xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision df9db45c944a7f21cf4483a1c1b8dd1eaead2f47)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/Cloning.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
45 
46 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
47 
48 using namespace llvm;
49 
50 // Print the liveset found at the insert location
51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
52                                   cl::init(false));
53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
54                                       cl::init(false));
55 // Print out the base pointers for debugging
56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
57                                        cl::init(false));
58 
59 // Cost threshold measuring when it is profitable to rematerialize value instead
60 // of relocating it
61 static cl::opt<unsigned>
62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
63                            cl::init(6));
64 
65 #ifdef EXPENSIVE_CHECKS
66 static bool ClobberNonLive = true;
67 #else
68 static bool ClobberNonLive = false;
69 #endif
70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
71                                                   cl::location(ClobberNonLive),
72                                                   cl::Hidden);
73 
74 static cl::opt<bool>
75     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
76                                    cl::Hidden, cl::init(true));
77 
78 namespace {
79 struct RewriteStatepointsForGC : public ModulePass {
80   static char ID; // Pass identification, replacement for typeid
81 
82   RewriteStatepointsForGC() : ModulePass(ID) {
83     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
84   }
85   bool runOnFunction(Function &F);
86   bool runOnModule(Module &M) override {
87     bool Changed = false;
88     for (Function &F : M)
89       Changed |= runOnFunction(F);
90 
91     if (Changed) {
92       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
93       // returns true for at least one function in the module.  Since at least
94       // one function changed, we know that the precondition is satisfied.
95       stripNonValidAttributes(M);
96     }
97 
98     return Changed;
99   }
100 
101   void getAnalysisUsage(AnalysisUsage &AU) const override {
102     // We add and rewrite a bunch of instructions, but don't really do much
103     // else.  We could in theory preserve a lot more analyses here.
104     AU.addRequired<DominatorTreeWrapperPass>();
105     AU.addRequired<TargetTransformInfoWrapperPass>();
106   }
107 
108   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
109   /// dereferenceability that are no longer valid/correct after
110   /// RewriteStatepointsForGC has run.  This is because semantically, after
111   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
112   /// heap.  stripNonValidAttributes (conservatively) restores correctness
113   /// by erasing all attributes in the module that externally imply
114   /// dereferenceability.
115   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
116   /// can touch the entire heap including noalias objects.
117   void stripNonValidAttributes(Module &M);
118 
119   // Helpers for stripNonValidAttributes
120   void stripNonValidAttributesFromBody(Function &F);
121   void stripNonValidAttributesFromPrototype(Function &F);
122 };
123 } // namespace
124 
125 char RewriteStatepointsForGC::ID = 0;
126 
127 ModulePass *llvm::createRewriteStatepointsForGCPass() {
128   return new RewriteStatepointsForGC();
129 }
130 
131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
132                       "Make relocations explicit at statepoints", false, false)
133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
136                     "Make relocations explicit at statepoints", false, false)
137 
138 namespace {
139 struct GCPtrLivenessData {
140   /// Values defined in this block.
141   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
142   /// Values used in this block (and thus live); does not included values
143   /// killed within this block.
144   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
145 
146   /// Values live into this basic block (i.e. used by any
147   /// instruction in this basic block or ones reachable from here)
148   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
149 
150   /// Values live out of this basic block (i.e. live into
151   /// any successor block)
152   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
153 };
154 
155 // The type of the internal cache used inside the findBasePointers family
156 // of functions.  From the callers perspective, this is an opaque type and
157 // should not be inspected.
158 //
159 // In the actual implementation this caches two relations:
160 // - The base relation itself (i.e. this pointer is based on that one)
161 // - The base defining value relation (i.e. before base_phi insertion)
162 // Generally, after the execution of a full findBasePointer call, only the
163 // base relation will remain.  Internally, we add a mixture of the two
164 // types, then update all the second type to the first type
165 typedef MapVector<Value *, Value *> DefiningValueMapTy;
166 typedef SetVector<Value *> StatepointLiveSetTy;
167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>>
168   RematerializedValueMapTy;
169 
170 struct PartiallyConstructedSafepointRecord {
171   /// The set of values known to be live across this safepoint
172   StatepointLiveSetTy LiveSet;
173 
174   /// Mapping from live pointers to a base-defining-value
175   MapVector<Value *, Value *> PointerToBase;
176 
177   /// The *new* gc.statepoint instruction itself.  This produces the token
178   /// that normal path gc.relocates and the gc.result are tied to.
179   Instruction *StatepointToken;
180 
181   /// Instruction to which exceptional gc relocates are attached
182   /// Makes it easier to iterate through them during relocationViaAlloca.
183   Instruction *UnwindToken;
184 
185   /// Record live values we are rematerialized instead of relocating.
186   /// They are not included into 'LiveSet' field.
187   /// Maps rematerialized copy to it's original value.
188   RematerializedValueMapTy RematerializedValues;
189 };
190 }
191 
192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
193   Optional<OperandBundleUse> DeoptBundle =
194       CS.getOperandBundle(LLVMContext::OB_deopt);
195 
196   if (!DeoptBundle.hasValue()) {
197     assert(AllowStatepointWithNoDeoptInfo &&
198            "Found non-leaf call without deopt info!");
199     return None;
200   }
201 
202   return DeoptBundle.getValue().Inputs;
203 }
204 
205 /// Compute the live-in set for every basic block in the function
206 static void computeLiveInValues(DominatorTree &DT, Function &F,
207                                 GCPtrLivenessData &Data);
208 
209 /// Given results from the dataflow liveness computation, find the set of live
210 /// Values at a particular instruction.
211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
212                               StatepointLiveSetTy &out);
213 
214 // TODO: Once we can get to the GCStrategy, this becomes
215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
216 
217 static bool isGCPointerType(Type *T) {
218   if (auto *PT = dyn_cast<PointerType>(T))
219     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
220     // GC managed heap.  We know that a pointer into this heap needs to be
221     // updated and that no other pointer does.
222     return (1 == PT->getAddressSpace());
223   return false;
224 }
225 
226 // Return true if this type is one which a) is a gc pointer or contains a GC
227 // pointer and b) is of a type this code expects to encounter as a live value.
228 // (The insertion code will assert that a type which matches (a) and not (b)
229 // is not encountered.)
230 static bool isHandledGCPointerType(Type *T) {
231   // We fully support gc pointers
232   if (isGCPointerType(T))
233     return true;
234   // We partially support vectors of gc pointers. The code will assert if it
235   // can't handle something.
236   if (auto VT = dyn_cast<VectorType>(T))
237     if (isGCPointerType(VT->getElementType()))
238       return true;
239   return false;
240 }
241 
242 #ifndef NDEBUG
243 /// Returns true if this type contains a gc pointer whether we know how to
244 /// handle that type or not.
245 static bool containsGCPtrType(Type *Ty) {
246   if (isGCPointerType(Ty))
247     return true;
248   if (VectorType *VT = dyn_cast<VectorType>(Ty))
249     return isGCPointerType(VT->getScalarType());
250   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
251     return containsGCPtrType(AT->getElementType());
252   if (StructType *ST = dyn_cast<StructType>(Ty))
253     return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
254                        containsGCPtrType);
255   return false;
256 }
257 
258 // Returns true if this is a type which a) is a gc pointer or contains a GC
259 // pointer and b) is of a type which the code doesn't expect (i.e. first class
260 // aggregates).  Used to trip assertions.
261 static bool isUnhandledGCPointerType(Type *Ty) {
262   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
263 }
264 #endif
265 
266 // Return the name of the value suffixed with the provided value, or if the
267 // value didn't have a name, the default value specified.
268 static std::string suffixed_name_or(Value *V, StringRef Suffix,
269                                     StringRef DefaultName) {
270   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
271 }
272 
273 // Conservatively identifies any definitions which might be live at the
274 // given instruction. The  analysis is performed immediately before the
275 // given instruction. Values defined by that instruction are not considered
276 // live.  Values used by that instruction are considered live.
277 static void analyzeParsePointLiveness(
278     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
279     const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
280   Instruction *inst = CS.getInstruction();
281 
282   StatepointLiveSetTy LiveSet;
283   findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
284 
285   if (PrintLiveSet) {
286     errs() << "Live Variables:\n";
287     for (Value *V : LiveSet)
288       dbgs() << " " << V->getName() << " " << *V << "\n";
289   }
290   if (PrintLiveSetSize) {
291     errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
292     errs() << "Number live values: " << LiveSet.size() << "\n";
293   }
294   result.LiveSet = LiveSet;
295 }
296 
297 static bool isKnownBaseResult(Value *V);
298 namespace {
299 /// A single base defining value - An immediate base defining value for an
300 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
301 /// For instructions which have multiple pointer [vector] inputs or that
302 /// transition between vector and scalar types, there is no immediate base
303 /// defining value.  The 'base defining value' for 'Def' is the transitive
304 /// closure of this relation stopping at the first instruction which has no
305 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
306 /// but it can also be an arbitrary derived pointer.
307 struct BaseDefiningValueResult {
308   /// Contains the value which is the base defining value.
309   Value * const BDV;
310   /// True if the base defining value is also known to be an actual base
311   /// pointer.
312   const bool IsKnownBase;
313   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
314     : BDV(BDV), IsKnownBase(IsKnownBase) {
315 #ifndef NDEBUG
316     // Check consistency between new and old means of checking whether a BDV is
317     // a base.
318     bool MustBeBase = isKnownBaseResult(BDV);
319     assert(!MustBeBase || MustBeBase == IsKnownBase);
320 #endif
321   }
322 };
323 }
324 
325 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
326 
327 /// Return a base defining value for the 'Index' element of the given vector
328 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
329 /// 'I'.  As an optimization, this method will try to determine when the
330 /// element is known to already be a base pointer.  If this can be established,
331 /// the second value in the returned pair will be true.  Note that either a
332 /// vector or a pointer typed value can be returned.  For the former, the
333 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
334 /// If the later, the return pointer is a BDV (or possibly a base) for the
335 /// particular element in 'I'.
336 static BaseDefiningValueResult
337 findBaseDefiningValueOfVector(Value *I) {
338   // Each case parallels findBaseDefiningValue below, see that code for
339   // detailed motivation.
340 
341   if (isa<Argument>(I))
342     // An incoming argument to the function is a base pointer
343     return BaseDefiningValueResult(I, true);
344 
345   if (isa<Constant>(I))
346     // Base of constant vector consists only of constant null pointers.
347     // For reasoning see similar case inside 'findBaseDefiningValue' function.
348     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
349                                    true);
350 
351   if (isa<LoadInst>(I))
352     return BaseDefiningValueResult(I, true);
353 
354   if (isa<InsertElementInst>(I))
355     // We don't know whether this vector contains entirely base pointers or
356     // not.  To be conservatively correct, we treat it as a BDV and will
357     // duplicate code as needed to construct a parallel vector of bases.
358     return BaseDefiningValueResult(I, false);
359 
360   if (isa<ShuffleVectorInst>(I))
361     // We don't know whether this vector contains entirely base pointers or
362     // not.  To be conservatively correct, we treat it as a BDV and will
363     // duplicate code as needed to construct a parallel vector of bases.
364     // TODO: There a number of local optimizations which could be applied here
365     // for particular sufflevector patterns.
366     return BaseDefiningValueResult(I, false);
367 
368   // A PHI or Select is a base defining value.  The outer findBasePointer
369   // algorithm is responsible for constructing a base value for this BDV.
370   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
371          "unknown vector instruction - no base found for vector element");
372   return BaseDefiningValueResult(I, false);
373 }
374 
375 /// Helper function for findBasePointer - Will return a value which either a)
376 /// defines the base pointer for the input, b) blocks the simple search
377 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
378 /// from pointer to vector type or back.
379 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
380   assert(I->getType()->isPtrOrPtrVectorTy() &&
381          "Illegal to ask for the base pointer of a non-pointer type");
382 
383   if (I->getType()->isVectorTy())
384     return findBaseDefiningValueOfVector(I);
385 
386   if (isa<Argument>(I))
387     // An incoming argument to the function is a base pointer
388     // We should have never reached here if this argument isn't an gc value
389     return BaseDefiningValueResult(I, true);
390 
391   if (isa<Constant>(I)) {
392     // We assume that objects with a constant base (e.g. a global) can't move
393     // and don't need to be reported to the collector because they are always
394     // live. Besides global references, all kinds of constants (e.g. undef,
395     // constant expressions, null pointers) can be introduced by the inliner or
396     // the optimizer, especially on dynamically dead paths.
397     // Here we treat all of them as having single null base. By doing this we
398     // trying to avoid problems reporting various conflicts in a form of
399     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
400     // See constant.ll file for relevant test cases.
401 
402     return BaseDefiningValueResult(
403         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
404   }
405 
406   if (CastInst *CI = dyn_cast<CastInst>(I)) {
407     Value *Def = CI->stripPointerCasts();
408     // If stripping pointer casts changes the address space there is an
409     // addrspacecast in between.
410     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
411                cast<PointerType>(CI->getType())->getAddressSpace() &&
412            "unsupported addrspacecast");
413     // If we find a cast instruction here, it means we've found a cast which is
414     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
415     // handle int->ptr conversion.
416     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
417     return findBaseDefiningValue(Def);
418   }
419 
420   if (isa<LoadInst>(I))
421     // The value loaded is an gc base itself
422     return BaseDefiningValueResult(I, true);
423 
424 
425   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
426     // The base of this GEP is the base
427     return findBaseDefiningValue(GEP->getPointerOperand());
428 
429   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
430     switch (II->getIntrinsicID()) {
431     default:
432       // fall through to general call handling
433       break;
434     case Intrinsic::experimental_gc_statepoint:
435       llvm_unreachable("statepoints don't produce pointers");
436     case Intrinsic::experimental_gc_relocate: {
437       // Rerunning safepoint insertion after safepoints are already
438       // inserted is not supported.  It could probably be made to work,
439       // but why are you doing this?  There's no good reason.
440       llvm_unreachable("repeat safepoint insertion is not supported");
441     }
442     case Intrinsic::gcroot:
443       // Currently, this mechanism hasn't been extended to work with gcroot.
444       // There's no reason it couldn't be, but I haven't thought about the
445       // implications much.
446       llvm_unreachable(
447           "interaction with the gcroot mechanism is not supported");
448     }
449   }
450   // We assume that functions in the source language only return base
451   // pointers.  This should probably be generalized via attributes to support
452   // both source language and internal functions.
453   if (isa<CallInst>(I) || isa<InvokeInst>(I))
454     return BaseDefiningValueResult(I, true);
455 
456   // I have absolutely no idea how to implement this part yet.  It's not
457   // necessarily hard, I just haven't really looked at it yet.
458   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
459 
460   if (isa<AtomicCmpXchgInst>(I))
461     // A CAS is effectively a atomic store and load combined under a
462     // predicate.  From the perspective of base pointers, we just treat it
463     // like a load.
464     return BaseDefiningValueResult(I, true);
465 
466   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
467                                    "binary ops which don't apply to pointers");
468 
469   // The aggregate ops.  Aggregates can either be in the heap or on the
470   // stack, but in either case, this is simply a field load.  As a result,
471   // this is a defining definition of the base just like a load is.
472   if (isa<ExtractValueInst>(I))
473     return BaseDefiningValueResult(I, true);
474 
475   // We should never see an insert vector since that would require we be
476   // tracing back a struct value not a pointer value.
477   assert(!isa<InsertValueInst>(I) &&
478          "Base pointer for a struct is meaningless");
479 
480   // An extractelement produces a base result exactly when it's input does.
481   // We may need to insert a parallel instruction to extract the appropriate
482   // element out of the base vector corresponding to the input. Given this,
483   // it's analogous to the phi and select case even though it's not a merge.
484   if (isa<ExtractElementInst>(I))
485     // Note: There a lot of obvious peephole cases here.  This are deliberately
486     // handled after the main base pointer inference algorithm to make writing
487     // test cases to exercise that code easier.
488     return BaseDefiningValueResult(I, false);
489 
490   // The last two cases here don't return a base pointer.  Instead, they
491   // return a value which dynamically selects from among several base
492   // derived pointers (each with it's own base potentially).  It's the job of
493   // the caller to resolve these.
494   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
495          "missing instruction case in findBaseDefiningValing");
496   return BaseDefiningValueResult(I, false);
497 }
498 
499 /// Returns the base defining value for this value.
500 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
501   Value *&Cached = Cache[I];
502   if (!Cached) {
503     Cached = findBaseDefiningValue(I).BDV;
504     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
505                  << Cached->getName() << "\n");
506   }
507   assert(Cache[I] != nullptr);
508   return Cached;
509 }
510 
511 /// Return a base pointer for this value if known.  Otherwise, return it's
512 /// base defining value.
513 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
514   Value *Def = findBaseDefiningValueCached(I, Cache);
515   auto Found = Cache.find(Def);
516   if (Found != Cache.end()) {
517     // Either a base-of relation, or a self reference.  Caller must check.
518     return Found->second;
519   }
520   // Only a BDV available
521   return Def;
522 }
523 
524 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
525 /// is it known to be a base pointer?  Or do we need to continue searching.
526 static bool isKnownBaseResult(Value *V) {
527   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
528       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
529       !isa<ShuffleVectorInst>(V)) {
530     // no recursion possible
531     return true;
532   }
533   if (isa<Instruction>(V) &&
534       cast<Instruction>(V)->getMetadata("is_base_value")) {
535     // This is a previously inserted base phi or select.  We know
536     // that this is a base value.
537     return true;
538   }
539 
540   // We need to keep searching
541   return false;
542 }
543 
544 namespace {
545 /// Models the state of a single base defining value in the findBasePointer
546 /// algorithm for determining where a new instruction is needed to propagate
547 /// the base of this BDV.
548 class BDVState {
549 public:
550   enum Status { Unknown, Base, Conflict };
551 
552   BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
553     assert(status != Base || b);
554   }
555   explicit BDVState(Value *b) : status(Base), base(b) {}
556   BDVState() : status(Unknown), base(nullptr) {}
557 
558   Status getStatus() const { return status; }
559   Value *getBase() const { return base; }
560 
561   bool isBase() const { return getStatus() == Base; }
562   bool isUnknown() const { return getStatus() == Unknown; }
563   bool isConflict() const { return getStatus() == Conflict; }
564 
565   bool operator==(const BDVState &other) const {
566     return base == other.base && status == other.status;
567   }
568 
569   bool operator!=(const BDVState &other) const { return !(*this == other); }
570 
571   LLVM_DUMP_METHOD
572   void dump() const { print(dbgs()); dbgs() << '\n'; }
573 
574   void print(raw_ostream &OS) const {
575     switch (status) {
576     case Unknown:
577       OS << "U";
578       break;
579     case Base:
580       OS << "B";
581       break;
582     case Conflict:
583       OS << "C";
584       break;
585     };
586     OS << " (" << base << " - "
587        << (base ? base->getName() : "nullptr") << "): ";
588   }
589 
590 private:
591   Status status;
592   AssertingVH<Value> base; // non null only if status == base
593 };
594 }
595 
596 #ifndef NDEBUG
597 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
598   State.print(OS);
599   return OS;
600 }
601 #endif
602 
603 namespace {
604 // Values of type BDVState form a lattice, and this is a helper
605 // class that implementes the meet operation.  The meat of the meet
606 // operation is implemented in MeetBDVStates::pureMeet
607 class MeetBDVStates {
608 public:
609   /// Initializes the currentResult to the TOP state so that if can be met with
610   /// any other state to produce that state.
611   MeetBDVStates() {}
612 
613   // Destructively meet the current result with the given BDVState
614   void meetWith(BDVState otherState) {
615     currentResult = meet(otherState, currentResult);
616   }
617 
618   BDVState getResult() const { return currentResult; }
619 
620 private:
621   BDVState currentResult;
622 
623   /// Perform a meet operation on two elements of the BDVState lattice.
624   static BDVState meet(BDVState LHS, BDVState RHS) {
625     assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
626            "math is wrong: meet does not commute!");
627     BDVState Result = pureMeet(LHS, RHS);
628     DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
629                  << " produced " << Result << "\n");
630     return Result;
631   }
632 
633   static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
634     switch (stateA.getStatus()) {
635     case BDVState::Unknown:
636       return stateB;
637 
638     case BDVState::Base:
639       assert(stateA.getBase() && "can't be null");
640       if (stateB.isUnknown())
641         return stateA;
642 
643       if (stateB.isBase()) {
644         if (stateA.getBase() == stateB.getBase()) {
645           assert(stateA == stateB && "equality broken!");
646           return stateA;
647         }
648         return BDVState(BDVState::Conflict);
649       }
650       assert(stateB.isConflict() && "only three states!");
651       return BDVState(BDVState::Conflict);
652 
653     case BDVState::Conflict:
654       return stateA;
655     }
656     llvm_unreachable("only three states!");
657   }
658 };
659 }
660 
661 
662 /// For a given value or instruction, figure out what base ptr it's derived
663 /// from.  For gc objects, this is simply itself.  On success, returns a value
664 /// which is the base pointer.  (This is reliable and can be used for
665 /// relocation.)  On failure, returns nullptr.
666 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
667   Value *def = findBaseOrBDV(I, cache);
668 
669   if (isKnownBaseResult(def)) {
670     return def;
671   }
672 
673   // Here's the rough algorithm:
674   // - For every SSA value, construct a mapping to either an actual base
675   //   pointer or a PHI which obscures the base pointer.
676   // - Construct a mapping from PHI to unknown TOP state.  Use an
677   //   optimistic algorithm to propagate base pointer information.  Lattice
678   //   looks like:
679   //   UNKNOWN
680   //   b1 b2 b3 b4
681   //   CONFLICT
682   //   When algorithm terminates, all PHIs will either have a single concrete
683   //   base or be in a conflict state.
684   // - For every conflict, insert a dummy PHI node without arguments.  Add
685   //   these to the base[Instruction] = BasePtr mapping.  For every
686   //   non-conflict, add the actual base.
687   //  - For every conflict, add arguments for the base[a] of each input
688   //   arguments.
689   //
690   // Note: A simpler form of this would be to add the conflict form of all
691   // PHIs without running the optimistic algorithm.  This would be
692   // analogous to pessimistic data flow and would likely lead to an
693   // overall worse solution.
694 
695 #ifndef NDEBUG
696   auto isExpectedBDVType = [](Value *BDV) {
697     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
698            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
699   };
700 #endif
701 
702   // Once populated, will contain a mapping from each potentially non-base BDV
703   // to a lattice value (described above) which corresponds to that BDV.
704   // We use the order of insertion (DFS over the def/use graph) to provide a
705   // stable deterministic ordering for visiting DenseMaps (which are unordered)
706   // below.  This is important for deterministic compilation.
707   MapVector<Value *, BDVState> States;
708 
709   // Recursively fill in all base defining values reachable from the initial
710   // one for which we don't already know a definite base value for
711   /* scope */ {
712     SmallVector<Value*, 16> Worklist;
713     Worklist.push_back(def);
714     States.insert(std::make_pair(def, BDVState()));
715     while (!Worklist.empty()) {
716       Value *Current = Worklist.pop_back_val();
717       assert(!isKnownBaseResult(Current) && "why did it get added?");
718 
719       auto visitIncomingValue = [&](Value *InVal) {
720         Value *Base = findBaseOrBDV(InVal, cache);
721         if (isKnownBaseResult(Base))
722           // Known bases won't need new instructions introduced and can be
723           // ignored safely
724           return;
725         assert(isExpectedBDVType(Base) && "the only non-base values "
726                "we see should be base defining values");
727         if (States.insert(std::make_pair(Base, BDVState())).second)
728           Worklist.push_back(Base);
729       };
730       if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
731         for (Value *InVal : Phi->incoming_values())
732           visitIncomingValue(InVal);
733       } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
734         visitIncomingValue(Sel->getTrueValue());
735         visitIncomingValue(Sel->getFalseValue());
736       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
737         visitIncomingValue(EE->getVectorOperand());
738       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
739         visitIncomingValue(IE->getOperand(0)); // vector operand
740         visitIncomingValue(IE->getOperand(1)); // scalar operand
741       } else {
742         // There is one known class of instructions we know we don't handle.
743         assert(isa<ShuffleVectorInst>(Current));
744         llvm_unreachable("unimplemented instruction case");
745       }
746     }
747   }
748 
749 #ifndef NDEBUG
750   DEBUG(dbgs() << "States after initialization:\n");
751   for (auto Pair : States) {
752     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
753   }
754 #endif
755 
756   // Return a phi state for a base defining value.  We'll generate a new
757   // base state for known bases and expect to find a cached state otherwise.
758   auto getStateForBDV = [&](Value *baseValue) {
759     if (isKnownBaseResult(baseValue))
760       return BDVState(baseValue);
761     auto I = States.find(baseValue);
762     assert(I != States.end() && "lookup failed!");
763     return I->second;
764   };
765 
766   bool progress = true;
767   while (progress) {
768 #ifndef NDEBUG
769     const size_t oldSize = States.size();
770 #endif
771     progress = false;
772     // We're only changing values in this loop, thus safe to keep iterators.
773     // Since this is computing a fixed point, the order of visit does not
774     // effect the result.  TODO: We could use a worklist here and make this run
775     // much faster.
776     for (auto Pair : States) {
777       Value *BDV = Pair.first;
778       assert(!isKnownBaseResult(BDV) && "why did it get added?");
779 
780       // Given an input value for the current instruction, return a BDVState
781       // instance which represents the BDV of that value.
782       auto getStateForInput = [&](Value *V) mutable {
783         Value *BDV = findBaseOrBDV(V, cache);
784         return getStateForBDV(BDV);
785       };
786 
787       MeetBDVStates calculateMeet;
788       if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
789         calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
790         calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
791       } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
792         for (Value *Val : Phi->incoming_values())
793           calculateMeet.meetWith(getStateForInput(Val));
794       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
795         // The 'meet' for an extractelement is slightly trivial, but it's still
796         // useful in that it drives us to conflict if our input is.
797         calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
798       } else {
799         // Given there's a inherent type mismatch between the operands, will
800         // *always* produce Conflict.
801         auto *IE = cast<InsertElementInst>(BDV);
802         calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
803         calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
804       }
805 
806       BDVState oldState = States[BDV];
807       BDVState newState = calculateMeet.getResult();
808       if (oldState != newState) {
809         progress = true;
810         States[BDV] = newState;
811       }
812     }
813 
814     assert(oldSize == States.size() &&
815            "fixed point shouldn't be adding any new nodes to state");
816   }
817 
818 #ifndef NDEBUG
819   DEBUG(dbgs() << "States after meet iteration:\n");
820   for (auto Pair : States) {
821     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
822   }
823 #endif
824 
825   // Insert Phis for all conflicts
826   // TODO: adjust naming patterns to avoid this order of iteration dependency
827   for (auto Pair : States) {
828     Instruction *I = cast<Instruction>(Pair.first);
829     BDVState State = Pair.second;
830     assert(!isKnownBaseResult(I) && "why did it get added?");
831     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
832 
833     // extractelement instructions are a bit special in that we may need to
834     // insert an extract even when we know an exact base for the instruction.
835     // The problem is that we need to convert from a vector base to a scalar
836     // base for the particular indice we're interested in.
837     if (State.isBase() && isa<ExtractElementInst>(I) &&
838         isa<VectorType>(State.getBase()->getType())) {
839       auto *EE = cast<ExtractElementInst>(I);
840       // TODO: In many cases, the new instruction is just EE itself.  We should
841       // exploit this, but can't do it here since it would break the invariant
842       // about the BDV not being known to be a base.
843       auto *BaseInst = ExtractElementInst::Create(State.getBase(),
844                                                   EE->getIndexOperand(),
845                                                   "base_ee", EE);
846       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
847       States[I] = BDVState(BDVState::Base, BaseInst);
848     }
849 
850     // Since we're joining a vector and scalar base, they can never be the
851     // same.  As a result, we should always see insert element having reached
852     // the conflict state.
853     if (isa<InsertElementInst>(I)) {
854       assert(State.isConflict());
855     }
856 
857     if (!State.isConflict())
858       continue;
859 
860     /// Create and insert a new instruction which will represent the base of
861     /// the given instruction 'I'.
862     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
863       if (isa<PHINode>(I)) {
864         BasicBlock *BB = I->getParent();
865         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
866         assert(NumPreds > 0 && "how did we reach here");
867         std::string Name = suffixed_name_or(I, ".base", "base_phi");
868         return PHINode::Create(I->getType(), NumPreds, Name, I);
869       } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
870         // The undef will be replaced later
871         UndefValue *Undef = UndefValue::get(Sel->getType());
872         std::string Name = suffixed_name_or(I, ".base", "base_select");
873         return SelectInst::Create(Sel->getCondition(), Undef,
874                                   Undef, Name, Sel);
875       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
876         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
877         std::string Name = suffixed_name_or(I, ".base", "base_ee");
878         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
879                                           EE);
880       } else {
881         auto *IE = cast<InsertElementInst>(I);
882         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
883         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
884         std::string Name = suffixed_name_or(I, ".base", "base_ie");
885         return InsertElementInst::Create(VecUndef, ScalarUndef,
886                                          IE->getOperand(2), Name, IE);
887       }
888 
889     };
890     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
891     // Add metadata marking this as a base value
892     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
893     States[I] = BDVState(BDVState::Conflict, BaseInst);
894   }
895 
896   // Returns a instruction which produces the base pointer for a given
897   // instruction.  The instruction is assumed to be an input to one of the BDVs
898   // seen in the inference algorithm above.  As such, we must either already
899   // know it's base defining value is a base, or have inserted a new
900   // instruction to propagate the base of it's BDV and have entered that newly
901   // introduced instruction into the state table.  In either case, we are
902   // assured to be able to determine an instruction which produces it's base
903   // pointer.
904   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
905     Value *BDV = findBaseOrBDV(Input, cache);
906     Value *Base = nullptr;
907     if (isKnownBaseResult(BDV)) {
908       Base = BDV;
909     } else {
910       // Either conflict or base.
911       assert(States.count(BDV));
912       Base = States[BDV].getBase();
913     }
914     assert(Base && "can't be null");
915     // The cast is needed since base traversal may strip away bitcasts
916     if (Base->getType() != Input->getType() &&
917         InsertPt) {
918       Base = new BitCastInst(Base, Input->getType(), "cast",
919                              InsertPt);
920     }
921     return Base;
922   };
923 
924   // Fixup all the inputs of the new PHIs.  Visit order needs to be
925   // deterministic and predictable because we're naming newly created
926   // instructions.
927   for (auto Pair : States) {
928     Instruction *BDV = cast<Instruction>(Pair.first);
929     BDVState State = Pair.second;
930 
931     assert(!isKnownBaseResult(BDV) && "why did it get added?");
932     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
933     if (!State.isConflict())
934       continue;
935 
936     if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
937       PHINode *phi = cast<PHINode>(BDV);
938       unsigned NumPHIValues = phi->getNumIncomingValues();
939       for (unsigned i = 0; i < NumPHIValues; i++) {
940         Value *InVal = phi->getIncomingValue(i);
941         BasicBlock *InBB = phi->getIncomingBlock(i);
942 
943         // If we've already seen InBB, add the same incoming value
944         // we added for it earlier.  The IR verifier requires phi
945         // nodes with multiple entries from the same basic block
946         // to have the same incoming value for each of those
947         // entries.  If we don't do this check here and basephi
948         // has a different type than base, we'll end up adding two
949         // bitcasts (and hence two distinct values) as incoming
950         // values for the same basic block.
951 
952         int blockIndex = basephi->getBasicBlockIndex(InBB);
953         if (blockIndex != -1) {
954           Value *oldBase = basephi->getIncomingValue(blockIndex);
955           basephi->addIncoming(oldBase, InBB);
956 
957 #ifndef NDEBUG
958           Value *Base = getBaseForInput(InVal, nullptr);
959           // In essence this assert states: the only way two
960           // values incoming from the same basic block may be
961           // different is by being different bitcasts of the same
962           // value.  A cleanup that remains TODO is changing
963           // findBaseOrBDV to return an llvm::Value of the correct
964           // type (and still remain pure).  This will remove the
965           // need to add bitcasts.
966           assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
967                  "sanity -- findBaseOrBDV should be pure!");
968 #endif
969           continue;
970         }
971 
972         // Find the instruction which produces the base for each input.  We may
973         // need to insert a bitcast in the incoming block.
974         // TODO: Need to split critical edges if insertion is needed
975         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
976         basephi->addIncoming(Base, InBB);
977       }
978       assert(basephi->getNumIncomingValues() == NumPHIValues);
979     } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
980       SelectInst *Sel = cast<SelectInst>(BDV);
981       // Operand 1 & 2 are true, false path respectively. TODO: refactor to
982       // something more safe and less hacky.
983       for (int i = 1; i <= 2; i++) {
984         Value *InVal = Sel->getOperand(i);
985         // Find the instruction which produces the base for each input.  We may
986         // need to insert a bitcast.
987         Value *Base = getBaseForInput(InVal, BaseSel);
988         BaseSel->setOperand(i, Base);
989       }
990     } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
991       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
992       // Find the instruction which produces the base for each input.  We may
993       // need to insert a bitcast.
994       Value *Base = getBaseForInput(InVal, BaseEE);
995       BaseEE->setOperand(0, Base);
996     } else {
997       auto *BaseIE = cast<InsertElementInst>(State.getBase());
998       auto *BdvIE = cast<InsertElementInst>(BDV);
999       auto UpdateOperand = [&](int OperandIdx) {
1000         Value *InVal = BdvIE->getOperand(OperandIdx);
1001         Value *Base = getBaseForInput(InVal, BaseIE);
1002         BaseIE->setOperand(OperandIdx, Base);
1003       };
1004       UpdateOperand(0); // vector operand
1005       UpdateOperand(1); // scalar operand
1006     }
1007 
1008   }
1009 
1010   // Cache all of our results so we can cheaply reuse them
1011   // NOTE: This is actually two caches: one of the base defining value
1012   // relation and one of the base pointer relation!  FIXME
1013   for (auto Pair : States) {
1014     auto *BDV = Pair.first;
1015     Value *base = Pair.second.getBase();
1016     assert(BDV && base);
1017     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1018 
1019     std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
1020     DEBUG(dbgs() << "Updating base value cache"
1021           << " for: " << BDV->getName()
1022           << " from: " << fromstr
1023           << " to: " << base->getName() << "\n");
1024 
1025     if (cache.count(BDV)) {
1026       assert(isKnownBaseResult(base) &&
1027              "must be something we 'know' is a base pointer");
1028       // Once we transition from the BDV relation being store in the cache to
1029       // the base relation being stored, it must be stable
1030       assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
1031              "base relation should be stable");
1032     }
1033     cache[BDV] = base;
1034   }
1035   assert(cache.count(def));
1036   return cache[def];
1037 }
1038 
1039 // For a set of live pointers (base and/or derived), identify the base
1040 // pointer of the object which they are derived from.  This routine will
1041 // mutate the IR graph as needed to make the 'base' pointer live at the
1042 // definition site of 'derived'.  This ensures that any use of 'derived' can
1043 // also use 'base'.  This may involve the insertion of a number of
1044 // additional PHI nodes.
1045 //
1046 // preconditions: live is a set of pointer type Values
1047 //
1048 // side effects: may insert PHI nodes into the existing CFG, will preserve
1049 // CFG, will not remove or mutate any existing nodes
1050 //
1051 // post condition: PointerToBase contains one (derived, base) pair for every
1052 // pointer in live.  Note that derived can be equal to base if the original
1053 // pointer was a base pointer.
1054 static void
1055 findBasePointers(const StatepointLiveSetTy &live,
1056                  MapVector<Value *, Value *> &PointerToBase,
1057                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1058   for (Value *ptr : live) {
1059     Value *base = findBasePointer(ptr, DVCache);
1060     assert(base && "failed to find base pointer");
1061     PointerToBase[ptr] = base;
1062     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1063             DT->dominates(cast<Instruction>(base)->getParent(),
1064                           cast<Instruction>(ptr)->getParent())) &&
1065            "The base we found better dominate the derived pointer");
1066   }
1067 }
1068 
1069 /// Find the required based pointers (and adjust the live set) for the given
1070 /// parse point.
1071 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1072                              const CallSite &CS,
1073                              PartiallyConstructedSafepointRecord &result) {
1074   MapVector<Value *, Value *> PointerToBase;
1075   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1076 
1077   if (PrintBasePointers) {
1078     errs() << "Base Pairs (w/o Relocation):\n";
1079     for (auto &Pair : PointerToBase) {
1080       errs() << " derived ";
1081       Pair.first->printAsOperand(errs(), false);
1082       errs() << " base ";
1083       Pair.second->printAsOperand(errs(), false);
1084       errs() << "\n";;
1085     }
1086   }
1087 
1088   result.PointerToBase = PointerToBase;
1089 }
1090 
1091 /// Given an updated version of the dataflow liveness results, update the
1092 /// liveset and base pointer maps for the call site CS.
1093 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1094                                   const CallSite &CS,
1095                                   PartiallyConstructedSafepointRecord &result);
1096 
1097 static void recomputeLiveInValues(
1098     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1099     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1100   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1101   // again.  The old values are still live and will help it stabilize quickly.
1102   GCPtrLivenessData RevisedLivenessData;
1103   computeLiveInValues(DT, F, RevisedLivenessData);
1104   for (size_t i = 0; i < records.size(); i++) {
1105     struct PartiallyConstructedSafepointRecord &info = records[i];
1106     const CallSite &CS = toUpdate[i];
1107     recomputeLiveInValues(RevisedLivenessData, CS, info);
1108   }
1109 }
1110 
1111 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1112 // no uses of the original value / return value between the gc.statepoint and
1113 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1114 // starting one of the successor blocks.  We also need to be able to insert the
1115 // gc.relocates only on the path which goes through the statepoint.  We might
1116 // need to split an edge to make this possible.
1117 static BasicBlock *
1118 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1119                             DominatorTree &DT) {
1120   BasicBlock *Ret = BB;
1121   if (!BB->getUniquePredecessor())
1122     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1123 
1124   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1125   // from it
1126   FoldSingleEntryPHINodes(Ret);
1127   assert(!isa<PHINode>(Ret->begin()) &&
1128          "All PHI nodes should have been removed!");
1129 
1130   // At this point, we can safely insert a gc.relocate or gc.result as the first
1131   // instruction in Ret if needed.
1132   return Ret;
1133 }
1134 
1135 // Create new attribute set containing only attributes which can be transferred
1136 // from original call to the safepoint.
1137 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1138   AttributeSet Ret;
1139 
1140   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1141     unsigned Index = AS.getSlotIndex(Slot);
1142 
1143     if (Index == AttributeSet::ReturnIndex ||
1144         Index == AttributeSet::FunctionIndex) {
1145 
1146       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1147 
1148         // Do not allow certain attributes - just skip them
1149         // Safepoint can not be read only or read none.
1150         if (Attr.hasAttribute(Attribute::ReadNone) ||
1151             Attr.hasAttribute(Attribute::ReadOnly))
1152           continue;
1153 
1154         // These attributes control the generation of the gc.statepoint call /
1155         // invoke itself; and once the gc.statepoint is in place, they're of no
1156         // use.
1157         if (isStatepointDirectiveAttr(Attr))
1158           continue;
1159 
1160         Ret = Ret.addAttributes(
1161             AS.getContext(), Index,
1162             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1163       }
1164     }
1165 
1166     // Just skip parameter attributes for now
1167   }
1168 
1169   return Ret;
1170 }
1171 
1172 /// Helper function to place all gc relocates necessary for the given
1173 /// statepoint.
1174 /// Inputs:
1175 ///   liveVariables - list of variables to be relocated.
1176 ///   liveStart - index of the first live variable.
1177 ///   basePtrs - base pointers.
1178 ///   statepointToken - statepoint instruction to which relocates should be
1179 ///   bound.
1180 ///   Builder - Llvm IR builder to be used to construct new calls.
1181 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1182                               const int LiveStart,
1183                               ArrayRef<Value *> BasePtrs,
1184                               Instruction *StatepointToken,
1185                               IRBuilder<> Builder) {
1186   if (LiveVariables.empty())
1187     return;
1188 
1189   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1190     auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1191     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1192     size_t Index = std::distance(LiveVec.begin(), ValIt);
1193     assert(Index < LiveVec.size() && "Bug in std::find?");
1194     return Index;
1195   };
1196   Module *M = StatepointToken->getModule();
1197 
1198   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1199   // element type is i8 addrspace(1)*). We originally generated unique
1200   // declarations for each pointer type, but this proved problematic because
1201   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1202   // towards a single unified pointer type anyways, we can just cast everything
1203   // to an i8* of the right address space.  A bitcast is added later to convert
1204   // gc_relocate to the actual value's type.
1205   auto getGCRelocateDecl = [&] (Type *Ty) {
1206     assert(isHandledGCPointerType(Ty));
1207     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1208     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1209     if (auto *VT = dyn_cast<VectorType>(Ty))
1210       NewTy = VectorType::get(NewTy, VT->getNumElements());
1211     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1212                                      {NewTy});
1213   };
1214 
1215   // Lazily populated map from input types to the canonicalized form mentioned
1216   // in the comment above.  This should probably be cached somewhere more
1217   // broadly.
1218   DenseMap<Type*, Value*> TypeToDeclMap;
1219 
1220   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1221     // Generate the gc.relocate call and save the result
1222     Value *BaseIdx =
1223       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1224     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1225 
1226     Type *Ty = LiveVariables[i]->getType();
1227     if (!TypeToDeclMap.count(Ty))
1228       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1229     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1230 
1231     // only specify a debug name if we can give a useful one
1232     CallInst *Reloc = Builder.CreateCall(
1233         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1234         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1235     // Trick CodeGen into thinking there are lots of free registers at this
1236     // fake call.
1237     Reloc->setCallingConv(CallingConv::Cold);
1238   }
1239 }
1240 
1241 namespace {
1242 
1243 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1244 /// avoids having to worry about keeping around dangling pointers to Values.
1245 class DeferredReplacement {
1246   AssertingVH<Instruction> Old;
1247   AssertingVH<Instruction> New;
1248   bool IsDeoptimize = false;
1249 
1250   DeferredReplacement() {}
1251 
1252 public:
1253   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1254     assert(Old != New && Old && New &&
1255            "Cannot RAUW equal values or to / from null!");
1256 
1257     DeferredReplacement D;
1258     D.Old = Old;
1259     D.New = New;
1260     return D;
1261   }
1262 
1263   static DeferredReplacement createDelete(Instruction *ToErase) {
1264     DeferredReplacement D;
1265     D.Old = ToErase;
1266     return D;
1267   }
1268 
1269   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1270 #ifndef NDEBUG
1271     auto *F = cast<CallInst>(Old)->getCalledFunction();
1272     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1273            "Only way to construct a deoptimize deferred replacement");
1274 #endif
1275     DeferredReplacement D;
1276     D.Old = Old;
1277     D.IsDeoptimize = true;
1278     return D;
1279   }
1280 
1281   /// Does the task represented by this instance.
1282   void doReplacement() {
1283     Instruction *OldI = Old;
1284     Instruction *NewI = New;
1285 
1286     assert(OldI != NewI && "Disallowed at construction?!");
1287     assert((!IsDeoptimize || !New) &&
1288            "Deoptimize instrinsics are not replaced!");
1289 
1290     Old = nullptr;
1291     New = nullptr;
1292 
1293     if (NewI)
1294       OldI->replaceAllUsesWith(NewI);
1295 
1296     if (IsDeoptimize) {
1297       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1298       // not necessarilly be followed by the matching return.
1299       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1300       new UnreachableInst(RI->getContext(), RI);
1301       RI->eraseFromParent();
1302     }
1303 
1304     OldI->eraseFromParent();
1305   }
1306 };
1307 }
1308 
1309 static void
1310 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1311                            const SmallVectorImpl<Value *> &BasePtrs,
1312                            const SmallVectorImpl<Value *> &LiveVariables,
1313                            PartiallyConstructedSafepointRecord &Result,
1314                            std::vector<DeferredReplacement> &Replacements) {
1315   assert(BasePtrs.size() == LiveVariables.size());
1316 
1317   // Then go ahead and use the builder do actually do the inserts.  We insert
1318   // immediately before the previous instruction under the assumption that all
1319   // arguments will be available here.  We can't insert afterwards since we may
1320   // be replacing a terminator.
1321   Instruction *InsertBefore = CS.getInstruction();
1322   IRBuilder<> Builder(InsertBefore);
1323 
1324   ArrayRef<Value *> GCArgs(LiveVariables);
1325   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1326   uint32_t NumPatchBytes = 0;
1327   uint32_t Flags = uint32_t(StatepointFlags::None);
1328 
1329   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1330   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1331   ArrayRef<Use> TransitionArgs;
1332   if (auto TransitionBundle =
1333       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1334     Flags |= uint32_t(StatepointFlags::GCTransition);
1335     TransitionArgs = TransitionBundle->Inputs;
1336   }
1337 
1338   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1339   // with a return value, we lower then as never returning calls to
1340   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1341   bool IsDeoptimize = false;
1342 
1343   StatepointDirectives SD =
1344       parseStatepointDirectivesFromAttrs(CS.getAttributes());
1345   if (SD.NumPatchBytes)
1346     NumPatchBytes = *SD.NumPatchBytes;
1347   if (SD.StatepointID)
1348     StatepointID = *SD.StatepointID;
1349 
1350   Value *CallTarget = CS.getCalledValue();
1351   if (Function *F = dyn_cast<Function>(CallTarget)) {
1352     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1353       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1354       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1355       // verifier does not allow taking the address of an intrinsic function.
1356 
1357       SmallVector<Type *, 8> DomainTy;
1358       for (Value *Arg : CallArgs)
1359         DomainTy.push_back(Arg->getType());
1360       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1361                                     /* isVarArg = */ false);
1362 
1363       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1364       // calls to @llvm.experimental.deoptimize with different argument types in
1365       // the same module.  This is fine -- we assume the frontend knew what it
1366       // was doing when generating this kind of IR.
1367       CallTarget =
1368           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1369 
1370       IsDeoptimize = true;
1371     }
1372   }
1373 
1374   // Create the statepoint given all the arguments
1375   Instruction *Token = nullptr;
1376   AttributeSet ReturnAttrs;
1377   if (CS.isCall()) {
1378     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1379     CallInst *Call = Builder.CreateGCStatepointCall(
1380         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1381         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1382 
1383     Call->setTailCall(ToReplace->isTailCall());
1384     Call->setCallingConv(ToReplace->getCallingConv());
1385 
1386     // Currently we will fail on parameter attributes and on certain
1387     // function attributes.
1388     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1389     // In case if we can handle this set of attributes - set up function attrs
1390     // directly on statepoint and return attrs later for gc_result intrinsic.
1391     Call->setAttributes(NewAttrs.getFnAttributes());
1392     ReturnAttrs = NewAttrs.getRetAttributes();
1393 
1394     Token = Call;
1395 
1396     // Put the following gc_result and gc_relocate calls immediately after the
1397     // the old call (which we're about to delete)
1398     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1399     Builder.SetInsertPoint(ToReplace->getNextNode());
1400     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1401   } else {
1402     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1403 
1404     // Insert the new invoke into the old block.  We'll remove the old one in a
1405     // moment at which point this will become the new terminator for the
1406     // original block.
1407     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1408         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1409         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1410         GCArgs, "statepoint_token");
1411 
1412     Invoke->setCallingConv(ToReplace->getCallingConv());
1413 
1414     // Currently we will fail on parameter attributes and on certain
1415     // function attributes.
1416     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1417     // In case if we can handle this set of attributes - set up function attrs
1418     // directly on statepoint and return attrs later for gc_result intrinsic.
1419     Invoke->setAttributes(NewAttrs.getFnAttributes());
1420     ReturnAttrs = NewAttrs.getRetAttributes();
1421 
1422     Token = Invoke;
1423 
1424     // Generate gc relocates in exceptional path
1425     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1426     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1427            UnwindBlock->getUniquePredecessor() &&
1428            "can't safely insert in this block!");
1429 
1430     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1431     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1432 
1433     // Attach exceptional gc relocates to the landingpad.
1434     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1435     Result.UnwindToken = ExceptionalToken;
1436 
1437     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1438     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1439                       Builder);
1440 
1441     // Generate gc relocates and returns for normal block
1442     BasicBlock *NormalDest = ToReplace->getNormalDest();
1443     assert(!isa<PHINode>(NormalDest->begin()) &&
1444            NormalDest->getUniquePredecessor() &&
1445            "can't safely insert in this block!");
1446 
1447     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1448 
1449     // gc relocates will be generated later as if it were regular call
1450     // statepoint
1451   }
1452   assert(Token && "Should be set in one of the above branches!");
1453 
1454   if (IsDeoptimize) {
1455     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1456     // transform the tail-call like structure to a call to a void function
1457     // followed by unreachable to get better codegen.
1458     Replacements.push_back(
1459         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1460   } else {
1461     Token->setName("statepoint_token");
1462     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1463       StringRef Name =
1464           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1465       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1466       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1467 
1468       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1469       // live set of some other safepoint, in which case that safepoint's
1470       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1471       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1472       // after the live sets have been made explicit in the IR, and we no longer
1473       // have raw pointers to worry about.
1474       Replacements.emplace_back(
1475           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1476     } else {
1477       Replacements.emplace_back(
1478           DeferredReplacement::createDelete(CS.getInstruction()));
1479     }
1480   }
1481 
1482   Result.StatepointToken = Token;
1483 
1484   // Second, create a gc.relocate for every live variable
1485   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1486   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1487 }
1488 
1489 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1490 // which make the relocations happening at this safepoint explicit.
1491 //
1492 // WARNING: Does not do any fixup to adjust users of the original live
1493 // values.  That's the callers responsibility.
1494 static void
1495 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS,
1496                        PartiallyConstructedSafepointRecord &Result,
1497                        std::vector<DeferredReplacement> &Replacements) {
1498   const auto &LiveSet = Result.LiveSet;
1499   const auto &PointerToBase = Result.PointerToBase;
1500 
1501   // Convert to vector for efficient cross referencing.
1502   SmallVector<Value *, 64> BaseVec, LiveVec;
1503   LiveVec.reserve(LiveSet.size());
1504   BaseVec.reserve(LiveSet.size());
1505   for (Value *L : LiveSet) {
1506     LiveVec.push_back(L);
1507     assert(PointerToBase.count(L));
1508     Value *Base = PointerToBase.find(L)->second;
1509     BaseVec.push_back(Base);
1510   }
1511   assert(LiveVec.size() == BaseVec.size());
1512 
1513   // Do the actual rewriting and delete the old statepoint
1514   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1515 }
1516 
1517 // Helper function for the relocationViaAlloca.
1518 //
1519 // It receives iterator to the statepoint gc relocates and emits a store to the
1520 // assigned location (via allocaMap) for the each one of them.  It adds the
1521 // visited values into the visitedLiveValues set, which we will later use them
1522 // for sanity checking.
1523 static void
1524 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1525                        DenseMap<Value *, Value *> &AllocaMap,
1526                        DenseSet<Value *> &VisitedLiveValues) {
1527 
1528   for (User *U : GCRelocs) {
1529     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1530     if (!Relocate)
1531       continue;
1532 
1533     Value *OriginalValue = Relocate->getDerivedPtr();
1534     assert(AllocaMap.count(OriginalValue));
1535     Value *Alloca = AllocaMap[OriginalValue];
1536 
1537     // Emit store into the related alloca
1538     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1539     // the correct type according to alloca.
1540     assert(Relocate->getNextNode() &&
1541            "Should always have one since it's not a terminator");
1542     IRBuilder<> Builder(Relocate->getNextNode());
1543     Value *CastedRelocatedValue =
1544       Builder.CreateBitCast(Relocate,
1545                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1546                             suffixed_name_or(Relocate, ".casted", ""));
1547 
1548     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1549     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1550 
1551 #ifndef NDEBUG
1552     VisitedLiveValues.insert(OriginalValue);
1553 #endif
1554   }
1555 }
1556 
1557 // Helper function for the "relocationViaAlloca". Similar to the
1558 // "insertRelocationStores" but works for rematerialized values.
1559 static void insertRematerializationStores(
1560     const RematerializedValueMapTy &RematerializedValues,
1561     DenseMap<Value *, Value *> &AllocaMap,
1562     DenseSet<Value *> &VisitedLiveValues) {
1563 
1564   for (auto RematerializedValuePair: RematerializedValues) {
1565     Instruction *RematerializedValue = RematerializedValuePair.first;
1566     Value *OriginalValue = RematerializedValuePair.second;
1567 
1568     assert(AllocaMap.count(OriginalValue) &&
1569            "Can not find alloca for rematerialized value");
1570     Value *Alloca = AllocaMap[OriginalValue];
1571 
1572     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1573     Store->insertAfter(RematerializedValue);
1574 
1575 #ifndef NDEBUG
1576     VisitedLiveValues.insert(OriginalValue);
1577 #endif
1578   }
1579 }
1580 
1581 /// Do all the relocation update via allocas and mem2reg
1582 static void relocationViaAlloca(
1583     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1584     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1585 #ifndef NDEBUG
1586   // record initial number of (static) allocas; we'll check we have the same
1587   // number when we get done.
1588   int InitialAllocaNum = 0;
1589   for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1590        I++)
1591     if (isa<AllocaInst>(*I))
1592       InitialAllocaNum++;
1593 #endif
1594 
1595   // TODO-PERF: change data structures, reserve
1596   DenseMap<Value *, Value *> AllocaMap;
1597   SmallVector<AllocaInst *, 200> PromotableAllocas;
1598   // Used later to chack that we have enough allocas to store all values
1599   std::size_t NumRematerializedValues = 0;
1600   PromotableAllocas.reserve(Live.size());
1601 
1602   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1603   // "PromotableAllocas"
1604   auto emitAllocaFor = [&](Value *LiveValue) {
1605     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1606                                         F.getEntryBlock().getFirstNonPHI());
1607     AllocaMap[LiveValue] = Alloca;
1608     PromotableAllocas.push_back(Alloca);
1609   };
1610 
1611   // Emit alloca for each live gc pointer
1612   for (Value *V : Live)
1613     emitAllocaFor(V);
1614 
1615   // Emit allocas for rematerialized values
1616   for (const auto &Info : Records)
1617     for (auto RematerializedValuePair : Info.RematerializedValues) {
1618       Value *OriginalValue = RematerializedValuePair.second;
1619       if (AllocaMap.count(OriginalValue) != 0)
1620         continue;
1621 
1622       emitAllocaFor(OriginalValue);
1623       ++NumRematerializedValues;
1624     }
1625 
1626   // The next two loops are part of the same conceptual operation.  We need to
1627   // insert a store to the alloca after the original def and at each
1628   // redefinition.  We need to insert a load before each use.  These are split
1629   // into distinct loops for performance reasons.
1630 
1631   // Update gc pointer after each statepoint: either store a relocated value or
1632   // null (if no relocated value was found for this gc pointer and it is not a
1633   // gc_result).  This must happen before we update the statepoint with load of
1634   // alloca otherwise we lose the link between statepoint and old def.
1635   for (const auto &Info : Records) {
1636     Value *Statepoint = Info.StatepointToken;
1637 
1638     // This will be used for consistency check
1639     DenseSet<Value *> VisitedLiveValues;
1640 
1641     // Insert stores for normal statepoint gc relocates
1642     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1643 
1644     // In case if it was invoke statepoint
1645     // we will insert stores for exceptional path gc relocates.
1646     if (isa<InvokeInst>(Statepoint)) {
1647       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1648                              VisitedLiveValues);
1649     }
1650 
1651     // Do similar thing with rematerialized values
1652     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1653                                   VisitedLiveValues);
1654 
1655     if (ClobberNonLive) {
1656       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1657       // the gc.statepoint.  This will turn some subtle GC problems into
1658       // slightly easier to debug SEGVs.  Note that on large IR files with
1659       // lots of gc.statepoints this is extremely costly both memory and time
1660       // wise.
1661       SmallVector<AllocaInst *, 64> ToClobber;
1662       for (auto Pair : AllocaMap) {
1663         Value *Def = Pair.first;
1664         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1665 
1666         // This value was relocated
1667         if (VisitedLiveValues.count(Def)) {
1668           continue;
1669         }
1670         ToClobber.push_back(Alloca);
1671       }
1672 
1673       auto InsertClobbersAt = [&](Instruction *IP) {
1674         for (auto *AI : ToClobber) {
1675           auto PT = cast<PointerType>(AI->getAllocatedType());
1676           Constant *CPN = ConstantPointerNull::get(PT);
1677           StoreInst *Store = new StoreInst(CPN, AI);
1678           Store->insertBefore(IP);
1679         }
1680       };
1681 
1682       // Insert the clobbering stores.  These may get intermixed with the
1683       // gc.results and gc.relocates, but that's fine.
1684       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1685         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1686         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1687       } else {
1688         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1689       }
1690     }
1691   }
1692 
1693   // Update use with load allocas and add store for gc_relocated.
1694   for (auto Pair : AllocaMap) {
1695     Value *Def = Pair.first;
1696     Value *Alloca = Pair.second;
1697 
1698     // We pre-record the uses of allocas so that we dont have to worry about
1699     // later update that changes the user information..
1700 
1701     SmallVector<Instruction *, 20> Uses;
1702     // PERF: trade a linear scan for repeated reallocation
1703     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1704     for (User *U : Def->users()) {
1705       if (!isa<ConstantExpr>(U)) {
1706         // If the def has a ConstantExpr use, then the def is either a
1707         // ConstantExpr use itself or null.  In either case
1708         // (recursively in the first, directly in the second), the oop
1709         // it is ultimately dependent on is null and this particular
1710         // use does not need to be fixed up.
1711         Uses.push_back(cast<Instruction>(U));
1712       }
1713     }
1714 
1715     std::sort(Uses.begin(), Uses.end());
1716     auto Last = std::unique(Uses.begin(), Uses.end());
1717     Uses.erase(Last, Uses.end());
1718 
1719     for (Instruction *Use : Uses) {
1720       if (isa<PHINode>(Use)) {
1721         PHINode *Phi = cast<PHINode>(Use);
1722         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1723           if (Def == Phi->getIncomingValue(i)) {
1724             LoadInst *Load = new LoadInst(
1725                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1726             Phi->setIncomingValue(i, Load);
1727           }
1728         }
1729       } else {
1730         LoadInst *Load = new LoadInst(Alloca, "", Use);
1731         Use->replaceUsesOfWith(Def, Load);
1732       }
1733     }
1734 
1735     // Emit store for the initial gc value.  Store must be inserted after load,
1736     // otherwise store will be in alloca's use list and an extra load will be
1737     // inserted before it.
1738     StoreInst *Store = new StoreInst(Def, Alloca);
1739     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1740       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1741         // InvokeInst is a TerminatorInst so the store need to be inserted
1742         // into its normal destination block.
1743         BasicBlock *NormalDest = Invoke->getNormalDest();
1744         Store->insertBefore(NormalDest->getFirstNonPHI());
1745       } else {
1746         assert(!Inst->isTerminator() &&
1747                "The only TerminatorInst that can produce a value is "
1748                "InvokeInst which is handled above.");
1749         Store->insertAfter(Inst);
1750       }
1751     } else {
1752       assert(isa<Argument>(Def));
1753       Store->insertAfter(cast<Instruction>(Alloca));
1754     }
1755   }
1756 
1757   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1758          "we must have the same allocas with lives");
1759   if (!PromotableAllocas.empty()) {
1760     // Apply mem2reg to promote alloca to SSA
1761     PromoteMemToReg(PromotableAllocas, DT);
1762   }
1763 
1764 #ifndef NDEBUG
1765   for (auto &I : F.getEntryBlock())
1766     if (isa<AllocaInst>(I))
1767       InitialAllocaNum--;
1768   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1769 #endif
1770 }
1771 
1772 /// Implement a unique function which doesn't require we sort the input
1773 /// vector.  Doing so has the effect of changing the output of a couple of
1774 /// tests in ways which make them less useful in testing fused safepoints.
1775 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1776   SmallSet<T, 8> Seen;
1777   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1778               return !Seen.insert(V).second;
1779             }), Vec.end());
1780 }
1781 
1782 /// Insert holders so that each Value is obviously live through the entire
1783 /// lifetime of the call.
1784 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1785                                  SmallVectorImpl<CallInst *> &Holders) {
1786   if (Values.empty())
1787     // No values to hold live, might as well not insert the empty holder
1788     return;
1789 
1790   Module *M = CS.getInstruction()->getModule();
1791   // Use a dummy vararg function to actually hold the values live
1792   Function *Func = cast<Function>(M->getOrInsertFunction(
1793       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1794   if (CS.isCall()) {
1795     // For call safepoints insert dummy calls right after safepoint
1796     Holders.push_back(CallInst::Create(Func, Values, "",
1797                                        &*++CS.getInstruction()->getIterator()));
1798     return;
1799   }
1800   // For invoke safepooints insert dummy calls both in normal and
1801   // exceptional destination blocks
1802   auto *II = cast<InvokeInst>(CS.getInstruction());
1803   Holders.push_back(CallInst::Create(
1804       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1805   Holders.push_back(CallInst::Create(
1806       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1807 }
1808 
1809 static void findLiveReferences(
1810     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1811     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1812   GCPtrLivenessData OriginalLivenessData;
1813   computeLiveInValues(DT, F, OriginalLivenessData);
1814   for (size_t i = 0; i < records.size(); i++) {
1815     struct PartiallyConstructedSafepointRecord &info = records[i];
1816     const CallSite &CS = toUpdate[i];
1817     analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
1818   }
1819 }
1820 
1821 // Helper function for the "rematerializeLiveValues". It walks use chain
1822 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
1823 // values are visited (currently it is GEP's and casts). Returns true if it
1824 // successfully reached "BaseValue" and false otherwise.
1825 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
1826 // recorded.
1827 static bool findRematerializableChainToBasePointer(
1828   SmallVectorImpl<Instruction*> &ChainToBase,
1829   Value *CurrentValue, Value *BaseValue) {
1830 
1831   // We have found a base value
1832   if (CurrentValue == BaseValue) {
1833     return true;
1834   }
1835 
1836   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1837     ChainToBase.push_back(GEP);
1838     return findRematerializableChainToBasePointer(ChainToBase,
1839                                                   GEP->getPointerOperand(),
1840                                                   BaseValue);
1841   }
1842 
1843   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1844     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1845       return false;
1846 
1847     ChainToBase.push_back(CI);
1848     return findRematerializableChainToBasePointer(ChainToBase,
1849                                                   CI->getOperand(0), BaseValue);
1850   }
1851 
1852   // Not supported instruction in the chain
1853   return false;
1854 }
1855 
1856 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1857 // chain we are going to rematerialize.
1858 static unsigned
1859 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1860                        TargetTransformInfo &TTI) {
1861   unsigned Cost = 0;
1862 
1863   for (Instruction *Instr : Chain) {
1864     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1865       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1866              "non noop cast is found during rematerialization");
1867 
1868       Type *SrcTy = CI->getOperand(0)->getType();
1869       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
1870 
1871     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1872       // Cost of the address calculation
1873       Type *ValTy = GEP->getSourceElementType();
1874       Cost += TTI.getAddressComputationCost(ValTy);
1875 
1876       // And cost of the GEP itself
1877       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1878       //       allowed for the external usage)
1879       if (!GEP->hasAllConstantIndices())
1880         Cost += 2;
1881 
1882     } else {
1883       llvm_unreachable("unsupported instruciton type during rematerialization");
1884     }
1885   }
1886 
1887   return Cost;
1888 }
1889 
1890 // From the statepoint live set pick values that are cheaper to recompute then
1891 // to relocate. Remove this values from the live set, rematerialize them after
1892 // statepoint and record them in "Info" structure. Note that similar to
1893 // relocated values we don't do any user adjustments here.
1894 static void rematerializeLiveValues(CallSite CS,
1895                                     PartiallyConstructedSafepointRecord &Info,
1896                                     TargetTransformInfo &TTI) {
1897   const unsigned int ChainLengthThreshold = 10;
1898 
1899   // Record values we are going to delete from this statepoint live set.
1900   // We can not di this in following loop due to iterator invalidation.
1901   SmallVector<Value *, 32> LiveValuesToBeDeleted;
1902 
1903   for (Value *LiveValue: Info.LiveSet) {
1904     // For each live pointer find it's defining chain
1905     SmallVector<Instruction *, 3> ChainToBase;
1906     assert(Info.PointerToBase.count(LiveValue));
1907     bool FoundChain =
1908       findRematerializableChainToBasePointer(ChainToBase,
1909                                              LiveValue,
1910                                              Info.PointerToBase[LiveValue]);
1911     // Nothing to do, or chain is too long
1912     if (!FoundChain ||
1913         ChainToBase.size() == 0 ||
1914         ChainToBase.size() > ChainLengthThreshold)
1915       continue;
1916 
1917     // Compute cost of this chain
1918     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1919     // TODO: We can also account for cases when we will be able to remove some
1920     //       of the rematerialized values by later optimization passes. I.e if
1921     //       we rematerialized several intersecting chains. Or if original values
1922     //       don't have any uses besides this statepoint.
1923 
1924     // For invokes we need to rematerialize each chain twice - for normal and
1925     // for unwind basic blocks. Model this by multiplying cost by two.
1926     if (CS.isInvoke()) {
1927       Cost *= 2;
1928     }
1929     // If it's too expensive - skip it
1930     if (Cost >= RematerializationThreshold)
1931       continue;
1932 
1933     // Remove value from the live set
1934     LiveValuesToBeDeleted.push_back(LiveValue);
1935 
1936     // Clone instructions and record them inside "Info" structure
1937 
1938     // Walk backwards to visit top-most instructions first
1939     std::reverse(ChainToBase.begin(), ChainToBase.end());
1940 
1941     // Utility function which clones all instructions from "ChainToBase"
1942     // and inserts them before "InsertBefore". Returns rematerialized value
1943     // which should be used after statepoint.
1944     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
1945       Instruction *LastClonedValue = nullptr;
1946       Instruction *LastValue = nullptr;
1947       for (Instruction *Instr: ChainToBase) {
1948         // Only GEP's and casts are suported as we need to be careful to not
1949         // introduce any new uses of pointers not in the liveset.
1950         // Note that it's fine to introduce new uses of pointers which were
1951         // otherwise not used after this statepoint.
1952         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1953 
1954         Instruction *ClonedValue = Instr->clone();
1955         ClonedValue->insertBefore(InsertBefore);
1956         ClonedValue->setName(Instr->getName() + ".remat");
1957 
1958         // If it is not first instruction in the chain then it uses previously
1959         // cloned value. We should update it to use cloned value.
1960         if (LastClonedValue) {
1961           assert(LastValue);
1962           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1963 #ifndef NDEBUG
1964           // Assert that cloned instruction does not use any instructions from
1965           // this chain other than LastClonedValue
1966           for (auto OpValue : ClonedValue->operand_values()) {
1967             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
1968                        ChainToBase.end() &&
1969                    "incorrect use in rematerialization chain");
1970           }
1971 #endif
1972         }
1973 
1974         LastClonedValue = ClonedValue;
1975         LastValue = Instr;
1976       }
1977       assert(LastClonedValue);
1978       return LastClonedValue;
1979     };
1980 
1981     // Different cases for calls and invokes. For invokes we need to clone
1982     // instructions both on normal and unwind path.
1983     if (CS.isCall()) {
1984       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
1985       assert(InsertBefore);
1986       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
1987       Info.RematerializedValues[RematerializedValue] = LiveValue;
1988     } else {
1989       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
1990 
1991       Instruction *NormalInsertBefore =
1992           &*Invoke->getNormalDest()->getFirstInsertionPt();
1993       Instruction *UnwindInsertBefore =
1994           &*Invoke->getUnwindDest()->getFirstInsertionPt();
1995 
1996       Instruction *NormalRematerializedValue =
1997           rematerializeChain(NormalInsertBefore);
1998       Instruction *UnwindRematerializedValue =
1999           rematerializeChain(UnwindInsertBefore);
2000 
2001       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2002       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2003     }
2004   }
2005 
2006   // Remove rematerializaed values from the live set
2007   for (auto LiveValue: LiveValuesToBeDeleted) {
2008     Info.LiveSet.remove(LiveValue);
2009   }
2010 }
2011 
2012 static bool insertParsePoints(Function &F, DominatorTree &DT,
2013                               TargetTransformInfo &TTI,
2014                               SmallVectorImpl<CallSite> &ToUpdate) {
2015 #ifndef NDEBUG
2016   // sanity check the input
2017   std::set<CallSite> Uniqued;
2018   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2019   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2020 
2021   for (CallSite CS : ToUpdate)
2022     assert(CS.getInstruction()->getFunction() == &F);
2023 #endif
2024 
2025   // When inserting gc.relocates for invokes, we need to be able to insert at
2026   // the top of the successor blocks.  See the comment on
2027   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2028   // may restructure the CFG.
2029   for (CallSite CS : ToUpdate) {
2030     if (!CS.isInvoke())
2031       continue;
2032     auto *II = cast<InvokeInst>(CS.getInstruction());
2033     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2034     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2035   }
2036 
2037   // A list of dummy calls added to the IR to keep various values obviously
2038   // live in the IR.  We'll remove all of these when done.
2039   SmallVector<CallInst *, 64> Holders;
2040 
2041   // Insert a dummy call with all of the arguments to the vm_state we'll need
2042   // for the actual safepoint insertion.  This ensures reference arguments in
2043   // the deopt argument list are considered live through the safepoint (and
2044   // thus makes sure they get relocated.)
2045   for (CallSite CS : ToUpdate) {
2046     SmallVector<Value *, 64> DeoptValues;
2047 
2048     for (Value *Arg : GetDeoptBundleOperands(CS)) {
2049       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2050              "support for FCA unimplemented");
2051       if (isHandledGCPointerType(Arg->getType()))
2052         DeoptValues.push_back(Arg);
2053     }
2054 
2055     insertUseHolderAfter(CS, DeoptValues, Holders);
2056   }
2057 
2058   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2059 
2060   // A) Identify all gc pointers which are statically live at the given call
2061   // site.
2062   findLiveReferences(F, DT, ToUpdate, Records);
2063 
2064   // B) Find the base pointers for each live pointer
2065   /* scope for caching */ {
2066     // Cache the 'defining value' relation used in the computation and
2067     // insertion of base phis and selects.  This ensures that we don't insert
2068     // large numbers of duplicate base_phis.
2069     DefiningValueMapTy DVCache;
2070 
2071     for (size_t i = 0; i < Records.size(); i++) {
2072       PartiallyConstructedSafepointRecord &info = Records[i];
2073       findBasePointers(DT, DVCache, ToUpdate[i], info);
2074     }
2075   } // end of cache scope
2076 
2077   // The base phi insertion logic (for any safepoint) may have inserted new
2078   // instructions which are now live at some safepoint.  The simplest such
2079   // example is:
2080   // loop:
2081   //   phi a  <-- will be a new base_phi here
2082   //   safepoint 1 <-- that needs to be live here
2083   //   gep a + 1
2084   //   safepoint 2
2085   //   br loop
2086   // We insert some dummy calls after each safepoint to definitely hold live
2087   // the base pointers which were identified for that safepoint.  We'll then
2088   // ask liveness for _every_ base inserted to see what is now live.  Then we
2089   // remove the dummy calls.
2090   Holders.reserve(Holders.size() + Records.size());
2091   for (size_t i = 0; i < Records.size(); i++) {
2092     PartiallyConstructedSafepointRecord &Info = Records[i];
2093 
2094     SmallVector<Value *, 128> Bases;
2095     for (auto Pair : Info.PointerToBase)
2096       Bases.push_back(Pair.second);
2097 
2098     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2099   }
2100 
2101   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2102   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2103   // not the key issue.
2104   recomputeLiveInValues(F, DT, ToUpdate, Records);
2105 
2106   if (PrintBasePointers) {
2107     for (auto &Info : Records) {
2108       errs() << "Base Pairs: (w/Relocation)\n";
2109       for (auto Pair : Info.PointerToBase) {
2110         errs() << " derived ";
2111         Pair.first->printAsOperand(errs(), false);
2112         errs() << " base ";
2113         Pair.second->printAsOperand(errs(), false);
2114         errs() << "\n";
2115       }
2116     }
2117   }
2118 
2119   // It is possible that non-constant live variables have a constant base.  For
2120   // example, a GEP with a variable offset from a global.  In this case we can
2121   // remove it from the liveset.  We already don't add constants to the liveset
2122   // because we assume they won't move at runtime and the GC doesn't need to be
2123   // informed about them.  The same reasoning applies if the base is constant.
2124   // Note that the relocation placement code relies on this filtering for
2125   // correctness as it expects the base to be in the liveset, which isn't true
2126   // if the base is constant.
2127   for (auto &Info : Records)
2128     for (auto &BasePair : Info.PointerToBase)
2129       if (isa<Constant>(BasePair.second))
2130         Info.LiveSet.remove(BasePair.first);
2131 
2132   for (CallInst *CI : Holders)
2133     CI->eraseFromParent();
2134 
2135   Holders.clear();
2136 
2137   // In order to reduce live set of statepoint we might choose to rematerialize
2138   // some values instead of relocating them. This is purely an optimization and
2139   // does not influence correctness.
2140   for (size_t i = 0; i < Records.size(); i++)
2141     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2142 
2143   // We need this to safely RAUW and delete call or invoke return values that
2144   // may themselves be live over a statepoint.  For details, please see usage in
2145   // makeStatepointExplicitImpl.
2146   std::vector<DeferredReplacement> Replacements;
2147 
2148   // Now run through and replace the existing statepoints with new ones with
2149   // the live variables listed.  We do not yet update uses of the values being
2150   // relocated. We have references to live variables that need to
2151   // survive to the last iteration of this loop.  (By construction, the
2152   // previous statepoint can not be a live variable, thus we can and remove
2153   // the old statepoint calls as we go.)
2154   for (size_t i = 0; i < Records.size(); i++)
2155     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2156 
2157   ToUpdate.clear(); // prevent accident use of invalid CallSites
2158 
2159   for (auto &PR : Replacements)
2160     PR.doReplacement();
2161 
2162   Replacements.clear();
2163 
2164   for (auto &Info : Records) {
2165     // These live sets may contain state Value pointers, since we replaced calls
2166     // with operand bundles with calls wrapped in gc.statepoint, and some of
2167     // those calls may have been def'ing live gc pointers.  Clear these out to
2168     // avoid accidentally using them.
2169     //
2170     // TODO: We should create a separate data structure that does not contain
2171     // these live sets, and migrate to using that data structure from this point
2172     // onward.
2173     Info.LiveSet.clear();
2174     Info.PointerToBase.clear();
2175   }
2176 
2177   // Do all the fixups of the original live variables to their relocated selves
2178   SmallVector<Value *, 128> Live;
2179   for (size_t i = 0; i < Records.size(); i++) {
2180     PartiallyConstructedSafepointRecord &Info = Records[i];
2181 
2182     // We can't simply save the live set from the original insertion.  One of
2183     // the live values might be the result of a call which needs a safepoint.
2184     // That Value* no longer exists and we need to use the new gc_result.
2185     // Thankfully, the live set is embedded in the statepoint (and updated), so
2186     // we just grab that.
2187     Statepoint Statepoint(Info.StatepointToken);
2188     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2189                 Statepoint.gc_args_end());
2190 #ifndef NDEBUG
2191     // Do some basic sanity checks on our liveness results before performing
2192     // relocation.  Relocation can and will turn mistakes in liveness results
2193     // into non-sensical code which is must harder to debug.
2194     // TODO: It would be nice to test consistency as well
2195     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2196            "statepoint must be reachable or liveness is meaningless");
2197     for (Value *V : Statepoint.gc_args()) {
2198       if (!isa<Instruction>(V))
2199         // Non-instruction values trivial dominate all possible uses
2200         continue;
2201       auto *LiveInst = cast<Instruction>(V);
2202       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2203              "unreachable values should never be live");
2204       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2205              "basic SSA liveness expectation violated by liveness analysis");
2206     }
2207 #endif
2208   }
2209   unique_unsorted(Live);
2210 
2211 #ifndef NDEBUG
2212   // sanity check
2213   for (auto *Ptr : Live)
2214     assert(isHandledGCPointerType(Ptr->getType()) &&
2215            "must be a gc pointer type");
2216 #endif
2217 
2218   relocationViaAlloca(F, DT, Live, Records);
2219   return !Records.empty();
2220 }
2221 
2222 // Handles both return values and arguments for Functions and CallSites.
2223 template <typename AttrHolder>
2224 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2225                                       unsigned Index) {
2226   AttrBuilder R;
2227   if (AH.getDereferenceableBytes(Index))
2228     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2229                                   AH.getDereferenceableBytes(Index)));
2230   if (AH.getDereferenceableOrNullBytes(Index))
2231     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2232                                   AH.getDereferenceableOrNullBytes(Index)));
2233   if (AH.doesNotAlias(Index))
2234     R.addAttribute(Attribute::NoAlias);
2235 
2236   if (!R.empty())
2237     AH.setAttributes(AH.getAttributes().removeAttributes(
2238         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2239 }
2240 
2241 void
2242 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2243   LLVMContext &Ctx = F.getContext();
2244 
2245   for (Argument &A : F.args())
2246     if (isa<PointerType>(A.getType()))
2247       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2248 
2249   if (isa<PointerType>(F.getReturnType()))
2250     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2251 }
2252 
2253 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2254   if (F.empty())
2255     return;
2256 
2257   LLVMContext &Ctx = F.getContext();
2258   MDBuilder Builder(Ctx);
2259 
2260   for (Instruction &I : instructions(F)) {
2261     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2262       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2263       bool IsImmutableTBAA =
2264           MD->getNumOperands() == 4 &&
2265           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2266 
2267       if (!IsImmutableTBAA)
2268         continue; // no work to do, MD_tbaa is already marked mutable
2269 
2270       MDNode *Base = cast<MDNode>(MD->getOperand(0));
2271       MDNode *Access = cast<MDNode>(MD->getOperand(1));
2272       uint64_t Offset =
2273           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2274 
2275       MDNode *MutableTBAA =
2276           Builder.createTBAAStructTagNode(Base, Access, Offset);
2277       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2278     }
2279 
2280     if (CallSite CS = CallSite(&I)) {
2281       for (int i = 0, e = CS.arg_size(); i != e; i++)
2282         if (isa<PointerType>(CS.getArgument(i)->getType()))
2283           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2284       if (isa<PointerType>(CS.getType()))
2285         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2286     }
2287   }
2288 }
2289 
2290 /// Returns true if this function should be rewritten by this pass.  The main
2291 /// point of this function is as an extension point for custom logic.
2292 static bool shouldRewriteStatepointsIn(Function &F) {
2293   // TODO: This should check the GCStrategy
2294   if (F.hasGC()) {
2295     const auto &FunctionGCName = F.getGC();
2296     const StringRef StatepointExampleName("statepoint-example");
2297     const StringRef CoreCLRName("coreclr");
2298     return (StatepointExampleName == FunctionGCName) ||
2299            (CoreCLRName == FunctionGCName);
2300   } else
2301     return false;
2302 }
2303 
2304 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2305 #ifndef NDEBUG
2306   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2307          "precondition!");
2308 #endif
2309 
2310   for (Function &F : M)
2311     stripNonValidAttributesFromPrototype(F);
2312 
2313   for (Function &F : M)
2314     stripNonValidAttributesFromBody(F);
2315 }
2316 
2317 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2318   // Nothing to do for declarations.
2319   if (F.isDeclaration() || F.empty())
2320     return false;
2321 
2322   // Policy choice says not to rewrite - the most common reason is that we're
2323   // compiling code without a GCStrategy.
2324   if (!shouldRewriteStatepointsIn(F))
2325     return false;
2326 
2327   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2328   TargetTransformInfo &TTI =
2329       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2330 
2331   auto NeedsRewrite = [](Instruction &I) {
2332     if (ImmutableCallSite CS = ImmutableCallSite(&I))
2333       return !callsGCLeafFunction(CS) && !isStatepoint(CS);
2334     return false;
2335   };
2336 
2337   // Gather all the statepoints which need rewritten.  Be careful to only
2338   // consider those in reachable code since we need to ask dominance queries
2339   // when rewriting.  We'll delete the unreachable ones in a moment.
2340   SmallVector<CallSite, 64> ParsePointNeeded;
2341   bool HasUnreachableStatepoint = false;
2342   for (Instruction &I : instructions(F)) {
2343     // TODO: only the ones with the flag set!
2344     if (NeedsRewrite(I)) {
2345       if (DT.isReachableFromEntry(I.getParent()))
2346         ParsePointNeeded.push_back(CallSite(&I));
2347       else
2348         HasUnreachableStatepoint = true;
2349     }
2350   }
2351 
2352   bool MadeChange = false;
2353 
2354   // Delete any unreachable statepoints so that we don't have unrewritten
2355   // statepoints surviving this pass.  This makes testing easier and the
2356   // resulting IR less confusing to human readers.  Rather than be fancy, we
2357   // just reuse a utility function which removes the unreachable blocks.
2358   if (HasUnreachableStatepoint)
2359     MadeChange |= removeUnreachableBlocks(F);
2360 
2361   // Return early if no work to do.
2362   if (ParsePointNeeded.empty())
2363     return MadeChange;
2364 
2365   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2366   // These are created by LCSSA.  They have the effect of increasing the size
2367   // of liveness sets for no good reason.  It may be harder to do this post
2368   // insertion since relocations and base phis can confuse things.
2369   for (BasicBlock &BB : F)
2370     if (BB.getUniquePredecessor()) {
2371       MadeChange = true;
2372       FoldSingleEntryPHINodes(&BB);
2373     }
2374 
2375   // Before we start introducing relocations, we want to tweak the IR a bit to
2376   // avoid unfortunate code generation effects.  The main example is that we
2377   // want to try to make sure the comparison feeding a branch is after any
2378   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2379   // values feeding a branch after relocation.  This is semantically correct,
2380   // but results in extra register pressure since both the pre-relocation and
2381   // post-relocation copies must be available in registers.  For code without
2382   // relocations this is handled elsewhere, but teaching the scheduler to
2383   // reverse the transform we're about to do would be slightly complex.
2384   // Note: This may extend the live range of the inputs to the icmp and thus
2385   // increase the liveset of any statepoint we move over.  This is profitable
2386   // as long as all statepoints are in rare blocks.  If we had in-register
2387   // lowering for live values this would be a much safer transform.
2388   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2389     if (auto *BI = dyn_cast<BranchInst>(TI))
2390       if (BI->isConditional())
2391         return dyn_cast<Instruction>(BI->getCondition());
2392     // TODO: Extend this to handle switches
2393     return nullptr;
2394   };
2395   for (BasicBlock &BB : F) {
2396     TerminatorInst *TI = BB.getTerminator();
2397     if (auto *Cond = getConditionInst(TI))
2398       // TODO: Handle more than just ICmps here.  We should be able to move
2399       // most instructions without side effects or memory access.
2400       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2401         MadeChange = true;
2402         Cond->moveBefore(TI);
2403       }
2404   }
2405 
2406   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2407   return MadeChange;
2408 }
2409 
2410 // liveness computation via standard dataflow
2411 // -------------------------------------------------------------------
2412 
2413 // TODO: Consider using bitvectors for liveness, the set of potentially
2414 // interesting values should be small and easy to pre-compute.
2415 
2416 /// Compute the live-in set for the location rbegin starting from
2417 /// the live-out set of the basic block
2418 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2419                                 BasicBlock::reverse_iterator rend,
2420                                 SetVector<Value *> &LiveTmp) {
2421 
2422   for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2423     Instruction *I = &*ritr;
2424 
2425     // KILL/Def - Remove this definition from LiveIn
2426     LiveTmp.remove(I);
2427 
2428     // Don't consider *uses* in PHI nodes, we handle their contribution to
2429     // predecessor blocks when we seed the LiveOut sets
2430     if (isa<PHINode>(I))
2431       continue;
2432 
2433     // USE - Add to the LiveIn set for this instruction
2434     for (Value *V : I->operands()) {
2435       assert(!isUnhandledGCPointerType(V->getType()) &&
2436              "support for FCA unimplemented");
2437       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2438         // The choice to exclude all things constant here is slightly subtle.
2439         // There are two independent reasons:
2440         // - We assume that things which are constant (from LLVM's definition)
2441         // do not move at runtime.  For example, the address of a global
2442         // variable is fixed, even though it's contents may not be.
2443         // - Second, we can't disallow arbitrary inttoptr constants even
2444         // if the language frontend does.  Optimization passes are free to
2445         // locally exploit facts without respect to global reachability.  This
2446         // can create sections of code which are dynamically unreachable and
2447         // contain just about anything.  (see constants.ll in tests)
2448         LiveTmp.insert(V);
2449       }
2450     }
2451   }
2452 }
2453 
2454 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2455 
2456   for (BasicBlock *Succ : successors(BB)) {
2457     const BasicBlock::iterator E(Succ->getFirstNonPHI());
2458     for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2459       PHINode *Phi = cast<PHINode>(&*I);
2460       Value *V = Phi->getIncomingValueForBlock(BB);
2461       assert(!isUnhandledGCPointerType(V->getType()) &&
2462              "support for FCA unimplemented");
2463       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2464         LiveTmp.insert(V);
2465       }
2466     }
2467   }
2468 }
2469 
2470 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2471   SetVector<Value *> KillSet;
2472   for (Instruction &I : *BB)
2473     if (isHandledGCPointerType(I.getType()))
2474       KillSet.insert(&I);
2475   return KillSet;
2476 }
2477 
2478 #ifndef NDEBUG
2479 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2480 /// sanity check for the liveness computation.
2481 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2482                           TerminatorInst *TI, bool TermOkay = false) {
2483   for (Value *V : Live) {
2484     if (auto *I = dyn_cast<Instruction>(V)) {
2485       // The terminator can be a member of the LiveOut set.  LLVM's definition
2486       // of instruction dominance states that V does not dominate itself.  As
2487       // such, we need to special case this to allow it.
2488       if (TermOkay && TI == I)
2489         continue;
2490       assert(DT.dominates(I, TI) &&
2491              "basic SSA liveness expectation violated by liveness analysis");
2492     }
2493   }
2494 }
2495 
2496 /// Check that all the liveness sets used during the computation of liveness
2497 /// obey basic SSA properties.  This is useful for finding cases where we miss
2498 /// a def.
2499 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2500                           BasicBlock &BB) {
2501   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2502   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2503   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2504 }
2505 #endif
2506 
2507 static void computeLiveInValues(DominatorTree &DT, Function &F,
2508                                 GCPtrLivenessData &Data) {
2509 
2510   SmallSetVector<BasicBlock *, 32> Worklist;
2511   auto AddPredsToWorklist = [&](BasicBlock *BB) {
2512     // We use a SetVector so that we don't have duplicates in the worklist.
2513     Worklist.insert(pred_begin(BB), pred_end(BB));
2514   };
2515   auto NextItem = [&]() {
2516     BasicBlock *BB = Worklist.back();
2517     Worklist.pop_back();
2518     return BB;
2519   };
2520 
2521   // Seed the liveness for each individual block
2522   for (BasicBlock &BB : F) {
2523     Data.KillSet[&BB] = computeKillSet(&BB);
2524     Data.LiveSet[&BB].clear();
2525     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2526 
2527 #ifndef NDEBUG
2528     for (Value *Kill : Data.KillSet[&BB])
2529       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2530 #endif
2531 
2532     Data.LiveOut[&BB] = SetVector<Value *>();
2533     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2534     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2535     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2536     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2537     if (!Data.LiveIn[&BB].empty())
2538       AddPredsToWorklist(&BB);
2539   }
2540 
2541   // Propagate that liveness until stable
2542   while (!Worklist.empty()) {
2543     BasicBlock *BB = NextItem();
2544 
2545     // Compute our new liveout set, then exit early if it hasn't changed
2546     // despite the contribution of our successor.
2547     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2548     const auto OldLiveOutSize = LiveOut.size();
2549     for (BasicBlock *Succ : successors(BB)) {
2550       assert(Data.LiveIn.count(Succ));
2551       LiveOut.set_union(Data.LiveIn[Succ]);
2552     }
2553     // assert OutLiveOut is a subset of LiveOut
2554     if (OldLiveOutSize == LiveOut.size()) {
2555       // If the sets are the same size, then we didn't actually add anything
2556       // when unioning our successors LiveIn  Thus, the LiveIn of this block
2557       // hasn't changed.
2558       continue;
2559     }
2560     Data.LiveOut[BB] = LiveOut;
2561 
2562     // Apply the effects of this basic block
2563     SetVector<Value *> LiveTmp = LiveOut;
2564     LiveTmp.set_union(Data.LiveSet[BB]);
2565     LiveTmp.set_subtract(Data.KillSet[BB]);
2566 
2567     assert(Data.LiveIn.count(BB));
2568     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2569     // assert: OldLiveIn is a subset of LiveTmp
2570     if (OldLiveIn.size() != LiveTmp.size()) {
2571       Data.LiveIn[BB] = LiveTmp;
2572       AddPredsToWorklist(BB);
2573     }
2574   } // while( !worklist.empty() )
2575 
2576 #ifndef NDEBUG
2577   // Sanity check our output against SSA properties.  This helps catch any
2578   // missing kills during the above iteration.
2579   for (BasicBlock &BB : F) {
2580     checkBasicSSA(DT, Data, BB);
2581   }
2582 #endif
2583 }
2584 
2585 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2586                               StatepointLiveSetTy &Out) {
2587 
2588   BasicBlock *BB = Inst->getParent();
2589 
2590   // Note: The copy is intentional and required
2591   assert(Data.LiveOut.count(BB));
2592   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2593 
2594   // We want to handle the statepoint itself oddly.  It's
2595   // call result is not live (normal), nor are it's arguments
2596   // (unless they're used again later).  This adjustment is
2597   // specifically what we need to relocate
2598   BasicBlock::reverse_iterator rend(Inst->getIterator());
2599   computeLiveInValues(BB->rbegin(), rend, LiveOut);
2600   LiveOut.remove(Inst);
2601   Out.insert(LiveOut.begin(), LiveOut.end());
2602 }
2603 
2604 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2605                                   const CallSite &CS,
2606                                   PartiallyConstructedSafepointRecord &Info) {
2607   Instruction *Inst = CS.getInstruction();
2608   StatepointLiveSetTy Updated;
2609   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2610 
2611 #ifndef NDEBUG
2612   DenseSet<Value *> Bases;
2613   for (auto KVPair : Info.PointerToBase) {
2614     Bases.insert(KVPair.second);
2615   }
2616 #endif
2617   // We may have base pointers which are now live that weren't before.  We need
2618   // to update the PointerToBase structure to reflect this.
2619   for (auto V : Updated)
2620     if (!Info.PointerToBase.count(V)) {
2621       assert(Bases.count(V) && "can't find base for unexpected live value");
2622       Info.PointerToBase[V] = V;
2623       continue;
2624     }
2625 
2626 #ifndef NDEBUG
2627   for (auto V : Updated) {
2628     assert(Info.PointerToBase.count(V) &&
2629            "must be able to find base for live value");
2630   }
2631 #endif
2632 
2633   // Remove any stale base mappings - this can happen since our liveness is
2634   // more precise then the one inherent in the base pointer analysis
2635   DenseSet<Value *> ToErase;
2636   for (auto KVPair : Info.PointerToBase)
2637     if (!Updated.count(KVPair.first))
2638       ToErase.insert(KVPair.first);
2639   for (auto V : ToErase)
2640     Info.PointerToBase.erase(V);
2641 
2642 #ifndef NDEBUG
2643   for (auto KVPair : Info.PointerToBase)
2644     assert(Updated.count(KVPair.first) && "record for non-live value");
2645 #endif
2646 
2647   Info.LiveSet = Updated;
2648 }
2649