not rematerialized chains - we might have rewritten 2499 // their sub-chains. 2500 if (!LiveValuesToBeDeleted.empty()) { 2501 for (auto &P : RematerizationCandidates) { 2502 auto &R = P.second; 2503 if (R.ChainToBase.size() > 1) { 2504 R.ChainToBase.clear(); 2505 findRematerializableChainToBasePointer(R.ChainToBase, P.first); 2506 } 2507 } 2508 } 2509 } 2510 2511 // From the statepoint live set pick values that are cheaper to recompute then 2512 // to relocate. Remove this values from the live set, rematerialize them after 2513 // statepoint and record them in "Info" structure. Note that similar to 2514 // relocated values we don't do any user adjustments here. 2515 static void rematerializeLiveValues(CallBase *Call, 2516 PartiallyConstructedSafepointRecord &Info, 2517 PointerToBaseTy &PointerToBase, 2518 RematCandTy &RematerizationCandidates, 2519 TargetTransformInfo &TTI) { 2520 // Record values we are going to delete from this statepoint live set. 2521 // We can not di this in following loop due to iterator invalidation. 2522 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2523 2524 for (Value *LiveValue : Info.LiveSet) { 2525 auto It = RematerizationCandidates.find(LiveValue); 2526 if (It == RematerizationCandidates.end()) 2527 continue; 2528 2529 RematerizlizationCandidateRecord &Record = It->second; 2530 2531 InstructionCost Cost = Record.Cost; 2532 // For invokes we need to rematerialize each chain twice - for normal and 2533 // for unwind basic blocks. Model this by multiplying cost by two. 2534 if (isa<InvokeInst>(Call)) 2535 Cost *= 2; 2536 2537 // If it's too expensive - skip it. 2538 if (Cost >= RematerializationThreshold) 2539 continue; 2540 2541 // Remove value from the live set 2542 LiveValuesToBeDeleted.push_back(LiveValue); 2543 2544 // Clone instructions and record them inside "Info" structure. 2545 2546 // Different cases for calls and invokes. For invokes we need to clone 2547 // instructions both on normal and unwind path. 2548 if (isa<CallInst>(Call)) { 2549 Instruction *InsertBefore = Call->getNextNode(); 2550 assert(InsertBefore); 2551 Instruction *RematerializedValue = 2552 rematerializeChain(Record.ChainToBase, InsertBefore, 2553 Record.RootOfChain, PointerToBase[LiveValue]); 2554 Info.RematerializedValues[RematerializedValue] = LiveValue; 2555 } else { 2556 auto *Invoke = cast<InvokeInst>(Call); 2557 2558 Instruction *NormalInsertBefore = 2559 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2560 Instruction *UnwindInsertBefore = 2561 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2562 2563 Instruction *NormalRematerializedValue = 2564 rematerializeChain(Record.ChainToBase, NormalInsertBefore, 2565 Record.RootOfChain, PointerToBase[LiveValue]); 2566 Instruction *UnwindRematerializedValue = 2567 rematerializeChain(Record.ChainToBase, UnwindInsertBefore, 2568 Record.RootOfChain, PointerToBase[LiveValue]); 2569 2570 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2571 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2572 } 2573 } 2574 2575 // Remove rematerialized values from the live set. 2576 for (auto *LiveValue: LiveValuesToBeDeleted) { 2577 Info.LiveSet.remove(LiveValue); 2578 } 2579 } 2580 2581 static bool inlineGetBaseAndOffset(Function &F, 2582 SmallVectorImpl<CallInst *> &Intrinsics, 2583 DefiningValueMapTy &DVCache, 2584 IsKnownBaseMapTy &KnownBases) { 2585 auto &Context = F.getContext(); 2586 auto &DL = F.getParent()->getDataLayout(); 2587 bool Changed = false; 2588 2589 for (auto *Callsite : Intrinsics) 2590 switch (Callsite->getIntrinsicID()) { 2591 case Intrinsic::experimental_gc_get_pointer_base: { 2592 Changed = true; 2593 Value *Base = 2594 findBasePointer(Callsite->getOperand(0), DVCache, KnownBases); 2595 assert(!DVCache.count(Callsite)); 2596 auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast( 2597 Base, Callsite->getType(), suffixed_name_or(Base, ".cast", "")); 2598 if (BaseBC != Base) 2599 DVCache[BaseBC] = Base; 2600 Callsite->replaceAllUsesWith(BaseBC); 2601 if (!BaseBC->hasName()) 2602 BaseBC->takeName(Callsite); 2603 Callsite->eraseFromParent(); 2604 break; 2605 } 2606 case Intrinsic::experimental_gc_get_pointer_offset: { 2607 Changed = true; 2608 Value *Derived = Callsite->getOperand(0); 2609 Value *Base = findBasePointer(Derived, DVCache, KnownBases); 2610 assert(!DVCache.count(Callsite)); 2611 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 2612 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 2613 IRBuilder<> Builder(Callsite); 2614 Value *BaseInt = 2615 Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize), 2616 suffixed_name_or(Base, ".int", "")); 2617 Value *DerivedInt = 2618 Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize), 2619 suffixed_name_or(Derived, ".int", "")); 2620 Value *Offset = Builder.CreateSub(DerivedInt, BaseInt); 2621 Callsite->replaceAllUsesWith(Offset); 2622 Offset->takeName(Callsite); 2623 Callsite->eraseFromParent(); 2624 break; 2625 } 2626 default: 2627 llvm_unreachable("Unknown intrinsic"); 2628 } 2629 2630 return Changed; 2631 } 2632 2633 static bool insertParsePoints(Function &F, DominatorTree &DT, 2634 TargetTransformInfo &TTI, 2635 SmallVectorImpl<CallBase *> &ToUpdate, 2636 DefiningValueMapTy &DVCache, 2637 IsKnownBaseMapTy &KnownBases) { 2638 std::unique_ptr<GCStrategy> GC = findGCStrategy(F); 2639 2640 #ifndef NDEBUG 2641 // Validate the input 2642 std::set<CallBase *> Uniqued; 2643 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2644 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2645 2646 for (CallBase *Call : ToUpdate) 2647 assert(Call->getFunction() == &F); 2648 #endif 2649 2650 // When inserting gc.relocates for invokes, we need to be able to insert at 2651 // the top of the successor blocks. See the comment on 2652 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2653 // may restructure the CFG. 2654 for (CallBase *Call : ToUpdate) { 2655 auto *II = dyn_cast<InvokeInst>(Call); 2656 if (!II) 2657 continue; 2658 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2659 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2660 } 2661 2662 // A list of dummy calls added to the IR to keep various values obviously 2663 // live in the IR. We'll remove all of these when done. 2664 SmallVector<CallInst *, 64> Holders; 2665 2666 // Insert a dummy call with all of the deopt operands we'll need for the 2667 // actual safepoint insertion as arguments. This ensures reference operands 2668 // in the deopt argument list are considered live through the safepoint (and 2669 // thus makes sure they get relocated.) 2670 for (CallBase *Call : ToUpdate) { 2671 SmallVector<Value *, 64> DeoptValues; 2672 2673 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2674 assert(!isUnhandledGCPointerType(Arg->getType(), GC.get()) && 2675 "support for FCA unimplemented"); 2676 if (isHandledGCPointerType(Arg->getType(), GC.get())) 2677 DeoptValues.push_back(Arg); 2678 } 2679 2680 insertUseHolderAfter(Call, DeoptValues, Holders); 2681 } 2682 2683 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2684 2685 // A) Identify all gc pointers which are statically live at the given call 2686 // site. 2687 findLiveReferences(F, DT, ToUpdate, Records, GC.get()); 2688 2689 /// Global mapping from live pointers to a base-defining-value. 2690 PointerToBaseTy PointerToBase; 2691 2692 // B) Find the base pointers for each live pointer 2693 for (size_t i = 0; i < Records.size(); i++) { 2694 PartiallyConstructedSafepointRecord &info = Records[i]; 2695 findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases); 2696 } 2697 if (PrintBasePointers) { 2698 errs() << "Base Pairs (w/o Relocation):\n"; 2699 for (auto &Pair : PointerToBase) { 2700 errs() << " derived "; 2701 Pair.first->printAsOperand(errs(), false); 2702 errs() << " base "; 2703 Pair.second->printAsOperand(errs(), false); 2704 errs() << "\n"; 2705 ; 2706 } 2707 } 2708 2709 // The base phi insertion logic (for any safepoint) may have inserted new 2710 // instructions which are now live at some safepoint. The simplest such 2711 // example is: 2712 // loop: 2713 // phi a <-- will be a new base_phi here 2714 // safepoint 1 <-- that needs to be live here 2715 // gep a + 1 2716 // safepoint 2 2717 // br loop 2718 // We insert some dummy calls after each safepoint to definitely hold live 2719 // the base pointers which were identified for that safepoint. We'll then 2720 // ask liveness for _every_ base inserted to see what is now live. Then we 2721 // remove the dummy calls. 2722 Holders.reserve(Holders.size() + Records.size()); 2723 for (size_t i = 0; i < Records.size(); i++) { 2724 PartiallyConstructedSafepointRecord &Info = Records[i]; 2725 2726 SmallVector<Value *, 128> Bases; 2727 for (auto *Derived : Info.LiveSet) { 2728 assert(PointerToBase.count(Derived) && "Missed base for derived pointer"); 2729 Bases.push_back(PointerToBase[Derived]); 2730 } 2731 2732 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2733 } 2734 2735 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2736 // need to rerun liveness. We may *also* have inserted new defs, but that's 2737 // not the key issue. 2738 recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase, GC.get()); 2739 2740 if (PrintBasePointers) { 2741 errs() << "Base Pairs: (w/Relocation)\n"; 2742 for (auto Pair : PointerToBase) { 2743 errs() << " derived "; 2744 Pair.first->printAsOperand(errs(), false); 2745 errs() << " base "; 2746 Pair.second->printAsOperand(errs(), false); 2747 errs() << "\n"; 2748 } 2749 } 2750 2751 // It is possible that non-constant live variables have a constant base. For 2752 // example, a GEP with a variable offset from a global. In this case we can 2753 // remove it from the liveset. We already don't add constants to the liveset 2754 // because we assume they won't move at runtime and the GC doesn't need to be 2755 // informed about them. The same reasoning applies if the base is constant. 2756 // Note that the relocation placement code relies on this filtering for 2757 // correctness as it expects the base to be in the liveset, which isn't true 2758 // if the base is constant. 2759 for (auto &Info : Records) { 2760 Info.LiveSet.remove_if([&](Value *LiveV) { 2761 assert(PointerToBase.count(LiveV) && "Missed base for derived pointer"); 2762 return isa<Constant>(PointerToBase[LiveV]); 2763 }); 2764 } 2765 2766 for (CallInst *CI : Holders) 2767 CI->eraseFromParent(); 2768 2769 Holders.clear(); 2770 2771 // Compute the cost of possible re-materialization of derived pointers. 2772 RematCandTy RematerizationCandidates; 2773 findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI); 2774 2775 // In order to reduce live set of statepoint we might choose to rematerialize 2776 // some values instead of relocating them. This is purely an optimization and 2777 // does not influence correctness. 2778 // First try rematerialization at uses, then after statepoints. 2779 rematerializeLiveValuesAtUses(RematerizationCandidates, Records, 2780 PointerToBase); 2781 for (size_t i = 0; i < Records.size(); i++) 2782 rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase, 2783 RematerizationCandidates, TTI); 2784 2785 // We need this to safely RAUW and delete call or invoke return values that 2786 // may themselves be live over a statepoint. For details, please see usage in 2787 // makeStatepointExplicitImpl. 2788 std::vector<DeferredReplacement> Replacements; 2789 2790 // Now run through and replace the existing statepoints with new ones with 2791 // the live variables listed. We do not yet update uses of the values being 2792 // relocated. We have references to live variables that need to 2793 // survive to the last iteration of this loop. (By construction, the 2794 // previous statepoint can not be a live variable, thus we can and remove 2795 // the old statepoint calls as we go.) 2796 for (size_t i = 0; i < Records.size(); i++) 2797 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements, 2798 PointerToBase, GC.get()); 2799 2800 ToUpdate.clear(); // prevent accident use of invalid calls. 2801 2802 for (auto &PR : Replacements) 2803 PR.doReplacement(); 2804 2805 Replacements.clear(); 2806 2807 for (auto &Info : Records) { 2808 // These live sets may contain state Value pointers, since we replaced calls 2809 // with operand bundles with calls wrapped in gc.statepoint, and some of 2810 // those calls may have been def'ing live gc pointers. Clear these out to 2811 // avoid accidentally using them. 2812 // 2813 // TODO: We should create a separate data structure that does not contain 2814 // these live sets, and migrate to using that data structure from this point 2815 // onward. 2816 Info.LiveSet.clear(); 2817 } 2818 PointerToBase.clear(); 2819 2820 // Do all the fixups of the original live variables to their relocated selves 2821 SmallVector<Value *, 128> Live; 2822 for (const PartiallyConstructedSafepointRecord &Info : Records) { 2823 // We can't simply save the live set from the original insertion. One of 2824 // the live values might be the result of a call which needs a safepoint. 2825 // That Value* no longer exists and we need to use the new gc_result. 2826 // Thankfully, the live set is embedded in the statepoint (and updated), so 2827 // we just grab that. 2828 llvm::append_range(Live, Info.StatepointToken->gc_args()); 2829 #ifndef NDEBUG 2830 // Do some basic validation checking on our liveness results before 2831 // performing relocation. Relocation can and will turn mistakes in liveness 2832 // results into non-sensical code which is must harder to debug. 2833 // TODO: It would be nice to test consistency as well 2834 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2835 "statepoint must be reachable or liveness is meaningless"); 2836 for (Value *V : Info.StatepointToken->gc_args()) { 2837 if (!isa<Instruction>(V)) 2838 // Non-instruction values trivial dominate all possible uses 2839 continue; 2840 auto *LiveInst = cast<Instruction>(V); 2841 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2842 "unreachable values should never be live"); 2843 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2844 "basic SSA liveness expectation violated by liveness analysis"); 2845 } 2846 #endif 2847 } 2848 unique_unsorted(Live); 2849 2850 #ifndef NDEBUG 2851 // Validation check 2852 for (auto *Ptr : Live) 2853 assert(isHandledGCPointerType(Ptr->getType(), GC.get()) && 2854 "must be a gc pointer type"); 2855 #endif 2856 2857 relocationViaAlloca(F, DT, Live, Records); 2858 return !Records.empty(); 2859 } 2860 2861 // List of all parameter and return attributes which must be stripped when 2862 // lowering from the abstract machine model. Note that we list attributes 2863 // here which aren't valid as return attributes, that is okay. 2864 static AttributeMask getParamAndReturnAttributesToRemove() { 2865 AttributeMask R; 2866 R.addAttribute(Attribute::Dereferenceable); 2867 R.addAttribute(Attribute::DereferenceableOrNull); 2868 R.addAttribute(Attribute::ReadNone); 2869 R.addAttribute(Attribute::ReadOnly); 2870 R.addAttribute(Attribute::WriteOnly); 2871 R.addAttribute(Attribute::NoAlias); 2872 R.addAttribute(Attribute::NoFree); 2873 return R; 2874 } 2875 2876 static void stripNonValidAttributesFromPrototype(Function &F) { 2877 LLVMContext &Ctx = F.getContext(); 2878 2879 // Intrinsics are very delicate. Lowering sometimes depends the presence 2880 // of certain attributes for correctness, but we may have also inferred 2881 // additional ones in the abstract machine model which need stripped. This 2882 // assumes that the attributes defined in Intrinsic.td are conservatively 2883 // correct for both physical and abstract model. 2884 if (Intrinsic::ID id = F.getIntrinsicID()) { 2885 F.setAttributes(Intrinsic::getAttributes(Ctx, id)); 2886 return; 2887 } 2888 2889 AttributeMask R = getParamAndReturnAttributesToRemove(); 2890 for (Argument &A : F.args()) 2891 if (isa<PointerType>(A.getType())) 2892 F.removeParamAttrs(A.getArgNo(), R); 2893 2894 if (isa<PointerType>(F.getReturnType())) 2895 F.removeRetAttrs(R); 2896 2897 for (auto Attr : FnAttrsToStrip) 2898 F.removeFnAttr(Attr); 2899 } 2900 2901 /// Certain metadata on instructions are invalid after running RS4GC. 2902 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2903 /// optimize functions. We drop such metadata on the instruction. 2904 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2905 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2906 return; 2907 // These are the attributes that are still valid on loads and stores after 2908 // RS4GC. 2909 // The metadata implying dereferenceability and noalias are (conservatively) 2910 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2911 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2912 // touch the entire heap including noalias objects. Note: The reasoning is 2913 // same as stripping the dereferenceability and noalias attributes that are 2914 // analogous to the metadata counterparts. 2915 // We also drop the invariant.load metadata on the load because that metadata 2916 // implies the address operand to the load points to memory that is never 2917 // changed once it became dereferenceable. This is no longer true after RS4GC. 2918 // Similar reasoning applies to invariant.group metadata, which applies to 2919 // loads within a group. 2920 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2921 LLVMContext::MD_range, 2922 LLVMContext::MD_alias_scope, 2923 LLVMContext::MD_nontemporal, 2924 LLVMContext::MD_nonnull, 2925 LLVMContext::MD_align, 2926 LLVMContext::MD_type}; 2927 2928 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2929 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2930 } 2931 2932 static void stripNonValidDataFromBody(Function &F) { 2933 if (F.empty()) 2934 return; 2935 2936 LLVMContext &Ctx = F.getContext(); 2937 MDBuilder Builder(Ctx); 2938 2939 // Set of invariantstart instructions that we need to remove. 2940 // Use this to avoid invalidating the instruction iterator. 2941 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2942 2943 for (Instruction &I : instructions(F)) { 2944 // invariant.start on memory location implies that the referenced memory 2945 // location is constant and unchanging. This is no longer true after 2946 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2947 // which frees the entire heap and the presence of invariant.start allows 2948 // the optimizer to sink the load of a memory location past a statepoint, 2949 // which is incorrect. 2950 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2951 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2952 InvariantStartInstructions.push_back(II); 2953 continue; 2954 } 2955 2956 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2957 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2958 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2959 } 2960 2961 stripInvalidMetadataFromInstruction(I); 2962 2963 AttributeMask R = getParamAndReturnAttributesToRemove(); 2964 if (auto *Call = dyn_cast<CallBase>(&I)) { 2965 for (int i = 0, e = Call->arg_size(); i != e; i++) 2966 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2967 Call->removeParamAttrs(i, R); 2968 if (isa<PointerType>(Call->getType())) 2969 Call->removeRetAttrs(R); 2970 } 2971 } 2972 2973 // Delete the invariant.start instructions and RAUW poison. 2974 for (auto *II : InvariantStartInstructions) { 2975 II->replaceAllUsesWith(PoisonValue::get(II->getType())); 2976 II->eraseFromParent(); 2977 } 2978 } 2979 2980 /// Looks up the GC strategy for a given function, returning null if the 2981 /// function doesn't have a GC tag. The strategy is stored in the cache. 2982 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F) { 2983 if (!F.hasGC()) 2984 return nullptr; 2985 2986 return getGCStrategy(F.getGC()); 2987 } 2988 2989 /// Returns true if this function should be rewritten by this pass. The main 2990 /// point of this function is as an extension point for custom logic. 2991 static bool shouldRewriteStatepointsIn(Function &F) { 2992 if (!F.hasGC()) 2993 return false; 2994 2995 std::unique_ptr<GCStrategy> Strategy = findGCStrategy(F); 2996 2997 assert(Strategy && "GC strategy is required by function, but was not found"); 2998 2999 return Strategy->useRS4GC(); 3000 } 3001 3002 static void stripNonValidData(Module &M) { 3003 #ifndef NDEBUG 3004 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 3005 #endif 3006 3007 for (Function &F : M) 3008 stripNonValidAttributesFromPrototype(F); 3009 3010 for (Function &F : M) 3011 stripNonValidDataFromBody(F); 3012 } 3013 3014 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 3015 TargetTransformInfo &TTI, 3016 const TargetLibraryInfo &TLI) { 3017 assert(!F.isDeclaration() && !F.empty() && 3018 "need function body to rewrite statepoints in"); 3019 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 3020 3021 auto NeedsRewrite = [&TLI](Instruction &I) { 3022 if (const auto *Call = dyn_cast<CallBase>(&I)) { 3023 if (isa<GCStatepointInst>(Call)) 3024 return false; 3025 if (callsGCLeafFunction(Call, TLI)) 3026 return false; 3027 3028 // Normally it's up to the frontend to make sure that non-leaf calls also 3029 // have proper deopt state if it is required. We make an exception for 3030 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics 3031 // these are non-leaf by default. They might be generated by the optimizer 3032 // which doesn't know how to produce a proper deopt state. So if we see a 3033 // non-leaf memcpy/memmove without deopt state just treat it as a leaf 3034 // copy and don't produce a statepoint. 3035 if (!AllowStatepointWithNoDeoptInfo && 3036 !Call->getOperandBundle(LLVMContext::OB_deopt)) { 3037 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && 3038 "Don't expect any other calls here!"); 3039 return false; 3040 } 3041 return true; 3042 } 3043 return false; 3044 }; 3045 3046 // Delete any unreachable statepoints so that we don't have unrewritten 3047 // statepoints surviving this pass. This makes testing easier and the 3048 // resulting IR less confusing to human readers. 3049 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 3050 bool MadeChange = removeUnreachableBlocks(F, &DTU); 3051 // Flush the Dominator Tree. 3052 DTU.getDomTree(); 3053 3054 // Gather all the statepoints which need rewritten. Be careful to only 3055 // consider those in reachable code since we need to ask dominance queries 3056 // when rewriting. We'll delete the unreachable ones in a moment. 3057 SmallVector<CallBase *, 64> ParsePointNeeded; 3058 SmallVector<CallInst *, 64> Intrinsics; 3059 for (Instruction &I : instructions(F)) { 3060 // TODO: only the ones with the flag set! 3061 if (NeedsRewrite(I)) { 3062 // NOTE removeUnreachableBlocks() is stronger than 3063 // DominatorTree::isReachableFromEntry(). In other words 3064 // removeUnreachableBlocks can remove some blocks for which 3065 // isReachableFromEntry() returns true. 3066 assert(DT.isReachableFromEntry(I.getParent()) && 3067 "no unreachable blocks expected"); 3068 ParsePointNeeded.push_back(cast<CallBase>(&I)); 3069 } 3070 if (auto *CI = dyn_cast<CallInst>(&I)) 3071 if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || 3072 CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) 3073 Intrinsics.emplace_back(CI); 3074 } 3075 3076 // Return early if no work to do. 3077 if (ParsePointNeeded.empty() && Intrinsics.empty()) 3078 return MadeChange; 3079 3080 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 3081 // These are created by LCSSA. They have the effect of increasing the size 3082 // of liveness sets for no good reason. It may be harder to do this post 3083 // insertion since relocations and base phis can confuse things. 3084 for (BasicBlock &BB : F) 3085 if (BB.getUniquePredecessor()) 3086 MadeChange |= FoldSingleEntryPHINodes(&BB); 3087 3088 // Before we start introducing relocations, we want to tweak the IR a bit to 3089 // avoid unfortunate code generation effects. The main example is that we 3090 // want to try to make sure the comparison feeding a branch is after any 3091 // safepoints. Otherwise, we end up with a comparison of pre-relocation 3092 // values feeding a branch after relocation. This is semantically correct, 3093 // but results in extra register pressure since both the pre-relocation and 3094 // post-relocation copies must be available in registers. For code without 3095 // relocations this is handled elsewhere, but teaching the scheduler to 3096 // reverse the transform we're about to do would be slightly complex. 3097 // Note: This may extend the live range of the inputs to the icmp and thus 3098 // increase the liveset of any statepoint we move over. This is profitable 3099 // as long as all statepoints are in rare blocks. If we had in-register 3100 // lowering for live values this would be a much safer transform. 3101 auto getConditionInst = [](Instruction *TI) -> Instruction * { 3102 if (auto *BI = dyn_cast<BranchInst>(TI)) 3103 if (BI->isConditional()) 3104 return dyn_cast<Instruction>(BI->getCondition()); 3105 // TODO: Extend this to handle switches 3106 return nullptr; 3107 }; 3108 for (BasicBlock &BB : F) { 3109 Instruction *TI = BB.getTerminator(); 3110 if (auto *Cond = getConditionInst(TI)) 3111 // TODO: Handle more than just ICmps here. We should be able to move 3112 // most instructions without side effects or memory access. 3113 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 3114 MadeChange = true; 3115 Cond->moveBefore(TI); 3116 } 3117 } 3118 3119 // Nasty workaround - The base computation code in the main algorithm doesn't 3120 // consider the fact that a GEP can be used to convert a scalar to a vector. 3121 // The right fix for this is to integrate GEPs into the base rewriting 3122 // algorithm properly, this is just a short term workaround to prevent 3123 // crashes by canonicalizing such GEPs into fully vector GEPs. 3124 for (Instruction &I : instructions(F)) { 3125 if (!isa<GetElementPtrInst>(I)) 3126 continue; 3127 3128 unsigned VF = 0; 3129 for (unsigned i = 0; i < I.getNumOperands(); i++) 3130 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 3131 assert(VF == 0 || 3132 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 3133 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 3134 } 3135 3136 // It's the vector to scalar traversal through the pointer operand which 3137 // confuses base pointer rewriting, so limit ourselves to that case. 3138 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 3139 IRBuilder<> B(&I); 3140 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 3141 I.setOperand(0, Splat); 3142 MadeChange = true; 3143 } 3144 } 3145 3146 // Cache the 'defining value' relation used in the computation and 3147 // insertion of base phis and selects. This ensures that we don't insert 3148 // large numbers of duplicate base_phis. Use one cache for both 3149 // inlineGetBaseAndOffset() and insertParsePoints(). 3150 DefiningValueMapTy DVCache; 3151 3152 // Mapping between a base values and a flag indicating whether it's a known 3153 // base or not. 3154 IsKnownBaseMapTy KnownBases; 3155 3156 if (!Intrinsics.empty()) 3157 // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding 3158 // live references. 3159 MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases); 3160 3161 if (!ParsePointNeeded.empty()) 3162 MadeChange |= 3163 insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases); 3164 3165 return MadeChange; 3166 } 3167 3168 // liveness computation via standard dataflow 3169 // ------------------------------------------------------------------- 3170 3171 // TODO: Consider using bitvectors for liveness, the set of potentially 3172 // interesting values should be small and easy to pre-compute. 3173 3174 /// Compute the live-in set for the location rbegin starting from 3175 /// the live-out set of the basic block 3176 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 3177 BasicBlock::reverse_iterator End, 3178 SetVector<Value *> &LiveTmp, GCStrategy *GC) { 3179 for (auto &I : make_range(Begin, End)) { 3180 // KILL/Def - Remove this definition from LiveIn 3181 LiveTmp.remove(&I); 3182 3183 // Don't consider *uses* in PHI nodes, we handle their contribution to 3184 // predecessor blocks when we seed the LiveOut sets 3185 if (isa<PHINode>(I)) 3186 continue; 3187 3188 // USE - Add to the LiveIn set for this instruction 3189 for (Value *V : I.operands()) { 3190 assert(!isUnhandledGCPointerType(V->getType(), GC) && 3191 "support for FCA unimplemented"); 3192 if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V)) { 3193 // The choice to exclude all things constant here is slightly subtle. 3194 // There are two independent reasons: 3195 // - We assume that things which are constant (from LLVM's definition) 3196 // do not move at runtime. For example, the address of a global 3197 // variable is fixed, even though it's contents may not be. 3198 // - Second, we can't disallow arbitrary inttoptr constants even 3199 // if the language frontend does. Optimization passes are free to 3200 // locally exploit facts without respect to global reachability. This 3201 // can create sections of code which are dynamically unreachable and 3202 // contain just about anything. (see constants.ll in tests) 3203 LiveTmp.insert(V); 3204 } 3205 } 3206 } 3207 } 3208 3209 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp, 3210 GCStrategy *GC) { 3211 for (BasicBlock *Succ : successors(BB)) { 3212 for (auto &I : *Succ) { 3213 PHINode *PN = dyn_cast<PHINode>(&I); 3214 if (!PN) 3215 break; 3216 3217 Value *V = PN->getIncomingValueForBlock(BB); 3218 assert(!isUnhandledGCPointerType(V->getType(), GC) && 3219 "support for FCA unimplemented"); 3220 if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V)) 3221 LiveTmp.insert(V); 3222 } 3223 } 3224 } 3225 3226 static SetVector<Value *> computeKillSet(BasicBlock *BB, GCStrategy *GC) { 3227 SetVector<Value *> KillSet; 3228 for (Instruction &I : *BB) 3229 if (isHandledGCPointerType(I.getType(), GC)) 3230 KillSet.insert(&I); 3231 return KillSet; 3232 } 3233 3234 #ifndef NDEBUG 3235 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 3236 /// validation check for the liveness computation. 3237 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 3238 Instruction *TI, bool TermOkay = false) { 3239 for (Value *V : Live) { 3240 if (auto *I = dyn_cast<Instruction>(V)) { 3241 // The terminator can be a member of the LiveOut set. LLVM's definition 3242 // of instruction dominance states that V does not dominate itself. As 3243 // such, we need to special case this to allow it. 3244 if (TermOkay && TI == I) 3245 continue; 3246 assert(DT.dominates(I, TI) && 3247 "basic SSA liveness expectation violated by liveness analysis"); 3248 } 3249 } 3250 } 3251 3252 /// Check that all the liveness sets used during the computation of liveness 3253 /// obey basic SSA properties. This is useful for finding cases where we miss 3254 /// a def. 3255 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 3256 BasicBlock &BB) { 3257 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 3258 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 3259 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 3260 } 3261 #endif 3262 3263 static void computeLiveInValues(DominatorTree &DT, Function &F, 3264 GCPtrLivenessData &Data, GCStrategy *GC) { 3265 SmallSetVector<BasicBlock *, 32> Worklist; 3266 3267 // Seed the liveness for each individual block 3268 for (BasicBlock &BB : F) { 3269 Data.KillSet[&BB] = computeKillSet(&BB, GC); 3270 Data.LiveSet[&BB].clear(); 3271 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB], GC); 3272 3273 #ifndef NDEBUG 3274 for (Value *Kill : Data.KillSet[&BB]) 3275 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 3276 #endif 3277 3278 Data.LiveOut[&BB] = SetVector<Value *>(); 3279 computeLiveOutSeed(&BB, Data.LiveOut[&BB], GC); 3280 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 3281 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 3282 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 3283 if (!Data.LiveIn[&BB].empty()) 3284 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 3285 } 3286 3287 // Propagate that liveness until stable 3288 while (!Worklist.empty()) { 3289 BasicBlock *BB = Worklist.pop_back_val(); 3290 3291 // Compute our new liveout set, then exit early if it hasn't changed despite 3292 // the contribution of our successor. 3293 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3294 const auto OldLiveOutSize = LiveOut.size(); 3295 for (BasicBlock *Succ : successors(BB)) { 3296 assert(Data.LiveIn.count(Succ)); 3297 LiveOut.set_union(Data.LiveIn[Succ]); 3298 } 3299 // assert OutLiveOut is a subset of LiveOut 3300 if (OldLiveOutSize == LiveOut.size()) { 3301 // If the sets are the same size, then we didn't actually add anything 3302 // when unioning our successors LiveIn. Thus, the LiveIn of this block 3303 // hasn't changed. 3304 continue; 3305 } 3306 Data.LiveOut[BB] = LiveOut; 3307 3308 // Apply the effects of this basic block 3309 SetVector<Value *> LiveTmp = LiveOut; 3310 LiveTmp.set_union(Data.LiveSet[BB]); 3311 LiveTmp.set_subtract(Data.KillSet[BB]); 3312 3313 assert(Data.LiveIn.count(BB)); 3314 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 3315 // assert: OldLiveIn is a subset of LiveTmp 3316 if (OldLiveIn.size() != LiveTmp.size()) { 3317 Data.LiveIn[BB] = LiveTmp; 3318 Worklist.insert(pred_begin(BB), pred_end(BB)); 3319 } 3320 } // while (!Worklist.empty()) 3321 3322 #ifndef NDEBUG 3323 // Verify our output against SSA properties. This helps catch any 3324 // missing kills during the above iteration. 3325 for (BasicBlock &BB : F) 3326 checkBasicSSA(DT, Data, BB); 3327 #endif 3328 } 3329 3330 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 3331 StatepointLiveSetTy &Out, GCStrategy *GC) { 3332 BasicBlock *BB = Inst->getParent(); 3333 3334 // Note: The copy is intentional and required 3335 assert(Data.LiveOut.count(BB)); 3336 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3337 3338 // We want to handle the statepoint itself oddly. It's 3339 // call result is not live (normal), nor are it's arguments 3340 // (unless they're used again later). This adjustment is 3341 // specifically what we need to relocate 3342 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), LiveOut, 3343 GC); 3344 LiveOut.remove(Inst); 3345 Out.insert(LiveOut.begin(), LiveOut.end()); 3346 } 3347 3348 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 3349 CallBase *Call, 3350 PartiallyConstructedSafepointRecord &Info, 3351 PointerToBaseTy &PointerToBase, 3352 GCStrategy *GC) { 3353 StatepointLiveSetTy Updated; 3354 findLiveSetAtInst(Call, RevisedLivenessData, Updated, GC); 3355 3356 // We may have base pointers which are now live that weren't before. We need 3357 // to update the PointerToBase structure to reflect this. 3358 for (auto *V : Updated) 3359 PointerToBase.insert({ V, V }); 3360 3361 Info.LiveSet = Updated; 3362 } 3363