1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef EXPENSIVE_CHECKS 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 static cl::opt<bool> 75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 76 cl::Hidden, cl::init(true)); 77 78 namespace { 79 struct RewriteStatepointsForGC : public ModulePass { 80 static char ID; // Pass identification, replacement for typeid 81 82 RewriteStatepointsForGC() : ModulePass(ID) { 83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 84 } 85 bool runOnFunction(Function &F); 86 bool runOnModule(Module &M) override { 87 bool Changed = false; 88 for (Function &F : M) 89 Changed |= runOnFunction(F); 90 91 if (Changed) { 92 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 93 // returns true for at least one function in the module. Since at least 94 // one function changed, we know that the precondition is satisfied. 95 stripNonValidAttributes(M); 96 } 97 98 return Changed; 99 } 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 // We add and rewrite a bunch of instructions, but don't really do much 103 // else. We could in theory preserve a lot more analyses here. 104 AU.addRequired<DominatorTreeWrapperPass>(); 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 109 /// dereferenceability that are no longer valid/correct after 110 /// RewriteStatepointsForGC has run. This is because semantically, after 111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 112 /// heap. stripNonValidAttributes (conservatively) restores correctness 113 /// by erasing all attributes in the module that externally imply 114 /// dereferenceability. 115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 116 /// can touch the entire heap including noalias objects. 117 void stripNonValidAttributes(Module &M); 118 119 // Helpers for stripNonValidAttributes 120 void stripNonValidAttributesFromBody(Function &F); 121 void stripNonValidAttributesFromPrototype(Function &F); 122 }; 123 } // namespace 124 125 char RewriteStatepointsForGC::ID = 0; 126 127 ModulePass *llvm::createRewriteStatepointsForGCPass() { 128 return new RewriteStatepointsForGC(); 129 } 130 131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 132 "Make relocations explicit at statepoints", false, false) 133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 136 "Make relocations explicit at statepoints", false, false) 137 138 namespace { 139 struct GCPtrLivenessData { 140 /// Values defined in this block. 141 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 142 /// Values used in this block (and thus live); does not included values 143 /// killed within this block. 144 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 145 146 /// Values live into this basic block (i.e. used by any 147 /// instruction in this basic block or ones reachable from here) 148 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 149 150 /// Values live out of this basic block (i.e. live into 151 /// any successor block) 152 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 153 }; 154 155 // The type of the internal cache used inside the findBasePointers family 156 // of functions. From the callers perspective, this is an opaque type and 157 // should not be inspected. 158 // 159 // In the actual implementation this caches two relations: 160 // - The base relation itself (i.e. this pointer is based on that one) 161 // - The base defining value relation (i.e. before base_phi insertion) 162 // Generally, after the execution of a full findBasePointer call, only the 163 // base relation will remain. Internally, we add a mixture of the two 164 // types, then update all the second type to the first type 165 typedef MapVector<Value *, Value *> DefiningValueMapTy; 166 typedef SetVector<Value *> StatepointLiveSetTy; 167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>> 168 RematerializedValueMapTy; 169 170 struct PartiallyConstructedSafepointRecord { 171 /// The set of values known to be live across this safepoint 172 StatepointLiveSetTy LiveSet; 173 174 /// Mapping from live pointers to a base-defining-value 175 MapVector<Value *, Value *> PointerToBase; 176 177 /// The *new* gc.statepoint instruction itself. This produces the token 178 /// that normal path gc.relocates and the gc.result are tied to. 179 Instruction *StatepointToken; 180 181 /// Instruction to which exceptional gc relocates are attached 182 /// Makes it easier to iterate through them during relocationViaAlloca. 183 Instruction *UnwindToken; 184 185 /// Record live values we are rematerialized instead of relocating. 186 /// They are not included into 'LiveSet' field. 187 /// Maps rematerialized copy to it's original value. 188 RematerializedValueMapTy RematerializedValues; 189 }; 190 } 191 192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 193 Optional<OperandBundleUse> DeoptBundle = 194 CS.getOperandBundle(LLVMContext::OB_deopt); 195 196 if (!DeoptBundle.hasValue()) { 197 assert(AllowStatepointWithNoDeoptInfo && 198 "Found non-leaf call without deopt info!"); 199 return None; 200 } 201 202 return DeoptBundle.getValue().Inputs; 203 } 204 205 /// Compute the live-in set for every basic block in the function 206 static void computeLiveInValues(DominatorTree &DT, Function &F, 207 GCPtrLivenessData &Data); 208 209 /// Given results from the dataflow liveness computation, find the set of live 210 /// Values at a particular instruction. 211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 212 StatepointLiveSetTy &out); 213 214 // TODO: Once we can get to the GCStrategy, this becomes 215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 216 217 static bool isGCPointerType(Type *T) { 218 if (auto *PT = dyn_cast<PointerType>(T)) 219 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 220 // GC managed heap. We know that a pointer into this heap needs to be 221 // updated and that no other pointer does. 222 return (1 == PT->getAddressSpace()); 223 return false; 224 } 225 226 // Return true if this type is one which a) is a gc pointer or contains a GC 227 // pointer and b) is of a type this code expects to encounter as a live value. 228 // (The insertion code will assert that a type which matches (a) and not (b) 229 // is not encountered.) 230 static bool isHandledGCPointerType(Type *T) { 231 // We fully support gc pointers 232 if (isGCPointerType(T)) 233 return true; 234 // We partially support vectors of gc pointers. The code will assert if it 235 // can't handle something. 236 if (auto VT = dyn_cast<VectorType>(T)) 237 if (isGCPointerType(VT->getElementType())) 238 return true; 239 return false; 240 } 241 242 #ifndef NDEBUG 243 /// Returns true if this type contains a gc pointer whether we know how to 244 /// handle that type or not. 245 static bool containsGCPtrType(Type *Ty) { 246 if (isGCPointerType(Ty)) 247 return true; 248 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 249 return isGCPointerType(VT->getScalarType()); 250 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 251 return containsGCPtrType(AT->getElementType()); 252 if (StructType *ST = dyn_cast<StructType>(Ty)) 253 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 254 containsGCPtrType); 255 return false; 256 } 257 258 // Returns true if this is a type which a) is a gc pointer or contains a GC 259 // pointer and b) is of a type which the code doesn't expect (i.e. first class 260 // aggregates). Used to trip assertions. 261 static bool isUnhandledGCPointerType(Type *Ty) { 262 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 263 } 264 #endif 265 266 // Return the name of the value suffixed with the provided value, or if the 267 // value didn't have a name, the default value specified. 268 static std::string suffixed_name_or(Value *V, StringRef Suffix, 269 StringRef DefaultName) { 270 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 271 } 272 273 // Conservatively identifies any definitions which might be live at the 274 // given instruction. The analysis is performed immediately before the 275 // given instruction. Values defined by that instruction are not considered 276 // live. Values used by that instruction are considered live. 277 static void analyzeParsePointLiveness( 278 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 279 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 280 Instruction *inst = CS.getInstruction(); 281 282 StatepointLiveSetTy LiveSet; 283 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 284 285 if (PrintLiveSet) { 286 errs() << "Live Variables:\n"; 287 for (Value *V : LiveSet) 288 dbgs() << " " << V->getName() << " " << *V << "\n"; 289 } 290 if (PrintLiveSetSize) { 291 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 292 errs() << "Number live values: " << LiveSet.size() << "\n"; 293 } 294 result.LiveSet = LiveSet; 295 } 296 297 static bool isKnownBaseResult(Value *V); 298 namespace { 299 /// A single base defining value - An immediate base defining value for an 300 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 301 /// For instructions which have multiple pointer [vector] inputs or that 302 /// transition between vector and scalar types, there is no immediate base 303 /// defining value. The 'base defining value' for 'Def' is the transitive 304 /// closure of this relation stopping at the first instruction which has no 305 /// immediate base defining value. The b.d.v. might itself be a base pointer, 306 /// but it can also be an arbitrary derived pointer. 307 struct BaseDefiningValueResult { 308 /// Contains the value which is the base defining value. 309 Value * const BDV; 310 /// True if the base defining value is also known to be an actual base 311 /// pointer. 312 const bool IsKnownBase; 313 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 314 : BDV(BDV), IsKnownBase(IsKnownBase) { 315 #ifndef NDEBUG 316 // Check consistency between new and old means of checking whether a BDV is 317 // a base. 318 bool MustBeBase = isKnownBaseResult(BDV); 319 assert(!MustBeBase || MustBeBase == IsKnownBase); 320 #endif 321 } 322 }; 323 } 324 325 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 326 327 /// Return a base defining value for the 'Index' element of the given vector 328 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 329 /// 'I'. As an optimization, this method will try to determine when the 330 /// element is known to already be a base pointer. If this can be established, 331 /// the second value in the returned pair will be true. Note that either a 332 /// vector or a pointer typed value can be returned. For the former, the 333 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 334 /// If the later, the return pointer is a BDV (or possibly a base) for the 335 /// particular element in 'I'. 336 static BaseDefiningValueResult 337 findBaseDefiningValueOfVector(Value *I) { 338 // Each case parallels findBaseDefiningValue below, see that code for 339 // detailed motivation. 340 341 if (isa<Argument>(I)) 342 // An incoming argument to the function is a base pointer 343 return BaseDefiningValueResult(I, true); 344 345 if (isa<Constant>(I)) 346 // Base of constant vector consists only of constant null pointers. 347 // For reasoning see similar case inside 'findBaseDefiningValue' function. 348 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 349 true); 350 351 if (isa<LoadInst>(I)) 352 return BaseDefiningValueResult(I, true); 353 354 if (isa<InsertElementInst>(I)) 355 // We don't know whether this vector contains entirely base pointers or 356 // not. To be conservatively correct, we treat it as a BDV and will 357 // duplicate code as needed to construct a parallel vector of bases. 358 return BaseDefiningValueResult(I, false); 359 360 if (isa<ShuffleVectorInst>(I)) 361 // We don't know whether this vector contains entirely base pointers or 362 // not. To be conservatively correct, we treat it as a BDV and will 363 // duplicate code as needed to construct a parallel vector of bases. 364 // TODO: There a number of local optimizations which could be applied here 365 // for particular sufflevector patterns. 366 return BaseDefiningValueResult(I, false); 367 368 // A PHI or Select is a base defining value. The outer findBasePointer 369 // algorithm is responsible for constructing a base value for this BDV. 370 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 371 "unknown vector instruction - no base found for vector element"); 372 return BaseDefiningValueResult(I, false); 373 } 374 375 /// Helper function for findBasePointer - Will return a value which either a) 376 /// defines the base pointer for the input, b) blocks the simple search 377 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 378 /// from pointer to vector type or back. 379 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 380 assert(I->getType()->isPtrOrPtrVectorTy() && 381 "Illegal to ask for the base pointer of a non-pointer type"); 382 383 if (I->getType()->isVectorTy()) 384 return findBaseDefiningValueOfVector(I); 385 386 if (isa<Argument>(I)) 387 // An incoming argument to the function is a base pointer 388 // We should have never reached here if this argument isn't an gc value 389 return BaseDefiningValueResult(I, true); 390 391 if (isa<Constant>(I)) { 392 // We assume that objects with a constant base (e.g. a global) can't move 393 // and don't need to be reported to the collector because they are always 394 // live. Besides global references, all kinds of constants (e.g. undef, 395 // constant expressions, null pointers) can be introduced by the inliner or 396 // the optimizer, especially on dynamically dead paths. 397 // Here we treat all of them as having single null base. By doing this we 398 // trying to avoid problems reporting various conflicts in a form of 399 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 400 // See constant.ll file for relevant test cases. 401 402 return BaseDefiningValueResult( 403 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 404 } 405 406 if (CastInst *CI = dyn_cast<CastInst>(I)) { 407 Value *Def = CI->stripPointerCasts(); 408 // If stripping pointer casts changes the address space there is an 409 // addrspacecast in between. 410 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 411 cast<PointerType>(CI->getType())->getAddressSpace() && 412 "unsupported addrspacecast"); 413 // If we find a cast instruction here, it means we've found a cast which is 414 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 415 // handle int->ptr conversion. 416 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 417 return findBaseDefiningValue(Def); 418 } 419 420 if (isa<LoadInst>(I)) 421 // The value loaded is an gc base itself 422 return BaseDefiningValueResult(I, true); 423 424 425 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 426 // The base of this GEP is the base 427 return findBaseDefiningValue(GEP->getPointerOperand()); 428 429 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 430 switch (II->getIntrinsicID()) { 431 default: 432 // fall through to general call handling 433 break; 434 case Intrinsic::experimental_gc_statepoint: 435 llvm_unreachable("statepoints don't produce pointers"); 436 case Intrinsic::experimental_gc_relocate: { 437 // Rerunning safepoint insertion after safepoints are already 438 // inserted is not supported. It could probably be made to work, 439 // but why are you doing this? There's no good reason. 440 llvm_unreachable("repeat safepoint insertion is not supported"); 441 } 442 case Intrinsic::gcroot: 443 // Currently, this mechanism hasn't been extended to work with gcroot. 444 // There's no reason it couldn't be, but I haven't thought about the 445 // implications much. 446 llvm_unreachable( 447 "interaction with the gcroot mechanism is not supported"); 448 } 449 } 450 // We assume that functions in the source language only return base 451 // pointers. This should probably be generalized via attributes to support 452 // both source language and internal functions. 453 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 454 return BaseDefiningValueResult(I, true); 455 456 // I have absolutely no idea how to implement this part yet. It's not 457 // necessarily hard, I just haven't really looked at it yet. 458 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 459 460 if (isa<AtomicCmpXchgInst>(I)) 461 // A CAS is effectively a atomic store and load combined under a 462 // predicate. From the perspective of base pointers, we just treat it 463 // like a load. 464 return BaseDefiningValueResult(I, true); 465 466 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 467 "binary ops which don't apply to pointers"); 468 469 // The aggregate ops. Aggregates can either be in the heap or on the 470 // stack, but in either case, this is simply a field load. As a result, 471 // this is a defining definition of the base just like a load is. 472 if (isa<ExtractValueInst>(I)) 473 return BaseDefiningValueResult(I, true); 474 475 // We should never see an insert vector since that would require we be 476 // tracing back a struct value not a pointer value. 477 assert(!isa<InsertValueInst>(I) && 478 "Base pointer for a struct is meaningless"); 479 480 // An extractelement produces a base result exactly when it's input does. 481 // We may need to insert a parallel instruction to extract the appropriate 482 // element out of the base vector corresponding to the input. Given this, 483 // it's analogous to the phi and select case even though it's not a merge. 484 if (isa<ExtractElementInst>(I)) 485 // Note: There a lot of obvious peephole cases here. This are deliberately 486 // handled after the main base pointer inference algorithm to make writing 487 // test cases to exercise that code easier. 488 return BaseDefiningValueResult(I, false); 489 490 // The last two cases here don't return a base pointer. Instead, they 491 // return a value which dynamically selects from among several base 492 // derived pointers (each with it's own base potentially). It's the job of 493 // the caller to resolve these. 494 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 495 "missing instruction case in findBaseDefiningValing"); 496 return BaseDefiningValueResult(I, false); 497 } 498 499 /// Returns the base defining value for this value. 500 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 501 Value *&Cached = Cache[I]; 502 if (!Cached) { 503 Cached = findBaseDefiningValue(I).BDV; 504 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 505 << Cached->getName() << "\n"); 506 } 507 assert(Cache[I] != nullptr); 508 return Cached; 509 } 510 511 /// Return a base pointer for this value if known. Otherwise, return it's 512 /// base defining value. 513 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 514 Value *Def = findBaseDefiningValueCached(I, Cache); 515 auto Found = Cache.find(Def); 516 if (Found != Cache.end()) { 517 // Either a base-of relation, or a self reference. Caller must check. 518 return Found->second; 519 } 520 // Only a BDV available 521 return Def; 522 } 523 524 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 525 /// is it known to be a base pointer? Or do we need to continue searching. 526 static bool isKnownBaseResult(Value *V) { 527 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 528 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 529 !isa<ShuffleVectorInst>(V)) { 530 // no recursion possible 531 return true; 532 } 533 if (isa<Instruction>(V) && 534 cast<Instruction>(V)->getMetadata("is_base_value")) { 535 // This is a previously inserted base phi or select. We know 536 // that this is a base value. 537 return true; 538 } 539 540 // We need to keep searching 541 return false; 542 } 543 544 namespace { 545 /// Models the state of a single base defining value in the findBasePointer 546 /// algorithm for determining where a new instruction is needed to propagate 547 /// the base of this BDV. 548 class BDVState { 549 public: 550 enum Status { Unknown, Base, Conflict }; 551 552 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 553 assert(status != Base || b); 554 } 555 explicit BDVState(Value *b) : status(Base), base(b) {} 556 BDVState() : status(Unknown), base(nullptr) {} 557 558 Status getStatus() const { return status; } 559 Value *getBase() const { return base; } 560 561 bool isBase() const { return getStatus() == Base; } 562 bool isUnknown() const { return getStatus() == Unknown; } 563 bool isConflict() const { return getStatus() == Conflict; } 564 565 bool operator==(const BDVState &other) const { 566 return base == other.base && status == other.status; 567 } 568 569 bool operator!=(const BDVState &other) const { return !(*this == other); } 570 571 LLVM_DUMP_METHOD 572 void dump() const { print(dbgs()); dbgs() << '\n'; } 573 574 void print(raw_ostream &OS) const { 575 switch (status) { 576 case Unknown: 577 OS << "U"; 578 break; 579 case Base: 580 OS << "B"; 581 break; 582 case Conflict: 583 OS << "C"; 584 break; 585 }; 586 OS << " (" << base << " - " 587 << (base ? base->getName() : "nullptr") << "): "; 588 } 589 590 private: 591 Status status; 592 AssertingVH<Value> base; // non null only if status == base 593 }; 594 } 595 596 #ifndef NDEBUG 597 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 598 State.print(OS); 599 return OS; 600 } 601 #endif 602 603 namespace { 604 // Values of type BDVState form a lattice, and this is a helper 605 // class that implementes the meet operation. The meat of the meet 606 // operation is implemented in MeetBDVStates::pureMeet 607 class MeetBDVStates { 608 public: 609 /// Initializes the currentResult to the TOP state so that if can be met with 610 /// any other state to produce that state. 611 MeetBDVStates() {} 612 613 // Destructively meet the current result with the given BDVState 614 void meetWith(BDVState otherState) { 615 currentResult = meet(otherState, currentResult); 616 } 617 618 BDVState getResult() const { return currentResult; } 619 620 private: 621 BDVState currentResult; 622 623 /// Perform a meet operation on two elements of the BDVState lattice. 624 static BDVState meet(BDVState LHS, BDVState RHS) { 625 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 626 "math is wrong: meet does not commute!"); 627 BDVState Result = pureMeet(LHS, RHS); 628 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 629 << " produced " << Result << "\n"); 630 return Result; 631 } 632 633 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 634 switch (stateA.getStatus()) { 635 case BDVState::Unknown: 636 return stateB; 637 638 case BDVState::Base: 639 assert(stateA.getBase() && "can't be null"); 640 if (stateB.isUnknown()) 641 return stateA; 642 643 if (stateB.isBase()) { 644 if (stateA.getBase() == stateB.getBase()) { 645 assert(stateA == stateB && "equality broken!"); 646 return stateA; 647 } 648 return BDVState(BDVState::Conflict); 649 } 650 assert(stateB.isConflict() && "only three states!"); 651 return BDVState(BDVState::Conflict); 652 653 case BDVState::Conflict: 654 return stateA; 655 } 656 llvm_unreachable("only three states!"); 657 } 658 }; 659 } 660 661 662 /// For a given value or instruction, figure out what base ptr it's derived 663 /// from. For gc objects, this is simply itself. On success, returns a value 664 /// which is the base pointer. (This is reliable and can be used for 665 /// relocation.) On failure, returns nullptr. 666 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 667 Value *def = findBaseOrBDV(I, cache); 668 669 if (isKnownBaseResult(def)) { 670 return def; 671 } 672 673 // Here's the rough algorithm: 674 // - For every SSA value, construct a mapping to either an actual base 675 // pointer or a PHI which obscures the base pointer. 676 // - Construct a mapping from PHI to unknown TOP state. Use an 677 // optimistic algorithm to propagate base pointer information. Lattice 678 // looks like: 679 // UNKNOWN 680 // b1 b2 b3 b4 681 // CONFLICT 682 // When algorithm terminates, all PHIs will either have a single concrete 683 // base or be in a conflict state. 684 // - For every conflict, insert a dummy PHI node without arguments. Add 685 // these to the base[Instruction] = BasePtr mapping. For every 686 // non-conflict, add the actual base. 687 // - For every conflict, add arguments for the base[a] of each input 688 // arguments. 689 // 690 // Note: A simpler form of this would be to add the conflict form of all 691 // PHIs without running the optimistic algorithm. This would be 692 // analogous to pessimistic data flow and would likely lead to an 693 // overall worse solution. 694 695 #ifndef NDEBUG 696 auto isExpectedBDVType = [](Value *BDV) { 697 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 698 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 699 }; 700 #endif 701 702 // Once populated, will contain a mapping from each potentially non-base BDV 703 // to a lattice value (described above) which corresponds to that BDV. 704 // We use the order of insertion (DFS over the def/use graph) to provide a 705 // stable deterministic ordering for visiting DenseMaps (which are unordered) 706 // below. This is important for deterministic compilation. 707 MapVector<Value *, BDVState> States; 708 709 // Recursively fill in all base defining values reachable from the initial 710 // one for which we don't already know a definite base value for 711 /* scope */ { 712 SmallVector<Value*, 16> Worklist; 713 Worklist.push_back(def); 714 States.insert(std::make_pair(def, BDVState())); 715 while (!Worklist.empty()) { 716 Value *Current = Worklist.pop_back_val(); 717 assert(!isKnownBaseResult(Current) && "why did it get added?"); 718 719 auto visitIncomingValue = [&](Value *InVal) { 720 Value *Base = findBaseOrBDV(InVal, cache); 721 if (isKnownBaseResult(Base)) 722 // Known bases won't need new instructions introduced and can be 723 // ignored safely 724 return; 725 assert(isExpectedBDVType(Base) && "the only non-base values " 726 "we see should be base defining values"); 727 if (States.insert(std::make_pair(Base, BDVState())).second) 728 Worklist.push_back(Base); 729 }; 730 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 731 for (Value *InVal : Phi->incoming_values()) 732 visitIncomingValue(InVal); 733 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 734 visitIncomingValue(Sel->getTrueValue()); 735 visitIncomingValue(Sel->getFalseValue()); 736 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 737 visitIncomingValue(EE->getVectorOperand()); 738 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 739 visitIncomingValue(IE->getOperand(0)); // vector operand 740 visitIncomingValue(IE->getOperand(1)); // scalar operand 741 } else { 742 // There is one known class of instructions we know we don't handle. 743 assert(isa<ShuffleVectorInst>(Current)); 744 llvm_unreachable("unimplemented instruction case"); 745 } 746 } 747 } 748 749 #ifndef NDEBUG 750 DEBUG(dbgs() << "States after initialization:\n"); 751 for (auto Pair : States) { 752 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 753 } 754 #endif 755 756 // Return a phi state for a base defining value. We'll generate a new 757 // base state for known bases and expect to find a cached state otherwise. 758 auto getStateForBDV = [&](Value *baseValue) { 759 if (isKnownBaseResult(baseValue)) 760 return BDVState(baseValue); 761 auto I = States.find(baseValue); 762 assert(I != States.end() && "lookup failed!"); 763 return I->second; 764 }; 765 766 bool progress = true; 767 while (progress) { 768 #ifndef NDEBUG 769 const size_t oldSize = States.size(); 770 #endif 771 progress = false; 772 // We're only changing values in this loop, thus safe to keep iterators. 773 // Since this is computing a fixed point, the order of visit does not 774 // effect the result. TODO: We could use a worklist here and make this run 775 // much faster. 776 for (auto Pair : States) { 777 Value *BDV = Pair.first; 778 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 779 780 // Given an input value for the current instruction, return a BDVState 781 // instance which represents the BDV of that value. 782 auto getStateForInput = [&](Value *V) mutable { 783 Value *BDV = findBaseOrBDV(V, cache); 784 return getStateForBDV(BDV); 785 }; 786 787 MeetBDVStates calculateMeet; 788 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 789 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 790 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 791 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 792 for (Value *Val : Phi->incoming_values()) 793 calculateMeet.meetWith(getStateForInput(Val)); 794 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 795 // The 'meet' for an extractelement is slightly trivial, but it's still 796 // useful in that it drives us to conflict if our input is. 797 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 798 } else { 799 // Given there's a inherent type mismatch between the operands, will 800 // *always* produce Conflict. 801 auto *IE = cast<InsertElementInst>(BDV); 802 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 803 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 804 } 805 806 BDVState oldState = States[BDV]; 807 BDVState newState = calculateMeet.getResult(); 808 if (oldState != newState) { 809 progress = true; 810 States[BDV] = newState; 811 } 812 } 813 814 assert(oldSize == States.size() && 815 "fixed point shouldn't be adding any new nodes to state"); 816 } 817 818 #ifndef NDEBUG 819 DEBUG(dbgs() << "States after meet iteration:\n"); 820 for (auto Pair : States) { 821 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 822 } 823 #endif 824 825 // Insert Phis for all conflicts 826 // TODO: adjust naming patterns to avoid this order of iteration dependency 827 for (auto Pair : States) { 828 Instruction *I = cast<Instruction>(Pair.first); 829 BDVState State = Pair.second; 830 assert(!isKnownBaseResult(I) && "why did it get added?"); 831 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 832 833 // extractelement instructions are a bit special in that we may need to 834 // insert an extract even when we know an exact base for the instruction. 835 // The problem is that we need to convert from a vector base to a scalar 836 // base for the particular indice we're interested in. 837 if (State.isBase() && isa<ExtractElementInst>(I) && 838 isa<VectorType>(State.getBase()->getType())) { 839 auto *EE = cast<ExtractElementInst>(I); 840 // TODO: In many cases, the new instruction is just EE itself. We should 841 // exploit this, but can't do it here since it would break the invariant 842 // about the BDV not being known to be a base. 843 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 844 EE->getIndexOperand(), 845 "base_ee", EE); 846 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 847 States[I] = BDVState(BDVState::Base, BaseInst); 848 } 849 850 // Since we're joining a vector and scalar base, they can never be the 851 // same. As a result, we should always see insert element having reached 852 // the conflict state. 853 if (isa<InsertElementInst>(I)) { 854 assert(State.isConflict()); 855 } 856 857 if (!State.isConflict()) 858 continue; 859 860 /// Create and insert a new instruction which will represent the base of 861 /// the given instruction 'I'. 862 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 863 if (isa<PHINode>(I)) { 864 BasicBlock *BB = I->getParent(); 865 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 866 assert(NumPreds > 0 && "how did we reach here"); 867 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 868 return PHINode::Create(I->getType(), NumPreds, Name, I); 869 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 870 // The undef will be replaced later 871 UndefValue *Undef = UndefValue::get(Sel->getType()); 872 std::string Name = suffixed_name_or(I, ".base", "base_select"); 873 return SelectInst::Create(Sel->getCondition(), Undef, 874 Undef, Name, Sel); 875 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 876 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 877 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 878 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 879 EE); 880 } else { 881 auto *IE = cast<InsertElementInst>(I); 882 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 883 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 884 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 885 return InsertElementInst::Create(VecUndef, ScalarUndef, 886 IE->getOperand(2), Name, IE); 887 } 888 889 }; 890 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 891 // Add metadata marking this as a base value 892 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 893 States[I] = BDVState(BDVState::Conflict, BaseInst); 894 } 895 896 // Returns a instruction which produces the base pointer for a given 897 // instruction. The instruction is assumed to be an input to one of the BDVs 898 // seen in the inference algorithm above. As such, we must either already 899 // know it's base defining value is a base, or have inserted a new 900 // instruction to propagate the base of it's BDV and have entered that newly 901 // introduced instruction into the state table. In either case, we are 902 // assured to be able to determine an instruction which produces it's base 903 // pointer. 904 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 905 Value *BDV = findBaseOrBDV(Input, cache); 906 Value *Base = nullptr; 907 if (isKnownBaseResult(BDV)) { 908 Base = BDV; 909 } else { 910 // Either conflict or base. 911 assert(States.count(BDV)); 912 Base = States[BDV].getBase(); 913 } 914 assert(Base && "can't be null"); 915 // The cast is needed since base traversal may strip away bitcasts 916 if (Base->getType() != Input->getType() && 917 InsertPt) { 918 Base = new BitCastInst(Base, Input->getType(), "cast", 919 InsertPt); 920 } 921 return Base; 922 }; 923 924 // Fixup all the inputs of the new PHIs. Visit order needs to be 925 // deterministic and predictable because we're naming newly created 926 // instructions. 927 for (auto Pair : States) { 928 Instruction *BDV = cast<Instruction>(Pair.first); 929 BDVState State = Pair.second; 930 931 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 932 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 933 if (!State.isConflict()) 934 continue; 935 936 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 937 PHINode *phi = cast<PHINode>(BDV); 938 unsigned NumPHIValues = phi->getNumIncomingValues(); 939 for (unsigned i = 0; i < NumPHIValues; i++) { 940 Value *InVal = phi->getIncomingValue(i); 941 BasicBlock *InBB = phi->getIncomingBlock(i); 942 943 // If we've already seen InBB, add the same incoming value 944 // we added for it earlier. The IR verifier requires phi 945 // nodes with multiple entries from the same basic block 946 // to have the same incoming value for each of those 947 // entries. If we don't do this check here and basephi 948 // has a different type than base, we'll end up adding two 949 // bitcasts (and hence two distinct values) as incoming 950 // values for the same basic block. 951 952 int blockIndex = basephi->getBasicBlockIndex(InBB); 953 if (blockIndex != -1) { 954 Value *oldBase = basephi->getIncomingValue(blockIndex); 955 basephi->addIncoming(oldBase, InBB); 956 957 #ifndef NDEBUG 958 Value *Base = getBaseForInput(InVal, nullptr); 959 // In essence this assert states: the only way two 960 // values incoming from the same basic block may be 961 // different is by being different bitcasts of the same 962 // value. A cleanup that remains TODO is changing 963 // findBaseOrBDV to return an llvm::Value of the correct 964 // type (and still remain pure). This will remove the 965 // need to add bitcasts. 966 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 967 "sanity -- findBaseOrBDV should be pure!"); 968 #endif 969 continue; 970 } 971 972 // Find the instruction which produces the base for each input. We may 973 // need to insert a bitcast in the incoming block. 974 // TODO: Need to split critical edges if insertion is needed 975 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 976 basephi->addIncoming(Base, InBB); 977 } 978 assert(basephi->getNumIncomingValues() == NumPHIValues); 979 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 980 SelectInst *Sel = cast<SelectInst>(BDV); 981 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 982 // something more safe and less hacky. 983 for (int i = 1; i <= 2; i++) { 984 Value *InVal = Sel->getOperand(i); 985 // Find the instruction which produces the base for each input. We may 986 // need to insert a bitcast. 987 Value *Base = getBaseForInput(InVal, BaseSel); 988 BaseSel->setOperand(i, Base); 989 } 990 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 991 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 992 // Find the instruction which produces the base for each input. We may 993 // need to insert a bitcast. 994 Value *Base = getBaseForInput(InVal, BaseEE); 995 BaseEE->setOperand(0, Base); 996 } else { 997 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 998 auto *BdvIE = cast<InsertElementInst>(BDV); 999 auto UpdateOperand = [&](int OperandIdx) { 1000 Value *InVal = BdvIE->getOperand(OperandIdx); 1001 Value *Base = getBaseForInput(InVal, BaseIE); 1002 BaseIE->setOperand(OperandIdx, Base); 1003 }; 1004 UpdateOperand(0); // vector operand 1005 UpdateOperand(1); // scalar operand 1006 } 1007 1008 } 1009 1010 // Cache all of our results so we can cheaply reuse them 1011 // NOTE: This is actually two caches: one of the base defining value 1012 // relation and one of the base pointer relation! FIXME 1013 for (auto Pair : States) { 1014 auto *BDV = Pair.first; 1015 Value *base = Pair.second.getBase(); 1016 assert(BDV && base); 1017 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1018 1019 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1020 DEBUG(dbgs() << "Updating base value cache" 1021 << " for: " << BDV->getName() 1022 << " from: " << fromstr 1023 << " to: " << base->getName() << "\n"); 1024 1025 if (cache.count(BDV)) { 1026 assert(isKnownBaseResult(base) && 1027 "must be something we 'know' is a base pointer"); 1028 // Once we transition from the BDV relation being store in the cache to 1029 // the base relation being stored, it must be stable 1030 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1031 "base relation should be stable"); 1032 } 1033 cache[BDV] = base; 1034 } 1035 assert(cache.count(def)); 1036 return cache[def]; 1037 } 1038 1039 // For a set of live pointers (base and/or derived), identify the base 1040 // pointer of the object which they are derived from. This routine will 1041 // mutate the IR graph as needed to make the 'base' pointer live at the 1042 // definition site of 'derived'. This ensures that any use of 'derived' can 1043 // also use 'base'. This may involve the insertion of a number of 1044 // additional PHI nodes. 1045 // 1046 // preconditions: live is a set of pointer type Values 1047 // 1048 // side effects: may insert PHI nodes into the existing CFG, will preserve 1049 // CFG, will not remove or mutate any existing nodes 1050 // 1051 // post condition: PointerToBase contains one (derived, base) pair for every 1052 // pointer in live. Note that derived can be equal to base if the original 1053 // pointer was a base pointer. 1054 static void 1055 findBasePointers(const StatepointLiveSetTy &live, 1056 MapVector<Value *, Value *> &PointerToBase, 1057 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1058 for (Value *ptr : live) { 1059 Value *base = findBasePointer(ptr, DVCache); 1060 assert(base && "failed to find base pointer"); 1061 PointerToBase[ptr] = base; 1062 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1063 DT->dominates(cast<Instruction>(base)->getParent(), 1064 cast<Instruction>(ptr)->getParent())) && 1065 "The base we found better dominate the derived pointer"); 1066 } 1067 } 1068 1069 /// Find the required based pointers (and adjust the live set) for the given 1070 /// parse point. 1071 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1072 const CallSite &CS, 1073 PartiallyConstructedSafepointRecord &result) { 1074 MapVector<Value *, Value *> PointerToBase; 1075 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1076 1077 if (PrintBasePointers) { 1078 errs() << "Base Pairs (w/o Relocation):\n"; 1079 for (auto &Pair : PointerToBase) { 1080 errs() << " derived "; 1081 Pair.first->printAsOperand(errs(), false); 1082 errs() << " base "; 1083 Pair.second->printAsOperand(errs(), false); 1084 errs() << "\n";; 1085 } 1086 } 1087 1088 result.PointerToBase = PointerToBase; 1089 } 1090 1091 /// Given an updated version of the dataflow liveness results, update the 1092 /// liveset and base pointer maps for the call site CS. 1093 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1094 const CallSite &CS, 1095 PartiallyConstructedSafepointRecord &result); 1096 1097 static void recomputeLiveInValues( 1098 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1099 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1100 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1101 // again. The old values are still live and will help it stabilize quickly. 1102 GCPtrLivenessData RevisedLivenessData; 1103 computeLiveInValues(DT, F, RevisedLivenessData); 1104 for (size_t i = 0; i < records.size(); i++) { 1105 struct PartiallyConstructedSafepointRecord &info = records[i]; 1106 const CallSite &CS = toUpdate[i]; 1107 recomputeLiveInValues(RevisedLivenessData, CS, info); 1108 } 1109 } 1110 1111 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1112 // no uses of the original value / return value between the gc.statepoint and 1113 // the gc.relocate / gc.result call. One case which can arise is a phi node 1114 // starting one of the successor blocks. We also need to be able to insert the 1115 // gc.relocates only on the path which goes through the statepoint. We might 1116 // need to split an edge to make this possible. 1117 static BasicBlock * 1118 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1119 DominatorTree &DT) { 1120 BasicBlock *Ret = BB; 1121 if (!BB->getUniquePredecessor()) 1122 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1123 1124 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1125 // from it 1126 FoldSingleEntryPHINodes(Ret); 1127 assert(!isa<PHINode>(Ret->begin()) && 1128 "All PHI nodes should have been removed!"); 1129 1130 // At this point, we can safely insert a gc.relocate or gc.result as the first 1131 // instruction in Ret if needed. 1132 return Ret; 1133 } 1134 1135 // Create new attribute set containing only attributes which can be transferred 1136 // from original call to the safepoint. 1137 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1138 AttributeSet Ret; 1139 1140 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1141 unsigned Index = AS.getSlotIndex(Slot); 1142 1143 if (Index == AttributeSet::ReturnIndex || 1144 Index == AttributeSet::FunctionIndex) { 1145 1146 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1147 1148 // Do not allow certain attributes - just skip them 1149 // Safepoint can not be read only or read none. 1150 if (Attr.hasAttribute(Attribute::ReadNone) || 1151 Attr.hasAttribute(Attribute::ReadOnly)) 1152 continue; 1153 1154 // These attributes control the generation of the gc.statepoint call / 1155 // invoke itself; and once the gc.statepoint is in place, they're of no 1156 // use. 1157 if (isStatepointDirectiveAttr(Attr)) 1158 continue; 1159 1160 Ret = Ret.addAttributes( 1161 AS.getContext(), Index, 1162 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1163 } 1164 } 1165 1166 // Just skip parameter attributes for now 1167 } 1168 1169 return Ret; 1170 } 1171 1172 /// Helper function to place all gc relocates necessary for the given 1173 /// statepoint. 1174 /// Inputs: 1175 /// liveVariables - list of variables to be relocated. 1176 /// liveStart - index of the first live variable. 1177 /// basePtrs - base pointers. 1178 /// statepointToken - statepoint instruction to which relocates should be 1179 /// bound. 1180 /// Builder - Llvm IR builder to be used to construct new calls. 1181 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1182 const int LiveStart, 1183 ArrayRef<Value *> BasePtrs, 1184 Instruction *StatepointToken, 1185 IRBuilder<> Builder) { 1186 if (LiveVariables.empty()) 1187 return; 1188 1189 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1190 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1191 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1192 size_t Index = std::distance(LiveVec.begin(), ValIt); 1193 assert(Index < LiveVec.size() && "Bug in std::find?"); 1194 return Index; 1195 }; 1196 Module *M = StatepointToken->getModule(); 1197 1198 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1199 // element type is i8 addrspace(1)*). We originally generated unique 1200 // declarations for each pointer type, but this proved problematic because 1201 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1202 // towards a single unified pointer type anyways, we can just cast everything 1203 // to an i8* of the right address space. A bitcast is added later to convert 1204 // gc_relocate to the actual value's type. 1205 auto getGCRelocateDecl = [&] (Type *Ty) { 1206 assert(isHandledGCPointerType(Ty)); 1207 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1208 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1209 if (auto *VT = dyn_cast<VectorType>(Ty)) 1210 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1211 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1212 {NewTy}); 1213 }; 1214 1215 // Lazily populated map from input types to the canonicalized form mentioned 1216 // in the comment above. This should probably be cached somewhere more 1217 // broadly. 1218 DenseMap<Type*, Value*> TypeToDeclMap; 1219 1220 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1221 // Generate the gc.relocate call and save the result 1222 Value *BaseIdx = 1223 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1224 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1225 1226 Type *Ty = LiveVariables[i]->getType(); 1227 if (!TypeToDeclMap.count(Ty)) 1228 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1229 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1230 1231 // only specify a debug name if we can give a useful one 1232 CallInst *Reloc = Builder.CreateCall( 1233 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1234 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1235 // Trick CodeGen into thinking there are lots of free registers at this 1236 // fake call. 1237 Reloc->setCallingConv(CallingConv::Cold); 1238 } 1239 } 1240 1241 namespace { 1242 1243 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1244 /// avoids having to worry about keeping around dangling pointers to Values. 1245 class DeferredReplacement { 1246 AssertingVH<Instruction> Old; 1247 AssertingVH<Instruction> New; 1248 bool IsDeoptimize = false; 1249 1250 DeferredReplacement() {} 1251 1252 public: 1253 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1254 assert(Old != New && Old && New && 1255 "Cannot RAUW equal values or to / from null!"); 1256 1257 DeferredReplacement D; 1258 D.Old = Old; 1259 D.New = New; 1260 return D; 1261 } 1262 1263 static DeferredReplacement createDelete(Instruction *ToErase) { 1264 DeferredReplacement D; 1265 D.Old = ToErase; 1266 return D; 1267 } 1268 1269 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1270 #ifndef NDEBUG 1271 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1272 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1273 "Only way to construct a deoptimize deferred replacement"); 1274 #endif 1275 DeferredReplacement D; 1276 D.Old = Old; 1277 D.IsDeoptimize = true; 1278 return D; 1279 } 1280 1281 /// Does the task represented by this instance. 1282 void doReplacement() { 1283 Instruction *OldI = Old; 1284 Instruction *NewI = New; 1285 1286 assert(OldI != NewI && "Disallowed at construction?!"); 1287 assert((!IsDeoptimize || !New) && 1288 "Deoptimize instrinsics are not replaced!"); 1289 1290 Old = nullptr; 1291 New = nullptr; 1292 1293 if (NewI) 1294 OldI->replaceAllUsesWith(NewI); 1295 1296 if (IsDeoptimize) { 1297 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1298 // not necessarilly be followed by the matching return. 1299 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1300 new UnreachableInst(RI->getContext(), RI); 1301 RI->eraseFromParent(); 1302 } 1303 1304 OldI->eraseFromParent(); 1305 } 1306 }; 1307 } 1308 1309 static void 1310 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1311 const SmallVectorImpl<Value *> &BasePtrs, 1312 const SmallVectorImpl<Value *> &LiveVariables, 1313 PartiallyConstructedSafepointRecord &Result, 1314 std::vector<DeferredReplacement> &Replacements) { 1315 assert(BasePtrs.size() == LiveVariables.size()); 1316 1317 // Then go ahead and use the builder do actually do the inserts. We insert 1318 // immediately before the previous instruction under the assumption that all 1319 // arguments will be available here. We can't insert afterwards since we may 1320 // be replacing a terminator. 1321 Instruction *InsertBefore = CS.getInstruction(); 1322 IRBuilder<> Builder(InsertBefore); 1323 1324 ArrayRef<Value *> GCArgs(LiveVariables); 1325 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1326 uint32_t NumPatchBytes = 0; 1327 uint32_t Flags = uint32_t(StatepointFlags::None); 1328 1329 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1330 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1331 ArrayRef<Use> TransitionArgs; 1332 if (auto TransitionBundle = 1333 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1334 Flags |= uint32_t(StatepointFlags::GCTransition); 1335 TransitionArgs = TransitionBundle->Inputs; 1336 } 1337 1338 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1339 // with a return value, we lower then as never returning calls to 1340 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1341 bool IsDeoptimize = false; 1342 1343 StatepointDirectives SD = 1344 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1345 if (SD.NumPatchBytes) 1346 NumPatchBytes = *SD.NumPatchBytes; 1347 if (SD.StatepointID) 1348 StatepointID = *SD.StatepointID; 1349 1350 Value *CallTarget = CS.getCalledValue(); 1351 if (Function *F = dyn_cast<Function>(CallTarget)) { 1352 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1353 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1354 // __llvm_deoptimize symbol. We want to resolve this now, since the 1355 // verifier does not allow taking the address of an intrinsic function. 1356 1357 SmallVector<Type *, 8> DomainTy; 1358 for (Value *Arg : CallArgs) 1359 DomainTy.push_back(Arg->getType()); 1360 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1361 /* isVarArg = */ false); 1362 1363 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1364 // calls to @llvm.experimental.deoptimize with different argument types in 1365 // the same module. This is fine -- we assume the frontend knew what it 1366 // was doing when generating this kind of IR. 1367 CallTarget = 1368 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1369 1370 IsDeoptimize = true; 1371 } 1372 } 1373 1374 // Create the statepoint given all the arguments 1375 Instruction *Token = nullptr; 1376 AttributeSet ReturnAttrs; 1377 if (CS.isCall()) { 1378 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1379 CallInst *Call = Builder.CreateGCStatepointCall( 1380 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1381 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1382 1383 Call->setTailCall(ToReplace->isTailCall()); 1384 Call->setCallingConv(ToReplace->getCallingConv()); 1385 1386 // Currently we will fail on parameter attributes and on certain 1387 // function attributes. 1388 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1389 // In case if we can handle this set of attributes - set up function attrs 1390 // directly on statepoint and return attrs later for gc_result intrinsic. 1391 Call->setAttributes(NewAttrs.getFnAttributes()); 1392 ReturnAttrs = NewAttrs.getRetAttributes(); 1393 1394 Token = Call; 1395 1396 // Put the following gc_result and gc_relocate calls immediately after the 1397 // the old call (which we're about to delete) 1398 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1399 Builder.SetInsertPoint(ToReplace->getNextNode()); 1400 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1401 } else { 1402 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1403 1404 // Insert the new invoke into the old block. We'll remove the old one in a 1405 // moment at which point this will become the new terminator for the 1406 // original block. 1407 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1408 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1409 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1410 GCArgs, "statepoint_token"); 1411 1412 Invoke->setCallingConv(ToReplace->getCallingConv()); 1413 1414 // Currently we will fail on parameter attributes and on certain 1415 // function attributes. 1416 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1417 // In case if we can handle this set of attributes - set up function attrs 1418 // directly on statepoint and return attrs later for gc_result intrinsic. 1419 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1420 ReturnAttrs = NewAttrs.getRetAttributes(); 1421 1422 Token = Invoke; 1423 1424 // Generate gc relocates in exceptional path 1425 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1426 assert(!isa<PHINode>(UnwindBlock->begin()) && 1427 UnwindBlock->getUniquePredecessor() && 1428 "can't safely insert in this block!"); 1429 1430 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1431 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1432 1433 // Attach exceptional gc relocates to the landingpad. 1434 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1435 Result.UnwindToken = ExceptionalToken; 1436 1437 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1438 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1439 Builder); 1440 1441 // Generate gc relocates and returns for normal block 1442 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1443 assert(!isa<PHINode>(NormalDest->begin()) && 1444 NormalDest->getUniquePredecessor() && 1445 "can't safely insert in this block!"); 1446 1447 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1448 1449 // gc relocates will be generated later as if it were regular call 1450 // statepoint 1451 } 1452 assert(Token && "Should be set in one of the above branches!"); 1453 1454 if (IsDeoptimize) { 1455 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1456 // transform the tail-call like structure to a call to a void function 1457 // followed by unreachable to get better codegen. 1458 Replacements.push_back( 1459 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1460 } else { 1461 Token->setName("statepoint_token"); 1462 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1463 StringRef Name = 1464 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1465 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1466 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1467 1468 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1469 // live set of some other safepoint, in which case that safepoint's 1470 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1471 // llvm::Instruction. Instead, we defer the replacement and deletion to 1472 // after the live sets have been made explicit in the IR, and we no longer 1473 // have raw pointers to worry about. 1474 Replacements.emplace_back( 1475 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1476 } else { 1477 Replacements.emplace_back( 1478 DeferredReplacement::createDelete(CS.getInstruction())); 1479 } 1480 } 1481 1482 Result.StatepointToken = Token; 1483 1484 // Second, create a gc.relocate for every live variable 1485 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1486 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1487 } 1488 1489 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1490 // which make the relocations happening at this safepoint explicit. 1491 // 1492 // WARNING: Does not do any fixup to adjust users of the original live 1493 // values. That's the callers responsibility. 1494 static void 1495 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, 1496 PartiallyConstructedSafepointRecord &Result, 1497 std::vector<DeferredReplacement> &Replacements) { 1498 const auto &LiveSet = Result.LiveSet; 1499 const auto &PointerToBase = Result.PointerToBase; 1500 1501 // Convert to vector for efficient cross referencing. 1502 SmallVector<Value *, 64> BaseVec, LiveVec; 1503 LiveVec.reserve(LiveSet.size()); 1504 BaseVec.reserve(LiveSet.size()); 1505 for (Value *L : LiveSet) { 1506 LiveVec.push_back(L); 1507 assert(PointerToBase.count(L)); 1508 Value *Base = PointerToBase.find(L)->second; 1509 BaseVec.push_back(Base); 1510 } 1511 assert(LiveVec.size() == BaseVec.size()); 1512 1513 // Do the actual rewriting and delete the old statepoint 1514 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1515 } 1516 1517 // Helper function for the relocationViaAlloca. 1518 // 1519 // It receives iterator to the statepoint gc relocates and emits a store to the 1520 // assigned location (via allocaMap) for the each one of them. It adds the 1521 // visited values into the visitedLiveValues set, which we will later use them 1522 // for sanity checking. 1523 static void 1524 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1525 DenseMap<Value *, Value *> &AllocaMap, 1526 DenseSet<Value *> &VisitedLiveValues) { 1527 1528 for (User *U : GCRelocs) { 1529 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1530 if (!Relocate) 1531 continue; 1532 1533 Value *OriginalValue = Relocate->getDerivedPtr(); 1534 assert(AllocaMap.count(OriginalValue)); 1535 Value *Alloca = AllocaMap[OriginalValue]; 1536 1537 // Emit store into the related alloca 1538 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1539 // the correct type according to alloca. 1540 assert(Relocate->getNextNode() && 1541 "Should always have one since it's not a terminator"); 1542 IRBuilder<> Builder(Relocate->getNextNode()); 1543 Value *CastedRelocatedValue = 1544 Builder.CreateBitCast(Relocate, 1545 cast<AllocaInst>(Alloca)->getAllocatedType(), 1546 suffixed_name_or(Relocate, ".casted", "")); 1547 1548 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1549 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1550 1551 #ifndef NDEBUG 1552 VisitedLiveValues.insert(OriginalValue); 1553 #endif 1554 } 1555 } 1556 1557 // Helper function for the "relocationViaAlloca". Similar to the 1558 // "insertRelocationStores" but works for rematerialized values. 1559 static void insertRematerializationStores( 1560 const RematerializedValueMapTy &RematerializedValues, 1561 DenseMap<Value *, Value *> &AllocaMap, 1562 DenseSet<Value *> &VisitedLiveValues) { 1563 1564 for (auto RematerializedValuePair: RematerializedValues) { 1565 Instruction *RematerializedValue = RematerializedValuePair.first; 1566 Value *OriginalValue = RematerializedValuePair.second; 1567 1568 assert(AllocaMap.count(OriginalValue) && 1569 "Can not find alloca for rematerialized value"); 1570 Value *Alloca = AllocaMap[OriginalValue]; 1571 1572 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1573 Store->insertAfter(RematerializedValue); 1574 1575 #ifndef NDEBUG 1576 VisitedLiveValues.insert(OriginalValue); 1577 #endif 1578 } 1579 } 1580 1581 /// Do all the relocation update via allocas and mem2reg 1582 static void relocationViaAlloca( 1583 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1584 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1585 #ifndef NDEBUG 1586 // record initial number of (static) allocas; we'll check we have the same 1587 // number when we get done. 1588 int InitialAllocaNum = 0; 1589 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1590 I++) 1591 if (isa<AllocaInst>(*I)) 1592 InitialAllocaNum++; 1593 #endif 1594 1595 // TODO-PERF: change data structures, reserve 1596 DenseMap<Value *, Value *> AllocaMap; 1597 SmallVector<AllocaInst *, 200> PromotableAllocas; 1598 // Used later to chack that we have enough allocas to store all values 1599 std::size_t NumRematerializedValues = 0; 1600 PromotableAllocas.reserve(Live.size()); 1601 1602 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1603 // "PromotableAllocas" 1604 auto emitAllocaFor = [&](Value *LiveValue) { 1605 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1606 F.getEntryBlock().getFirstNonPHI()); 1607 AllocaMap[LiveValue] = Alloca; 1608 PromotableAllocas.push_back(Alloca); 1609 }; 1610 1611 // Emit alloca for each live gc pointer 1612 for (Value *V : Live) 1613 emitAllocaFor(V); 1614 1615 // Emit allocas for rematerialized values 1616 for (const auto &Info : Records) 1617 for (auto RematerializedValuePair : Info.RematerializedValues) { 1618 Value *OriginalValue = RematerializedValuePair.second; 1619 if (AllocaMap.count(OriginalValue) != 0) 1620 continue; 1621 1622 emitAllocaFor(OriginalValue); 1623 ++NumRematerializedValues; 1624 } 1625 1626 // The next two loops are part of the same conceptual operation. We need to 1627 // insert a store to the alloca after the original def and at each 1628 // redefinition. We need to insert a load before each use. These are split 1629 // into distinct loops for performance reasons. 1630 1631 // Update gc pointer after each statepoint: either store a relocated value or 1632 // null (if no relocated value was found for this gc pointer and it is not a 1633 // gc_result). This must happen before we update the statepoint with load of 1634 // alloca otherwise we lose the link between statepoint and old def. 1635 for (const auto &Info : Records) { 1636 Value *Statepoint = Info.StatepointToken; 1637 1638 // This will be used for consistency check 1639 DenseSet<Value *> VisitedLiveValues; 1640 1641 // Insert stores for normal statepoint gc relocates 1642 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1643 1644 // In case if it was invoke statepoint 1645 // we will insert stores for exceptional path gc relocates. 1646 if (isa<InvokeInst>(Statepoint)) { 1647 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1648 VisitedLiveValues); 1649 } 1650 1651 // Do similar thing with rematerialized values 1652 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1653 VisitedLiveValues); 1654 1655 if (ClobberNonLive) { 1656 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1657 // the gc.statepoint. This will turn some subtle GC problems into 1658 // slightly easier to debug SEGVs. Note that on large IR files with 1659 // lots of gc.statepoints this is extremely costly both memory and time 1660 // wise. 1661 SmallVector<AllocaInst *, 64> ToClobber; 1662 for (auto Pair : AllocaMap) { 1663 Value *Def = Pair.first; 1664 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1665 1666 // This value was relocated 1667 if (VisitedLiveValues.count(Def)) { 1668 continue; 1669 } 1670 ToClobber.push_back(Alloca); 1671 } 1672 1673 auto InsertClobbersAt = [&](Instruction *IP) { 1674 for (auto *AI : ToClobber) { 1675 auto PT = cast<PointerType>(AI->getAllocatedType()); 1676 Constant *CPN = ConstantPointerNull::get(PT); 1677 StoreInst *Store = new StoreInst(CPN, AI); 1678 Store->insertBefore(IP); 1679 } 1680 }; 1681 1682 // Insert the clobbering stores. These may get intermixed with the 1683 // gc.results and gc.relocates, but that's fine. 1684 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1685 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1686 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1687 } else { 1688 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1689 } 1690 } 1691 } 1692 1693 // Update use with load allocas and add store for gc_relocated. 1694 for (auto Pair : AllocaMap) { 1695 Value *Def = Pair.first; 1696 Value *Alloca = Pair.second; 1697 1698 // We pre-record the uses of allocas so that we dont have to worry about 1699 // later update that changes the user information.. 1700 1701 SmallVector<Instruction *, 20> Uses; 1702 // PERF: trade a linear scan for repeated reallocation 1703 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1704 for (User *U : Def->users()) { 1705 if (!isa<ConstantExpr>(U)) { 1706 // If the def has a ConstantExpr use, then the def is either a 1707 // ConstantExpr use itself or null. In either case 1708 // (recursively in the first, directly in the second), the oop 1709 // it is ultimately dependent on is null and this particular 1710 // use does not need to be fixed up. 1711 Uses.push_back(cast<Instruction>(U)); 1712 } 1713 } 1714 1715 std::sort(Uses.begin(), Uses.end()); 1716 auto Last = std::unique(Uses.begin(), Uses.end()); 1717 Uses.erase(Last, Uses.end()); 1718 1719 for (Instruction *Use : Uses) { 1720 if (isa<PHINode>(Use)) { 1721 PHINode *Phi = cast<PHINode>(Use); 1722 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1723 if (Def == Phi->getIncomingValue(i)) { 1724 LoadInst *Load = new LoadInst( 1725 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1726 Phi->setIncomingValue(i, Load); 1727 } 1728 } 1729 } else { 1730 LoadInst *Load = new LoadInst(Alloca, "", Use); 1731 Use->replaceUsesOfWith(Def, Load); 1732 } 1733 } 1734 1735 // Emit store for the initial gc value. Store must be inserted after load, 1736 // otherwise store will be in alloca's use list and an extra load will be 1737 // inserted before it. 1738 StoreInst *Store = new StoreInst(Def, Alloca); 1739 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1740 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1741 // InvokeInst is a TerminatorInst so the store need to be inserted 1742 // into its normal destination block. 1743 BasicBlock *NormalDest = Invoke->getNormalDest(); 1744 Store->insertBefore(NormalDest->getFirstNonPHI()); 1745 } else { 1746 assert(!Inst->isTerminator() && 1747 "The only TerminatorInst that can produce a value is " 1748 "InvokeInst which is handled above."); 1749 Store->insertAfter(Inst); 1750 } 1751 } else { 1752 assert(isa<Argument>(Def)); 1753 Store->insertAfter(cast<Instruction>(Alloca)); 1754 } 1755 } 1756 1757 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1758 "we must have the same allocas with lives"); 1759 if (!PromotableAllocas.empty()) { 1760 // Apply mem2reg to promote alloca to SSA 1761 PromoteMemToReg(PromotableAllocas, DT); 1762 } 1763 1764 #ifndef NDEBUG 1765 for (auto &I : F.getEntryBlock()) 1766 if (isa<AllocaInst>(I)) 1767 InitialAllocaNum--; 1768 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1769 #endif 1770 } 1771 1772 /// Implement a unique function which doesn't require we sort the input 1773 /// vector. Doing so has the effect of changing the output of a couple of 1774 /// tests in ways which make them less useful in testing fused safepoints. 1775 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1776 SmallSet<T, 8> Seen; 1777 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1778 return !Seen.insert(V).second; 1779 }), Vec.end()); 1780 } 1781 1782 /// Insert holders so that each Value is obviously live through the entire 1783 /// lifetime of the call. 1784 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1785 SmallVectorImpl<CallInst *> &Holders) { 1786 if (Values.empty()) 1787 // No values to hold live, might as well not insert the empty holder 1788 return; 1789 1790 Module *M = CS.getInstruction()->getModule(); 1791 // Use a dummy vararg function to actually hold the values live 1792 Function *Func = cast<Function>(M->getOrInsertFunction( 1793 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1794 if (CS.isCall()) { 1795 // For call safepoints insert dummy calls right after safepoint 1796 Holders.push_back(CallInst::Create(Func, Values, "", 1797 &*++CS.getInstruction()->getIterator())); 1798 return; 1799 } 1800 // For invoke safepooints insert dummy calls both in normal and 1801 // exceptional destination blocks 1802 auto *II = cast<InvokeInst>(CS.getInstruction()); 1803 Holders.push_back(CallInst::Create( 1804 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1805 Holders.push_back(CallInst::Create( 1806 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1807 } 1808 1809 static void findLiveReferences( 1810 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1811 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1812 GCPtrLivenessData OriginalLivenessData; 1813 computeLiveInValues(DT, F, OriginalLivenessData); 1814 for (size_t i = 0; i < records.size(); i++) { 1815 struct PartiallyConstructedSafepointRecord &info = records[i]; 1816 const CallSite &CS = toUpdate[i]; 1817 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1818 } 1819 } 1820 1821 // Helper function for the "rematerializeLiveValues". It walks use chain 1822 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1823 // values are visited (currently it is GEP's and casts). Returns true if it 1824 // successfully reached "BaseValue" and false otherwise. 1825 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1826 // recorded. 1827 static bool findRematerializableChainToBasePointer( 1828 SmallVectorImpl<Instruction*> &ChainToBase, 1829 Value *CurrentValue, Value *BaseValue) { 1830 1831 // We have found a base value 1832 if (CurrentValue == BaseValue) { 1833 return true; 1834 } 1835 1836 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1837 ChainToBase.push_back(GEP); 1838 return findRematerializableChainToBasePointer(ChainToBase, 1839 GEP->getPointerOperand(), 1840 BaseValue); 1841 } 1842 1843 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1844 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1845 return false; 1846 1847 ChainToBase.push_back(CI); 1848 return findRematerializableChainToBasePointer(ChainToBase, 1849 CI->getOperand(0), BaseValue); 1850 } 1851 1852 // Not supported instruction in the chain 1853 return false; 1854 } 1855 1856 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1857 // chain we are going to rematerialize. 1858 static unsigned 1859 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1860 TargetTransformInfo &TTI) { 1861 unsigned Cost = 0; 1862 1863 for (Instruction *Instr : Chain) { 1864 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1865 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1866 "non noop cast is found during rematerialization"); 1867 1868 Type *SrcTy = CI->getOperand(0)->getType(); 1869 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1870 1871 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1872 // Cost of the address calculation 1873 Type *ValTy = GEP->getSourceElementType(); 1874 Cost += TTI.getAddressComputationCost(ValTy); 1875 1876 // And cost of the GEP itself 1877 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1878 // allowed for the external usage) 1879 if (!GEP->hasAllConstantIndices()) 1880 Cost += 2; 1881 1882 } else { 1883 llvm_unreachable("unsupported instruciton type during rematerialization"); 1884 } 1885 } 1886 1887 return Cost; 1888 } 1889 1890 // From the statepoint live set pick values that are cheaper to recompute then 1891 // to relocate. Remove this values from the live set, rematerialize them after 1892 // statepoint and record them in "Info" structure. Note that similar to 1893 // relocated values we don't do any user adjustments here. 1894 static void rematerializeLiveValues(CallSite CS, 1895 PartiallyConstructedSafepointRecord &Info, 1896 TargetTransformInfo &TTI) { 1897 const unsigned int ChainLengthThreshold = 10; 1898 1899 // Record values we are going to delete from this statepoint live set. 1900 // We can not di this in following loop due to iterator invalidation. 1901 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1902 1903 for (Value *LiveValue: Info.LiveSet) { 1904 // For each live pointer find it's defining chain 1905 SmallVector<Instruction *, 3> ChainToBase; 1906 assert(Info.PointerToBase.count(LiveValue)); 1907 bool FoundChain = 1908 findRematerializableChainToBasePointer(ChainToBase, 1909 LiveValue, 1910 Info.PointerToBase[LiveValue]); 1911 // Nothing to do, or chain is too long 1912 if (!FoundChain || 1913 ChainToBase.size() == 0 || 1914 ChainToBase.size() > ChainLengthThreshold) 1915 continue; 1916 1917 // Compute cost of this chain 1918 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1919 // TODO: We can also account for cases when we will be able to remove some 1920 // of the rematerialized values by later optimization passes. I.e if 1921 // we rematerialized several intersecting chains. Or if original values 1922 // don't have any uses besides this statepoint. 1923 1924 // For invokes we need to rematerialize each chain twice - for normal and 1925 // for unwind basic blocks. Model this by multiplying cost by two. 1926 if (CS.isInvoke()) { 1927 Cost *= 2; 1928 } 1929 // If it's too expensive - skip it 1930 if (Cost >= RematerializationThreshold) 1931 continue; 1932 1933 // Remove value from the live set 1934 LiveValuesToBeDeleted.push_back(LiveValue); 1935 1936 // Clone instructions and record them inside "Info" structure 1937 1938 // Walk backwards to visit top-most instructions first 1939 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1940 1941 // Utility function which clones all instructions from "ChainToBase" 1942 // and inserts them before "InsertBefore". Returns rematerialized value 1943 // which should be used after statepoint. 1944 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 1945 Instruction *LastClonedValue = nullptr; 1946 Instruction *LastValue = nullptr; 1947 for (Instruction *Instr: ChainToBase) { 1948 // Only GEP's and casts are suported as we need to be careful to not 1949 // introduce any new uses of pointers not in the liveset. 1950 // Note that it's fine to introduce new uses of pointers which were 1951 // otherwise not used after this statepoint. 1952 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1953 1954 Instruction *ClonedValue = Instr->clone(); 1955 ClonedValue->insertBefore(InsertBefore); 1956 ClonedValue->setName(Instr->getName() + ".remat"); 1957 1958 // If it is not first instruction in the chain then it uses previously 1959 // cloned value. We should update it to use cloned value. 1960 if (LastClonedValue) { 1961 assert(LastValue); 1962 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1963 #ifndef NDEBUG 1964 // Assert that cloned instruction does not use any instructions from 1965 // this chain other than LastClonedValue 1966 for (auto OpValue : ClonedValue->operand_values()) { 1967 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 1968 ChainToBase.end() && 1969 "incorrect use in rematerialization chain"); 1970 } 1971 #endif 1972 } 1973 1974 LastClonedValue = ClonedValue; 1975 LastValue = Instr; 1976 } 1977 assert(LastClonedValue); 1978 return LastClonedValue; 1979 }; 1980 1981 // Different cases for calls and invokes. For invokes we need to clone 1982 // instructions both on normal and unwind path. 1983 if (CS.isCall()) { 1984 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 1985 assert(InsertBefore); 1986 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 1987 Info.RematerializedValues[RematerializedValue] = LiveValue; 1988 } else { 1989 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 1990 1991 Instruction *NormalInsertBefore = 1992 &*Invoke->getNormalDest()->getFirstInsertionPt(); 1993 Instruction *UnwindInsertBefore = 1994 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 1995 1996 Instruction *NormalRematerializedValue = 1997 rematerializeChain(NormalInsertBefore); 1998 Instruction *UnwindRematerializedValue = 1999 rematerializeChain(UnwindInsertBefore); 2000 2001 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2002 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2003 } 2004 } 2005 2006 // Remove rematerializaed values from the live set 2007 for (auto LiveValue: LiveValuesToBeDeleted) { 2008 Info.LiveSet.remove(LiveValue); 2009 } 2010 } 2011 2012 static bool insertParsePoints(Function &F, DominatorTree &DT, 2013 TargetTransformInfo &TTI, 2014 SmallVectorImpl<CallSite> &ToUpdate) { 2015 #ifndef NDEBUG 2016 // sanity check the input 2017 std::set<CallSite> Uniqued; 2018 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2019 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2020 2021 for (CallSite CS : ToUpdate) 2022 assert(CS.getInstruction()->getFunction() == &F); 2023 #endif 2024 2025 // When inserting gc.relocates for invokes, we need to be able to insert at 2026 // the top of the successor blocks. See the comment on 2027 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2028 // may restructure the CFG. 2029 for (CallSite CS : ToUpdate) { 2030 if (!CS.isInvoke()) 2031 continue; 2032 auto *II = cast<InvokeInst>(CS.getInstruction()); 2033 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2034 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2035 } 2036 2037 // A list of dummy calls added to the IR to keep various values obviously 2038 // live in the IR. We'll remove all of these when done. 2039 SmallVector<CallInst *, 64> Holders; 2040 2041 // Insert a dummy call with all of the arguments to the vm_state we'll need 2042 // for the actual safepoint insertion. This ensures reference arguments in 2043 // the deopt argument list are considered live through the safepoint (and 2044 // thus makes sure they get relocated.) 2045 for (CallSite CS : ToUpdate) { 2046 SmallVector<Value *, 64> DeoptValues; 2047 2048 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2049 assert(!isUnhandledGCPointerType(Arg->getType()) && 2050 "support for FCA unimplemented"); 2051 if (isHandledGCPointerType(Arg->getType())) 2052 DeoptValues.push_back(Arg); 2053 } 2054 2055 insertUseHolderAfter(CS, DeoptValues, Holders); 2056 } 2057 2058 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2059 2060 // A) Identify all gc pointers which are statically live at the given call 2061 // site. 2062 findLiveReferences(F, DT, ToUpdate, Records); 2063 2064 // B) Find the base pointers for each live pointer 2065 /* scope for caching */ { 2066 // Cache the 'defining value' relation used in the computation and 2067 // insertion of base phis and selects. This ensures that we don't insert 2068 // large numbers of duplicate base_phis. 2069 DefiningValueMapTy DVCache; 2070 2071 for (size_t i = 0; i < Records.size(); i++) { 2072 PartiallyConstructedSafepointRecord &info = Records[i]; 2073 findBasePointers(DT, DVCache, ToUpdate[i], info); 2074 } 2075 } // end of cache scope 2076 2077 // The base phi insertion logic (for any safepoint) may have inserted new 2078 // instructions which are now live at some safepoint. The simplest such 2079 // example is: 2080 // loop: 2081 // phi a <-- will be a new base_phi here 2082 // safepoint 1 <-- that needs to be live here 2083 // gep a + 1 2084 // safepoint 2 2085 // br loop 2086 // We insert some dummy calls after each safepoint to definitely hold live 2087 // the base pointers which were identified for that safepoint. We'll then 2088 // ask liveness for _every_ base inserted to see what is now live. Then we 2089 // remove the dummy calls. 2090 Holders.reserve(Holders.size() + Records.size()); 2091 for (size_t i = 0; i < Records.size(); i++) { 2092 PartiallyConstructedSafepointRecord &Info = Records[i]; 2093 2094 SmallVector<Value *, 128> Bases; 2095 for (auto Pair : Info.PointerToBase) 2096 Bases.push_back(Pair.second); 2097 2098 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2099 } 2100 2101 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2102 // need to rerun liveness. We may *also* have inserted new defs, but that's 2103 // not the key issue. 2104 recomputeLiveInValues(F, DT, ToUpdate, Records); 2105 2106 if (PrintBasePointers) { 2107 for (auto &Info : Records) { 2108 errs() << "Base Pairs: (w/Relocation)\n"; 2109 for (auto Pair : Info.PointerToBase) { 2110 errs() << " derived "; 2111 Pair.first->printAsOperand(errs(), false); 2112 errs() << " base "; 2113 Pair.second->printAsOperand(errs(), false); 2114 errs() << "\n"; 2115 } 2116 } 2117 } 2118 2119 // It is possible that non-constant live variables have a constant base. For 2120 // example, a GEP with a variable offset from a global. In this case we can 2121 // remove it from the liveset. We already don't add constants to the liveset 2122 // because we assume they won't move at runtime and the GC doesn't need to be 2123 // informed about them. The same reasoning applies if the base is constant. 2124 // Note that the relocation placement code relies on this filtering for 2125 // correctness as it expects the base to be in the liveset, which isn't true 2126 // if the base is constant. 2127 for (auto &Info : Records) 2128 for (auto &BasePair : Info.PointerToBase) 2129 if (isa<Constant>(BasePair.second)) 2130 Info.LiveSet.remove(BasePair.first); 2131 2132 for (CallInst *CI : Holders) 2133 CI->eraseFromParent(); 2134 2135 Holders.clear(); 2136 2137 // In order to reduce live set of statepoint we might choose to rematerialize 2138 // some values instead of relocating them. This is purely an optimization and 2139 // does not influence correctness. 2140 for (size_t i = 0; i < Records.size(); i++) 2141 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2142 2143 // We need this to safely RAUW and delete call or invoke return values that 2144 // may themselves be live over a statepoint. For details, please see usage in 2145 // makeStatepointExplicitImpl. 2146 std::vector<DeferredReplacement> Replacements; 2147 2148 // Now run through and replace the existing statepoints with new ones with 2149 // the live variables listed. We do not yet update uses of the values being 2150 // relocated. We have references to live variables that need to 2151 // survive to the last iteration of this loop. (By construction, the 2152 // previous statepoint can not be a live variable, thus we can and remove 2153 // the old statepoint calls as we go.) 2154 for (size_t i = 0; i < Records.size(); i++) 2155 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2156 2157 ToUpdate.clear(); // prevent accident use of invalid CallSites 2158 2159 for (auto &PR : Replacements) 2160 PR.doReplacement(); 2161 2162 Replacements.clear(); 2163 2164 for (auto &Info : Records) { 2165 // These live sets may contain state Value pointers, since we replaced calls 2166 // with operand bundles with calls wrapped in gc.statepoint, and some of 2167 // those calls may have been def'ing live gc pointers. Clear these out to 2168 // avoid accidentally using them. 2169 // 2170 // TODO: We should create a separate data structure that does not contain 2171 // these live sets, and migrate to using that data structure from this point 2172 // onward. 2173 Info.LiveSet.clear(); 2174 Info.PointerToBase.clear(); 2175 } 2176 2177 // Do all the fixups of the original live variables to their relocated selves 2178 SmallVector<Value *, 128> Live; 2179 for (size_t i = 0; i < Records.size(); i++) { 2180 PartiallyConstructedSafepointRecord &Info = Records[i]; 2181 2182 // We can't simply save the live set from the original insertion. One of 2183 // the live values might be the result of a call which needs a safepoint. 2184 // That Value* no longer exists and we need to use the new gc_result. 2185 // Thankfully, the live set is embedded in the statepoint (and updated), so 2186 // we just grab that. 2187 Statepoint Statepoint(Info.StatepointToken); 2188 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2189 Statepoint.gc_args_end()); 2190 #ifndef NDEBUG 2191 // Do some basic sanity checks on our liveness results before performing 2192 // relocation. Relocation can and will turn mistakes in liveness results 2193 // into non-sensical code which is must harder to debug. 2194 // TODO: It would be nice to test consistency as well 2195 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2196 "statepoint must be reachable or liveness is meaningless"); 2197 for (Value *V : Statepoint.gc_args()) { 2198 if (!isa<Instruction>(V)) 2199 // Non-instruction values trivial dominate all possible uses 2200 continue; 2201 auto *LiveInst = cast<Instruction>(V); 2202 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2203 "unreachable values should never be live"); 2204 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2205 "basic SSA liveness expectation violated by liveness analysis"); 2206 } 2207 #endif 2208 } 2209 unique_unsorted(Live); 2210 2211 #ifndef NDEBUG 2212 // sanity check 2213 for (auto *Ptr : Live) 2214 assert(isHandledGCPointerType(Ptr->getType()) && 2215 "must be a gc pointer type"); 2216 #endif 2217 2218 relocationViaAlloca(F, DT, Live, Records); 2219 return !Records.empty(); 2220 } 2221 2222 // Handles both return values and arguments for Functions and CallSites. 2223 template <typename AttrHolder> 2224 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2225 unsigned Index) { 2226 AttrBuilder R; 2227 if (AH.getDereferenceableBytes(Index)) 2228 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2229 AH.getDereferenceableBytes(Index))); 2230 if (AH.getDereferenceableOrNullBytes(Index)) 2231 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2232 AH.getDereferenceableOrNullBytes(Index))); 2233 if (AH.doesNotAlias(Index)) 2234 R.addAttribute(Attribute::NoAlias); 2235 2236 if (!R.empty()) 2237 AH.setAttributes(AH.getAttributes().removeAttributes( 2238 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2239 } 2240 2241 void 2242 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2243 LLVMContext &Ctx = F.getContext(); 2244 2245 for (Argument &A : F.args()) 2246 if (isa<PointerType>(A.getType())) 2247 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2248 2249 if (isa<PointerType>(F.getReturnType())) 2250 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2251 } 2252 2253 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2254 if (F.empty()) 2255 return; 2256 2257 LLVMContext &Ctx = F.getContext(); 2258 MDBuilder Builder(Ctx); 2259 2260 for (Instruction &I : instructions(F)) { 2261 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2262 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2263 bool IsImmutableTBAA = 2264 MD->getNumOperands() == 4 && 2265 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2266 2267 if (!IsImmutableTBAA) 2268 continue; // no work to do, MD_tbaa is already marked mutable 2269 2270 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2271 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2272 uint64_t Offset = 2273 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2274 2275 MDNode *MutableTBAA = 2276 Builder.createTBAAStructTagNode(Base, Access, Offset); 2277 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2278 } 2279 2280 if (CallSite CS = CallSite(&I)) { 2281 for (int i = 0, e = CS.arg_size(); i != e; i++) 2282 if (isa<PointerType>(CS.getArgument(i)->getType())) 2283 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2284 if (isa<PointerType>(CS.getType())) 2285 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2286 } 2287 } 2288 } 2289 2290 /// Returns true if this function should be rewritten by this pass. The main 2291 /// point of this function is as an extension point for custom logic. 2292 static bool shouldRewriteStatepointsIn(Function &F) { 2293 // TODO: This should check the GCStrategy 2294 if (F.hasGC()) { 2295 const auto &FunctionGCName = F.getGC(); 2296 const StringRef StatepointExampleName("statepoint-example"); 2297 const StringRef CoreCLRName("coreclr"); 2298 return (StatepointExampleName == FunctionGCName) || 2299 (CoreCLRName == FunctionGCName); 2300 } else 2301 return false; 2302 } 2303 2304 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2305 #ifndef NDEBUG 2306 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2307 "precondition!"); 2308 #endif 2309 2310 for (Function &F : M) 2311 stripNonValidAttributesFromPrototype(F); 2312 2313 for (Function &F : M) 2314 stripNonValidAttributesFromBody(F); 2315 } 2316 2317 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2318 // Nothing to do for declarations. 2319 if (F.isDeclaration() || F.empty()) 2320 return false; 2321 2322 // Policy choice says not to rewrite - the most common reason is that we're 2323 // compiling code without a GCStrategy. 2324 if (!shouldRewriteStatepointsIn(F)) 2325 return false; 2326 2327 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2328 TargetTransformInfo &TTI = 2329 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2330 2331 auto NeedsRewrite = [](Instruction &I) { 2332 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2333 return !callsGCLeafFunction(CS) && !isStatepoint(CS); 2334 return false; 2335 }; 2336 2337 // Gather all the statepoints which need rewritten. Be careful to only 2338 // consider those in reachable code since we need to ask dominance queries 2339 // when rewriting. We'll delete the unreachable ones in a moment. 2340 SmallVector<CallSite, 64> ParsePointNeeded; 2341 bool HasUnreachableStatepoint = false; 2342 for (Instruction &I : instructions(F)) { 2343 // TODO: only the ones with the flag set! 2344 if (NeedsRewrite(I)) { 2345 if (DT.isReachableFromEntry(I.getParent())) 2346 ParsePointNeeded.push_back(CallSite(&I)); 2347 else 2348 HasUnreachableStatepoint = true; 2349 } 2350 } 2351 2352 bool MadeChange = false; 2353 2354 // Delete any unreachable statepoints so that we don't have unrewritten 2355 // statepoints surviving this pass. This makes testing easier and the 2356 // resulting IR less confusing to human readers. Rather than be fancy, we 2357 // just reuse a utility function which removes the unreachable blocks. 2358 if (HasUnreachableStatepoint) 2359 MadeChange |= removeUnreachableBlocks(F); 2360 2361 // Return early if no work to do. 2362 if (ParsePointNeeded.empty()) 2363 return MadeChange; 2364 2365 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2366 // These are created by LCSSA. They have the effect of increasing the size 2367 // of liveness sets for no good reason. It may be harder to do this post 2368 // insertion since relocations and base phis can confuse things. 2369 for (BasicBlock &BB : F) 2370 if (BB.getUniquePredecessor()) { 2371 MadeChange = true; 2372 FoldSingleEntryPHINodes(&BB); 2373 } 2374 2375 // Before we start introducing relocations, we want to tweak the IR a bit to 2376 // avoid unfortunate code generation effects. The main example is that we 2377 // want to try to make sure the comparison feeding a branch is after any 2378 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2379 // values feeding a branch after relocation. This is semantically correct, 2380 // but results in extra register pressure since both the pre-relocation and 2381 // post-relocation copies must be available in registers. For code without 2382 // relocations this is handled elsewhere, but teaching the scheduler to 2383 // reverse the transform we're about to do would be slightly complex. 2384 // Note: This may extend the live range of the inputs to the icmp and thus 2385 // increase the liveset of any statepoint we move over. This is profitable 2386 // as long as all statepoints are in rare blocks. If we had in-register 2387 // lowering for live values this would be a much safer transform. 2388 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2389 if (auto *BI = dyn_cast<BranchInst>(TI)) 2390 if (BI->isConditional()) 2391 return dyn_cast<Instruction>(BI->getCondition()); 2392 // TODO: Extend this to handle switches 2393 return nullptr; 2394 }; 2395 for (BasicBlock &BB : F) { 2396 TerminatorInst *TI = BB.getTerminator(); 2397 if (auto *Cond = getConditionInst(TI)) 2398 // TODO: Handle more than just ICmps here. We should be able to move 2399 // most instructions without side effects or memory access. 2400 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2401 MadeChange = true; 2402 Cond->moveBefore(TI); 2403 } 2404 } 2405 2406 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2407 return MadeChange; 2408 } 2409 2410 // liveness computation via standard dataflow 2411 // ------------------------------------------------------------------- 2412 2413 // TODO: Consider using bitvectors for liveness, the set of potentially 2414 // interesting values should be small and easy to pre-compute. 2415 2416 /// Compute the live-in set for the location rbegin starting from 2417 /// the live-out set of the basic block 2418 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2419 BasicBlock::reverse_iterator rend, 2420 SetVector<Value *> &LiveTmp) { 2421 2422 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2423 Instruction *I = &*ritr; 2424 2425 // KILL/Def - Remove this definition from LiveIn 2426 LiveTmp.remove(I); 2427 2428 // Don't consider *uses* in PHI nodes, we handle their contribution to 2429 // predecessor blocks when we seed the LiveOut sets 2430 if (isa<PHINode>(I)) 2431 continue; 2432 2433 // USE - Add to the LiveIn set for this instruction 2434 for (Value *V : I->operands()) { 2435 assert(!isUnhandledGCPointerType(V->getType()) && 2436 "support for FCA unimplemented"); 2437 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2438 // The choice to exclude all things constant here is slightly subtle. 2439 // There are two independent reasons: 2440 // - We assume that things which are constant (from LLVM's definition) 2441 // do not move at runtime. For example, the address of a global 2442 // variable is fixed, even though it's contents may not be. 2443 // - Second, we can't disallow arbitrary inttoptr constants even 2444 // if the language frontend does. Optimization passes are free to 2445 // locally exploit facts without respect to global reachability. This 2446 // can create sections of code which are dynamically unreachable and 2447 // contain just about anything. (see constants.ll in tests) 2448 LiveTmp.insert(V); 2449 } 2450 } 2451 } 2452 } 2453 2454 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2455 2456 for (BasicBlock *Succ : successors(BB)) { 2457 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2458 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2459 PHINode *Phi = cast<PHINode>(&*I); 2460 Value *V = Phi->getIncomingValueForBlock(BB); 2461 assert(!isUnhandledGCPointerType(V->getType()) && 2462 "support for FCA unimplemented"); 2463 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2464 LiveTmp.insert(V); 2465 } 2466 } 2467 } 2468 } 2469 2470 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2471 SetVector<Value *> KillSet; 2472 for (Instruction &I : *BB) 2473 if (isHandledGCPointerType(I.getType())) 2474 KillSet.insert(&I); 2475 return KillSet; 2476 } 2477 2478 #ifndef NDEBUG 2479 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2480 /// sanity check for the liveness computation. 2481 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2482 TerminatorInst *TI, bool TermOkay = false) { 2483 for (Value *V : Live) { 2484 if (auto *I = dyn_cast<Instruction>(V)) { 2485 // The terminator can be a member of the LiveOut set. LLVM's definition 2486 // of instruction dominance states that V does not dominate itself. As 2487 // such, we need to special case this to allow it. 2488 if (TermOkay && TI == I) 2489 continue; 2490 assert(DT.dominates(I, TI) && 2491 "basic SSA liveness expectation violated by liveness analysis"); 2492 } 2493 } 2494 } 2495 2496 /// Check that all the liveness sets used during the computation of liveness 2497 /// obey basic SSA properties. This is useful for finding cases where we miss 2498 /// a def. 2499 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2500 BasicBlock &BB) { 2501 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2502 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2503 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2504 } 2505 #endif 2506 2507 static void computeLiveInValues(DominatorTree &DT, Function &F, 2508 GCPtrLivenessData &Data) { 2509 2510 SmallSetVector<BasicBlock *, 32> Worklist; 2511 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2512 // We use a SetVector so that we don't have duplicates in the worklist. 2513 Worklist.insert(pred_begin(BB), pred_end(BB)); 2514 }; 2515 auto NextItem = [&]() { 2516 BasicBlock *BB = Worklist.back(); 2517 Worklist.pop_back(); 2518 return BB; 2519 }; 2520 2521 // Seed the liveness for each individual block 2522 for (BasicBlock &BB : F) { 2523 Data.KillSet[&BB] = computeKillSet(&BB); 2524 Data.LiveSet[&BB].clear(); 2525 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2526 2527 #ifndef NDEBUG 2528 for (Value *Kill : Data.KillSet[&BB]) 2529 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2530 #endif 2531 2532 Data.LiveOut[&BB] = SetVector<Value *>(); 2533 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2534 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2535 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2536 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2537 if (!Data.LiveIn[&BB].empty()) 2538 AddPredsToWorklist(&BB); 2539 } 2540 2541 // Propagate that liveness until stable 2542 while (!Worklist.empty()) { 2543 BasicBlock *BB = NextItem(); 2544 2545 // Compute our new liveout set, then exit early if it hasn't changed 2546 // despite the contribution of our successor. 2547 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2548 const auto OldLiveOutSize = LiveOut.size(); 2549 for (BasicBlock *Succ : successors(BB)) { 2550 assert(Data.LiveIn.count(Succ)); 2551 LiveOut.set_union(Data.LiveIn[Succ]); 2552 } 2553 // assert OutLiveOut is a subset of LiveOut 2554 if (OldLiveOutSize == LiveOut.size()) { 2555 // If the sets are the same size, then we didn't actually add anything 2556 // when unioning our successors LiveIn Thus, the LiveIn of this block 2557 // hasn't changed. 2558 continue; 2559 } 2560 Data.LiveOut[BB] = LiveOut; 2561 2562 // Apply the effects of this basic block 2563 SetVector<Value *> LiveTmp = LiveOut; 2564 LiveTmp.set_union(Data.LiveSet[BB]); 2565 LiveTmp.set_subtract(Data.KillSet[BB]); 2566 2567 assert(Data.LiveIn.count(BB)); 2568 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2569 // assert: OldLiveIn is a subset of LiveTmp 2570 if (OldLiveIn.size() != LiveTmp.size()) { 2571 Data.LiveIn[BB] = LiveTmp; 2572 AddPredsToWorklist(BB); 2573 } 2574 } // while( !worklist.empty() ) 2575 2576 #ifndef NDEBUG 2577 // Sanity check our output against SSA properties. This helps catch any 2578 // missing kills during the above iteration. 2579 for (BasicBlock &BB : F) { 2580 checkBasicSSA(DT, Data, BB); 2581 } 2582 #endif 2583 } 2584 2585 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2586 StatepointLiveSetTy &Out) { 2587 2588 BasicBlock *BB = Inst->getParent(); 2589 2590 // Note: The copy is intentional and required 2591 assert(Data.LiveOut.count(BB)); 2592 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2593 2594 // We want to handle the statepoint itself oddly. It's 2595 // call result is not live (normal), nor are it's arguments 2596 // (unless they're used again later). This adjustment is 2597 // specifically what we need to relocate 2598 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2599 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2600 LiveOut.remove(Inst); 2601 Out.insert(LiveOut.begin(), LiveOut.end()); 2602 } 2603 2604 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2605 const CallSite &CS, 2606 PartiallyConstructedSafepointRecord &Info) { 2607 Instruction *Inst = CS.getInstruction(); 2608 StatepointLiveSetTy Updated; 2609 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2610 2611 #ifndef NDEBUG 2612 DenseSet<Value *> Bases; 2613 for (auto KVPair : Info.PointerToBase) { 2614 Bases.insert(KVPair.second); 2615 } 2616 #endif 2617 // We may have base pointers which are now live that weren't before. We need 2618 // to update the PointerToBase structure to reflect this. 2619 for (auto V : Updated) 2620 if (!Info.PointerToBase.count(V)) { 2621 assert(Bases.count(V) && "can't find base for unexpected live value"); 2622 Info.PointerToBase[V] = V; 2623 continue; 2624 } 2625 2626 #ifndef NDEBUG 2627 for (auto V : Updated) { 2628 assert(Info.PointerToBase.count(V) && 2629 "must be able to find base for live value"); 2630 } 2631 #endif 2632 2633 // Remove any stale base mappings - this can happen since our liveness is 2634 // more precise then the one inherent in the base pointer analysis 2635 DenseSet<Value *> ToErase; 2636 for (auto KVPair : Info.PointerToBase) 2637 if (!Updated.count(KVPair.first)) 2638 ToErase.insert(KVPair.first); 2639 for (auto V : ToErase) 2640 Info.PointerToBase.erase(V); 2641 2642 #ifndef NDEBUG 2643 for (auto KVPair : Info.PointerToBase) 2644 assert(Updated.count(KVPair.first) && "record for non-live value"); 2645 #endif 2646 2647 Info.LiveSet = Updated; 2648 } 2649