1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/AttributeMask.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GCStrategy.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueHandle.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <iterator> 71 #include <optional> 72 #include <set> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 78 79 using namespace llvm; 80 81 // Print the liveset found at the insert location 82 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 83 cl::init(false)); 84 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 85 cl::init(false)); 86 87 // Print out the base pointers for debugging 88 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 89 cl::init(false)); 90 91 // Cost threshold measuring when it is profitable to rematerialize value instead 92 // of relocating it 93 static cl::opt<unsigned> 94 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 95 cl::init(6)); 96 97 #ifdef EXPENSIVE_CHECKS 98 static bool ClobberNonLive = true; 99 #else 100 static bool ClobberNonLive = false; 101 #endif 102 103 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 104 cl::location(ClobberNonLive), 105 cl::Hidden); 106 107 static cl::opt<bool> 108 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 109 cl::Hidden, cl::init(true)); 110 111 static cl::opt<bool> RematDerivedAtUses("rs4gc-remat-derived-at-uses", 112 cl::Hidden, cl::init(true)); 113 114 /// The IR fed into RewriteStatepointsForGC may have had attributes and 115 /// metadata implying dereferenceability that are no longer valid/correct after 116 /// RewriteStatepointsForGC has run. This is because semantically, after 117 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 118 /// heap. stripNonValidData (conservatively) restores 119 /// correctness by erasing all attributes in the module that externally imply 120 /// dereferenceability. Similar reasoning also applies to the noalias 121 /// attributes and metadata. gc.statepoint can touch the entire heap including 122 /// noalias objects. 123 /// Apart from attributes and metadata, we also remove instructions that imply 124 /// constant physical memory: llvm.invariant.start. 125 static void stripNonValidData(Module &M); 126 127 // Find the GC strategy for a function, or null if it doesn't have one. 128 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F); 129 130 static bool shouldRewriteStatepointsIn(Function &F); 131 132 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 133 ModuleAnalysisManager &AM) { 134 bool Changed = false; 135 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 136 for (Function &F : M) { 137 // Nothing to do for declarations. 138 if (F.isDeclaration() || F.empty()) 139 continue; 140 141 // Policy choice says not to rewrite - the most common reason is that we're 142 // compiling code without a GCStrategy. 143 if (!shouldRewriteStatepointsIn(F)) 144 continue; 145 146 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 147 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 148 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 149 Changed |= runOnFunction(F, DT, TTI, TLI); 150 } 151 if (!Changed) 152 return PreservedAnalyses::all(); 153 154 // stripNonValidData asserts that shouldRewriteStatepointsIn 155 // returns true for at least one function in the module. Since at least 156 // one function changed, we know that the precondition is satisfied. 157 stripNonValidData(M); 158 159 PreservedAnalyses PA; 160 PA.preserve<TargetIRAnalysis>(); 161 PA.preserve<TargetLibraryAnalysis>(); 162 return PA; 163 } 164 165 namespace { 166 167 struct GCPtrLivenessData { 168 /// Values defined in this block. 169 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 170 171 /// Values used in this block (and thus live); does not included values 172 /// killed within this block. 173 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 174 175 /// Values live into this basic block (i.e. used by any 176 /// instruction in this basic block or ones reachable from here) 177 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 178 179 /// Values live out of this basic block (i.e. live into 180 /// any successor block) 181 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 182 }; 183 184 // The type of the internal cache used inside the findBasePointers family 185 // of functions. From the callers perspective, this is an opaque type and 186 // should not be inspected. 187 // 188 // In the actual implementation this caches two relations: 189 // - The base relation itself (i.e. this pointer is based on that one) 190 // - The base defining value relation (i.e. before base_phi insertion) 191 // Generally, after the execution of a full findBasePointer call, only the 192 // base relation will remain. Internally, we add a mixture of the two 193 // types, then update all the second type to the first type 194 using DefiningValueMapTy = MapVector<Value *, Value *>; 195 using IsKnownBaseMapTy = MapVector<Value *, bool>; 196 using PointerToBaseTy = MapVector<Value *, Value *>; 197 using StatepointLiveSetTy = SetVector<Value *>; 198 using RematerializedValueMapTy = 199 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 200 201 struct PartiallyConstructedSafepointRecord { 202 /// The set of values known to be live across this safepoint 203 StatepointLiveSetTy LiveSet; 204 205 /// The *new* gc.statepoint instruction itself. This produces the token 206 /// that normal path gc.relocates and the gc.result are tied to. 207 GCStatepointInst *StatepointToken; 208 209 /// Instruction to which exceptional gc relocates are attached 210 /// Makes it easier to iterate through them during relocationViaAlloca. 211 Instruction *UnwindToken; 212 213 /// Record live values we are rematerialized instead of relocating. 214 /// They are not included into 'LiveSet' field. 215 /// Maps rematerialized copy to it's original value. 216 RematerializedValueMapTy RematerializedValues; 217 }; 218 219 struct RematerizlizationCandidateRecord { 220 // Chain from derived pointer to base. 221 SmallVector<Instruction *, 3> ChainToBase; 222 // Original base. 223 Value *RootOfChain; 224 // Cost of chain. 225 InstructionCost Cost; 226 }; 227 using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>; 228 229 } // end anonymous namespace 230 231 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 232 std::optional<OperandBundleUse> DeoptBundle = 233 Call->getOperandBundle(LLVMContext::OB_deopt); 234 235 if (!DeoptBundle) { 236 assert(AllowStatepointWithNoDeoptInfo && 237 "Found non-leaf call without deopt info!"); 238 return std::nullopt; 239 } 240 241 return DeoptBundle->Inputs; 242 } 243 244 /// Compute the live-in set for every basic block in the function 245 static void computeLiveInValues(DominatorTree &DT, Function &F, 246 GCPtrLivenessData &Data, GCStrategy *GC); 247 248 /// Given results from the dataflow liveness computation, find the set of live 249 /// Values at a particular instruction. 250 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 251 StatepointLiveSetTy &out, GCStrategy *GC); 252 253 static bool isGCPointerType(Type *T, GCStrategy *GC) { 254 assert(GC && "GC Strategy for isGCPointerType cannot be null"); 255 256 if (!isa<PointerType>(T)) 257 return false; 258 259 // conservative - same as StatepointLowering 260 return GC->isGCManagedPointer(T).value_or(true); 261 } 262 263 // Return true if this type is one which a) is a gc pointer or contains a GC 264 // pointer and b) is of a type this code expects to encounter as a live value. 265 // (The insertion code will assert that a type which matches (a) and not (b) 266 // is not encountered.) 267 static bool isHandledGCPointerType(Type *T, GCStrategy *GC) { 268 // We fully support gc pointers 269 if (isGCPointerType(T, GC)) 270 return true; 271 // We partially support vectors of gc pointers. The code will assert if it 272 // can't handle something. 273 if (auto VT = dyn_cast<VectorType>(T)) 274 if (isGCPointerType(VT->getElementType(), GC)) 275 return true; 276 return false; 277 } 278 279 #ifndef NDEBUG 280 /// Returns true if this type contains a gc pointer whether we know how to 281 /// handle that type or not. 282 static bool containsGCPtrType(Type *Ty, GCStrategy *GC) { 283 if (isGCPointerType(Ty, GC)) 284 return true; 285 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 286 return isGCPointerType(VT->getScalarType(), GC); 287 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 288 return containsGCPtrType(AT->getElementType(), GC); 289 if (StructType *ST = dyn_cast<StructType>(Ty)) 290 return llvm::any_of(ST->elements(), 291 [GC](Type *Ty) { return containsGCPtrType(Ty, GC); }); 292 return false; 293 } 294 295 // Returns true if this is a type which a) is a gc pointer or contains a GC 296 // pointer and b) is of a type which the code doesn't expect (i.e. first class 297 // aggregates). Used to trip assertions. 298 static bool isUnhandledGCPointerType(Type *Ty, GCStrategy *GC) { 299 return containsGCPtrType(Ty, GC) && !isHandledGCPointerType(Ty, GC); 300 } 301 #endif 302 303 // Return the name of the value suffixed with the provided value, or if the 304 // value didn't have a name, the default value specified. 305 static std::string suffixed_name_or(Value *V, StringRef Suffix, 306 StringRef DefaultName) { 307 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 308 } 309 310 // Conservatively identifies any definitions which might be live at the 311 // given instruction. The analysis is performed immediately before the 312 // given instruction. Values defined by that instruction are not considered 313 // live. Values used by that instruction are considered live. 314 static void analyzeParsePointLiveness( 315 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 316 PartiallyConstructedSafepointRecord &Result, GCStrategy *GC) { 317 StatepointLiveSetTy LiveSet; 318 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet, GC); 319 320 if (PrintLiveSet) { 321 dbgs() << "Live Variables:\n"; 322 for (Value *V : LiveSet) 323 dbgs() << " " << V->getName() << " " << *V << "\n"; 324 } 325 if (PrintLiveSetSize) { 326 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 327 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 328 } 329 Result.LiveSet = LiveSet; 330 } 331 332 /// Returns true if V is a known base. 333 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases); 334 335 /// Caches the IsKnownBase flag for a value and asserts that it wasn't present 336 /// in the cache before. 337 static void setKnownBase(Value *V, bool IsKnownBase, 338 IsKnownBaseMapTy &KnownBases); 339 340 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 341 IsKnownBaseMapTy &KnownBases); 342 343 /// Return a base defining value for the 'Index' element of the given vector 344 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 345 /// 'I'. As an optimization, this method will try to determine when the 346 /// element is known to already be a base pointer. If this can be established, 347 /// the second value in the returned pair will be true. Note that either a 348 /// vector or a pointer typed value can be returned. For the former, the 349 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 350 /// If the later, the return pointer is a BDV (or possibly a base) for the 351 /// particular element in 'I'. 352 static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache, 353 IsKnownBaseMapTy &KnownBases) { 354 // Each case parallels findBaseDefiningValue below, see that code for 355 // detailed motivation. 356 357 auto Cached = Cache.find(I); 358 if (Cached != Cache.end()) 359 return Cached->second; 360 361 if (isa<Argument>(I)) { 362 // An incoming argument to the function is a base pointer 363 Cache[I] = I; 364 setKnownBase(I, /* IsKnownBase */true, KnownBases); 365 return I; 366 } 367 368 if (isa<Constant>(I)) { 369 // Base of constant vector consists only of constant null pointers. 370 // For reasoning see similar case inside 'findBaseDefiningValue' function. 371 auto *CAZ = ConstantAggregateZero::get(I->getType()); 372 Cache[I] = CAZ; 373 setKnownBase(CAZ, /* IsKnownBase */true, KnownBases); 374 return CAZ; 375 } 376 377 if (isa<LoadInst>(I)) { 378 Cache[I] = I; 379 setKnownBase(I, /* IsKnownBase */true, KnownBases); 380 return I; 381 } 382 383 if (isa<InsertElementInst>(I)) { 384 // We don't know whether this vector contains entirely base pointers or 385 // not. To be conservatively correct, we treat it as a BDV and will 386 // duplicate code as needed to construct a parallel vector of bases. 387 Cache[I] = I; 388 setKnownBase(I, /* IsKnownBase */false, KnownBases); 389 return I; 390 } 391 392 if (isa<ShuffleVectorInst>(I)) { 393 // We don't know whether this vector contains entirely base pointers or 394 // not. To be conservatively correct, we treat it as a BDV and will 395 // duplicate code as needed to construct a parallel vector of bases. 396 // TODO: There a number of local optimizations which could be applied here 397 // for particular sufflevector patterns. 398 Cache[I] = I; 399 setKnownBase(I, /* IsKnownBase */false, KnownBases); 400 return I; 401 } 402 403 // The behavior of getelementptr instructions is the same for vector and 404 // non-vector data types. 405 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 406 auto *BDV = 407 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 408 Cache[GEP] = BDV; 409 return BDV; 410 } 411 412 // The behavior of freeze instructions is the same for vector and 413 // non-vector data types. 414 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 415 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 416 Cache[Freeze] = BDV; 417 return BDV; 418 } 419 420 // If the pointer comes through a bitcast of a vector of pointers to 421 // a vector of another type of pointer, then look through the bitcast 422 if (auto *BC = dyn_cast<BitCastInst>(I)) { 423 auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases); 424 Cache[BC] = BDV; 425 return BDV; 426 } 427 428 // We assume that functions in the source language only return base 429 // pointers. This should probably be generalized via attributes to support 430 // both source language and internal functions. 431 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 432 Cache[I] = I; 433 setKnownBase(I, /* IsKnownBase */true, KnownBases); 434 return I; 435 } 436 437 // A PHI or Select is a base defining value. The outer findBasePointer 438 // algorithm is responsible for constructing a base value for this BDV. 439 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 440 "unknown vector instruction - no base found for vector element"); 441 Cache[I] = I; 442 setKnownBase(I, /* IsKnownBase */false, KnownBases); 443 return I; 444 } 445 446 /// Helper function for findBasePointer - Will return a value which either a) 447 /// defines the base pointer for the input, b) blocks the simple search 448 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 449 /// from pointer to vector type or back. 450 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 451 IsKnownBaseMapTy &KnownBases) { 452 assert(I->getType()->isPtrOrPtrVectorTy() && 453 "Illegal to ask for the base pointer of a non-pointer type"); 454 auto Cached = Cache.find(I); 455 if (Cached != Cache.end()) 456 return Cached->second; 457 458 if (I->getType()->isVectorTy()) 459 return findBaseDefiningValueOfVector(I, Cache, KnownBases); 460 461 if (isa<Argument>(I)) { 462 // An incoming argument to the function is a base pointer 463 // We should have never reached here if this argument isn't an gc value 464 Cache[I] = I; 465 setKnownBase(I, /* IsKnownBase */true, KnownBases); 466 return I; 467 } 468 469 if (isa<Constant>(I)) { 470 // We assume that objects with a constant base (e.g. a global) can't move 471 // and don't need to be reported to the collector because they are always 472 // live. Besides global references, all kinds of constants (e.g. undef, 473 // constant expressions, null pointers) can be introduced by the inliner or 474 // the optimizer, especially on dynamically dead paths. 475 // Here we treat all of them as having single null base. By doing this we 476 // trying to avoid problems reporting various conflicts in a form of 477 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 478 // See constant.ll file for relevant test cases. 479 480 auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType())); 481 Cache[I] = CPN; 482 setKnownBase(CPN, /* IsKnownBase */true, KnownBases); 483 return CPN; 484 } 485 486 // inttoptrs in an integral address space are currently ill-defined. We 487 // treat them as defining base pointers here for consistency with the 488 // constant rule above and because we don't really have a better semantic 489 // to give them. Note that the optimizer is always free to insert undefined 490 // behavior on dynamically dead paths as well. 491 if (isa<IntToPtrInst>(I)) { 492 Cache[I] = I; 493 setKnownBase(I, /* IsKnownBase */true, KnownBases); 494 return I; 495 } 496 497 if (CastInst *CI = dyn_cast<CastInst>(I)) { 498 Value *Def = CI->stripPointerCasts(); 499 // If stripping pointer casts changes the address space there is an 500 // addrspacecast in between. 501 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 502 cast<PointerType>(CI->getType())->getAddressSpace() && 503 "unsupported addrspacecast"); 504 // If we find a cast instruction here, it means we've found a cast which is 505 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 506 // handle int->ptr conversion. 507 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 508 auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases); 509 Cache[CI] = BDV; 510 return BDV; 511 } 512 513 if (isa<LoadInst>(I)) { 514 // The value loaded is an gc base itself 515 Cache[I] = I; 516 setKnownBase(I, /* IsKnownBase */true, KnownBases); 517 return I; 518 } 519 520 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 521 // The base of this GEP is the base 522 auto *BDV = 523 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 524 Cache[GEP] = BDV; 525 return BDV; 526 } 527 528 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 529 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 530 Cache[Freeze] = BDV; 531 return BDV; 532 } 533 534 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 535 switch (II->getIntrinsicID()) { 536 default: 537 // fall through to general call handling 538 break; 539 case Intrinsic::experimental_gc_statepoint: 540 llvm_unreachable("statepoints don't produce pointers"); 541 case Intrinsic::experimental_gc_relocate: 542 // Rerunning safepoint insertion after safepoints are already 543 // inserted is not supported. It could probably be made to work, 544 // but why are you doing this? There's no good reason. 545 llvm_unreachable("repeat safepoint insertion is not supported"); 546 case Intrinsic::gcroot: 547 // Currently, this mechanism hasn't been extended to work with gcroot. 548 // There's no reason it couldn't be, but I haven't thought about the 549 // implications much. 550 llvm_unreachable( 551 "interaction with the gcroot mechanism is not supported"); 552 case Intrinsic::experimental_gc_get_pointer_base: 553 auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases); 554 Cache[II] = BDV; 555 return BDV; 556 } 557 } 558 // We assume that functions in the source language only return base 559 // pointers. This should probably be generalized via attributes to support 560 // both source language and internal functions. 561 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 562 Cache[I] = I; 563 setKnownBase(I, /* IsKnownBase */true, KnownBases); 564 return I; 565 } 566 567 // TODO: I have absolutely no idea how to implement this part yet. It's not 568 // necessarily hard, I just haven't really looked at it yet. 569 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 570 571 if (isa<AtomicCmpXchgInst>(I)) { 572 // A CAS is effectively a atomic store and load combined under a 573 // predicate. From the perspective of base pointers, we just treat it 574 // like a load. 575 Cache[I] = I; 576 setKnownBase(I, /* IsKnownBase */true, KnownBases); 577 return I; 578 } 579 580 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 581 "binary ops which don't apply to pointers"); 582 583 // The aggregate ops. Aggregates can either be in the heap or on the 584 // stack, but in either case, this is simply a field load. As a result, 585 // this is a defining definition of the base just like a load is. 586 if (isa<ExtractValueInst>(I)) { 587 Cache[I] = I; 588 setKnownBase(I, /* IsKnownBase */true, KnownBases); 589 return I; 590 } 591 592 // We should never see an insert vector since that would require we be 593 // tracing back a struct value not a pointer value. 594 assert(!isa<InsertValueInst>(I) && 595 "Base pointer for a struct is meaningless"); 596 597 // This value might have been generated by findBasePointer() called when 598 // substituting gc.get.pointer.base() intrinsic. 599 bool IsKnownBase = 600 isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value"); 601 setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases); 602 Cache[I] = I; 603 604 // An extractelement produces a base result exactly when it's input does. 605 // We may need to insert a parallel instruction to extract the appropriate 606 // element out of the base vector corresponding to the input. Given this, 607 // it's analogous to the phi and select case even though it's not a merge. 608 if (isa<ExtractElementInst>(I)) 609 // Note: There a lot of obvious peephole cases here. This are deliberately 610 // handled after the main base pointer inference algorithm to make writing 611 // test cases to exercise that code easier. 612 return I; 613 614 // The last two cases here don't return a base pointer. Instead, they 615 // return a value which dynamically selects from among several base 616 // derived pointers (each with it's own base potentially). It's the job of 617 // the caller to resolve these. 618 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 619 "missing instruction case in findBaseDefiningValue"); 620 return I; 621 } 622 623 /// Returns the base defining value for this value. 624 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache, 625 IsKnownBaseMapTy &KnownBases) { 626 if (!Cache.contains(I)) { 627 auto *BDV = findBaseDefiningValue(I, Cache, KnownBases); 628 Cache[I] = BDV; 629 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 630 << Cache[I]->getName() << ", is known base = " 631 << KnownBases[I] << "\n"); 632 } 633 assert(Cache[I] != nullptr); 634 assert(KnownBases.contains(Cache[I]) && 635 "Cached value must be present in known bases map"); 636 return Cache[I]; 637 } 638 639 /// Return a base pointer for this value if known. Otherwise, return it's 640 /// base defining value. 641 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache, 642 IsKnownBaseMapTy &KnownBases) { 643 Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases); 644 auto Found = Cache.find(Def); 645 if (Found != Cache.end()) { 646 // Either a base-of relation, or a self reference. Caller must check. 647 return Found->second; 648 } 649 // Only a BDV available 650 return Def; 651 } 652 653 #ifndef NDEBUG 654 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 655 /// exists in the code. 656 static bool isOriginalBaseResult(Value *V) { 657 // no recursion possible 658 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 659 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 660 !isa<ShuffleVectorInst>(V); 661 } 662 #endif 663 664 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) { 665 auto It = KnownBases.find(V); 666 assert(It != KnownBases.end() && "Value not present in the map"); 667 return It->second; 668 } 669 670 static void setKnownBase(Value *V, bool IsKnownBase, 671 IsKnownBaseMapTy &KnownBases) { 672 #ifndef NDEBUG 673 auto It = KnownBases.find(V); 674 if (It != KnownBases.end()) 675 assert(It->second == IsKnownBase && "Changing already present value"); 676 #endif 677 KnownBases[V] = IsKnownBase; 678 } 679 680 // Returns true if First and Second values are both scalar or both vector. 681 static bool areBothVectorOrScalar(Value *First, Value *Second) { 682 return isa<VectorType>(First->getType()) == 683 isa<VectorType>(Second->getType()); 684 } 685 686 namespace { 687 688 /// Models the state of a single base defining value in the findBasePointer 689 /// algorithm for determining where a new instruction is needed to propagate 690 /// the base of this BDV. 691 class BDVState { 692 public: 693 enum StatusTy { 694 // Starting state of lattice 695 Unknown, 696 // Some specific base value -- does *not* mean that instruction 697 // propagates the base of the object 698 // ex: gep %arg, 16 -> %arg is the base value 699 Base, 700 // Need to insert a node to represent a merge. 701 Conflict 702 }; 703 704 BDVState() { 705 llvm_unreachable("missing state in map"); 706 } 707 708 explicit BDVState(Value *OriginalValue) 709 : OriginalValue(OriginalValue) {} 710 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) 711 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { 712 assert(Status != Base || BaseValue); 713 } 714 715 StatusTy getStatus() const { return Status; } 716 Value *getOriginalValue() const { return OriginalValue; } 717 Value *getBaseValue() const { return BaseValue; } 718 719 bool isBase() const { return getStatus() == Base; } 720 bool isUnknown() const { return getStatus() == Unknown; } 721 bool isConflict() const { return getStatus() == Conflict; } 722 723 // Values of type BDVState form a lattice, and this function implements the 724 // meet 725 // operation. 726 void meet(const BDVState &Other) { 727 auto markConflict = [&]() { 728 Status = BDVState::Conflict; 729 BaseValue = nullptr; 730 }; 731 // Conflict is a final state. 732 if (isConflict()) 733 return; 734 // if we are not known - just take other state. 735 if (isUnknown()) { 736 Status = Other.getStatus(); 737 BaseValue = Other.getBaseValue(); 738 return; 739 } 740 // We are base. 741 assert(isBase() && "Unknown state"); 742 // If other is unknown - just keep our state. 743 if (Other.isUnknown()) 744 return; 745 // If other is conflict - it is a final state. 746 if (Other.isConflict()) 747 return markConflict(); 748 // Other is base as well. 749 assert(Other.isBase() && "Unknown state"); 750 // If bases are different - Conflict. 751 if (getBaseValue() != Other.getBaseValue()) 752 return markConflict(); 753 // We are identical, do nothing. 754 } 755 756 bool operator==(const BDVState &Other) const { 757 return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue && 758 Status == Other.Status; 759 } 760 761 bool operator!=(const BDVState &other) const { return !(*this == other); } 762 763 LLVM_DUMP_METHOD 764 void dump() const { 765 print(dbgs()); 766 dbgs() << '\n'; 767 } 768 769 void print(raw_ostream &OS) const { 770 switch (getStatus()) { 771 case Unknown: 772 OS << "U"; 773 break; 774 case Base: 775 OS << "B"; 776 break; 777 case Conflict: 778 OS << "C"; 779 break; 780 } 781 OS << " (base " << getBaseValue() << " - " 782 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" 783 << " for " << OriginalValue->getName() << ":"; 784 } 785 786 private: 787 AssertingVH<Value> OriginalValue; // instruction this state corresponds to 788 StatusTy Status = Unknown; 789 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. 790 }; 791 792 } // end anonymous namespace 793 794 #ifndef NDEBUG 795 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 796 State.print(OS); 797 return OS; 798 } 799 #endif 800 801 /// For a given value or instruction, figure out what base ptr its derived from. 802 /// For gc objects, this is simply itself. On success, returns a value which is 803 /// the base pointer. (This is reliable and can be used for relocation.) On 804 /// failure, returns nullptr. 805 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache, 806 IsKnownBaseMapTy &KnownBases) { 807 Value *Def = findBaseOrBDV(I, Cache, KnownBases); 808 809 if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I)) 810 return Def; 811 812 // Here's the rough algorithm: 813 // - For every SSA value, construct a mapping to either an actual base 814 // pointer or a PHI which obscures the base pointer. 815 // - Construct a mapping from PHI to unknown TOP state. Use an 816 // optimistic algorithm to propagate base pointer information. Lattice 817 // looks like: 818 // UNKNOWN 819 // b1 b2 b3 b4 820 // CONFLICT 821 // When algorithm terminates, all PHIs will either have a single concrete 822 // base or be in a conflict state. 823 // - For every conflict, insert a dummy PHI node without arguments. Add 824 // these to the base[Instruction] = BasePtr mapping. For every 825 // non-conflict, add the actual base. 826 // - For every conflict, add arguments for the base[a] of each input 827 // arguments. 828 // 829 // Note: A simpler form of this would be to add the conflict form of all 830 // PHIs without running the optimistic algorithm. This would be 831 // analogous to pessimistic data flow and would likely lead to an 832 // overall worse solution. 833 834 #ifndef NDEBUG 835 auto isExpectedBDVType = [](Value *BDV) { 836 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 837 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 838 isa<ShuffleVectorInst>(BDV); 839 }; 840 #endif 841 842 // Once populated, will contain a mapping from each potentially non-base BDV 843 // to a lattice value (described above) which corresponds to that BDV. 844 // We use the order of insertion (DFS over the def/use graph) to provide a 845 // stable deterministic ordering for visiting DenseMaps (which are unordered) 846 // below. This is important for deterministic compilation. 847 MapVector<Value *, BDVState> States; 848 849 #ifndef NDEBUG 850 auto VerifyStates = [&]() { 851 for (auto &Entry : States) { 852 assert(Entry.first == Entry.second.getOriginalValue()); 853 } 854 }; 855 #endif 856 857 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { 858 if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 859 for (Value *InVal : PN->incoming_values()) 860 F(InVal); 861 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 862 F(SI->getTrueValue()); 863 F(SI->getFalseValue()); 864 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 865 F(EE->getVectorOperand()); 866 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) { 867 F(IE->getOperand(0)); 868 F(IE->getOperand(1)); 869 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) { 870 // For a canonical broadcast, ignore the undef argument 871 // (without this, we insert a parallel base shuffle for every broadcast) 872 F(SV->getOperand(0)); 873 if (!SV->isZeroEltSplat()) 874 F(SV->getOperand(1)); 875 } else { 876 llvm_unreachable("unexpected BDV type"); 877 } 878 }; 879 880 881 // Recursively fill in all base defining values reachable from the initial 882 // one for which we don't already know a definite base value for 883 /* scope */ { 884 SmallVector<Value*, 16> Worklist; 885 Worklist.push_back(Def); 886 States.insert({Def, BDVState(Def)}); 887 while (!Worklist.empty()) { 888 Value *Current = Worklist.pop_back_val(); 889 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 890 891 auto visitIncomingValue = [&](Value *InVal) { 892 Value *Base = findBaseOrBDV(InVal, Cache, KnownBases); 893 if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal)) 894 // Known bases won't need new instructions introduced and can be 895 // ignored safely. However, this can only be done when InVal and Base 896 // are both scalar or both vector. Otherwise, we need to find a 897 // correct BDV for InVal, by creating an entry in the lattice 898 // (States). 899 return; 900 assert(isExpectedBDVType(Base) && "the only non-base values " 901 "we see should be base defining values"); 902 if (States.insert(std::make_pair(Base, BDVState(Base))).second) 903 Worklist.push_back(Base); 904 }; 905 906 visitBDVOperands(Current, visitIncomingValue); 907 } 908 } 909 910 #ifndef NDEBUG 911 VerifyStates(); 912 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 913 for (const auto &Pair : States) { 914 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 915 } 916 #endif 917 918 // Iterate forward through the value graph pruning any node from the state 919 // list where all of the inputs are base pointers. The purpose of this is to 920 // reuse existing values when the derived pointer we were asked to materialize 921 // a base pointer for happens to be a base pointer itself. (Or a sub-graph 922 // feeding it does.) 923 SmallVector<Value *> ToRemove; 924 do { 925 ToRemove.clear(); 926 for (auto Pair : States) { 927 Value *BDV = Pair.first; 928 auto canPruneInput = [&](Value *V) { 929 // If the input of the BDV is the BDV itself we can prune it. This is 930 // only possible if the BDV is a PHI node. 931 if (V->stripPointerCasts() == BDV) 932 return true; 933 Value *VBDV = findBaseOrBDV(V, Cache, KnownBases); 934 if (V->stripPointerCasts() != VBDV) 935 return false; 936 // The assumption is that anything not in the state list is 937 // propagates a base pointer. 938 return States.count(VBDV) == 0; 939 }; 940 941 bool CanPrune = true; 942 visitBDVOperands(BDV, [&](Value *Op) { 943 CanPrune = CanPrune && canPruneInput(Op); 944 }); 945 if (CanPrune) 946 ToRemove.push_back(BDV); 947 } 948 for (Value *V : ToRemove) { 949 States.erase(V); 950 // Cache the fact V is it's own base for later usage. 951 Cache[V] = V; 952 } 953 } while (!ToRemove.empty()); 954 955 // Did we manage to prove that Def itself must be a base pointer? 956 if (!States.count(Def)) 957 return Def; 958 959 // Return a phi state for a base defining value. We'll generate a new 960 // base state for known bases and expect to find a cached state otherwise. 961 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 962 auto I = States.find(BaseValue); 963 if (I != States.end()) 964 return I->second; 965 assert(areBothVectorOrScalar(BaseValue, Input)); 966 return BDVState(BaseValue, BDVState::Base, BaseValue); 967 }; 968 969 bool Progress = true; 970 while (Progress) { 971 #ifndef NDEBUG 972 const size_t OldSize = States.size(); 973 #endif 974 Progress = false; 975 // We're only changing values in this loop, thus safe to keep iterators. 976 // Since this is computing a fixed point, the order of visit does not 977 // effect the result. TODO: We could use a worklist here and make this run 978 // much faster. 979 for (auto Pair : States) { 980 Value *BDV = Pair.first; 981 // Only values that do not have known bases or those that have differing 982 // type (scalar versus vector) from a possible known base should be in the 983 // lattice. 984 assert((!isKnownBase(BDV, KnownBases) || 985 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 986 "why did it get added?"); 987 988 BDVState NewState(BDV); 989 visitBDVOperands(BDV, [&](Value *Op) { 990 Value *BDV = findBaseOrBDV(Op, Cache, KnownBases); 991 auto OpState = GetStateForBDV(BDV, Op); 992 NewState.meet(OpState); 993 }); 994 995 BDVState OldState = States[BDV]; 996 if (OldState != NewState) { 997 Progress = true; 998 States[BDV] = NewState; 999 } 1000 } 1001 1002 assert(OldSize == States.size() && 1003 "fixed point shouldn't be adding any new nodes to state"); 1004 } 1005 1006 #ifndef NDEBUG 1007 VerifyStates(); 1008 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 1009 for (const auto &Pair : States) { 1010 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 1011 } 1012 #endif 1013 1014 // Handle all instructions that have a vector BDV, but the instruction itself 1015 // is of scalar type. 1016 for (auto Pair : States) { 1017 Instruction *I = cast<Instruction>(Pair.first); 1018 BDVState State = Pair.second; 1019 auto *BaseValue = State.getBaseValue(); 1020 // Only values that do not have known bases or those that have differing 1021 // type (scalar versus vector) from a possible known base should be in the 1022 // lattice. 1023 assert( 1024 (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) && 1025 "why did it get added?"); 1026 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1027 1028 if (!State.isBase() || !isa<VectorType>(BaseValue->getType())) 1029 continue; 1030 // extractelement instructions are a bit special in that we may need to 1031 // insert an extract even when we know an exact base for the instruction. 1032 // The problem is that we need to convert from a vector base to a scalar 1033 // base for the particular indice we're interested in. 1034 if (isa<ExtractElementInst>(I)) { 1035 auto *EE = cast<ExtractElementInst>(I); 1036 // TODO: In many cases, the new instruction is just EE itself. We should 1037 // exploit this, but can't do it here since it would break the invariant 1038 // about the BDV not being known to be a base. 1039 auto *BaseInst = ExtractElementInst::Create( 1040 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 1041 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1042 States[I] = BDVState(I, BDVState::Base, BaseInst); 1043 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1044 } else if (!isa<VectorType>(I->getType())) { 1045 // We need to handle cases that have a vector base but the instruction is 1046 // a scalar type (these could be phis or selects or any instruction that 1047 // are of scalar type, but the base can be a vector type). We 1048 // conservatively set this as conflict. Setting the base value for these 1049 // conflicts is handled in the next loop which traverses States. 1050 States[I] = BDVState(I, BDVState::Conflict); 1051 } 1052 } 1053 1054 #ifndef NDEBUG 1055 VerifyStates(); 1056 #endif 1057 1058 // Insert Phis for all conflicts 1059 // TODO: adjust naming patterns to avoid this order of iteration dependency 1060 for (auto Pair : States) { 1061 Instruction *I = cast<Instruction>(Pair.first); 1062 BDVState State = Pair.second; 1063 // Only values that do not have known bases or those that have differing 1064 // type (scalar versus vector) from a possible known base should be in the 1065 // lattice. 1066 assert((!isKnownBase(I, KnownBases) || 1067 !areBothVectorOrScalar(I, State.getBaseValue())) && 1068 "why did it get added?"); 1069 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1070 1071 // Since we're joining a vector and scalar base, they can never be the 1072 // same. As a result, we should always see insert element having reached 1073 // the conflict state. 1074 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1075 1076 if (!State.isConflict()) 1077 continue; 1078 1079 auto getMangledName = [](Instruction *I) -> std::string { 1080 if (isa<PHINode>(I)) { 1081 return suffixed_name_or(I, ".base", "base_phi"); 1082 } else if (isa<SelectInst>(I)) { 1083 return suffixed_name_or(I, ".base", "base_select"); 1084 } else if (isa<ExtractElementInst>(I)) { 1085 return suffixed_name_or(I, ".base", "base_ee"); 1086 } else if (isa<InsertElementInst>(I)) { 1087 return suffixed_name_or(I, ".base", "base_ie"); 1088 } else { 1089 return suffixed_name_or(I, ".base", "base_sv"); 1090 } 1091 }; 1092 1093 Instruction *BaseInst = I->clone(); 1094 BaseInst->insertBefore(I); 1095 BaseInst->setName(getMangledName(I)); 1096 // Add metadata marking this as a base value 1097 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1098 States[I] = BDVState(I, BDVState::Conflict, BaseInst); 1099 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1100 } 1101 1102 #ifndef NDEBUG 1103 VerifyStates(); 1104 #endif 1105 1106 // Returns a instruction which produces the base pointer for a given 1107 // instruction. The instruction is assumed to be an input to one of the BDVs 1108 // seen in the inference algorithm above. As such, we must either already 1109 // know it's base defining value is a base, or have inserted a new 1110 // instruction to propagate the base of it's BDV and have entered that newly 1111 // introduced instruction into the state table. In either case, we are 1112 // assured to be able to determine an instruction which produces it's base 1113 // pointer. 1114 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1115 Value *BDV = findBaseOrBDV(Input, Cache, KnownBases); 1116 Value *Base = nullptr; 1117 if (!States.count(BDV)) { 1118 assert(areBothVectorOrScalar(BDV, Input)); 1119 Base = BDV; 1120 } else { 1121 // Either conflict or base. 1122 assert(States.count(BDV)); 1123 Base = States[BDV].getBaseValue(); 1124 } 1125 assert(Base && "Can't be null"); 1126 // The cast is needed since base traversal may strip away bitcasts 1127 if (Base->getType() != Input->getType() && InsertPt) 1128 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1129 return Base; 1130 }; 1131 1132 // Fixup all the inputs of the new PHIs. Visit order needs to be 1133 // deterministic and predictable because we're naming newly created 1134 // instructions. 1135 for (auto Pair : States) { 1136 Instruction *BDV = cast<Instruction>(Pair.first); 1137 BDVState State = Pair.second; 1138 1139 // Only values that do not have known bases or those that have differing 1140 // type (scalar versus vector) from a possible known base should be in the 1141 // lattice. 1142 assert((!isKnownBase(BDV, KnownBases) || 1143 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1144 "why did it get added?"); 1145 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1146 if (!State.isConflict()) 1147 continue; 1148 1149 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1150 PHINode *PN = cast<PHINode>(BDV); 1151 const unsigned NumPHIValues = PN->getNumIncomingValues(); 1152 1153 // The IR verifier requires phi nodes with multiple entries from the 1154 // same basic block to have the same incoming value for each of those 1155 // entries. Since we're inserting bitcasts in the loop, make sure we 1156 // do so at least once per incoming block. 1157 DenseMap<BasicBlock *, Value*> BlockToValue; 1158 for (unsigned i = 0; i < NumPHIValues; i++) { 1159 Value *InVal = PN->getIncomingValue(i); 1160 BasicBlock *InBB = PN->getIncomingBlock(i); 1161 if (!BlockToValue.count(InBB)) 1162 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); 1163 else { 1164 #ifndef NDEBUG 1165 Value *OldBase = BlockToValue[InBB]; 1166 Value *Base = getBaseForInput(InVal, nullptr); 1167 1168 // We can't use `stripPointerCasts` instead of this function because 1169 // `stripPointerCasts` doesn't handle vectors of pointers. 1170 auto StripBitCasts = [](Value *V) -> Value * { 1171 while (auto *BC = dyn_cast<BitCastInst>(V)) 1172 V = BC->getOperand(0); 1173 return V; 1174 }; 1175 // In essence this assert states: the only way two values 1176 // incoming from the same basic block may be different is by 1177 // being different bitcasts of the same value. A cleanup 1178 // that remains TODO is changing findBaseOrBDV to return an 1179 // llvm::Value of the correct type (and still remain pure). 1180 // This will remove the need to add bitcasts. 1181 assert(StripBitCasts(Base) == StripBitCasts(OldBase) && 1182 "findBaseOrBDV should be pure!"); 1183 #endif 1184 } 1185 Value *Base = BlockToValue[InBB]; 1186 BasePHI->setIncomingValue(i, Base); 1187 } 1188 } else if (SelectInst *BaseSI = 1189 dyn_cast<SelectInst>(State.getBaseValue())) { 1190 SelectInst *SI = cast<SelectInst>(BDV); 1191 1192 // Find the instruction which produces the base for each input. 1193 // We may need to insert a bitcast. 1194 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1195 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1196 } else if (auto *BaseEE = 1197 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1198 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1199 // Find the instruction which produces the base for each input. We may 1200 // need to insert a bitcast. 1201 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1202 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1203 auto *BdvIE = cast<InsertElementInst>(BDV); 1204 auto UpdateOperand = [&](int OperandIdx) { 1205 Value *InVal = BdvIE->getOperand(OperandIdx); 1206 Value *Base = getBaseForInput(InVal, BaseIE); 1207 BaseIE->setOperand(OperandIdx, Base); 1208 }; 1209 UpdateOperand(0); // vector operand 1210 UpdateOperand(1); // scalar operand 1211 } else { 1212 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1213 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1214 auto UpdateOperand = [&](int OperandIdx) { 1215 Value *InVal = BdvSV->getOperand(OperandIdx); 1216 Value *Base = getBaseForInput(InVal, BaseSV); 1217 BaseSV->setOperand(OperandIdx, Base); 1218 }; 1219 UpdateOperand(0); // vector operand 1220 if (!BdvSV->isZeroEltSplat()) 1221 UpdateOperand(1); // vector operand 1222 else { 1223 // Never read, so just use poison 1224 Value *InVal = BdvSV->getOperand(1); 1225 BaseSV->setOperand(1, PoisonValue::get(InVal->getType())); 1226 } 1227 } 1228 } 1229 1230 #ifndef NDEBUG 1231 VerifyStates(); 1232 #endif 1233 1234 // Cache all of our results so we can cheaply reuse them 1235 // NOTE: This is actually two caches: one of the base defining value 1236 // relation and one of the base pointer relation! FIXME 1237 for (auto Pair : States) { 1238 auto *BDV = Pair.first; 1239 Value *Base = Pair.second.getBaseValue(); 1240 assert(BDV && Base); 1241 // Only values that do not have known bases or those that have differing 1242 // type (scalar versus vector) from a possible known base should be in the 1243 // lattice. 1244 assert( 1245 (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) && 1246 "why did it get added?"); 1247 1248 LLVM_DEBUG( 1249 dbgs() << "Updating base value cache" 1250 << " for: " << BDV->getName() << " from: " 1251 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1252 << " to: " << Base->getName() << "\n"); 1253 1254 Cache[BDV] = Base; 1255 } 1256 assert(Cache.count(Def)); 1257 return Cache[Def]; 1258 } 1259 1260 // For a set of live pointers (base and/or derived), identify the base 1261 // pointer of the object which they are derived from. This routine will 1262 // mutate the IR graph as needed to make the 'base' pointer live at the 1263 // definition site of 'derived'. This ensures that any use of 'derived' can 1264 // also use 'base'. This may involve the insertion of a number of 1265 // additional PHI nodes. 1266 // 1267 // preconditions: live is a set of pointer type Values 1268 // 1269 // side effects: may insert PHI nodes into the existing CFG, will preserve 1270 // CFG, will not remove or mutate any existing nodes 1271 // 1272 // post condition: PointerToBase contains one (derived, base) pair for every 1273 // pointer in live. Note that derived can be equal to base if the original 1274 // pointer was a base pointer. 1275 static void findBasePointers(const StatepointLiveSetTy &live, 1276 PointerToBaseTy &PointerToBase, DominatorTree *DT, 1277 DefiningValueMapTy &DVCache, 1278 IsKnownBaseMapTy &KnownBases) { 1279 for (Value *ptr : live) { 1280 Value *base = findBasePointer(ptr, DVCache, KnownBases); 1281 assert(base && "failed to find base pointer"); 1282 PointerToBase[ptr] = base; 1283 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1284 DT->dominates(cast<Instruction>(base)->getParent(), 1285 cast<Instruction>(ptr)->getParent())) && 1286 "The base we found better dominate the derived pointer"); 1287 } 1288 } 1289 1290 /// Find the required based pointers (and adjust the live set) for the given 1291 /// parse point. 1292 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1293 CallBase *Call, 1294 PartiallyConstructedSafepointRecord &result, 1295 PointerToBaseTy &PointerToBase, 1296 IsKnownBaseMapTy &KnownBases) { 1297 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; 1298 // We assume that all pointers passed to deopt are base pointers; as an 1299 // optimization, we can use this to avoid seperately materializing the base 1300 // pointer graph. This is only relevant since we're very conservative about 1301 // generating new conflict nodes during base pointer insertion. If we were 1302 // smarter there, this would be irrelevant. 1303 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) 1304 for (Value *V : Opt->Inputs) { 1305 if (!PotentiallyDerivedPointers.count(V)) 1306 continue; 1307 PotentiallyDerivedPointers.remove(V); 1308 PointerToBase[V] = V; 1309 } 1310 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache, 1311 KnownBases); 1312 } 1313 1314 /// Given an updated version of the dataflow liveness results, update the 1315 /// liveset and base pointer maps for the call site CS. 1316 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1317 CallBase *Call, 1318 PartiallyConstructedSafepointRecord &result, 1319 PointerToBaseTy &PointerToBase, 1320 GCStrategy *GC); 1321 1322 static void recomputeLiveInValues( 1323 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1324 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 1325 PointerToBaseTy &PointerToBase, GCStrategy *GC) { 1326 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1327 // again. The old values are still live and will help it stabilize quickly. 1328 GCPtrLivenessData RevisedLivenessData; 1329 computeLiveInValues(DT, F, RevisedLivenessData, GC); 1330 for (size_t i = 0; i < records.size(); i++) { 1331 struct PartiallyConstructedSafepointRecord &info = records[i]; 1332 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info, PointerToBase, 1333 GC); 1334 } 1335 } 1336 1337 // Utility function which clones all instructions from "ChainToBase" 1338 // and inserts them before "InsertBefore". Returns rematerialized value 1339 // which should be used after statepoint. 1340 static Instruction *rematerializeChain(ArrayRef<Instruction *> ChainToBase, 1341 Instruction *InsertBefore, 1342 Value *RootOfChain, 1343 Value *AlternateLiveBase) { 1344 Instruction *LastClonedValue = nullptr; 1345 Instruction *LastValue = nullptr; 1346 // Walk backwards to visit top-most instructions first. 1347 for (Instruction *Instr : 1348 make_range(ChainToBase.rbegin(), ChainToBase.rend())) { 1349 // Only GEP's and casts are supported as we need to be careful to not 1350 // introduce any new uses of pointers not in the liveset. 1351 // Note that it's fine to introduce new uses of pointers which were 1352 // otherwise not used after this statepoint. 1353 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1354 1355 Instruction *ClonedValue = Instr->clone(); 1356 ClonedValue->insertBefore(InsertBefore); 1357 ClonedValue->setName(Instr->getName() + ".remat"); 1358 1359 // If it is not first instruction in the chain then it uses previously 1360 // cloned value. We should update it to use cloned value. 1361 if (LastClonedValue) { 1362 assert(LastValue); 1363 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1364 #ifndef NDEBUG 1365 for (auto *OpValue : ClonedValue->operand_values()) { 1366 // Assert that cloned instruction does not use any instructions from 1367 // this chain other than LastClonedValue 1368 assert(!is_contained(ChainToBase, OpValue) && 1369 "incorrect use in rematerialization chain"); 1370 // Assert that the cloned instruction does not use the RootOfChain 1371 // or the AlternateLiveBase. 1372 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 1373 } 1374 #endif 1375 } else { 1376 // For the first instruction, replace the use of unrelocated base i.e. 1377 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 1378 // live set. They have been proved to be the same PHI nodes. Note 1379 // that the *only* use of the RootOfChain in the ChainToBase list is 1380 // the first Value in the list. 1381 if (RootOfChain != AlternateLiveBase) 1382 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 1383 } 1384 1385 LastClonedValue = ClonedValue; 1386 LastValue = Instr; 1387 } 1388 assert(LastClonedValue); 1389 return LastClonedValue; 1390 } 1391 1392 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1393 // no uses of the original value / return value between the gc.statepoint and 1394 // the gc.relocate / gc.result call. One case which can arise is a phi node 1395 // starting one of the successor blocks. We also need to be able to insert the 1396 // gc.relocates only on the path which goes through the statepoint. We might 1397 // need to split an edge to make this possible. 1398 static BasicBlock * 1399 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1400 DominatorTree &DT) { 1401 BasicBlock *Ret = BB; 1402 if (!BB->getUniquePredecessor()) 1403 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1404 1405 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1406 // from it 1407 FoldSingleEntryPHINodes(Ret); 1408 assert(!isa<PHINode>(Ret->begin()) && 1409 "All PHI nodes should have been removed!"); 1410 1411 // At this point, we can safely insert a gc.relocate or gc.result as the first 1412 // instruction in Ret if needed. 1413 return Ret; 1414 } 1415 1416 // List of all function attributes which must be stripped when lowering from 1417 // abstract machine model to physical machine model. Essentially, these are 1418 // all the effects a safepoint might have which we ignored in the abstract 1419 // machine model for purposes of optimization. We have to strip these on 1420 // both function declarations and call sites. 1421 static constexpr Attribute::AttrKind FnAttrsToStrip[] = 1422 {Attribute::Memory, Attribute::NoSync, Attribute::NoFree}; 1423 1424 // Create new attribute set containing only attributes which can be transferred 1425 // from original call to the safepoint. 1426 static AttributeList legalizeCallAttributes(LLVMContext &Ctx, 1427 AttributeList OrigAL, 1428 AttributeList StatepointAL) { 1429 if (OrigAL.isEmpty()) 1430 return StatepointAL; 1431 1432 // Remove the readonly, readnone, and statepoint function attributes. 1433 AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs()); 1434 for (auto Attr : FnAttrsToStrip) 1435 FnAttrs.removeAttribute(Attr); 1436 1437 for (Attribute A : OrigAL.getFnAttrs()) { 1438 if (isStatepointDirectiveAttr(A)) 1439 FnAttrs.removeAttribute(A); 1440 } 1441 1442 // Just skip parameter and return attributes for now 1443 return StatepointAL.addFnAttributes(Ctx, FnAttrs); 1444 } 1445 1446 /// Helper function to place all gc relocates necessary for the given 1447 /// statepoint. 1448 /// Inputs: 1449 /// liveVariables - list of variables to be relocated. 1450 /// basePtrs - base pointers. 1451 /// statepointToken - statepoint instruction to which relocates should be 1452 /// bound. 1453 /// Builder - Llvm IR builder to be used to construct new calls. 1454 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1455 ArrayRef<Value *> BasePtrs, 1456 Instruction *StatepointToken, 1457 IRBuilder<> &Builder, GCStrategy *GC) { 1458 if (LiveVariables.empty()) 1459 return; 1460 1461 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1462 auto ValIt = llvm::find(LiveVec, Val); 1463 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1464 size_t Index = std::distance(LiveVec.begin(), ValIt); 1465 assert(Index < LiveVec.size() && "Bug in std::find?"); 1466 return Index; 1467 }; 1468 Module *M = StatepointToken->getModule(); 1469 1470 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1471 // element type is i8 addrspace(1)*). We originally generated unique 1472 // declarations for each pointer type, but this proved problematic because 1473 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1474 // towards a single unified pointer type anyways, we can just cast everything 1475 // to an i8* of the right address space. A bitcast is added later to convert 1476 // gc_relocate to the actual value's type. 1477 auto getGCRelocateDecl = [&](Type *Ty) { 1478 assert(isHandledGCPointerType(Ty, GC)); 1479 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1480 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1481 if (auto *VT = dyn_cast<VectorType>(Ty)) 1482 NewTy = FixedVectorType::get(NewTy, 1483 cast<FixedVectorType>(VT)->getNumElements()); 1484 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1485 {NewTy}); 1486 }; 1487 1488 // Lazily populated map from input types to the canonicalized form mentioned 1489 // in the comment above. This should probably be cached somewhere more 1490 // broadly. 1491 DenseMap<Type *, Function *> TypeToDeclMap; 1492 1493 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1494 // Generate the gc.relocate call and save the result 1495 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1496 Value *LiveIdx = Builder.getInt32(i); 1497 1498 Type *Ty = LiveVariables[i]->getType(); 1499 if (!TypeToDeclMap.count(Ty)) 1500 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1501 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1502 1503 // only specify a debug name if we can give a useful one 1504 CallInst *Reloc = Builder.CreateCall( 1505 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1506 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1507 // Trick CodeGen into thinking there are lots of free registers at this 1508 // fake call. 1509 Reloc->setCallingConv(CallingConv::Cold); 1510 } 1511 } 1512 1513 namespace { 1514 1515 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1516 /// avoids having to worry about keeping around dangling pointers to Values. 1517 class DeferredReplacement { 1518 AssertingVH<Instruction> Old; 1519 AssertingVH<Instruction> New; 1520 bool IsDeoptimize = false; 1521 1522 DeferredReplacement() = default; 1523 1524 public: 1525 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1526 assert(Old != New && Old && New && 1527 "Cannot RAUW equal values or to / from null!"); 1528 1529 DeferredReplacement D; 1530 D.Old = Old; 1531 D.New = New; 1532 return D; 1533 } 1534 1535 static DeferredReplacement createDelete(Instruction *ToErase) { 1536 DeferredReplacement D; 1537 D.Old = ToErase; 1538 return D; 1539 } 1540 1541 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1542 #ifndef NDEBUG 1543 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1544 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1545 "Only way to construct a deoptimize deferred replacement"); 1546 #endif 1547 DeferredReplacement D; 1548 D.Old = Old; 1549 D.IsDeoptimize = true; 1550 return D; 1551 } 1552 1553 /// Does the task represented by this instance. 1554 void doReplacement() { 1555 Instruction *OldI = Old; 1556 Instruction *NewI = New; 1557 1558 assert(OldI != NewI && "Disallowed at construction?!"); 1559 assert((!IsDeoptimize || !New) && 1560 "Deoptimize intrinsics are not replaced!"); 1561 1562 Old = nullptr; 1563 New = nullptr; 1564 1565 if (NewI) 1566 OldI->replaceAllUsesWith(NewI); 1567 1568 if (IsDeoptimize) { 1569 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1570 // not necessarily be followed by the matching return. 1571 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1572 new UnreachableInst(RI->getContext(), RI); 1573 RI->eraseFromParent(); 1574 } 1575 1576 OldI->eraseFromParent(); 1577 } 1578 }; 1579 1580 } // end anonymous namespace 1581 1582 static StringRef getDeoptLowering(CallBase *Call) { 1583 const char *DeoptLowering = "deopt-lowering"; 1584 if (Call->hasFnAttr(DeoptLowering)) { 1585 // FIXME: Calls have a *really* confusing interface around attributes 1586 // with values. 1587 const AttributeList &CSAS = Call->getAttributes(); 1588 if (CSAS.hasFnAttr(DeoptLowering)) 1589 return CSAS.getFnAttr(DeoptLowering).getValueAsString(); 1590 Function *F = Call->getCalledFunction(); 1591 assert(F && F->hasFnAttribute(DeoptLowering)); 1592 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1593 } 1594 return "live-through"; 1595 } 1596 1597 static void 1598 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1599 const SmallVectorImpl<Value *> &BasePtrs, 1600 const SmallVectorImpl<Value *> &LiveVariables, 1601 PartiallyConstructedSafepointRecord &Result, 1602 std::vector<DeferredReplacement> &Replacements, 1603 const PointerToBaseTy &PointerToBase, 1604 GCStrategy *GC) { 1605 assert(BasePtrs.size() == LiveVariables.size()); 1606 1607 // Then go ahead and use the builder do actually do the inserts. We insert 1608 // immediately before the previous instruction under the assumption that all 1609 // arguments will be available here. We can't insert afterwards since we may 1610 // be replacing a terminator. 1611 IRBuilder<> Builder(Call); 1612 1613 ArrayRef<Value *> GCArgs(LiveVariables); 1614 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1615 uint32_t NumPatchBytes = 0; 1616 uint32_t Flags = uint32_t(StatepointFlags::None); 1617 1618 SmallVector<Value *, 8> CallArgs(Call->args()); 1619 std::optional<ArrayRef<Use>> DeoptArgs; 1620 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1621 DeoptArgs = Bundle->Inputs; 1622 std::optional<ArrayRef<Use>> TransitionArgs; 1623 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1624 TransitionArgs = Bundle->Inputs; 1625 // TODO: This flag no longer serves a purpose and can be removed later 1626 Flags |= uint32_t(StatepointFlags::GCTransition); 1627 } 1628 1629 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1630 // with a return value, we lower then as never returning calls to 1631 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1632 bool IsDeoptimize = false; 1633 1634 StatepointDirectives SD = 1635 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1636 if (SD.NumPatchBytes) 1637 NumPatchBytes = *SD.NumPatchBytes; 1638 if (SD.StatepointID) 1639 StatepointID = *SD.StatepointID; 1640 1641 // Pass through the requested lowering if any. The default is live-through. 1642 StringRef DeoptLowering = getDeoptLowering(Call); 1643 if (DeoptLowering.equals("live-in")) 1644 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1645 else { 1646 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1647 } 1648 1649 FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand()); 1650 if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) { 1651 auto IID = F->getIntrinsicID(); 1652 if (IID == Intrinsic::experimental_deoptimize) { 1653 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1654 // __llvm_deoptimize symbol. We want to resolve this now, since the 1655 // verifier does not allow taking the address of an intrinsic function. 1656 1657 SmallVector<Type *, 8> DomainTy; 1658 for (Value *Arg : CallArgs) 1659 DomainTy.push_back(Arg->getType()); 1660 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1661 /* isVarArg = */ false); 1662 1663 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1664 // calls to @llvm.experimental.deoptimize with different argument types in 1665 // the same module. This is fine -- we assume the frontend knew what it 1666 // was doing when generating this kind of IR. 1667 CallTarget = F->getParent() 1668 ->getOrInsertFunction("__llvm_deoptimize", FTy); 1669 1670 IsDeoptimize = true; 1671 } else if (IID == Intrinsic::memcpy_element_unordered_atomic || 1672 IID == Intrinsic::memmove_element_unordered_atomic) { 1673 // Unordered atomic memcpy and memmove intrinsics which are not explicitly 1674 // marked as "gc-leaf-function" should be lowered in a GC parseable way. 1675 // Specifically, these calls should be lowered to the 1676 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. 1677 // Similarly to __llvm_deoptimize we want to resolve this now, since the 1678 // verifier does not allow taking the address of an intrinsic function. 1679 // 1680 // Moreover we need to shuffle the arguments for the call in order to 1681 // accommodate GC. The underlying source and destination objects might be 1682 // relocated during copy operation should the GC occur. To relocate the 1683 // derived source and destination pointers the implementation of the 1684 // intrinsic should know the corresponding base pointers. 1685 // 1686 // To make the base pointers available pass them explicitly as arguments: 1687 // memcpy(dest_derived, source_derived, ...) => 1688 // memcpy(dest_base, dest_offset, source_base, source_offset, ...) 1689 auto &Context = Call->getContext(); 1690 auto &DL = Call->getModule()->getDataLayout(); 1691 auto GetBaseAndOffset = [&](Value *Derived) { 1692 Value *Base = nullptr; 1693 // Optimizations in unreachable code might substitute the real pointer 1694 // with undef, poison or null-derived constant. Return null base for 1695 // them to be consistent with the handling in the main algorithm in 1696 // findBaseDefiningValue. 1697 if (isa<Constant>(Derived)) 1698 Base = 1699 ConstantPointerNull::get(cast<PointerType>(Derived->getType())); 1700 else { 1701 assert(PointerToBase.count(Derived)); 1702 Base = PointerToBase.find(Derived)->second; 1703 } 1704 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 1705 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 1706 Value *Base_int = Builder.CreatePtrToInt( 1707 Base, Type::getIntNTy(Context, IntPtrSize)); 1708 Value *Derived_int = Builder.CreatePtrToInt( 1709 Derived, Type::getIntNTy(Context, IntPtrSize)); 1710 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); 1711 }; 1712 1713 auto *Dest = CallArgs[0]; 1714 Value *DestBase, *DestOffset; 1715 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); 1716 1717 auto *Source = CallArgs[1]; 1718 Value *SourceBase, *SourceOffset; 1719 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); 1720 1721 auto *LengthInBytes = CallArgs[2]; 1722 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]); 1723 1724 CallArgs.clear(); 1725 CallArgs.push_back(DestBase); 1726 CallArgs.push_back(DestOffset); 1727 CallArgs.push_back(SourceBase); 1728 CallArgs.push_back(SourceOffset); 1729 CallArgs.push_back(LengthInBytes); 1730 1731 SmallVector<Type *, 8> DomainTy; 1732 for (Value *Arg : CallArgs) 1733 DomainTy.push_back(Arg->getType()); 1734 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1735 /* isVarArg = */ false); 1736 1737 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { 1738 uint64_t ElementSize = ElementSizeCI->getZExtValue(); 1739 if (IID == Intrinsic::memcpy_element_unordered_atomic) { 1740 switch (ElementSize) { 1741 case 1: 1742 return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; 1743 case 2: 1744 return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; 1745 case 4: 1746 return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; 1747 case 8: 1748 return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; 1749 case 16: 1750 return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; 1751 default: 1752 llvm_unreachable("unexpected element size!"); 1753 } 1754 } 1755 assert(IID == Intrinsic::memmove_element_unordered_atomic); 1756 switch (ElementSize) { 1757 case 1: 1758 return "__llvm_memmove_element_unordered_atomic_safepoint_1"; 1759 case 2: 1760 return "__llvm_memmove_element_unordered_atomic_safepoint_2"; 1761 case 4: 1762 return "__llvm_memmove_element_unordered_atomic_safepoint_4"; 1763 case 8: 1764 return "__llvm_memmove_element_unordered_atomic_safepoint_8"; 1765 case 16: 1766 return "__llvm_memmove_element_unordered_atomic_safepoint_16"; 1767 default: 1768 llvm_unreachable("unexpected element size!"); 1769 } 1770 }; 1771 1772 CallTarget = 1773 F->getParent() 1774 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy); 1775 } 1776 } 1777 1778 // Create the statepoint given all the arguments 1779 GCStatepointInst *Token = nullptr; 1780 if (auto *CI = dyn_cast<CallInst>(Call)) { 1781 CallInst *SPCall = Builder.CreateGCStatepointCall( 1782 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1783 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1784 1785 SPCall->setTailCallKind(CI->getTailCallKind()); 1786 SPCall->setCallingConv(CI->getCallingConv()); 1787 1788 // Currently we will fail on parameter attributes and on certain 1789 // function attributes. In case if we can handle this set of attributes - 1790 // set up function attrs directly on statepoint and return attrs later for 1791 // gc_result intrinsic. 1792 SPCall->setAttributes(legalizeCallAttributes( 1793 CI->getContext(), CI->getAttributes(), SPCall->getAttributes())); 1794 1795 Token = cast<GCStatepointInst>(SPCall); 1796 1797 // Put the following gc_result and gc_relocate calls immediately after the 1798 // the old call (which we're about to delete) 1799 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1800 Builder.SetInsertPoint(CI->getNextNode()); 1801 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1802 } else { 1803 auto *II = cast<InvokeInst>(Call); 1804 1805 // Insert the new invoke into the old block. We'll remove the old one in a 1806 // moment at which point this will become the new terminator for the 1807 // original block. 1808 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1809 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1810 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1811 "statepoint_token"); 1812 1813 SPInvoke->setCallingConv(II->getCallingConv()); 1814 1815 // Currently we will fail on parameter attributes and on certain 1816 // function attributes. In case if we can handle this set of attributes - 1817 // set up function attrs directly on statepoint and return attrs later for 1818 // gc_result intrinsic. 1819 SPInvoke->setAttributes(legalizeCallAttributes( 1820 II->getContext(), II->getAttributes(), SPInvoke->getAttributes())); 1821 1822 Token = cast<GCStatepointInst>(SPInvoke); 1823 1824 // Generate gc relocates in exceptional path 1825 BasicBlock *UnwindBlock = II->getUnwindDest(); 1826 assert(!isa<PHINode>(UnwindBlock->begin()) && 1827 UnwindBlock->getUniquePredecessor() && 1828 "can't safely insert in this block!"); 1829 1830 Builder.SetInsertPoint(UnwindBlock, UnwindBlock->getFirstInsertionPt()); 1831 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1832 1833 // Attach exceptional gc relocates to the landingpad. 1834 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1835 Result.UnwindToken = ExceptionalToken; 1836 1837 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder, GC); 1838 1839 // Generate gc relocates and returns for normal block 1840 BasicBlock *NormalDest = II->getNormalDest(); 1841 assert(!isa<PHINode>(NormalDest->begin()) && 1842 NormalDest->getUniquePredecessor() && 1843 "can't safely insert in this block!"); 1844 1845 Builder.SetInsertPoint(NormalDest, NormalDest->getFirstInsertionPt()); 1846 1847 // gc relocates will be generated later as if it were regular call 1848 // statepoint 1849 } 1850 assert(Token && "Should be set in one of the above branches!"); 1851 1852 if (IsDeoptimize) { 1853 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1854 // transform the tail-call like structure to a call to a void function 1855 // followed by unreachable to get better codegen. 1856 Replacements.push_back( 1857 DeferredReplacement::createDeoptimizeReplacement(Call)); 1858 } else { 1859 Token->setName("statepoint_token"); 1860 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1861 StringRef Name = Call->hasName() ? Call->getName() : ""; 1862 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1863 GCResult->setAttributes( 1864 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1865 Call->getAttributes().getRetAttrs())); 1866 1867 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1868 // live set of some other safepoint, in which case that safepoint's 1869 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1870 // llvm::Instruction. Instead, we defer the replacement and deletion to 1871 // after the live sets have been made explicit in the IR, and we no longer 1872 // have raw pointers to worry about. 1873 Replacements.emplace_back( 1874 DeferredReplacement::createRAUW(Call, GCResult)); 1875 } else { 1876 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1877 } 1878 } 1879 1880 Result.StatepointToken = Token; 1881 1882 // Second, create a gc.relocate for every live variable 1883 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder, GC); 1884 } 1885 1886 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1887 // which make the relocations happening at this safepoint explicit. 1888 // 1889 // WARNING: Does not do any fixup to adjust users of the original live 1890 // values. That's the callers responsibility. 1891 static void 1892 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1893 PartiallyConstructedSafepointRecord &Result, 1894 std::vector<DeferredReplacement> &Replacements, 1895 const PointerToBaseTy &PointerToBase, GCStrategy *GC) { 1896 const auto &LiveSet = Result.LiveSet; 1897 1898 // Convert to vector for efficient cross referencing. 1899 SmallVector<Value *, 64> BaseVec, LiveVec; 1900 LiveVec.reserve(LiveSet.size()); 1901 BaseVec.reserve(LiveSet.size()); 1902 for (Value *L : LiveSet) { 1903 LiveVec.push_back(L); 1904 assert(PointerToBase.count(L)); 1905 Value *Base = PointerToBase.find(L)->second; 1906 BaseVec.push_back(Base); 1907 } 1908 assert(LiveVec.size() == BaseVec.size()); 1909 1910 // Do the actual rewriting and delete the old statepoint 1911 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements, 1912 PointerToBase, GC); 1913 } 1914 1915 // Helper function for the relocationViaAlloca. 1916 // 1917 // It receives iterator to the statepoint gc relocates and emits a store to the 1918 // assigned location (via allocaMap) for the each one of them. It adds the 1919 // visited values into the visitedLiveValues set, which we will later use them 1920 // for validation checking. 1921 static void 1922 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1923 DenseMap<Value *, AllocaInst *> &AllocaMap, 1924 DenseSet<Value *> &VisitedLiveValues) { 1925 for (User *U : GCRelocs) { 1926 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1927 if (!Relocate) 1928 continue; 1929 1930 Value *OriginalValue = Relocate->getDerivedPtr(); 1931 assert(AllocaMap.count(OriginalValue)); 1932 Value *Alloca = AllocaMap[OriginalValue]; 1933 1934 // Emit store into the related alloca 1935 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1936 // the correct type according to alloca. 1937 assert(Relocate->getNextNode() && 1938 "Should always have one since it's not a terminator"); 1939 IRBuilder<> Builder(Relocate->getNextNode()); 1940 Value *CastedRelocatedValue = 1941 Builder.CreateBitCast(Relocate, 1942 cast<AllocaInst>(Alloca)->getAllocatedType(), 1943 suffixed_name_or(Relocate, ".casted", "")); 1944 1945 new StoreInst(CastedRelocatedValue, Alloca, 1946 cast<Instruction>(CastedRelocatedValue)->getNextNode()); 1947 1948 #ifndef NDEBUG 1949 VisitedLiveValues.insert(OriginalValue); 1950 #endif 1951 } 1952 } 1953 1954 // Helper function for the "relocationViaAlloca". Similar to the 1955 // "insertRelocationStores" but works for rematerialized values. 1956 static void insertRematerializationStores( 1957 const RematerializedValueMapTy &RematerializedValues, 1958 DenseMap<Value *, AllocaInst *> &AllocaMap, 1959 DenseSet<Value *> &VisitedLiveValues) { 1960 for (auto RematerializedValuePair: RematerializedValues) { 1961 Instruction *RematerializedValue = RematerializedValuePair.first; 1962 Value *OriginalValue = RematerializedValuePair.second; 1963 1964 assert(AllocaMap.count(OriginalValue) && 1965 "Can not find alloca for rematerialized value"); 1966 Value *Alloca = AllocaMap[OriginalValue]; 1967 1968 new StoreInst(RematerializedValue, Alloca, 1969 RematerializedValue->getNextNode()); 1970 1971 #ifndef NDEBUG 1972 VisitedLiveValues.insert(OriginalValue); 1973 #endif 1974 } 1975 } 1976 1977 /// Do all the relocation update via allocas and mem2reg 1978 static void relocationViaAlloca( 1979 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1980 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1981 #ifndef NDEBUG 1982 // record initial number of (static) allocas; we'll check we have the same 1983 // number when we get done. 1984 int InitialAllocaNum = 0; 1985 for (Instruction &I : F.getEntryBlock()) 1986 if (isa<AllocaInst>(I)) 1987 InitialAllocaNum++; 1988 #endif 1989 1990 // TODO-PERF: change data structures, reserve 1991 DenseMap<Value *, AllocaInst *> AllocaMap; 1992 SmallVector<AllocaInst *, 200> PromotableAllocas; 1993 // Used later to chack that we have enough allocas to store all values 1994 std::size_t NumRematerializedValues = 0; 1995 PromotableAllocas.reserve(Live.size()); 1996 1997 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1998 // "PromotableAllocas" 1999 const DataLayout &DL = F.getParent()->getDataLayout(); 2000 auto emitAllocaFor = [&](Value *LiveValue) { 2001 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 2002 DL.getAllocaAddrSpace(), "", 2003 F.getEntryBlock().getFirstNonPHI()); 2004 AllocaMap[LiveValue] = Alloca; 2005 PromotableAllocas.push_back(Alloca); 2006 }; 2007 2008 // Emit alloca for each live gc pointer 2009 for (Value *V : Live) 2010 emitAllocaFor(V); 2011 2012 // Emit allocas for rematerialized values 2013 for (const auto &Info : Records) 2014 for (auto RematerializedValuePair : Info.RematerializedValues) { 2015 Value *OriginalValue = RematerializedValuePair.second; 2016 if (AllocaMap.count(OriginalValue) != 0) 2017 continue; 2018 2019 emitAllocaFor(OriginalValue); 2020 ++NumRematerializedValues; 2021 } 2022 2023 // The next two loops are part of the same conceptual operation. We need to 2024 // insert a store to the alloca after the original def and at each 2025 // redefinition. We need to insert a load before each use. These are split 2026 // into distinct loops for performance reasons. 2027 2028 // Update gc pointer after each statepoint: either store a relocated value or 2029 // null (if no relocated value was found for this gc pointer and it is not a 2030 // gc_result). This must happen before we update the statepoint with load of 2031 // alloca otherwise we lose the link between statepoint and old def. 2032 for (const auto &Info : Records) { 2033 Value *Statepoint = Info.StatepointToken; 2034 2035 // This will be used for consistency check 2036 DenseSet<Value *> VisitedLiveValues; 2037 2038 // Insert stores for normal statepoint gc relocates 2039 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 2040 2041 // In case if it was invoke statepoint 2042 // we will insert stores for exceptional path gc relocates. 2043 if (isa<InvokeInst>(Statepoint)) { 2044 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 2045 VisitedLiveValues); 2046 } 2047 2048 // Do similar thing with rematerialized values 2049 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 2050 VisitedLiveValues); 2051 2052 if (ClobberNonLive) { 2053 // As a debugging aid, pretend that an unrelocated pointer becomes null at 2054 // the gc.statepoint. This will turn some subtle GC problems into 2055 // slightly easier to debug SEGVs. Note that on large IR files with 2056 // lots of gc.statepoints this is extremely costly both memory and time 2057 // wise. 2058 SmallVector<AllocaInst *, 64> ToClobber; 2059 for (auto Pair : AllocaMap) { 2060 Value *Def = Pair.first; 2061 AllocaInst *Alloca = Pair.second; 2062 2063 // This value was relocated 2064 if (VisitedLiveValues.count(Def)) { 2065 continue; 2066 } 2067 ToClobber.push_back(Alloca); 2068 } 2069 2070 auto InsertClobbersAt = [&](Instruction *IP) { 2071 for (auto *AI : ToClobber) { 2072 auto AT = AI->getAllocatedType(); 2073 Constant *CPN; 2074 if (AT->isVectorTy()) 2075 CPN = ConstantAggregateZero::get(AT); 2076 else 2077 CPN = ConstantPointerNull::get(cast<PointerType>(AT)); 2078 new StoreInst(CPN, AI, IP); 2079 } 2080 }; 2081 2082 // Insert the clobbering stores. These may get intermixed with the 2083 // gc.results and gc.relocates, but that's fine. 2084 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 2085 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 2086 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 2087 } else { 2088 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 2089 } 2090 } 2091 } 2092 2093 // Update use with load allocas and add store for gc_relocated. 2094 for (auto Pair : AllocaMap) { 2095 Value *Def = Pair.first; 2096 AllocaInst *Alloca = Pair.second; 2097 2098 // We pre-record the uses of allocas so that we dont have to worry about 2099 // later update that changes the user information.. 2100 2101 SmallVector<Instruction *, 20> Uses; 2102 // PERF: trade a linear scan for repeated reallocation 2103 Uses.reserve(Def->getNumUses()); 2104 for (User *U : Def->users()) { 2105 if (!isa<ConstantExpr>(U)) { 2106 // If the def has a ConstantExpr use, then the def is either a 2107 // ConstantExpr use itself or null. In either case 2108 // (recursively in the first, directly in the second), the oop 2109 // it is ultimately dependent on is null and this particular 2110 // use does not need to be fixed up. 2111 Uses.push_back(cast<Instruction>(U)); 2112 } 2113 } 2114 2115 llvm::sort(Uses); 2116 auto Last = std::unique(Uses.begin(), Uses.end()); 2117 Uses.erase(Last, Uses.end()); 2118 2119 for (Instruction *Use : Uses) { 2120 if (isa<PHINode>(Use)) { 2121 PHINode *Phi = cast<PHINode>(Use); 2122 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 2123 if (Def == Phi->getIncomingValue(i)) { 2124 LoadInst *Load = 2125 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 2126 Phi->getIncomingBlock(i)->getTerminator()); 2127 Phi->setIncomingValue(i, Load); 2128 } 2129 } 2130 } else { 2131 LoadInst *Load = 2132 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 2133 Use->replaceUsesOfWith(Def, Load); 2134 } 2135 } 2136 2137 // Emit store for the initial gc value. Store must be inserted after load, 2138 // otherwise store will be in alloca's use list and an extra load will be 2139 // inserted before it. 2140 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 2141 DL.getABITypeAlign(Def->getType())); 2142 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 2143 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 2144 // InvokeInst is a terminator so the store need to be inserted into its 2145 // normal destination block. 2146 BasicBlock *NormalDest = Invoke->getNormalDest(); 2147 Store->insertBefore(NormalDest->getFirstNonPHI()); 2148 } else { 2149 assert(!Inst->isTerminator() && 2150 "The only terminator that can produce a value is " 2151 "InvokeInst which is handled above."); 2152 Store->insertAfter(Inst); 2153 } 2154 } else { 2155 assert(isa<Argument>(Def)); 2156 Store->insertAfter(cast<Instruction>(Alloca)); 2157 } 2158 } 2159 2160 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 2161 "we must have the same allocas with lives"); 2162 (void) NumRematerializedValues; 2163 if (!PromotableAllocas.empty()) { 2164 // Apply mem2reg to promote alloca to SSA 2165 PromoteMemToReg(PromotableAllocas, DT); 2166 } 2167 2168 #ifndef NDEBUG 2169 for (auto &I : F.getEntryBlock()) 2170 if (isa<AllocaInst>(I)) 2171 InitialAllocaNum--; 2172 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 2173 #endif 2174 } 2175 2176 /// Implement a unique function which doesn't require we sort the input 2177 /// vector. Doing so has the effect of changing the output of a couple of 2178 /// tests in ways which make them less useful in testing fused safepoints. 2179 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 2180 SmallSet<T, 8> Seen; 2181 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); 2182 } 2183 2184 /// Insert holders so that each Value is obviously live through the entire 2185 /// lifetime of the call. 2186 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 2187 SmallVectorImpl<CallInst *> &Holders) { 2188 if (Values.empty()) 2189 // No values to hold live, might as well not insert the empty holder 2190 return; 2191 2192 Module *M = Call->getModule(); 2193 // Use a dummy vararg function to actually hold the values live 2194 FunctionCallee Func = M->getOrInsertFunction( 2195 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 2196 if (isa<CallInst>(Call)) { 2197 // For call safepoints insert dummy calls right after safepoint 2198 Holders.push_back( 2199 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 2200 return; 2201 } 2202 // For invoke safepooints insert dummy calls both in normal and 2203 // exceptional destination blocks 2204 auto *II = cast<InvokeInst>(Call); 2205 Holders.push_back(CallInst::Create( 2206 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 2207 Holders.push_back(CallInst::Create( 2208 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 2209 } 2210 2211 static void findLiveReferences( 2212 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 2213 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 2214 GCStrategy *GC) { 2215 GCPtrLivenessData OriginalLivenessData; 2216 computeLiveInValues(DT, F, OriginalLivenessData, GC); 2217 for (size_t i = 0; i < records.size(); i++) { 2218 struct PartiallyConstructedSafepointRecord &info = records[i]; 2219 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info, GC); 2220 } 2221 } 2222 2223 // Helper function for the "rematerializeLiveValues". It walks use chain 2224 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 2225 // the base or a value it cannot process. Only "simple" values are processed 2226 // (currently it is GEP's and casts). The returned root is examined by the 2227 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 2228 // with all visited values. 2229 static Value* findRematerializableChainToBasePointer( 2230 SmallVectorImpl<Instruction*> &ChainToBase, 2231 Value *CurrentValue) { 2232 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2233 ChainToBase.push_back(GEP); 2234 return findRematerializableChainToBasePointer(ChainToBase, 2235 GEP->getPointerOperand()); 2236 } 2237 2238 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2239 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2240 return CI; 2241 2242 ChainToBase.push_back(CI); 2243 return findRematerializableChainToBasePointer(ChainToBase, 2244 CI->getOperand(0)); 2245 } 2246 2247 // We have reached the root of the chain, which is either equal to the base or 2248 // is the first unsupported value along the use chain. 2249 return CurrentValue; 2250 } 2251 2252 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2253 // chain we are going to rematerialize. 2254 static InstructionCost 2255 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, 2256 TargetTransformInfo &TTI) { 2257 InstructionCost Cost = 0; 2258 2259 for (Instruction *Instr : Chain) { 2260 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2261 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2262 "non noop cast is found during rematerialization"); 2263 2264 Type *SrcTy = CI->getOperand(0)->getType(); 2265 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2266 TTI::getCastContextHint(CI), 2267 TargetTransformInfo::TCK_SizeAndLatency, CI); 2268 2269 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2270 // Cost of the address calculation 2271 Type *ValTy = GEP->getSourceElementType(); 2272 Cost += TTI.getAddressComputationCost(ValTy); 2273 2274 // And cost of the GEP itself 2275 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2276 // allowed for the external usage) 2277 if (!GEP->hasAllConstantIndices()) 2278 Cost += 2; 2279 2280 } else { 2281 llvm_unreachable("unsupported instruction type during rematerialization"); 2282 } 2283 } 2284 2285 return Cost; 2286 } 2287 2288 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2289 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2290 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2291 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2292 return false; 2293 // Map of incoming values and their corresponding basic blocks of 2294 // OrigRootPhi. 2295 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2296 for (unsigned i = 0; i < PhiNum; i++) 2297 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2298 OrigRootPhi.getIncomingBlock(i); 2299 2300 // Both current and base PHIs should have same incoming values and 2301 // the same basic blocks corresponding to the incoming values. 2302 for (unsigned i = 0; i < PhiNum; i++) { 2303 auto CIVI = 2304 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2305 if (CIVI == CurrentIncomingValues.end()) 2306 return false; 2307 BasicBlock *CurrentIncomingBB = CIVI->second; 2308 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2309 return false; 2310 } 2311 return true; 2312 } 2313 2314 // Find derived pointers that can be recomputed cheap enough and fill 2315 // RematerizationCandidates with such candidates. 2316 static void 2317 findRematerializationCandidates(PointerToBaseTy PointerToBase, 2318 RematCandTy &RematerizationCandidates, 2319 TargetTransformInfo &TTI) { 2320 const unsigned int ChainLengthThreshold = 10; 2321 2322 for (auto P2B : PointerToBase) { 2323 auto *Derived = P2B.first; 2324 auto *Base = P2B.second; 2325 // Consider only derived pointers. 2326 if (Derived == Base) 2327 continue; 2328 2329 // For each live pointer find its defining chain. 2330 SmallVector<Instruction *, 3> ChainToBase; 2331 Value *RootOfChain = 2332 findRematerializableChainToBasePointer(ChainToBase, Derived); 2333 2334 // Nothing to do, or chain is too long 2335 if ( ChainToBase.size() == 0 || 2336 ChainToBase.size() > ChainLengthThreshold) 2337 continue; 2338 2339 // Handle the scenario where the RootOfChain is not equal to the 2340 // Base Value, but they are essentially the same phi values. 2341 if (RootOfChain != PointerToBase[Derived]) { 2342 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2343 PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]); 2344 if (!OrigRootPhi || !AlternateRootPhi) 2345 continue; 2346 // PHI nodes that have the same incoming values, and belonging to the same 2347 // basic blocks are essentially the same SSA value. When the original phi 2348 // has incoming values with different base pointers, the original phi is 2349 // marked as conflict, and an additional `AlternateRootPhi` with the same 2350 // incoming values get generated by the findBasePointer function. We need 2351 // to identify the newly generated AlternateRootPhi (.base version of phi) 2352 // and RootOfChain (the original phi node itself) are the same, so that we 2353 // can rematerialize the gep and casts. This is a workaround for the 2354 // deficiency in the findBasePointer algorithm. 2355 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2356 continue; 2357 } 2358 // Compute cost of this chain. 2359 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); 2360 // TODO: We can also account for cases when we will be able to remove some 2361 // of the rematerialized values by later optimization passes. I.e if 2362 // we rematerialized several intersecting chains. Or if original values 2363 // don't have any uses besides this statepoint. 2364 2365 // Ok, there is a candidate. 2366 RematerizlizationCandidateRecord Record; 2367 Record.ChainToBase = ChainToBase; 2368 Record.RootOfChain = RootOfChain; 2369 Record.Cost = Cost; 2370 RematerizationCandidates.insert({ Derived, Record }); 2371 } 2372 } 2373 2374 // Try to rematerialize derived pointers immediately before their uses 2375 // (instead of rematerializing after every statepoint it is live through). 2376 // This can be beneficial when derived pointer is live across many 2377 // statepoints, but uses are rare. 2378 static void rematerializeLiveValuesAtUses( 2379 RematCandTy &RematerizationCandidates, 2380 MutableArrayRef<PartiallyConstructedSafepointRecord> Records, 2381 PointerToBaseTy &PointerToBase) { 2382 if (!RematDerivedAtUses) 2383 return; 2384 2385 SmallVector<Instruction *, 32> LiveValuesToBeDeleted; 2386 2387 LLVM_DEBUG(dbgs() << "Rematerialize derived pointers at uses, " 2388 << "Num statepoints: " << Records.size() << '\n'); 2389 2390 for (auto &It : RematerizationCandidates) { 2391 Instruction *Cand = cast<Instruction>(It.first); 2392 auto &Record = It.second; 2393 2394 if (Record.Cost >= RematerializationThreshold) 2395 continue; 2396 2397 if (Cand->user_empty()) 2398 continue; 2399 2400 if (Cand->hasOneUse()) 2401 if (auto *U = dyn_cast<Instruction>(Cand->getUniqueUndroppableUser())) 2402 if (U->getParent() == Cand->getParent()) 2403 continue; 2404 2405 // Rematerialization before PHI nodes is not implemented. 2406 if (llvm::any_of(Cand->users(), 2407 [](const auto *U) { return isa<PHINode>(U); })) 2408 continue; 2409 2410 LLVM_DEBUG(dbgs() << "Trying cand " << *Cand << " ... "); 2411 2412 // Count of rematerialization instructions we introduce is equal to number 2413 // of candidate uses. 2414 // Count of rematerialization instructions we eliminate is equal to number 2415 // of statepoints it is live through. 2416 // Consider transformation profitable if latter is greater than former 2417 // (in other words, we create less than eliminate). 2418 unsigned NumLiveStatepoints = llvm::count_if( 2419 Records, [Cand](const auto &R) { return R.LiveSet.contains(Cand); }); 2420 unsigned NumUses = Cand->getNumUses(); 2421 2422 LLVM_DEBUG(dbgs() << "Num uses: " << NumUses << " Num live statepoints: " 2423 << NumLiveStatepoints << " "); 2424 2425 if (NumLiveStatepoints < NumUses) { 2426 LLVM_DEBUG(dbgs() << "not profitable\n"); 2427 continue; 2428 } 2429 2430 // If rematerialization is 'free', then favor rematerialization at 2431 // uses as it generally shortens live ranges. 2432 // TODO: Short (size ==1) chains only? 2433 if (NumLiveStatepoints == NumUses && Record.Cost > 0) { 2434 LLVM_DEBUG(dbgs() << "not profitable\n"); 2435 continue; 2436 } 2437 2438 LLVM_DEBUG(dbgs() << "looks profitable\n"); 2439 2440 // ChainToBase may contain another remat candidate (as a sub chain) which 2441 // has been rewritten by now. Need to recollect chain to have up to date 2442 // value. 2443 // TODO: sort records in findRematerializationCandidates() in 2444 // decreasing chain size order? 2445 if (Record.ChainToBase.size() > 1) { 2446 Record.ChainToBase.clear(); 2447 findRematerializableChainToBasePointer(Record.ChainToBase, Cand); 2448 } 2449 2450 // Current rematerialization algorithm is very simple: we rematerialize 2451 // immediately before EVERY use, even if there are several uses in same 2452 // block or if use is local to Cand Def. The reason is that this allows 2453 // us to avoid recomputing liveness without complicated analysis: 2454 // - If we did not eliminate all uses of original Candidate, we do not 2455 // know exaclty in what BBs it is still live. 2456 // - If we rematerialize once per BB, we need to find proper insertion 2457 // place (first use in block, but after Def) and analyze if there is 2458 // statepoint between uses in the block. 2459 while (!Cand->user_empty()) { 2460 Instruction *UserI = cast<Instruction>(*Cand->user_begin()); 2461 Instruction *RematChain = rematerializeChain( 2462 Record.ChainToBase, UserI, Record.RootOfChain, PointerToBase[Cand]); 2463 UserI->replaceUsesOfWith(Cand, RematChain); 2464 PointerToBase[RematChain] = PointerToBase[Cand]; 2465 } 2466 LiveValuesToBeDeleted.push_back(Cand); 2467 } 2468 2469 LLVM_DEBUG(dbgs() << "Rematerialized " << LiveValuesToBeDeleted.size() 2470 << " derived pointers\n"); 2471 for (auto *Cand : LiveValuesToBeDeleted) { 2472 assert(Cand->use_empty() && "Unexpected user remain"); 2473 RematerizationCandidates.erase(Cand); 2474 for (auto &R : Records) { 2475 assert(!R.LiveSet.contains(Cand) || 2476 R.LiveSet.contains(PointerToBase[Cand])); 2477 R.LiveSet.remove(Cand); 2478 } 2479 } 2480 2481 // Recollect not rematerialized chains - we might have rewritten 2482 // their sub-chains. 2483 if (!LiveValuesToBeDeleted.empty()) { 2484 for (auto &P : RematerizationCandidates) { 2485 auto &R = P.second; 2486 if (R.ChainToBase.size() > 1) { 2487 R.ChainToBase.clear(); 2488 findRematerializableChainToBasePointer(R.ChainToBase, P.first); 2489 } 2490 } 2491 } 2492 } 2493 2494 // From the statepoint live set pick values that are cheaper to recompute then 2495 // to relocate. Remove this values from the live set, rematerialize them after 2496 // statepoint and record them in "Info" structure. Note that similar to 2497 // relocated values we don't do any user adjustments here. 2498 static void rematerializeLiveValues(CallBase *Call, 2499 PartiallyConstructedSafepointRecord &Info, 2500 PointerToBaseTy &PointerToBase, 2501 RematCandTy &RematerizationCandidates, 2502 TargetTransformInfo &TTI) { 2503 // Record values we are going to delete from this statepoint live set. 2504 // We can not di this in following loop due to iterator invalidation. 2505 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2506 2507 for (Value *LiveValue : Info.LiveSet) { 2508 auto It = RematerizationCandidates.find(LiveValue); 2509 if (It == RematerizationCandidates.end()) 2510 continue; 2511 2512 RematerizlizationCandidateRecord &Record = It->second; 2513 2514 InstructionCost Cost = Record.Cost; 2515 // For invokes we need to rematerialize each chain twice - for normal and 2516 // for unwind basic blocks. Model this by multiplying cost by two. 2517 if (isa<InvokeInst>(Call)) 2518 Cost *= 2; 2519 2520 // If it's too expensive - skip it. 2521 if (Cost >= RematerializationThreshold) 2522 continue; 2523 2524 // Remove value from the live set 2525 LiveValuesToBeDeleted.push_back(LiveValue); 2526 2527 // Clone instructions and record them inside "Info" structure. 2528 2529 // Different cases for calls and invokes. For invokes we need to clone 2530 // instructions both on normal and unwind path. 2531 if (isa<CallInst>(Call)) { 2532 Instruction *InsertBefore = Call->getNextNode(); 2533 assert(InsertBefore); 2534 Instruction *RematerializedValue = 2535 rematerializeChain(Record.ChainToBase, InsertBefore, 2536 Record.RootOfChain, PointerToBase[LiveValue]); 2537 Info.RematerializedValues[RematerializedValue] = LiveValue; 2538 } else { 2539 auto *Invoke = cast<InvokeInst>(Call); 2540 2541 Instruction *NormalInsertBefore = 2542 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2543 Instruction *UnwindInsertBefore = 2544 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2545 2546 Instruction *NormalRematerializedValue = 2547 rematerializeChain(Record.ChainToBase, NormalInsertBefore, 2548 Record.RootOfChain, PointerToBase[LiveValue]); 2549 Instruction *UnwindRematerializedValue = 2550 rematerializeChain(Record.ChainToBase, UnwindInsertBefore, 2551 Record.RootOfChain, PointerToBase[LiveValue]); 2552 2553 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2554 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2555 } 2556 } 2557 2558 // Remove rematerialized values from the live set. 2559 for (auto *LiveValue: LiveValuesToBeDeleted) { 2560 Info.LiveSet.remove(LiveValue); 2561 } 2562 } 2563 2564 static bool inlineGetBaseAndOffset(Function &F, 2565 SmallVectorImpl<CallInst *> &Intrinsics, 2566 DefiningValueMapTy &DVCache, 2567 IsKnownBaseMapTy &KnownBases) { 2568 auto &Context = F.getContext(); 2569 auto &DL = F.getParent()->getDataLayout(); 2570 bool Changed = false; 2571 2572 for (auto *Callsite : Intrinsics) 2573 switch (Callsite->getIntrinsicID()) { 2574 case Intrinsic::experimental_gc_get_pointer_base: { 2575 Changed = true; 2576 Value *Base = 2577 findBasePointer(Callsite->getOperand(0), DVCache, KnownBases); 2578 assert(!DVCache.count(Callsite)); 2579 auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast( 2580 Base, Callsite->getType(), suffixed_name_or(Base, ".cast", "")); 2581 if (BaseBC != Base) 2582 DVCache[BaseBC] = Base; 2583 Callsite->replaceAllUsesWith(BaseBC); 2584 if (!BaseBC->hasName()) 2585 BaseBC->takeName(Callsite); 2586 Callsite->eraseFromParent(); 2587 break; 2588 } 2589 case Intrinsic::experimental_gc_get_pointer_offset: { 2590 Changed = true; 2591 Value *Derived = Callsite->getOperand(0); 2592 Value *Base = findBasePointer(Derived, DVCache, KnownBases); 2593 assert(!DVCache.count(Callsite)); 2594 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 2595 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 2596 IRBuilder<> Builder(Callsite); 2597 Value *BaseInt = 2598 Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize), 2599 suffixed_name_or(Base, ".int", "")); 2600 Value *DerivedInt = 2601 Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize), 2602 suffixed_name_or(Derived, ".int", "")); 2603 Value *Offset = Builder.CreateSub(DerivedInt, BaseInt); 2604 Callsite->replaceAllUsesWith(Offset); 2605 Offset->takeName(Callsite); 2606 Callsite->eraseFromParent(); 2607 break; 2608 } 2609 default: 2610 llvm_unreachable("Unknown intrinsic"); 2611 } 2612 2613 return Changed; 2614 } 2615 2616 static bool insertParsePoints(Function &F, DominatorTree &DT, 2617 TargetTransformInfo &TTI, 2618 SmallVectorImpl<CallBase *> &ToUpdate, 2619 DefiningValueMapTy &DVCache, 2620 IsKnownBaseMapTy &KnownBases) { 2621 std::unique_ptr<GCStrategy> GC = findGCStrategy(F); 2622 2623 #ifndef NDEBUG 2624 // Validate the input 2625 std::set<CallBase *> Uniqued; 2626 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2627 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2628 2629 for (CallBase *Call : ToUpdate) 2630 assert(Call->getFunction() == &F); 2631 #endif 2632 2633 // When inserting gc.relocates for invokes, we need to be able to insert at 2634 // the top of the successor blocks. See the comment on 2635 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2636 // may restructure the CFG. 2637 for (CallBase *Call : ToUpdate) { 2638 auto *II = dyn_cast<InvokeInst>(Call); 2639 if (!II) 2640 continue; 2641 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2642 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2643 } 2644 2645 // A list of dummy calls added to the IR to keep various values obviously 2646 // live in the IR. We'll remove all of these when done. 2647 SmallVector<CallInst *, 64> Holders; 2648 2649 // Insert a dummy call with all of the deopt operands we'll need for the 2650 // actual safepoint insertion as arguments. This ensures reference operands 2651 // in the deopt argument list are considered live through the safepoint (and 2652 // thus makes sure they get relocated.) 2653 for (CallBase *Call : ToUpdate) { 2654 SmallVector<Value *, 64> DeoptValues; 2655 2656 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2657 assert(!isUnhandledGCPointerType(Arg->getType(), GC.get()) && 2658 "support for FCA unimplemented"); 2659 if (isHandledGCPointerType(Arg->getType(), GC.get())) 2660 DeoptValues.push_back(Arg); 2661 } 2662 2663 insertUseHolderAfter(Call, DeoptValues, Holders); 2664 } 2665 2666 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2667 2668 // A) Identify all gc pointers which are statically live at the given call 2669 // site. 2670 findLiveReferences(F, DT, ToUpdate, Records, GC.get()); 2671 2672 /// Global mapping from live pointers to a base-defining-value. 2673 PointerToBaseTy PointerToBase; 2674 2675 // B) Find the base pointers for each live pointer 2676 for (size_t i = 0; i < Records.size(); i++) { 2677 PartiallyConstructedSafepointRecord &info = Records[i]; 2678 findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases); 2679 } 2680 if (PrintBasePointers) { 2681 errs() << "Base Pairs (w/o Relocation):\n"; 2682 for (auto &Pair : PointerToBase) { 2683 errs() << " derived "; 2684 Pair.first->printAsOperand(errs(), false); 2685 errs() << " base "; 2686 Pair.second->printAsOperand(errs(), false); 2687 errs() << "\n"; 2688 ; 2689 } 2690 } 2691 2692 // The base phi insertion logic (for any safepoint) may have inserted new 2693 // instructions which are now live at some safepoint. The simplest such 2694 // example is: 2695 // loop: 2696 // phi a <-- will be a new base_phi here 2697 // safepoint 1 <-- that needs to be live here 2698 // gep a + 1 2699 // safepoint 2 2700 // br loop 2701 // We insert some dummy calls after each safepoint to definitely hold live 2702 // the base pointers which were identified for that safepoint. We'll then 2703 // ask liveness for _every_ base inserted to see what is now live. Then we 2704 // remove the dummy calls. 2705 Holders.reserve(Holders.size() + Records.size()); 2706 for (size_t i = 0; i < Records.size(); i++) { 2707 PartiallyConstructedSafepointRecord &Info = Records[i]; 2708 2709 SmallVector<Value *, 128> Bases; 2710 for (auto *Derived : Info.LiveSet) { 2711 assert(PointerToBase.count(Derived) && "Missed base for derived pointer"); 2712 Bases.push_back(PointerToBase[Derived]); 2713 } 2714 2715 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2716 } 2717 2718 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2719 // need to rerun liveness. We may *also* have inserted new defs, but that's 2720 // not the key issue. 2721 recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase, GC.get()); 2722 2723 if (PrintBasePointers) { 2724 errs() << "Base Pairs: (w/Relocation)\n"; 2725 for (auto Pair : PointerToBase) { 2726 errs() << " derived "; 2727 Pair.first->printAsOperand(errs(), false); 2728 errs() << " base "; 2729 Pair.second->printAsOperand(errs(), false); 2730 errs() << "\n"; 2731 } 2732 } 2733 2734 // It is possible that non-constant live variables have a constant base. For 2735 // example, a GEP with a variable offset from a global. In this case we can 2736 // remove it from the liveset. We already don't add constants to the liveset 2737 // because we assume they won't move at runtime and the GC doesn't need to be 2738 // informed about them. The same reasoning applies if the base is constant. 2739 // Note that the relocation placement code relies on this filtering for 2740 // correctness as it expects the base to be in the liveset, which isn't true 2741 // if the base is constant. 2742 for (auto &Info : Records) { 2743 Info.LiveSet.remove_if([&](Value *LiveV) { 2744 assert(PointerToBase.count(LiveV) && "Missed base for derived pointer"); 2745 return isa<Constant>(PointerToBase[LiveV]); 2746 }); 2747 } 2748 2749 for (CallInst *CI : Holders) 2750 CI->eraseFromParent(); 2751 2752 Holders.clear(); 2753 2754 // Compute the cost of possible re-materialization of derived pointers. 2755 RematCandTy RematerizationCandidates; 2756 findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI); 2757 2758 // In order to reduce live set of statepoint we might choose to rematerialize 2759 // some values instead of relocating them. This is purely an optimization and 2760 // does not influence correctness. 2761 // First try rematerialization at uses, then after statepoints. 2762 rematerializeLiveValuesAtUses(RematerizationCandidates, Records, 2763 PointerToBase); 2764 for (size_t i = 0; i < Records.size(); i++) 2765 rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase, 2766 RematerizationCandidates, TTI); 2767 2768 // We need this to safely RAUW and delete call or invoke return values that 2769 // may themselves be live over a statepoint. For details, please see usage in 2770 // makeStatepointExplicitImpl. 2771 std::vector<DeferredReplacement> Replacements; 2772 2773 // Now run through and replace the existing statepoints with new ones with 2774 // the live variables listed. We do not yet update uses of the values being 2775 // relocated. We have references to live variables that need to 2776 // survive to the last iteration of this loop. (By construction, the 2777 // previous statepoint can not be a live variable, thus we can and remove 2778 // the old statepoint calls as we go.) 2779 for (size_t i = 0; i < Records.size(); i++) 2780 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements, 2781 PointerToBase, GC.get()); 2782 2783 ToUpdate.clear(); // prevent accident use of invalid calls. 2784 2785 for (auto &PR : Replacements) 2786 PR.doReplacement(); 2787 2788 Replacements.clear(); 2789 2790 for (auto &Info : Records) { 2791 // These live sets may contain state Value pointers, since we replaced calls 2792 // with operand bundles with calls wrapped in gc.statepoint, and some of 2793 // those calls may have been def'ing live gc pointers. Clear these out to 2794 // avoid accidentally using them. 2795 // 2796 // TODO: We should create a separate data structure that does not contain 2797 // these live sets, and migrate to using that data structure from this point 2798 // onward. 2799 Info.LiveSet.clear(); 2800 } 2801 PointerToBase.clear(); 2802 2803 // Do all the fixups of the original live variables to their relocated selves 2804 SmallVector<Value *, 128> Live; 2805 for (const PartiallyConstructedSafepointRecord &Info : Records) { 2806 // We can't simply save the live set from the original insertion. One of 2807 // the live values might be the result of a call which needs a safepoint. 2808 // That Value* no longer exists and we need to use the new gc_result. 2809 // Thankfully, the live set is embedded in the statepoint (and updated), so 2810 // we just grab that. 2811 llvm::append_range(Live, Info.StatepointToken->gc_args()); 2812 #ifndef NDEBUG 2813 // Do some basic validation checking on our liveness results before 2814 // performing relocation. Relocation can and will turn mistakes in liveness 2815 // results into non-sensical code which is must harder to debug. 2816 // TODO: It would be nice to test consistency as well 2817 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2818 "statepoint must be reachable or liveness is meaningless"); 2819 for (Value *V : Info.StatepointToken->gc_args()) { 2820 if (!isa<Instruction>(V)) 2821 // Non-instruction values trivial dominate all possible uses 2822 continue; 2823 auto *LiveInst = cast<Instruction>(V); 2824 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2825 "unreachable values should never be live"); 2826 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2827 "basic SSA liveness expectation violated by liveness analysis"); 2828 } 2829 #endif 2830 } 2831 unique_unsorted(Live); 2832 2833 #ifndef NDEBUG 2834 // Validation check 2835 for (auto *Ptr : Live) 2836 assert(isHandledGCPointerType(Ptr->getType(), GC.get()) && 2837 "must be a gc pointer type"); 2838 #endif 2839 2840 relocationViaAlloca(F, DT, Live, Records); 2841 return !Records.empty(); 2842 } 2843 2844 // List of all parameter and return attributes which must be stripped when 2845 // lowering from the abstract machine model. Note that we list attributes 2846 // here which aren't valid as return attributes, that is okay. 2847 static AttributeMask getParamAndReturnAttributesToRemove() { 2848 AttributeMask R; 2849 R.addAttribute(Attribute::Dereferenceable); 2850 R.addAttribute(Attribute::DereferenceableOrNull); 2851 R.addAttribute(Attribute::ReadNone); 2852 R.addAttribute(Attribute::ReadOnly); 2853 R.addAttribute(Attribute::WriteOnly); 2854 R.addAttribute(Attribute::NoAlias); 2855 R.addAttribute(Attribute::NoFree); 2856 return R; 2857 } 2858 2859 static void stripNonValidAttributesFromPrototype(Function &F) { 2860 LLVMContext &Ctx = F.getContext(); 2861 2862 // Intrinsics are very delicate. Lowering sometimes depends the presence 2863 // of certain attributes for correctness, but we may have also inferred 2864 // additional ones in the abstract machine model which need stripped. This 2865 // assumes that the attributes defined in Intrinsic.td are conservatively 2866 // correct for both physical and abstract model. 2867 if (Intrinsic::ID id = F.getIntrinsicID()) { 2868 F.setAttributes(Intrinsic::getAttributes(Ctx, id)); 2869 return; 2870 } 2871 2872 AttributeMask R = getParamAndReturnAttributesToRemove(); 2873 for (Argument &A : F.args()) 2874 if (isa<PointerType>(A.getType())) 2875 F.removeParamAttrs(A.getArgNo(), R); 2876 2877 if (isa<PointerType>(F.getReturnType())) 2878 F.removeRetAttrs(R); 2879 2880 for (auto Attr : FnAttrsToStrip) 2881 F.removeFnAttr(Attr); 2882 } 2883 2884 /// Certain metadata on instructions are invalid after running RS4GC. 2885 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2886 /// optimize functions. We drop such metadata on the instruction. 2887 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2888 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2889 return; 2890 // These are the attributes that are still valid on loads and stores after 2891 // RS4GC. 2892 // The metadata implying dereferenceability and noalias are (conservatively) 2893 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2894 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2895 // touch the entire heap including noalias objects. Note: The reasoning is 2896 // same as stripping the dereferenceability and noalias attributes that are 2897 // analogous to the metadata counterparts. 2898 // We also drop the invariant.load metadata on the load because that metadata 2899 // implies the address operand to the load points to memory that is never 2900 // changed once it became dereferenceable. This is no longer true after RS4GC. 2901 // Similar reasoning applies to invariant.group metadata, which applies to 2902 // loads within a group. 2903 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2904 LLVMContext::MD_range, 2905 LLVMContext::MD_alias_scope, 2906 LLVMContext::MD_nontemporal, 2907 LLVMContext::MD_nonnull, 2908 LLVMContext::MD_align, 2909 LLVMContext::MD_type}; 2910 2911 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2912 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2913 } 2914 2915 static void stripNonValidDataFromBody(Function &F) { 2916 if (F.empty()) 2917 return; 2918 2919 LLVMContext &Ctx = F.getContext(); 2920 MDBuilder Builder(Ctx); 2921 2922 // Set of invariantstart instructions that we need to remove. 2923 // Use this to avoid invalidating the instruction iterator. 2924 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2925 2926 for (Instruction &I : instructions(F)) { 2927 // invariant.start on memory location implies that the referenced memory 2928 // location is constant and unchanging. This is no longer true after 2929 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2930 // which frees the entire heap and the presence of invariant.start allows 2931 // the optimizer to sink the load of a memory location past a statepoint, 2932 // which is incorrect. 2933 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2934 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2935 InvariantStartInstructions.push_back(II); 2936 continue; 2937 } 2938 2939 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2940 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2941 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2942 } 2943 2944 stripInvalidMetadataFromInstruction(I); 2945 2946 AttributeMask R = getParamAndReturnAttributesToRemove(); 2947 if (auto *Call = dyn_cast<CallBase>(&I)) { 2948 for (int i = 0, e = Call->arg_size(); i != e; i++) 2949 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2950 Call->removeParamAttrs(i, R); 2951 if (isa<PointerType>(Call->getType())) 2952 Call->removeRetAttrs(R); 2953 } 2954 } 2955 2956 // Delete the invariant.start instructions and RAUW poison. 2957 for (auto *II : InvariantStartInstructions) { 2958 II->replaceAllUsesWith(PoisonValue::get(II->getType())); 2959 II->eraseFromParent(); 2960 } 2961 } 2962 2963 /// Looks up the GC strategy for a given function, returning null if the 2964 /// function doesn't have a GC tag. The strategy is stored in the cache. 2965 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F) { 2966 if (!F.hasGC()) 2967 return nullptr; 2968 2969 return getGCStrategy(F.getGC()); 2970 } 2971 2972 /// Returns true if this function should be rewritten by this pass. The main 2973 /// point of this function is as an extension point for custom logic. 2974 static bool shouldRewriteStatepointsIn(Function &F) { 2975 if (!F.hasGC()) 2976 return false; 2977 2978 std::unique_ptr<GCStrategy> Strategy = findGCStrategy(F); 2979 2980 assert(Strategy && "GC strategy is required by function, but was not found"); 2981 2982 return Strategy->useRS4GC(); 2983 } 2984 2985 static void stripNonValidData(Module &M) { 2986 #ifndef NDEBUG 2987 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2988 #endif 2989 2990 for (Function &F : M) 2991 stripNonValidAttributesFromPrototype(F); 2992 2993 for (Function &F : M) 2994 stripNonValidDataFromBody(F); 2995 } 2996 2997 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2998 TargetTransformInfo &TTI, 2999 const TargetLibraryInfo &TLI) { 3000 assert(!F.isDeclaration() && !F.empty() && 3001 "need function body to rewrite statepoints in"); 3002 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 3003 3004 auto NeedsRewrite = [&TLI](Instruction &I) { 3005 if (const auto *Call = dyn_cast<CallBase>(&I)) { 3006 if (isa<GCStatepointInst>(Call)) 3007 return false; 3008 if (callsGCLeafFunction(Call, TLI)) 3009 return false; 3010 3011 // Normally it's up to the frontend to make sure that non-leaf calls also 3012 // have proper deopt state if it is required. We make an exception for 3013 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics 3014 // these are non-leaf by default. They might be generated by the optimizer 3015 // which doesn't know how to produce a proper deopt state. So if we see a 3016 // non-leaf memcpy/memmove without deopt state just treat it as a leaf 3017 // copy and don't produce a statepoint. 3018 if (!AllowStatepointWithNoDeoptInfo && 3019 !Call->getOperandBundle(LLVMContext::OB_deopt)) { 3020 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && 3021 "Don't expect any other calls here!"); 3022 return false; 3023 } 3024 return true; 3025 } 3026 return false; 3027 }; 3028 3029 // Delete any unreachable statepoints so that we don't have unrewritten 3030 // statepoints surviving this pass. This makes testing easier and the 3031 // resulting IR less confusing to human readers. 3032 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 3033 bool MadeChange = removeUnreachableBlocks(F, &DTU); 3034 // Flush the Dominator Tree. 3035 DTU.getDomTree(); 3036 3037 // Gather all the statepoints which need rewritten. Be careful to only 3038 // consider those in reachable code since we need to ask dominance queries 3039 // when rewriting. We'll delete the unreachable ones in a moment. 3040 SmallVector<CallBase *, 64> ParsePointNeeded; 3041 SmallVector<CallInst *, 64> Intrinsics; 3042 for (Instruction &I : instructions(F)) { 3043 // TODO: only the ones with the flag set! 3044 if (NeedsRewrite(I)) { 3045 // NOTE removeUnreachableBlocks() is stronger than 3046 // DominatorTree::isReachableFromEntry(). In other words 3047 // removeUnreachableBlocks can remove some blocks for which 3048 // isReachableFromEntry() returns true. 3049 assert(DT.isReachableFromEntry(I.getParent()) && 3050 "no unreachable blocks expected"); 3051 ParsePointNeeded.push_back(cast<CallBase>(&I)); 3052 } 3053 if (auto *CI = dyn_cast<CallInst>(&I)) 3054 if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || 3055 CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) 3056 Intrinsics.emplace_back(CI); 3057 } 3058 3059 // Return early if no work to do. 3060 if (ParsePointNeeded.empty() && Intrinsics.empty()) 3061 return MadeChange; 3062 3063 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 3064 // These are created by LCSSA. They have the effect of increasing the size 3065 // of liveness sets for no good reason. It may be harder to do this post 3066 // insertion since relocations and base phis can confuse things. 3067 for (BasicBlock &BB : F) 3068 if (BB.getUniquePredecessor()) 3069 MadeChange |= FoldSingleEntryPHINodes(&BB); 3070 3071 // Before we start introducing relocations, we want to tweak the IR a bit to 3072 // avoid unfortunate code generation effects. The main example is that we 3073 // want to try to make sure the comparison feeding a branch is after any 3074 // safepoints. Otherwise, we end up with a comparison of pre-relocation 3075 // values feeding a branch after relocation. This is semantically correct, 3076 // but results in extra register pressure since both the pre-relocation and 3077 // post-relocation copies must be available in registers. For code without 3078 // relocations this is handled elsewhere, but teaching the scheduler to 3079 // reverse the transform we're about to do would be slightly complex. 3080 // Note: This may extend the live range of the inputs to the icmp and thus 3081 // increase the liveset of any statepoint we move over. This is profitable 3082 // as long as all statepoints are in rare blocks. If we had in-register 3083 // lowering for live values this would be a much safer transform. 3084 auto getConditionInst = [](Instruction *TI) -> Instruction * { 3085 if (auto *BI = dyn_cast<BranchInst>(TI)) 3086 if (BI->isConditional()) 3087 return dyn_cast<Instruction>(BI->getCondition()); 3088 // TODO: Extend this to handle switches 3089 return nullptr; 3090 }; 3091 for (BasicBlock &BB : F) { 3092 Instruction *TI = BB.getTerminator(); 3093 if (auto *Cond = getConditionInst(TI)) 3094 // TODO: Handle more than just ICmps here. We should be able to move 3095 // most instructions without side effects or memory access. 3096 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 3097 MadeChange = true; 3098 Cond->moveBefore(TI); 3099 } 3100 } 3101 3102 // Nasty workaround - The base computation code in the main algorithm doesn't 3103 // consider the fact that a GEP can be used to convert a scalar to a vector. 3104 // The right fix for this is to integrate GEPs into the base rewriting 3105 // algorithm properly, this is just a short term workaround to prevent 3106 // crashes by canonicalizing such GEPs into fully vector GEPs. 3107 for (Instruction &I : instructions(F)) { 3108 if (!isa<GetElementPtrInst>(I)) 3109 continue; 3110 3111 unsigned VF = 0; 3112 for (unsigned i = 0; i < I.getNumOperands(); i++) 3113 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 3114 assert(VF == 0 || 3115 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 3116 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 3117 } 3118 3119 // It's the vector to scalar traversal through the pointer operand which 3120 // confuses base pointer rewriting, so limit ourselves to that case. 3121 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 3122 IRBuilder<> B(&I); 3123 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 3124 I.setOperand(0, Splat); 3125 MadeChange = true; 3126 } 3127 } 3128 3129 // Cache the 'defining value' relation used in the computation and 3130 // insertion of base phis and selects. This ensures that we don't insert 3131 // large numbers of duplicate base_phis. Use one cache for both 3132 // inlineGetBaseAndOffset() and insertParsePoints(). 3133 DefiningValueMapTy DVCache; 3134 3135 // Mapping between a base values and a flag indicating whether it's a known 3136 // base or not. 3137 IsKnownBaseMapTy KnownBases; 3138 3139 if (!Intrinsics.empty()) 3140 // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding 3141 // live references. 3142 MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases); 3143 3144 if (!ParsePointNeeded.empty()) 3145 MadeChange |= 3146 insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases); 3147 3148 return MadeChange; 3149 } 3150 3151 // liveness computation via standard dataflow 3152 // ------------------------------------------------------------------- 3153 3154 // TODO: Consider using bitvectors for liveness, the set of potentially 3155 // interesting values should be small and easy to pre-compute. 3156 3157 /// Compute the live-in set for the location rbegin starting from 3158 /// the live-out set of the basic block 3159 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 3160 BasicBlock::reverse_iterator End, 3161 SetVector<Value *> &LiveTmp, GCStrategy *GC) { 3162 for (auto &I : make_range(Begin, End)) { 3163 // KILL/Def - Remove this definition from LiveIn 3164 LiveTmp.remove(&I); 3165 3166 // Don't consider *uses* in PHI nodes, we handle their contribution to 3167 // predecessor blocks when we seed the LiveOut sets 3168 if (isa<PHINode>(I)) 3169 continue; 3170 3171 // USE - Add to the LiveIn set for this instruction 3172 for (Value *V : I.operands()) { 3173 assert(!isUnhandledGCPointerType(V->getType(), GC) && 3174 "support for FCA unimplemented"); 3175 if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V)) { 3176 // The choice to exclude all things constant here is slightly subtle. 3177 // There are two independent reasons: 3178 // - We assume that things which are constant (from LLVM's definition) 3179 // do not move at runtime. For example, the address of a global 3180 // variable is fixed, even though it's contents may not be. 3181 // - Second, we can't disallow arbitrary inttoptr constants even 3182 // if the language frontend does. Optimization passes are free to 3183 // locally exploit facts without respect to global reachability. This 3184 // can create sections of code which are dynamically unreachable and 3185 // contain just about anything. (see constants.ll in tests) 3186 LiveTmp.insert(V); 3187 } 3188 } 3189 } 3190 } 3191 3192 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp, 3193 GCStrategy *GC) { 3194 for (BasicBlock *Succ : successors(BB)) { 3195 for (auto &I : *Succ) { 3196 PHINode *PN = dyn_cast<PHINode>(&I); 3197 if (!PN) 3198 break; 3199 3200 Value *V = PN->getIncomingValueForBlock(BB); 3201 assert(!isUnhandledGCPointerType(V->getType(), GC) && 3202 "support for FCA unimplemented"); 3203 if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V)) 3204 LiveTmp.insert(V); 3205 } 3206 } 3207 } 3208 3209 static SetVector<Value *> computeKillSet(BasicBlock *BB, GCStrategy *GC) { 3210 SetVector<Value *> KillSet; 3211 for (Instruction &I : *BB) 3212 if (isHandledGCPointerType(I.getType(), GC)) 3213 KillSet.insert(&I); 3214 return KillSet; 3215 } 3216 3217 #ifndef NDEBUG 3218 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 3219 /// validation check for the liveness computation. 3220 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 3221 Instruction *TI, bool TermOkay = false) { 3222 for (Value *V : Live) { 3223 if (auto *I = dyn_cast<Instruction>(V)) { 3224 // The terminator can be a member of the LiveOut set. LLVM's definition 3225 // of instruction dominance states that V does not dominate itself. As 3226 // such, we need to special case this to allow it. 3227 if (TermOkay && TI == I) 3228 continue; 3229 assert(DT.dominates(I, TI) && 3230 "basic SSA liveness expectation violated by liveness analysis"); 3231 } 3232 } 3233 } 3234 3235 /// Check that all the liveness sets used during the computation of liveness 3236 /// obey basic SSA properties. This is useful for finding cases where we miss 3237 /// a def. 3238 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 3239 BasicBlock &BB) { 3240 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 3241 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 3242 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 3243 } 3244 #endif 3245 3246 static void computeLiveInValues(DominatorTree &DT, Function &F, 3247 GCPtrLivenessData &Data, GCStrategy *GC) { 3248 SmallSetVector<BasicBlock *, 32> Worklist; 3249 3250 // Seed the liveness for each individual block 3251 for (BasicBlock &BB : F) { 3252 Data.KillSet[&BB] = computeKillSet(&BB, GC); 3253 Data.LiveSet[&BB].clear(); 3254 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB], GC); 3255 3256 #ifndef NDEBUG 3257 for (Value *Kill : Data.KillSet[&BB]) 3258 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 3259 #endif 3260 3261 Data.LiveOut[&BB] = SetVector<Value *>(); 3262 computeLiveOutSeed(&BB, Data.LiveOut[&BB], GC); 3263 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 3264 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 3265 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 3266 if (!Data.LiveIn[&BB].empty()) 3267 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 3268 } 3269 3270 // Propagate that liveness until stable 3271 while (!Worklist.empty()) { 3272 BasicBlock *BB = Worklist.pop_back_val(); 3273 3274 // Compute our new liveout set, then exit early if it hasn't changed despite 3275 // the contribution of our successor. 3276 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3277 const auto OldLiveOutSize = LiveOut.size(); 3278 for (BasicBlock *Succ : successors(BB)) { 3279 assert(Data.LiveIn.count(Succ)); 3280 LiveOut.set_union(Data.LiveIn[Succ]); 3281 } 3282 // assert OutLiveOut is a subset of LiveOut 3283 if (OldLiveOutSize == LiveOut.size()) { 3284 // If the sets are the same size, then we didn't actually add anything 3285 // when unioning our successors LiveIn. Thus, the LiveIn of this block 3286 // hasn't changed. 3287 continue; 3288 } 3289 Data.LiveOut[BB] = LiveOut; 3290 3291 // Apply the effects of this basic block 3292 SetVector<Value *> LiveTmp = LiveOut; 3293 LiveTmp.set_union(Data.LiveSet[BB]); 3294 LiveTmp.set_subtract(Data.KillSet[BB]); 3295 3296 assert(Data.LiveIn.count(BB)); 3297 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 3298 // assert: OldLiveIn is a subset of LiveTmp 3299 if (OldLiveIn.size() != LiveTmp.size()) { 3300 Data.LiveIn[BB] = LiveTmp; 3301 Worklist.insert(pred_begin(BB), pred_end(BB)); 3302 } 3303 } // while (!Worklist.empty()) 3304 3305 #ifndef NDEBUG 3306 // Verify our output against SSA properties. This helps catch any 3307 // missing kills during the above iteration. 3308 for (BasicBlock &BB : F) 3309 checkBasicSSA(DT, Data, BB); 3310 #endif 3311 } 3312 3313 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 3314 StatepointLiveSetTy &Out, GCStrategy *GC) { 3315 BasicBlock *BB = Inst->getParent(); 3316 3317 // Note: The copy is intentional and required 3318 assert(Data.LiveOut.count(BB)); 3319 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3320 3321 // We want to handle the statepoint itself oddly. It's 3322 // call result is not live (normal), nor are it's arguments 3323 // (unless they're used again later). This adjustment is 3324 // specifically what we need to relocate 3325 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), LiveOut, 3326 GC); 3327 LiveOut.remove(Inst); 3328 Out.insert(LiveOut.begin(), LiveOut.end()); 3329 } 3330 3331 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 3332 CallBase *Call, 3333 PartiallyConstructedSafepointRecord &Info, 3334 PointerToBaseTy &PointerToBase, 3335 GCStrategy *GC) { 3336 StatepointLiveSetTy Updated; 3337 findLiveSetAtInst(Call, RevisedLivenessData, Updated, GC); 3338 3339 // We may have base pointers which are now live that weren't before. We need 3340 // to update the PointerToBase structure to reflect this. 3341 for (auto *V : Updated) 3342 PointerToBase.insert({ V, V }); 3343 3344 Info.LiveSet = Updated; 3345 } 3346