xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision cf1899e0a92f3ac2a082293d05a60df843aa90bc)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     for (Function &F : M) {
177       // Nothing to do for declarations.
178       if (F.isDeclaration() || F.empty())
179         continue;
180 
181       // Policy choice says not to rewrite - the most common reason is that
182       // we're compiling code without a GCStrategy.
183       if (!shouldRewriteStatepointsIn(F))
184         continue;
185 
186       TargetTransformInfo &TTI =
187           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188       const TargetLibraryInfo &TLI =
189           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   GCStatepointInst *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289   Optional<OperandBundleUse> DeoptBundle =
290       Call->getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void analyzeParsePointLiveness(
373     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374     PartiallyConstructedSafepointRecord &Result) {
375   StatepointLiveSetTy LiveSet;
376   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 
378   if (PrintLiveSet) {
379     dbgs() << "Live Variables:\n";
380     for (Value *V : LiveSet)
381       dbgs() << " " << V->getName() << " " << *V << "\n";
382   }
383   if (PrintLiveSetSize) {
384     dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
385     dbgs() << "Number live values: " << LiveSet.size() << "\n";
386   }
387   Result.LiveSet = LiveSet;
388 }
389 
390 // Returns true is V is a knownBaseResult.
391 static bool isKnownBaseResult(Value *V);
392 
393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is
394 // not created by the findBasePointers algorithm.
395 static bool isOriginalBaseResult(Value *V);
396 
397 namespace {
398 
399 /// A single base defining value - An immediate base defining value for an
400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
401 /// For instructions which have multiple pointer [vector] inputs or that
402 /// transition between vector and scalar types, there is no immediate base
403 /// defining value.  The 'base defining value' for 'Def' is the transitive
404 /// closure of this relation stopping at the first instruction which has no
405 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
406 /// but it can also be an arbitrary derived pointer.
407 struct BaseDefiningValueResult {
408   /// Contains the value which is the base defining value.
409   Value * const BDV;
410 
411   /// True if the base defining value is also known to be an actual base
412   /// pointer.
413   const bool IsKnownBase;
414 
415   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
416     : BDV(BDV), IsKnownBase(IsKnownBase) {
417 #ifndef NDEBUG
418     // Check consistency between new and old means of checking whether a BDV is
419     // a base.
420     bool MustBeBase = isKnownBaseResult(BDV);
421     assert(!MustBeBase || MustBeBase == IsKnownBase);
422 #endif
423   }
424 };
425 
426 } // end anonymous namespace
427 
428 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
429 
430 /// Return a base defining value for the 'Index' element of the given vector
431 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
432 /// 'I'.  As an optimization, this method will try to determine when the
433 /// element is known to already be a base pointer.  If this can be established,
434 /// the second value in the returned pair will be true.  Note that either a
435 /// vector or a pointer typed value can be returned.  For the former, the
436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
437 /// If the later, the return pointer is a BDV (or possibly a base) for the
438 /// particular element in 'I'.
439 static BaseDefiningValueResult
440 findBaseDefiningValueOfVector(Value *I) {
441   // Each case parallels findBaseDefiningValue below, see that code for
442   // detailed motivation.
443 
444   if (isa<Argument>(I))
445     // An incoming argument to the function is a base pointer
446     return BaseDefiningValueResult(I, true);
447 
448   if (isa<Constant>(I))
449     // Base of constant vector consists only of constant null pointers.
450     // For reasoning see similar case inside 'findBaseDefiningValue' function.
451     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
452                                    true);
453 
454   if (isa<LoadInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   if (isa<InsertElementInst>(I))
458     // We don't know whether this vector contains entirely base pointers or
459     // not.  To be conservatively correct, we treat it as a BDV and will
460     // duplicate code as needed to construct a parallel vector of bases.
461     return BaseDefiningValueResult(I, false);
462 
463   if (isa<ShuffleVectorInst>(I))
464     // We don't know whether this vector contains entirely base pointers or
465     // not.  To be conservatively correct, we treat it as a BDV and will
466     // duplicate code as needed to construct a parallel vector of bases.
467     // TODO: There a number of local optimizations which could be applied here
468     // for particular sufflevector patterns.
469     return BaseDefiningValueResult(I, false);
470 
471   // The behavior of getelementptr instructions is the same for vector and
472   // non-vector data types.
473   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
474     return findBaseDefiningValue(GEP->getPointerOperand());
475 
476   // If the pointer comes through a bitcast of a vector of pointers to
477   // a vector of another type of pointer, then look through the bitcast
478   if (auto *BC = dyn_cast<BitCastInst>(I))
479     return findBaseDefiningValue(BC->getOperand(0));
480 
481   // We assume that functions in the source language only return base
482   // pointers.  This should probably be generalized via attributes to support
483   // both source language and internal functions.
484   if (isa<CallInst>(I) || isa<InvokeInst>(I))
485     return BaseDefiningValueResult(I, true);
486 
487   // A PHI or Select is a base defining value.  The outer findBasePointer
488   // algorithm is responsible for constructing a base value for this BDV.
489   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
490          "unknown vector instruction - no base found for vector element");
491   return BaseDefiningValueResult(I, false);
492 }
493 
494 /// Helper function for findBasePointer - Will return a value which either a)
495 /// defines the base pointer for the input, b) blocks the simple search
496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
497 /// from pointer to vector type or back.
498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
499   assert(I->getType()->isPtrOrPtrVectorTy() &&
500          "Illegal to ask for the base pointer of a non-pointer type");
501 
502   if (I->getType()->isVectorTy())
503     return findBaseDefiningValueOfVector(I);
504 
505   if (isa<Argument>(I))
506     // An incoming argument to the function is a base pointer
507     // We should have never reached here if this argument isn't an gc value
508     return BaseDefiningValueResult(I, true);
509 
510   if (isa<Constant>(I)) {
511     // We assume that objects with a constant base (e.g. a global) can't move
512     // and don't need to be reported to the collector because they are always
513     // live. Besides global references, all kinds of constants (e.g. undef,
514     // constant expressions, null pointers) can be introduced by the inliner or
515     // the optimizer, especially on dynamically dead paths.
516     // Here we treat all of them as having single null base. By doing this we
517     // trying to avoid problems reporting various conflicts in a form of
518     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
519     // See constant.ll file for relevant test cases.
520 
521     return BaseDefiningValueResult(
522         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
523   }
524 
525   if (CastInst *CI = dyn_cast<CastInst>(I)) {
526     Value *Def = CI->stripPointerCasts();
527     // If stripping pointer casts changes the address space there is an
528     // addrspacecast in between.
529     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
530                cast<PointerType>(CI->getType())->getAddressSpace() &&
531            "unsupported addrspacecast");
532     // If we find a cast instruction here, it means we've found a cast which is
533     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
534     // handle int->ptr conversion.
535     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
536     return findBaseDefiningValue(Def);
537   }
538 
539   if (isa<LoadInst>(I))
540     // The value loaded is an gc base itself
541     return BaseDefiningValueResult(I, true);
542 
543   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
544     // The base of this GEP is the base
545     return findBaseDefiningValue(GEP->getPointerOperand());
546 
547   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
548     switch (II->getIntrinsicID()) {
549     default:
550       // fall through to general call handling
551       break;
552     case Intrinsic::experimental_gc_statepoint:
553       llvm_unreachable("statepoints don't produce pointers");
554     case Intrinsic::experimental_gc_relocate:
555       // Rerunning safepoint insertion after safepoints are already
556       // inserted is not supported.  It could probably be made to work,
557       // but why are you doing this?  There's no good reason.
558       llvm_unreachable("repeat safepoint insertion is not supported");
559     case Intrinsic::gcroot:
560       // Currently, this mechanism hasn't been extended to work with gcroot.
561       // There's no reason it couldn't be, but I haven't thought about the
562       // implications much.
563       llvm_unreachable(
564           "interaction with the gcroot mechanism is not supported");
565     }
566   }
567   // We assume that functions in the source language only return base
568   // pointers.  This should probably be generalized via attributes to support
569   // both source language and internal functions.
570   if (isa<CallInst>(I) || isa<InvokeInst>(I))
571     return BaseDefiningValueResult(I, true);
572 
573   // TODO: I have absolutely no idea how to implement this part yet.  It's not
574   // necessarily hard, I just haven't really looked at it yet.
575   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
576 
577   if (isa<AtomicCmpXchgInst>(I))
578     // A CAS is effectively a atomic store and load combined under a
579     // predicate.  From the perspective of base pointers, we just treat it
580     // like a load.
581     return BaseDefiningValueResult(I, true);
582 
583   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
584                                    "binary ops which don't apply to pointers");
585 
586   // The aggregate ops.  Aggregates can either be in the heap or on the
587   // stack, but in either case, this is simply a field load.  As a result,
588   // this is a defining definition of the base just like a load is.
589   if (isa<ExtractValueInst>(I))
590     return BaseDefiningValueResult(I, true);
591 
592   // We should never see an insert vector since that would require we be
593   // tracing back a struct value not a pointer value.
594   assert(!isa<InsertValueInst>(I) &&
595          "Base pointer for a struct is meaningless");
596 
597   // An extractelement produces a base result exactly when it's input does.
598   // We may need to insert a parallel instruction to extract the appropriate
599   // element out of the base vector corresponding to the input. Given this,
600   // it's analogous to the phi and select case even though it's not a merge.
601   if (isa<ExtractElementInst>(I))
602     // Note: There a lot of obvious peephole cases here.  This are deliberately
603     // handled after the main base pointer inference algorithm to make writing
604     // test cases to exercise that code easier.
605     return BaseDefiningValueResult(I, false);
606 
607   // The last two cases here don't return a base pointer.  Instead, they
608   // return a value which dynamically selects from among several base
609   // derived pointers (each with it's own base potentially).  It's the job of
610   // the caller to resolve these.
611   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
612          "missing instruction case in findBaseDefiningValing");
613   return BaseDefiningValueResult(I, false);
614 }
615 
616 /// Returns the base defining value for this value.
617 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
618   Value *&Cached = Cache[I];
619   if (!Cached) {
620     Cached = findBaseDefiningValue(I).BDV;
621     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
622                       << Cached->getName() << "\n");
623   }
624   assert(Cache[I] != nullptr);
625   return Cached;
626 }
627 
628 /// Return a base pointer for this value if known.  Otherwise, return it's
629 /// base defining value.
630 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
631   Value *Def = findBaseDefiningValueCached(I, Cache);
632   auto Found = Cache.find(Def);
633   if (Found != Cache.end()) {
634     // Either a base-of relation, or a self reference.  Caller must check.
635     return Found->second;
636   }
637   // Only a BDV available
638   return Def;
639 }
640 
641 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
642 /// exists in the code.
643 static bool isOriginalBaseResult(Value *V) {
644   // no recursion possible
645   return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
646          !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
647          !isa<ShuffleVectorInst>(V);
648 }
649 
650 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
651 /// is it known to be a base pointer?  Or do we need to continue searching.
652 static bool isKnownBaseResult(Value *V) {
653   if (isOriginalBaseResult(V))
654     return true;
655   if (isa<Instruction>(V) &&
656       cast<Instruction>(V)->getMetadata("is_base_value")) {
657     // This is a previously inserted base phi or select.  We know
658     // that this is a base value.
659     return true;
660   }
661 
662   // We need to keep searching
663   return false;
664 }
665 
666 // Returns true if First and Second values are both scalar or both vector.
667 static bool areBothVectorOrScalar(Value *First, Value *Second) {
668   return isa<VectorType>(First->getType()) ==
669          isa<VectorType>(Second->getType());
670 }
671 
672 namespace {
673 
674 /// Models the state of a single base defining value in the findBasePointer
675 /// algorithm for determining where a new instruction is needed to propagate
676 /// the base of this BDV.
677 class BDVState {
678 public:
679   enum StatusTy {
680      // Starting state of lattice
681      Unknown,
682      // Some specific base value -- does *not* mean that instruction
683      // propagates the base of the object
684      // ex: gep %arg, 16 -> %arg is the base value
685      Base,
686      // Need to insert a node to represent a merge.
687      Conflict
688   };
689 
690   BDVState() {
691     llvm_unreachable("missing state in map");
692   }
693 
694   explicit BDVState(Value *OriginalValue)
695     : OriginalValue(OriginalValue) {}
696   explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
697     : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
698     assert(Status != Base || BaseValue);
699   }
700 
701   StatusTy getStatus() const { return Status; }
702   Value *getOriginalValue() const { return OriginalValue; }
703   Value *getBaseValue() const { return BaseValue; }
704 
705   bool isBase() const { return getStatus() == Base; }
706   bool isUnknown() const { return getStatus() == Unknown; }
707   bool isConflict() const { return getStatus() == Conflict; }
708 
709   bool operator==(const BDVState &Other) const {
710     return OriginalValue == OriginalValue && BaseValue == Other.BaseValue &&
711       Status == Other.Status;
712   }
713 
714   bool operator!=(const BDVState &other) const { return !(*this == other); }
715 
716   LLVM_DUMP_METHOD
717   void dump() const {
718     print(dbgs());
719     dbgs() << '\n';
720   }
721 
722   void print(raw_ostream &OS) const {
723     switch (getStatus()) {
724     case Unknown:
725       OS << "U";
726       break;
727     case Base:
728       OS << "B";
729       break;
730     case Conflict:
731       OS << "C";
732       break;
733     }
734     OS << " (base " << getBaseValue() << " - "
735        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
736        << " for  "  << OriginalValue->getName() << ":";
737   }
738 
739 private:
740   AssertingVH<Value> OriginalValue; // instruction this state corresponds to
741   StatusTy Status = Unknown;
742   AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
743 };
744 
745 } // end anonymous namespace
746 
747 #ifndef NDEBUG
748 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
749   State.print(OS);
750   return OS;
751 }
752 #endif
753 
754 static BDVState::StatusTy meet(const BDVState::StatusTy &LHS,
755                                const BDVState::StatusTy &RHS) {
756   switch (LHS) {
757   case BDVState::Unknown:
758     return RHS;
759   case BDVState::Base:
760     switch (RHS) {
761     case BDVState::Unknown:
762     case BDVState::Base:
763       return BDVState::Base;
764     case BDVState::Conflict:
765       return BDVState::Conflict;
766     };
767     llvm_unreachable("covered switch");
768   case BDVState::Conflict:
769     return BDVState::Conflict;
770   }
771   llvm_unreachable("covered switch");
772 }
773 
774 // Values of type BDVState form a lattice, and this function implements the meet
775 // operation.
776 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
777   auto NewStatus = meet(LHS.getStatus(), RHS.getStatus());
778   assert(NewStatus == meet(RHS.getStatus(), LHS.getStatus()));
779 
780   Value *BaseValue = LHS.getStatus() == BDVState::Base ?
781     LHS.getBaseValue() : RHS.getBaseValue();
782   if (LHS.getStatus() == BDVState::Base && RHS.getStatus() == BDVState::Base &&
783       LHS.getBaseValue() != RHS.getBaseValue()) {
784     NewStatus = BDVState::Conflict;
785     BaseValue = nullptr;
786   }
787   return BDVState(LHS.getOriginalValue(), NewStatus, BaseValue);
788 }
789 
790 /// For a given value or instruction, figure out what base ptr its derived from.
791 /// For gc objects, this is simply itself.  On success, returns a value which is
792 /// the base pointer.  (This is reliable and can be used for relocation.)  On
793 /// failure, returns nullptr.
794 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
795   Value *Def = findBaseOrBDV(I, Cache);
796 
797   if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I))
798     return Def;
799 
800   // Here's the rough algorithm:
801   // - For every SSA value, construct a mapping to either an actual base
802   //   pointer or a PHI which obscures the base pointer.
803   // - Construct a mapping from PHI to unknown TOP state.  Use an
804   //   optimistic algorithm to propagate base pointer information.  Lattice
805   //   looks like:
806   //   UNKNOWN
807   //   b1 b2 b3 b4
808   //   CONFLICT
809   //   When algorithm terminates, all PHIs will either have a single concrete
810   //   base or be in a conflict state.
811   // - For every conflict, insert a dummy PHI node without arguments.  Add
812   //   these to the base[Instruction] = BasePtr mapping.  For every
813   //   non-conflict, add the actual base.
814   //  - For every conflict, add arguments for the base[a] of each input
815   //   arguments.
816   //
817   // Note: A simpler form of this would be to add the conflict form of all
818   // PHIs without running the optimistic algorithm.  This would be
819   // analogous to pessimistic data flow and would likely lead to an
820   // overall worse solution.
821 
822 #ifndef NDEBUG
823   auto isExpectedBDVType = [](Value *BDV) {
824     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
825            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
826            isa<ShuffleVectorInst>(BDV);
827   };
828 #endif
829 
830   // Once populated, will contain a mapping from each potentially non-base BDV
831   // to a lattice value (described above) which corresponds to that BDV.
832   // We use the order of insertion (DFS over the def/use graph) to provide a
833   // stable deterministic ordering for visiting DenseMaps (which are unordered)
834   // below.  This is important for deterministic compilation.
835   MapVector<Value *, BDVState> States;
836 
837 #ifndef NDEBUG
838   auto VerifyStates = [&]() {
839     for (auto &Entry : States) {
840       assert(Entry.first == Entry.second.getOriginalValue());
841     }
842   };
843 #endif
844 
845   auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
846     if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
847       for (Value *InVal : PN->incoming_values())
848         F(InVal);
849     } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
850       F(SI->getTrueValue());
851       F(SI->getFalseValue());
852     } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
853       F(EE->getVectorOperand());
854     } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
855       F(IE->getOperand(0));
856       F(IE->getOperand(1));
857     } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
858       F(SV->getOperand(0));
859       F(SV->getOperand(1));
860     } else {
861       llvm_unreachable("unexpected BDV type");
862     }
863   };
864 
865 
866   // Recursively fill in all base defining values reachable from the initial
867   // one for which we don't already know a definite base value for
868   /* scope */ {
869     SmallVector<Value*, 16> Worklist;
870     Worklist.push_back(Def);
871     States.insert({Def, BDVState(Def)});
872     while (!Worklist.empty()) {
873       Value *Current = Worklist.pop_back_val();
874       assert(!isOriginalBaseResult(Current) && "why did it get added?");
875 
876       auto visitIncomingValue = [&](Value *InVal) {
877         Value *Base = findBaseOrBDV(InVal, Cache);
878         if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal))
879           // Known bases won't need new instructions introduced and can be
880           // ignored safely. However, this can only be done when InVal and Base
881           // are both scalar or both vector. Otherwise, we need to find a
882           // correct BDV for InVal, by creating an entry in the lattice
883           // (States).
884           return;
885         assert(isExpectedBDVType(Base) && "the only non-base values "
886                "we see should be base defining values");
887         if (States.insert(std::make_pair(Base, BDVState(Base))).second)
888           Worklist.push_back(Base);
889       };
890 
891       visitBDVOperands(Current, visitIncomingValue);
892     }
893   }
894 
895 #ifndef NDEBUG
896   VerifyStates();
897   LLVM_DEBUG(dbgs() << "States after initialization:\n");
898   for (auto Pair : States) {
899     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
900   }
901 #endif
902 
903   // Return a phi state for a base defining value.  We'll generate a new
904   // base state for known bases and expect to find a cached state otherwise.
905   auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
906     if (isKnownBaseResult(BaseValue) && areBothVectorOrScalar(BaseValue, Input))
907       return BDVState(BaseValue, BDVState::Base, BaseValue);
908     auto I = States.find(BaseValue);
909     assert(I != States.end() && "lookup failed!");
910     return I->second;
911   };
912 
913   bool Progress = true;
914   while (Progress) {
915 #ifndef NDEBUG
916     const size_t OldSize = States.size();
917 #endif
918     Progress = false;
919     // We're only changing values in this loop, thus safe to keep iterators.
920     // Since this is computing a fixed point, the order of visit does not
921     // effect the result.  TODO: We could use a worklist here and make this run
922     // much faster.
923     for (auto Pair : States) {
924       Value *BDV = Pair.first;
925       // Only values that do not have known bases or those that have differing
926       // type (scalar versus vector) from a possible known base should be in the
927       // lattice.
928       assert((!isKnownBaseResult(BDV) ||
929              !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
930                  "why did it get added?");
931 
932       BDVState NewState(BDV);
933       visitBDVOperands(BDV, [&] (Value *Op) {
934         Value *BDV = findBaseOrBDV(Op, Cache);
935         auto OpState = GetStateForBDV(BDV, Op);
936         NewState = meetBDVState(NewState, OpState);
937       });
938 
939       BDVState OldState = States[BDV];
940       if (OldState != NewState) {
941         Progress = true;
942         States[BDV] = NewState;
943       }
944     }
945 
946     assert(OldSize == States.size() &&
947            "fixed point shouldn't be adding any new nodes to state");
948   }
949 
950 #ifndef NDEBUG
951   VerifyStates();
952   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
953   for (auto Pair : States) {
954     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
955   }
956 #endif
957 
958   // Handle all instructions that have a vector BDV, but the instruction itself
959   // is of scalar type.
960   for (auto Pair : States) {
961     Instruction *I = cast<Instruction>(Pair.first);
962     BDVState State = Pair.second;
963     auto *BaseValue = State.getBaseValue();
964     // Only values that do not have known bases or those that have differing
965     // type (scalar versus vector) from a possible known base should be in the
966     // lattice.
967     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) &&
968            "why did it get added?");
969     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
970 
971     if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
972       continue;
973     // extractelement instructions are a bit special in that we may need to
974     // insert an extract even when we know an exact base for the instruction.
975     // The problem is that we need to convert from a vector base to a scalar
976     // base for the particular indice we're interested in.
977     if (isa<ExtractElementInst>(I)) {
978       auto *EE = cast<ExtractElementInst>(I);
979       // TODO: In many cases, the new instruction is just EE itself.  We should
980       // exploit this, but can't do it here since it would break the invariant
981       // about the BDV not being known to be a base.
982       auto *BaseInst = ExtractElementInst::Create(
983           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
984       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
985       States[I] = BDVState(I, BDVState::Base, BaseInst);
986     } else if (!isa<VectorType>(I->getType())) {
987       // We need to handle cases that have a vector base but the instruction is
988       // a scalar type (these could be phis or selects or any instruction that
989       // are of scalar type, but the base can be a vector type).  We
990       // conservatively set this as conflict.  Setting the base value for these
991       // conflicts is handled in the next loop which traverses States.
992       States[I] = BDVState(I, BDVState::Conflict);
993     }
994   }
995 
996 #ifndef NDEBUG
997   VerifyStates();
998 #endif
999 
1000   // Insert Phis for all conflicts
1001   // TODO: adjust naming patterns to avoid this order of iteration dependency
1002   for (auto Pair : States) {
1003     Instruction *I = cast<Instruction>(Pair.first);
1004     BDVState State = Pair.second;
1005     // Only values that do not have known bases or those that have differing
1006     // type (scalar versus vector) from a possible known base should be in the
1007     // lattice.
1008     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) &&
1009            "why did it get added?");
1010     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1011 
1012     // Since we're joining a vector and scalar base, they can never be the
1013     // same.  As a result, we should always see insert element having reached
1014     // the conflict state.
1015     assert(!isa<InsertElementInst>(I) || State.isConflict());
1016 
1017     if (!State.isConflict())
1018       continue;
1019 
1020     /// Create and insert a new instruction which will represent the base of
1021     /// the given instruction 'I'.
1022     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
1023       if (isa<PHINode>(I)) {
1024         BasicBlock *BB = I->getParent();
1025         int NumPreds = pred_size(BB);
1026         assert(NumPreds > 0 && "how did we reach here");
1027         std::string Name = suffixed_name_or(I, ".base", "base_phi");
1028         return PHINode::Create(I->getType(), NumPreds, Name, I);
1029       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
1030         // The undef will be replaced later
1031         UndefValue *Undef = UndefValue::get(SI->getType());
1032         std::string Name = suffixed_name_or(I, ".base", "base_select");
1033         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
1034       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
1035         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
1036         std::string Name = suffixed_name_or(I, ".base", "base_ee");
1037         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
1038                                           EE);
1039       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
1040         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
1041         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
1042         std::string Name = suffixed_name_or(I, ".base", "base_ie");
1043         return InsertElementInst::Create(VecUndef, ScalarUndef,
1044                                          IE->getOperand(2), Name, IE);
1045       } else {
1046         auto *SV = cast<ShuffleVectorInst>(I);
1047         UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
1048         std::string Name = suffixed_name_or(I, ".base", "base_sv");
1049         return new ShuffleVectorInst(VecUndef, VecUndef, SV->getShuffleMask(),
1050                                      Name, SV);
1051       }
1052     };
1053     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
1054     // Add metadata marking this as a base value
1055     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1056     States[I] = BDVState(I, BDVState::Conflict, BaseInst);
1057   }
1058 
1059 #ifndef NDEBUG
1060   VerifyStates();
1061 #endif
1062 
1063   // Returns a instruction which produces the base pointer for a given
1064   // instruction.  The instruction is assumed to be an input to one of the BDVs
1065   // seen in the inference algorithm above.  As such, we must either already
1066   // know it's base defining value is a base, or have inserted a new
1067   // instruction to propagate the base of it's BDV and have entered that newly
1068   // introduced instruction into the state table.  In either case, we are
1069   // assured to be able to determine an instruction which produces it's base
1070   // pointer.
1071   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1072     Value *BDV = findBaseOrBDV(Input, Cache);
1073     Value *Base = nullptr;
1074     if (isKnownBaseResult(BDV) && areBothVectorOrScalar(BDV, Input)) {
1075       Base = BDV;
1076     } else {
1077       // Either conflict or base.
1078       assert(States.count(BDV));
1079       Base = States[BDV].getBaseValue();
1080     }
1081     assert(Base && "Can't be null");
1082     // The cast is needed since base traversal may strip away bitcasts
1083     if (Base->getType() != Input->getType() && InsertPt)
1084       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1085     return Base;
1086   };
1087 
1088   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1089   // deterministic and predictable because we're naming newly created
1090   // instructions.
1091   for (auto Pair : States) {
1092     Instruction *BDV = cast<Instruction>(Pair.first);
1093     BDVState State = Pair.second;
1094 
1095     // Only values that do not have known bases or those that have differing
1096     // type (scalar versus vector) from a possible known base should be in the
1097     // lattice.
1098     assert((!isKnownBaseResult(BDV) ||
1099             !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1100            "why did it get added?");
1101     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1102     if (!State.isConflict())
1103       continue;
1104 
1105     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1106       PHINode *PN = cast<PHINode>(BDV);
1107       unsigned NumPHIValues = PN->getNumIncomingValues();
1108       for (unsigned i = 0; i < NumPHIValues; i++) {
1109         Value *InVal = PN->getIncomingValue(i);
1110         BasicBlock *InBB = PN->getIncomingBlock(i);
1111 
1112         // If we've already seen InBB, add the same incoming value
1113         // we added for it earlier.  The IR verifier requires phi
1114         // nodes with multiple entries from the same basic block
1115         // to have the same incoming value for each of those
1116         // entries.  If we don't do this check here and basephi
1117         // has a different type than base, we'll end up adding two
1118         // bitcasts (and hence two distinct values) as incoming
1119         // values for the same basic block.
1120 
1121         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1122         if (BlockIndex != -1) {
1123           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1124           BasePHI->addIncoming(OldBase, InBB);
1125 
1126 #ifndef NDEBUG
1127           Value *Base = getBaseForInput(InVal, nullptr);
1128           // In essence this assert states: the only way two values
1129           // incoming from the same basic block may be different is by
1130           // being different bitcasts of the same value.  A cleanup
1131           // that remains TODO is changing findBaseOrBDV to return an
1132           // llvm::Value of the correct type (and still remain pure).
1133           // This will remove the need to add bitcasts.
1134           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1135                  "Sanity -- findBaseOrBDV should be pure!");
1136 #endif
1137           continue;
1138         }
1139 
1140         // Find the instruction which produces the base for each input.  We may
1141         // need to insert a bitcast in the incoming block.
1142         // TODO: Need to split critical edges if insertion is needed
1143         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1144         BasePHI->addIncoming(Base, InBB);
1145       }
1146       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1147     } else if (SelectInst *BaseSI =
1148                    dyn_cast<SelectInst>(State.getBaseValue())) {
1149       SelectInst *SI = cast<SelectInst>(BDV);
1150 
1151       // Find the instruction which produces the base for each input.
1152       // We may need to insert a bitcast.
1153       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1154       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1155     } else if (auto *BaseEE =
1156                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1157       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1158       // Find the instruction which produces the base for each input.  We may
1159       // need to insert a bitcast.
1160       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1161     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1162       auto *BdvIE = cast<InsertElementInst>(BDV);
1163       auto UpdateOperand = [&](int OperandIdx) {
1164         Value *InVal = BdvIE->getOperand(OperandIdx);
1165         Value *Base = getBaseForInput(InVal, BaseIE);
1166         BaseIE->setOperand(OperandIdx, Base);
1167       };
1168       UpdateOperand(0); // vector operand
1169       UpdateOperand(1); // scalar operand
1170     } else {
1171       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1172       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1173       auto UpdateOperand = [&](int OperandIdx) {
1174         Value *InVal = BdvSV->getOperand(OperandIdx);
1175         Value *Base = getBaseForInput(InVal, BaseSV);
1176         BaseSV->setOperand(OperandIdx, Base);
1177       };
1178       UpdateOperand(0); // vector operand
1179       UpdateOperand(1); // vector operand
1180     }
1181   }
1182 
1183 #ifndef NDEBUG
1184   VerifyStates();
1185 #endif
1186 
1187   // Cache all of our results so we can cheaply reuse them
1188   // NOTE: This is actually two caches: one of the base defining value
1189   // relation and one of the base pointer relation!  FIXME
1190   for (auto Pair : States) {
1191     auto *BDV = Pair.first;
1192     Value *Base = Pair.second.getBaseValue();
1193     assert(BDV && Base);
1194     // Only values that do not have known bases or those that have differing
1195     // type (scalar versus vector) from a possible known base should be in the
1196     // lattice.
1197     assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) &&
1198            "why did it get added?");
1199 
1200     LLVM_DEBUG(
1201         dbgs() << "Updating base value cache"
1202                << " for: " << BDV->getName() << " from: "
1203                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1204                << " to: " << Base->getName() << "\n");
1205 
1206     if (Cache.count(BDV)) {
1207       assert(isKnownBaseResult(Base) &&
1208              "must be something we 'know' is a base pointer");
1209       // Once we transition from the BDV relation being store in the Cache to
1210       // the base relation being stored, it must be stable
1211       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1212              "base relation should be stable");
1213     }
1214     Cache[BDV] = Base;
1215   }
1216   assert(Cache.count(Def));
1217   return Cache[Def];
1218 }
1219 
1220 // For a set of live pointers (base and/or derived), identify the base
1221 // pointer of the object which they are derived from.  This routine will
1222 // mutate the IR graph as needed to make the 'base' pointer live at the
1223 // definition site of 'derived'.  This ensures that any use of 'derived' can
1224 // also use 'base'.  This may involve the insertion of a number of
1225 // additional PHI nodes.
1226 //
1227 // preconditions: live is a set of pointer type Values
1228 //
1229 // side effects: may insert PHI nodes into the existing CFG, will preserve
1230 // CFG, will not remove or mutate any existing nodes
1231 //
1232 // post condition: PointerToBase contains one (derived, base) pair for every
1233 // pointer in live.  Note that derived can be equal to base if the original
1234 // pointer was a base pointer.
1235 static void
1236 findBasePointers(const StatepointLiveSetTy &live,
1237                  MapVector<Value *, Value *> &PointerToBase,
1238                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1239   for (Value *ptr : live) {
1240     Value *base = findBasePointer(ptr, DVCache);
1241     assert(base && "failed to find base pointer");
1242     PointerToBase[ptr] = base;
1243     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1244             DT->dominates(cast<Instruction>(base)->getParent(),
1245                           cast<Instruction>(ptr)->getParent())) &&
1246            "The base we found better dominate the derived pointer");
1247   }
1248 }
1249 
1250 /// Find the required based pointers (and adjust the live set) for the given
1251 /// parse point.
1252 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1253                              CallBase *Call,
1254                              PartiallyConstructedSafepointRecord &result) {
1255   MapVector<Value *, Value *> PointerToBase;
1256   StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
1257   // We assume that all pointers passed to deopt are base pointers; as an
1258   // optimization, we can use this to avoid seperately materializing the base
1259   // pointer graph.  This is only relevant since we're very conservative about
1260   // generating new conflict nodes during base pointer insertion.  If we were
1261   // smarter there, this would be irrelevant.
1262   if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
1263     for (Value *V : Opt->Inputs) {
1264       if (!PotentiallyDerivedPointers.count(V))
1265         continue;
1266       PotentiallyDerivedPointers.remove(V);
1267       PointerToBase[V] = V;
1268     }
1269   findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache);
1270 
1271   if (PrintBasePointers) {
1272     errs() << "Base Pairs (w/o Relocation):\n";
1273     for (auto &Pair : PointerToBase) {
1274       errs() << " derived ";
1275       Pair.first->printAsOperand(errs(), false);
1276       errs() << " base ";
1277       Pair.second->printAsOperand(errs(), false);
1278       errs() << "\n";;
1279     }
1280   }
1281 
1282   result.PointerToBase = PointerToBase;
1283 }
1284 
1285 /// Given an updated version of the dataflow liveness results, update the
1286 /// liveset and base pointer maps for the call site CS.
1287 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1288                                   CallBase *Call,
1289                                   PartiallyConstructedSafepointRecord &result);
1290 
1291 static void recomputeLiveInValues(
1292     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1293     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1294   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1295   // again.  The old values are still live and will help it stabilize quickly.
1296   GCPtrLivenessData RevisedLivenessData;
1297   computeLiveInValues(DT, F, RevisedLivenessData);
1298   for (size_t i = 0; i < records.size(); i++) {
1299     struct PartiallyConstructedSafepointRecord &info = records[i];
1300     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1301   }
1302 }
1303 
1304 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1305 // no uses of the original value / return value between the gc.statepoint and
1306 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1307 // starting one of the successor blocks.  We also need to be able to insert the
1308 // gc.relocates only on the path which goes through the statepoint.  We might
1309 // need to split an edge to make this possible.
1310 static BasicBlock *
1311 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1312                             DominatorTree &DT) {
1313   BasicBlock *Ret = BB;
1314   if (!BB->getUniquePredecessor())
1315     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1316 
1317   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1318   // from it
1319   FoldSingleEntryPHINodes(Ret);
1320   assert(!isa<PHINode>(Ret->begin()) &&
1321          "All PHI nodes should have been removed!");
1322 
1323   // At this point, we can safely insert a gc.relocate or gc.result as the first
1324   // instruction in Ret if needed.
1325   return Ret;
1326 }
1327 
1328 // Create new attribute set containing only attributes which can be transferred
1329 // from original call to the safepoint.
1330 static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
1331                                             AttributeList AL) {
1332   if (AL.isEmpty())
1333     return AL;
1334 
1335   // Remove the readonly, readnone, and statepoint function attributes.
1336   AttrBuilder FnAttrs = AL.getFnAttributes();
1337   FnAttrs.removeAttribute(Attribute::ReadNone);
1338   FnAttrs.removeAttribute(Attribute::ReadOnly);
1339   for (Attribute A : AL.getFnAttributes()) {
1340     if (isStatepointDirectiveAttr(A))
1341       FnAttrs.remove(A);
1342   }
1343 
1344   // Just skip parameter and return attributes for now
1345   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1346                             AttributeSet::get(Ctx, FnAttrs));
1347 }
1348 
1349 /// Helper function to place all gc relocates necessary for the given
1350 /// statepoint.
1351 /// Inputs:
1352 ///   liveVariables - list of variables to be relocated.
1353 ///   basePtrs - base pointers.
1354 ///   statepointToken - statepoint instruction to which relocates should be
1355 ///   bound.
1356 ///   Builder - Llvm IR builder to be used to construct new calls.
1357 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1358                               ArrayRef<Value *> BasePtrs,
1359                               Instruction *StatepointToken,
1360                               IRBuilder<> &Builder) {
1361   if (LiveVariables.empty())
1362     return;
1363 
1364   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1365     auto ValIt = llvm::find(LiveVec, Val);
1366     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1367     size_t Index = std::distance(LiveVec.begin(), ValIt);
1368     assert(Index < LiveVec.size() && "Bug in std::find?");
1369     return Index;
1370   };
1371   Module *M = StatepointToken->getModule();
1372 
1373   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1374   // element type is i8 addrspace(1)*). We originally generated unique
1375   // declarations for each pointer type, but this proved problematic because
1376   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1377   // towards a single unified pointer type anyways, we can just cast everything
1378   // to an i8* of the right address space.  A bitcast is added later to convert
1379   // gc_relocate to the actual value's type.
1380   auto getGCRelocateDecl = [&] (Type *Ty) {
1381     assert(isHandledGCPointerType(Ty));
1382     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1383     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1384     if (auto *VT = dyn_cast<VectorType>(Ty))
1385       NewTy = FixedVectorType::get(NewTy,
1386                                    cast<FixedVectorType>(VT)->getNumElements());
1387     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1388                                      {NewTy});
1389   };
1390 
1391   // Lazily populated map from input types to the canonicalized form mentioned
1392   // in the comment above.  This should probably be cached somewhere more
1393   // broadly.
1394   DenseMap<Type *, Function *> TypeToDeclMap;
1395 
1396   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1397     // Generate the gc.relocate call and save the result
1398     Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1399     Value *LiveIdx = Builder.getInt32(i);
1400 
1401     Type *Ty = LiveVariables[i]->getType();
1402     if (!TypeToDeclMap.count(Ty))
1403       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1404     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1405 
1406     // only specify a debug name if we can give a useful one
1407     CallInst *Reloc = Builder.CreateCall(
1408         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1409         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1410     // Trick CodeGen into thinking there are lots of free registers at this
1411     // fake call.
1412     Reloc->setCallingConv(CallingConv::Cold);
1413   }
1414 }
1415 
1416 namespace {
1417 
1418 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1419 /// avoids having to worry about keeping around dangling pointers to Values.
1420 class DeferredReplacement {
1421   AssertingVH<Instruction> Old;
1422   AssertingVH<Instruction> New;
1423   bool IsDeoptimize = false;
1424 
1425   DeferredReplacement() = default;
1426 
1427 public:
1428   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1429     assert(Old != New && Old && New &&
1430            "Cannot RAUW equal values or to / from null!");
1431 
1432     DeferredReplacement D;
1433     D.Old = Old;
1434     D.New = New;
1435     return D;
1436   }
1437 
1438   static DeferredReplacement createDelete(Instruction *ToErase) {
1439     DeferredReplacement D;
1440     D.Old = ToErase;
1441     return D;
1442   }
1443 
1444   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1445 #ifndef NDEBUG
1446     auto *F = cast<CallInst>(Old)->getCalledFunction();
1447     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1448            "Only way to construct a deoptimize deferred replacement");
1449 #endif
1450     DeferredReplacement D;
1451     D.Old = Old;
1452     D.IsDeoptimize = true;
1453     return D;
1454   }
1455 
1456   /// Does the task represented by this instance.
1457   void doReplacement() {
1458     Instruction *OldI = Old;
1459     Instruction *NewI = New;
1460 
1461     assert(OldI != NewI && "Disallowed at construction?!");
1462     assert((!IsDeoptimize || !New) &&
1463            "Deoptimize intrinsics are not replaced!");
1464 
1465     Old = nullptr;
1466     New = nullptr;
1467 
1468     if (NewI)
1469       OldI->replaceAllUsesWith(NewI);
1470 
1471     if (IsDeoptimize) {
1472       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1473       // not necessarily be followed by the matching return.
1474       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1475       new UnreachableInst(RI->getContext(), RI);
1476       RI->eraseFromParent();
1477     }
1478 
1479     OldI->eraseFromParent();
1480   }
1481 };
1482 
1483 } // end anonymous namespace
1484 
1485 static StringRef getDeoptLowering(CallBase *Call) {
1486   const char *DeoptLowering = "deopt-lowering";
1487   if (Call->hasFnAttr(DeoptLowering)) {
1488     // FIXME: Calls have a *really* confusing interface around attributes
1489     // with values.
1490     const AttributeList &CSAS = Call->getAttributes();
1491     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1492       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1493           .getValueAsString();
1494     Function *F = Call->getCalledFunction();
1495     assert(F && F->hasFnAttribute(DeoptLowering));
1496     return F->getFnAttribute(DeoptLowering).getValueAsString();
1497   }
1498   return "live-through";
1499 }
1500 
1501 static void
1502 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1503                            const SmallVectorImpl<Value *> &BasePtrs,
1504                            const SmallVectorImpl<Value *> &LiveVariables,
1505                            PartiallyConstructedSafepointRecord &Result,
1506                            std::vector<DeferredReplacement> &Replacements) {
1507   assert(BasePtrs.size() == LiveVariables.size());
1508 
1509   // Then go ahead and use the builder do actually do the inserts.  We insert
1510   // immediately before the previous instruction under the assumption that all
1511   // arguments will be available here.  We can't insert afterwards since we may
1512   // be replacing a terminator.
1513   IRBuilder<> Builder(Call);
1514 
1515   ArrayRef<Value *> GCArgs(LiveVariables);
1516   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1517   uint32_t NumPatchBytes = 0;
1518   uint32_t Flags = uint32_t(StatepointFlags::None);
1519 
1520   SmallVector<Value *, 8> CallArgs(Call->args());
1521   Optional<ArrayRef<Use>> DeoptArgs;
1522   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1523     DeoptArgs = Bundle->Inputs;
1524   Optional<ArrayRef<Use>> TransitionArgs;
1525   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1526     TransitionArgs = Bundle->Inputs;
1527     // TODO: This flag no longer serves a purpose and can be removed later
1528     Flags |= uint32_t(StatepointFlags::GCTransition);
1529   }
1530 
1531   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1532   // with a return value, we lower then as never returning calls to
1533   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1534   bool IsDeoptimize = false;
1535 
1536   StatepointDirectives SD =
1537       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1538   if (SD.NumPatchBytes)
1539     NumPatchBytes = *SD.NumPatchBytes;
1540   if (SD.StatepointID)
1541     StatepointID = *SD.StatepointID;
1542 
1543   // Pass through the requested lowering if any.  The default is live-through.
1544   StringRef DeoptLowering = getDeoptLowering(Call);
1545   if (DeoptLowering.equals("live-in"))
1546     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1547   else {
1548     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1549   }
1550 
1551   Value *CallTarget = Call->getCalledOperand();
1552   if (Function *F = dyn_cast<Function>(CallTarget)) {
1553     auto IID = F->getIntrinsicID();
1554     if (IID == Intrinsic::experimental_deoptimize) {
1555       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1556       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1557       // verifier does not allow taking the address of an intrinsic function.
1558 
1559       SmallVector<Type *, 8> DomainTy;
1560       for (Value *Arg : CallArgs)
1561         DomainTy.push_back(Arg->getType());
1562       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1563                                     /* isVarArg = */ false);
1564 
1565       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1566       // calls to @llvm.experimental.deoptimize with different argument types in
1567       // the same module.  This is fine -- we assume the frontend knew what it
1568       // was doing when generating this kind of IR.
1569       CallTarget = F->getParent()
1570                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1571                        .getCallee();
1572 
1573       IsDeoptimize = true;
1574     } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1575                IID == Intrinsic::memmove_element_unordered_atomic) {
1576       // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1577       // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1578       // Specifically, these calls should be lowered to the
1579       // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1580       // Similarly to __llvm_deoptimize we want to resolve this now, since the
1581       // verifier does not allow taking the address of an intrinsic function.
1582       //
1583       // Moreover we need to shuffle the arguments for the call in order to
1584       // accommodate GC. The underlying source and destination objects might be
1585       // relocated during copy operation should the GC occur. To relocate the
1586       // derived source and destination pointers the implementation of the
1587       // intrinsic should know the corresponding base pointers.
1588       //
1589       // To make the base pointers available pass them explicitly as arguments:
1590       //   memcpy(dest_derived, source_derived, ...) =>
1591       //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1592       auto &Context = Call->getContext();
1593       auto &DL = Call->getModule()->getDataLayout();
1594       auto GetBaseAndOffset = [&](Value *Derived) {
1595         assert(Result.PointerToBase.count(Derived));
1596         unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1597         unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1598         Value *Base = Result.PointerToBase.find(Derived)->second;
1599         Value *Base_int = Builder.CreatePtrToInt(
1600             Base, Type::getIntNTy(Context, IntPtrSize));
1601         Value *Derived_int = Builder.CreatePtrToInt(
1602             Derived, Type::getIntNTy(Context, IntPtrSize));
1603         return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1604       };
1605 
1606       auto *Dest = CallArgs[0];
1607       Value *DestBase, *DestOffset;
1608       std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1609 
1610       auto *Source = CallArgs[1];
1611       Value *SourceBase, *SourceOffset;
1612       std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1613 
1614       auto *LengthInBytes = CallArgs[2];
1615       auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1616 
1617       CallArgs.clear();
1618       CallArgs.push_back(DestBase);
1619       CallArgs.push_back(DestOffset);
1620       CallArgs.push_back(SourceBase);
1621       CallArgs.push_back(SourceOffset);
1622       CallArgs.push_back(LengthInBytes);
1623 
1624       SmallVector<Type *, 8> DomainTy;
1625       for (Value *Arg : CallArgs)
1626         DomainTy.push_back(Arg->getType());
1627       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1628                                     /* isVarArg = */ false);
1629 
1630       auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1631         uint64_t ElementSize = ElementSizeCI->getZExtValue();
1632         if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1633           switch (ElementSize) {
1634           case 1:
1635             return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1636           case 2:
1637             return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1638           case 4:
1639             return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1640           case 8:
1641             return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1642           case 16:
1643             return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1644           default:
1645             llvm_unreachable("unexpected element size!");
1646           }
1647         }
1648         assert(IID == Intrinsic::memmove_element_unordered_atomic);
1649         switch (ElementSize) {
1650         case 1:
1651           return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1652         case 2:
1653           return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1654         case 4:
1655           return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1656         case 8:
1657           return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1658         case 16:
1659           return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1660         default:
1661           llvm_unreachable("unexpected element size!");
1662         }
1663       };
1664 
1665       CallTarget =
1666           F->getParent()
1667               ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy)
1668               .getCallee();
1669     }
1670   }
1671 
1672   // Create the statepoint given all the arguments
1673   GCStatepointInst *Token = nullptr;
1674   if (auto *CI = dyn_cast<CallInst>(Call)) {
1675     CallInst *SPCall = Builder.CreateGCStatepointCall(
1676         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1677         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1678 
1679     SPCall->setTailCallKind(CI->getTailCallKind());
1680     SPCall->setCallingConv(CI->getCallingConv());
1681 
1682     // Currently we will fail on parameter attributes and on certain
1683     // function attributes.  In case if we can handle this set of attributes -
1684     // set up function attrs directly on statepoint and return attrs later for
1685     // gc_result intrinsic.
1686     SPCall->setAttributes(
1687         legalizeCallAttributes(CI->getContext(), CI->getAttributes()));
1688 
1689     Token = cast<GCStatepointInst>(SPCall);
1690 
1691     // Put the following gc_result and gc_relocate calls immediately after the
1692     // the old call (which we're about to delete)
1693     assert(CI->getNextNode() && "Not a terminator, must have next!");
1694     Builder.SetInsertPoint(CI->getNextNode());
1695     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1696   } else {
1697     auto *II = cast<InvokeInst>(Call);
1698 
1699     // Insert the new invoke into the old block.  We'll remove the old one in a
1700     // moment at which point this will become the new terminator for the
1701     // original block.
1702     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1703         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1704         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1705         "statepoint_token");
1706 
1707     SPInvoke->setCallingConv(II->getCallingConv());
1708 
1709     // Currently we will fail on parameter attributes and on certain
1710     // function attributes.  In case if we can handle this set of attributes -
1711     // set up function attrs directly on statepoint and return attrs later for
1712     // gc_result intrinsic.
1713     SPInvoke->setAttributes(
1714         legalizeCallAttributes(II->getContext(), II->getAttributes()));
1715 
1716     Token = cast<GCStatepointInst>(SPInvoke);
1717 
1718     // Generate gc relocates in exceptional path
1719     BasicBlock *UnwindBlock = II->getUnwindDest();
1720     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1721            UnwindBlock->getUniquePredecessor() &&
1722            "can't safely insert in this block!");
1723 
1724     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1725     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1726 
1727     // Attach exceptional gc relocates to the landingpad.
1728     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1729     Result.UnwindToken = ExceptionalToken;
1730 
1731     CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
1732 
1733     // Generate gc relocates and returns for normal block
1734     BasicBlock *NormalDest = II->getNormalDest();
1735     assert(!isa<PHINode>(NormalDest->begin()) &&
1736            NormalDest->getUniquePredecessor() &&
1737            "can't safely insert in this block!");
1738 
1739     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1740 
1741     // gc relocates will be generated later as if it were regular call
1742     // statepoint
1743   }
1744   assert(Token && "Should be set in one of the above branches!");
1745 
1746   if (IsDeoptimize) {
1747     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1748     // transform the tail-call like structure to a call to a void function
1749     // followed by unreachable to get better codegen.
1750     Replacements.push_back(
1751         DeferredReplacement::createDeoptimizeReplacement(Call));
1752   } else {
1753     Token->setName("statepoint_token");
1754     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1755       StringRef Name = Call->hasName() ? Call->getName() : "";
1756       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1757       GCResult->setAttributes(
1758           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1759                              Call->getAttributes().getRetAttributes()));
1760 
1761       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1762       // live set of some other safepoint, in which case that safepoint's
1763       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1764       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1765       // after the live sets have been made explicit in the IR, and we no longer
1766       // have raw pointers to worry about.
1767       Replacements.emplace_back(
1768           DeferredReplacement::createRAUW(Call, GCResult));
1769     } else {
1770       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1771     }
1772   }
1773 
1774   Result.StatepointToken = Token;
1775 
1776   // Second, create a gc.relocate for every live variable
1777   CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
1778 }
1779 
1780 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1781 // which make the relocations happening at this safepoint explicit.
1782 //
1783 // WARNING: Does not do any fixup to adjust users of the original live
1784 // values.  That's the callers responsibility.
1785 static void
1786 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1787                        PartiallyConstructedSafepointRecord &Result,
1788                        std::vector<DeferredReplacement> &Replacements) {
1789   const auto &LiveSet = Result.LiveSet;
1790   const auto &PointerToBase = Result.PointerToBase;
1791 
1792   // Convert to vector for efficient cross referencing.
1793   SmallVector<Value *, 64> BaseVec, LiveVec;
1794   LiveVec.reserve(LiveSet.size());
1795   BaseVec.reserve(LiveSet.size());
1796   for (Value *L : LiveSet) {
1797     LiveVec.push_back(L);
1798     assert(PointerToBase.count(L));
1799     Value *Base = PointerToBase.find(L)->second;
1800     BaseVec.push_back(Base);
1801   }
1802   assert(LiveVec.size() == BaseVec.size());
1803 
1804   // Do the actual rewriting and delete the old statepoint
1805   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1806 }
1807 
1808 // Helper function for the relocationViaAlloca.
1809 //
1810 // It receives iterator to the statepoint gc relocates and emits a store to the
1811 // assigned location (via allocaMap) for the each one of them.  It adds the
1812 // visited values into the visitedLiveValues set, which we will later use them
1813 // for sanity checking.
1814 static void
1815 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1816                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1817                        DenseSet<Value *> &VisitedLiveValues) {
1818   for (User *U : GCRelocs) {
1819     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1820     if (!Relocate)
1821       continue;
1822 
1823     Value *OriginalValue = Relocate->getDerivedPtr();
1824     assert(AllocaMap.count(OriginalValue));
1825     Value *Alloca = AllocaMap[OriginalValue];
1826 
1827     // Emit store into the related alloca
1828     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1829     // the correct type according to alloca.
1830     assert(Relocate->getNextNode() &&
1831            "Should always have one since it's not a terminator");
1832     IRBuilder<> Builder(Relocate->getNextNode());
1833     Value *CastedRelocatedValue =
1834       Builder.CreateBitCast(Relocate,
1835                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1836                             suffixed_name_or(Relocate, ".casted", ""));
1837 
1838     new StoreInst(CastedRelocatedValue, Alloca,
1839                   cast<Instruction>(CastedRelocatedValue)->getNextNode());
1840 
1841 #ifndef NDEBUG
1842     VisitedLiveValues.insert(OriginalValue);
1843 #endif
1844   }
1845 }
1846 
1847 // Helper function for the "relocationViaAlloca". Similar to the
1848 // "insertRelocationStores" but works for rematerialized values.
1849 static void insertRematerializationStores(
1850     const RematerializedValueMapTy &RematerializedValues,
1851     DenseMap<Value *, AllocaInst *> &AllocaMap,
1852     DenseSet<Value *> &VisitedLiveValues) {
1853   for (auto RematerializedValuePair: RematerializedValues) {
1854     Instruction *RematerializedValue = RematerializedValuePair.first;
1855     Value *OriginalValue = RematerializedValuePair.second;
1856 
1857     assert(AllocaMap.count(OriginalValue) &&
1858            "Can not find alloca for rematerialized value");
1859     Value *Alloca = AllocaMap[OriginalValue];
1860 
1861     new StoreInst(RematerializedValue, Alloca,
1862                   RematerializedValue->getNextNode());
1863 
1864 #ifndef NDEBUG
1865     VisitedLiveValues.insert(OriginalValue);
1866 #endif
1867   }
1868 }
1869 
1870 /// Do all the relocation update via allocas and mem2reg
1871 static void relocationViaAlloca(
1872     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1873     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1874 #ifndef NDEBUG
1875   // record initial number of (static) allocas; we'll check we have the same
1876   // number when we get done.
1877   int InitialAllocaNum = 0;
1878   for (Instruction &I : F.getEntryBlock())
1879     if (isa<AllocaInst>(I))
1880       InitialAllocaNum++;
1881 #endif
1882 
1883   // TODO-PERF: change data structures, reserve
1884   DenseMap<Value *, AllocaInst *> AllocaMap;
1885   SmallVector<AllocaInst *, 200> PromotableAllocas;
1886   // Used later to chack that we have enough allocas to store all values
1887   std::size_t NumRematerializedValues = 0;
1888   PromotableAllocas.reserve(Live.size());
1889 
1890   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1891   // "PromotableAllocas"
1892   const DataLayout &DL = F.getParent()->getDataLayout();
1893   auto emitAllocaFor = [&](Value *LiveValue) {
1894     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1895                                         DL.getAllocaAddrSpace(), "",
1896                                         F.getEntryBlock().getFirstNonPHI());
1897     AllocaMap[LiveValue] = Alloca;
1898     PromotableAllocas.push_back(Alloca);
1899   };
1900 
1901   // Emit alloca for each live gc pointer
1902   for (Value *V : Live)
1903     emitAllocaFor(V);
1904 
1905   // Emit allocas for rematerialized values
1906   for (const auto &Info : Records)
1907     for (auto RematerializedValuePair : Info.RematerializedValues) {
1908       Value *OriginalValue = RematerializedValuePair.second;
1909       if (AllocaMap.count(OriginalValue) != 0)
1910         continue;
1911 
1912       emitAllocaFor(OriginalValue);
1913       ++NumRematerializedValues;
1914     }
1915 
1916   // The next two loops are part of the same conceptual operation.  We need to
1917   // insert a store to the alloca after the original def and at each
1918   // redefinition.  We need to insert a load before each use.  These are split
1919   // into distinct loops for performance reasons.
1920 
1921   // Update gc pointer after each statepoint: either store a relocated value or
1922   // null (if no relocated value was found for this gc pointer and it is not a
1923   // gc_result).  This must happen before we update the statepoint with load of
1924   // alloca otherwise we lose the link between statepoint and old def.
1925   for (const auto &Info : Records) {
1926     Value *Statepoint = Info.StatepointToken;
1927 
1928     // This will be used for consistency check
1929     DenseSet<Value *> VisitedLiveValues;
1930 
1931     // Insert stores for normal statepoint gc relocates
1932     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1933 
1934     // In case if it was invoke statepoint
1935     // we will insert stores for exceptional path gc relocates.
1936     if (isa<InvokeInst>(Statepoint)) {
1937       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1938                              VisitedLiveValues);
1939     }
1940 
1941     // Do similar thing with rematerialized values
1942     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1943                                   VisitedLiveValues);
1944 
1945     if (ClobberNonLive) {
1946       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1947       // the gc.statepoint.  This will turn some subtle GC problems into
1948       // slightly easier to debug SEGVs.  Note that on large IR files with
1949       // lots of gc.statepoints this is extremely costly both memory and time
1950       // wise.
1951       SmallVector<AllocaInst *, 64> ToClobber;
1952       for (auto Pair : AllocaMap) {
1953         Value *Def = Pair.first;
1954         AllocaInst *Alloca = Pair.second;
1955 
1956         // This value was relocated
1957         if (VisitedLiveValues.count(Def)) {
1958           continue;
1959         }
1960         ToClobber.push_back(Alloca);
1961       }
1962 
1963       auto InsertClobbersAt = [&](Instruction *IP) {
1964         for (auto *AI : ToClobber) {
1965           auto PT = cast<PointerType>(AI->getAllocatedType());
1966           Constant *CPN = ConstantPointerNull::get(PT);
1967           new StoreInst(CPN, AI, IP);
1968         }
1969       };
1970 
1971       // Insert the clobbering stores.  These may get intermixed with the
1972       // gc.results and gc.relocates, but that's fine.
1973       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1974         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1975         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1976       } else {
1977         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1978       }
1979     }
1980   }
1981 
1982   // Update use with load allocas and add store for gc_relocated.
1983   for (auto Pair : AllocaMap) {
1984     Value *Def = Pair.first;
1985     AllocaInst *Alloca = Pair.second;
1986 
1987     // We pre-record the uses of allocas so that we dont have to worry about
1988     // later update that changes the user information..
1989 
1990     SmallVector<Instruction *, 20> Uses;
1991     // PERF: trade a linear scan for repeated reallocation
1992     Uses.reserve(Def->getNumUses());
1993     for (User *U : Def->users()) {
1994       if (!isa<ConstantExpr>(U)) {
1995         // If the def has a ConstantExpr use, then the def is either a
1996         // ConstantExpr use itself or null.  In either case
1997         // (recursively in the first, directly in the second), the oop
1998         // it is ultimately dependent on is null and this particular
1999         // use does not need to be fixed up.
2000         Uses.push_back(cast<Instruction>(U));
2001       }
2002     }
2003 
2004     llvm::sort(Uses);
2005     auto Last = std::unique(Uses.begin(), Uses.end());
2006     Uses.erase(Last, Uses.end());
2007 
2008     for (Instruction *Use : Uses) {
2009       if (isa<PHINode>(Use)) {
2010         PHINode *Phi = cast<PHINode>(Use);
2011         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
2012           if (Def == Phi->getIncomingValue(i)) {
2013             LoadInst *Load =
2014                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
2015                              Phi->getIncomingBlock(i)->getTerminator());
2016             Phi->setIncomingValue(i, Load);
2017           }
2018         }
2019       } else {
2020         LoadInst *Load =
2021             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
2022         Use->replaceUsesOfWith(Def, Load);
2023       }
2024     }
2025 
2026     // Emit store for the initial gc value.  Store must be inserted after load,
2027     // otherwise store will be in alloca's use list and an extra load will be
2028     // inserted before it.
2029     StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2030                                      DL.getABITypeAlign(Def->getType()));
2031     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2032       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2033         // InvokeInst is a terminator so the store need to be inserted into its
2034         // normal destination block.
2035         BasicBlock *NormalDest = Invoke->getNormalDest();
2036         Store->insertBefore(NormalDest->getFirstNonPHI());
2037       } else {
2038         assert(!Inst->isTerminator() &&
2039                "The only terminator that can produce a value is "
2040                "InvokeInst which is handled above.");
2041         Store->insertAfter(Inst);
2042       }
2043     } else {
2044       assert(isa<Argument>(Def));
2045       Store->insertAfter(cast<Instruction>(Alloca));
2046     }
2047   }
2048 
2049   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2050          "we must have the same allocas with lives");
2051   if (!PromotableAllocas.empty()) {
2052     // Apply mem2reg to promote alloca to SSA
2053     PromoteMemToReg(PromotableAllocas, DT);
2054   }
2055 
2056 #ifndef NDEBUG
2057   for (auto &I : F.getEntryBlock())
2058     if (isa<AllocaInst>(I))
2059       InitialAllocaNum--;
2060   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2061 #endif
2062 }
2063 
2064 /// Implement a unique function which doesn't require we sort the input
2065 /// vector.  Doing so has the effect of changing the output of a couple of
2066 /// tests in ways which make them less useful in testing fused safepoints.
2067 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2068   SmallSet<T, 8> Seen;
2069   erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2070 }
2071 
2072 /// Insert holders so that each Value is obviously live through the entire
2073 /// lifetime of the call.
2074 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2075                                  SmallVectorImpl<CallInst *> &Holders) {
2076   if (Values.empty())
2077     // No values to hold live, might as well not insert the empty holder
2078     return;
2079 
2080   Module *M = Call->getModule();
2081   // Use a dummy vararg function to actually hold the values live
2082   FunctionCallee Func = M->getOrInsertFunction(
2083       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2084   if (isa<CallInst>(Call)) {
2085     // For call safepoints insert dummy calls right after safepoint
2086     Holders.push_back(
2087         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
2088     return;
2089   }
2090   // For invoke safepooints insert dummy calls both in normal and
2091   // exceptional destination blocks
2092   auto *II = cast<InvokeInst>(Call);
2093   Holders.push_back(CallInst::Create(
2094       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
2095   Holders.push_back(CallInst::Create(
2096       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
2097 }
2098 
2099 static void findLiveReferences(
2100     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2101     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
2102   GCPtrLivenessData OriginalLivenessData;
2103   computeLiveInValues(DT, F, OriginalLivenessData);
2104   for (size_t i = 0; i < records.size(); i++) {
2105     struct PartiallyConstructedSafepointRecord &info = records[i];
2106     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
2107   }
2108 }
2109 
2110 // Helper function for the "rematerializeLiveValues". It walks use chain
2111 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2112 // the base or a value it cannot process. Only "simple" values are processed
2113 // (currently it is GEP's and casts). The returned root is  examined by the
2114 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
2115 // with all visited values.
2116 static Value* findRematerializableChainToBasePointer(
2117   SmallVectorImpl<Instruction*> &ChainToBase,
2118   Value *CurrentValue) {
2119   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2120     ChainToBase.push_back(GEP);
2121     return findRematerializableChainToBasePointer(ChainToBase,
2122                                                   GEP->getPointerOperand());
2123   }
2124 
2125   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2126     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2127       return CI;
2128 
2129     ChainToBase.push_back(CI);
2130     return findRematerializableChainToBasePointer(ChainToBase,
2131                                                   CI->getOperand(0));
2132   }
2133 
2134   // We have reached the root of the chain, which is either equal to the base or
2135   // is the first unsupported value along the use chain.
2136   return CurrentValue;
2137 }
2138 
2139 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2140 // chain we are going to rematerialize.
2141 static InstructionCost
2142 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2143                        TargetTransformInfo &TTI) {
2144   InstructionCost Cost = 0;
2145 
2146   for (Instruction *Instr : Chain) {
2147     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2148       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2149              "non noop cast is found during rematerialization");
2150 
2151       Type *SrcTy = CI->getOperand(0)->getType();
2152       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2153                                    TTI::getCastContextHint(CI),
2154                                    TargetTransformInfo::TCK_SizeAndLatency, CI);
2155 
2156     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2157       // Cost of the address calculation
2158       Type *ValTy = GEP->getSourceElementType();
2159       Cost += TTI.getAddressComputationCost(ValTy);
2160 
2161       // And cost of the GEP itself
2162       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2163       //       allowed for the external usage)
2164       if (!GEP->hasAllConstantIndices())
2165         Cost += 2;
2166 
2167     } else {
2168       llvm_unreachable("unsupported instruction type during rematerialization");
2169     }
2170   }
2171 
2172   return Cost;
2173 }
2174 
2175 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2176   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2177   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2178       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2179     return false;
2180   // Map of incoming values and their corresponding basic blocks of
2181   // OrigRootPhi.
2182   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2183   for (unsigned i = 0; i < PhiNum; i++)
2184     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2185         OrigRootPhi.getIncomingBlock(i);
2186 
2187   // Both current and base PHIs should have same incoming values and
2188   // the same basic blocks corresponding to the incoming values.
2189   for (unsigned i = 0; i < PhiNum; i++) {
2190     auto CIVI =
2191         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2192     if (CIVI == CurrentIncomingValues.end())
2193       return false;
2194     BasicBlock *CurrentIncomingBB = CIVI->second;
2195     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2196       return false;
2197   }
2198   return true;
2199 }
2200 
2201 // From the statepoint live set pick values that are cheaper to recompute then
2202 // to relocate. Remove this values from the live set, rematerialize them after
2203 // statepoint and record them in "Info" structure. Note that similar to
2204 // relocated values we don't do any user adjustments here.
2205 static void rematerializeLiveValues(CallBase *Call,
2206                                     PartiallyConstructedSafepointRecord &Info,
2207                                     TargetTransformInfo &TTI) {
2208   const unsigned int ChainLengthThreshold = 10;
2209 
2210   // Record values we are going to delete from this statepoint live set.
2211   // We can not di this in following loop due to iterator invalidation.
2212   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2213 
2214   for (Value *LiveValue: Info.LiveSet) {
2215     // For each live pointer find its defining chain
2216     SmallVector<Instruction *, 3> ChainToBase;
2217     assert(Info.PointerToBase.count(LiveValue));
2218     Value *RootOfChain =
2219       findRematerializableChainToBasePointer(ChainToBase,
2220                                              LiveValue);
2221 
2222     // Nothing to do, or chain is too long
2223     if ( ChainToBase.size() == 0 ||
2224         ChainToBase.size() > ChainLengthThreshold)
2225       continue;
2226 
2227     // Handle the scenario where the RootOfChain is not equal to the
2228     // Base Value, but they are essentially the same phi values.
2229     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2230       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2231       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2232       if (!OrigRootPhi || !AlternateRootPhi)
2233         continue;
2234       // PHI nodes that have the same incoming values, and belonging to the same
2235       // basic blocks are essentially the same SSA value.  When the original phi
2236       // has incoming values with different base pointers, the original phi is
2237       // marked as conflict, and an additional `AlternateRootPhi` with the same
2238       // incoming values get generated by the findBasePointer function. We need
2239       // to identify the newly generated AlternateRootPhi (.base version of phi)
2240       // and RootOfChain (the original phi node itself) are the same, so that we
2241       // can rematerialize the gep and casts. This is a workaround for the
2242       // deficiency in the findBasePointer algorithm.
2243       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2244         continue;
2245       // Now that the phi nodes are proved to be the same, assert that
2246       // findBasePointer's newly generated AlternateRootPhi is present in the
2247       // liveset of the call.
2248       assert(Info.LiveSet.count(AlternateRootPhi));
2249     }
2250     // Compute cost of this chain
2251     InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2252     // TODO: We can also account for cases when we will be able to remove some
2253     //       of the rematerialized values by later optimization passes. I.e if
2254     //       we rematerialized several intersecting chains. Or if original values
2255     //       don't have any uses besides this statepoint.
2256 
2257     // For invokes we need to rematerialize each chain twice - for normal and
2258     // for unwind basic blocks. Model this by multiplying cost by two.
2259     if (isa<InvokeInst>(Call)) {
2260       Cost *= 2;
2261     }
2262     // If it's too expensive - skip it
2263     if (Cost >= RematerializationThreshold)
2264       continue;
2265 
2266     // Remove value from the live set
2267     LiveValuesToBeDeleted.push_back(LiveValue);
2268 
2269     // Clone instructions and record them inside "Info" structure
2270 
2271     // Walk backwards to visit top-most instructions first
2272     std::reverse(ChainToBase.begin(), ChainToBase.end());
2273 
2274     // Utility function which clones all instructions from "ChainToBase"
2275     // and inserts them before "InsertBefore". Returns rematerialized value
2276     // which should be used after statepoint.
2277     auto rematerializeChain = [&ChainToBase](
2278         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2279       Instruction *LastClonedValue = nullptr;
2280       Instruction *LastValue = nullptr;
2281       for (Instruction *Instr: ChainToBase) {
2282         // Only GEP's and casts are supported as we need to be careful to not
2283         // introduce any new uses of pointers not in the liveset.
2284         // Note that it's fine to introduce new uses of pointers which were
2285         // otherwise not used after this statepoint.
2286         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2287 
2288         Instruction *ClonedValue = Instr->clone();
2289         ClonedValue->insertBefore(InsertBefore);
2290         ClonedValue->setName(Instr->getName() + ".remat");
2291 
2292         // If it is not first instruction in the chain then it uses previously
2293         // cloned value. We should update it to use cloned value.
2294         if (LastClonedValue) {
2295           assert(LastValue);
2296           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2297 #ifndef NDEBUG
2298           for (auto OpValue : ClonedValue->operand_values()) {
2299             // Assert that cloned instruction does not use any instructions from
2300             // this chain other than LastClonedValue
2301             assert(!is_contained(ChainToBase, OpValue) &&
2302                    "incorrect use in rematerialization chain");
2303             // Assert that the cloned instruction does not use the RootOfChain
2304             // or the AlternateLiveBase.
2305             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2306           }
2307 #endif
2308         } else {
2309           // For the first instruction, replace the use of unrelocated base i.e.
2310           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2311           // live set. They have been proved to be the same PHI nodes.  Note
2312           // that the *only* use of the RootOfChain in the ChainToBase list is
2313           // the first Value in the list.
2314           if (RootOfChain != AlternateLiveBase)
2315             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2316         }
2317 
2318         LastClonedValue = ClonedValue;
2319         LastValue = Instr;
2320       }
2321       assert(LastClonedValue);
2322       return LastClonedValue;
2323     };
2324 
2325     // Different cases for calls and invokes. For invokes we need to clone
2326     // instructions both on normal and unwind path.
2327     if (isa<CallInst>(Call)) {
2328       Instruction *InsertBefore = Call->getNextNode();
2329       assert(InsertBefore);
2330       Instruction *RematerializedValue = rematerializeChain(
2331           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2332       Info.RematerializedValues[RematerializedValue] = LiveValue;
2333     } else {
2334       auto *Invoke = cast<InvokeInst>(Call);
2335 
2336       Instruction *NormalInsertBefore =
2337           &*Invoke->getNormalDest()->getFirstInsertionPt();
2338       Instruction *UnwindInsertBefore =
2339           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2340 
2341       Instruction *NormalRematerializedValue = rematerializeChain(
2342           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2343       Instruction *UnwindRematerializedValue = rematerializeChain(
2344           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2345 
2346       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2347       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2348     }
2349   }
2350 
2351   // Remove rematerializaed values from the live set
2352   for (auto LiveValue: LiveValuesToBeDeleted) {
2353     Info.LiveSet.remove(LiveValue);
2354   }
2355 }
2356 
2357 static bool insertParsePoints(Function &F, DominatorTree &DT,
2358                               TargetTransformInfo &TTI,
2359                               SmallVectorImpl<CallBase *> &ToUpdate) {
2360 #ifndef NDEBUG
2361   // sanity check the input
2362   std::set<CallBase *> Uniqued;
2363   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2364   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2365 
2366   for (CallBase *Call : ToUpdate)
2367     assert(Call->getFunction() == &F);
2368 #endif
2369 
2370   // When inserting gc.relocates for invokes, we need to be able to insert at
2371   // the top of the successor blocks.  See the comment on
2372   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2373   // may restructure the CFG.
2374   for (CallBase *Call : ToUpdate) {
2375     auto *II = dyn_cast<InvokeInst>(Call);
2376     if (!II)
2377       continue;
2378     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2379     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2380   }
2381 
2382   // A list of dummy calls added to the IR to keep various values obviously
2383   // live in the IR.  We'll remove all of these when done.
2384   SmallVector<CallInst *, 64> Holders;
2385 
2386   // Insert a dummy call with all of the deopt operands we'll need for the
2387   // actual safepoint insertion as arguments.  This ensures reference operands
2388   // in the deopt argument list are considered live through the safepoint (and
2389   // thus makes sure they get relocated.)
2390   for (CallBase *Call : ToUpdate) {
2391     SmallVector<Value *, 64> DeoptValues;
2392 
2393     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2394       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2395              "support for FCA unimplemented");
2396       if (isHandledGCPointerType(Arg->getType()))
2397         DeoptValues.push_back(Arg);
2398     }
2399 
2400     insertUseHolderAfter(Call, DeoptValues, Holders);
2401   }
2402 
2403   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2404 
2405   // A) Identify all gc pointers which are statically live at the given call
2406   // site.
2407   findLiveReferences(F, DT, ToUpdate, Records);
2408 
2409   // B) Find the base pointers for each live pointer
2410   /* scope for caching */ {
2411     // Cache the 'defining value' relation used in the computation and
2412     // insertion of base phis and selects.  This ensures that we don't insert
2413     // large numbers of duplicate base_phis.
2414     DefiningValueMapTy DVCache;
2415 
2416     for (size_t i = 0; i < Records.size(); i++) {
2417       PartiallyConstructedSafepointRecord &info = Records[i];
2418       findBasePointers(DT, DVCache, ToUpdate[i], info);
2419     }
2420   } // end of cache scope
2421 
2422   // The base phi insertion logic (for any safepoint) may have inserted new
2423   // instructions which are now live at some safepoint.  The simplest such
2424   // example is:
2425   // loop:
2426   //   phi a  <-- will be a new base_phi here
2427   //   safepoint 1 <-- that needs to be live here
2428   //   gep a + 1
2429   //   safepoint 2
2430   //   br loop
2431   // We insert some dummy calls after each safepoint to definitely hold live
2432   // the base pointers which were identified for that safepoint.  We'll then
2433   // ask liveness for _every_ base inserted to see what is now live.  Then we
2434   // remove the dummy calls.
2435   Holders.reserve(Holders.size() + Records.size());
2436   for (size_t i = 0; i < Records.size(); i++) {
2437     PartiallyConstructedSafepointRecord &Info = Records[i];
2438 
2439     SmallVector<Value *, 128> Bases;
2440     for (auto Pair : Info.PointerToBase)
2441       Bases.push_back(Pair.second);
2442 
2443     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2444   }
2445 
2446   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2447   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2448   // not the key issue.
2449   recomputeLiveInValues(F, DT, ToUpdate, Records);
2450 
2451   if (PrintBasePointers) {
2452     for (auto &Info : Records) {
2453       errs() << "Base Pairs: (w/Relocation)\n";
2454       for (auto Pair : Info.PointerToBase) {
2455         errs() << " derived ";
2456         Pair.first->printAsOperand(errs(), false);
2457         errs() << " base ";
2458         Pair.second->printAsOperand(errs(), false);
2459         errs() << "\n";
2460       }
2461     }
2462   }
2463 
2464   // It is possible that non-constant live variables have a constant base.  For
2465   // example, a GEP with a variable offset from a global.  In this case we can
2466   // remove it from the liveset.  We already don't add constants to the liveset
2467   // because we assume they won't move at runtime and the GC doesn't need to be
2468   // informed about them.  The same reasoning applies if the base is constant.
2469   // Note that the relocation placement code relies on this filtering for
2470   // correctness as it expects the base to be in the liveset, which isn't true
2471   // if the base is constant.
2472   for (auto &Info : Records)
2473     for (auto &BasePair : Info.PointerToBase)
2474       if (isa<Constant>(BasePair.second))
2475         Info.LiveSet.remove(BasePair.first);
2476 
2477   for (CallInst *CI : Holders)
2478     CI->eraseFromParent();
2479 
2480   Holders.clear();
2481 
2482   // In order to reduce live set of statepoint we might choose to rematerialize
2483   // some values instead of relocating them. This is purely an optimization and
2484   // does not influence correctness.
2485   for (size_t i = 0; i < Records.size(); i++)
2486     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2487 
2488   // We need this to safely RAUW and delete call or invoke return values that
2489   // may themselves be live over a statepoint.  For details, please see usage in
2490   // makeStatepointExplicitImpl.
2491   std::vector<DeferredReplacement> Replacements;
2492 
2493   // Now run through and replace the existing statepoints with new ones with
2494   // the live variables listed.  We do not yet update uses of the values being
2495   // relocated. We have references to live variables that need to
2496   // survive to the last iteration of this loop.  (By construction, the
2497   // previous statepoint can not be a live variable, thus we can and remove
2498   // the old statepoint calls as we go.)
2499   for (size_t i = 0; i < Records.size(); i++)
2500     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2501 
2502   ToUpdate.clear(); // prevent accident use of invalid calls.
2503 
2504   for (auto &PR : Replacements)
2505     PR.doReplacement();
2506 
2507   Replacements.clear();
2508 
2509   for (auto &Info : Records) {
2510     // These live sets may contain state Value pointers, since we replaced calls
2511     // with operand bundles with calls wrapped in gc.statepoint, and some of
2512     // those calls may have been def'ing live gc pointers.  Clear these out to
2513     // avoid accidentally using them.
2514     //
2515     // TODO: We should create a separate data structure that does not contain
2516     // these live sets, and migrate to using that data structure from this point
2517     // onward.
2518     Info.LiveSet.clear();
2519     Info.PointerToBase.clear();
2520   }
2521 
2522   // Do all the fixups of the original live variables to their relocated selves
2523   SmallVector<Value *, 128> Live;
2524   for (size_t i = 0; i < Records.size(); i++) {
2525     PartiallyConstructedSafepointRecord &Info = Records[i];
2526 
2527     // We can't simply save the live set from the original insertion.  One of
2528     // the live values might be the result of a call which needs a safepoint.
2529     // That Value* no longer exists and we need to use the new gc_result.
2530     // Thankfully, the live set is embedded in the statepoint (and updated), so
2531     // we just grab that.
2532     llvm::append_range(Live, Info.StatepointToken->gc_args());
2533 #ifndef NDEBUG
2534     // Do some basic sanity checks on our liveness results before performing
2535     // relocation.  Relocation can and will turn mistakes in liveness results
2536     // into non-sensical code which is must harder to debug.
2537     // TODO: It would be nice to test consistency as well
2538     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2539            "statepoint must be reachable or liveness is meaningless");
2540     for (Value *V : Info.StatepointToken->gc_args()) {
2541       if (!isa<Instruction>(V))
2542         // Non-instruction values trivial dominate all possible uses
2543         continue;
2544       auto *LiveInst = cast<Instruction>(V);
2545       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2546              "unreachable values should never be live");
2547       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2548              "basic SSA liveness expectation violated by liveness analysis");
2549     }
2550 #endif
2551   }
2552   unique_unsorted(Live);
2553 
2554 #ifndef NDEBUG
2555   // sanity check
2556   for (auto *Ptr : Live)
2557     assert(isHandledGCPointerType(Ptr->getType()) &&
2558            "must be a gc pointer type");
2559 #endif
2560 
2561   relocationViaAlloca(F, DT, Live, Records);
2562   return !Records.empty();
2563 }
2564 
2565 // Handles both return values and arguments for Functions and calls.
2566 template <typename AttrHolder>
2567 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2568                                       unsigned Index) {
2569   AttrBuilder R;
2570   if (AH.getDereferenceableBytes(Index))
2571     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2572                                   AH.getDereferenceableBytes(Index)));
2573   if (AH.getDereferenceableOrNullBytes(Index))
2574     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2575                                   AH.getDereferenceableOrNullBytes(Index)));
2576   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2577     R.addAttribute(Attribute::NoAlias);
2578 
2579   if (!R.empty())
2580     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2581 }
2582 
2583 static void stripNonValidAttributesFromPrototype(Function &F) {
2584   LLVMContext &Ctx = F.getContext();
2585 
2586   for (Argument &A : F.args())
2587     if (isa<PointerType>(A.getType()))
2588       RemoveNonValidAttrAtIndex(Ctx, F,
2589                                 A.getArgNo() + AttributeList::FirstArgIndex);
2590 
2591   if (isa<PointerType>(F.getReturnType()))
2592     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2593 }
2594 
2595 /// Certain metadata on instructions are invalid after running RS4GC.
2596 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2597 /// optimize functions. We drop such metadata on the instruction.
2598 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2599   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2600     return;
2601   // These are the attributes that are still valid on loads and stores after
2602   // RS4GC.
2603   // The metadata implying dereferenceability and noalias are (conservatively)
2604   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2605   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2606   // touch the entire heap including noalias objects. Note: The reasoning is
2607   // same as stripping the dereferenceability and noalias attributes that are
2608   // analogous to the metadata counterparts.
2609   // We also drop the invariant.load metadata on the load because that metadata
2610   // implies the address operand to the load points to memory that is never
2611   // changed once it became dereferenceable. This is no longer true after RS4GC.
2612   // Similar reasoning applies to invariant.group metadata, which applies to
2613   // loads within a group.
2614   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2615                          LLVMContext::MD_range,
2616                          LLVMContext::MD_alias_scope,
2617                          LLVMContext::MD_nontemporal,
2618                          LLVMContext::MD_nonnull,
2619                          LLVMContext::MD_align,
2620                          LLVMContext::MD_type};
2621 
2622   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2623   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2624 }
2625 
2626 static void stripNonValidDataFromBody(Function &F) {
2627   if (F.empty())
2628     return;
2629 
2630   LLVMContext &Ctx = F.getContext();
2631   MDBuilder Builder(Ctx);
2632 
2633   // Set of invariantstart instructions that we need to remove.
2634   // Use this to avoid invalidating the instruction iterator.
2635   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2636 
2637   for (Instruction &I : instructions(F)) {
2638     // invariant.start on memory location implies that the referenced memory
2639     // location is constant and unchanging. This is no longer true after
2640     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2641     // which frees the entire heap and the presence of invariant.start allows
2642     // the optimizer to sink the load of a memory location past a statepoint,
2643     // which is incorrect.
2644     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2645       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2646         InvariantStartInstructions.push_back(II);
2647         continue;
2648       }
2649 
2650     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2651       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2652       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2653     }
2654 
2655     stripInvalidMetadataFromInstruction(I);
2656 
2657     if (auto *Call = dyn_cast<CallBase>(&I)) {
2658       for (int i = 0, e = Call->arg_size(); i != e; i++)
2659         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2660           RemoveNonValidAttrAtIndex(Ctx, *Call,
2661                                     i + AttributeList::FirstArgIndex);
2662       if (isa<PointerType>(Call->getType()))
2663         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2664     }
2665   }
2666 
2667   // Delete the invariant.start instructions and RAUW undef.
2668   for (auto *II : InvariantStartInstructions) {
2669     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2670     II->eraseFromParent();
2671   }
2672 }
2673 
2674 /// Returns true if this function should be rewritten by this pass.  The main
2675 /// point of this function is as an extension point for custom logic.
2676 static bool shouldRewriteStatepointsIn(Function &F) {
2677   // TODO: This should check the GCStrategy
2678   if (F.hasGC()) {
2679     const auto &FunctionGCName = F.getGC();
2680     const StringRef StatepointExampleName("statepoint-example");
2681     const StringRef CoreCLRName("coreclr");
2682     return (StatepointExampleName == FunctionGCName) ||
2683            (CoreCLRName == FunctionGCName);
2684   } else
2685     return false;
2686 }
2687 
2688 static void stripNonValidData(Module &M) {
2689 #ifndef NDEBUG
2690   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2691 #endif
2692 
2693   for (Function &F : M)
2694     stripNonValidAttributesFromPrototype(F);
2695 
2696   for (Function &F : M)
2697     stripNonValidDataFromBody(F);
2698 }
2699 
2700 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2701                                             TargetTransformInfo &TTI,
2702                                             const TargetLibraryInfo &TLI) {
2703   assert(!F.isDeclaration() && !F.empty() &&
2704          "need function body to rewrite statepoints in");
2705   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2706 
2707   auto NeedsRewrite = [&TLI](Instruction &I) {
2708     if (const auto *Call = dyn_cast<CallBase>(&I)) {
2709       if (isa<GCStatepointInst>(Call))
2710         return false;
2711       if (callsGCLeafFunction(Call, TLI))
2712         return false;
2713 
2714       // Normally it's up to the frontend to make sure that non-leaf calls also
2715       // have proper deopt state if it is required. We make an exception for
2716       // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
2717       // these are non-leaf by default. They might be generated by the optimizer
2718       // which doesn't know how to produce a proper deopt state. So if we see a
2719       // non-leaf memcpy/memmove without deopt state just treat it as a leaf
2720       // copy and don't produce a statepoint.
2721       if (!AllowStatepointWithNoDeoptInfo &&
2722           !Call->getOperandBundle(LLVMContext::OB_deopt)) {
2723         assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
2724                "Don't expect any other calls here!");
2725         return false;
2726       }
2727       return true;
2728     }
2729     return false;
2730   };
2731 
2732   // Delete any unreachable statepoints so that we don't have unrewritten
2733   // statepoints surviving this pass.  This makes testing easier and the
2734   // resulting IR less confusing to human readers.
2735   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2736   bool MadeChange = removeUnreachableBlocks(F, &DTU);
2737   // Flush the Dominator Tree.
2738   DTU.getDomTree();
2739 
2740   // Gather all the statepoints which need rewritten.  Be careful to only
2741   // consider those in reachable code since we need to ask dominance queries
2742   // when rewriting.  We'll delete the unreachable ones in a moment.
2743   SmallVector<CallBase *, 64> ParsePointNeeded;
2744   for (Instruction &I : instructions(F)) {
2745     // TODO: only the ones with the flag set!
2746     if (NeedsRewrite(I)) {
2747       // NOTE removeUnreachableBlocks() is stronger than
2748       // DominatorTree::isReachableFromEntry(). In other words
2749       // removeUnreachableBlocks can remove some blocks for which
2750       // isReachableFromEntry() returns true.
2751       assert(DT.isReachableFromEntry(I.getParent()) &&
2752             "no unreachable blocks expected");
2753       ParsePointNeeded.push_back(cast<CallBase>(&I));
2754     }
2755   }
2756 
2757   // Return early if no work to do.
2758   if (ParsePointNeeded.empty())
2759     return MadeChange;
2760 
2761   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2762   // These are created by LCSSA.  They have the effect of increasing the size
2763   // of liveness sets for no good reason.  It may be harder to do this post
2764   // insertion since relocations and base phis can confuse things.
2765   for (BasicBlock &BB : F)
2766     if (BB.getUniquePredecessor())
2767       MadeChange |= FoldSingleEntryPHINodes(&BB);
2768 
2769   // Before we start introducing relocations, we want to tweak the IR a bit to
2770   // avoid unfortunate code generation effects.  The main example is that we
2771   // want to try to make sure the comparison feeding a branch is after any
2772   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2773   // values feeding a branch after relocation.  This is semantically correct,
2774   // but results in extra register pressure since both the pre-relocation and
2775   // post-relocation copies must be available in registers.  For code without
2776   // relocations this is handled elsewhere, but teaching the scheduler to
2777   // reverse the transform we're about to do would be slightly complex.
2778   // Note: This may extend the live range of the inputs to the icmp and thus
2779   // increase the liveset of any statepoint we move over.  This is profitable
2780   // as long as all statepoints are in rare blocks.  If we had in-register
2781   // lowering for live values this would be a much safer transform.
2782   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2783     if (auto *BI = dyn_cast<BranchInst>(TI))
2784       if (BI->isConditional())
2785         return dyn_cast<Instruction>(BI->getCondition());
2786     // TODO: Extend this to handle switches
2787     return nullptr;
2788   };
2789   for (BasicBlock &BB : F) {
2790     Instruction *TI = BB.getTerminator();
2791     if (auto *Cond = getConditionInst(TI))
2792       // TODO: Handle more than just ICmps here.  We should be able to move
2793       // most instructions without side effects or memory access.
2794       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2795         MadeChange = true;
2796         Cond->moveBefore(TI);
2797       }
2798   }
2799 
2800   // Nasty workaround - The base computation code in the main algorithm doesn't
2801   // consider the fact that a GEP can be used to convert a scalar to a vector.
2802   // The right fix for this is to integrate GEPs into the base rewriting
2803   // algorithm properly, this is just a short term workaround to prevent
2804   // crashes by canonicalizing such GEPs into fully vector GEPs.
2805   for (Instruction &I : instructions(F)) {
2806     if (!isa<GetElementPtrInst>(I))
2807       continue;
2808 
2809     unsigned VF = 0;
2810     for (unsigned i = 0; i < I.getNumOperands(); i++)
2811       if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
2812         assert(VF == 0 ||
2813                VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
2814         VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
2815       }
2816 
2817     // It's the vector to scalar traversal through the pointer operand which
2818     // confuses base pointer rewriting, so limit ourselves to that case.
2819     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2820       IRBuilder<> B(&I);
2821       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2822       I.setOperand(0, Splat);
2823       MadeChange = true;
2824     }
2825   }
2826 
2827   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2828   return MadeChange;
2829 }
2830 
2831 // liveness computation via standard dataflow
2832 // -------------------------------------------------------------------
2833 
2834 // TODO: Consider using bitvectors for liveness, the set of potentially
2835 // interesting values should be small and easy to pre-compute.
2836 
2837 /// Compute the live-in set for the location rbegin starting from
2838 /// the live-out set of the basic block
2839 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2840                                 BasicBlock::reverse_iterator End,
2841                                 SetVector<Value *> &LiveTmp) {
2842   for (auto &I : make_range(Begin, End)) {
2843     // KILL/Def - Remove this definition from LiveIn
2844     LiveTmp.remove(&I);
2845 
2846     // Don't consider *uses* in PHI nodes, we handle their contribution to
2847     // predecessor blocks when we seed the LiveOut sets
2848     if (isa<PHINode>(I))
2849       continue;
2850 
2851     // USE - Add to the LiveIn set for this instruction
2852     for (Value *V : I.operands()) {
2853       assert(!isUnhandledGCPointerType(V->getType()) &&
2854              "support for FCA unimplemented");
2855       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2856         // The choice to exclude all things constant here is slightly subtle.
2857         // There are two independent reasons:
2858         // - We assume that things which are constant (from LLVM's definition)
2859         // do not move at runtime.  For example, the address of a global
2860         // variable is fixed, even though it's contents may not be.
2861         // - Second, we can't disallow arbitrary inttoptr constants even
2862         // if the language frontend does.  Optimization passes are free to
2863         // locally exploit facts without respect to global reachability.  This
2864         // can create sections of code which are dynamically unreachable and
2865         // contain just about anything.  (see constants.ll in tests)
2866         LiveTmp.insert(V);
2867       }
2868     }
2869   }
2870 }
2871 
2872 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2873   for (BasicBlock *Succ : successors(BB)) {
2874     for (auto &I : *Succ) {
2875       PHINode *PN = dyn_cast<PHINode>(&I);
2876       if (!PN)
2877         break;
2878 
2879       Value *V = PN->getIncomingValueForBlock(BB);
2880       assert(!isUnhandledGCPointerType(V->getType()) &&
2881              "support for FCA unimplemented");
2882       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2883         LiveTmp.insert(V);
2884     }
2885   }
2886 }
2887 
2888 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2889   SetVector<Value *> KillSet;
2890   for (Instruction &I : *BB)
2891     if (isHandledGCPointerType(I.getType()))
2892       KillSet.insert(&I);
2893   return KillSet;
2894 }
2895 
2896 #ifndef NDEBUG
2897 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2898 /// sanity check for the liveness computation.
2899 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2900                           Instruction *TI, bool TermOkay = false) {
2901   for (Value *V : Live) {
2902     if (auto *I = dyn_cast<Instruction>(V)) {
2903       // The terminator can be a member of the LiveOut set.  LLVM's definition
2904       // of instruction dominance states that V does not dominate itself.  As
2905       // such, we need to special case this to allow it.
2906       if (TermOkay && TI == I)
2907         continue;
2908       assert(DT.dominates(I, TI) &&
2909              "basic SSA liveness expectation violated by liveness analysis");
2910     }
2911   }
2912 }
2913 
2914 /// Check that all the liveness sets used during the computation of liveness
2915 /// obey basic SSA properties.  This is useful for finding cases where we miss
2916 /// a def.
2917 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2918                           BasicBlock &BB) {
2919   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2920   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2921   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2922 }
2923 #endif
2924 
2925 static void computeLiveInValues(DominatorTree &DT, Function &F,
2926                                 GCPtrLivenessData &Data) {
2927   SmallSetVector<BasicBlock *, 32> Worklist;
2928 
2929   // Seed the liveness for each individual block
2930   for (BasicBlock &BB : F) {
2931     Data.KillSet[&BB] = computeKillSet(&BB);
2932     Data.LiveSet[&BB].clear();
2933     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2934 
2935 #ifndef NDEBUG
2936     for (Value *Kill : Data.KillSet[&BB])
2937       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2938 #endif
2939 
2940     Data.LiveOut[&BB] = SetVector<Value *>();
2941     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2942     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2943     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2944     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2945     if (!Data.LiveIn[&BB].empty())
2946       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2947   }
2948 
2949   // Propagate that liveness until stable
2950   while (!Worklist.empty()) {
2951     BasicBlock *BB = Worklist.pop_back_val();
2952 
2953     // Compute our new liveout set, then exit early if it hasn't changed despite
2954     // the contribution of our successor.
2955     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2956     const auto OldLiveOutSize = LiveOut.size();
2957     for (BasicBlock *Succ : successors(BB)) {
2958       assert(Data.LiveIn.count(Succ));
2959       LiveOut.set_union(Data.LiveIn[Succ]);
2960     }
2961     // assert OutLiveOut is a subset of LiveOut
2962     if (OldLiveOutSize == LiveOut.size()) {
2963       // If the sets are the same size, then we didn't actually add anything
2964       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2965       // hasn't changed.
2966       continue;
2967     }
2968     Data.LiveOut[BB] = LiveOut;
2969 
2970     // Apply the effects of this basic block
2971     SetVector<Value *> LiveTmp = LiveOut;
2972     LiveTmp.set_union(Data.LiveSet[BB]);
2973     LiveTmp.set_subtract(Data.KillSet[BB]);
2974 
2975     assert(Data.LiveIn.count(BB));
2976     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2977     // assert: OldLiveIn is a subset of LiveTmp
2978     if (OldLiveIn.size() != LiveTmp.size()) {
2979       Data.LiveIn[BB] = LiveTmp;
2980       Worklist.insert(pred_begin(BB), pred_end(BB));
2981     }
2982   } // while (!Worklist.empty())
2983 
2984 #ifndef NDEBUG
2985   // Sanity check our output against SSA properties.  This helps catch any
2986   // missing kills during the above iteration.
2987   for (BasicBlock &BB : F)
2988     checkBasicSSA(DT, Data, BB);
2989 #endif
2990 }
2991 
2992 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2993                               StatepointLiveSetTy &Out) {
2994   BasicBlock *BB = Inst->getParent();
2995 
2996   // Note: The copy is intentional and required
2997   assert(Data.LiveOut.count(BB));
2998   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2999 
3000   // We want to handle the statepoint itself oddly.  It's
3001   // call result is not live (normal), nor are it's arguments
3002   // (unless they're used again later).  This adjustment is
3003   // specifically what we need to relocate
3004   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
3005                       LiveOut);
3006   LiveOut.remove(Inst);
3007   Out.insert(LiveOut.begin(), LiveOut.end());
3008 }
3009 
3010 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
3011                                   CallBase *Call,
3012                                   PartiallyConstructedSafepointRecord &Info) {
3013   StatepointLiveSetTy Updated;
3014   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
3015 
3016   // We may have base pointers which are now live that weren't before.  We need
3017   // to update the PointerToBase structure to reflect this.
3018   for (auto V : Updated)
3019     if (Info.PointerToBase.insert({V, V}).second) {
3020       assert(isKnownBaseResult(V) &&
3021              "Can't find base for unexpected live value!");
3022       continue;
3023     }
3024 
3025 #ifndef NDEBUG
3026   for (auto V : Updated)
3027     assert(Info.PointerToBase.count(V) &&
3028            "Must be able to find base for live value!");
3029 #endif
3030 
3031   // Remove any stale base mappings - this can happen since our liveness is
3032   // more precise then the one inherent in the base pointer analysis.
3033   DenseSet<Value *> ToErase;
3034   for (auto KVPair : Info.PointerToBase)
3035     if (!Updated.count(KVPair.first))
3036       ToErase.insert(KVPair.first);
3037 
3038   for (auto *V : ToErase)
3039     Info.PointerToBase.erase(V);
3040 
3041 #ifndef NDEBUG
3042   for (auto KVPair : Info.PointerToBase)
3043     assert(Updated.count(KVPair.first) && "record for non-live value");
3044 #endif
3045 
3046   Info.LiveSet = Updated;
3047 }
3048