1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueHandle.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <optional> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 81 82 using namespace llvm; 83 84 // Print the liveset found at the insert location 85 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 86 cl::init(false)); 87 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 88 cl::init(false)); 89 90 // Print out the base pointers for debugging 91 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 92 cl::init(false)); 93 94 // Cost threshold measuring when it is profitable to rematerialize value instead 95 // of relocating it 96 static cl::opt<unsigned> 97 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 98 cl::init(6)); 99 100 #ifdef EXPENSIVE_CHECKS 101 static bool ClobberNonLive = true; 102 #else 103 static bool ClobberNonLive = false; 104 #endif 105 106 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 107 cl::location(ClobberNonLive), 108 cl::Hidden); 109 110 static cl::opt<bool> 111 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 112 cl::Hidden, cl::init(true)); 113 114 /// The IR fed into RewriteStatepointsForGC may have had attributes and 115 /// metadata implying dereferenceability that are no longer valid/correct after 116 /// RewriteStatepointsForGC has run. This is because semantically, after 117 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 118 /// heap. stripNonValidData (conservatively) restores 119 /// correctness by erasing all attributes in the module that externally imply 120 /// dereferenceability. Similar reasoning also applies to the noalias 121 /// attributes and metadata. gc.statepoint can touch the entire heap including 122 /// noalias objects. 123 /// Apart from attributes and metadata, we also remove instructions that imply 124 /// constant physical memory: llvm.invariant.start. 125 static void stripNonValidData(Module &M); 126 127 static bool shouldRewriteStatepointsIn(Function &F); 128 129 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 130 ModuleAnalysisManager &AM) { 131 bool Changed = false; 132 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 133 for (Function &F : M) { 134 // Nothing to do for declarations. 135 if (F.isDeclaration() || F.empty()) 136 continue; 137 138 // Policy choice says not to rewrite - the most common reason is that we're 139 // compiling code without a GCStrategy. 140 if (!shouldRewriteStatepointsIn(F)) 141 continue; 142 143 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 144 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 145 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 146 Changed |= runOnFunction(F, DT, TTI, TLI); 147 } 148 if (!Changed) 149 return PreservedAnalyses::all(); 150 151 // stripNonValidData asserts that shouldRewriteStatepointsIn 152 // returns true for at least one function in the module. Since at least 153 // one function changed, we know that the precondition is satisfied. 154 stripNonValidData(M); 155 156 PreservedAnalyses PA; 157 PA.preserve<TargetIRAnalysis>(); 158 PA.preserve<TargetLibraryAnalysis>(); 159 return PA; 160 } 161 162 namespace { 163 164 class RewriteStatepointsForGCLegacyPass : public ModulePass { 165 RewriteStatepointsForGC Impl; 166 167 public: 168 static char ID; // Pass identification, replacement for typeid 169 170 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 171 initializeRewriteStatepointsForGCLegacyPassPass( 172 *PassRegistry::getPassRegistry()); 173 } 174 175 bool runOnModule(Module &M) override { 176 bool Changed = false; 177 for (Function &F : M) { 178 // Nothing to do for declarations. 179 if (F.isDeclaration() || F.empty()) 180 continue; 181 182 // Policy choice says not to rewrite - the most common reason is that 183 // we're compiling code without a GCStrategy. 184 if (!shouldRewriteStatepointsIn(F)) 185 continue; 186 187 TargetTransformInfo &TTI = 188 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 189 const TargetLibraryInfo &TLI = 190 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 191 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 192 193 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 194 } 195 196 if (!Changed) 197 return false; 198 199 // stripNonValidData asserts that shouldRewriteStatepointsIn 200 // returns true for at least one function in the module. Since at least 201 // one function changed, we know that the precondition is satisfied. 202 stripNonValidData(M); 203 return true; 204 } 205 206 void getAnalysisUsage(AnalysisUsage &AU) const override { 207 // We add and rewrite a bunch of instructions, but don't really do much 208 // else. We could in theory preserve a lot more analyses here. 209 AU.addRequired<DominatorTreeWrapperPass>(); 210 AU.addRequired<TargetTransformInfoWrapperPass>(); 211 AU.addRequired<TargetLibraryInfoWrapperPass>(); 212 } 213 }; 214 215 } // end anonymous namespace 216 217 char RewriteStatepointsForGCLegacyPass::ID = 0; 218 219 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 220 return new RewriteStatepointsForGCLegacyPass(); 221 } 222 223 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 224 "rewrite-statepoints-for-gc", 225 "Make relocations explicit at statepoints", false, false) 226 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 227 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 228 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 229 "rewrite-statepoints-for-gc", 230 "Make relocations explicit at statepoints", false, false) 231 232 namespace { 233 234 struct GCPtrLivenessData { 235 /// Values defined in this block. 236 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 237 238 /// Values used in this block (and thus live); does not included values 239 /// killed within this block. 240 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 241 242 /// Values live into this basic block (i.e. used by any 243 /// instruction in this basic block or ones reachable from here) 244 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 245 246 /// Values live out of this basic block (i.e. live into 247 /// any successor block) 248 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 249 }; 250 251 // The type of the internal cache used inside the findBasePointers family 252 // of functions. From the callers perspective, this is an opaque type and 253 // should not be inspected. 254 // 255 // In the actual implementation this caches two relations: 256 // - The base relation itself (i.e. this pointer is based on that one) 257 // - The base defining value relation (i.e. before base_phi insertion) 258 // Generally, after the execution of a full findBasePointer call, only the 259 // base relation will remain. Internally, we add a mixture of the two 260 // types, then update all the second type to the first type 261 using DefiningValueMapTy = MapVector<Value *, Value *>; 262 using IsKnownBaseMapTy = MapVector<Value *, bool>; 263 using PointerToBaseTy = MapVector<Value *, Value *>; 264 using StatepointLiveSetTy = SetVector<Value *>; 265 using RematerializedValueMapTy = 266 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 267 268 struct PartiallyConstructedSafepointRecord { 269 /// The set of values known to be live across this safepoint 270 StatepointLiveSetTy LiveSet; 271 272 /// The *new* gc.statepoint instruction itself. This produces the token 273 /// that normal path gc.relocates and the gc.result are tied to. 274 GCStatepointInst *StatepointToken; 275 276 /// Instruction to which exceptional gc relocates are attached 277 /// Makes it easier to iterate through them during relocationViaAlloca. 278 Instruction *UnwindToken; 279 280 /// Record live values we are rematerialized instead of relocating. 281 /// They are not included into 'LiveSet' field. 282 /// Maps rematerialized copy to it's original value. 283 RematerializedValueMapTy RematerializedValues; 284 }; 285 286 struct RematerizlizationCandidateRecord { 287 // Chain from derived pointer to base. 288 SmallVector<Instruction *, 3> ChainToBase; 289 // Original base. 290 Value *RootOfChain; 291 // Cost of chain. 292 InstructionCost Cost; 293 }; 294 using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>; 295 296 } // end anonymous namespace 297 298 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 299 Optional<OperandBundleUse> DeoptBundle = 300 Call->getOperandBundle(LLVMContext::OB_deopt); 301 302 if (!DeoptBundle) { 303 assert(AllowStatepointWithNoDeoptInfo && 304 "Found non-leaf call without deopt info!"); 305 return std::nullopt; 306 } 307 308 return DeoptBundle->Inputs; 309 } 310 311 /// Compute the live-in set for every basic block in the function 312 static void computeLiveInValues(DominatorTree &DT, Function &F, 313 GCPtrLivenessData &Data); 314 315 /// Given results from the dataflow liveness computation, find the set of live 316 /// Values at a particular instruction. 317 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 318 StatepointLiveSetTy &out); 319 320 // TODO: Once we can get to the GCStrategy, this becomes 321 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 322 323 static bool isGCPointerType(Type *T) { 324 if (auto *PT = dyn_cast<PointerType>(T)) 325 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 326 // GC managed heap. We know that a pointer into this heap needs to be 327 // updated and that no other pointer does. 328 return PT->getAddressSpace() == 1; 329 return false; 330 } 331 332 // Return true if this type is one which a) is a gc pointer or contains a GC 333 // pointer and b) is of a type this code expects to encounter as a live value. 334 // (The insertion code will assert that a type which matches (a) and not (b) 335 // is not encountered.) 336 static bool isHandledGCPointerType(Type *T) { 337 // We fully support gc pointers 338 if (isGCPointerType(T)) 339 return true; 340 // We partially support vectors of gc pointers. The code will assert if it 341 // can't handle something. 342 if (auto VT = dyn_cast<VectorType>(T)) 343 if (isGCPointerType(VT->getElementType())) 344 return true; 345 return false; 346 } 347 348 #ifndef NDEBUG 349 /// Returns true if this type contains a gc pointer whether we know how to 350 /// handle that type or not. 351 static bool containsGCPtrType(Type *Ty) { 352 if (isGCPointerType(Ty)) 353 return true; 354 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 355 return isGCPointerType(VT->getScalarType()); 356 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 357 return containsGCPtrType(AT->getElementType()); 358 if (StructType *ST = dyn_cast<StructType>(Ty)) 359 return llvm::any_of(ST->elements(), containsGCPtrType); 360 return false; 361 } 362 363 // Returns true if this is a type which a) is a gc pointer or contains a GC 364 // pointer and b) is of a type which the code doesn't expect (i.e. first class 365 // aggregates). Used to trip assertions. 366 static bool isUnhandledGCPointerType(Type *Ty) { 367 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 368 } 369 #endif 370 371 // Return the name of the value suffixed with the provided value, or if the 372 // value didn't have a name, the default value specified. 373 static std::string suffixed_name_or(Value *V, StringRef Suffix, 374 StringRef DefaultName) { 375 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 376 } 377 378 // Conservatively identifies any definitions which might be live at the 379 // given instruction. The analysis is performed immediately before the 380 // given instruction. Values defined by that instruction are not considered 381 // live. Values used by that instruction are considered live. 382 static void analyzeParsePointLiveness( 383 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 384 PartiallyConstructedSafepointRecord &Result) { 385 StatepointLiveSetTy LiveSet; 386 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet); 387 388 if (PrintLiveSet) { 389 dbgs() << "Live Variables:\n"; 390 for (Value *V : LiveSet) 391 dbgs() << " " << V->getName() << " " << *V << "\n"; 392 } 393 if (PrintLiveSetSize) { 394 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 395 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 396 } 397 Result.LiveSet = LiveSet; 398 } 399 400 /// Returns true if V is a known base. 401 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases); 402 403 /// Caches the IsKnownBase flag for a value and asserts that it wasn't present 404 /// in the cache before. 405 static void setKnownBase(Value *V, bool IsKnownBase, 406 IsKnownBaseMapTy &KnownBases); 407 408 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 409 IsKnownBaseMapTy &KnownBases); 410 411 /// Return a base defining value for the 'Index' element of the given vector 412 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 413 /// 'I'. As an optimization, this method will try to determine when the 414 /// element is known to already be a base pointer. If this can be established, 415 /// the second value in the returned pair will be true. Note that either a 416 /// vector or a pointer typed value can be returned. For the former, the 417 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 418 /// If the later, the return pointer is a BDV (or possibly a base) for the 419 /// particular element in 'I'. 420 static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache, 421 IsKnownBaseMapTy &KnownBases) { 422 // Each case parallels findBaseDefiningValue below, see that code for 423 // detailed motivation. 424 425 auto Cached = Cache.find(I); 426 if (Cached != Cache.end()) 427 return Cached->second; 428 429 if (isa<Argument>(I)) { 430 // An incoming argument to the function is a base pointer 431 Cache[I] = I; 432 setKnownBase(I, /* IsKnownBase */true, KnownBases); 433 return I; 434 } 435 436 if (isa<Constant>(I)) { 437 // Base of constant vector consists only of constant null pointers. 438 // For reasoning see similar case inside 'findBaseDefiningValue' function. 439 auto *CAZ = ConstantAggregateZero::get(I->getType()); 440 Cache[I] = CAZ; 441 setKnownBase(CAZ, /* IsKnownBase */true, KnownBases); 442 return CAZ; 443 } 444 445 if (isa<LoadInst>(I)) { 446 Cache[I] = I; 447 setKnownBase(I, /* IsKnownBase */true, KnownBases); 448 return I; 449 } 450 451 if (isa<InsertElementInst>(I)) { 452 // We don't know whether this vector contains entirely base pointers or 453 // not. To be conservatively correct, we treat it as a BDV and will 454 // duplicate code as needed to construct a parallel vector of bases. 455 Cache[I] = I; 456 setKnownBase(I, /* IsKnownBase */false, KnownBases); 457 return I; 458 } 459 460 if (isa<ShuffleVectorInst>(I)) { 461 // We don't know whether this vector contains entirely base pointers or 462 // not. To be conservatively correct, we treat it as a BDV and will 463 // duplicate code as needed to construct a parallel vector of bases. 464 // TODO: There a number of local optimizations which could be applied here 465 // for particular sufflevector patterns. 466 Cache[I] = I; 467 setKnownBase(I, /* IsKnownBase */false, KnownBases); 468 return I; 469 } 470 471 // The behavior of getelementptr instructions is the same for vector and 472 // non-vector data types. 473 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 474 auto *BDV = 475 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 476 Cache[GEP] = BDV; 477 return BDV; 478 } 479 480 // The behavior of freeze instructions is the same for vector and 481 // non-vector data types. 482 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 483 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 484 Cache[Freeze] = BDV; 485 return BDV; 486 } 487 488 // If the pointer comes through a bitcast of a vector of pointers to 489 // a vector of another type of pointer, then look through the bitcast 490 if (auto *BC = dyn_cast<BitCastInst>(I)) { 491 auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases); 492 Cache[BC] = BDV; 493 return BDV; 494 } 495 496 // We assume that functions in the source language only return base 497 // pointers. This should probably be generalized via attributes to support 498 // both source language and internal functions. 499 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 500 Cache[I] = I; 501 setKnownBase(I, /* IsKnownBase */true, KnownBases); 502 return I; 503 } 504 505 // A PHI or Select is a base defining value. The outer findBasePointer 506 // algorithm is responsible for constructing a base value for this BDV. 507 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 508 "unknown vector instruction - no base found for vector element"); 509 Cache[I] = I; 510 setKnownBase(I, /* IsKnownBase */false, KnownBases); 511 return I; 512 } 513 514 /// Helper function for findBasePointer - Will return a value which either a) 515 /// defines the base pointer for the input, b) blocks the simple search 516 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 517 /// from pointer to vector type or back. 518 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 519 IsKnownBaseMapTy &KnownBases) { 520 assert(I->getType()->isPtrOrPtrVectorTy() && 521 "Illegal to ask for the base pointer of a non-pointer type"); 522 auto Cached = Cache.find(I); 523 if (Cached != Cache.end()) 524 return Cached->second; 525 526 if (I->getType()->isVectorTy()) 527 return findBaseDefiningValueOfVector(I, Cache, KnownBases); 528 529 if (isa<Argument>(I)) { 530 // An incoming argument to the function is a base pointer 531 // We should have never reached here if this argument isn't an gc value 532 Cache[I] = I; 533 setKnownBase(I, /* IsKnownBase */true, KnownBases); 534 return I; 535 } 536 537 if (isa<Constant>(I)) { 538 // We assume that objects with a constant base (e.g. a global) can't move 539 // and don't need to be reported to the collector because they are always 540 // live. Besides global references, all kinds of constants (e.g. undef, 541 // constant expressions, null pointers) can be introduced by the inliner or 542 // the optimizer, especially on dynamically dead paths. 543 // Here we treat all of them as having single null base. By doing this we 544 // trying to avoid problems reporting various conflicts in a form of 545 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 546 // See constant.ll file for relevant test cases. 547 548 auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType())); 549 Cache[I] = CPN; 550 setKnownBase(CPN, /* IsKnownBase */true, KnownBases); 551 return CPN; 552 } 553 554 // inttoptrs in an integral address space are currently ill-defined. We 555 // treat them as defining base pointers here for consistency with the 556 // constant rule above and because we don't really have a better semantic 557 // to give them. Note that the optimizer is always free to insert undefined 558 // behavior on dynamically dead paths as well. 559 if (isa<IntToPtrInst>(I)) { 560 Cache[I] = I; 561 setKnownBase(I, /* IsKnownBase */true, KnownBases); 562 return I; 563 } 564 565 if (CastInst *CI = dyn_cast<CastInst>(I)) { 566 Value *Def = CI->stripPointerCasts(); 567 // If stripping pointer casts changes the address space there is an 568 // addrspacecast in between. 569 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 570 cast<PointerType>(CI->getType())->getAddressSpace() && 571 "unsupported addrspacecast"); 572 // If we find a cast instruction here, it means we've found a cast which is 573 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 574 // handle int->ptr conversion. 575 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 576 auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases); 577 Cache[CI] = BDV; 578 return BDV; 579 } 580 581 if (isa<LoadInst>(I)) { 582 // The value loaded is an gc base itself 583 Cache[I] = I; 584 setKnownBase(I, /* IsKnownBase */true, KnownBases); 585 return I; 586 } 587 588 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 589 // The base of this GEP is the base 590 auto *BDV = 591 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 592 Cache[GEP] = BDV; 593 return BDV; 594 } 595 596 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 597 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 598 Cache[Freeze] = BDV; 599 return BDV; 600 } 601 602 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 603 switch (II->getIntrinsicID()) { 604 default: 605 // fall through to general call handling 606 break; 607 case Intrinsic::experimental_gc_statepoint: 608 llvm_unreachable("statepoints don't produce pointers"); 609 case Intrinsic::experimental_gc_relocate: 610 // Rerunning safepoint insertion after safepoints are already 611 // inserted is not supported. It could probably be made to work, 612 // but why are you doing this? There's no good reason. 613 llvm_unreachable("repeat safepoint insertion is not supported"); 614 case Intrinsic::gcroot: 615 // Currently, this mechanism hasn't been extended to work with gcroot. 616 // There's no reason it couldn't be, but I haven't thought about the 617 // implications much. 618 llvm_unreachable( 619 "interaction with the gcroot mechanism is not supported"); 620 case Intrinsic::experimental_gc_get_pointer_base: 621 auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases); 622 Cache[II] = BDV; 623 return BDV; 624 } 625 } 626 // We assume that functions in the source language only return base 627 // pointers. This should probably be generalized via attributes to support 628 // both source language and internal functions. 629 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 630 Cache[I] = I; 631 setKnownBase(I, /* IsKnownBase */true, KnownBases); 632 return I; 633 } 634 635 // TODO: I have absolutely no idea how to implement this part yet. It's not 636 // necessarily hard, I just haven't really looked at it yet. 637 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 638 639 if (isa<AtomicCmpXchgInst>(I)) { 640 // A CAS is effectively a atomic store and load combined under a 641 // predicate. From the perspective of base pointers, we just treat it 642 // like a load. 643 Cache[I] = I; 644 setKnownBase(I, /* IsKnownBase */true, KnownBases); 645 return I; 646 } 647 648 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 649 "binary ops which don't apply to pointers"); 650 651 // The aggregate ops. Aggregates can either be in the heap or on the 652 // stack, but in either case, this is simply a field load. As a result, 653 // this is a defining definition of the base just like a load is. 654 if (isa<ExtractValueInst>(I)) { 655 Cache[I] = I; 656 setKnownBase(I, /* IsKnownBase */true, KnownBases); 657 return I; 658 } 659 660 // We should never see an insert vector since that would require we be 661 // tracing back a struct value not a pointer value. 662 assert(!isa<InsertValueInst>(I) && 663 "Base pointer for a struct is meaningless"); 664 665 // This value might have been generated by findBasePointer() called when 666 // substituting gc.get.pointer.base() intrinsic. 667 bool IsKnownBase = 668 isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value"); 669 setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases); 670 Cache[I] = I; 671 672 // An extractelement produces a base result exactly when it's input does. 673 // We may need to insert a parallel instruction to extract the appropriate 674 // element out of the base vector corresponding to the input. Given this, 675 // it's analogous to the phi and select case even though it's not a merge. 676 if (isa<ExtractElementInst>(I)) 677 // Note: There a lot of obvious peephole cases here. This are deliberately 678 // handled after the main base pointer inference algorithm to make writing 679 // test cases to exercise that code easier. 680 return I; 681 682 // The last two cases here don't return a base pointer. Instead, they 683 // return a value which dynamically selects from among several base 684 // derived pointers (each with it's own base potentially). It's the job of 685 // the caller to resolve these. 686 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 687 "missing instruction case in findBaseDefiningValue"); 688 return I; 689 } 690 691 /// Returns the base defining value for this value. 692 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache, 693 IsKnownBaseMapTy &KnownBases) { 694 if (Cache.find(I) == Cache.end()) { 695 auto *BDV = findBaseDefiningValue(I, Cache, KnownBases); 696 Cache[I] = BDV; 697 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 698 << Cache[I]->getName() << ", is known base = " 699 << KnownBases[I] << "\n"); 700 } 701 assert(Cache[I] != nullptr); 702 assert(KnownBases.find(Cache[I]) != KnownBases.end() && 703 "Cached value must be present in known bases map"); 704 return Cache[I]; 705 } 706 707 /// Return a base pointer for this value if known. Otherwise, return it's 708 /// base defining value. 709 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache, 710 IsKnownBaseMapTy &KnownBases) { 711 Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases); 712 auto Found = Cache.find(Def); 713 if (Found != Cache.end()) { 714 // Either a base-of relation, or a self reference. Caller must check. 715 return Found->second; 716 } 717 // Only a BDV available 718 return Def; 719 } 720 721 #ifndef NDEBUG 722 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 723 /// exists in the code. 724 static bool isOriginalBaseResult(Value *V) { 725 // no recursion possible 726 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 727 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 728 !isa<ShuffleVectorInst>(V); 729 } 730 #endif 731 732 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) { 733 auto It = KnownBases.find(V); 734 assert(It != KnownBases.end() && "Value not present in the map"); 735 return It->second; 736 } 737 738 static void setKnownBase(Value *V, bool IsKnownBase, 739 IsKnownBaseMapTy &KnownBases) { 740 #ifndef NDEBUG 741 auto It = KnownBases.find(V); 742 if (It != KnownBases.end()) 743 assert(It->second == IsKnownBase && "Changing already present value"); 744 #endif 745 KnownBases[V] = IsKnownBase; 746 } 747 748 // Returns true if First and Second values are both scalar or both vector. 749 static bool areBothVectorOrScalar(Value *First, Value *Second) { 750 return isa<VectorType>(First->getType()) == 751 isa<VectorType>(Second->getType()); 752 } 753 754 namespace { 755 756 /// Models the state of a single base defining value in the findBasePointer 757 /// algorithm for determining where a new instruction is needed to propagate 758 /// the base of this BDV. 759 class BDVState { 760 public: 761 enum StatusTy { 762 // Starting state of lattice 763 Unknown, 764 // Some specific base value -- does *not* mean that instruction 765 // propagates the base of the object 766 // ex: gep %arg, 16 -> %arg is the base value 767 Base, 768 // Need to insert a node to represent a merge. 769 Conflict 770 }; 771 772 BDVState() { 773 llvm_unreachable("missing state in map"); 774 } 775 776 explicit BDVState(Value *OriginalValue) 777 : OriginalValue(OriginalValue) {} 778 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) 779 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { 780 assert(Status != Base || BaseValue); 781 } 782 783 StatusTy getStatus() const { return Status; } 784 Value *getOriginalValue() const { return OriginalValue; } 785 Value *getBaseValue() const { return BaseValue; } 786 787 bool isBase() const { return getStatus() == Base; } 788 bool isUnknown() const { return getStatus() == Unknown; } 789 bool isConflict() const { return getStatus() == Conflict; } 790 791 // Values of type BDVState form a lattice, and this function implements the 792 // meet 793 // operation. 794 void meet(const BDVState &Other) { 795 auto markConflict = [&]() { 796 Status = BDVState::Conflict; 797 BaseValue = nullptr; 798 }; 799 // Conflict is a final state. 800 if (isConflict()) 801 return; 802 // if we are not known - just take other state. 803 if (isUnknown()) { 804 Status = Other.getStatus(); 805 BaseValue = Other.getBaseValue(); 806 return; 807 } 808 // We are base. 809 assert(isBase() && "Unknown state"); 810 // If other is unknown - just keep our state. 811 if (Other.isUnknown()) 812 return; 813 // If other is conflict - it is a final state. 814 if (Other.isConflict()) 815 return markConflict(); 816 // Other is base as well. 817 assert(Other.isBase() && "Unknown state"); 818 // If bases are different - Conflict. 819 if (getBaseValue() != Other.getBaseValue()) 820 return markConflict(); 821 // We are identical, do nothing. 822 } 823 824 bool operator==(const BDVState &Other) const { 825 return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue && 826 Status == Other.Status; 827 } 828 829 bool operator!=(const BDVState &other) const { return !(*this == other); } 830 831 LLVM_DUMP_METHOD 832 void dump() const { 833 print(dbgs()); 834 dbgs() << '\n'; 835 } 836 837 void print(raw_ostream &OS) const { 838 switch (getStatus()) { 839 case Unknown: 840 OS << "U"; 841 break; 842 case Base: 843 OS << "B"; 844 break; 845 case Conflict: 846 OS << "C"; 847 break; 848 } 849 OS << " (base " << getBaseValue() << " - " 850 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" 851 << " for " << OriginalValue->getName() << ":"; 852 } 853 854 private: 855 AssertingVH<Value> OriginalValue; // instruction this state corresponds to 856 StatusTy Status = Unknown; 857 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. 858 }; 859 860 } // end anonymous namespace 861 862 #ifndef NDEBUG 863 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 864 State.print(OS); 865 return OS; 866 } 867 #endif 868 869 /// For a given value or instruction, figure out what base ptr its derived from. 870 /// For gc objects, this is simply itself. On success, returns a value which is 871 /// the base pointer. (This is reliable and can be used for relocation.) On 872 /// failure, returns nullptr. 873 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache, 874 IsKnownBaseMapTy &KnownBases) { 875 Value *Def = findBaseOrBDV(I, Cache, KnownBases); 876 877 if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I)) 878 return Def; 879 880 // Here's the rough algorithm: 881 // - For every SSA value, construct a mapping to either an actual base 882 // pointer or a PHI which obscures the base pointer. 883 // - Construct a mapping from PHI to unknown TOP state. Use an 884 // optimistic algorithm to propagate base pointer information. Lattice 885 // looks like: 886 // UNKNOWN 887 // b1 b2 b3 b4 888 // CONFLICT 889 // When algorithm terminates, all PHIs will either have a single concrete 890 // base or be in a conflict state. 891 // - For every conflict, insert a dummy PHI node without arguments. Add 892 // these to the base[Instruction] = BasePtr mapping. For every 893 // non-conflict, add the actual base. 894 // - For every conflict, add arguments for the base[a] of each input 895 // arguments. 896 // 897 // Note: A simpler form of this would be to add the conflict form of all 898 // PHIs without running the optimistic algorithm. This would be 899 // analogous to pessimistic data flow and would likely lead to an 900 // overall worse solution. 901 902 #ifndef NDEBUG 903 auto isExpectedBDVType = [](Value *BDV) { 904 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 905 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 906 isa<ShuffleVectorInst>(BDV); 907 }; 908 #endif 909 910 // Once populated, will contain a mapping from each potentially non-base BDV 911 // to a lattice value (described above) which corresponds to that BDV. 912 // We use the order of insertion (DFS over the def/use graph) to provide a 913 // stable deterministic ordering for visiting DenseMaps (which are unordered) 914 // below. This is important for deterministic compilation. 915 MapVector<Value *, BDVState> States; 916 917 #ifndef NDEBUG 918 auto VerifyStates = [&]() { 919 for (auto &Entry : States) { 920 assert(Entry.first == Entry.second.getOriginalValue()); 921 } 922 }; 923 #endif 924 925 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { 926 if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 927 for (Value *InVal : PN->incoming_values()) 928 F(InVal); 929 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 930 F(SI->getTrueValue()); 931 F(SI->getFalseValue()); 932 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 933 F(EE->getVectorOperand()); 934 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) { 935 F(IE->getOperand(0)); 936 F(IE->getOperand(1)); 937 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) { 938 // For a canonical broadcast, ignore the undef argument 939 // (without this, we insert a parallel base shuffle for every broadcast) 940 F(SV->getOperand(0)); 941 if (!SV->isZeroEltSplat()) 942 F(SV->getOperand(1)); 943 } else { 944 llvm_unreachable("unexpected BDV type"); 945 } 946 }; 947 948 949 // Recursively fill in all base defining values reachable from the initial 950 // one for which we don't already know a definite base value for 951 /* scope */ { 952 SmallVector<Value*, 16> Worklist; 953 Worklist.push_back(Def); 954 States.insert({Def, BDVState(Def)}); 955 while (!Worklist.empty()) { 956 Value *Current = Worklist.pop_back_val(); 957 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 958 959 auto visitIncomingValue = [&](Value *InVal) { 960 Value *Base = findBaseOrBDV(InVal, Cache, KnownBases); 961 if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal)) 962 // Known bases won't need new instructions introduced and can be 963 // ignored safely. However, this can only be done when InVal and Base 964 // are both scalar or both vector. Otherwise, we need to find a 965 // correct BDV for InVal, by creating an entry in the lattice 966 // (States). 967 return; 968 assert(isExpectedBDVType(Base) && "the only non-base values " 969 "we see should be base defining values"); 970 if (States.insert(std::make_pair(Base, BDVState(Base))).second) 971 Worklist.push_back(Base); 972 }; 973 974 visitBDVOperands(Current, visitIncomingValue); 975 } 976 } 977 978 #ifndef NDEBUG 979 VerifyStates(); 980 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 981 for (const auto &Pair : States) { 982 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 983 } 984 #endif 985 986 // Iterate forward through the value graph pruning any node from the state 987 // list where all of the inputs are base pointers. The purpose of this is to 988 // reuse existing values when the derived pointer we were asked to materialize 989 // a base pointer for happens to be a base pointer itself. (Or a sub-graph 990 // feeding it does.) 991 SmallVector<Value *> ToRemove; 992 do { 993 ToRemove.clear(); 994 for (auto Pair : States) { 995 Value *BDV = Pair.first; 996 auto canPruneInput = [&](Value *V) { 997 // If the input of the BDV is the BDV itself we can prune it. This is 998 // only possible if the BDV is a PHI node. 999 if (V->stripPointerCasts() == BDV) 1000 return true; 1001 Value *VBDV = findBaseOrBDV(V, Cache, KnownBases); 1002 if (V->stripPointerCasts() != VBDV) 1003 return false; 1004 // The assumption is that anything not in the state list is 1005 // propagates a base pointer. 1006 return States.count(VBDV) == 0; 1007 }; 1008 1009 bool CanPrune = true; 1010 visitBDVOperands(BDV, [&](Value *Op) { 1011 CanPrune = CanPrune && canPruneInput(Op); 1012 }); 1013 if (CanPrune) 1014 ToRemove.push_back(BDV); 1015 } 1016 for (Value *V : ToRemove) { 1017 States.erase(V); 1018 // Cache the fact V is it's own base for later usage. 1019 Cache[V] = V; 1020 } 1021 } while (!ToRemove.empty()); 1022 1023 // Did we manage to prove that Def itself must be a base pointer? 1024 if (!States.count(Def)) 1025 return Def; 1026 1027 // Return a phi state for a base defining value. We'll generate a new 1028 // base state for known bases and expect to find a cached state otherwise. 1029 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 1030 auto I = States.find(BaseValue); 1031 if (I != States.end()) 1032 return I->second; 1033 assert(areBothVectorOrScalar(BaseValue, Input)); 1034 return BDVState(BaseValue, BDVState::Base, BaseValue); 1035 }; 1036 1037 bool Progress = true; 1038 while (Progress) { 1039 #ifndef NDEBUG 1040 const size_t OldSize = States.size(); 1041 #endif 1042 Progress = false; 1043 // We're only changing values in this loop, thus safe to keep iterators. 1044 // Since this is computing a fixed point, the order of visit does not 1045 // effect the result. TODO: We could use a worklist here and make this run 1046 // much faster. 1047 for (auto Pair : States) { 1048 Value *BDV = Pair.first; 1049 // Only values that do not have known bases or those that have differing 1050 // type (scalar versus vector) from a possible known base should be in the 1051 // lattice. 1052 assert((!isKnownBase(BDV, KnownBases) || 1053 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 1054 "why did it get added?"); 1055 1056 BDVState NewState(BDV); 1057 visitBDVOperands(BDV, [&](Value *Op) { 1058 Value *BDV = findBaseOrBDV(Op, Cache, KnownBases); 1059 auto OpState = GetStateForBDV(BDV, Op); 1060 NewState.meet(OpState); 1061 }); 1062 1063 BDVState OldState = States[BDV]; 1064 if (OldState != NewState) { 1065 Progress = true; 1066 States[BDV] = NewState; 1067 } 1068 } 1069 1070 assert(OldSize == States.size() && 1071 "fixed point shouldn't be adding any new nodes to state"); 1072 } 1073 1074 #ifndef NDEBUG 1075 VerifyStates(); 1076 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 1077 for (const auto &Pair : States) { 1078 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 1079 } 1080 #endif 1081 1082 // Handle all instructions that have a vector BDV, but the instruction itself 1083 // is of scalar type. 1084 for (auto Pair : States) { 1085 Instruction *I = cast<Instruction>(Pair.first); 1086 BDVState State = Pair.second; 1087 auto *BaseValue = State.getBaseValue(); 1088 // Only values that do not have known bases or those that have differing 1089 // type (scalar versus vector) from a possible known base should be in the 1090 // lattice. 1091 assert( 1092 (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) && 1093 "why did it get added?"); 1094 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1095 1096 if (!State.isBase() || !isa<VectorType>(BaseValue->getType())) 1097 continue; 1098 // extractelement instructions are a bit special in that we may need to 1099 // insert an extract even when we know an exact base for the instruction. 1100 // The problem is that we need to convert from a vector base to a scalar 1101 // base for the particular indice we're interested in. 1102 if (isa<ExtractElementInst>(I)) { 1103 auto *EE = cast<ExtractElementInst>(I); 1104 // TODO: In many cases, the new instruction is just EE itself. We should 1105 // exploit this, but can't do it here since it would break the invariant 1106 // about the BDV not being known to be a base. 1107 auto *BaseInst = ExtractElementInst::Create( 1108 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 1109 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1110 States[I] = BDVState(I, BDVState::Base, BaseInst); 1111 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1112 } else if (!isa<VectorType>(I->getType())) { 1113 // We need to handle cases that have a vector base but the instruction is 1114 // a scalar type (these could be phis or selects or any instruction that 1115 // are of scalar type, but the base can be a vector type). We 1116 // conservatively set this as conflict. Setting the base value for these 1117 // conflicts is handled in the next loop which traverses States. 1118 States[I] = BDVState(I, BDVState::Conflict); 1119 } 1120 } 1121 1122 #ifndef NDEBUG 1123 VerifyStates(); 1124 #endif 1125 1126 // Insert Phis for all conflicts 1127 // TODO: adjust naming patterns to avoid this order of iteration dependency 1128 for (auto Pair : States) { 1129 Instruction *I = cast<Instruction>(Pair.first); 1130 BDVState State = Pair.second; 1131 // Only values that do not have known bases or those that have differing 1132 // type (scalar versus vector) from a possible known base should be in the 1133 // lattice. 1134 assert((!isKnownBase(I, KnownBases) || 1135 !areBothVectorOrScalar(I, State.getBaseValue())) && 1136 "why did it get added?"); 1137 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1138 1139 // Since we're joining a vector and scalar base, they can never be the 1140 // same. As a result, we should always see insert element having reached 1141 // the conflict state. 1142 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1143 1144 if (!State.isConflict()) 1145 continue; 1146 1147 auto getMangledName = [](Instruction *I) -> std::string { 1148 if (isa<PHINode>(I)) { 1149 return suffixed_name_or(I, ".base", "base_phi"); 1150 } else if (isa<SelectInst>(I)) { 1151 return suffixed_name_or(I, ".base", "base_select"); 1152 } else if (isa<ExtractElementInst>(I)) { 1153 return suffixed_name_or(I, ".base", "base_ee"); 1154 } else if (isa<InsertElementInst>(I)) { 1155 return suffixed_name_or(I, ".base", "base_ie"); 1156 } else { 1157 return suffixed_name_or(I, ".base", "base_sv"); 1158 } 1159 }; 1160 1161 Instruction *BaseInst = I->clone(); 1162 BaseInst->insertBefore(I); 1163 BaseInst->setName(getMangledName(I)); 1164 // Add metadata marking this as a base value 1165 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1166 States[I] = BDVState(I, BDVState::Conflict, BaseInst); 1167 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1168 } 1169 1170 #ifndef NDEBUG 1171 VerifyStates(); 1172 #endif 1173 1174 // Returns a instruction which produces the base pointer for a given 1175 // instruction. The instruction is assumed to be an input to one of the BDVs 1176 // seen in the inference algorithm above. As such, we must either already 1177 // know it's base defining value is a base, or have inserted a new 1178 // instruction to propagate the base of it's BDV and have entered that newly 1179 // introduced instruction into the state table. In either case, we are 1180 // assured to be able to determine an instruction which produces it's base 1181 // pointer. 1182 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1183 Value *BDV = findBaseOrBDV(Input, Cache, KnownBases); 1184 Value *Base = nullptr; 1185 if (!States.count(BDV)) { 1186 assert(areBothVectorOrScalar(BDV, Input)); 1187 Base = BDV; 1188 } else { 1189 // Either conflict or base. 1190 assert(States.count(BDV)); 1191 Base = States[BDV].getBaseValue(); 1192 } 1193 assert(Base && "Can't be null"); 1194 // The cast is needed since base traversal may strip away bitcasts 1195 if (Base->getType() != Input->getType() && InsertPt) 1196 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1197 return Base; 1198 }; 1199 1200 // Fixup all the inputs of the new PHIs. Visit order needs to be 1201 // deterministic and predictable because we're naming newly created 1202 // instructions. 1203 for (auto Pair : States) { 1204 Instruction *BDV = cast<Instruction>(Pair.first); 1205 BDVState State = Pair.second; 1206 1207 // Only values that do not have known bases or those that have differing 1208 // type (scalar versus vector) from a possible known base should be in the 1209 // lattice. 1210 assert((!isKnownBase(BDV, KnownBases) || 1211 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1212 "why did it get added?"); 1213 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1214 if (!State.isConflict()) 1215 continue; 1216 1217 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1218 PHINode *PN = cast<PHINode>(BDV); 1219 const unsigned NumPHIValues = PN->getNumIncomingValues(); 1220 1221 // The IR verifier requires phi nodes with multiple entries from the 1222 // same basic block to have the same incoming value for each of those 1223 // entries. Since we're inserting bitcasts in the loop, make sure we 1224 // do so at least once per incoming block. 1225 DenseMap<BasicBlock *, Value*> BlockToValue; 1226 for (unsigned i = 0; i < NumPHIValues; i++) { 1227 Value *InVal = PN->getIncomingValue(i); 1228 BasicBlock *InBB = PN->getIncomingBlock(i); 1229 if (!BlockToValue.count(InBB)) 1230 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); 1231 else { 1232 #ifndef NDEBUG 1233 Value *OldBase = BlockToValue[InBB]; 1234 Value *Base = getBaseForInput(InVal, nullptr); 1235 1236 // We can't use `stripPointerCasts` instead of this function because 1237 // `stripPointerCasts` doesn't handle vectors of pointers. 1238 auto StripBitCasts = [](Value *V) -> Value * { 1239 while (auto *BC = dyn_cast<BitCastInst>(V)) 1240 V = BC->getOperand(0); 1241 return V; 1242 }; 1243 // In essence this assert states: the only way two values 1244 // incoming from the same basic block may be different is by 1245 // being different bitcasts of the same value. A cleanup 1246 // that remains TODO is changing findBaseOrBDV to return an 1247 // llvm::Value of the correct type (and still remain pure). 1248 // This will remove the need to add bitcasts. 1249 assert(StripBitCasts(Base) == StripBitCasts(OldBase) && 1250 "findBaseOrBDV should be pure!"); 1251 #endif 1252 } 1253 Value *Base = BlockToValue[InBB]; 1254 BasePHI->setIncomingValue(i, Base); 1255 } 1256 } else if (SelectInst *BaseSI = 1257 dyn_cast<SelectInst>(State.getBaseValue())) { 1258 SelectInst *SI = cast<SelectInst>(BDV); 1259 1260 // Find the instruction which produces the base for each input. 1261 // We may need to insert a bitcast. 1262 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1263 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1264 } else if (auto *BaseEE = 1265 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1266 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1267 // Find the instruction which produces the base for each input. We may 1268 // need to insert a bitcast. 1269 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1270 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1271 auto *BdvIE = cast<InsertElementInst>(BDV); 1272 auto UpdateOperand = [&](int OperandIdx) { 1273 Value *InVal = BdvIE->getOperand(OperandIdx); 1274 Value *Base = getBaseForInput(InVal, BaseIE); 1275 BaseIE->setOperand(OperandIdx, Base); 1276 }; 1277 UpdateOperand(0); // vector operand 1278 UpdateOperand(1); // scalar operand 1279 } else { 1280 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1281 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1282 auto UpdateOperand = [&](int OperandIdx) { 1283 Value *InVal = BdvSV->getOperand(OperandIdx); 1284 Value *Base = getBaseForInput(InVal, BaseSV); 1285 BaseSV->setOperand(OperandIdx, Base); 1286 }; 1287 UpdateOperand(0); // vector operand 1288 if (!BdvSV->isZeroEltSplat()) 1289 UpdateOperand(1); // vector operand 1290 else { 1291 // Never read, so just use undef 1292 Value *InVal = BdvSV->getOperand(1); 1293 BaseSV->setOperand(1, UndefValue::get(InVal->getType())); 1294 } 1295 } 1296 } 1297 1298 #ifndef NDEBUG 1299 VerifyStates(); 1300 #endif 1301 1302 // Cache all of our results so we can cheaply reuse them 1303 // NOTE: This is actually two caches: one of the base defining value 1304 // relation and one of the base pointer relation! FIXME 1305 for (auto Pair : States) { 1306 auto *BDV = Pair.first; 1307 Value *Base = Pair.second.getBaseValue(); 1308 assert(BDV && Base); 1309 // Only values that do not have known bases or those that have differing 1310 // type (scalar versus vector) from a possible known base should be in the 1311 // lattice. 1312 assert( 1313 (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) && 1314 "why did it get added?"); 1315 1316 LLVM_DEBUG( 1317 dbgs() << "Updating base value cache" 1318 << " for: " << BDV->getName() << " from: " 1319 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1320 << " to: " << Base->getName() << "\n"); 1321 1322 Cache[BDV] = Base; 1323 } 1324 assert(Cache.count(Def)); 1325 return Cache[Def]; 1326 } 1327 1328 // For a set of live pointers (base and/or derived), identify the base 1329 // pointer of the object which they are derived from. This routine will 1330 // mutate the IR graph as needed to make the 'base' pointer live at the 1331 // definition site of 'derived'. This ensures that any use of 'derived' can 1332 // also use 'base'. This may involve the insertion of a number of 1333 // additional PHI nodes. 1334 // 1335 // preconditions: live is a set of pointer type Values 1336 // 1337 // side effects: may insert PHI nodes into the existing CFG, will preserve 1338 // CFG, will not remove or mutate any existing nodes 1339 // 1340 // post condition: PointerToBase contains one (derived, base) pair for every 1341 // pointer in live. Note that derived can be equal to base if the original 1342 // pointer was a base pointer. 1343 static void findBasePointers(const StatepointLiveSetTy &live, 1344 PointerToBaseTy &PointerToBase, DominatorTree *DT, 1345 DefiningValueMapTy &DVCache, 1346 IsKnownBaseMapTy &KnownBases) { 1347 for (Value *ptr : live) { 1348 Value *base = findBasePointer(ptr, DVCache, KnownBases); 1349 assert(base && "failed to find base pointer"); 1350 PointerToBase[ptr] = base; 1351 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1352 DT->dominates(cast<Instruction>(base)->getParent(), 1353 cast<Instruction>(ptr)->getParent())) && 1354 "The base we found better dominate the derived pointer"); 1355 } 1356 } 1357 1358 /// Find the required based pointers (and adjust the live set) for the given 1359 /// parse point. 1360 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1361 CallBase *Call, 1362 PartiallyConstructedSafepointRecord &result, 1363 PointerToBaseTy &PointerToBase, 1364 IsKnownBaseMapTy &KnownBases) { 1365 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; 1366 // We assume that all pointers passed to deopt are base pointers; as an 1367 // optimization, we can use this to avoid seperately materializing the base 1368 // pointer graph. This is only relevant since we're very conservative about 1369 // generating new conflict nodes during base pointer insertion. If we were 1370 // smarter there, this would be irrelevant. 1371 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) 1372 for (Value *V : Opt->Inputs) { 1373 if (!PotentiallyDerivedPointers.count(V)) 1374 continue; 1375 PotentiallyDerivedPointers.remove(V); 1376 PointerToBase[V] = V; 1377 } 1378 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache, 1379 KnownBases); 1380 } 1381 1382 /// Given an updated version of the dataflow liveness results, update the 1383 /// liveset and base pointer maps for the call site CS. 1384 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1385 CallBase *Call, 1386 PartiallyConstructedSafepointRecord &result, 1387 PointerToBaseTy &PointerToBase); 1388 1389 static void recomputeLiveInValues( 1390 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1391 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 1392 PointerToBaseTy &PointerToBase) { 1393 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1394 // again. The old values are still live and will help it stabilize quickly. 1395 GCPtrLivenessData RevisedLivenessData; 1396 computeLiveInValues(DT, F, RevisedLivenessData); 1397 for (size_t i = 0; i < records.size(); i++) { 1398 struct PartiallyConstructedSafepointRecord &info = records[i]; 1399 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info, 1400 PointerToBase); 1401 } 1402 } 1403 1404 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1405 // no uses of the original value / return value between the gc.statepoint and 1406 // the gc.relocate / gc.result call. One case which can arise is a phi node 1407 // starting one of the successor blocks. We also need to be able to insert the 1408 // gc.relocates only on the path which goes through the statepoint. We might 1409 // need to split an edge to make this possible. 1410 static BasicBlock * 1411 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1412 DominatorTree &DT) { 1413 BasicBlock *Ret = BB; 1414 if (!BB->getUniquePredecessor()) 1415 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1416 1417 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1418 // from it 1419 FoldSingleEntryPHINodes(Ret); 1420 assert(!isa<PHINode>(Ret->begin()) && 1421 "All PHI nodes should have been removed!"); 1422 1423 // At this point, we can safely insert a gc.relocate or gc.result as the first 1424 // instruction in Ret if needed. 1425 return Ret; 1426 } 1427 1428 // List of all function attributes which must be stripped when lowering from 1429 // abstract machine model to physical machine model. Essentially, these are 1430 // all the effects a safepoint might have which we ignored in the abstract 1431 // machine model for purposes of optimization. We have to strip these on 1432 // both function declarations and call sites. 1433 static constexpr Attribute::AttrKind FnAttrsToStrip[] = 1434 {Attribute::Memory, Attribute::NoSync, Attribute::NoFree}; 1435 1436 // Create new attribute set containing only attributes which can be transferred 1437 // from original call to the safepoint. 1438 static AttributeList legalizeCallAttributes(LLVMContext &Ctx, 1439 AttributeList OrigAL, 1440 AttributeList StatepointAL) { 1441 if (OrigAL.isEmpty()) 1442 return StatepointAL; 1443 1444 // Remove the readonly, readnone, and statepoint function attributes. 1445 AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs()); 1446 for (auto Attr : FnAttrsToStrip) 1447 FnAttrs.removeAttribute(Attr); 1448 1449 for (Attribute A : OrigAL.getFnAttrs()) { 1450 if (isStatepointDirectiveAttr(A)) 1451 FnAttrs.removeAttribute(A); 1452 } 1453 1454 // Just skip parameter and return attributes for now 1455 return StatepointAL.addFnAttributes(Ctx, FnAttrs); 1456 } 1457 1458 /// Helper function to place all gc relocates necessary for the given 1459 /// statepoint. 1460 /// Inputs: 1461 /// liveVariables - list of variables to be relocated. 1462 /// basePtrs - base pointers. 1463 /// statepointToken - statepoint instruction to which relocates should be 1464 /// bound. 1465 /// Builder - Llvm IR builder to be used to construct new calls. 1466 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1467 ArrayRef<Value *> BasePtrs, 1468 Instruction *StatepointToken, 1469 IRBuilder<> &Builder) { 1470 if (LiveVariables.empty()) 1471 return; 1472 1473 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1474 auto ValIt = llvm::find(LiveVec, Val); 1475 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1476 size_t Index = std::distance(LiveVec.begin(), ValIt); 1477 assert(Index < LiveVec.size() && "Bug in std::find?"); 1478 return Index; 1479 }; 1480 Module *M = StatepointToken->getModule(); 1481 1482 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1483 // element type is i8 addrspace(1)*). We originally generated unique 1484 // declarations for each pointer type, but this proved problematic because 1485 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1486 // towards a single unified pointer type anyways, we can just cast everything 1487 // to an i8* of the right address space. A bitcast is added later to convert 1488 // gc_relocate to the actual value's type. 1489 auto getGCRelocateDecl = [&] (Type *Ty) { 1490 assert(isHandledGCPointerType(Ty)); 1491 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1492 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1493 if (auto *VT = dyn_cast<VectorType>(Ty)) 1494 NewTy = FixedVectorType::get(NewTy, 1495 cast<FixedVectorType>(VT)->getNumElements()); 1496 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1497 {NewTy}); 1498 }; 1499 1500 // Lazily populated map from input types to the canonicalized form mentioned 1501 // in the comment above. This should probably be cached somewhere more 1502 // broadly. 1503 DenseMap<Type *, Function *> TypeToDeclMap; 1504 1505 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1506 // Generate the gc.relocate call and save the result 1507 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1508 Value *LiveIdx = Builder.getInt32(i); 1509 1510 Type *Ty = LiveVariables[i]->getType(); 1511 if (!TypeToDeclMap.count(Ty)) 1512 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1513 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1514 1515 // only specify a debug name if we can give a useful one 1516 CallInst *Reloc = Builder.CreateCall( 1517 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1518 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1519 // Trick CodeGen into thinking there are lots of free registers at this 1520 // fake call. 1521 Reloc->setCallingConv(CallingConv::Cold); 1522 } 1523 } 1524 1525 namespace { 1526 1527 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1528 /// avoids having to worry about keeping around dangling pointers to Values. 1529 class DeferredReplacement { 1530 AssertingVH<Instruction> Old; 1531 AssertingVH<Instruction> New; 1532 bool IsDeoptimize = false; 1533 1534 DeferredReplacement() = default; 1535 1536 public: 1537 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1538 assert(Old != New && Old && New && 1539 "Cannot RAUW equal values or to / from null!"); 1540 1541 DeferredReplacement D; 1542 D.Old = Old; 1543 D.New = New; 1544 return D; 1545 } 1546 1547 static DeferredReplacement createDelete(Instruction *ToErase) { 1548 DeferredReplacement D; 1549 D.Old = ToErase; 1550 return D; 1551 } 1552 1553 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1554 #ifndef NDEBUG 1555 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1556 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1557 "Only way to construct a deoptimize deferred replacement"); 1558 #endif 1559 DeferredReplacement D; 1560 D.Old = Old; 1561 D.IsDeoptimize = true; 1562 return D; 1563 } 1564 1565 /// Does the task represented by this instance. 1566 void doReplacement() { 1567 Instruction *OldI = Old; 1568 Instruction *NewI = New; 1569 1570 assert(OldI != NewI && "Disallowed at construction?!"); 1571 assert((!IsDeoptimize || !New) && 1572 "Deoptimize intrinsics are not replaced!"); 1573 1574 Old = nullptr; 1575 New = nullptr; 1576 1577 if (NewI) 1578 OldI->replaceAllUsesWith(NewI); 1579 1580 if (IsDeoptimize) { 1581 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1582 // not necessarily be followed by the matching return. 1583 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1584 new UnreachableInst(RI->getContext(), RI); 1585 RI->eraseFromParent(); 1586 } 1587 1588 OldI->eraseFromParent(); 1589 } 1590 }; 1591 1592 } // end anonymous namespace 1593 1594 static StringRef getDeoptLowering(CallBase *Call) { 1595 const char *DeoptLowering = "deopt-lowering"; 1596 if (Call->hasFnAttr(DeoptLowering)) { 1597 // FIXME: Calls have a *really* confusing interface around attributes 1598 // with values. 1599 const AttributeList &CSAS = Call->getAttributes(); 1600 if (CSAS.hasFnAttr(DeoptLowering)) 1601 return CSAS.getFnAttr(DeoptLowering).getValueAsString(); 1602 Function *F = Call->getCalledFunction(); 1603 assert(F && F->hasFnAttribute(DeoptLowering)); 1604 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1605 } 1606 return "live-through"; 1607 } 1608 1609 static void 1610 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1611 const SmallVectorImpl<Value *> &BasePtrs, 1612 const SmallVectorImpl<Value *> &LiveVariables, 1613 PartiallyConstructedSafepointRecord &Result, 1614 std::vector<DeferredReplacement> &Replacements, 1615 const PointerToBaseTy &PointerToBase) { 1616 assert(BasePtrs.size() == LiveVariables.size()); 1617 1618 // Then go ahead and use the builder do actually do the inserts. We insert 1619 // immediately before the previous instruction under the assumption that all 1620 // arguments will be available here. We can't insert afterwards since we may 1621 // be replacing a terminator. 1622 IRBuilder<> Builder(Call); 1623 1624 ArrayRef<Value *> GCArgs(LiveVariables); 1625 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1626 uint32_t NumPatchBytes = 0; 1627 uint32_t Flags = uint32_t(StatepointFlags::None); 1628 1629 SmallVector<Value *, 8> CallArgs(Call->args()); 1630 std::optional<ArrayRef<Use>> DeoptArgs; 1631 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1632 DeoptArgs = Bundle->Inputs; 1633 std::optional<ArrayRef<Use>> TransitionArgs; 1634 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1635 TransitionArgs = Bundle->Inputs; 1636 // TODO: This flag no longer serves a purpose and can be removed later 1637 Flags |= uint32_t(StatepointFlags::GCTransition); 1638 } 1639 1640 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1641 // with a return value, we lower then as never returning calls to 1642 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1643 bool IsDeoptimize = false; 1644 1645 StatepointDirectives SD = 1646 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1647 if (SD.NumPatchBytes) 1648 NumPatchBytes = *SD.NumPatchBytes; 1649 if (SD.StatepointID) 1650 StatepointID = *SD.StatepointID; 1651 1652 // Pass through the requested lowering if any. The default is live-through. 1653 StringRef DeoptLowering = getDeoptLowering(Call); 1654 if (DeoptLowering.equals("live-in")) 1655 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1656 else { 1657 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1658 } 1659 1660 FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand()); 1661 if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) { 1662 auto IID = F->getIntrinsicID(); 1663 if (IID == Intrinsic::experimental_deoptimize) { 1664 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1665 // __llvm_deoptimize symbol. We want to resolve this now, since the 1666 // verifier does not allow taking the address of an intrinsic function. 1667 1668 SmallVector<Type *, 8> DomainTy; 1669 for (Value *Arg : CallArgs) 1670 DomainTy.push_back(Arg->getType()); 1671 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1672 /* isVarArg = */ false); 1673 1674 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1675 // calls to @llvm.experimental.deoptimize with different argument types in 1676 // the same module. This is fine -- we assume the frontend knew what it 1677 // was doing when generating this kind of IR. 1678 CallTarget = F->getParent() 1679 ->getOrInsertFunction("__llvm_deoptimize", FTy); 1680 1681 IsDeoptimize = true; 1682 } else if (IID == Intrinsic::memcpy_element_unordered_atomic || 1683 IID == Intrinsic::memmove_element_unordered_atomic) { 1684 // Unordered atomic memcpy and memmove intrinsics which are not explicitly 1685 // marked as "gc-leaf-function" should be lowered in a GC parseable way. 1686 // Specifically, these calls should be lowered to the 1687 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. 1688 // Similarly to __llvm_deoptimize we want to resolve this now, since the 1689 // verifier does not allow taking the address of an intrinsic function. 1690 // 1691 // Moreover we need to shuffle the arguments for the call in order to 1692 // accommodate GC. The underlying source and destination objects might be 1693 // relocated during copy operation should the GC occur. To relocate the 1694 // derived source and destination pointers the implementation of the 1695 // intrinsic should know the corresponding base pointers. 1696 // 1697 // To make the base pointers available pass them explicitly as arguments: 1698 // memcpy(dest_derived, source_derived, ...) => 1699 // memcpy(dest_base, dest_offset, source_base, source_offset, ...) 1700 auto &Context = Call->getContext(); 1701 auto &DL = Call->getModule()->getDataLayout(); 1702 auto GetBaseAndOffset = [&](Value *Derived) { 1703 Value *Base = nullptr; 1704 // Optimizations in unreachable code might substitute the real pointer 1705 // with undef, poison or null-derived constant. Return null base for 1706 // them to be consistent with the handling in the main algorithm in 1707 // findBaseDefiningValue. 1708 if (isa<Constant>(Derived)) 1709 Base = 1710 ConstantPointerNull::get(cast<PointerType>(Derived->getType())); 1711 else { 1712 assert(PointerToBase.count(Derived)); 1713 Base = PointerToBase.find(Derived)->second; 1714 } 1715 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 1716 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 1717 Value *Base_int = Builder.CreatePtrToInt( 1718 Base, Type::getIntNTy(Context, IntPtrSize)); 1719 Value *Derived_int = Builder.CreatePtrToInt( 1720 Derived, Type::getIntNTy(Context, IntPtrSize)); 1721 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); 1722 }; 1723 1724 auto *Dest = CallArgs[0]; 1725 Value *DestBase, *DestOffset; 1726 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); 1727 1728 auto *Source = CallArgs[1]; 1729 Value *SourceBase, *SourceOffset; 1730 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); 1731 1732 auto *LengthInBytes = CallArgs[2]; 1733 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]); 1734 1735 CallArgs.clear(); 1736 CallArgs.push_back(DestBase); 1737 CallArgs.push_back(DestOffset); 1738 CallArgs.push_back(SourceBase); 1739 CallArgs.push_back(SourceOffset); 1740 CallArgs.push_back(LengthInBytes); 1741 1742 SmallVector<Type *, 8> DomainTy; 1743 for (Value *Arg : CallArgs) 1744 DomainTy.push_back(Arg->getType()); 1745 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1746 /* isVarArg = */ false); 1747 1748 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { 1749 uint64_t ElementSize = ElementSizeCI->getZExtValue(); 1750 if (IID == Intrinsic::memcpy_element_unordered_atomic) { 1751 switch (ElementSize) { 1752 case 1: 1753 return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; 1754 case 2: 1755 return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; 1756 case 4: 1757 return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; 1758 case 8: 1759 return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; 1760 case 16: 1761 return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; 1762 default: 1763 llvm_unreachable("unexpected element size!"); 1764 } 1765 } 1766 assert(IID == Intrinsic::memmove_element_unordered_atomic); 1767 switch (ElementSize) { 1768 case 1: 1769 return "__llvm_memmove_element_unordered_atomic_safepoint_1"; 1770 case 2: 1771 return "__llvm_memmove_element_unordered_atomic_safepoint_2"; 1772 case 4: 1773 return "__llvm_memmove_element_unordered_atomic_safepoint_4"; 1774 case 8: 1775 return "__llvm_memmove_element_unordered_atomic_safepoint_8"; 1776 case 16: 1777 return "__llvm_memmove_element_unordered_atomic_safepoint_16"; 1778 default: 1779 llvm_unreachable("unexpected element size!"); 1780 } 1781 }; 1782 1783 CallTarget = 1784 F->getParent() 1785 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy); 1786 } 1787 } 1788 1789 // Create the statepoint given all the arguments 1790 GCStatepointInst *Token = nullptr; 1791 if (auto *CI = dyn_cast<CallInst>(Call)) { 1792 CallInst *SPCall = Builder.CreateGCStatepointCall( 1793 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1794 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1795 1796 SPCall->setTailCallKind(CI->getTailCallKind()); 1797 SPCall->setCallingConv(CI->getCallingConv()); 1798 1799 // Currently we will fail on parameter attributes and on certain 1800 // function attributes. In case if we can handle this set of attributes - 1801 // set up function attrs directly on statepoint and return attrs later for 1802 // gc_result intrinsic. 1803 SPCall->setAttributes(legalizeCallAttributes( 1804 CI->getContext(), CI->getAttributes(), SPCall->getAttributes())); 1805 1806 Token = cast<GCStatepointInst>(SPCall); 1807 1808 // Put the following gc_result and gc_relocate calls immediately after the 1809 // the old call (which we're about to delete) 1810 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1811 Builder.SetInsertPoint(CI->getNextNode()); 1812 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1813 } else { 1814 auto *II = cast<InvokeInst>(Call); 1815 1816 // Insert the new invoke into the old block. We'll remove the old one in a 1817 // moment at which point this will become the new terminator for the 1818 // original block. 1819 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1820 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1821 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1822 "statepoint_token"); 1823 1824 SPInvoke->setCallingConv(II->getCallingConv()); 1825 1826 // Currently we will fail on parameter attributes and on certain 1827 // function attributes. In case if we can handle this set of attributes - 1828 // set up function attrs directly on statepoint and return attrs later for 1829 // gc_result intrinsic. 1830 SPInvoke->setAttributes(legalizeCallAttributes( 1831 II->getContext(), II->getAttributes(), SPInvoke->getAttributes())); 1832 1833 Token = cast<GCStatepointInst>(SPInvoke); 1834 1835 // Generate gc relocates in exceptional path 1836 BasicBlock *UnwindBlock = II->getUnwindDest(); 1837 assert(!isa<PHINode>(UnwindBlock->begin()) && 1838 UnwindBlock->getUniquePredecessor() && 1839 "can't safely insert in this block!"); 1840 1841 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1842 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1843 1844 // Attach exceptional gc relocates to the landingpad. 1845 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1846 Result.UnwindToken = ExceptionalToken; 1847 1848 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder); 1849 1850 // Generate gc relocates and returns for normal block 1851 BasicBlock *NormalDest = II->getNormalDest(); 1852 assert(!isa<PHINode>(NormalDest->begin()) && 1853 NormalDest->getUniquePredecessor() && 1854 "can't safely insert in this block!"); 1855 1856 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1857 1858 // gc relocates will be generated later as if it were regular call 1859 // statepoint 1860 } 1861 assert(Token && "Should be set in one of the above branches!"); 1862 1863 if (IsDeoptimize) { 1864 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1865 // transform the tail-call like structure to a call to a void function 1866 // followed by unreachable to get better codegen. 1867 Replacements.push_back( 1868 DeferredReplacement::createDeoptimizeReplacement(Call)); 1869 } else { 1870 Token->setName("statepoint_token"); 1871 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1872 StringRef Name = Call->hasName() ? Call->getName() : ""; 1873 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1874 GCResult->setAttributes( 1875 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1876 Call->getAttributes().getRetAttrs())); 1877 1878 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1879 // live set of some other safepoint, in which case that safepoint's 1880 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1881 // llvm::Instruction. Instead, we defer the replacement and deletion to 1882 // after the live sets have been made explicit in the IR, and we no longer 1883 // have raw pointers to worry about. 1884 Replacements.emplace_back( 1885 DeferredReplacement::createRAUW(Call, GCResult)); 1886 } else { 1887 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1888 } 1889 } 1890 1891 Result.StatepointToken = Token; 1892 1893 // Second, create a gc.relocate for every live variable 1894 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder); 1895 } 1896 1897 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1898 // which make the relocations happening at this safepoint explicit. 1899 // 1900 // WARNING: Does not do any fixup to adjust users of the original live 1901 // values. That's the callers responsibility. 1902 static void 1903 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1904 PartiallyConstructedSafepointRecord &Result, 1905 std::vector<DeferredReplacement> &Replacements, 1906 const PointerToBaseTy &PointerToBase) { 1907 const auto &LiveSet = Result.LiveSet; 1908 1909 // Convert to vector for efficient cross referencing. 1910 SmallVector<Value *, 64> BaseVec, LiveVec; 1911 LiveVec.reserve(LiveSet.size()); 1912 BaseVec.reserve(LiveSet.size()); 1913 for (Value *L : LiveSet) { 1914 LiveVec.push_back(L); 1915 assert(PointerToBase.count(L)); 1916 Value *Base = PointerToBase.find(L)->second; 1917 BaseVec.push_back(Base); 1918 } 1919 assert(LiveVec.size() == BaseVec.size()); 1920 1921 // Do the actual rewriting and delete the old statepoint 1922 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements, 1923 PointerToBase); 1924 } 1925 1926 // Helper function for the relocationViaAlloca. 1927 // 1928 // It receives iterator to the statepoint gc relocates and emits a store to the 1929 // assigned location (via allocaMap) for the each one of them. It adds the 1930 // visited values into the visitedLiveValues set, which we will later use them 1931 // for validation checking. 1932 static void 1933 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1934 DenseMap<Value *, AllocaInst *> &AllocaMap, 1935 DenseSet<Value *> &VisitedLiveValues) { 1936 for (User *U : GCRelocs) { 1937 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1938 if (!Relocate) 1939 continue; 1940 1941 Value *OriginalValue = Relocate->getDerivedPtr(); 1942 assert(AllocaMap.count(OriginalValue)); 1943 Value *Alloca = AllocaMap[OriginalValue]; 1944 1945 // Emit store into the related alloca 1946 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1947 // the correct type according to alloca. 1948 assert(Relocate->getNextNode() && 1949 "Should always have one since it's not a terminator"); 1950 IRBuilder<> Builder(Relocate->getNextNode()); 1951 Value *CastedRelocatedValue = 1952 Builder.CreateBitCast(Relocate, 1953 cast<AllocaInst>(Alloca)->getAllocatedType(), 1954 suffixed_name_or(Relocate, ".casted", "")); 1955 1956 new StoreInst(CastedRelocatedValue, Alloca, 1957 cast<Instruction>(CastedRelocatedValue)->getNextNode()); 1958 1959 #ifndef NDEBUG 1960 VisitedLiveValues.insert(OriginalValue); 1961 #endif 1962 } 1963 } 1964 1965 // Helper function for the "relocationViaAlloca". Similar to the 1966 // "insertRelocationStores" but works for rematerialized values. 1967 static void insertRematerializationStores( 1968 const RematerializedValueMapTy &RematerializedValues, 1969 DenseMap<Value *, AllocaInst *> &AllocaMap, 1970 DenseSet<Value *> &VisitedLiveValues) { 1971 for (auto RematerializedValuePair: RematerializedValues) { 1972 Instruction *RematerializedValue = RematerializedValuePair.first; 1973 Value *OriginalValue = RematerializedValuePair.second; 1974 1975 assert(AllocaMap.count(OriginalValue) && 1976 "Can not find alloca for rematerialized value"); 1977 Value *Alloca = AllocaMap[OriginalValue]; 1978 1979 new StoreInst(RematerializedValue, Alloca, 1980 RematerializedValue->getNextNode()); 1981 1982 #ifndef NDEBUG 1983 VisitedLiveValues.insert(OriginalValue); 1984 #endif 1985 } 1986 } 1987 1988 /// Do all the relocation update via allocas and mem2reg 1989 static void relocationViaAlloca( 1990 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1991 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1992 #ifndef NDEBUG 1993 // record initial number of (static) allocas; we'll check we have the same 1994 // number when we get done. 1995 int InitialAllocaNum = 0; 1996 for (Instruction &I : F.getEntryBlock()) 1997 if (isa<AllocaInst>(I)) 1998 InitialAllocaNum++; 1999 #endif 2000 2001 // TODO-PERF: change data structures, reserve 2002 DenseMap<Value *, AllocaInst *> AllocaMap; 2003 SmallVector<AllocaInst *, 200> PromotableAllocas; 2004 // Used later to chack that we have enough allocas to store all values 2005 std::size_t NumRematerializedValues = 0; 2006 PromotableAllocas.reserve(Live.size()); 2007 2008 // Emit alloca for "LiveValue" and record it in "allocaMap" and 2009 // "PromotableAllocas" 2010 const DataLayout &DL = F.getParent()->getDataLayout(); 2011 auto emitAllocaFor = [&](Value *LiveValue) { 2012 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 2013 DL.getAllocaAddrSpace(), "", 2014 F.getEntryBlock().getFirstNonPHI()); 2015 AllocaMap[LiveValue] = Alloca; 2016 PromotableAllocas.push_back(Alloca); 2017 }; 2018 2019 // Emit alloca for each live gc pointer 2020 for (Value *V : Live) 2021 emitAllocaFor(V); 2022 2023 // Emit allocas for rematerialized values 2024 for (const auto &Info : Records) 2025 for (auto RematerializedValuePair : Info.RematerializedValues) { 2026 Value *OriginalValue = RematerializedValuePair.second; 2027 if (AllocaMap.count(OriginalValue) != 0) 2028 continue; 2029 2030 emitAllocaFor(OriginalValue); 2031 ++NumRematerializedValues; 2032 } 2033 2034 // The next two loops are part of the same conceptual operation. We need to 2035 // insert a store to the alloca after the original def and at each 2036 // redefinition. We need to insert a load before each use. These are split 2037 // into distinct loops for performance reasons. 2038 2039 // Update gc pointer after each statepoint: either store a relocated value or 2040 // null (if no relocated value was found for this gc pointer and it is not a 2041 // gc_result). This must happen before we update the statepoint with load of 2042 // alloca otherwise we lose the link between statepoint and old def. 2043 for (const auto &Info : Records) { 2044 Value *Statepoint = Info.StatepointToken; 2045 2046 // This will be used for consistency check 2047 DenseSet<Value *> VisitedLiveValues; 2048 2049 // Insert stores for normal statepoint gc relocates 2050 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 2051 2052 // In case if it was invoke statepoint 2053 // we will insert stores for exceptional path gc relocates. 2054 if (isa<InvokeInst>(Statepoint)) { 2055 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 2056 VisitedLiveValues); 2057 } 2058 2059 // Do similar thing with rematerialized values 2060 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 2061 VisitedLiveValues); 2062 2063 if (ClobberNonLive) { 2064 // As a debugging aid, pretend that an unrelocated pointer becomes null at 2065 // the gc.statepoint. This will turn some subtle GC problems into 2066 // slightly easier to debug SEGVs. Note that on large IR files with 2067 // lots of gc.statepoints this is extremely costly both memory and time 2068 // wise. 2069 SmallVector<AllocaInst *, 64> ToClobber; 2070 for (auto Pair : AllocaMap) { 2071 Value *Def = Pair.first; 2072 AllocaInst *Alloca = Pair.second; 2073 2074 // This value was relocated 2075 if (VisitedLiveValues.count(Def)) { 2076 continue; 2077 } 2078 ToClobber.push_back(Alloca); 2079 } 2080 2081 auto InsertClobbersAt = [&](Instruction *IP) { 2082 for (auto *AI : ToClobber) { 2083 auto AT = AI->getAllocatedType(); 2084 Constant *CPN; 2085 if (AT->isVectorTy()) 2086 CPN = ConstantAggregateZero::get(AT); 2087 else 2088 CPN = ConstantPointerNull::get(cast<PointerType>(AT)); 2089 new StoreInst(CPN, AI, IP); 2090 } 2091 }; 2092 2093 // Insert the clobbering stores. These may get intermixed with the 2094 // gc.results and gc.relocates, but that's fine. 2095 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 2096 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 2097 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 2098 } else { 2099 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 2100 } 2101 } 2102 } 2103 2104 // Update use with load allocas and add store for gc_relocated. 2105 for (auto Pair : AllocaMap) { 2106 Value *Def = Pair.first; 2107 AllocaInst *Alloca = Pair.second; 2108 2109 // We pre-record the uses of allocas so that we dont have to worry about 2110 // later update that changes the user information.. 2111 2112 SmallVector<Instruction *, 20> Uses; 2113 // PERF: trade a linear scan for repeated reallocation 2114 Uses.reserve(Def->getNumUses()); 2115 for (User *U : Def->users()) { 2116 if (!isa<ConstantExpr>(U)) { 2117 // If the def has a ConstantExpr use, then the def is either a 2118 // ConstantExpr use itself or null. In either case 2119 // (recursively in the first, directly in the second), the oop 2120 // it is ultimately dependent on is null and this particular 2121 // use does not need to be fixed up. 2122 Uses.push_back(cast<Instruction>(U)); 2123 } 2124 } 2125 2126 llvm::sort(Uses); 2127 auto Last = std::unique(Uses.begin(), Uses.end()); 2128 Uses.erase(Last, Uses.end()); 2129 2130 for (Instruction *Use : Uses) { 2131 if (isa<PHINode>(Use)) { 2132 PHINode *Phi = cast<PHINode>(Use); 2133 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 2134 if (Def == Phi->getIncomingValue(i)) { 2135 LoadInst *Load = 2136 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 2137 Phi->getIncomingBlock(i)->getTerminator()); 2138 Phi->setIncomingValue(i, Load); 2139 } 2140 } 2141 } else { 2142 LoadInst *Load = 2143 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 2144 Use->replaceUsesOfWith(Def, Load); 2145 } 2146 } 2147 2148 // Emit store for the initial gc value. Store must be inserted after load, 2149 // otherwise store will be in alloca's use list and an extra load will be 2150 // inserted before it. 2151 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 2152 DL.getABITypeAlign(Def->getType())); 2153 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 2154 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 2155 // InvokeInst is a terminator so the store need to be inserted into its 2156 // normal destination block. 2157 BasicBlock *NormalDest = Invoke->getNormalDest(); 2158 Store->insertBefore(NormalDest->getFirstNonPHI()); 2159 } else { 2160 assert(!Inst->isTerminator() && 2161 "The only terminator that can produce a value is " 2162 "InvokeInst which is handled above."); 2163 Store->insertAfter(Inst); 2164 } 2165 } else { 2166 assert(isa<Argument>(Def)); 2167 Store->insertAfter(cast<Instruction>(Alloca)); 2168 } 2169 } 2170 2171 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 2172 "we must have the same allocas with lives"); 2173 (void) NumRematerializedValues; 2174 if (!PromotableAllocas.empty()) { 2175 // Apply mem2reg to promote alloca to SSA 2176 PromoteMemToReg(PromotableAllocas, DT); 2177 } 2178 2179 #ifndef NDEBUG 2180 for (auto &I : F.getEntryBlock()) 2181 if (isa<AllocaInst>(I)) 2182 InitialAllocaNum--; 2183 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 2184 #endif 2185 } 2186 2187 /// Implement a unique function which doesn't require we sort the input 2188 /// vector. Doing so has the effect of changing the output of a couple of 2189 /// tests in ways which make them less useful in testing fused safepoints. 2190 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 2191 SmallSet<T, 8> Seen; 2192 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); 2193 } 2194 2195 /// Insert holders so that each Value is obviously live through the entire 2196 /// lifetime of the call. 2197 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 2198 SmallVectorImpl<CallInst *> &Holders) { 2199 if (Values.empty()) 2200 // No values to hold live, might as well not insert the empty holder 2201 return; 2202 2203 Module *M = Call->getModule(); 2204 // Use a dummy vararg function to actually hold the values live 2205 FunctionCallee Func = M->getOrInsertFunction( 2206 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 2207 if (isa<CallInst>(Call)) { 2208 // For call safepoints insert dummy calls right after safepoint 2209 Holders.push_back( 2210 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 2211 return; 2212 } 2213 // For invoke safepooints insert dummy calls both in normal and 2214 // exceptional destination blocks 2215 auto *II = cast<InvokeInst>(Call); 2216 Holders.push_back(CallInst::Create( 2217 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 2218 Holders.push_back(CallInst::Create( 2219 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 2220 } 2221 2222 static void findLiveReferences( 2223 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 2224 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 2225 GCPtrLivenessData OriginalLivenessData; 2226 computeLiveInValues(DT, F, OriginalLivenessData); 2227 for (size_t i = 0; i < records.size(); i++) { 2228 struct PartiallyConstructedSafepointRecord &info = records[i]; 2229 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 2230 } 2231 } 2232 2233 // Helper function for the "rematerializeLiveValues". It walks use chain 2234 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 2235 // the base or a value it cannot process. Only "simple" values are processed 2236 // (currently it is GEP's and casts). The returned root is examined by the 2237 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 2238 // with all visited values. 2239 static Value* findRematerializableChainToBasePointer( 2240 SmallVectorImpl<Instruction*> &ChainToBase, 2241 Value *CurrentValue) { 2242 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2243 ChainToBase.push_back(GEP); 2244 return findRematerializableChainToBasePointer(ChainToBase, 2245 GEP->getPointerOperand()); 2246 } 2247 2248 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2249 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2250 return CI; 2251 2252 ChainToBase.push_back(CI); 2253 return findRematerializableChainToBasePointer(ChainToBase, 2254 CI->getOperand(0)); 2255 } 2256 2257 // We have reached the root of the chain, which is either equal to the base or 2258 // is the first unsupported value along the use chain. 2259 return CurrentValue; 2260 } 2261 2262 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2263 // chain we are going to rematerialize. 2264 static InstructionCost 2265 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, 2266 TargetTransformInfo &TTI) { 2267 InstructionCost Cost = 0; 2268 2269 for (Instruction *Instr : Chain) { 2270 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2271 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2272 "non noop cast is found during rematerialization"); 2273 2274 Type *SrcTy = CI->getOperand(0)->getType(); 2275 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2276 TTI::getCastContextHint(CI), 2277 TargetTransformInfo::TCK_SizeAndLatency, CI); 2278 2279 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2280 // Cost of the address calculation 2281 Type *ValTy = GEP->getSourceElementType(); 2282 Cost += TTI.getAddressComputationCost(ValTy); 2283 2284 // And cost of the GEP itself 2285 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2286 // allowed for the external usage) 2287 if (!GEP->hasAllConstantIndices()) 2288 Cost += 2; 2289 2290 } else { 2291 llvm_unreachable("unsupported instruction type during rematerialization"); 2292 } 2293 } 2294 2295 return Cost; 2296 } 2297 2298 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2299 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2300 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2301 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2302 return false; 2303 // Map of incoming values and their corresponding basic blocks of 2304 // OrigRootPhi. 2305 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2306 for (unsigned i = 0; i < PhiNum; i++) 2307 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2308 OrigRootPhi.getIncomingBlock(i); 2309 2310 // Both current and base PHIs should have same incoming values and 2311 // the same basic blocks corresponding to the incoming values. 2312 for (unsigned i = 0; i < PhiNum; i++) { 2313 auto CIVI = 2314 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2315 if (CIVI == CurrentIncomingValues.end()) 2316 return false; 2317 BasicBlock *CurrentIncomingBB = CIVI->second; 2318 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2319 return false; 2320 } 2321 return true; 2322 } 2323 2324 // Find derived pointers that can be recomputed cheap enough and fill 2325 // RematerizationCandidates with such candidates. 2326 static void 2327 findRematerializationCandidates(PointerToBaseTy PointerToBase, 2328 RematCandTy &RematerizationCandidates, 2329 TargetTransformInfo &TTI) { 2330 const unsigned int ChainLengthThreshold = 10; 2331 2332 for (auto P2B : PointerToBase) { 2333 auto *Derived = P2B.first; 2334 auto *Base = P2B.second; 2335 // Consider only derived pointers. 2336 if (Derived == Base) 2337 continue; 2338 2339 // For each live pointer find its defining chain. 2340 SmallVector<Instruction *, 3> ChainToBase; 2341 Value *RootOfChain = 2342 findRematerializableChainToBasePointer(ChainToBase, Derived); 2343 2344 // Nothing to do, or chain is too long 2345 if ( ChainToBase.size() == 0 || 2346 ChainToBase.size() > ChainLengthThreshold) 2347 continue; 2348 2349 // Handle the scenario where the RootOfChain is not equal to the 2350 // Base Value, but they are essentially the same phi values. 2351 if (RootOfChain != PointerToBase[Derived]) { 2352 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2353 PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]); 2354 if (!OrigRootPhi || !AlternateRootPhi) 2355 continue; 2356 // PHI nodes that have the same incoming values, and belonging to the same 2357 // basic blocks are essentially the same SSA value. When the original phi 2358 // has incoming values with different base pointers, the original phi is 2359 // marked as conflict, and an additional `AlternateRootPhi` with the same 2360 // incoming values get generated by the findBasePointer function. We need 2361 // to identify the newly generated AlternateRootPhi (.base version of phi) 2362 // and RootOfChain (the original phi node itself) are the same, so that we 2363 // can rematerialize the gep and casts. This is a workaround for the 2364 // deficiency in the findBasePointer algorithm. 2365 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2366 continue; 2367 } 2368 // Compute cost of this chain. 2369 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); 2370 // TODO: We can also account for cases when we will be able to remove some 2371 // of the rematerialized values by later optimization passes. I.e if 2372 // we rematerialized several intersecting chains. Or if original values 2373 // don't have any uses besides this statepoint. 2374 2375 // Ok, there is a candidate. 2376 RematerizlizationCandidateRecord Record; 2377 Record.ChainToBase = ChainToBase; 2378 Record.RootOfChain = RootOfChain; 2379 Record.Cost = Cost; 2380 RematerizationCandidates.insert({ Derived, Record }); 2381 } 2382 } 2383 2384 // From the statepoint live set pick values that are cheaper to recompute then 2385 // to relocate. Remove this values from the live set, rematerialize them after 2386 // statepoint and record them in "Info" structure. Note that similar to 2387 // relocated values we don't do any user adjustments here. 2388 static void rematerializeLiveValues(CallBase *Call, 2389 PartiallyConstructedSafepointRecord &Info, 2390 PointerToBaseTy &PointerToBase, 2391 RematCandTy &RematerizationCandidates, 2392 TargetTransformInfo &TTI) { 2393 // Record values we are going to delete from this statepoint live set. 2394 // We can not di this in following loop due to iterator invalidation. 2395 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2396 2397 for (Value *LiveValue : Info.LiveSet) { 2398 auto It = RematerizationCandidates.find(LiveValue); 2399 if (It == RematerizationCandidates.end()) 2400 continue; 2401 2402 RematerizlizationCandidateRecord &Record = It->second; 2403 2404 InstructionCost Cost = Record.Cost; 2405 // For invokes we need to rematerialize each chain twice - for normal and 2406 // for unwind basic blocks. Model this by multiplying cost by two. 2407 if (isa<InvokeInst>(Call)) 2408 Cost *= 2; 2409 2410 // If it's too expensive - skip it. 2411 if (Cost >= RematerializationThreshold) 2412 continue; 2413 2414 // Remove value from the live set 2415 LiveValuesToBeDeleted.push_back(LiveValue); 2416 2417 // Clone instructions and record them inside "Info" structure. 2418 2419 // For each live pointer find get its defining chain. 2420 SmallVector<Instruction *, 3> ChainToBase = Record.ChainToBase; 2421 // Walk backwards to visit top-most instructions first. 2422 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2423 2424 // Utility function which clones all instructions from "ChainToBase" 2425 // and inserts them before "InsertBefore". Returns rematerialized value 2426 // which should be used after statepoint. 2427 auto rematerializeChain = [&ChainToBase]( 2428 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2429 Instruction *LastClonedValue = nullptr; 2430 Instruction *LastValue = nullptr; 2431 for (Instruction *Instr: ChainToBase) { 2432 // Only GEP's and casts are supported as we need to be careful to not 2433 // introduce any new uses of pointers not in the liveset. 2434 // Note that it's fine to introduce new uses of pointers which were 2435 // otherwise not used after this statepoint. 2436 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2437 2438 Instruction *ClonedValue = Instr->clone(); 2439 ClonedValue->insertBefore(InsertBefore); 2440 ClonedValue->setName(Instr->getName() + ".remat"); 2441 2442 // If it is not first instruction in the chain then it uses previously 2443 // cloned value. We should update it to use cloned value. 2444 if (LastClonedValue) { 2445 assert(LastValue); 2446 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2447 #ifndef NDEBUG 2448 for (auto *OpValue : ClonedValue->operand_values()) { 2449 // Assert that cloned instruction does not use any instructions from 2450 // this chain other than LastClonedValue 2451 assert(!is_contained(ChainToBase, OpValue) && 2452 "incorrect use in rematerialization chain"); 2453 // Assert that the cloned instruction does not use the RootOfChain 2454 // or the AlternateLiveBase. 2455 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2456 } 2457 #endif 2458 } else { 2459 // For the first instruction, replace the use of unrelocated base i.e. 2460 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2461 // live set. They have been proved to be the same PHI nodes. Note 2462 // that the *only* use of the RootOfChain in the ChainToBase list is 2463 // the first Value in the list. 2464 if (RootOfChain != AlternateLiveBase) 2465 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2466 } 2467 2468 LastClonedValue = ClonedValue; 2469 LastValue = Instr; 2470 } 2471 assert(LastClonedValue); 2472 return LastClonedValue; 2473 }; 2474 2475 // Different cases for calls and invokes. For invokes we need to clone 2476 // instructions both on normal and unwind path. 2477 if (isa<CallInst>(Call)) { 2478 Instruction *InsertBefore = Call->getNextNode(); 2479 assert(InsertBefore); 2480 Instruction *RematerializedValue = rematerializeChain( 2481 InsertBefore, Record.RootOfChain, PointerToBase[LiveValue]); 2482 Info.RematerializedValues[RematerializedValue] = LiveValue; 2483 } else { 2484 auto *Invoke = cast<InvokeInst>(Call); 2485 2486 Instruction *NormalInsertBefore = 2487 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2488 Instruction *UnwindInsertBefore = 2489 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2490 2491 Instruction *NormalRematerializedValue = rematerializeChain( 2492 NormalInsertBefore, Record.RootOfChain, PointerToBase[LiveValue]); 2493 Instruction *UnwindRematerializedValue = rematerializeChain( 2494 UnwindInsertBefore, Record.RootOfChain, PointerToBase[LiveValue]); 2495 2496 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2497 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2498 } 2499 } 2500 2501 // Remove rematerializaed values from the live set 2502 for (auto *LiveValue: LiveValuesToBeDeleted) { 2503 Info.LiveSet.remove(LiveValue); 2504 } 2505 } 2506 2507 static bool inlineGetBaseAndOffset(Function &F, 2508 SmallVectorImpl<CallInst *> &Intrinsics, 2509 DefiningValueMapTy &DVCache, 2510 IsKnownBaseMapTy &KnownBases) { 2511 auto &Context = F.getContext(); 2512 auto &DL = F.getParent()->getDataLayout(); 2513 bool Changed = false; 2514 2515 for (auto *Callsite : Intrinsics) 2516 switch (Callsite->getIntrinsicID()) { 2517 case Intrinsic::experimental_gc_get_pointer_base: { 2518 Changed = true; 2519 Value *Base = 2520 findBasePointer(Callsite->getOperand(0), DVCache, KnownBases); 2521 assert(!DVCache.count(Callsite)); 2522 auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast( 2523 Base, Callsite->getType(), suffixed_name_or(Base, ".cast", "")); 2524 if (BaseBC != Base) 2525 DVCache[BaseBC] = Base; 2526 Callsite->replaceAllUsesWith(BaseBC); 2527 if (!BaseBC->hasName()) 2528 BaseBC->takeName(Callsite); 2529 Callsite->eraseFromParent(); 2530 break; 2531 } 2532 case Intrinsic::experimental_gc_get_pointer_offset: { 2533 Changed = true; 2534 Value *Derived = Callsite->getOperand(0); 2535 Value *Base = findBasePointer(Derived, DVCache, KnownBases); 2536 assert(!DVCache.count(Callsite)); 2537 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 2538 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 2539 IRBuilder<> Builder(Callsite); 2540 Value *BaseInt = 2541 Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize), 2542 suffixed_name_or(Base, ".int", "")); 2543 Value *DerivedInt = 2544 Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize), 2545 suffixed_name_or(Derived, ".int", "")); 2546 Value *Offset = Builder.CreateSub(DerivedInt, BaseInt); 2547 Callsite->replaceAllUsesWith(Offset); 2548 Offset->takeName(Callsite); 2549 Callsite->eraseFromParent(); 2550 break; 2551 } 2552 default: 2553 llvm_unreachable("Unknown intrinsic"); 2554 } 2555 2556 return Changed; 2557 } 2558 2559 static bool insertParsePoints(Function &F, DominatorTree &DT, 2560 TargetTransformInfo &TTI, 2561 SmallVectorImpl<CallBase *> &ToUpdate, 2562 DefiningValueMapTy &DVCache, 2563 IsKnownBaseMapTy &KnownBases) { 2564 #ifndef NDEBUG 2565 // Validate the input 2566 std::set<CallBase *> Uniqued; 2567 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2568 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2569 2570 for (CallBase *Call : ToUpdate) 2571 assert(Call->getFunction() == &F); 2572 #endif 2573 2574 // When inserting gc.relocates for invokes, we need to be able to insert at 2575 // the top of the successor blocks. See the comment on 2576 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2577 // may restructure the CFG. 2578 for (CallBase *Call : ToUpdate) { 2579 auto *II = dyn_cast<InvokeInst>(Call); 2580 if (!II) 2581 continue; 2582 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2583 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2584 } 2585 2586 // A list of dummy calls added to the IR to keep various values obviously 2587 // live in the IR. We'll remove all of these when done. 2588 SmallVector<CallInst *, 64> Holders; 2589 2590 // Insert a dummy call with all of the deopt operands we'll need for the 2591 // actual safepoint insertion as arguments. This ensures reference operands 2592 // in the deopt argument list are considered live through the safepoint (and 2593 // thus makes sure they get relocated.) 2594 for (CallBase *Call : ToUpdate) { 2595 SmallVector<Value *, 64> DeoptValues; 2596 2597 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2598 assert(!isUnhandledGCPointerType(Arg->getType()) && 2599 "support for FCA unimplemented"); 2600 if (isHandledGCPointerType(Arg->getType())) 2601 DeoptValues.push_back(Arg); 2602 } 2603 2604 insertUseHolderAfter(Call, DeoptValues, Holders); 2605 } 2606 2607 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2608 2609 // A) Identify all gc pointers which are statically live at the given call 2610 // site. 2611 findLiveReferences(F, DT, ToUpdate, Records); 2612 2613 /// Global mapping from live pointers to a base-defining-value. 2614 PointerToBaseTy PointerToBase; 2615 2616 // B) Find the base pointers for each live pointer 2617 for (size_t i = 0; i < Records.size(); i++) { 2618 PartiallyConstructedSafepointRecord &info = Records[i]; 2619 findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases); 2620 } 2621 if (PrintBasePointers) { 2622 errs() << "Base Pairs (w/o Relocation):\n"; 2623 for (auto &Pair : PointerToBase) { 2624 errs() << " derived "; 2625 Pair.first->printAsOperand(errs(), false); 2626 errs() << " base "; 2627 Pair.second->printAsOperand(errs(), false); 2628 errs() << "\n"; 2629 ; 2630 } 2631 } 2632 2633 // The base phi insertion logic (for any safepoint) may have inserted new 2634 // instructions which are now live at some safepoint. The simplest such 2635 // example is: 2636 // loop: 2637 // phi a <-- will be a new base_phi here 2638 // safepoint 1 <-- that needs to be live here 2639 // gep a + 1 2640 // safepoint 2 2641 // br loop 2642 // We insert some dummy calls after each safepoint to definitely hold live 2643 // the base pointers which were identified for that safepoint. We'll then 2644 // ask liveness for _every_ base inserted to see what is now live. Then we 2645 // remove the dummy calls. 2646 Holders.reserve(Holders.size() + Records.size()); 2647 for (size_t i = 0; i < Records.size(); i++) { 2648 PartiallyConstructedSafepointRecord &Info = Records[i]; 2649 2650 SmallVector<Value *, 128> Bases; 2651 for (auto *Derived : Info.LiveSet) { 2652 assert(PointerToBase.count(Derived) && "Missed base for derived pointer"); 2653 Bases.push_back(PointerToBase[Derived]); 2654 } 2655 2656 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2657 } 2658 2659 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2660 // need to rerun liveness. We may *also* have inserted new defs, but that's 2661 // not the key issue. 2662 recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase); 2663 2664 if (PrintBasePointers) { 2665 errs() << "Base Pairs: (w/Relocation)\n"; 2666 for (auto Pair : PointerToBase) { 2667 errs() << " derived "; 2668 Pair.first->printAsOperand(errs(), false); 2669 errs() << " base "; 2670 Pair.second->printAsOperand(errs(), false); 2671 errs() << "\n"; 2672 } 2673 } 2674 2675 // It is possible that non-constant live variables have a constant base. For 2676 // example, a GEP with a variable offset from a global. In this case we can 2677 // remove it from the liveset. We already don't add constants to the liveset 2678 // because we assume they won't move at runtime and the GC doesn't need to be 2679 // informed about them. The same reasoning applies if the base is constant. 2680 // Note that the relocation placement code relies on this filtering for 2681 // correctness as it expects the base to be in the liveset, which isn't true 2682 // if the base is constant. 2683 for (auto &Info : Records) { 2684 Info.LiveSet.remove_if([&](Value *LiveV) { 2685 assert(PointerToBase.count(LiveV) && "Missed base for derived pointer"); 2686 return isa<Constant>(PointerToBase[LiveV]); 2687 }); 2688 } 2689 2690 for (CallInst *CI : Holders) 2691 CI->eraseFromParent(); 2692 2693 Holders.clear(); 2694 2695 // Compute the cost of possible re-materialization of derived pointers. 2696 RematCandTy RematerizationCandidates; 2697 findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI); 2698 2699 // In order to reduce live set of statepoint we might choose to rematerialize 2700 // some values instead of relocating them. This is purely an optimization and 2701 // does not influence correctness. 2702 for (size_t i = 0; i < Records.size(); i++) 2703 rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase, 2704 RematerizationCandidates, TTI); 2705 2706 // We need this to safely RAUW and delete call or invoke return values that 2707 // may themselves be live over a statepoint. For details, please see usage in 2708 // makeStatepointExplicitImpl. 2709 std::vector<DeferredReplacement> Replacements; 2710 2711 // Now run through and replace the existing statepoints with new ones with 2712 // the live variables listed. We do not yet update uses of the values being 2713 // relocated. We have references to live variables that need to 2714 // survive to the last iteration of this loop. (By construction, the 2715 // previous statepoint can not be a live variable, thus we can and remove 2716 // the old statepoint calls as we go.) 2717 for (size_t i = 0; i < Records.size(); i++) 2718 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements, 2719 PointerToBase); 2720 2721 ToUpdate.clear(); // prevent accident use of invalid calls. 2722 2723 for (auto &PR : Replacements) 2724 PR.doReplacement(); 2725 2726 Replacements.clear(); 2727 2728 for (auto &Info : Records) { 2729 // These live sets may contain state Value pointers, since we replaced calls 2730 // with operand bundles with calls wrapped in gc.statepoint, and some of 2731 // those calls may have been def'ing live gc pointers. Clear these out to 2732 // avoid accidentally using them. 2733 // 2734 // TODO: We should create a separate data structure that does not contain 2735 // these live sets, and migrate to using that data structure from this point 2736 // onward. 2737 Info.LiveSet.clear(); 2738 } 2739 PointerToBase.clear(); 2740 2741 // Do all the fixups of the original live variables to their relocated selves 2742 SmallVector<Value *, 128> Live; 2743 for (size_t i = 0; i < Records.size(); i++) { 2744 PartiallyConstructedSafepointRecord &Info = Records[i]; 2745 2746 // We can't simply save the live set from the original insertion. One of 2747 // the live values might be the result of a call which needs a safepoint. 2748 // That Value* no longer exists and we need to use the new gc_result. 2749 // Thankfully, the live set is embedded in the statepoint (and updated), so 2750 // we just grab that. 2751 llvm::append_range(Live, Info.StatepointToken->gc_args()); 2752 #ifndef NDEBUG 2753 // Do some basic validation checking on our liveness results before 2754 // performing relocation. Relocation can and will turn mistakes in liveness 2755 // results into non-sensical code which is must harder to debug. 2756 // TODO: It would be nice to test consistency as well 2757 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2758 "statepoint must be reachable or liveness is meaningless"); 2759 for (Value *V : Info.StatepointToken->gc_args()) { 2760 if (!isa<Instruction>(V)) 2761 // Non-instruction values trivial dominate all possible uses 2762 continue; 2763 auto *LiveInst = cast<Instruction>(V); 2764 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2765 "unreachable values should never be live"); 2766 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2767 "basic SSA liveness expectation violated by liveness analysis"); 2768 } 2769 #endif 2770 } 2771 unique_unsorted(Live); 2772 2773 #ifndef NDEBUG 2774 // Validation check 2775 for (auto *Ptr : Live) 2776 assert(isHandledGCPointerType(Ptr->getType()) && 2777 "must be a gc pointer type"); 2778 #endif 2779 2780 relocationViaAlloca(F, DT, Live, Records); 2781 return !Records.empty(); 2782 } 2783 2784 // List of all parameter and return attributes which must be stripped when 2785 // lowering from the abstract machine model. Note that we list attributes 2786 // here which aren't valid as return attributes, that is okay. 2787 static AttributeMask getParamAndReturnAttributesToRemove() { 2788 AttributeMask R; 2789 R.addAttribute(Attribute::Dereferenceable); 2790 R.addAttribute(Attribute::DereferenceableOrNull); 2791 R.addAttribute(Attribute::ReadNone); 2792 R.addAttribute(Attribute::ReadOnly); 2793 R.addAttribute(Attribute::WriteOnly); 2794 R.addAttribute(Attribute::NoAlias); 2795 R.addAttribute(Attribute::NoFree); 2796 return R; 2797 } 2798 2799 static void stripNonValidAttributesFromPrototype(Function &F) { 2800 LLVMContext &Ctx = F.getContext(); 2801 2802 // Intrinsics are very delicate. Lowering sometimes depends the presence 2803 // of certain attributes for correctness, but we may have also inferred 2804 // additional ones in the abstract machine model which need stripped. This 2805 // assumes that the attributes defined in Intrinsic.td are conservatively 2806 // correct for both physical and abstract model. 2807 if (Intrinsic::ID id = F.getIntrinsicID()) { 2808 F.setAttributes(Intrinsic::getAttributes(Ctx, id)); 2809 return; 2810 } 2811 2812 AttributeMask R = getParamAndReturnAttributesToRemove(); 2813 for (Argument &A : F.args()) 2814 if (isa<PointerType>(A.getType())) 2815 F.removeParamAttrs(A.getArgNo(), R); 2816 2817 if (isa<PointerType>(F.getReturnType())) 2818 F.removeRetAttrs(R); 2819 2820 for (auto Attr : FnAttrsToStrip) 2821 F.removeFnAttr(Attr); 2822 } 2823 2824 /// Certain metadata on instructions are invalid after running RS4GC. 2825 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2826 /// optimize functions. We drop such metadata on the instruction. 2827 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2828 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2829 return; 2830 // These are the attributes that are still valid on loads and stores after 2831 // RS4GC. 2832 // The metadata implying dereferenceability and noalias are (conservatively) 2833 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2834 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2835 // touch the entire heap including noalias objects. Note: The reasoning is 2836 // same as stripping the dereferenceability and noalias attributes that are 2837 // analogous to the metadata counterparts. 2838 // We also drop the invariant.load metadata on the load because that metadata 2839 // implies the address operand to the load points to memory that is never 2840 // changed once it became dereferenceable. This is no longer true after RS4GC. 2841 // Similar reasoning applies to invariant.group metadata, which applies to 2842 // loads within a group. 2843 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2844 LLVMContext::MD_range, 2845 LLVMContext::MD_alias_scope, 2846 LLVMContext::MD_nontemporal, 2847 LLVMContext::MD_nonnull, 2848 LLVMContext::MD_align, 2849 LLVMContext::MD_type}; 2850 2851 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2852 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2853 } 2854 2855 static void stripNonValidDataFromBody(Function &F) { 2856 if (F.empty()) 2857 return; 2858 2859 LLVMContext &Ctx = F.getContext(); 2860 MDBuilder Builder(Ctx); 2861 2862 // Set of invariantstart instructions that we need to remove. 2863 // Use this to avoid invalidating the instruction iterator. 2864 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2865 2866 for (Instruction &I : instructions(F)) { 2867 // invariant.start on memory location implies that the referenced memory 2868 // location is constant and unchanging. This is no longer true after 2869 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2870 // which frees the entire heap and the presence of invariant.start allows 2871 // the optimizer to sink the load of a memory location past a statepoint, 2872 // which is incorrect. 2873 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2874 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2875 InvariantStartInstructions.push_back(II); 2876 continue; 2877 } 2878 2879 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2880 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2881 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2882 } 2883 2884 stripInvalidMetadataFromInstruction(I); 2885 2886 AttributeMask R = getParamAndReturnAttributesToRemove(); 2887 if (auto *Call = dyn_cast<CallBase>(&I)) { 2888 for (int i = 0, e = Call->arg_size(); i != e; i++) 2889 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2890 Call->removeParamAttrs(i, R); 2891 if (isa<PointerType>(Call->getType())) 2892 Call->removeRetAttrs(R); 2893 } 2894 } 2895 2896 // Delete the invariant.start instructions and RAUW undef. 2897 for (auto *II : InvariantStartInstructions) { 2898 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2899 II->eraseFromParent(); 2900 } 2901 } 2902 2903 /// Returns true if this function should be rewritten by this pass. The main 2904 /// point of this function is as an extension point for custom logic. 2905 static bool shouldRewriteStatepointsIn(Function &F) { 2906 // TODO: This should check the GCStrategy 2907 if (F.hasGC()) { 2908 const auto &FunctionGCName = F.getGC(); 2909 const StringRef StatepointExampleName("statepoint-example"); 2910 const StringRef CoreCLRName("coreclr"); 2911 return (StatepointExampleName == FunctionGCName) || 2912 (CoreCLRName == FunctionGCName); 2913 } else 2914 return false; 2915 } 2916 2917 static void stripNonValidData(Module &M) { 2918 #ifndef NDEBUG 2919 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2920 #endif 2921 2922 for (Function &F : M) 2923 stripNonValidAttributesFromPrototype(F); 2924 2925 for (Function &F : M) 2926 stripNonValidDataFromBody(F); 2927 } 2928 2929 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2930 TargetTransformInfo &TTI, 2931 const TargetLibraryInfo &TLI) { 2932 assert(!F.isDeclaration() && !F.empty() && 2933 "need function body to rewrite statepoints in"); 2934 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2935 2936 auto NeedsRewrite = [&TLI](Instruction &I) { 2937 if (const auto *Call = dyn_cast<CallBase>(&I)) { 2938 if (isa<GCStatepointInst>(Call)) 2939 return false; 2940 if (callsGCLeafFunction(Call, TLI)) 2941 return false; 2942 2943 // Normally it's up to the frontend to make sure that non-leaf calls also 2944 // have proper deopt state if it is required. We make an exception for 2945 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics 2946 // these are non-leaf by default. They might be generated by the optimizer 2947 // which doesn't know how to produce a proper deopt state. So if we see a 2948 // non-leaf memcpy/memmove without deopt state just treat it as a leaf 2949 // copy and don't produce a statepoint. 2950 if (!AllowStatepointWithNoDeoptInfo && 2951 !Call->getOperandBundle(LLVMContext::OB_deopt)) { 2952 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && 2953 "Don't expect any other calls here!"); 2954 return false; 2955 } 2956 return true; 2957 } 2958 return false; 2959 }; 2960 2961 // Delete any unreachable statepoints so that we don't have unrewritten 2962 // statepoints surviving this pass. This makes testing easier and the 2963 // resulting IR less confusing to human readers. 2964 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2965 bool MadeChange = removeUnreachableBlocks(F, &DTU); 2966 // Flush the Dominator Tree. 2967 DTU.getDomTree(); 2968 2969 // Gather all the statepoints which need rewritten. Be careful to only 2970 // consider those in reachable code since we need to ask dominance queries 2971 // when rewriting. We'll delete the unreachable ones in a moment. 2972 SmallVector<CallBase *, 64> ParsePointNeeded; 2973 SmallVector<CallInst *, 64> Intrinsics; 2974 for (Instruction &I : instructions(F)) { 2975 // TODO: only the ones with the flag set! 2976 if (NeedsRewrite(I)) { 2977 // NOTE removeUnreachableBlocks() is stronger than 2978 // DominatorTree::isReachableFromEntry(). In other words 2979 // removeUnreachableBlocks can remove some blocks for which 2980 // isReachableFromEntry() returns true. 2981 assert(DT.isReachableFromEntry(I.getParent()) && 2982 "no unreachable blocks expected"); 2983 ParsePointNeeded.push_back(cast<CallBase>(&I)); 2984 } 2985 if (auto *CI = dyn_cast<CallInst>(&I)) 2986 if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || 2987 CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) 2988 Intrinsics.emplace_back(CI); 2989 } 2990 2991 // Return early if no work to do. 2992 if (ParsePointNeeded.empty() && Intrinsics.empty()) 2993 return MadeChange; 2994 2995 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2996 // These are created by LCSSA. They have the effect of increasing the size 2997 // of liveness sets for no good reason. It may be harder to do this post 2998 // insertion since relocations and base phis can confuse things. 2999 for (BasicBlock &BB : F) 3000 if (BB.getUniquePredecessor()) 3001 MadeChange |= FoldSingleEntryPHINodes(&BB); 3002 3003 // Before we start introducing relocations, we want to tweak the IR a bit to 3004 // avoid unfortunate code generation effects. The main example is that we 3005 // want to try to make sure the comparison feeding a branch is after any 3006 // safepoints. Otherwise, we end up with a comparison of pre-relocation 3007 // values feeding a branch after relocation. This is semantically correct, 3008 // but results in extra register pressure since both the pre-relocation and 3009 // post-relocation copies must be available in registers. For code without 3010 // relocations this is handled elsewhere, but teaching the scheduler to 3011 // reverse the transform we're about to do would be slightly complex. 3012 // Note: This may extend the live range of the inputs to the icmp and thus 3013 // increase the liveset of any statepoint we move over. This is profitable 3014 // as long as all statepoints are in rare blocks. If we had in-register 3015 // lowering for live values this would be a much safer transform. 3016 auto getConditionInst = [](Instruction *TI) -> Instruction * { 3017 if (auto *BI = dyn_cast<BranchInst>(TI)) 3018 if (BI->isConditional()) 3019 return dyn_cast<Instruction>(BI->getCondition()); 3020 // TODO: Extend this to handle switches 3021 return nullptr; 3022 }; 3023 for (BasicBlock &BB : F) { 3024 Instruction *TI = BB.getTerminator(); 3025 if (auto *Cond = getConditionInst(TI)) 3026 // TODO: Handle more than just ICmps here. We should be able to move 3027 // most instructions without side effects or memory access. 3028 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 3029 MadeChange = true; 3030 Cond->moveBefore(TI); 3031 } 3032 } 3033 3034 // Nasty workaround - The base computation code in the main algorithm doesn't 3035 // consider the fact that a GEP can be used to convert a scalar to a vector. 3036 // The right fix for this is to integrate GEPs into the base rewriting 3037 // algorithm properly, this is just a short term workaround to prevent 3038 // crashes by canonicalizing such GEPs into fully vector GEPs. 3039 for (Instruction &I : instructions(F)) { 3040 if (!isa<GetElementPtrInst>(I)) 3041 continue; 3042 3043 unsigned VF = 0; 3044 for (unsigned i = 0; i < I.getNumOperands(); i++) 3045 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 3046 assert(VF == 0 || 3047 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 3048 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 3049 } 3050 3051 // It's the vector to scalar traversal through the pointer operand which 3052 // confuses base pointer rewriting, so limit ourselves to that case. 3053 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 3054 IRBuilder<> B(&I); 3055 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 3056 I.setOperand(0, Splat); 3057 MadeChange = true; 3058 } 3059 } 3060 3061 // Cache the 'defining value' relation used in the computation and 3062 // insertion of base phis and selects. This ensures that we don't insert 3063 // large numbers of duplicate base_phis. Use one cache for both 3064 // inlineGetBaseAndOffset() and insertParsePoints(). 3065 DefiningValueMapTy DVCache; 3066 3067 // Mapping between a base values and a flag indicating whether it's a known 3068 // base or not. 3069 IsKnownBaseMapTy KnownBases; 3070 3071 if (!Intrinsics.empty()) 3072 // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding 3073 // live references. 3074 MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases); 3075 3076 if (!ParsePointNeeded.empty()) 3077 MadeChange |= 3078 insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases); 3079 3080 return MadeChange; 3081 } 3082 3083 // liveness computation via standard dataflow 3084 // ------------------------------------------------------------------- 3085 3086 // TODO: Consider using bitvectors for liveness, the set of potentially 3087 // interesting values should be small and easy to pre-compute. 3088 3089 /// Compute the live-in set for the location rbegin starting from 3090 /// the live-out set of the basic block 3091 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 3092 BasicBlock::reverse_iterator End, 3093 SetVector<Value *> &LiveTmp) { 3094 for (auto &I : make_range(Begin, End)) { 3095 // KILL/Def - Remove this definition from LiveIn 3096 LiveTmp.remove(&I); 3097 3098 // Don't consider *uses* in PHI nodes, we handle their contribution to 3099 // predecessor blocks when we seed the LiveOut sets 3100 if (isa<PHINode>(I)) 3101 continue; 3102 3103 // USE - Add to the LiveIn set for this instruction 3104 for (Value *V : I.operands()) { 3105 assert(!isUnhandledGCPointerType(V->getType()) && 3106 "support for FCA unimplemented"); 3107 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 3108 // The choice to exclude all things constant here is slightly subtle. 3109 // There are two independent reasons: 3110 // - We assume that things which are constant (from LLVM's definition) 3111 // do not move at runtime. For example, the address of a global 3112 // variable is fixed, even though it's contents may not be. 3113 // - Second, we can't disallow arbitrary inttoptr constants even 3114 // if the language frontend does. Optimization passes are free to 3115 // locally exploit facts without respect to global reachability. This 3116 // can create sections of code which are dynamically unreachable and 3117 // contain just about anything. (see constants.ll in tests) 3118 LiveTmp.insert(V); 3119 } 3120 } 3121 } 3122 } 3123 3124 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 3125 for (BasicBlock *Succ : successors(BB)) { 3126 for (auto &I : *Succ) { 3127 PHINode *PN = dyn_cast<PHINode>(&I); 3128 if (!PN) 3129 break; 3130 3131 Value *V = PN->getIncomingValueForBlock(BB); 3132 assert(!isUnhandledGCPointerType(V->getType()) && 3133 "support for FCA unimplemented"); 3134 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 3135 LiveTmp.insert(V); 3136 } 3137 } 3138 } 3139 3140 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 3141 SetVector<Value *> KillSet; 3142 for (Instruction &I : *BB) 3143 if (isHandledGCPointerType(I.getType())) 3144 KillSet.insert(&I); 3145 return KillSet; 3146 } 3147 3148 #ifndef NDEBUG 3149 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 3150 /// validation check for the liveness computation. 3151 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 3152 Instruction *TI, bool TermOkay = false) { 3153 for (Value *V : Live) { 3154 if (auto *I = dyn_cast<Instruction>(V)) { 3155 // The terminator can be a member of the LiveOut set. LLVM's definition 3156 // of instruction dominance states that V does not dominate itself. As 3157 // such, we need to special case this to allow it. 3158 if (TermOkay && TI == I) 3159 continue; 3160 assert(DT.dominates(I, TI) && 3161 "basic SSA liveness expectation violated by liveness analysis"); 3162 } 3163 } 3164 } 3165 3166 /// Check that all the liveness sets used during the computation of liveness 3167 /// obey basic SSA properties. This is useful for finding cases where we miss 3168 /// a def. 3169 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 3170 BasicBlock &BB) { 3171 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 3172 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 3173 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 3174 } 3175 #endif 3176 3177 static void computeLiveInValues(DominatorTree &DT, Function &F, 3178 GCPtrLivenessData &Data) { 3179 SmallSetVector<BasicBlock *, 32> Worklist; 3180 3181 // Seed the liveness for each individual block 3182 for (BasicBlock &BB : F) { 3183 Data.KillSet[&BB] = computeKillSet(&BB); 3184 Data.LiveSet[&BB].clear(); 3185 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 3186 3187 #ifndef NDEBUG 3188 for (Value *Kill : Data.KillSet[&BB]) 3189 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 3190 #endif 3191 3192 Data.LiveOut[&BB] = SetVector<Value *>(); 3193 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 3194 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 3195 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 3196 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 3197 if (!Data.LiveIn[&BB].empty()) 3198 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 3199 } 3200 3201 // Propagate that liveness until stable 3202 while (!Worklist.empty()) { 3203 BasicBlock *BB = Worklist.pop_back_val(); 3204 3205 // Compute our new liveout set, then exit early if it hasn't changed despite 3206 // the contribution of our successor. 3207 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3208 const auto OldLiveOutSize = LiveOut.size(); 3209 for (BasicBlock *Succ : successors(BB)) { 3210 assert(Data.LiveIn.count(Succ)); 3211 LiveOut.set_union(Data.LiveIn[Succ]); 3212 } 3213 // assert OutLiveOut is a subset of LiveOut 3214 if (OldLiveOutSize == LiveOut.size()) { 3215 // If the sets are the same size, then we didn't actually add anything 3216 // when unioning our successors LiveIn. Thus, the LiveIn of this block 3217 // hasn't changed. 3218 continue; 3219 } 3220 Data.LiveOut[BB] = LiveOut; 3221 3222 // Apply the effects of this basic block 3223 SetVector<Value *> LiveTmp = LiveOut; 3224 LiveTmp.set_union(Data.LiveSet[BB]); 3225 LiveTmp.set_subtract(Data.KillSet[BB]); 3226 3227 assert(Data.LiveIn.count(BB)); 3228 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 3229 // assert: OldLiveIn is a subset of LiveTmp 3230 if (OldLiveIn.size() != LiveTmp.size()) { 3231 Data.LiveIn[BB] = LiveTmp; 3232 Worklist.insert(pred_begin(BB), pred_end(BB)); 3233 } 3234 } // while (!Worklist.empty()) 3235 3236 #ifndef NDEBUG 3237 // Verify our output against SSA properties. This helps catch any 3238 // missing kills during the above iteration. 3239 for (BasicBlock &BB : F) 3240 checkBasicSSA(DT, Data, BB); 3241 #endif 3242 } 3243 3244 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 3245 StatepointLiveSetTy &Out) { 3246 BasicBlock *BB = Inst->getParent(); 3247 3248 // Note: The copy is intentional and required 3249 assert(Data.LiveOut.count(BB)); 3250 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3251 3252 // We want to handle the statepoint itself oddly. It's 3253 // call result is not live (normal), nor are it's arguments 3254 // (unless they're used again later). This adjustment is 3255 // specifically what we need to relocate 3256 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 3257 LiveOut); 3258 LiveOut.remove(Inst); 3259 Out.insert(LiveOut.begin(), LiveOut.end()); 3260 } 3261 3262 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 3263 CallBase *Call, 3264 PartiallyConstructedSafepointRecord &Info, 3265 PointerToBaseTy &PointerToBase) { 3266 StatepointLiveSetTy Updated; 3267 findLiveSetAtInst(Call, RevisedLivenessData, Updated); 3268 3269 // We may have base pointers which are now live that weren't before. We need 3270 // to update the PointerToBase structure to reflect this. 3271 for (auto *V : Updated) 3272 PointerToBase.insert({ V, V }); 3273 3274 Info.LiveSet = Updated; 3275 } 3276