1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 struct RewriteStatepointsForGC : public FunctionPass { 59 static char ID; // Pass identification, replacement for typeid 60 61 RewriteStatepointsForGC() : FunctionPass(ID) { 62 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 63 } 64 bool runOnFunction(Function &F) override; 65 66 void getAnalysisUsage(AnalysisUsage &AU) const override { 67 // We add and rewrite a bunch of instructions, but don't really do much 68 // else. We could in theory preserve a lot more analyses here. 69 AU.addRequired<DominatorTreeWrapperPass>(); 70 } 71 }; 72 73 char RewriteStatepointsForGC::ID = 0; 74 75 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 76 return new RewriteStatepointsForGC(); 77 } 78 79 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 80 "Make relocations explicit at statepoints", false, false) 81 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 82 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 83 "Make relocations explicit at statepoints", false, false) 84 85 namespace { 86 // The type of the internal cache used inside the findBasePointers family 87 // of functions. From the callers perspective, this is an opaque type and 88 // should not be inspected. 89 // 90 // In the actual implementation this caches two relations: 91 // - The base relation itself (i.e. this pointer is based on that one) 92 // - The base defining value relation (i.e. before base_phi insertion) 93 // Generally, after the execution of a full findBasePointer call, only the 94 // base relation will remain. Internally, we add a mixture of the two 95 // types, then update all the second type to the first type 96 typedef std::map<Value *, Value *> DefiningValueMapTy; 97 } 98 99 namespace { 100 struct PartiallyConstructedSafepointRecord { 101 /// The set of values known to be live accross this safepoint 102 std::set<llvm::Value *> liveset; 103 104 /// Mapping from live pointers to a base-defining-value 105 std::map<llvm::Value *, llvm::Value *> base_pairs; 106 107 /// Any new values which were added to the IR during base pointer analysis 108 /// for this safepoint 109 std::set<llvm::Value *> newInsertedDefs; 110 111 /// The bounds of the inserted code for the safepoint 112 std::pair<Instruction *, Instruction *> safepoint; 113 114 // Instruction to which exceptional gc relocates are attached 115 // Makes it easier to iterate through them during relocationViaAlloca. 116 Instruction *exceptional_relocates_token; 117 118 /// The result of the safepointing call (or nullptr) 119 Value *result; 120 }; 121 } 122 123 // TODO: Once we can get to the GCStrategy, this becomes 124 // Optional<bool> isGCManagedPointer(const Value *V) const override { 125 126 static bool isGCPointerType(const Type *T) { 127 if (const PointerType *PT = dyn_cast<PointerType>(T)) 128 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 129 // GC managed heap. We know that a pointer into this heap needs to be 130 // updated and that no other pointer does. 131 return (1 == PT->getAddressSpace()); 132 return false; 133 } 134 135 /// Return true if the Value is a gc reference type which is potentially used 136 /// after the instruction 'loc'. This is only used with the edge reachability 137 /// liveness code. Note: It is assumed the V dominates loc. 138 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, 139 LoopInfo *LI) { 140 if (!isGCPointerType(V.getType())) 141 return false; 142 143 if (V.use_empty()) 144 return false; 145 146 // Given assumption that V dominates loc, this may be live 147 return true; 148 } 149 150 #ifndef NDEBUG 151 static bool isAggWhichContainsGCPtrType(Type *Ty) { 152 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 153 return isGCPointerType(VT->getScalarType()); 154 else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 155 return isGCPointerType(AT->getElementType()) || 156 isAggWhichContainsGCPtrType(AT->getElementType()); 157 } else if (StructType *ST = dyn_cast<StructType>(Ty)) { 158 bool UnsupportedType = false; 159 for (Type *SubType : ST->subtypes()) 160 UnsupportedType |= 161 isGCPointerType(SubType) || isAggWhichContainsGCPtrType(SubType); 162 return UnsupportedType; 163 } else 164 return false; 165 } 166 #endif 167 168 // Conservatively identifies any definitions which might be live at the 169 // given instruction. The analysis is performed immediately before the 170 // given instruction. Values defined by that instruction are not considered 171 // live. Values used by that instruction are considered live. 172 // 173 // preconditions: valid IR graph, term is either a terminator instruction or 174 // a call instruction, pred is the basic block of term, DT, LI are valid 175 // 176 // side effects: none, does not mutate IR 177 // 178 // postconditions: populates liveValues as discussed above 179 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 180 DominatorTree &DT, LoopInfo *LI, 181 std::set<llvm::Value *> &liveValues) { 182 liveValues.clear(); 183 184 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 185 186 Function *F = pred->getParent(); 187 188 auto is_live_gc_reference = 189 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 190 191 // Are there any gc pointer arguments live over this point? This needs to be 192 // special cased since arguments aren't defined in basic blocks. 193 for (Argument &arg : F->args()) { 194 assert(!isAggWhichContainsGCPtrType(arg.getType()) && 195 "support for FCA unimplemented"); 196 197 if (is_live_gc_reference(arg)) { 198 liveValues.insert(&arg); 199 } 200 } 201 202 // Walk through all dominating blocks - the ones which can contain 203 // definitions used in this block - and check to see if any of the values 204 // they define are used in locations potentially reachable from the 205 // interesting instruction. 206 BasicBlock *BBI = pred; 207 while (true) { 208 if (TraceLSP) { 209 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 210 } 211 assert(DT.dominates(BBI, pred)); 212 assert(isPotentiallyReachable(BBI, pred, &DT) && 213 "dominated block must be reachable"); 214 215 // Walk through the instructions in dominating blocks and keep any 216 // that have a use potentially reachable from the block we're 217 // considering putting the safepoint in 218 for (Instruction &inst : *BBI) { 219 if (TraceLSP) { 220 errs() << "[LSP] Looking at instruction "; 221 inst.dump(); 222 } 223 224 if (pred == BBI && (&inst) == term) { 225 if (TraceLSP) { 226 errs() << "[LSP] stopped because we encountered the safepoint " 227 "instruction.\n"; 228 } 229 230 // If we're in the block which defines the interesting instruction, 231 // we don't want to include any values as live which are defined 232 // _after_ the interesting line or as part of the line itself 233 // i.e. "term" is the call instruction for a call safepoint, the 234 // results of the call should not be considered live in that stackmap 235 break; 236 } 237 238 assert(!isAggWhichContainsGCPtrType(inst.getType()) && 239 "support for FCA unimplemented"); 240 241 if (is_live_gc_reference(inst)) { 242 if (TraceLSP) { 243 errs() << "[LSP] found live value for this safepoint "; 244 inst.dump(); 245 term->dump(); 246 } 247 liveValues.insert(&inst); 248 } 249 } 250 if (!DT.getNode(BBI)->getIDom()) { 251 assert(BBI == &F->getEntryBlock() && 252 "failed to find a dominator for something other than " 253 "the entry block"); 254 break; 255 } 256 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 257 } 258 } 259 260 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 261 if (a->hasName() && b->hasName()) { 262 return -1 == a->getName().compare(b->getName()); 263 } else if (a->hasName() && !b->hasName()) { 264 return true; 265 } else if (!a->hasName() && b->hasName()) { 266 return false; 267 } else { 268 // Better than nothing, but not stable 269 return a < b; 270 } 271 } 272 273 /// Find the initial live set. Note that due to base pointer 274 /// insertion, the live set may be incomplete. 275 static void 276 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 277 PartiallyConstructedSafepointRecord &result) { 278 Instruction *inst = CS.getInstruction(); 279 280 BasicBlock *BB = inst->getParent(); 281 std::set<Value *> liveset; 282 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 283 284 if (PrintLiveSet) { 285 // Note: This output is used by several of the test cases 286 // The order of elemtns in a set is not stable, put them in a vec and sort 287 // by name 288 std::vector<Value *> temp; 289 temp.insert(temp.end(), liveset.begin(), liveset.end()); 290 std::sort(temp.begin(), temp.end(), order_by_name); 291 errs() << "Live Variables:\n"; 292 for (Value *V : temp) { 293 errs() << " " << V->getName(); // no newline 294 V->dump(); 295 } 296 } 297 if (PrintLiveSetSize) { 298 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 299 errs() << "Number live values: " << liveset.size() << "\n"; 300 } 301 result.liveset = liveset; 302 } 303 304 /// True iff this value is the null pointer constant (of any pointer type) 305 static bool isNullConstant(Value *V) { 306 return isa<Constant>(V) && isa<PointerType>(V->getType()) && 307 cast<Constant>(V)->isNullValue(); 308 } 309 310 /// Helper function for findBasePointer - Will return a value which either a) 311 /// defines the base pointer for the input or b) blocks the simple search 312 /// (i.e. a PHI or Select of two derived pointers) 313 static Value *findBaseDefiningValue(Value *I) { 314 assert(I->getType()->isPointerTy() && 315 "Illegal to ask for the base pointer of a non-pointer type"); 316 317 // There are instructions which can never return gc pointer values. Sanity 318 // check 319 // that this is actually true. 320 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && 321 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); 322 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) || 323 !cast<Instruction>(I)->isTerminator()) && 324 "With the exception of invoke terminators don't define values"); 325 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) && 326 "Can't be definitions to start with"); 327 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) && 328 "Comparisons don't give ops"); 329 // There's a bunch of instructions which just don't make sense to apply to 330 // a pointer. The only valid reason for this would be pointer bit 331 // twiddling which we're just not going to support. 332 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) && 333 "Binary ops on pointer values are meaningless. Unless your " 334 "bit-twiddling which we don't support"); 335 336 if (Argument *Arg = dyn_cast<Argument>(I)) { 337 // An incoming argument to the function is a base pointer 338 // We should have never reached here if this argument isn't an gc value 339 assert(Arg->getType()->isPointerTy() && 340 "Base for pointer must be another pointer"); 341 return Arg; 342 } 343 344 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) { 345 // base case 346 assert(global->getType()->isPointerTy() && 347 "Base for pointer must be another pointer"); 348 return global; 349 } 350 351 // inlining could possibly introduce phi node that contains 352 // undef if callee has multiple returns 353 if (UndefValue *undef = dyn_cast<UndefValue>(I)) { 354 assert(undef->getType()->isPointerTy() && 355 "Base for pointer must be another pointer"); 356 return undef; // utterly meaningless, but useful for dealing with 357 // partially optimized code. 358 } 359 360 // Due to inheritance, this must be _after_ the global variable and undef 361 // checks 362 if (Constant *con = dyn_cast<Constant>(I)) { 363 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 364 "order of checks wrong!"); 365 // Note: Finding a constant base for something marked for relocation 366 // doesn't really make sense. The most likely case is either a) some 367 // screwed up the address space usage or b) your validating against 368 // compiled C++ code w/o the proper separation. The only real exception 369 // is a null pointer. You could have generic code written to index of 370 // off a potentially null value and have proven it null. We also use 371 // null pointers in dead paths of relocation phis (which we might later 372 // want to find a base pointer for). 373 assert(con->getType()->isPointerTy() && 374 "Base for pointer must be another pointer"); 375 assert(con->isNullValue() && "null is the only case which makes sense"); 376 return con; 377 } 378 379 if (CastInst *CI = dyn_cast<CastInst>(I)) { 380 Value *def = CI->stripPointerCasts(); 381 assert(def->getType()->isPointerTy() && 382 "Base for pointer must be another pointer"); 383 if (isa<CastInst>(def)) { 384 // If we find a cast instruction here, it means we've found a cast 385 // which is not simply a pointer cast (i.e. an inttoptr). We don't 386 // know how to handle int->ptr conversion. 387 llvm_unreachable("Can not find the base pointers for an inttoptr cast"); 388 } 389 assert(!isa<CastInst>(def) && "shouldn't find another cast here"); 390 return findBaseDefiningValue(def); 391 } 392 393 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 394 if (LI->getType()->isPointerTy()) { 395 Value *Op = LI->getOperand(0); 396 (void)Op; 397 // Has to be a pointer to an gc object, or possibly an array of such? 398 assert(Op->getType()->isPointerTy()); 399 return LI; // The value loaded is an gc base itself 400 } 401 } 402 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 403 Value *Op = GEP->getOperand(0); 404 if (Op->getType()->isPointerTy()) { 405 return findBaseDefiningValue(Op); // The base of this GEP is the base 406 } 407 } 408 409 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) { 410 // An alloca represents a conceptual stack slot. It's the slot itself 411 // that the GC needs to know about, not the value in the slot. 412 assert(alloc->getType()->isPointerTy() && 413 "Base for pointer must be another pointer"); 414 return alloc; 415 } 416 417 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 418 switch (II->getIntrinsicID()) { 419 default: 420 // fall through to general call handling 421 break; 422 case Intrinsic::experimental_gc_statepoint: 423 case Intrinsic::experimental_gc_result_float: 424 case Intrinsic::experimental_gc_result_int: 425 llvm_unreachable("these don't produce pointers"); 426 case Intrinsic::experimental_gc_result_ptr: 427 // This is just a special case of the CallInst check below to handle a 428 // statepoint with deopt args which hasn't been rewritten for GC yet. 429 // TODO: Assert that the statepoint isn't rewritten yet. 430 return II; 431 case Intrinsic::experimental_gc_relocate: { 432 // Rerunning safepoint insertion after safepoints are already 433 // inserted is not supported. It could probably be made to work, 434 // but why are you doing this? There's no good reason. 435 llvm_unreachable("repeat safepoint insertion is not supported"); 436 } 437 case Intrinsic::gcroot: 438 // Currently, this mechanism hasn't been extended to work with gcroot. 439 // There's no reason it couldn't be, but I haven't thought about the 440 // implications much. 441 llvm_unreachable( 442 "interaction with the gcroot mechanism is not supported"); 443 } 444 } 445 // We assume that functions in the source language only return base 446 // pointers. This should probably be generalized via attributes to support 447 // both source language and internal functions. 448 if (CallInst *call = dyn_cast<CallInst>(I)) { 449 assert(call->getType()->isPointerTy() && 450 "Base for pointer must be another pointer"); 451 return call; 452 } 453 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 454 assert(invoke->getType()->isPointerTy() && 455 "Base for pointer must be another pointer"); 456 return invoke; 457 } 458 459 // I have absolutely no idea how to implement this part yet. It's not 460 // neccessarily hard, I just haven't really looked at it yet. 461 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 462 463 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) { 464 // A CAS is effectively a atomic store and load combined under a 465 // predicate. From the perspective of base pointers, we just treat it 466 // like a load. We loaded a pointer from a address in memory, that value 467 // had better be a valid base pointer. 468 return cas->getPointerOperand(); 469 } 470 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) { 471 assert(AtomicRMWInst::Xchg == atomic->getOperation() && 472 "All others are binary ops which don't apply to base pointers"); 473 // semantically, a load, store pair. Treat it the same as a standard load 474 return atomic->getPointerOperand(); 475 } 476 477 // The aggregate ops. Aggregates can either be in the heap or on the 478 // stack, but in either case, this is simply a field load. As a result, 479 // this is a defining definition of the base just like a load is. 480 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) { 481 return ev; 482 } 483 484 // We should never see an insert vector since that would require we be 485 // tracing back a struct value not a pointer value. 486 assert(!isa<InsertValueInst>(I) && 487 "Base pointer for a struct is meaningless"); 488 489 // The last two cases here don't return a base pointer. Instead, they 490 // return a value which dynamically selects from amoung several base 491 // derived pointers (each with it's own base potentially). It's the job of 492 // the caller to resolve these. 493 if (SelectInst *select = dyn_cast<SelectInst>(I)) { 494 return select; 495 } 496 if (PHINode *phi = dyn_cast<PHINode>(I)) { 497 return phi; 498 } 499 500 errs() << "unknown type: " << *I << "\n"; 501 llvm_unreachable("unknown type"); 502 return nullptr; 503 } 504 505 /// Returns the base defining value for this value. 506 Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { 507 if (cache.find(I) == cache.end()) { 508 cache[I] = findBaseDefiningValue(I); 509 } 510 assert(cache.find(I) != cache.end()); 511 512 if (TraceLSP) { 513 errs() << "fBDV-cached: " << I->getName() << " -> " << cache[I]->getName() 514 << "\n"; 515 } 516 return cache[I]; 517 } 518 519 /// Return a base pointer for this value if known. Otherwise, return it's 520 /// base defining value. 521 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { 522 Value *def = findBaseDefiningValueCached(I, cache); 523 if (cache.count(def)) { 524 // Either a base-of relation, or a self reference. Caller must check. 525 return cache[def]; 526 } 527 // Only a BDV available 528 return def; 529 } 530 531 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 532 /// is it known to be a base pointer? Or do we need to continue searching. 533 static bool isKnownBaseResult(Value *v) { 534 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) { 535 // no recursion possible 536 return true; 537 } 538 if (cast<Instruction>(v)->getMetadata("is_base_value")) { 539 // This is a previously inserted base phi or select. We know 540 // that this is a base value. 541 return true; 542 } 543 544 // We need to keep searching 545 return false; 546 } 547 548 // TODO: find a better name for this 549 namespace { 550 class PhiState { 551 public: 552 enum Status { Unknown, Base, Conflict }; 553 554 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 555 assert(status != Base || b); 556 } 557 PhiState(Value *b) : status(Base), base(b) {} 558 PhiState() : status(Unknown), base(nullptr) {} 559 PhiState(const PhiState &other) : status(other.status), base(other.base) { 560 assert(status != Base || base); 561 } 562 563 Status getStatus() const { return status; } 564 Value *getBase() const { return base; } 565 566 bool isBase() const { return getStatus() == Base; } 567 bool isUnknown() const { return getStatus() == Unknown; } 568 bool isConflict() const { return getStatus() == Conflict; } 569 570 bool operator==(const PhiState &other) const { 571 return base == other.base && status == other.status; 572 } 573 574 bool operator!=(const PhiState &other) const { return !(*this == other); } 575 576 void dump() { 577 errs() << status << " (" << base << " - " 578 << (base ? base->getName() : "nullptr") << "): "; 579 } 580 581 private: 582 Status status; 583 Value *base; // non null only if status == base 584 }; 585 586 // Values of type PhiState form a lattice, and this is a helper 587 // class that implementes the meet operation. The meat of the meet 588 // operation is implemented in MeetPhiStates::pureMeet 589 class MeetPhiStates { 590 public: 591 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 592 explicit MeetPhiStates(const std::map<Value *, PhiState> &phiStates) 593 : phiStates(phiStates) {} 594 595 // Destructively meet the current result with the base V. V can 596 // either be a merge instruction (SelectInst / PHINode), in which 597 // case its status is looked up in the phiStates map; or a regular 598 // SSA value, in which case it is assumed to be a base. 599 void meetWith(Value *V) { 600 PhiState otherState = getStateForBDV(V); 601 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 602 MeetPhiStates::pureMeet(currentResult, otherState)) && 603 "math is wrong: meet does not commute!"); 604 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 605 } 606 607 PhiState getResult() const { return currentResult; } 608 609 private: 610 const std::map<Value *, PhiState> &phiStates; 611 PhiState currentResult; 612 613 /// Return a phi state for a base defining value. We'll generate a new 614 /// base state for known bases and expect to find a cached state otherwise 615 PhiState getStateForBDV(Value *baseValue) { 616 if (isKnownBaseResult(baseValue)) { 617 return PhiState(baseValue); 618 } else { 619 return lookupFromMap(baseValue); 620 } 621 } 622 623 PhiState lookupFromMap(Value *V) { 624 auto I = phiStates.find(V); 625 assert(I != phiStates.end() && "lookup failed!"); 626 return I->second; 627 } 628 629 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 630 switch (stateA.getStatus()) { 631 case PhiState::Unknown: 632 return stateB; 633 634 case PhiState::Base: 635 assert(stateA.getBase() && "can't be null"); 636 if (stateB.isUnknown()) { 637 return stateA; 638 } else if (stateB.isBase()) { 639 if (stateA.getBase() == stateB.getBase()) { 640 assert(stateA == stateB && "equality broken!"); 641 return stateA; 642 } 643 return PhiState(PhiState::Conflict); 644 } else { 645 assert(stateB.isConflict() && "only three states!"); 646 return PhiState(PhiState::Conflict); 647 } 648 649 case PhiState::Conflict: 650 return stateA; 651 } 652 assert(false && "only three states!"); 653 } 654 }; 655 } 656 /// For a given value or instruction, figure out what base ptr it's derived 657 /// from. For gc objects, this is simply itself. On success, returns a value 658 /// which is the base pointer. (This is reliable and can be used for 659 /// relocation.) On failure, returns nullptr. 660 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 661 std::set<llvm::Value *> &newInsertedDefs) { 662 Value *def = findBaseOrBDV(I, cache); 663 664 if (isKnownBaseResult(def)) { 665 return def; 666 } 667 668 // Here's the rough algorithm: 669 // - For every SSA value, construct a mapping to either an actual base 670 // pointer or a PHI which obscures the base pointer. 671 // - Construct a mapping from PHI to unknown TOP state. Use an 672 // optimistic algorithm to propagate base pointer information. Lattice 673 // looks like: 674 // UNKNOWN 675 // b1 b2 b3 b4 676 // CONFLICT 677 // When algorithm terminates, all PHIs will either have a single concrete 678 // base or be in a conflict state. 679 // - For every conflict, insert a dummy PHI node without arguments. Add 680 // these to the base[Instruction] = BasePtr mapping. For every 681 // non-conflict, add the actual base. 682 // - For every conflict, add arguments for the base[a] of each input 683 // arguments. 684 // 685 // Note: A simpler form of this would be to add the conflict form of all 686 // PHIs without running the optimistic algorithm. This would be 687 // analougous to pessimistic data flow and would likely lead to an 688 // overall worse solution. 689 690 std::map<Value *, PhiState> states; 691 states[def] = PhiState(); 692 // Recursively fill in all phis & selects reachable from the initial one 693 // for which we don't already know a definite base value for 694 // PERF: Yes, this is as horribly inefficient as it looks. 695 bool done = false; 696 while (!done) { 697 done = true; 698 for (auto Pair : states) { 699 Value *v = Pair.first; 700 assert(!isKnownBaseResult(v) && "why did it get added?"); 701 if (PHINode *phi = dyn_cast<PHINode>(v)) { 702 unsigned NumPHIValues = phi->getNumIncomingValues(); 703 assert(NumPHIValues > 0 && "zero input phis are illegal"); 704 for (unsigned i = 0; i != NumPHIValues; ++i) { 705 Value *InVal = phi->getIncomingValue(i); 706 Value *local = findBaseOrBDV(InVal, cache); 707 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 708 states[local] = PhiState(); 709 done = false; 710 } 711 } 712 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 713 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 714 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 715 states[local] = PhiState(); 716 done = false; 717 } 718 local = findBaseOrBDV(sel->getFalseValue(), cache); 719 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 720 states[local] = PhiState(); 721 done = false; 722 } 723 } 724 } 725 } 726 727 if (TraceLSP) { 728 errs() << "States after initialization:\n"; 729 for (auto Pair : states) { 730 Instruction *v = cast<Instruction>(Pair.first); 731 PhiState state = Pair.second; 732 state.dump(); 733 v->dump(); 734 } 735 } 736 737 // TODO: come back and revisit the state transitions around inputs which 738 // have reached conflict state. The current version seems too conservative. 739 740 bool progress = true; 741 size_t oldSize = 0; 742 while (progress) { 743 oldSize = states.size(); 744 progress = false; 745 for (auto Pair : states) { 746 MeetPhiStates calculateMeet(states); 747 Value *v = Pair.first; 748 assert(!isKnownBaseResult(v) && "why did it get added?"); 749 assert(isa<SelectInst>(v) || isa<PHINode>(v)); 750 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 751 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 752 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 753 } else if (PHINode *phi = dyn_cast<PHINode>(v)) { 754 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 755 calculateMeet.meetWith( 756 findBaseOrBDV(phi->getIncomingValue(i), cache)); 757 } 758 } else { 759 llvm_unreachable("no such state expected"); 760 } 761 762 PhiState oldState = states[v]; 763 PhiState newState = calculateMeet.getResult(); 764 if (oldState != newState) { 765 progress = true; 766 states[v] = newState; 767 } 768 } 769 770 assert(oldSize <= states.size()); 771 assert(oldSize == states.size() || progress); 772 } 773 774 if (TraceLSP) { 775 errs() << "States after meet iteration:\n"; 776 for (auto Pair : states) { 777 Instruction *v = cast<Instruction>(Pair.first); 778 PhiState state = Pair.second; 779 state.dump(); 780 v->dump(); 781 } 782 } 783 784 // Insert Phis for all conflicts 785 for (auto Pair : states) { 786 Instruction *v = cast<Instruction>(Pair.first); 787 PhiState state = Pair.second; 788 assert(!isKnownBaseResult(v) && "why did it get added?"); 789 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 790 if (state.isConflict()) { 791 if (isa<PHINode>(v)) { 792 int num_preds = 793 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 794 assert(num_preds > 0 && "how did we reach here"); 795 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 796 newInsertedDefs.insert(phi); 797 // Add metadata marking this as a base value 798 auto *const_1 = ConstantInt::get( 799 Type::getInt32Ty( 800 v->getParent()->getParent()->getParent()->getContext()), 801 1); 802 auto MDConst = ConstantAsMetadata::get(const_1); 803 MDNode *md = MDNode::get( 804 v->getParent()->getParent()->getParent()->getContext(), MDConst); 805 phi->setMetadata("is_base_value", md); 806 states[v] = PhiState(PhiState::Conflict, phi); 807 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 808 // The undef will be replaced later 809 UndefValue *undef = UndefValue::get(sel->getType()); 810 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 811 undef, "base_select", sel); 812 newInsertedDefs.insert(basesel); 813 // Add metadata marking this as a base value 814 auto *const_1 = ConstantInt::get( 815 Type::getInt32Ty( 816 v->getParent()->getParent()->getParent()->getContext()), 817 1); 818 auto MDConst = ConstantAsMetadata::get(const_1); 819 MDNode *md = MDNode::get( 820 v->getParent()->getParent()->getParent()->getContext(), MDConst); 821 basesel->setMetadata("is_base_value", md); 822 states[v] = PhiState(PhiState::Conflict, basesel); 823 } else { 824 assert(false); 825 } 826 } 827 } 828 829 // Fixup all the inputs of the new PHIs 830 for (auto Pair : states) { 831 Instruction *v = cast<Instruction>(Pair.first); 832 PhiState state = Pair.second; 833 834 assert(!isKnownBaseResult(v) && "why did it get added?"); 835 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 836 if (state.isConflict()) { 837 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 838 PHINode *phi = cast<PHINode>(v); 839 unsigned NumPHIValues = phi->getNumIncomingValues(); 840 for (unsigned i = 0; i < NumPHIValues; i++) { 841 Value *InVal = phi->getIncomingValue(i); 842 BasicBlock *InBB = phi->getIncomingBlock(i); 843 844 // If we've already seen InBB, add the same incoming value 845 // we added for it earlier. The IR verifier requires phi 846 // nodes with multiple entries from the same basic block 847 // to have the same incoming value for each of those 848 // entries. If we don't do this check here and basephi 849 // has a different type than base, we'll end up adding two 850 // bitcasts (and hence two distinct values) as incoming 851 // values for the same basic block. 852 853 int blockIndex = basephi->getBasicBlockIndex(InBB); 854 if (blockIndex != -1) { 855 Value *oldBase = basephi->getIncomingValue(blockIndex); 856 basephi->addIncoming(oldBase, InBB); 857 #ifndef NDEBUG 858 Value *base = findBaseOrBDV(InVal, cache); 859 if (!isKnownBaseResult(base)) { 860 // Either conflict or base. 861 assert(states.count(base)); 862 base = states[base].getBase(); 863 assert(base != nullptr && "unknown PhiState!"); 864 assert(newInsertedDefs.count(base) && 865 "should have already added this in a prev. iteration!"); 866 } 867 868 // In essense this assert states: the only way two 869 // values incoming from the same basic block may be 870 // different is by being different bitcasts of the same 871 // value. A cleanup that remains TODO is changing 872 // findBaseOrBDV to return an llvm::Value of the correct 873 // type (and still remain pure). This will remove the 874 // need to add bitcasts. 875 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 876 "sanity -- findBaseOrBDV should be pure!"); 877 #endif 878 continue; 879 } 880 881 // Find either the defining value for the PHI or the normal base for 882 // a non-phi node 883 Value *base = findBaseOrBDV(InVal, cache); 884 if (!isKnownBaseResult(base)) { 885 // Either conflict or base. 886 assert(states.count(base)); 887 base = states[base].getBase(); 888 assert(base != nullptr && "unknown PhiState!"); 889 } 890 assert(base && "can't be null"); 891 // Must use original input BB since base may not be Instruction 892 // The cast is needed since base traversal may strip away bitcasts 893 if (base->getType() != basephi->getType()) { 894 base = new BitCastInst(base, basephi->getType(), "cast", 895 InBB->getTerminator()); 896 newInsertedDefs.insert(base); 897 } 898 basephi->addIncoming(base, InBB); 899 } 900 assert(basephi->getNumIncomingValues() == NumPHIValues); 901 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) { 902 SelectInst *sel = cast<SelectInst>(v); 903 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 904 // something more safe and less hacky. 905 for (int i = 1; i <= 2; i++) { 906 Value *InVal = sel->getOperand(i); 907 // Find either the defining value for the PHI or the normal base for 908 // a non-phi node 909 Value *base = findBaseOrBDV(InVal, cache); 910 if (!isKnownBaseResult(base)) { 911 // Either conflict or base. 912 assert(states.count(base)); 913 base = states[base].getBase(); 914 assert(base != nullptr && "unknown PhiState!"); 915 } 916 assert(base && "can't be null"); 917 // Must use original input BB since base may not be Instruction 918 // The cast is needed since base traversal may strip away bitcasts 919 if (base->getType() != basesel->getType()) { 920 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 921 newInsertedDefs.insert(base); 922 } 923 basesel->setOperand(i, base); 924 } 925 } else { 926 assert(false && "unexpected type"); 927 } 928 } 929 } 930 931 // Cache all of our results so we can cheaply reuse them 932 // NOTE: This is actually two caches: one of the base defining value 933 // relation and one of the base pointer relation! FIXME 934 for (auto item : states) { 935 Value *v = item.first; 936 Value *base = item.second.getBase(); 937 assert(v && base); 938 assert(!isKnownBaseResult(v) && "why did it get added?"); 939 940 if (TraceLSP) { 941 std::string fromstr = 942 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 943 : "none"; 944 errs() << "Updating base value cache" 945 << " for: " << (v->hasName() ? v->getName() : "") 946 << " from: " << fromstr 947 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 948 } 949 950 assert(isKnownBaseResult(base) && 951 "must be something we 'know' is a base pointer"); 952 if (cache.count(v)) { 953 // Once we transition from the BDV relation being store in the cache to 954 // the base relation being stored, it must be stable 955 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 956 "base relation should be stable"); 957 } 958 cache[v] = base; 959 } 960 assert(cache.find(def) != cache.end()); 961 return cache[def]; 962 } 963 964 // For a set of live pointers (base and/or derived), identify the base 965 // pointer of the object which they are derived from. This routine will 966 // mutate the IR graph as needed to make the 'base' pointer live at the 967 // definition site of 'derived'. This ensures that any use of 'derived' can 968 // also use 'base'. This may involve the insertion of a number of 969 // additional PHI nodes. 970 // 971 // preconditions: live is a set of pointer type Values 972 // 973 // side effects: may insert PHI nodes into the existing CFG, will preserve 974 // CFG, will not remove or mutate any existing nodes 975 // 976 // post condition: base_pairs contains one (derived, base) pair for every 977 // pointer in live. Note that derived can be equal to base if the original 978 // pointer was a base pointer. 979 static void findBasePointers(const std::set<llvm::Value *> &live, 980 std::map<llvm::Value *, llvm::Value *> &base_pairs, 981 DominatorTree *DT, DefiningValueMapTy &DVCache, 982 std::set<llvm::Value *> &newInsertedDefs) { 983 for (Value *ptr : live) { 984 Value *base = findBasePointer(ptr, DVCache, newInsertedDefs); 985 assert(base && "failed to find base pointer"); 986 base_pairs[ptr] = base; 987 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 988 DT->dominates(cast<Instruction>(base)->getParent(), 989 cast<Instruction>(ptr)->getParent())) && 990 "The base we found better dominate the derived pointer"); 991 992 if (isNullConstant(base)) 993 // If you see this trip and like to live really dangerously, the code 994 // should be correct, just with idioms the verifier can't handle. You 995 // can try disabling the verifier at your own substaintial risk. 996 llvm_unreachable("the relocation code needs adjustment to handle the" 997 "relocation of a null pointer constant without causing" 998 "false positives in the safepoint ir verifier."); 999 } 1000 } 1001 1002 /// Find the required based pointers (and adjust the live set) for the given 1003 /// parse point. 1004 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1005 const CallSite &CS, 1006 PartiallyConstructedSafepointRecord &result) { 1007 std::map<llvm::Value *, llvm::Value *> base_pairs; 1008 std::set<llvm::Value *> newInsertedDefs; 1009 findBasePointers(result.liveset, base_pairs, &DT, DVCache, newInsertedDefs); 1010 1011 if (PrintBasePointers) { 1012 errs() << "Base Pairs (w/o Relocation):\n"; 1013 for (auto Pair : base_pairs) { 1014 errs() << " derived %" << Pair.first->getName() << " base %" 1015 << Pair.second->getName() << "\n"; 1016 } 1017 } 1018 1019 result.base_pairs = base_pairs; 1020 result.newInsertedDefs = newInsertedDefs; 1021 } 1022 1023 /// Check for liveness of items in the insert defs and add them to the live 1024 /// and base pointer sets 1025 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 1026 const std::set<Value *> &allInsertedDefs, 1027 PartiallyConstructedSafepointRecord &result) { 1028 Instruction *inst = CS.getInstruction(); 1029 1030 std::set<llvm::Value *> liveset = result.liveset; 1031 std::map<llvm::Value *, llvm::Value *> base_pairs = result.base_pairs; 1032 1033 auto is_live_gc_reference = 1034 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 1035 1036 // For each new definition, check to see if a) the definition dominates the 1037 // instruction we're interested in, and b) one of the uses of that definition 1038 // is edge-reachable from the instruction we're interested in. This is the 1039 // same definition of liveness we used in the intial liveness analysis 1040 for (Value *newDef : allInsertedDefs) { 1041 if (liveset.count(newDef)) { 1042 // already live, no action needed 1043 continue; 1044 } 1045 1046 // PERF: Use DT to check instruction domination might not be good for 1047 // compilation time, and we could change to optimal solution if this 1048 // turn to be a issue 1049 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1050 // can't possibly be live at inst 1051 continue; 1052 } 1053 1054 if (is_live_gc_reference(*newDef)) { 1055 // Add the live new defs into liveset and base_pairs 1056 liveset.insert(newDef); 1057 base_pairs[newDef] = newDef; 1058 } 1059 } 1060 1061 result.liveset = liveset; 1062 result.base_pairs = base_pairs; 1063 } 1064 1065 static void fixupLiveReferences( 1066 Function &F, DominatorTree &DT, Pass *P, 1067 const std::set<llvm::Value *> &allInsertedDefs, 1068 std::vector<CallSite> &toUpdate, 1069 std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1070 for (size_t i = 0; i < records.size(); i++) { 1071 struct PartiallyConstructedSafepointRecord &info = records[i]; 1072 CallSite &CS = toUpdate[i]; 1073 fixupLiveness(DT, CS, allInsertedDefs, info); 1074 } 1075 } 1076 1077 // Normalize basic block to make it ready to be target of invoke statepoint. 1078 // It means spliting it to have single predecessor. Return newly created BB 1079 // ready to be successor of invoke statepoint. 1080 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1081 BasicBlock *InvokeParent, 1082 Pass *P) { 1083 BasicBlock *ret = BB; 1084 1085 if (!BB->getUniquePredecessor()) { 1086 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1087 } 1088 1089 // Another requirement for such basic blocks is to not have any phi nodes. 1090 // Since we just ensured that new BB will have single predecessor, 1091 // all phi nodes in it will have one value. Here it would be naturall place 1092 // to 1093 // remove them all. But we can not do this because we are risking to remove 1094 // one of the values stored in liveset of another statepoint. We will do it 1095 // later after placing all safepoints. 1096 1097 return ret; 1098 } 1099 1100 static void 1101 VerifySafepointBounds(const std::pair<Instruction *, Instruction *> &bounds) { 1102 assert(bounds.first->getParent() && bounds.second->getParent() && 1103 "both must belong to basic blocks"); 1104 if (bounds.first->getParent() == bounds.second->getParent()) { 1105 // This is a call safepoint 1106 // TODO: scan the range to find the statepoint 1107 // TODO: check that the following instruction is not a gc_relocate or 1108 // gc_result 1109 } else { 1110 // This is an invoke safepoint 1111 InvokeInst *invoke = dyn_cast<InvokeInst>(bounds.first); 1112 (void)invoke; 1113 assert(invoke && "only continues over invokes!"); 1114 assert(invoke->getNormalDest() == bounds.second->getParent() && 1115 "safepoint should continue into normal exit block"); 1116 } 1117 } 1118 1119 static int find_index(const SmallVectorImpl<Value *> &livevec, Value *val) { 1120 auto itr = std::find(livevec.begin(), livevec.end(), val); 1121 assert(livevec.end() != itr); 1122 size_t index = std::distance(livevec.begin(), itr); 1123 assert(index < livevec.size()); 1124 return index; 1125 } 1126 1127 // Create new attribute set containing only attributes which can be transfered 1128 // from original call to the safepoint. 1129 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1130 AttributeSet ret; 1131 1132 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1133 unsigned index = AS.getSlotIndex(Slot); 1134 1135 if (index == AttributeSet::ReturnIndex || 1136 index == AttributeSet::FunctionIndex) { 1137 1138 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1139 ++it) { 1140 Attribute attr = *it; 1141 1142 // Do not allow certain attributes - just skip them 1143 // Safepoint can not be read only or read none. 1144 if (attr.hasAttribute(Attribute::ReadNone) || 1145 attr.hasAttribute(Attribute::ReadOnly)) 1146 continue; 1147 1148 ret = ret.addAttributes( 1149 AS.getContext(), index, 1150 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1151 } 1152 } 1153 1154 // Just skip parameter attributes for now 1155 } 1156 1157 return ret; 1158 } 1159 1160 /// Helper function to place all gc relocates necessary for the given 1161 /// statepoint. 1162 /// Inputs: 1163 /// liveVariables - list of variables to be relocated. 1164 /// liveStart - index of the first live variable. 1165 /// basePtrs - base pointers. 1166 /// statepointToken - statepoint instruction to which relocates should be 1167 /// bound. 1168 /// Builder - Llvm IR builder to be used to construct new calls. 1169 /// Returns array with newly created relocates. 1170 static std::vector<llvm::Instruction *> 1171 CreateGCRelocates(const SmallVectorImpl<llvm::Value *> &liveVariables, 1172 const int liveStart, 1173 const SmallVectorImpl<llvm::Value *> &basePtrs, 1174 Instruction *statepointToken, IRBuilder<> Builder) { 1175 1176 std::vector<llvm::Instruction *> newDefs; 1177 1178 Module *M = statepointToken->getParent()->getParent()->getParent(); 1179 1180 for (unsigned i = 0; i < liveVariables.size(); i++) { 1181 // We generate a (potentially) unique declaration for every pointer type 1182 // combination. This results is some blow up the function declarations in 1183 // the IR, but removes the need for argument bitcasts which shrinks the IR 1184 // greatly and makes it much more readable. 1185 std::vector<Type *> types; // one per 'any' type 1186 types.push_back(liveVariables[i]->getType()); // result type 1187 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1188 M, Intrinsic::experimental_gc_relocate, types); 1189 1190 // Generate the gc.relocate call and save the result 1191 Value *baseIdx = 1192 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1193 liveStart + find_index(liveVariables, basePtrs[i])); 1194 Value *liveIdx = ConstantInt::get( 1195 Type::getInt32Ty(M->getContext()), 1196 liveStart + find_index(liveVariables, liveVariables[i])); 1197 1198 // only specify a debug name if we can give a useful one 1199 Value *reloc = Builder.CreateCall3( 1200 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1201 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1202 : ""); 1203 // Trick CodeGen into thinking there are lots of free registers at this 1204 // fake call. 1205 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1206 1207 newDefs.push_back(cast<Instruction>(reloc)); 1208 } 1209 assert(newDefs.size() == liveVariables.size() && 1210 "missing or extra redefinition at safepoint"); 1211 1212 return newDefs; 1213 } 1214 1215 static void 1216 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1217 const SmallVectorImpl<llvm::Value *> &basePtrs, 1218 const SmallVectorImpl<llvm::Value *> &liveVariables, 1219 Pass *P, 1220 PartiallyConstructedSafepointRecord &result) { 1221 assert(basePtrs.size() == liveVariables.size()); 1222 assert(isStatepoint(CS) && 1223 "This method expects to be rewriting a statepoint"); 1224 1225 BasicBlock *BB = CS.getInstruction()->getParent(); 1226 assert(BB); 1227 Function *F = BB->getParent(); 1228 assert(F && "must be set"); 1229 Module *M = F->getParent(); 1230 (void)M; 1231 assert(M && "must be set"); 1232 1233 // We're not changing the function signature of the statepoint since the gc 1234 // arguments go into the var args section. 1235 Function *gc_statepoint_decl = CS.getCalledFunction(); 1236 1237 // Then go ahead and use the builder do actually do the inserts. We insert 1238 // immediately before the previous instruction under the assumption that all 1239 // arguments will be available here. We can't insert afterwards since we may 1240 // be replacing a terminator. 1241 Instruction *insertBefore = CS.getInstruction(); 1242 IRBuilder<> Builder(insertBefore); 1243 // Copy all of the arguments from the original statepoint - this includes the 1244 // target, call args, and deopt args 1245 std::vector<llvm::Value *> args; 1246 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1247 // TODO: Clear the 'needs rewrite' flag 1248 1249 // add all the pointers to be relocated (gc arguments) 1250 // Capture the start of the live variable list for use in the gc_relocates 1251 const int live_start = args.size(); 1252 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1253 1254 // Create the statepoint given all the arguments 1255 Instruction *token = nullptr; 1256 AttributeSet return_attributes; 1257 if (CS.isCall()) { 1258 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1259 CallInst *call = 1260 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1261 call->setTailCall(toReplace->isTailCall()); 1262 call->setCallingConv(toReplace->getCallingConv()); 1263 1264 // Currently we will fail on parameter attributes and on certain 1265 // function attributes. 1266 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1267 // In case if we can handle this set of sttributes - set up function attrs 1268 // directly on statepoint and return attrs later for gc_result intrinsic. 1269 call->setAttributes(new_attrs.getFnAttributes()); 1270 return_attributes = new_attrs.getRetAttributes(); 1271 1272 token = call; 1273 1274 // Put the following gc_result and gc_relocate calls immediately after the 1275 // the old call (which we're about to delete) 1276 BasicBlock::iterator next(toReplace); 1277 assert(BB->end() != next && "not a terminator, must have next"); 1278 next++; 1279 Instruction *IP = &*(next); 1280 Builder.SetInsertPoint(IP); 1281 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1282 1283 } else if (CS.isInvoke()) { 1284 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1285 1286 // Insert the new invoke into the old block. We'll remove the old one in a 1287 // moment at which point this will become the new terminator for the 1288 // original block. 1289 InvokeInst *invoke = InvokeInst::Create( 1290 gc_statepoint_decl, toReplace->getNormalDest(), 1291 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1292 invoke->setCallingConv(toReplace->getCallingConv()); 1293 1294 // Currently we will fail on parameter attributes and on certain 1295 // function attributes. 1296 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1297 // In case if we can handle this set of sttributes - set up function attrs 1298 // directly on statepoint and return attrs later for gc_result intrinsic. 1299 invoke->setAttributes(new_attrs.getFnAttributes()); 1300 return_attributes = new_attrs.getRetAttributes(); 1301 1302 token = invoke; 1303 1304 // Generate gc relocates in exceptional path 1305 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1306 toReplace->getUnwindDest(), invoke->getParent(), P); 1307 1308 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1309 Builder.SetInsertPoint(IP); 1310 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1311 1312 // Extract second element from landingpad return value. We will attach 1313 // exceptional gc relocates to it. 1314 const unsigned idx = 1; 1315 Instruction *exceptional_token = 1316 cast<Instruction>(Builder.CreateExtractValue( 1317 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1318 result.exceptional_relocates_token = exceptional_token; 1319 1320 // Just throw away return value. We will use the one we got for normal 1321 // block. 1322 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1323 exceptional_token, Builder); 1324 1325 // Generate gc relocates and returns for normal block 1326 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1327 toReplace->getNormalDest(), invoke->getParent(), P); 1328 1329 IP = &*(normalDest->getFirstInsertionPt()); 1330 Builder.SetInsertPoint(IP); 1331 1332 // gc relocates will be generated later as if it were regular call 1333 // statepoint 1334 } else { 1335 llvm_unreachable("unexpect type of CallSite"); 1336 } 1337 assert(token); 1338 1339 // Take the name of the original value call if it had one. 1340 token->takeName(CS.getInstruction()); 1341 1342 // The GCResult is already inserted, we just need to find it 1343 Instruction *gc_result = nullptr; 1344 /* scope */ { 1345 Instruction *toReplace = CS.getInstruction(); 1346 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1347 "only valid use before rewrite is gc.result"); 1348 if (toReplace->hasOneUse()) { 1349 Instruction *GCResult = cast<Instruction>(*toReplace->user_begin()); 1350 assert(isGCResult(GCResult)); 1351 gc_result = GCResult; 1352 } 1353 } 1354 1355 // Update the gc.result of the original statepoint (if any) to use the newly 1356 // inserted statepoint. This is safe to do here since the token can't be 1357 // considered a live reference. 1358 CS.getInstruction()->replaceAllUsesWith(token); 1359 1360 // Second, create a gc.relocate for every live variable 1361 std::vector<llvm::Instruction *> newDefs = 1362 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1363 1364 // Need to pass through the last part of the safepoint block so that we 1365 // don't accidentally update uses in a following gc.relocate which is 1366 // still conceptually part of the same safepoint. Gah. 1367 Instruction *last = nullptr; 1368 if (!newDefs.empty()) { 1369 last = newDefs.back(); 1370 } else if (gc_result) { 1371 last = gc_result; 1372 } else { 1373 last = token; 1374 } 1375 assert(last && "can't be null"); 1376 const auto bounds = std::make_pair(token, last); 1377 1378 // Sanity check our results - this is slightly non-trivial due to invokes 1379 VerifySafepointBounds(bounds); 1380 1381 result.safepoint = bounds; 1382 } 1383 1384 namespace { 1385 struct name_ordering { 1386 Value *base; 1387 Value *derived; 1388 bool operator()(name_ordering const &a, name_ordering const &b) { 1389 return -1 == a.derived->getName().compare(b.derived->getName()); 1390 } 1391 }; 1392 } 1393 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1394 SmallVectorImpl<Value *> &livevec) { 1395 assert(basevec.size() == livevec.size()); 1396 1397 std::vector<name_ordering> temp; 1398 for (size_t i = 0; i < basevec.size(); i++) { 1399 name_ordering v; 1400 v.base = basevec[i]; 1401 v.derived = livevec[i]; 1402 temp.push_back(v); 1403 } 1404 std::sort(temp.begin(), temp.end(), name_ordering()); 1405 for (size_t i = 0; i < basevec.size(); i++) { 1406 basevec[i] = temp[i].base; 1407 livevec[i] = temp[i].derived; 1408 } 1409 } 1410 1411 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1412 // which make the relocations happening at this safepoint explicit. 1413 // 1414 // WARNING: Does not do any fixup to adjust users of the original live 1415 // values. That's the callers responsibility. 1416 static void 1417 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1418 PartiallyConstructedSafepointRecord &result) { 1419 std::set<llvm::Value *> liveset = result.liveset; 1420 std::map<llvm::Value *, llvm::Value *> base_pairs = result.base_pairs; 1421 1422 // Convert to vector for efficient cross referencing. 1423 SmallVector<Value *, 64> basevec, livevec; 1424 livevec.reserve(liveset.size()); 1425 basevec.reserve(liveset.size()); 1426 for (Value *L : liveset) { 1427 livevec.push_back(L); 1428 1429 assert(base_pairs.find(L) != base_pairs.end()); 1430 Value *base = base_pairs[L]; 1431 basevec.push_back(base); 1432 } 1433 assert(livevec.size() == basevec.size()); 1434 1435 // To make the output IR slightly more stable (for use in diffs), ensure a 1436 // fixed order of the values in the safepoint (by sorting the value name). 1437 // The order is otherwise meaningless. 1438 stablize_order(basevec, livevec); 1439 1440 // Do the actual rewriting and delete the old statepoint 1441 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1442 CS.getInstruction()->eraseFromParent(); 1443 } 1444 1445 // Helper function for the relocationViaAlloca. 1446 // It receives iterator to the statepoint gc relocates and emits store to the 1447 // assigned 1448 // location (via allocaMap) for the each one of them. 1449 // Add visited values into the visitedLiveValues set we will later use them 1450 // for sanity check. 1451 static void 1452 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1453 DenseMap<Value *, Value *> &allocaMap, 1454 DenseSet<Value *> &visitedLiveValues) { 1455 1456 for (User *U : gcRelocs) { 1457 if (!isa<IntrinsicInst>(U)) 1458 continue; 1459 1460 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1461 1462 // We only care about relocates 1463 if (relocatedValue->getIntrinsicID() != 1464 Intrinsic::experimental_gc_relocate) { 1465 continue; 1466 } 1467 1468 GCRelocateOperands relocateOperands(relocatedValue); 1469 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1470 assert(allocaMap.count(originalValue)); 1471 Value *alloca = allocaMap[originalValue]; 1472 1473 // Emit store into the related alloca 1474 StoreInst *store = new StoreInst(relocatedValue, alloca); 1475 store->insertAfter(relocatedValue); 1476 1477 #ifndef NDEBUG 1478 visitedLiveValues.insert(originalValue); 1479 #endif 1480 } 1481 } 1482 1483 /// do all the relocation update via allocas and mem2reg 1484 static void relocationViaAlloca( 1485 Function &F, DominatorTree &DT, const std::vector<Value *> &live, 1486 const std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1487 #ifndef NDEBUG 1488 int initialAllocaNum = 0; 1489 1490 // record initial number of allocas 1491 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1492 itr++) { 1493 if (isa<AllocaInst>(*itr)) 1494 initialAllocaNum++; 1495 } 1496 #endif 1497 1498 // TODO-PERF: change data structures, reserve 1499 DenseMap<Value *, Value *> allocaMap; 1500 SmallVector<AllocaInst *, 200> PromotableAllocas; 1501 PromotableAllocas.reserve(live.size()); 1502 1503 // emit alloca for each live gc pointer 1504 for (unsigned i = 0; i < live.size(); i++) { 1505 Value *liveValue = live[i]; 1506 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1507 F.getEntryBlock().getFirstNonPHI()); 1508 allocaMap[liveValue] = alloca; 1509 PromotableAllocas.push_back(alloca); 1510 } 1511 1512 // The next two loops are part of the same conceptual operation. We need to 1513 // insert a store to the alloca after the original def and at each 1514 // redefinition. We need to insert a load before each use. These are split 1515 // into distinct loops for performance reasons. 1516 1517 // update gc pointer after each statepoint 1518 // either store a relocated value or null (if no relocated value found for 1519 // this gc pointer and it is not a gc_result) 1520 // this must happen before we update the statepoint with load of alloca 1521 // otherwise we lose the link between statepoint and old def 1522 for (size_t i = 0; i < records.size(); i++) { 1523 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1524 Value *statepoint = info.safepoint.first; 1525 1526 // This will be used for consistency check 1527 DenseSet<Value *> visitedLiveValues; 1528 1529 // Insert stores for normal statepoint gc relocates 1530 insertRelocationStores(statepoint->users(), allocaMap, visitedLiveValues); 1531 1532 // In case if it was invoke statepoint 1533 // we will insert stores for exceptional path gc relocates. 1534 if (isa<InvokeInst>(statepoint)) { 1535 insertRelocationStores(info.exceptional_relocates_token->users(), 1536 allocaMap, visitedLiveValues); 1537 } 1538 1539 #ifndef NDEBUG 1540 // For consistency check store null's into allocas for values that are not 1541 // relocated 1542 // by this statepoint. 1543 for (auto Pair : allocaMap) { 1544 Value *def = Pair.first; 1545 Value *alloca = Pair.second; 1546 1547 // This value was relocated 1548 if (visitedLiveValues.count(def)) { 1549 continue; 1550 } 1551 // Result should not be relocated 1552 if (def == info.result) { 1553 continue; 1554 } 1555 1556 Constant *CPN = 1557 ConstantPointerNull::get(cast<PointerType>(def->getType())); 1558 StoreInst *store = new StoreInst(CPN, alloca); 1559 store->insertBefore(info.safepoint.second); 1560 } 1561 #endif 1562 } 1563 // update use with load allocas and add store for gc_relocated 1564 for (auto Pair : allocaMap) { 1565 Value *def = Pair.first; 1566 Value *alloca = Pair.second; 1567 1568 // we pre-record the uses of allocas so that we dont have to worry about 1569 // later update 1570 // that change the user information. 1571 SmallVector<Instruction *, 20> uses; 1572 // PERF: trade a linear scan for repeated reallocation 1573 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1574 for (User *U : def->users()) { 1575 if (!isa<ConstantExpr>(U)) { 1576 // If the def has a ConstantExpr use, then the def is either a 1577 // ConstantExpr use itself or null. In either case 1578 // (recursively in the first, directly in the second), the oop 1579 // it is ultimately dependent on is null and this particular 1580 // use does not need to be fixed up. 1581 uses.push_back(cast<Instruction>(U)); 1582 } 1583 } 1584 1585 std::sort(uses.begin(), uses.end()); 1586 auto last = std::unique(uses.begin(), uses.end()); 1587 uses.erase(last, uses.end()); 1588 1589 for (Instruction *use : uses) { 1590 if (isa<PHINode>(use)) { 1591 PHINode *phi = cast<PHINode>(use); 1592 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1593 if (def == phi->getIncomingValue(i)) { 1594 LoadInst *load = new LoadInst( 1595 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1596 phi->setIncomingValue(i, load); 1597 } 1598 } 1599 } else { 1600 LoadInst *load = new LoadInst(alloca, "", use); 1601 use->replaceUsesOfWith(def, load); 1602 } 1603 } 1604 1605 // emit store for the initial gc value 1606 // store must be inserted after load, otherwise store will be in alloca's 1607 // use list and an extra load will be inserted before it 1608 StoreInst *store = new StoreInst(def, alloca); 1609 if (isa<Instruction>(def)) { 1610 store->insertAfter(cast<Instruction>(def)); 1611 } else { 1612 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1613 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) && 1614 "Must be argument or global"); 1615 store->insertAfter(cast<Instruction>(alloca)); 1616 } 1617 } 1618 1619 assert(PromotableAllocas.size() == live.size() && 1620 "we must have the same allocas with lives"); 1621 if (!PromotableAllocas.empty()) { 1622 // apply mem2reg to promote alloca to SSA 1623 PromoteMemToReg(PromotableAllocas, DT); 1624 } 1625 1626 #ifndef NDEBUG 1627 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1628 itr++) { 1629 if (isa<AllocaInst>(*itr)) 1630 initialAllocaNum--; 1631 } 1632 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); 1633 #endif 1634 } 1635 1636 /// Implement a unique function which doesn't require we sort the input 1637 /// vector. Doing so has the effect of changing the output of a couple of 1638 /// tests in ways which make them less useful in testing fused safepoints. 1639 template <typename T> static void unique_unsorted(std::vector<T> &vec) { 1640 DenseSet<T> seen; 1641 std::vector<T> tmp; 1642 vec.reserve(vec.size()); 1643 std::swap(tmp, vec); 1644 for (auto V : tmp) { 1645 if (seen.insert(V).second) { 1646 vec.push_back(V); 1647 } 1648 } 1649 } 1650 1651 static Function *getUseHolder(Module &M) { 1652 FunctionType *ftype = 1653 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1654 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1655 return Func; 1656 } 1657 1658 /// Insert holders so that each Value is obviously live through the entire 1659 /// liftetime of the call. 1660 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1661 std::vector<CallInst *> &holders) { 1662 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1663 Function *Func = getUseHolder(*M); 1664 if (CS.isCall()) { 1665 // For call safepoints insert dummy calls right after safepoint 1666 BasicBlock::iterator next(CS.getInstruction()); 1667 next++; 1668 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1669 holders.push_back(base_holder); 1670 } else if (CS.isInvoke()) { 1671 // For invoke safepooints insert dummy calls both in normal and 1672 // exceptional destination blocks 1673 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1674 CallInst *normal_holder = CallInst::Create( 1675 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1676 CallInst *unwind_holder = CallInst::Create( 1677 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1678 holders.push_back(normal_holder); 1679 holders.push_back(unwind_holder); 1680 } else { 1681 assert(false && "Unsupported"); 1682 } 1683 } 1684 1685 static void findLiveReferences( 1686 Function &F, DominatorTree &DT, Pass *P, std::vector<CallSite> &toUpdate, 1687 std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1688 for (size_t i = 0; i < records.size(); i++) { 1689 struct PartiallyConstructedSafepointRecord &info = records[i]; 1690 CallSite &CS = toUpdate[i]; 1691 analyzeParsePointLiveness(DT, CS, info); 1692 } 1693 } 1694 1695 static void addBasesAsLiveValues(std::set<Value *> &liveset, 1696 std::map<Value *, Value *> &base_pairs) { 1697 // Identify any base pointers which are used in this safepoint, but not 1698 // themselves relocated. We need to relocate them so that later inserted 1699 // safepoints can get the properly relocated base register. 1700 DenseSet<Value *> missing; 1701 for (Value *L : liveset) { 1702 assert(base_pairs.find(L) != base_pairs.end()); 1703 Value *base = base_pairs[L]; 1704 assert(base); 1705 if (liveset.find(base) == liveset.end()) { 1706 assert(base_pairs.find(base) == base_pairs.end()); 1707 // uniqued by set insert 1708 missing.insert(base); 1709 } 1710 } 1711 1712 // Note that we want these at the end of the list, otherwise 1713 // register placement gets screwed up once we lower to STATEPOINT 1714 // instructions. This is an utter hack, but there doesn't seem to be a 1715 // better one. 1716 for (Value *base : missing) { 1717 assert(base); 1718 liveset.insert(base); 1719 base_pairs[base] = base; 1720 } 1721 assert(liveset.size() == base_pairs.size()); 1722 } 1723 1724 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1725 std::vector<CallSite> &toUpdate) { 1726 #ifndef NDEBUG 1727 // sanity check the input 1728 std::set<CallSite> uniqued; 1729 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1730 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1731 1732 for (size_t i = 0; i < toUpdate.size(); i++) { 1733 CallSite &CS = toUpdate[i]; 1734 assert(CS.getInstruction()->getParent()->getParent() == &F); 1735 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1736 } 1737 #endif 1738 1739 // A list of dummy calls added to the IR to keep various values obviously 1740 // live in the IR. We'll remove all of these when done. 1741 std::vector<CallInst *> holders; 1742 1743 // Insert a dummy call with all of the arguments to the vm_state we'll need 1744 // for the actual safepoint insertion. This ensures reference arguments in 1745 // the deopt argument list are considered live through the safepoint (and 1746 // thus makes sure they get relocated.) 1747 for (size_t i = 0; i < toUpdate.size(); i++) { 1748 CallSite &CS = toUpdate[i]; 1749 Statepoint StatepointCS(CS); 1750 1751 SmallVector<Value *, 64> DeoptValues; 1752 for (Use &U : StatepointCS.vm_state_args()) { 1753 Value *Arg = cast<Value>(&U); 1754 if (isGCPointerType(Arg->getType())) 1755 DeoptValues.push_back(Arg); 1756 } 1757 insertUseHolderAfter(CS, DeoptValues, holders); 1758 } 1759 1760 std::vector<struct PartiallyConstructedSafepointRecord> records; 1761 records.reserve(toUpdate.size()); 1762 for (size_t i = 0; i < toUpdate.size(); i++) { 1763 struct PartiallyConstructedSafepointRecord info; 1764 records.push_back(info); 1765 } 1766 assert(records.size() == toUpdate.size()); 1767 1768 // A) Identify all gc pointers which are staticly live at the given call 1769 // site. 1770 findLiveReferences(F, DT, P, toUpdate, records); 1771 1772 // B) Find the base pointers for each live pointer 1773 /* scope for caching */ { 1774 // Cache the 'defining value' relation used in the computation and 1775 // insertion of base phis and selects. This ensures that we don't insert 1776 // large numbers of duplicate base_phis. 1777 DefiningValueMapTy DVCache; 1778 1779 for (size_t i = 0; i < records.size(); i++) { 1780 struct PartiallyConstructedSafepointRecord &info = records[i]; 1781 CallSite &CS = toUpdate[i]; 1782 findBasePointers(DT, DVCache, CS, info); 1783 } 1784 } // end of cache scope 1785 1786 // The base phi insertion logic (for any safepoint) may have inserted new 1787 // instructions which are now live at some safepoint. The simplest such 1788 // example is: 1789 // loop: 1790 // phi a <-- will be a new base_phi here 1791 // safepoint 1 <-- that needs to be live here 1792 // gep a + 1 1793 // safepoint 2 1794 // br loop 1795 std::set<llvm::Value *> allInsertedDefs; 1796 for (size_t i = 0; i < records.size(); i++) { 1797 struct PartiallyConstructedSafepointRecord &info = records[i]; 1798 allInsertedDefs.insert(info.newInsertedDefs.begin(), 1799 info.newInsertedDefs.end()); 1800 } 1801 1802 // We insert some dummy calls after each safepoint to definitely hold live 1803 // the base pointers which were identified for that safepoint. We'll then 1804 // ask liveness for _every_ base inserted to see what is now live. Then we 1805 // remove the dummy calls. 1806 holders.reserve(holders.size() + records.size()); 1807 for (size_t i = 0; i < records.size(); i++) { 1808 struct PartiallyConstructedSafepointRecord &info = records[i]; 1809 CallSite &CS = toUpdate[i]; 1810 1811 SmallVector<Value *, 128> Bases; 1812 for (auto Pair : info.base_pairs) { 1813 Bases.push_back(Pair.second); 1814 } 1815 insertUseHolderAfter(CS, Bases, holders); 1816 } 1817 1818 // Add the bases explicitly to the live vector set. This may result in a few 1819 // extra relocations, but the base has to be available whenever a pointer 1820 // derived from it is used. Thus, we need it to be part of the statepoint's 1821 // gc arguments list. TODO: Introduce an explicit notion (in the following 1822 // code) of the GC argument list as seperate from the live Values at a 1823 // given statepoint. 1824 for (size_t i = 0; i < records.size(); i++) { 1825 struct PartiallyConstructedSafepointRecord &info = records[i]; 1826 addBasesAsLiveValues(info.liveset, info.base_pairs); 1827 } 1828 1829 // If we inserted any new values, we need to adjust our notion of what is 1830 // live at a particular safepoint. 1831 if (!allInsertedDefs.empty()) { 1832 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1833 } 1834 if (PrintBasePointers) { 1835 for (size_t i = 0; i < records.size(); i++) { 1836 struct PartiallyConstructedSafepointRecord &info = records[i]; 1837 errs() << "Base Pairs: (w/Relocation)\n"; 1838 for (auto Pair : info.base_pairs) { 1839 errs() << " derived %" << Pair.first->getName() << " base %" 1840 << Pair.second->getName() << "\n"; 1841 } 1842 } 1843 } 1844 for (size_t i = 0; i < holders.size(); i++) { 1845 holders[i]->eraseFromParent(); 1846 holders[i] = nullptr; 1847 } 1848 holders.clear(); 1849 1850 // Now run through and replace the existing statepoints with new ones with 1851 // the live variables listed. We do not yet update uses of the values being 1852 // relocated. We have references to live variables that need to 1853 // survive to the last iteration of this loop. (By construction, the 1854 // previous statepoint can not be a live variable, thus we can and remove 1855 // the old statepoint calls as we go.) 1856 for (size_t i = 0; i < records.size(); i++) { 1857 struct PartiallyConstructedSafepointRecord &info = records[i]; 1858 CallSite &CS = toUpdate[i]; 1859 makeStatepointExplicit(DT, CS, P, info); 1860 } 1861 toUpdate.clear(); // prevent accident use of invalid CallSites 1862 1863 // In case if we inserted relocates in a different basic block than the 1864 // original safepoint (this can happen for invokes). We need to be sure that 1865 // original values were not used in any of the phi nodes at the 1866 // beginning of basic block containing them. Because we know that all such 1867 // blocks will have single predecessor we can safely assume that all phi 1868 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1869 // Just remove them all here. 1870 for (size_t i = 0; i < records.size(); i++) { 1871 Instruction *I = records[i].safepoint.first; 1872 1873 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 1874 FoldSingleEntryPHINodes(invoke->getNormalDest()); 1875 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 1876 1877 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 1878 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 1879 } 1880 } 1881 1882 // Do all the fixups of the original live variables to their relocated selves 1883 std::vector<Value *> live; 1884 for (size_t i = 0; i < records.size(); i++) { 1885 struct PartiallyConstructedSafepointRecord &info = records[i]; 1886 // We can't simply save the live set from the original insertion. One of 1887 // the live values might be the result of a call which needs a safepoint. 1888 // That Value* no longer exists and we need to use the new gc_result. 1889 // Thankfully, the liveset is embedded in the statepoint (and updated), so 1890 // we just grab that. 1891 Statepoint statepoint(info.safepoint.first); 1892 live.insert(live.end(), statepoint.gc_args_begin(), 1893 statepoint.gc_args_end()); 1894 } 1895 unique_unsorted(live); 1896 1897 #ifndef NDEBUG 1898 // sanity check 1899 for (auto ptr : live) { 1900 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 1901 } 1902 #endif 1903 1904 relocationViaAlloca(F, DT, live, records); 1905 return !records.empty(); 1906 } 1907 1908 /// Returns true if this function should be rewritten by this pass. The main 1909 /// point of this function is as an extension point for custom logic. 1910 static bool shouldRewriteStatepointsIn(Function &F) { 1911 // TODO: This should check the GCStrategy 1912 const std::string StatepointExampleName("statepoint-example"); 1913 return StatepointExampleName == F.getGC(); 1914 } 1915 1916 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 1917 // Nothing to do for declarations. 1918 if (F.isDeclaration() || F.empty()) 1919 return false; 1920 1921 // Policy choice says not to rewrite - the most common reason is that we're 1922 // compiling code without a GCStrategy. 1923 if (!shouldRewriteStatepointsIn(F)) 1924 return false; 1925 1926 // Gather all the statepoints which need rewritten. 1927 std::vector<CallSite> ParsePointNeeded; 1928 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1929 itr++) { 1930 // TODO: only the ones with the flag set! 1931 if (isStatepoint(*itr)) 1932 ParsePointNeeded.push_back(CallSite(&*itr)); 1933 } 1934 1935 // Return early if no work to do. 1936 if (ParsePointNeeded.empty()) 1937 return false; 1938 1939 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1940 return insertParsePoints(F, DT, this, ParsePointNeeded); 1941 } 1942