xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision d3d9cbf127b8470944e882ffc7b25a42727bf624)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/Cloning.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
45 
46 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
47 
48 using namespace llvm;
49 
50 // Print the liveset found at the insert location
51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
52                                   cl::init(false));
53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
54                                       cl::init(false));
55 // Print out the base pointers for debugging
56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
57                                        cl::init(false));
58 
59 // Cost threshold measuring when it is profitable to rematerialize value instead
60 // of relocating it
61 static cl::opt<unsigned>
62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
63                            cl::init(6));
64 
65 #ifdef EXPENSIVE_CHECKS
66 static bool ClobberNonLive = true;
67 #else
68 static bool ClobberNonLive = false;
69 #endif
70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
71                                                   cl::location(ClobberNonLive),
72                                                   cl::Hidden);
73 
74 static cl::opt<bool>
75     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
76                                    cl::Hidden, cl::init(true));
77 
78 namespace {
79 struct RewriteStatepointsForGC : public ModulePass {
80   static char ID; // Pass identification, replacement for typeid
81 
82   RewriteStatepointsForGC() : ModulePass(ID) {
83     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
84   }
85   bool runOnFunction(Function &F);
86   bool runOnModule(Module &M) override {
87     bool Changed = false;
88     for (Function &F : M)
89       Changed |= runOnFunction(F);
90 
91     if (Changed) {
92       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
93       // returns true for at least one function in the module.  Since at least
94       // one function changed, we know that the precondition is satisfied.
95       stripNonValidAttributes(M);
96     }
97 
98     return Changed;
99   }
100 
101   void getAnalysisUsage(AnalysisUsage &AU) const override {
102     // We add and rewrite a bunch of instructions, but don't really do much
103     // else.  We could in theory preserve a lot more analyses here.
104     AU.addRequired<DominatorTreeWrapperPass>();
105     AU.addRequired<TargetTransformInfoWrapperPass>();
106   }
107 
108   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
109   /// dereferenceability that are no longer valid/correct after
110   /// RewriteStatepointsForGC has run.  This is because semantically, after
111   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
112   /// heap.  stripNonValidAttributes (conservatively) restores correctness
113   /// by erasing all attributes in the module that externally imply
114   /// dereferenceability.
115   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
116   /// can touch the entire heap including noalias objects.
117   void stripNonValidAttributes(Module &M);
118 
119   // Helpers for stripNonValidAttributes
120   void stripNonValidAttributesFromBody(Function &F);
121   void stripNonValidAttributesFromPrototype(Function &F);
122 };
123 } // namespace
124 
125 char RewriteStatepointsForGC::ID = 0;
126 
127 ModulePass *llvm::createRewriteStatepointsForGCPass() {
128   return new RewriteStatepointsForGC();
129 }
130 
131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
132                       "Make relocations explicit at statepoints", false, false)
133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
136                     "Make relocations explicit at statepoints", false, false)
137 
138 namespace {
139 struct GCPtrLivenessData {
140   /// Values defined in this block.
141   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
142   /// Values used in this block (and thus live); does not included values
143   /// killed within this block.
144   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
145 
146   /// Values live into this basic block (i.e. used by any
147   /// instruction in this basic block or ones reachable from here)
148   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
149 
150   /// Values live out of this basic block (i.e. live into
151   /// any successor block)
152   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
153 };
154 
155 // The type of the internal cache used inside the findBasePointers family
156 // of functions.  From the callers perspective, this is an opaque type and
157 // should not be inspected.
158 //
159 // In the actual implementation this caches two relations:
160 // - The base relation itself (i.e. this pointer is based on that one)
161 // - The base defining value relation (i.e. before base_phi insertion)
162 // Generally, after the execution of a full findBasePointer call, only the
163 // base relation will remain.  Internally, we add a mixture of the two
164 // types, then update all the second type to the first type
165 typedef MapVector<Value *, Value *> DefiningValueMapTy;
166 typedef SetVector<Value *> StatepointLiveSetTy;
167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>>
168   RematerializedValueMapTy;
169 
170 struct PartiallyConstructedSafepointRecord {
171   /// The set of values known to be live across this safepoint
172   StatepointLiveSetTy LiveSet;
173 
174   /// Mapping from live pointers to a base-defining-value
175   MapVector<Value *, Value *> PointerToBase;
176 
177   /// The *new* gc.statepoint instruction itself.  This produces the token
178   /// that normal path gc.relocates and the gc.result are tied to.
179   Instruction *StatepointToken;
180 
181   /// Instruction to which exceptional gc relocates are attached
182   /// Makes it easier to iterate through them during relocationViaAlloca.
183   Instruction *UnwindToken;
184 
185   /// Record live values we are rematerialized instead of relocating.
186   /// They are not included into 'LiveSet' field.
187   /// Maps rematerialized copy to it's original value.
188   RematerializedValueMapTy RematerializedValues;
189 };
190 }
191 
192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
193   Optional<OperandBundleUse> DeoptBundle =
194       CS.getOperandBundle(LLVMContext::OB_deopt);
195 
196   if (!DeoptBundle.hasValue()) {
197     assert(AllowStatepointWithNoDeoptInfo &&
198            "Found non-leaf call without deopt info!");
199     return None;
200   }
201 
202   return DeoptBundle.getValue().Inputs;
203 }
204 
205 /// Compute the live-in set for every basic block in the function
206 static void computeLiveInValues(DominatorTree &DT, Function &F,
207                                 GCPtrLivenessData &Data);
208 
209 /// Given results from the dataflow liveness computation, find the set of live
210 /// Values at a particular instruction.
211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
212                               StatepointLiveSetTy &out);
213 
214 // TODO: Once we can get to the GCStrategy, this becomes
215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
216 
217 static bool isGCPointerType(Type *T) {
218   if (auto *PT = dyn_cast<PointerType>(T))
219     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
220     // GC managed heap.  We know that a pointer into this heap needs to be
221     // updated and that no other pointer does.
222     return (1 == PT->getAddressSpace());
223   return false;
224 }
225 
226 // Return true if this type is one which a) is a gc pointer or contains a GC
227 // pointer and b) is of a type this code expects to encounter as a live value.
228 // (The insertion code will assert that a type which matches (a) and not (b)
229 // is not encountered.)
230 static bool isHandledGCPointerType(Type *T) {
231   // We fully support gc pointers
232   if (isGCPointerType(T))
233     return true;
234   // We partially support vectors of gc pointers. The code will assert if it
235   // can't handle something.
236   if (auto VT = dyn_cast<VectorType>(T))
237     if (isGCPointerType(VT->getElementType()))
238       return true;
239   return false;
240 }
241 
242 #ifndef NDEBUG
243 /// Returns true if this type contains a gc pointer whether we know how to
244 /// handle that type or not.
245 static bool containsGCPtrType(Type *Ty) {
246   if (isGCPointerType(Ty))
247     return true;
248   if (VectorType *VT = dyn_cast<VectorType>(Ty))
249     return isGCPointerType(VT->getScalarType());
250   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
251     return containsGCPtrType(AT->getElementType());
252   if (StructType *ST = dyn_cast<StructType>(Ty))
253     return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
254                        containsGCPtrType);
255   return false;
256 }
257 
258 // Returns true if this is a type which a) is a gc pointer or contains a GC
259 // pointer and b) is of a type which the code doesn't expect (i.e. first class
260 // aggregates).  Used to trip assertions.
261 static bool isUnhandledGCPointerType(Type *Ty) {
262   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
263 }
264 #endif
265 
266 // Return the name of the value suffixed with the provided value, or if the
267 // value didn't have a name, the default value specified.
268 static std::string suffixed_name_or(Value *V, StringRef Suffix,
269                                     StringRef DefaultName) {
270   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
271 }
272 
273 // Conservatively identifies any definitions which might be live at the
274 // given instruction. The  analysis is performed immediately before the
275 // given instruction. Values defined by that instruction are not considered
276 // live.  Values used by that instruction are considered live.
277 static void
278 analyzeParsePointLiveness(DominatorTree &DT,
279                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
280                           PartiallyConstructedSafepointRecord &result) {
281   Instruction *inst = CS.getInstruction();
282 
283   StatepointLiveSetTy LiveSet;
284   findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
285 
286   if (PrintLiveSet) {
287     errs() << "Live Variables:\n";
288     for (Value *V : LiveSet)
289       dbgs() << " " << V->getName() << " " << *V << "\n";
290   }
291   if (PrintLiveSetSize) {
292     errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
293     errs() << "Number live values: " << LiveSet.size() << "\n";
294   }
295   result.LiveSet = LiveSet;
296 }
297 
298 static bool isKnownBaseResult(Value *V);
299 namespace {
300 /// A single base defining value - An immediate base defining value for an
301 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
302 /// For instructions which have multiple pointer [vector] inputs or that
303 /// transition between vector and scalar types, there is no immediate base
304 /// defining value.  The 'base defining value' for 'Def' is the transitive
305 /// closure of this relation stopping at the first instruction which has no
306 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
307 /// but it can also be an arbitrary derived pointer.
308 struct BaseDefiningValueResult {
309   /// Contains the value which is the base defining value.
310   Value * const BDV;
311   /// True if the base defining value is also known to be an actual base
312   /// pointer.
313   const bool IsKnownBase;
314   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
315     : BDV(BDV), IsKnownBase(IsKnownBase) {
316 #ifndef NDEBUG
317     // Check consistency between new and old means of checking whether a BDV is
318     // a base.
319     bool MustBeBase = isKnownBaseResult(BDV);
320     assert(!MustBeBase || MustBeBase == IsKnownBase);
321 #endif
322   }
323 };
324 }
325 
326 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
327 
328 /// Return a base defining value for the 'Index' element of the given vector
329 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
330 /// 'I'.  As an optimization, this method will try to determine when the
331 /// element is known to already be a base pointer.  If this can be established,
332 /// the second value in the returned pair will be true.  Note that either a
333 /// vector or a pointer typed value can be returned.  For the former, the
334 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
335 /// If the later, the return pointer is a BDV (or possibly a base) for the
336 /// particular element in 'I'.
337 static BaseDefiningValueResult
338 findBaseDefiningValueOfVector(Value *I) {
339   // Each case parallels findBaseDefiningValue below, see that code for
340   // detailed motivation.
341 
342   if (isa<Argument>(I))
343     // An incoming argument to the function is a base pointer
344     return BaseDefiningValueResult(I, true);
345 
346   if (isa<Constant>(I))
347     // Base of constant vector consists only of constant null pointers.
348     // For reasoning see similar case inside 'findBaseDefiningValue' function.
349     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
350                                    true);
351 
352   if (isa<LoadInst>(I))
353     return BaseDefiningValueResult(I, true);
354 
355   if (isa<InsertElementInst>(I))
356     // We don't know whether this vector contains entirely base pointers or
357     // not.  To be conservatively correct, we treat it as a BDV and will
358     // duplicate code as needed to construct a parallel vector of bases.
359     return BaseDefiningValueResult(I, false);
360 
361   if (isa<ShuffleVectorInst>(I))
362     // We don't know whether this vector contains entirely base pointers or
363     // not.  To be conservatively correct, we treat it as a BDV and will
364     // duplicate code as needed to construct a parallel vector of bases.
365     // TODO: There a number of local optimizations which could be applied here
366     // for particular sufflevector patterns.
367     return BaseDefiningValueResult(I, false);
368 
369   // A PHI or Select is a base defining value.  The outer findBasePointer
370   // algorithm is responsible for constructing a base value for this BDV.
371   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
372          "unknown vector instruction - no base found for vector element");
373   return BaseDefiningValueResult(I, false);
374 }
375 
376 /// Helper function for findBasePointer - Will return a value which either a)
377 /// defines the base pointer for the input, b) blocks the simple search
378 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
379 /// from pointer to vector type or back.
380 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
381   assert(I->getType()->isPtrOrPtrVectorTy() &&
382          "Illegal to ask for the base pointer of a non-pointer type");
383 
384   if (I->getType()->isVectorTy())
385     return findBaseDefiningValueOfVector(I);
386 
387   if (isa<Argument>(I))
388     // An incoming argument to the function is a base pointer
389     // We should have never reached here if this argument isn't an gc value
390     return BaseDefiningValueResult(I, true);
391 
392   if (isa<Constant>(I)) {
393     // We assume that objects with a constant base (e.g. a global) can't move
394     // and don't need to be reported to the collector because they are always
395     // live. Besides global references, all kinds of constants (e.g. undef,
396     // constant expressions, null pointers) can be introduced by the inliner or
397     // the optimizer, especially on dynamically dead paths.
398     // Here we treat all of them as having single null base. By doing this we
399     // trying to avoid problems reporting various conflicts in a form of
400     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
401     // See constant.ll file for relevant test cases.
402 
403     return BaseDefiningValueResult(
404         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
405   }
406 
407   if (CastInst *CI = dyn_cast<CastInst>(I)) {
408     Value *Def = CI->stripPointerCasts();
409     // If stripping pointer casts changes the address space there is an
410     // addrspacecast in between.
411     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
412                cast<PointerType>(CI->getType())->getAddressSpace() &&
413            "unsupported addrspacecast");
414     // If we find a cast instruction here, it means we've found a cast which is
415     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
416     // handle int->ptr conversion.
417     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
418     return findBaseDefiningValue(Def);
419   }
420 
421   if (isa<LoadInst>(I))
422     // The value loaded is an gc base itself
423     return BaseDefiningValueResult(I, true);
424 
425 
426   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
427     // The base of this GEP is the base
428     return findBaseDefiningValue(GEP->getPointerOperand());
429 
430   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
431     switch (II->getIntrinsicID()) {
432     default:
433       // fall through to general call handling
434       break;
435     case Intrinsic::experimental_gc_statepoint:
436       llvm_unreachable("statepoints don't produce pointers");
437     case Intrinsic::experimental_gc_relocate: {
438       // Rerunning safepoint insertion after safepoints are already
439       // inserted is not supported.  It could probably be made to work,
440       // but why are you doing this?  There's no good reason.
441       llvm_unreachable("repeat safepoint insertion is not supported");
442     }
443     case Intrinsic::gcroot:
444       // Currently, this mechanism hasn't been extended to work with gcroot.
445       // There's no reason it couldn't be, but I haven't thought about the
446       // implications much.
447       llvm_unreachable(
448           "interaction with the gcroot mechanism is not supported");
449     }
450   }
451   // We assume that functions in the source language only return base
452   // pointers.  This should probably be generalized via attributes to support
453   // both source language and internal functions.
454   if (isa<CallInst>(I) || isa<InvokeInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   // I have absolutely no idea how to implement this part yet.  It's not
458   // necessarily hard, I just haven't really looked at it yet.
459   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
460 
461   if (isa<AtomicCmpXchgInst>(I))
462     // A CAS is effectively a atomic store and load combined under a
463     // predicate.  From the perspective of base pointers, we just treat it
464     // like a load.
465     return BaseDefiningValueResult(I, true);
466 
467   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
468                                    "binary ops which don't apply to pointers");
469 
470   // The aggregate ops.  Aggregates can either be in the heap or on the
471   // stack, but in either case, this is simply a field load.  As a result,
472   // this is a defining definition of the base just like a load is.
473   if (isa<ExtractValueInst>(I))
474     return BaseDefiningValueResult(I, true);
475 
476   // We should never see an insert vector since that would require we be
477   // tracing back a struct value not a pointer value.
478   assert(!isa<InsertValueInst>(I) &&
479          "Base pointer for a struct is meaningless");
480 
481   // An extractelement produces a base result exactly when it's input does.
482   // We may need to insert a parallel instruction to extract the appropriate
483   // element out of the base vector corresponding to the input. Given this,
484   // it's analogous to the phi and select case even though it's not a merge.
485   if (isa<ExtractElementInst>(I))
486     // Note: There a lot of obvious peephole cases here.  This are deliberately
487     // handled after the main base pointer inference algorithm to make writing
488     // test cases to exercise that code easier.
489     return BaseDefiningValueResult(I, false);
490 
491   // The last two cases here don't return a base pointer.  Instead, they
492   // return a value which dynamically selects from among several base
493   // derived pointers (each with it's own base potentially).  It's the job of
494   // the caller to resolve these.
495   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
496          "missing instruction case in findBaseDefiningValing");
497   return BaseDefiningValueResult(I, false);
498 }
499 
500 /// Returns the base defining value for this value.
501 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
502   Value *&Cached = Cache[I];
503   if (!Cached) {
504     Cached = findBaseDefiningValue(I).BDV;
505     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
506                  << Cached->getName() << "\n");
507   }
508   assert(Cache[I] != nullptr);
509   return Cached;
510 }
511 
512 /// Return a base pointer for this value if known.  Otherwise, return it's
513 /// base defining value.
514 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
515   Value *Def = findBaseDefiningValueCached(I, Cache);
516   auto Found = Cache.find(Def);
517   if (Found != Cache.end()) {
518     // Either a base-of relation, or a self reference.  Caller must check.
519     return Found->second;
520   }
521   // Only a BDV available
522   return Def;
523 }
524 
525 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
526 /// is it known to be a base pointer?  Or do we need to continue searching.
527 static bool isKnownBaseResult(Value *V) {
528   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
529       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
530       !isa<ShuffleVectorInst>(V)) {
531     // no recursion possible
532     return true;
533   }
534   if (isa<Instruction>(V) &&
535       cast<Instruction>(V)->getMetadata("is_base_value")) {
536     // This is a previously inserted base phi or select.  We know
537     // that this is a base value.
538     return true;
539   }
540 
541   // We need to keep searching
542   return false;
543 }
544 
545 namespace {
546 /// Models the state of a single base defining value in the findBasePointer
547 /// algorithm for determining where a new instruction is needed to propagate
548 /// the base of this BDV.
549 class BDVState {
550 public:
551   enum Status { Unknown, Base, Conflict };
552 
553   BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
554     assert(status != Base || b);
555   }
556   explicit BDVState(Value *b) : status(Base), base(b) {}
557   BDVState() : status(Unknown), base(nullptr) {}
558 
559   Status getStatus() const { return status; }
560   Value *getBase() const { return base; }
561 
562   bool isBase() const { return getStatus() == Base; }
563   bool isUnknown() const { return getStatus() == Unknown; }
564   bool isConflict() const { return getStatus() == Conflict; }
565 
566   bool operator==(const BDVState &other) const {
567     return base == other.base && status == other.status;
568   }
569 
570   bool operator!=(const BDVState &other) const { return !(*this == other); }
571 
572   LLVM_DUMP_METHOD
573   void dump() const { print(dbgs()); dbgs() << '\n'; }
574 
575   void print(raw_ostream &OS) const {
576     switch (status) {
577     case Unknown:
578       OS << "U";
579       break;
580     case Base:
581       OS << "B";
582       break;
583     case Conflict:
584       OS << "C";
585       break;
586     };
587     OS << " (" << base << " - "
588        << (base ? base->getName() : "nullptr") << "): ";
589   }
590 
591 private:
592   Status status;
593   AssertingVH<Value> base; // non null only if status == base
594 };
595 }
596 
597 #ifndef NDEBUG
598 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
599   State.print(OS);
600   return OS;
601 }
602 #endif
603 
604 namespace {
605 // Values of type BDVState form a lattice, and this is a helper
606 // class that implementes the meet operation.  The meat of the meet
607 // operation is implemented in MeetBDVStates::pureMeet
608 class MeetBDVStates {
609 public:
610   /// Initializes the currentResult to the TOP state so that if can be met with
611   /// any other state to produce that state.
612   MeetBDVStates() {}
613 
614   // Destructively meet the current result with the given BDVState
615   void meetWith(BDVState otherState) {
616     currentResult = meet(otherState, currentResult);
617   }
618 
619   BDVState getResult() const { return currentResult; }
620 
621 private:
622   BDVState currentResult;
623 
624   /// Perform a meet operation on two elements of the BDVState lattice.
625   static BDVState meet(BDVState LHS, BDVState RHS) {
626     assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
627            "math is wrong: meet does not commute!");
628     BDVState Result = pureMeet(LHS, RHS);
629     DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
630                  << " produced " << Result << "\n");
631     return Result;
632   }
633 
634   static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
635     switch (stateA.getStatus()) {
636     case BDVState::Unknown:
637       return stateB;
638 
639     case BDVState::Base:
640       assert(stateA.getBase() && "can't be null");
641       if (stateB.isUnknown())
642         return stateA;
643 
644       if (stateB.isBase()) {
645         if (stateA.getBase() == stateB.getBase()) {
646           assert(stateA == stateB && "equality broken!");
647           return stateA;
648         }
649         return BDVState(BDVState::Conflict);
650       }
651       assert(stateB.isConflict() && "only three states!");
652       return BDVState(BDVState::Conflict);
653 
654     case BDVState::Conflict:
655       return stateA;
656     }
657     llvm_unreachable("only three states!");
658   }
659 };
660 }
661 
662 
663 /// For a given value or instruction, figure out what base ptr it's derived
664 /// from.  For gc objects, this is simply itself.  On success, returns a value
665 /// which is the base pointer.  (This is reliable and can be used for
666 /// relocation.)  On failure, returns nullptr.
667 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
668   Value *def = findBaseOrBDV(I, cache);
669 
670   if (isKnownBaseResult(def)) {
671     return def;
672   }
673 
674   // Here's the rough algorithm:
675   // - For every SSA value, construct a mapping to either an actual base
676   //   pointer or a PHI which obscures the base pointer.
677   // - Construct a mapping from PHI to unknown TOP state.  Use an
678   //   optimistic algorithm to propagate base pointer information.  Lattice
679   //   looks like:
680   //   UNKNOWN
681   //   b1 b2 b3 b4
682   //   CONFLICT
683   //   When algorithm terminates, all PHIs will either have a single concrete
684   //   base or be in a conflict state.
685   // - For every conflict, insert a dummy PHI node without arguments.  Add
686   //   these to the base[Instruction] = BasePtr mapping.  For every
687   //   non-conflict, add the actual base.
688   //  - For every conflict, add arguments for the base[a] of each input
689   //   arguments.
690   //
691   // Note: A simpler form of this would be to add the conflict form of all
692   // PHIs without running the optimistic algorithm.  This would be
693   // analogous to pessimistic data flow and would likely lead to an
694   // overall worse solution.
695 
696 #ifndef NDEBUG
697   auto isExpectedBDVType = [](Value *BDV) {
698     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
699            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
700   };
701 #endif
702 
703   // Once populated, will contain a mapping from each potentially non-base BDV
704   // to a lattice value (described above) which corresponds to that BDV.
705   // We use the order of insertion (DFS over the def/use graph) to provide a
706   // stable deterministic ordering for visiting DenseMaps (which are unordered)
707   // below.  This is important for deterministic compilation.
708   MapVector<Value *, BDVState> States;
709 
710   // Recursively fill in all base defining values reachable from the initial
711   // one for which we don't already know a definite base value for
712   /* scope */ {
713     SmallVector<Value*, 16> Worklist;
714     Worklist.push_back(def);
715     States.insert(std::make_pair(def, BDVState()));
716     while (!Worklist.empty()) {
717       Value *Current = Worklist.pop_back_val();
718       assert(!isKnownBaseResult(Current) && "why did it get added?");
719 
720       auto visitIncomingValue = [&](Value *InVal) {
721         Value *Base = findBaseOrBDV(InVal, cache);
722         if (isKnownBaseResult(Base))
723           // Known bases won't need new instructions introduced and can be
724           // ignored safely
725           return;
726         assert(isExpectedBDVType(Base) && "the only non-base values "
727                "we see should be base defining values");
728         if (States.insert(std::make_pair(Base, BDVState())).second)
729           Worklist.push_back(Base);
730       };
731       if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
732         for (Value *InVal : Phi->incoming_values())
733           visitIncomingValue(InVal);
734       } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
735         visitIncomingValue(Sel->getTrueValue());
736         visitIncomingValue(Sel->getFalseValue());
737       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
738         visitIncomingValue(EE->getVectorOperand());
739       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
740         visitIncomingValue(IE->getOperand(0)); // vector operand
741         visitIncomingValue(IE->getOperand(1)); // scalar operand
742       } else {
743         // There is one known class of instructions we know we don't handle.
744         assert(isa<ShuffleVectorInst>(Current));
745         llvm_unreachable("unimplemented instruction case");
746       }
747     }
748   }
749 
750 #ifndef NDEBUG
751   DEBUG(dbgs() << "States after initialization:\n");
752   for (auto Pair : States) {
753     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
754   }
755 #endif
756 
757   // Return a phi state for a base defining value.  We'll generate a new
758   // base state for known bases and expect to find a cached state otherwise.
759   auto getStateForBDV = [&](Value *baseValue) {
760     if (isKnownBaseResult(baseValue))
761       return BDVState(baseValue);
762     auto I = States.find(baseValue);
763     assert(I != States.end() && "lookup failed!");
764     return I->second;
765   };
766 
767   bool progress = true;
768   while (progress) {
769 #ifndef NDEBUG
770     const size_t oldSize = States.size();
771 #endif
772     progress = false;
773     // We're only changing values in this loop, thus safe to keep iterators.
774     // Since this is computing a fixed point, the order of visit does not
775     // effect the result.  TODO: We could use a worklist here and make this run
776     // much faster.
777     for (auto Pair : States) {
778       Value *BDV = Pair.first;
779       assert(!isKnownBaseResult(BDV) && "why did it get added?");
780 
781       // Given an input value for the current instruction, return a BDVState
782       // instance which represents the BDV of that value.
783       auto getStateForInput = [&](Value *V) mutable {
784         Value *BDV = findBaseOrBDV(V, cache);
785         return getStateForBDV(BDV);
786       };
787 
788       MeetBDVStates calculateMeet;
789       if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
790         calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
791         calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
792       } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
793         for (Value *Val : Phi->incoming_values())
794           calculateMeet.meetWith(getStateForInput(Val));
795       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
796         // The 'meet' for an extractelement is slightly trivial, but it's still
797         // useful in that it drives us to conflict if our input is.
798         calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
799       } else {
800         // Given there's a inherent type mismatch between the operands, will
801         // *always* produce Conflict.
802         auto *IE = cast<InsertElementInst>(BDV);
803         calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
804         calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
805       }
806 
807       BDVState oldState = States[BDV];
808       BDVState newState = calculateMeet.getResult();
809       if (oldState != newState) {
810         progress = true;
811         States[BDV] = newState;
812       }
813     }
814 
815     assert(oldSize == States.size() &&
816            "fixed point shouldn't be adding any new nodes to state");
817   }
818 
819 #ifndef NDEBUG
820   DEBUG(dbgs() << "States after meet iteration:\n");
821   for (auto Pair : States) {
822     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
823   }
824 #endif
825 
826   // Insert Phis for all conflicts
827   // TODO: adjust naming patterns to avoid this order of iteration dependency
828   for (auto Pair : States) {
829     Instruction *I = cast<Instruction>(Pair.first);
830     BDVState State = Pair.second;
831     assert(!isKnownBaseResult(I) && "why did it get added?");
832     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
833 
834     // extractelement instructions are a bit special in that we may need to
835     // insert an extract even when we know an exact base for the instruction.
836     // The problem is that we need to convert from a vector base to a scalar
837     // base for the particular indice we're interested in.
838     if (State.isBase() && isa<ExtractElementInst>(I) &&
839         isa<VectorType>(State.getBase()->getType())) {
840       auto *EE = cast<ExtractElementInst>(I);
841       // TODO: In many cases, the new instruction is just EE itself.  We should
842       // exploit this, but can't do it here since it would break the invariant
843       // about the BDV not being known to be a base.
844       auto *BaseInst = ExtractElementInst::Create(State.getBase(),
845                                                   EE->getIndexOperand(),
846                                                   "base_ee", EE);
847       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
848       States[I] = BDVState(BDVState::Base, BaseInst);
849     }
850 
851     // Since we're joining a vector and scalar base, they can never be the
852     // same.  As a result, we should always see insert element having reached
853     // the conflict state.
854     if (isa<InsertElementInst>(I)) {
855       assert(State.isConflict());
856     }
857 
858     if (!State.isConflict())
859       continue;
860 
861     /// Create and insert a new instruction which will represent the base of
862     /// the given instruction 'I'.
863     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
864       if (isa<PHINode>(I)) {
865         BasicBlock *BB = I->getParent();
866         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
867         assert(NumPreds > 0 && "how did we reach here");
868         std::string Name = suffixed_name_or(I, ".base", "base_phi");
869         return PHINode::Create(I->getType(), NumPreds, Name, I);
870       } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
871         // The undef will be replaced later
872         UndefValue *Undef = UndefValue::get(Sel->getType());
873         std::string Name = suffixed_name_or(I, ".base", "base_select");
874         return SelectInst::Create(Sel->getCondition(), Undef,
875                                   Undef, Name, Sel);
876       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
877         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
878         std::string Name = suffixed_name_or(I, ".base", "base_ee");
879         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
880                                           EE);
881       } else {
882         auto *IE = cast<InsertElementInst>(I);
883         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
884         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
885         std::string Name = suffixed_name_or(I, ".base", "base_ie");
886         return InsertElementInst::Create(VecUndef, ScalarUndef,
887                                          IE->getOperand(2), Name, IE);
888       }
889 
890     };
891     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
892     // Add metadata marking this as a base value
893     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
894     States[I] = BDVState(BDVState::Conflict, BaseInst);
895   }
896 
897   // Returns a instruction which produces the base pointer for a given
898   // instruction.  The instruction is assumed to be an input to one of the BDVs
899   // seen in the inference algorithm above.  As such, we must either already
900   // know it's base defining value is a base, or have inserted a new
901   // instruction to propagate the base of it's BDV and have entered that newly
902   // introduced instruction into the state table.  In either case, we are
903   // assured to be able to determine an instruction which produces it's base
904   // pointer.
905   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
906     Value *BDV = findBaseOrBDV(Input, cache);
907     Value *Base = nullptr;
908     if (isKnownBaseResult(BDV)) {
909       Base = BDV;
910     } else {
911       // Either conflict or base.
912       assert(States.count(BDV));
913       Base = States[BDV].getBase();
914     }
915     assert(Base && "can't be null");
916     // The cast is needed since base traversal may strip away bitcasts
917     if (Base->getType() != Input->getType() &&
918         InsertPt) {
919       Base = new BitCastInst(Base, Input->getType(), "cast",
920                              InsertPt);
921     }
922     return Base;
923   };
924 
925   // Fixup all the inputs of the new PHIs.  Visit order needs to be
926   // deterministic and predictable because we're naming newly created
927   // instructions.
928   for (auto Pair : States) {
929     Instruction *BDV = cast<Instruction>(Pair.first);
930     BDVState State = Pair.second;
931 
932     assert(!isKnownBaseResult(BDV) && "why did it get added?");
933     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
934     if (!State.isConflict())
935       continue;
936 
937     if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
938       PHINode *phi = cast<PHINode>(BDV);
939       unsigned NumPHIValues = phi->getNumIncomingValues();
940       for (unsigned i = 0; i < NumPHIValues; i++) {
941         Value *InVal = phi->getIncomingValue(i);
942         BasicBlock *InBB = phi->getIncomingBlock(i);
943 
944         // If we've already seen InBB, add the same incoming value
945         // we added for it earlier.  The IR verifier requires phi
946         // nodes with multiple entries from the same basic block
947         // to have the same incoming value for each of those
948         // entries.  If we don't do this check here and basephi
949         // has a different type than base, we'll end up adding two
950         // bitcasts (and hence two distinct values) as incoming
951         // values for the same basic block.
952 
953         int blockIndex = basephi->getBasicBlockIndex(InBB);
954         if (blockIndex != -1) {
955           Value *oldBase = basephi->getIncomingValue(blockIndex);
956           basephi->addIncoming(oldBase, InBB);
957 
958 #ifndef NDEBUG
959           Value *Base = getBaseForInput(InVal, nullptr);
960           // In essence this assert states: the only way two
961           // values incoming from the same basic block may be
962           // different is by being different bitcasts of the same
963           // value.  A cleanup that remains TODO is changing
964           // findBaseOrBDV to return an llvm::Value of the correct
965           // type (and still remain pure).  This will remove the
966           // need to add bitcasts.
967           assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
968                  "sanity -- findBaseOrBDV should be pure!");
969 #endif
970           continue;
971         }
972 
973         // Find the instruction which produces the base for each input.  We may
974         // need to insert a bitcast in the incoming block.
975         // TODO: Need to split critical edges if insertion is needed
976         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
977         basephi->addIncoming(Base, InBB);
978       }
979       assert(basephi->getNumIncomingValues() == NumPHIValues);
980     } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
981       SelectInst *Sel = cast<SelectInst>(BDV);
982       // Operand 1 & 2 are true, false path respectively. TODO: refactor to
983       // something more safe and less hacky.
984       for (int i = 1; i <= 2; i++) {
985         Value *InVal = Sel->getOperand(i);
986         // Find the instruction which produces the base for each input.  We may
987         // need to insert a bitcast.
988         Value *Base = getBaseForInput(InVal, BaseSel);
989         BaseSel->setOperand(i, Base);
990       }
991     } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
992       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
993       // Find the instruction which produces the base for each input.  We may
994       // need to insert a bitcast.
995       Value *Base = getBaseForInput(InVal, BaseEE);
996       BaseEE->setOperand(0, Base);
997     } else {
998       auto *BaseIE = cast<InsertElementInst>(State.getBase());
999       auto *BdvIE = cast<InsertElementInst>(BDV);
1000       auto UpdateOperand = [&](int OperandIdx) {
1001         Value *InVal = BdvIE->getOperand(OperandIdx);
1002         Value *Base = getBaseForInput(InVal, BaseIE);
1003         BaseIE->setOperand(OperandIdx, Base);
1004       };
1005       UpdateOperand(0); // vector operand
1006       UpdateOperand(1); // scalar operand
1007     }
1008 
1009   }
1010 
1011   // Cache all of our results so we can cheaply reuse them
1012   // NOTE: This is actually two caches: one of the base defining value
1013   // relation and one of the base pointer relation!  FIXME
1014   for (auto Pair : States) {
1015     auto *BDV = Pair.first;
1016     Value *base = Pair.second.getBase();
1017     assert(BDV && base);
1018     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1019 
1020     DEBUG(dbgs() << "Updating base value cache"
1021                  << " for: " << BDV->getName() << " from: "
1022                  << (cache.count(BDV) ? cache[BDV]->getName().str() : "none")
1023                  << " to: " << base->getName() << "\n");
1024 
1025     if (cache.count(BDV)) {
1026       assert(isKnownBaseResult(base) &&
1027              "must be something we 'know' is a base pointer");
1028       // Once we transition from the BDV relation being store in the cache to
1029       // the base relation being stored, it must be stable
1030       assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
1031              "base relation should be stable");
1032     }
1033     cache[BDV] = base;
1034   }
1035   assert(cache.count(def));
1036   return cache[def];
1037 }
1038 
1039 // For a set of live pointers (base and/or derived), identify the base
1040 // pointer of the object which they are derived from.  This routine will
1041 // mutate the IR graph as needed to make the 'base' pointer live at the
1042 // definition site of 'derived'.  This ensures that any use of 'derived' can
1043 // also use 'base'.  This may involve the insertion of a number of
1044 // additional PHI nodes.
1045 //
1046 // preconditions: live is a set of pointer type Values
1047 //
1048 // side effects: may insert PHI nodes into the existing CFG, will preserve
1049 // CFG, will not remove or mutate any existing nodes
1050 //
1051 // post condition: PointerToBase contains one (derived, base) pair for every
1052 // pointer in live.  Note that derived can be equal to base if the original
1053 // pointer was a base pointer.
1054 static void
1055 findBasePointers(const StatepointLiveSetTy &live,
1056                  MapVector<Value *, Value *> &PointerToBase,
1057                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1058   for (Value *ptr : live) {
1059     Value *base = findBasePointer(ptr, DVCache);
1060     assert(base && "failed to find base pointer");
1061     PointerToBase[ptr] = base;
1062     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1063             DT->dominates(cast<Instruction>(base)->getParent(),
1064                           cast<Instruction>(ptr)->getParent())) &&
1065            "The base we found better dominate the derived pointer");
1066   }
1067 }
1068 
1069 /// Find the required based pointers (and adjust the live set) for the given
1070 /// parse point.
1071 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1072                              CallSite CS,
1073                              PartiallyConstructedSafepointRecord &result) {
1074   MapVector<Value *, Value *> PointerToBase;
1075   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1076 
1077   if (PrintBasePointers) {
1078     errs() << "Base Pairs (w/o Relocation):\n";
1079     for (auto &Pair : PointerToBase) {
1080       errs() << " derived ";
1081       Pair.first->printAsOperand(errs(), false);
1082       errs() << " base ";
1083       Pair.second->printAsOperand(errs(), false);
1084       errs() << "\n";;
1085     }
1086   }
1087 
1088   result.PointerToBase = PointerToBase;
1089 }
1090 
1091 /// Given an updated version of the dataflow liveness results, update the
1092 /// liveset and base pointer maps for the call site CS.
1093 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1094                                   CallSite CS,
1095                                   PartiallyConstructedSafepointRecord &result);
1096 
1097 static void recomputeLiveInValues(
1098     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1099     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1100   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1101   // again.  The old values are still live and will help it stabilize quickly.
1102   GCPtrLivenessData RevisedLivenessData;
1103   computeLiveInValues(DT, F, RevisedLivenessData);
1104   for (size_t i = 0; i < records.size(); i++) {
1105     struct PartiallyConstructedSafepointRecord &info = records[i];
1106     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1107   }
1108 }
1109 
1110 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1111 // no uses of the original value / return value between the gc.statepoint and
1112 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1113 // starting one of the successor blocks.  We also need to be able to insert the
1114 // gc.relocates only on the path which goes through the statepoint.  We might
1115 // need to split an edge to make this possible.
1116 static BasicBlock *
1117 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1118                             DominatorTree &DT) {
1119   BasicBlock *Ret = BB;
1120   if (!BB->getUniquePredecessor())
1121     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1122 
1123   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1124   // from it
1125   FoldSingleEntryPHINodes(Ret);
1126   assert(!isa<PHINode>(Ret->begin()) &&
1127          "All PHI nodes should have been removed!");
1128 
1129   // At this point, we can safely insert a gc.relocate or gc.result as the first
1130   // instruction in Ret if needed.
1131   return Ret;
1132 }
1133 
1134 // Create new attribute set containing only attributes which can be transferred
1135 // from original call to the safepoint.
1136 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1137   AttributeSet Ret;
1138 
1139   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1140     unsigned Index = AS.getSlotIndex(Slot);
1141 
1142     if (Index == AttributeSet::ReturnIndex ||
1143         Index == AttributeSet::FunctionIndex) {
1144 
1145       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1146 
1147         // Do not allow certain attributes - just skip them
1148         // Safepoint can not be read only or read none.
1149         if (Attr.hasAttribute(Attribute::ReadNone) ||
1150             Attr.hasAttribute(Attribute::ReadOnly))
1151           continue;
1152 
1153         // These attributes control the generation of the gc.statepoint call /
1154         // invoke itself; and once the gc.statepoint is in place, they're of no
1155         // use.
1156         if (isStatepointDirectiveAttr(Attr))
1157           continue;
1158 
1159         Ret = Ret.addAttributes(
1160             AS.getContext(), Index,
1161             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1162       }
1163     }
1164 
1165     // Just skip parameter attributes for now
1166   }
1167 
1168   return Ret;
1169 }
1170 
1171 /// Helper function to place all gc relocates necessary for the given
1172 /// statepoint.
1173 /// Inputs:
1174 ///   liveVariables - list of variables to be relocated.
1175 ///   liveStart - index of the first live variable.
1176 ///   basePtrs - base pointers.
1177 ///   statepointToken - statepoint instruction to which relocates should be
1178 ///   bound.
1179 ///   Builder - Llvm IR builder to be used to construct new calls.
1180 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1181                               const int LiveStart,
1182                               ArrayRef<Value *> BasePtrs,
1183                               Instruction *StatepointToken,
1184                               IRBuilder<> Builder) {
1185   if (LiveVariables.empty())
1186     return;
1187 
1188   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1189     auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1190     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1191     size_t Index = std::distance(LiveVec.begin(), ValIt);
1192     assert(Index < LiveVec.size() && "Bug in std::find?");
1193     return Index;
1194   };
1195   Module *M = StatepointToken->getModule();
1196 
1197   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1198   // element type is i8 addrspace(1)*). We originally generated unique
1199   // declarations for each pointer type, but this proved problematic because
1200   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1201   // towards a single unified pointer type anyways, we can just cast everything
1202   // to an i8* of the right address space.  A bitcast is added later to convert
1203   // gc_relocate to the actual value's type.
1204   auto getGCRelocateDecl = [&] (Type *Ty) {
1205     assert(isHandledGCPointerType(Ty));
1206     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1207     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1208     if (auto *VT = dyn_cast<VectorType>(Ty))
1209       NewTy = VectorType::get(NewTy, VT->getNumElements());
1210     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1211                                      {NewTy});
1212   };
1213 
1214   // Lazily populated map from input types to the canonicalized form mentioned
1215   // in the comment above.  This should probably be cached somewhere more
1216   // broadly.
1217   DenseMap<Type*, Value*> TypeToDeclMap;
1218 
1219   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1220     // Generate the gc.relocate call and save the result
1221     Value *BaseIdx =
1222       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1223     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1224 
1225     Type *Ty = LiveVariables[i]->getType();
1226     if (!TypeToDeclMap.count(Ty))
1227       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1228     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1229 
1230     // only specify a debug name if we can give a useful one
1231     CallInst *Reloc = Builder.CreateCall(
1232         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1233         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1234     // Trick CodeGen into thinking there are lots of free registers at this
1235     // fake call.
1236     Reloc->setCallingConv(CallingConv::Cold);
1237   }
1238 }
1239 
1240 namespace {
1241 
1242 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1243 /// avoids having to worry about keeping around dangling pointers to Values.
1244 class DeferredReplacement {
1245   AssertingVH<Instruction> Old;
1246   AssertingVH<Instruction> New;
1247   bool IsDeoptimize = false;
1248 
1249   DeferredReplacement() {}
1250 
1251 public:
1252   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1253     assert(Old != New && Old && New &&
1254            "Cannot RAUW equal values or to / from null!");
1255 
1256     DeferredReplacement D;
1257     D.Old = Old;
1258     D.New = New;
1259     return D;
1260   }
1261 
1262   static DeferredReplacement createDelete(Instruction *ToErase) {
1263     DeferredReplacement D;
1264     D.Old = ToErase;
1265     return D;
1266   }
1267 
1268   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1269 #ifndef NDEBUG
1270     auto *F = cast<CallInst>(Old)->getCalledFunction();
1271     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1272            "Only way to construct a deoptimize deferred replacement");
1273 #endif
1274     DeferredReplacement D;
1275     D.Old = Old;
1276     D.IsDeoptimize = true;
1277     return D;
1278   }
1279 
1280   /// Does the task represented by this instance.
1281   void doReplacement() {
1282     Instruction *OldI = Old;
1283     Instruction *NewI = New;
1284 
1285     assert(OldI != NewI && "Disallowed at construction?!");
1286     assert((!IsDeoptimize || !New) &&
1287            "Deoptimize instrinsics are not replaced!");
1288 
1289     Old = nullptr;
1290     New = nullptr;
1291 
1292     if (NewI)
1293       OldI->replaceAllUsesWith(NewI);
1294 
1295     if (IsDeoptimize) {
1296       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1297       // not necessarilly be followed by the matching return.
1298       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1299       new UnreachableInst(RI->getContext(), RI);
1300       RI->eraseFromParent();
1301     }
1302 
1303     OldI->eraseFromParent();
1304   }
1305 };
1306 }
1307 
1308 static void
1309 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1310                            const SmallVectorImpl<Value *> &BasePtrs,
1311                            const SmallVectorImpl<Value *> &LiveVariables,
1312                            PartiallyConstructedSafepointRecord &Result,
1313                            std::vector<DeferredReplacement> &Replacements) {
1314   assert(BasePtrs.size() == LiveVariables.size());
1315 
1316   // Then go ahead and use the builder do actually do the inserts.  We insert
1317   // immediately before the previous instruction under the assumption that all
1318   // arguments will be available here.  We can't insert afterwards since we may
1319   // be replacing a terminator.
1320   Instruction *InsertBefore = CS.getInstruction();
1321   IRBuilder<> Builder(InsertBefore);
1322 
1323   ArrayRef<Value *> GCArgs(LiveVariables);
1324   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1325   uint32_t NumPatchBytes = 0;
1326   uint32_t Flags = uint32_t(StatepointFlags::None);
1327 
1328   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1329   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1330   ArrayRef<Use> TransitionArgs;
1331   if (auto TransitionBundle =
1332       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1333     Flags |= uint32_t(StatepointFlags::GCTransition);
1334     TransitionArgs = TransitionBundle->Inputs;
1335   }
1336 
1337   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1338   // with a return value, we lower then as never returning calls to
1339   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1340   bool IsDeoptimize = false;
1341 
1342   StatepointDirectives SD =
1343       parseStatepointDirectivesFromAttrs(CS.getAttributes());
1344   if (SD.NumPatchBytes)
1345     NumPatchBytes = *SD.NumPatchBytes;
1346   if (SD.StatepointID)
1347     StatepointID = *SD.StatepointID;
1348 
1349   Value *CallTarget = CS.getCalledValue();
1350   if (Function *F = dyn_cast<Function>(CallTarget)) {
1351     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1352       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1353       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1354       // verifier does not allow taking the address of an intrinsic function.
1355 
1356       SmallVector<Type *, 8> DomainTy;
1357       for (Value *Arg : CallArgs)
1358         DomainTy.push_back(Arg->getType());
1359       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1360                                     /* isVarArg = */ false);
1361 
1362       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1363       // calls to @llvm.experimental.deoptimize with different argument types in
1364       // the same module.  This is fine -- we assume the frontend knew what it
1365       // was doing when generating this kind of IR.
1366       CallTarget =
1367           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1368 
1369       IsDeoptimize = true;
1370     }
1371   }
1372 
1373   // Create the statepoint given all the arguments
1374   Instruction *Token = nullptr;
1375   AttributeSet ReturnAttrs;
1376   if (CS.isCall()) {
1377     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1378     CallInst *Call = Builder.CreateGCStatepointCall(
1379         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1380         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1381 
1382     Call->setTailCall(ToReplace->isTailCall());
1383     Call->setCallingConv(ToReplace->getCallingConv());
1384 
1385     // Currently we will fail on parameter attributes and on certain
1386     // function attributes.
1387     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1388     // In case if we can handle this set of attributes - set up function attrs
1389     // directly on statepoint and return attrs later for gc_result intrinsic.
1390     Call->setAttributes(NewAttrs.getFnAttributes());
1391     ReturnAttrs = NewAttrs.getRetAttributes();
1392 
1393     Token = Call;
1394 
1395     // Put the following gc_result and gc_relocate calls immediately after the
1396     // the old call (which we're about to delete)
1397     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1398     Builder.SetInsertPoint(ToReplace->getNextNode());
1399     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1400   } else {
1401     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1402 
1403     // Insert the new invoke into the old block.  We'll remove the old one in a
1404     // moment at which point this will become the new terminator for the
1405     // original block.
1406     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1407         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1408         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1409         GCArgs, "statepoint_token");
1410 
1411     Invoke->setCallingConv(ToReplace->getCallingConv());
1412 
1413     // Currently we will fail on parameter attributes and on certain
1414     // function attributes.
1415     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1416     // In case if we can handle this set of attributes - set up function attrs
1417     // directly on statepoint and return attrs later for gc_result intrinsic.
1418     Invoke->setAttributes(NewAttrs.getFnAttributes());
1419     ReturnAttrs = NewAttrs.getRetAttributes();
1420 
1421     Token = Invoke;
1422 
1423     // Generate gc relocates in exceptional path
1424     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1425     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1426            UnwindBlock->getUniquePredecessor() &&
1427            "can't safely insert in this block!");
1428 
1429     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1430     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1431 
1432     // Attach exceptional gc relocates to the landingpad.
1433     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1434     Result.UnwindToken = ExceptionalToken;
1435 
1436     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1437     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1438                       Builder);
1439 
1440     // Generate gc relocates and returns for normal block
1441     BasicBlock *NormalDest = ToReplace->getNormalDest();
1442     assert(!isa<PHINode>(NormalDest->begin()) &&
1443            NormalDest->getUniquePredecessor() &&
1444            "can't safely insert in this block!");
1445 
1446     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1447 
1448     // gc relocates will be generated later as if it were regular call
1449     // statepoint
1450   }
1451   assert(Token && "Should be set in one of the above branches!");
1452 
1453   if (IsDeoptimize) {
1454     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1455     // transform the tail-call like structure to a call to a void function
1456     // followed by unreachable to get better codegen.
1457     Replacements.push_back(
1458         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1459   } else {
1460     Token->setName("statepoint_token");
1461     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1462       StringRef Name =
1463           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1464       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1465       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1466 
1467       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1468       // live set of some other safepoint, in which case that safepoint's
1469       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1470       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1471       // after the live sets have been made explicit in the IR, and we no longer
1472       // have raw pointers to worry about.
1473       Replacements.emplace_back(
1474           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1475     } else {
1476       Replacements.emplace_back(
1477           DeferredReplacement::createDelete(CS.getInstruction()));
1478     }
1479   }
1480 
1481   Result.StatepointToken = Token;
1482 
1483   // Second, create a gc.relocate for every live variable
1484   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1485   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1486 }
1487 
1488 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1489 // which make the relocations happening at this safepoint explicit.
1490 //
1491 // WARNING: Does not do any fixup to adjust users of the original live
1492 // values.  That's the callers responsibility.
1493 static void
1494 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1495                        PartiallyConstructedSafepointRecord &Result,
1496                        std::vector<DeferredReplacement> &Replacements) {
1497   const auto &LiveSet = Result.LiveSet;
1498   const auto &PointerToBase = Result.PointerToBase;
1499 
1500   // Convert to vector for efficient cross referencing.
1501   SmallVector<Value *, 64> BaseVec, LiveVec;
1502   LiveVec.reserve(LiveSet.size());
1503   BaseVec.reserve(LiveSet.size());
1504   for (Value *L : LiveSet) {
1505     LiveVec.push_back(L);
1506     assert(PointerToBase.count(L));
1507     Value *Base = PointerToBase.find(L)->second;
1508     BaseVec.push_back(Base);
1509   }
1510   assert(LiveVec.size() == BaseVec.size());
1511 
1512   // Do the actual rewriting and delete the old statepoint
1513   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1514 }
1515 
1516 // Helper function for the relocationViaAlloca.
1517 //
1518 // It receives iterator to the statepoint gc relocates and emits a store to the
1519 // assigned location (via allocaMap) for the each one of them.  It adds the
1520 // visited values into the visitedLiveValues set, which we will later use them
1521 // for sanity checking.
1522 static void
1523 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1524                        DenseMap<Value *, Value *> &AllocaMap,
1525                        DenseSet<Value *> &VisitedLiveValues) {
1526 
1527   for (User *U : GCRelocs) {
1528     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1529     if (!Relocate)
1530       continue;
1531 
1532     Value *OriginalValue = Relocate->getDerivedPtr();
1533     assert(AllocaMap.count(OriginalValue));
1534     Value *Alloca = AllocaMap[OriginalValue];
1535 
1536     // Emit store into the related alloca
1537     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1538     // the correct type according to alloca.
1539     assert(Relocate->getNextNode() &&
1540            "Should always have one since it's not a terminator");
1541     IRBuilder<> Builder(Relocate->getNextNode());
1542     Value *CastedRelocatedValue =
1543       Builder.CreateBitCast(Relocate,
1544                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1545                             suffixed_name_or(Relocate, ".casted", ""));
1546 
1547     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1548     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1549 
1550 #ifndef NDEBUG
1551     VisitedLiveValues.insert(OriginalValue);
1552 #endif
1553   }
1554 }
1555 
1556 // Helper function for the "relocationViaAlloca". Similar to the
1557 // "insertRelocationStores" but works for rematerialized values.
1558 static void insertRematerializationStores(
1559     const RematerializedValueMapTy &RematerializedValues,
1560     DenseMap<Value *, Value *> &AllocaMap,
1561     DenseSet<Value *> &VisitedLiveValues) {
1562 
1563   for (auto RematerializedValuePair: RematerializedValues) {
1564     Instruction *RematerializedValue = RematerializedValuePair.first;
1565     Value *OriginalValue = RematerializedValuePair.second;
1566 
1567     assert(AllocaMap.count(OriginalValue) &&
1568            "Can not find alloca for rematerialized value");
1569     Value *Alloca = AllocaMap[OriginalValue];
1570 
1571     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1572     Store->insertAfter(RematerializedValue);
1573 
1574 #ifndef NDEBUG
1575     VisitedLiveValues.insert(OriginalValue);
1576 #endif
1577   }
1578 }
1579 
1580 /// Do all the relocation update via allocas and mem2reg
1581 static void relocationViaAlloca(
1582     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1583     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1584 #ifndef NDEBUG
1585   // record initial number of (static) allocas; we'll check we have the same
1586   // number when we get done.
1587   int InitialAllocaNum = 0;
1588   for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1589        I++)
1590     if (isa<AllocaInst>(*I))
1591       InitialAllocaNum++;
1592 #endif
1593 
1594   // TODO-PERF: change data structures, reserve
1595   DenseMap<Value *, Value *> AllocaMap;
1596   SmallVector<AllocaInst *, 200> PromotableAllocas;
1597   // Used later to chack that we have enough allocas to store all values
1598   std::size_t NumRematerializedValues = 0;
1599   PromotableAllocas.reserve(Live.size());
1600 
1601   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1602   // "PromotableAllocas"
1603   auto emitAllocaFor = [&](Value *LiveValue) {
1604     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1605                                         F.getEntryBlock().getFirstNonPHI());
1606     AllocaMap[LiveValue] = Alloca;
1607     PromotableAllocas.push_back(Alloca);
1608   };
1609 
1610   // Emit alloca for each live gc pointer
1611   for (Value *V : Live)
1612     emitAllocaFor(V);
1613 
1614   // Emit allocas for rematerialized values
1615   for (const auto &Info : Records)
1616     for (auto RematerializedValuePair : Info.RematerializedValues) {
1617       Value *OriginalValue = RematerializedValuePair.second;
1618       if (AllocaMap.count(OriginalValue) != 0)
1619         continue;
1620 
1621       emitAllocaFor(OriginalValue);
1622       ++NumRematerializedValues;
1623     }
1624 
1625   // The next two loops are part of the same conceptual operation.  We need to
1626   // insert a store to the alloca after the original def and at each
1627   // redefinition.  We need to insert a load before each use.  These are split
1628   // into distinct loops for performance reasons.
1629 
1630   // Update gc pointer after each statepoint: either store a relocated value or
1631   // null (if no relocated value was found for this gc pointer and it is not a
1632   // gc_result).  This must happen before we update the statepoint with load of
1633   // alloca otherwise we lose the link between statepoint and old def.
1634   for (const auto &Info : Records) {
1635     Value *Statepoint = Info.StatepointToken;
1636 
1637     // This will be used for consistency check
1638     DenseSet<Value *> VisitedLiveValues;
1639 
1640     // Insert stores for normal statepoint gc relocates
1641     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1642 
1643     // In case if it was invoke statepoint
1644     // we will insert stores for exceptional path gc relocates.
1645     if (isa<InvokeInst>(Statepoint)) {
1646       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1647                              VisitedLiveValues);
1648     }
1649 
1650     // Do similar thing with rematerialized values
1651     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1652                                   VisitedLiveValues);
1653 
1654     if (ClobberNonLive) {
1655       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1656       // the gc.statepoint.  This will turn some subtle GC problems into
1657       // slightly easier to debug SEGVs.  Note that on large IR files with
1658       // lots of gc.statepoints this is extremely costly both memory and time
1659       // wise.
1660       SmallVector<AllocaInst *, 64> ToClobber;
1661       for (auto Pair : AllocaMap) {
1662         Value *Def = Pair.first;
1663         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1664 
1665         // This value was relocated
1666         if (VisitedLiveValues.count(Def)) {
1667           continue;
1668         }
1669         ToClobber.push_back(Alloca);
1670       }
1671 
1672       auto InsertClobbersAt = [&](Instruction *IP) {
1673         for (auto *AI : ToClobber) {
1674           auto PT = cast<PointerType>(AI->getAllocatedType());
1675           Constant *CPN = ConstantPointerNull::get(PT);
1676           StoreInst *Store = new StoreInst(CPN, AI);
1677           Store->insertBefore(IP);
1678         }
1679       };
1680 
1681       // Insert the clobbering stores.  These may get intermixed with the
1682       // gc.results and gc.relocates, but that's fine.
1683       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1684         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1685         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1686       } else {
1687         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1688       }
1689     }
1690   }
1691 
1692   // Update use with load allocas and add store for gc_relocated.
1693   for (auto Pair : AllocaMap) {
1694     Value *Def = Pair.first;
1695     Value *Alloca = Pair.second;
1696 
1697     // We pre-record the uses of allocas so that we dont have to worry about
1698     // later update that changes the user information..
1699 
1700     SmallVector<Instruction *, 20> Uses;
1701     // PERF: trade a linear scan for repeated reallocation
1702     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1703     for (User *U : Def->users()) {
1704       if (!isa<ConstantExpr>(U)) {
1705         // If the def has a ConstantExpr use, then the def is either a
1706         // ConstantExpr use itself or null.  In either case
1707         // (recursively in the first, directly in the second), the oop
1708         // it is ultimately dependent on is null and this particular
1709         // use does not need to be fixed up.
1710         Uses.push_back(cast<Instruction>(U));
1711       }
1712     }
1713 
1714     std::sort(Uses.begin(), Uses.end());
1715     auto Last = std::unique(Uses.begin(), Uses.end());
1716     Uses.erase(Last, Uses.end());
1717 
1718     for (Instruction *Use : Uses) {
1719       if (isa<PHINode>(Use)) {
1720         PHINode *Phi = cast<PHINode>(Use);
1721         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1722           if (Def == Phi->getIncomingValue(i)) {
1723             LoadInst *Load = new LoadInst(
1724                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1725             Phi->setIncomingValue(i, Load);
1726           }
1727         }
1728       } else {
1729         LoadInst *Load = new LoadInst(Alloca, "", Use);
1730         Use->replaceUsesOfWith(Def, Load);
1731       }
1732     }
1733 
1734     // Emit store for the initial gc value.  Store must be inserted after load,
1735     // otherwise store will be in alloca's use list and an extra load will be
1736     // inserted before it.
1737     StoreInst *Store = new StoreInst(Def, Alloca);
1738     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1739       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1740         // InvokeInst is a TerminatorInst so the store need to be inserted
1741         // into its normal destination block.
1742         BasicBlock *NormalDest = Invoke->getNormalDest();
1743         Store->insertBefore(NormalDest->getFirstNonPHI());
1744       } else {
1745         assert(!Inst->isTerminator() &&
1746                "The only TerminatorInst that can produce a value is "
1747                "InvokeInst which is handled above.");
1748         Store->insertAfter(Inst);
1749       }
1750     } else {
1751       assert(isa<Argument>(Def));
1752       Store->insertAfter(cast<Instruction>(Alloca));
1753     }
1754   }
1755 
1756   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1757          "we must have the same allocas with lives");
1758   if (!PromotableAllocas.empty()) {
1759     // Apply mem2reg to promote alloca to SSA
1760     PromoteMemToReg(PromotableAllocas, DT);
1761   }
1762 
1763 #ifndef NDEBUG
1764   for (auto &I : F.getEntryBlock())
1765     if (isa<AllocaInst>(I))
1766       InitialAllocaNum--;
1767   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1768 #endif
1769 }
1770 
1771 /// Implement a unique function which doesn't require we sort the input
1772 /// vector.  Doing so has the effect of changing the output of a couple of
1773 /// tests in ways which make them less useful in testing fused safepoints.
1774 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1775   SmallSet<T, 8> Seen;
1776   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1777               return !Seen.insert(V).second;
1778             }), Vec.end());
1779 }
1780 
1781 /// Insert holders so that each Value is obviously live through the entire
1782 /// lifetime of the call.
1783 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1784                                  SmallVectorImpl<CallInst *> &Holders) {
1785   if (Values.empty())
1786     // No values to hold live, might as well not insert the empty holder
1787     return;
1788 
1789   Module *M = CS.getInstruction()->getModule();
1790   // Use a dummy vararg function to actually hold the values live
1791   Function *Func = cast<Function>(M->getOrInsertFunction(
1792       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1793   if (CS.isCall()) {
1794     // For call safepoints insert dummy calls right after safepoint
1795     Holders.push_back(CallInst::Create(Func, Values, "",
1796                                        &*++CS.getInstruction()->getIterator()));
1797     return;
1798   }
1799   // For invoke safepooints insert dummy calls both in normal and
1800   // exceptional destination blocks
1801   auto *II = cast<InvokeInst>(CS.getInstruction());
1802   Holders.push_back(CallInst::Create(
1803       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1804   Holders.push_back(CallInst::Create(
1805       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1806 }
1807 
1808 static void findLiveReferences(
1809     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1810     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1811   GCPtrLivenessData OriginalLivenessData;
1812   computeLiveInValues(DT, F, OriginalLivenessData);
1813   for (size_t i = 0; i < records.size(); i++) {
1814     struct PartiallyConstructedSafepointRecord &info = records[i];
1815     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1816   }
1817 }
1818 
1819 // Helper function for the "rematerializeLiveValues". It walks use chain
1820 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
1821 // values are visited (currently it is GEP's and casts). Returns true if it
1822 // successfully reached "BaseValue" and false otherwise.
1823 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
1824 // recorded.
1825 static bool findRematerializableChainToBasePointer(
1826   SmallVectorImpl<Instruction*> &ChainToBase,
1827   Value *CurrentValue, Value *BaseValue) {
1828 
1829   // We have found a base value
1830   if (CurrentValue == BaseValue) {
1831     return true;
1832   }
1833 
1834   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1835     ChainToBase.push_back(GEP);
1836     return findRematerializableChainToBasePointer(ChainToBase,
1837                                                   GEP->getPointerOperand(),
1838                                                   BaseValue);
1839   }
1840 
1841   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1842     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1843       return false;
1844 
1845     ChainToBase.push_back(CI);
1846     return findRematerializableChainToBasePointer(ChainToBase,
1847                                                   CI->getOperand(0), BaseValue);
1848   }
1849 
1850   // Not supported instruction in the chain
1851   return false;
1852 }
1853 
1854 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1855 // chain we are going to rematerialize.
1856 static unsigned
1857 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1858                        TargetTransformInfo &TTI) {
1859   unsigned Cost = 0;
1860 
1861   for (Instruction *Instr : Chain) {
1862     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1863       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1864              "non noop cast is found during rematerialization");
1865 
1866       Type *SrcTy = CI->getOperand(0)->getType();
1867       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
1868 
1869     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1870       // Cost of the address calculation
1871       Type *ValTy = GEP->getSourceElementType();
1872       Cost += TTI.getAddressComputationCost(ValTy);
1873 
1874       // And cost of the GEP itself
1875       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1876       //       allowed for the external usage)
1877       if (!GEP->hasAllConstantIndices())
1878         Cost += 2;
1879 
1880     } else {
1881       llvm_unreachable("unsupported instruciton type during rematerialization");
1882     }
1883   }
1884 
1885   return Cost;
1886 }
1887 
1888 // From the statepoint live set pick values that are cheaper to recompute then
1889 // to relocate. Remove this values from the live set, rematerialize them after
1890 // statepoint and record them in "Info" structure. Note that similar to
1891 // relocated values we don't do any user adjustments here.
1892 static void rematerializeLiveValues(CallSite CS,
1893                                     PartiallyConstructedSafepointRecord &Info,
1894                                     TargetTransformInfo &TTI) {
1895   const unsigned int ChainLengthThreshold = 10;
1896 
1897   // Record values we are going to delete from this statepoint live set.
1898   // We can not di this in following loop due to iterator invalidation.
1899   SmallVector<Value *, 32> LiveValuesToBeDeleted;
1900 
1901   for (Value *LiveValue: Info.LiveSet) {
1902     // For each live pointer find it's defining chain
1903     SmallVector<Instruction *, 3> ChainToBase;
1904     assert(Info.PointerToBase.count(LiveValue));
1905     bool FoundChain =
1906       findRematerializableChainToBasePointer(ChainToBase,
1907                                              LiveValue,
1908                                              Info.PointerToBase[LiveValue]);
1909     // Nothing to do, or chain is too long
1910     if (!FoundChain ||
1911         ChainToBase.size() == 0 ||
1912         ChainToBase.size() > ChainLengthThreshold)
1913       continue;
1914 
1915     // Compute cost of this chain
1916     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1917     // TODO: We can also account for cases when we will be able to remove some
1918     //       of the rematerialized values by later optimization passes. I.e if
1919     //       we rematerialized several intersecting chains. Or if original values
1920     //       don't have any uses besides this statepoint.
1921 
1922     // For invokes we need to rematerialize each chain twice - for normal and
1923     // for unwind basic blocks. Model this by multiplying cost by two.
1924     if (CS.isInvoke()) {
1925       Cost *= 2;
1926     }
1927     // If it's too expensive - skip it
1928     if (Cost >= RematerializationThreshold)
1929       continue;
1930 
1931     // Remove value from the live set
1932     LiveValuesToBeDeleted.push_back(LiveValue);
1933 
1934     // Clone instructions and record them inside "Info" structure
1935 
1936     // Walk backwards to visit top-most instructions first
1937     std::reverse(ChainToBase.begin(), ChainToBase.end());
1938 
1939     // Utility function which clones all instructions from "ChainToBase"
1940     // and inserts them before "InsertBefore". Returns rematerialized value
1941     // which should be used after statepoint.
1942     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
1943       Instruction *LastClonedValue = nullptr;
1944       Instruction *LastValue = nullptr;
1945       for (Instruction *Instr: ChainToBase) {
1946         // Only GEP's and casts are suported as we need to be careful to not
1947         // introduce any new uses of pointers not in the liveset.
1948         // Note that it's fine to introduce new uses of pointers which were
1949         // otherwise not used after this statepoint.
1950         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1951 
1952         Instruction *ClonedValue = Instr->clone();
1953         ClonedValue->insertBefore(InsertBefore);
1954         ClonedValue->setName(Instr->getName() + ".remat");
1955 
1956         // If it is not first instruction in the chain then it uses previously
1957         // cloned value. We should update it to use cloned value.
1958         if (LastClonedValue) {
1959           assert(LastValue);
1960           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1961 #ifndef NDEBUG
1962           // Assert that cloned instruction does not use any instructions from
1963           // this chain other than LastClonedValue
1964           for (auto OpValue : ClonedValue->operand_values()) {
1965             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
1966                        ChainToBase.end() &&
1967                    "incorrect use in rematerialization chain");
1968           }
1969 #endif
1970         }
1971 
1972         LastClonedValue = ClonedValue;
1973         LastValue = Instr;
1974       }
1975       assert(LastClonedValue);
1976       return LastClonedValue;
1977     };
1978 
1979     // Different cases for calls and invokes. For invokes we need to clone
1980     // instructions both on normal and unwind path.
1981     if (CS.isCall()) {
1982       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
1983       assert(InsertBefore);
1984       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
1985       Info.RematerializedValues[RematerializedValue] = LiveValue;
1986     } else {
1987       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
1988 
1989       Instruction *NormalInsertBefore =
1990           &*Invoke->getNormalDest()->getFirstInsertionPt();
1991       Instruction *UnwindInsertBefore =
1992           &*Invoke->getUnwindDest()->getFirstInsertionPt();
1993 
1994       Instruction *NormalRematerializedValue =
1995           rematerializeChain(NormalInsertBefore);
1996       Instruction *UnwindRematerializedValue =
1997           rematerializeChain(UnwindInsertBefore);
1998 
1999       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2000       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2001     }
2002   }
2003 
2004   // Remove rematerializaed values from the live set
2005   for (auto LiveValue: LiveValuesToBeDeleted) {
2006     Info.LiveSet.remove(LiveValue);
2007   }
2008 }
2009 
2010 static bool insertParsePoints(Function &F, DominatorTree &DT,
2011                               TargetTransformInfo &TTI,
2012                               SmallVectorImpl<CallSite> &ToUpdate) {
2013 #ifndef NDEBUG
2014   // sanity check the input
2015   std::set<CallSite> Uniqued;
2016   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2017   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2018 
2019   for (CallSite CS : ToUpdate)
2020     assert(CS.getInstruction()->getFunction() == &F);
2021 #endif
2022 
2023   // When inserting gc.relocates for invokes, we need to be able to insert at
2024   // the top of the successor blocks.  See the comment on
2025   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2026   // may restructure the CFG.
2027   for (CallSite CS : ToUpdate) {
2028     if (!CS.isInvoke())
2029       continue;
2030     auto *II = cast<InvokeInst>(CS.getInstruction());
2031     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2032     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2033   }
2034 
2035   // A list of dummy calls added to the IR to keep various values obviously
2036   // live in the IR.  We'll remove all of these when done.
2037   SmallVector<CallInst *, 64> Holders;
2038 
2039   // Insert a dummy call with all of the arguments to the vm_state we'll need
2040   // for the actual safepoint insertion.  This ensures reference arguments in
2041   // the deopt argument list are considered live through the safepoint (and
2042   // thus makes sure they get relocated.)
2043   for (CallSite CS : ToUpdate) {
2044     SmallVector<Value *, 64> DeoptValues;
2045 
2046     for (Value *Arg : GetDeoptBundleOperands(CS)) {
2047       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2048              "support for FCA unimplemented");
2049       if (isHandledGCPointerType(Arg->getType()))
2050         DeoptValues.push_back(Arg);
2051     }
2052 
2053     insertUseHolderAfter(CS, DeoptValues, Holders);
2054   }
2055 
2056   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2057 
2058   // A) Identify all gc pointers which are statically live at the given call
2059   // site.
2060   findLiveReferences(F, DT, ToUpdate, Records);
2061 
2062   // B) Find the base pointers for each live pointer
2063   /* scope for caching */ {
2064     // Cache the 'defining value' relation used in the computation and
2065     // insertion of base phis and selects.  This ensures that we don't insert
2066     // large numbers of duplicate base_phis.
2067     DefiningValueMapTy DVCache;
2068 
2069     for (size_t i = 0; i < Records.size(); i++) {
2070       PartiallyConstructedSafepointRecord &info = Records[i];
2071       findBasePointers(DT, DVCache, ToUpdate[i], info);
2072     }
2073   } // end of cache scope
2074 
2075   // The base phi insertion logic (for any safepoint) may have inserted new
2076   // instructions which are now live at some safepoint.  The simplest such
2077   // example is:
2078   // loop:
2079   //   phi a  <-- will be a new base_phi here
2080   //   safepoint 1 <-- that needs to be live here
2081   //   gep a + 1
2082   //   safepoint 2
2083   //   br loop
2084   // We insert some dummy calls after each safepoint to definitely hold live
2085   // the base pointers which were identified for that safepoint.  We'll then
2086   // ask liveness for _every_ base inserted to see what is now live.  Then we
2087   // remove the dummy calls.
2088   Holders.reserve(Holders.size() + Records.size());
2089   for (size_t i = 0; i < Records.size(); i++) {
2090     PartiallyConstructedSafepointRecord &Info = Records[i];
2091 
2092     SmallVector<Value *, 128> Bases;
2093     for (auto Pair : Info.PointerToBase)
2094       Bases.push_back(Pair.second);
2095 
2096     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2097   }
2098 
2099   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2100   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2101   // not the key issue.
2102   recomputeLiveInValues(F, DT, ToUpdate, Records);
2103 
2104   if (PrintBasePointers) {
2105     for (auto &Info : Records) {
2106       errs() << "Base Pairs: (w/Relocation)\n";
2107       for (auto Pair : Info.PointerToBase) {
2108         errs() << " derived ";
2109         Pair.first->printAsOperand(errs(), false);
2110         errs() << " base ";
2111         Pair.second->printAsOperand(errs(), false);
2112         errs() << "\n";
2113       }
2114     }
2115   }
2116 
2117   // It is possible that non-constant live variables have a constant base.  For
2118   // example, a GEP with a variable offset from a global.  In this case we can
2119   // remove it from the liveset.  We already don't add constants to the liveset
2120   // because we assume they won't move at runtime and the GC doesn't need to be
2121   // informed about them.  The same reasoning applies if the base is constant.
2122   // Note that the relocation placement code relies on this filtering for
2123   // correctness as it expects the base to be in the liveset, which isn't true
2124   // if the base is constant.
2125   for (auto &Info : Records)
2126     for (auto &BasePair : Info.PointerToBase)
2127       if (isa<Constant>(BasePair.second))
2128         Info.LiveSet.remove(BasePair.first);
2129 
2130   for (CallInst *CI : Holders)
2131     CI->eraseFromParent();
2132 
2133   Holders.clear();
2134 
2135   // In order to reduce live set of statepoint we might choose to rematerialize
2136   // some values instead of relocating them. This is purely an optimization and
2137   // does not influence correctness.
2138   for (size_t i = 0; i < Records.size(); i++)
2139     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2140 
2141   // We need this to safely RAUW and delete call or invoke return values that
2142   // may themselves be live over a statepoint.  For details, please see usage in
2143   // makeStatepointExplicitImpl.
2144   std::vector<DeferredReplacement> Replacements;
2145 
2146   // Now run through and replace the existing statepoints with new ones with
2147   // the live variables listed.  We do not yet update uses of the values being
2148   // relocated. We have references to live variables that need to
2149   // survive to the last iteration of this loop.  (By construction, the
2150   // previous statepoint can not be a live variable, thus we can and remove
2151   // the old statepoint calls as we go.)
2152   for (size_t i = 0; i < Records.size(); i++)
2153     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2154 
2155   ToUpdate.clear(); // prevent accident use of invalid CallSites
2156 
2157   for (auto &PR : Replacements)
2158     PR.doReplacement();
2159 
2160   Replacements.clear();
2161 
2162   for (auto &Info : Records) {
2163     // These live sets may contain state Value pointers, since we replaced calls
2164     // with operand bundles with calls wrapped in gc.statepoint, and some of
2165     // those calls may have been def'ing live gc pointers.  Clear these out to
2166     // avoid accidentally using them.
2167     //
2168     // TODO: We should create a separate data structure that does not contain
2169     // these live sets, and migrate to using that data structure from this point
2170     // onward.
2171     Info.LiveSet.clear();
2172     Info.PointerToBase.clear();
2173   }
2174 
2175   // Do all the fixups of the original live variables to their relocated selves
2176   SmallVector<Value *, 128> Live;
2177   for (size_t i = 0; i < Records.size(); i++) {
2178     PartiallyConstructedSafepointRecord &Info = Records[i];
2179 
2180     // We can't simply save the live set from the original insertion.  One of
2181     // the live values might be the result of a call which needs a safepoint.
2182     // That Value* no longer exists and we need to use the new gc_result.
2183     // Thankfully, the live set is embedded in the statepoint (and updated), so
2184     // we just grab that.
2185     Statepoint Statepoint(Info.StatepointToken);
2186     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2187                 Statepoint.gc_args_end());
2188 #ifndef NDEBUG
2189     // Do some basic sanity checks on our liveness results before performing
2190     // relocation.  Relocation can and will turn mistakes in liveness results
2191     // into non-sensical code which is must harder to debug.
2192     // TODO: It would be nice to test consistency as well
2193     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2194            "statepoint must be reachable or liveness is meaningless");
2195     for (Value *V : Statepoint.gc_args()) {
2196       if (!isa<Instruction>(V))
2197         // Non-instruction values trivial dominate all possible uses
2198         continue;
2199       auto *LiveInst = cast<Instruction>(V);
2200       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2201              "unreachable values should never be live");
2202       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2203              "basic SSA liveness expectation violated by liveness analysis");
2204     }
2205 #endif
2206   }
2207   unique_unsorted(Live);
2208 
2209 #ifndef NDEBUG
2210   // sanity check
2211   for (auto *Ptr : Live)
2212     assert(isHandledGCPointerType(Ptr->getType()) &&
2213            "must be a gc pointer type");
2214 #endif
2215 
2216   relocationViaAlloca(F, DT, Live, Records);
2217   return !Records.empty();
2218 }
2219 
2220 // Handles both return values and arguments for Functions and CallSites.
2221 template <typename AttrHolder>
2222 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2223                                       unsigned Index) {
2224   AttrBuilder R;
2225   if (AH.getDereferenceableBytes(Index))
2226     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2227                                   AH.getDereferenceableBytes(Index)));
2228   if (AH.getDereferenceableOrNullBytes(Index))
2229     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2230                                   AH.getDereferenceableOrNullBytes(Index)));
2231   if (AH.doesNotAlias(Index))
2232     R.addAttribute(Attribute::NoAlias);
2233 
2234   if (!R.empty())
2235     AH.setAttributes(AH.getAttributes().removeAttributes(
2236         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2237 }
2238 
2239 void
2240 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2241   LLVMContext &Ctx = F.getContext();
2242 
2243   for (Argument &A : F.args())
2244     if (isa<PointerType>(A.getType()))
2245       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2246 
2247   if (isa<PointerType>(F.getReturnType()))
2248     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2249 }
2250 
2251 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2252   if (F.empty())
2253     return;
2254 
2255   LLVMContext &Ctx = F.getContext();
2256   MDBuilder Builder(Ctx);
2257 
2258   for (Instruction &I : instructions(F)) {
2259     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2260       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2261       bool IsImmutableTBAA =
2262           MD->getNumOperands() == 4 &&
2263           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2264 
2265       if (!IsImmutableTBAA)
2266         continue; // no work to do, MD_tbaa is already marked mutable
2267 
2268       MDNode *Base = cast<MDNode>(MD->getOperand(0));
2269       MDNode *Access = cast<MDNode>(MD->getOperand(1));
2270       uint64_t Offset =
2271           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2272 
2273       MDNode *MutableTBAA =
2274           Builder.createTBAAStructTagNode(Base, Access, Offset);
2275       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2276     }
2277 
2278     if (CallSite CS = CallSite(&I)) {
2279       for (int i = 0, e = CS.arg_size(); i != e; i++)
2280         if (isa<PointerType>(CS.getArgument(i)->getType()))
2281           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2282       if (isa<PointerType>(CS.getType()))
2283         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2284     }
2285   }
2286 }
2287 
2288 /// Returns true if this function should be rewritten by this pass.  The main
2289 /// point of this function is as an extension point for custom logic.
2290 static bool shouldRewriteStatepointsIn(Function &F) {
2291   // TODO: This should check the GCStrategy
2292   if (F.hasGC()) {
2293     const auto &FunctionGCName = F.getGC();
2294     const StringRef StatepointExampleName("statepoint-example");
2295     const StringRef CoreCLRName("coreclr");
2296     return (StatepointExampleName == FunctionGCName) ||
2297            (CoreCLRName == FunctionGCName);
2298   } else
2299     return false;
2300 }
2301 
2302 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2303 #ifndef NDEBUG
2304   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2305          "precondition!");
2306 #endif
2307 
2308   for (Function &F : M)
2309     stripNonValidAttributesFromPrototype(F);
2310 
2311   for (Function &F : M)
2312     stripNonValidAttributesFromBody(F);
2313 }
2314 
2315 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2316   // Nothing to do for declarations.
2317   if (F.isDeclaration() || F.empty())
2318     return false;
2319 
2320   // Policy choice says not to rewrite - the most common reason is that we're
2321   // compiling code without a GCStrategy.
2322   if (!shouldRewriteStatepointsIn(F))
2323     return false;
2324 
2325   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2326   TargetTransformInfo &TTI =
2327       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2328 
2329   auto NeedsRewrite = [](Instruction &I) {
2330     if (ImmutableCallSite CS = ImmutableCallSite(&I))
2331       return !callsGCLeafFunction(CS) && !isStatepoint(CS);
2332     return false;
2333   };
2334 
2335   // Gather all the statepoints which need rewritten.  Be careful to only
2336   // consider those in reachable code since we need to ask dominance queries
2337   // when rewriting.  We'll delete the unreachable ones in a moment.
2338   SmallVector<CallSite, 64> ParsePointNeeded;
2339   bool HasUnreachableStatepoint = false;
2340   for (Instruction &I : instructions(F)) {
2341     // TODO: only the ones with the flag set!
2342     if (NeedsRewrite(I)) {
2343       if (DT.isReachableFromEntry(I.getParent()))
2344         ParsePointNeeded.push_back(CallSite(&I));
2345       else
2346         HasUnreachableStatepoint = true;
2347     }
2348   }
2349 
2350   bool MadeChange = false;
2351 
2352   // Delete any unreachable statepoints so that we don't have unrewritten
2353   // statepoints surviving this pass.  This makes testing easier and the
2354   // resulting IR less confusing to human readers.  Rather than be fancy, we
2355   // just reuse a utility function which removes the unreachable blocks.
2356   if (HasUnreachableStatepoint)
2357     MadeChange |= removeUnreachableBlocks(F);
2358 
2359   // Return early if no work to do.
2360   if (ParsePointNeeded.empty())
2361     return MadeChange;
2362 
2363   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2364   // These are created by LCSSA.  They have the effect of increasing the size
2365   // of liveness sets for no good reason.  It may be harder to do this post
2366   // insertion since relocations and base phis can confuse things.
2367   for (BasicBlock &BB : F)
2368     if (BB.getUniquePredecessor()) {
2369       MadeChange = true;
2370       FoldSingleEntryPHINodes(&BB);
2371     }
2372 
2373   // Before we start introducing relocations, we want to tweak the IR a bit to
2374   // avoid unfortunate code generation effects.  The main example is that we
2375   // want to try to make sure the comparison feeding a branch is after any
2376   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2377   // values feeding a branch after relocation.  This is semantically correct,
2378   // but results in extra register pressure since both the pre-relocation and
2379   // post-relocation copies must be available in registers.  For code without
2380   // relocations this is handled elsewhere, but teaching the scheduler to
2381   // reverse the transform we're about to do would be slightly complex.
2382   // Note: This may extend the live range of the inputs to the icmp and thus
2383   // increase the liveset of any statepoint we move over.  This is profitable
2384   // as long as all statepoints are in rare blocks.  If we had in-register
2385   // lowering for live values this would be a much safer transform.
2386   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2387     if (auto *BI = dyn_cast<BranchInst>(TI))
2388       if (BI->isConditional())
2389         return dyn_cast<Instruction>(BI->getCondition());
2390     // TODO: Extend this to handle switches
2391     return nullptr;
2392   };
2393   for (BasicBlock &BB : F) {
2394     TerminatorInst *TI = BB.getTerminator();
2395     if (auto *Cond = getConditionInst(TI))
2396       // TODO: Handle more than just ICmps here.  We should be able to move
2397       // most instructions without side effects or memory access.
2398       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2399         MadeChange = true;
2400         Cond->moveBefore(TI);
2401       }
2402   }
2403 
2404   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2405   return MadeChange;
2406 }
2407 
2408 // liveness computation via standard dataflow
2409 // -------------------------------------------------------------------
2410 
2411 // TODO: Consider using bitvectors for liveness, the set of potentially
2412 // interesting values should be small and easy to pre-compute.
2413 
2414 /// Compute the live-in set for the location rbegin starting from
2415 /// the live-out set of the basic block
2416 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2417                                 BasicBlock::reverse_iterator rend,
2418                                 SetVector<Value *> &LiveTmp) {
2419 
2420   for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2421     Instruction *I = &*ritr;
2422 
2423     // KILL/Def - Remove this definition from LiveIn
2424     LiveTmp.remove(I);
2425 
2426     // Don't consider *uses* in PHI nodes, we handle their contribution to
2427     // predecessor blocks when we seed the LiveOut sets
2428     if (isa<PHINode>(I))
2429       continue;
2430 
2431     // USE - Add to the LiveIn set for this instruction
2432     for (Value *V : I->operands()) {
2433       assert(!isUnhandledGCPointerType(V->getType()) &&
2434              "support for FCA unimplemented");
2435       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2436         // The choice to exclude all things constant here is slightly subtle.
2437         // There are two independent reasons:
2438         // - We assume that things which are constant (from LLVM's definition)
2439         // do not move at runtime.  For example, the address of a global
2440         // variable is fixed, even though it's contents may not be.
2441         // - Second, we can't disallow arbitrary inttoptr constants even
2442         // if the language frontend does.  Optimization passes are free to
2443         // locally exploit facts without respect to global reachability.  This
2444         // can create sections of code which are dynamically unreachable and
2445         // contain just about anything.  (see constants.ll in tests)
2446         LiveTmp.insert(V);
2447       }
2448     }
2449   }
2450 }
2451 
2452 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2453 
2454   for (BasicBlock *Succ : successors(BB)) {
2455     const BasicBlock::iterator E(Succ->getFirstNonPHI());
2456     for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2457       PHINode *Phi = cast<PHINode>(&*I);
2458       Value *V = Phi->getIncomingValueForBlock(BB);
2459       assert(!isUnhandledGCPointerType(V->getType()) &&
2460              "support for FCA unimplemented");
2461       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2462         LiveTmp.insert(V);
2463       }
2464     }
2465   }
2466 }
2467 
2468 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2469   SetVector<Value *> KillSet;
2470   for (Instruction &I : *BB)
2471     if (isHandledGCPointerType(I.getType()))
2472       KillSet.insert(&I);
2473   return KillSet;
2474 }
2475 
2476 #ifndef NDEBUG
2477 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2478 /// sanity check for the liveness computation.
2479 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2480                           TerminatorInst *TI, bool TermOkay = false) {
2481   for (Value *V : Live) {
2482     if (auto *I = dyn_cast<Instruction>(V)) {
2483       // The terminator can be a member of the LiveOut set.  LLVM's definition
2484       // of instruction dominance states that V does not dominate itself.  As
2485       // such, we need to special case this to allow it.
2486       if (TermOkay && TI == I)
2487         continue;
2488       assert(DT.dominates(I, TI) &&
2489              "basic SSA liveness expectation violated by liveness analysis");
2490     }
2491   }
2492 }
2493 
2494 /// Check that all the liveness sets used during the computation of liveness
2495 /// obey basic SSA properties.  This is useful for finding cases where we miss
2496 /// a def.
2497 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2498                           BasicBlock &BB) {
2499   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2500   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2501   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2502 }
2503 #endif
2504 
2505 static void computeLiveInValues(DominatorTree &DT, Function &F,
2506                                 GCPtrLivenessData &Data) {
2507 
2508   SmallSetVector<BasicBlock *, 32> Worklist;
2509   auto AddPredsToWorklist = [&](BasicBlock *BB) {
2510     // We use a SetVector so that we don't have duplicates in the worklist.
2511     Worklist.insert(pred_begin(BB), pred_end(BB));
2512   };
2513   auto NextItem = [&]() {
2514     BasicBlock *BB = Worklist.back();
2515     Worklist.pop_back();
2516     return BB;
2517   };
2518 
2519   // Seed the liveness for each individual block
2520   for (BasicBlock &BB : F) {
2521     Data.KillSet[&BB] = computeKillSet(&BB);
2522     Data.LiveSet[&BB].clear();
2523     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2524 
2525 #ifndef NDEBUG
2526     for (Value *Kill : Data.KillSet[&BB])
2527       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2528 #endif
2529 
2530     Data.LiveOut[&BB] = SetVector<Value *>();
2531     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2532     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2533     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2534     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2535     if (!Data.LiveIn[&BB].empty())
2536       AddPredsToWorklist(&BB);
2537   }
2538 
2539   // Propagate that liveness until stable
2540   while (!Worklist.empty()) {
2541     BasicBlock *BB = NextItem();
2542 
2543     // Compute our new liveout set, then exit early if it hasn't changed
2544     // despite the contribution of our successor.
2545     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2546     const auto OldLiveOutSize = LiveOut.size();
2547     for (BasicBlock *Succ : successors(BB)) {
2548       assert(Data.LiveIn.count(Succ));
2549       LiveOut.set_union(Data.LiveIn[Succ]);
2550     }
2551     // assert OutLiveOut is a subset of LiveOut
2552     if (OldLiveOutSize == LiveOut.size()) {
2553       // If the sets are the same size, then we didn't actually add anything
2554       // when unioning our successors LiveIn  Thus, the LiveIn of this block
2555       // hasn't changed.
2556       continue;
2557     }
2558     Data.LiveOut[BB] = LiveOut;
2559 
2560     // Apply the effects of this basic block
2561     SetVector<Value *> LiveTmp = LiveOut;
2562     LiveTmp.set_union(Data.LiveSet[BB]);
2563     LiveTmp.set_subtract(Data.KillSet[BB]);
2564 
2565     assert(Data.LiveIn.count(BB));
2566     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2567     // assert: OldLiveIn is a subset of LiveTmp
2568     if (OldLiveIn.size() != LiveTmp.size()) {
2569       Data.LiveIn[BB] = LiveTmp;
2570       AddPredsToWorklist(BB);
2571     }
2572   } // while( !worklist.empty() )
2573 
2574 #ifndef NDEBUG
2575   // Sanity check our output against SSA properties.  This helps catch any
2576   // missing kills during the above iteration.
2577   for (BasicBlock &BB : F) {
2578     checkBasicSSA(DT, Data, BB);
2579   }
2580 #endif
2581 }
2582 
2583 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2584                               StatepointLiveSetTy &Out) {
2585 
2586   BasicBlock *BB = Inst->getParent();
2587 
2588   // Note: The copy is intentional and required
2589   assert(Data.LiveOut.count(BB));
2590   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2591 
2592   // We want to handle the statepoint itself oddly.  It's
2593   // call result is not live (normal), nor are it's arguments
2594   // (unless they're used again later).  This adjustment is
2595   // specifically what we need to relocate
2596   BasicBlock::reverse_iterator rend(Inst->getIterator());
2597   computeLiveInValues(BB->rbegin(), rend, LiveOut);
2598   LiveOut.remove(Inst);
2599   Out.insert(LiveOut.begin(), LiveOut.end());
2600 }
2601 
2602 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2603                                   CallSite CS,
2604                                   PartiallyConstructedSafepointRecord &Info) {
2605   Instruction *Inst = CS.getInstruction();
2606   StatepointLiveSetTy Updated;
2607   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2608 
2609 #ifndef NDEBUG
2610   DenseSet<Value *> Bases;
2611   for (auto KVPair : Info.PointerToBase) {
2612     Bases.insert(KVPair.second);
2613   }
2614 #endif
2615   // We may have base pointers which are now live that weren't before.  We need
2616   // to update the PointerToBase structure to reflect this.
2617   for (auto V : Updated)
2618     if (Info.PointerToBase.insert(std::make_pair(V, V)).second) {
2619       assert(Bases.count(V) && "can't find base for unexpected live value");
2620       continue;
2621     }
2622 
2623 #ifndef NDEBUG
2624   for (auto V : Updated) {
2625     assert(Info.PointerToBase.count(V) &&
2626            "must be able to find base for live value");
2627   }
2628 #endif
2629 
2630   // Remove any stale base mappings - this can happen since our liveness is
2631   // more precise then the one inherent in the base pointer analysis
2632   DenseSet<Value *> ToErase;
2633   for (auto KVPair : Info.PointerToBase)
2634     if (!Updated.count(KVPair.first))
2635       ToErase.insert(KVPair.first);
2636   for (auto V : ToErase)
2637     Info.PointerToBase.erase(V);
2638 
2639 #ifndef NDEBUG
2640   for (auto KVPair : Info.PointerToBase)
2641     assert(Updated.count(KVPair.first) && "record for non-live value");
2642 #endif
2643 
2644   Info.LiveSet = Updated;
2645 }
2646