xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision cec9e7352bebe06681a9627f3fc08228129b7681)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     for (Function &F : M) {
177       // Nothing to do for declarations.
178       if (F.isDeclaration() || F.empty())
179         continue;
180 
181       // Policy choice says not to rewrite - the most common reason is that
182       // we're compiling code without a GCStrategy.
183       if (!shouldRewriteStatepointsIn(F))
184         continue;
185 
186       TargetTransformInfo &TTI =
187           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188       const TargetLibraryInfo &TLI =
189           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   GCStatepointInst *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289   Optional<OperandBundleUse> DeoptBundle =
290       Call->getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void analyzeParsePointLiveness(
373     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374     PartiallyConstructedSafepointRecord &Result) {
375   StatepointLiveSetTy LiveSet;
376   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 
378   if (PrintLiveSet) {
379     dbgs() << "Live Variables:\n";
380     for (Value *V : LiveSet)
381       dbgs() << " " << V->getName() << " " << *V << "\n";
382   }
383   if (PrintLiveSetSize) {
384     dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
385     dbgs() << "Number live values: " << LiveSet.size() << "\n";
386   }
387   Result.LiveSet = LiveSet;
388 }
389 
390 // Returns true is V is a knownBaseResult.
391 static bool isKnownBaseResult(Value *V);
392 
393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is
394 // not created by the findBasePointers algorithm.
395 static bool isOriginalBaseResult(Value *V);
396 
397 namespace {
398 
399 /// A single base defining value - An immediate base defining value for an
400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
401 /// For instructions which have multiple pointer [vector] inputs or that
402 /// transition between vector and scalar types, there is no immediate base
403 /// defining value.  The 'base defining value' for 'Def' is the transitive
404 /// closure of this relation stopping at the first instruction which has no
405 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
406 /// but it can also be an arbitrary derived pointer.
407 struct BaseDefiningValueResult {
408   /// Contains the value which is the base defining value.
409   Value * const BDV;
410 
411   /// True if the base defining value is also known to be an actual base
412   /// pointer.
413   const bool IsKnownBase;
414 
415   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
416     : BDV(BDV), IsKnownBase(IsKnownBase) {
417 #ifndef NDEBUG
418     // Check consistency between new and old means of checking whether a BDV is
419     // a base.
420     bool MustBeBase = isKnownBaseResult(BDV);
421     assert(!MustBeBase || MustBeBase == IsKnownBase);
422 #endif
423   }
424 };
425 
426 } // end anonymous namespace
427 
428 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
429 
430 /// Return a base defining value for the 'Index' element of the given vector
431 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
432 /// 'I'.  As an optimization, this method will try to determine when the
433 /// element is known to already be a base pointer.  If this can be established,
434 /// the second value in the returned pair will be true.  Note that either a
435 /// vector or a pointer typed value can be returned.  For the former, the
436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
437 /// If the later, the return pointer is a BDV (or possibly a base) for the
438 /// particular element in 'I'.
439 static BaseDefiningValueResult
440 findBaseDefiningValueOfVector(Value *I) {
441   // Each case parallels findBaseDefiningValue below, see that code for
442   // detailed motivation.
443 
444   if (isa<Argument>(I))
445     // An incoming argument to the function is a base pointer
446     return BaseDefiningValueResult(I, true);
447 
448   if (isa<Constant>(I))
449     // Base of constant vector consists only of constant null pointers.
450     // For reasoning see similar case inside 'findBaseDefiningValue' function.
451     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
452                                    true);
453 
454   if (isa<LoadInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   if (isa<InsertElementInst>(I))
458     // We don't know whether this vector contains entirely base pointers or
459     // not.  To be conservatively correct, we treat it as a BDV and will
460     // duplicate code as needed to construct a parallel vector of bases.
461     return BaseDefiningValueResult(I, false);
462 
463   if (isa<ShuffleVectorInst>(I))
464     // We don't know whether this vector contains entirely base pointers or
465     // not.  To be conservatively correct, we treat it as a BDV and will
466     // duplicate code as needed to construct a parallel vector of bases.
467     // TODO: There a number of local optimizations which could be applied here
468     // for particular sufflevector patterns.
469     return BaseDefiningValueResult(I, false);
470 
471   // The behavior of getelementptr instructions is the same for vector and
472   // non-vector data types.
473   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
474     return findBaseDefiningValue(GEP->getPointerOperand());
475 
476   // If the pointer comes through a bitcast of a vector of pointers to
477   // a vector of another type of pointer, then look through the bitcast
478   if (auto *BC = dyn_cast<BitCastInst>(I))
479     return findBaseDefiningValue(BC->getOperand(0));
480 
481   // We assume that functions in the source language only return base
482   // pointers.  This should probably be generalized via attributes to support
483   // both source language and internal functions.
484   if (isa<CallInst>(I) || isa<InvokeInst>(I))
485     return BaseDefiningValueResult(I, true);
486 
487   // A PHI or Select is a base defining value.  The outer findBasePointer
488   // algorithm is responsible for constructing a base value for this BDV.
489   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
490          "unknown vector instruction - no base found for vector element");
491   return BaseDefiningValueResult(I, false);
492 }
493 
494 /// Helper function for findBasePointer - Will return a value which either a)
495 /// defines the base pointer for the input, b) blocks the simple search
496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
497 /// from pointer to vector type or back.
498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
499   assert(I->getType()->isPtrOrPtrVectorTy() &&
500          "Illegal to ask for the base pointer of a non-pointer type");
501 
502   if (I->getType()->isVectorTy())
503     return findBaseDefiningValueOfVector(I);
504 
505   if (isa<Argument>(I))
506     // An incoming argument to the function is a base pointer
507     // We should have never reached here if this argument isn't an gc value
508     return BaseDefiningValueResult(I, true);
509 
510   if (isa<Constant>(I)) {
511     // We assume that objects with a constant base (e.g. a global) can't move
512     // and don't need to be reported to the collector because they are always
513     // live. Besides global references, all kinds of constants (e.g. undef,
514     // constant expressions, null pointers) can be introduced by the inliner or
515     // the optimizer, especially on dynamically dead paths.
516     // Here we treat all of them as having single null base. By doing this we
517     // trying to avoid problems reporting various conflicts in a form of
518     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
519     // See constant.ll file for relevant test cases.
520 
521     return BaseDefiningValueResult(
522         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
523   }
524 
525   if (CastInst *CI = dyn_cast<CastInst>(I)) {
526     Value *Def = CI->stripPointerCasts();
527     // If stripping pointer casts changes the address space there is an
528     // addrspacecast in between.
529     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
530                cast<PointerType>(CI->getType())->getAddressSpace() &&
531            "unsupported addrspacecast");
532     // If we find a cast instruction here, it means we've found a cast which is
533     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
534     // handle int->ptr conversion.
535     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
536     return findBaseDefiningValue(Def);
537   }
538 
539   if (isa<LoadInst>(I))
540     // The value loaded is an gc base itself
541     return BaseDefiningValueResult(I, true);
542 
543   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
544     // The base of this GEP is the base
545     return findBaseDefiningValue(GEP->getPointerOperand());
546 
547   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
548     switch (II->getIntrinsicID()) {
549     default:
550       // fall through to general call handling
551       break;
552     case Intrinsic::experimental_gc_statepoint:
553       llvm_unreachable("statepoints don't produce pointers");
554     case Intrinsic::experimental_gc_relocate:
555       // Rerunning safepoint insertion after safepoints are already
556       // inserted is not supported.  It could probably be made to work,
557       // but why are you doing this?  There's no good reason.
558       llvm_unreachable("repeat safepoint insertion is not supported");
559     case Intrinsic::gcroot:
560       // Currently, this mechanism hasn't been extended to work with gcroot.
561       // There's no reason it couldn't be, but I haven't thought about the
562       // implications much.
563       llvm_unreachable(
564           "interaction with the gcroot mechanism is not supported");
565     }
566   }
567   // We assume that functions in the source language only return base
568   // pointers.  This should probably be generalized via attributes to support
569   // both source language and internal functions.
570   if (isa<CallInst>(I) || isa<InvokeInst>(I))
571     return BaseDefiningValueResult(I, true);
572 
573   // TODO: I have absolutely no idea how to implement this part yet.  It's not
574   // necessarily hard, I just haven't really looked at it yet.
575   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
576 
577   if (isa<AtomicCmpXchgInst>(I))
578     // A CAS is effectively a atomic store and load combined under a
579     // predicate.  From the perspective of base pointers, we just treat it
580     // like a load.
581     return BaseDefiningValueResult(I, true);
582 
583   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
584                                    "binary ops which don't apply to pointers");
585 
586   // The aggregate ops.  Aggregates can either be in the heap or on the
587   // stack, but in either case, this is simply a field load.  As a result,
588   // this is a defining definition of the base just like a load is.
589   if (isa<ExtractValueInst>(I))
590     return BaseDefiningValueResult(I, true);
591 
592   // We should never see an insert vector since that would require we be
593   // tracing back a struct value not a pointer value.
594   assert(!isa<InsertValueInst>(I) &&
595          "Base pointer for a struct is meaningless");
596 
597   // An extractelement produces a base result exactly when it's input does.
598   // We may need to insert a parallel instruction to extract the appropriate
599   // element out of the base vector corresponding to the input. Given this,
600   // it's analogous to the phi and select case even though it's not a merge.
601   if (isa<ExtractElementInst>(I))
602     // Note: There a lot of obvious peephole cases here.  This are deliberately
603     // handled after the main base pointer inference algorithm to make writing
604     // test cases to exercise that code easier.
605     return BaseDefiningValueResult(I, false);
606 
607   // The last two cases here don't return a base pointer.  Instead, they
608   // return a value which dynamically selects from among several base
609   // derived pointers (each with it's own base potentially).  It's the job of
610   // the caller to resolve these.
611   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
612          "missing instruction case in findBaseDefiningValing");
613   return BaseDefiningValueResult(I, false);
614 }
615 
616 /// Returns the base defining value for this value.
617 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
618   Value *&Cached = Cache[I];
619   if (!Cached) {
620     Cached = findBaseDefiningValue(I).BDV;
621     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
622                       << Cached->getName() << "\n");
623   }
624   assert(Cache[I] != nullptr);
625   return Cached;
626 }
627 
628 /// Return a base pointer for this value if known.  Otherwise, return it's
629 /// base defining value.
630 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
631   Value *Def = findBaseDefiningValueCached(I, Cache);
632   auto Found = Cache.find(Def);
633   if (Found != Cache.end()) {
634     // Either a base-of relation, or a self reference.  Caller must check.
635     return Found->second;
636   }
637   // Only a BDV available
638   return Def;
639 }
640 
641 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
642 /// exists in the code.
643 static bool isOriginalBaseResult(Value *V) {
644   // no recursion possible
645   return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
646          !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
647          !isa<ShuffleVectorInst>(V);
648 }
649 
650 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
651 /// is it known to be a base pointer?  Or do we need to continue searching.
652 static bool isKnownBaseResult(Value *V) {
653   if (isOriginalBaseResult(V))
654     return true;
655   if (isa<Instruction>(V) &&
656       cast<Instruction>(V)->getMetadata("is_base_value")) {
657     // This is a previously inserted base phi or select.  We know
658     // that this is a base value.
659     return true;
660   }
661 
662   // We need to keep searching
663   return false;
664 }
665 
666 // Returns true if First and Second values are both scalar or both vector.
667 static bool areBothVectorOrScalar(Value *First, Value *Second) {
668   return isa<VectorType>(First->getType()) ==
669          isa<VectorType>(Second->getType());
670 }
671 
672 namespace {
673 
674 /// Models the state of a single base defining value in the findBasePointer
675 /// algorithm for determining where a new instruction is needed to propagate
676 /// the base of this BDV.
677 class BDVState {
678 public:
679   enum StatusTy {
680      // Starting state of lattice
681      Unknown,
682      // Some specific base value -- does *not* mean that instruction
683      // propagates the base of the object
684      // ex: gep %arg, 16 -> %arg is the base value
685      Base,
686      // Need to insert a node to represent a merge.
687      Conflict
688   };
689 
690   BDVState() {
691     llvm_unreachable("missing state in map");
692   }
693 
694   explicit BDVState(Value *OriginalValue)
695     : OriginalValue(OriginalValue) {}
696   explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
697     : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
698     assert(Status != Base || BaseValue);
699   }
700 
701   StatusTy getStatus() const { return Status; }
702   Value *getOriginalValue() const { return OriginalValue; }
703   Value *getBaseValue() const { return BaseValue; }
704 
705   bool isBase() const { return getStatus() == Base; }
706   bool isUnknown() const { return getStatus() == Unknown; }
707   bool isConflict() const { return getStatus() == Conflict; }
708 
709   bool operator==(const BDVState &Other) const {
710     return OriginalValue == OriginalValue && BaseValue == Other.BaseValue &&
711       Status == Other.Status;
712   }
713 
714   bool operator!=(const BDVState &other) const { return !(*this == other); }
715 
716   LLVM_DUMP_METHOD
717   void dump() const {
718     print(dbgs());
719     dbgs() << '\n';
720   }
721 
722   void print(raw_ostream &OS) const {
723     switch (getStatus()) {
724     case Unknown:
725       OS << "U";
726       break;
727     case Base:
728       OS << "B";
729       break;
730     case Conflict:
731       OS << "C";
732       break;
733     }
734     OS << " (base " << getBaseValue() << " - "
735        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
736        << " for  "  << OriginalValue->getName() << ":";
737   }
738 
739 private:
740   AssertingVH<Value> OriginalValue; // instruction this state corresponds to
741   StatusTy Status = Unknown;
742   AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
743 };
744 
745 } // end anonymous namespace
746 
747 #ifndef NDEBUG
748 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
749   State.print(OS);
750   return OS;
751 }
752 #endif
753 
754 static BDVState::StatusTy meet(const BDVState::StatusTy &LHS,
755                                const BDVState::StatusTy &RHS) {
756   switch (LHS) {
757   case BDVState::Unknown:
758     return RHS;
759   case BDVState::Base:
760     switch (RHS) {
761     case BDVState::Unknown:
762     case BDVState::Base:
763       return BDVState::Base;
764     case BDVState::Conflict:
765       return BDVState::Conflict;
766     };
767     llvm_unreachable("covered switch");
768   case BDVState::Conflict:
769     return BDVState::Conflict;
770   }
771   llvm_unreachable("covered switch");
772 }
773 
774 // Values of type BDVState form a lattice, and this function implements the meet
775 // operation.
776 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
777   auto NewStatus = meet(LHS.getStatus(), RHS.getStatus());
778   assert(NewStatus == meet(RHS.getStatus(), LHS.getStatus()));
779 
780   Value *BaseValue = LHS.getStatus() == BDVState::Base ?
781     LHS.getBaseValue() : RHS.getBaseValue();
782   if (LHS.getStatus() == BDVState::Base && RHS.getStatus() == BDVState::Base &&
783       LHS.getBaseValue() != RHS.getBaseValue()) {
784     NewStatus = BDVState::Conflict;
785     BaseValue = nullptr;
786   }
787   return BDVState(LHS.getOriginalValue(), NewStatus, BaseValue);
788 }
789 
790 /// For a given value or instruction, figure out what base ptr its derived from.
791 /// For gc objects, this is simply itself.  On success, returns a value which is
792 /// the base pointer.  (This is reliable and can be used for relocation.)  On
793 /// failure, returns nullptr.
794 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
795   Value *Def = findBaseOrBDV(I, Cache);
796 
797   if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I))
798     return Def;
799 
800   // Here's the rough algorithm:
801   // - For every SSA value, construct a mapping to either an actual base
802   //   pointer or a PHI which obscures the base pointer.
803   // - Construct a mapping from PHI to unknown TOP state.  Use an
804   //   optimistic algorithm to propagate base pointer information.  Lattice
805   //   looks like:
806   //   UNKNOWN
807   //   b1 b2 b3 b4
808   //   CONFLICT
809   //   When algorithm terminates, all PHIs will either have a single concrete
810   //   base or be in a conflict state.
811   // - For every conflict, insert a dummy PHI node without arguments.  Add
812   //   these to the base[Instruction] = BasePtr mapping.  For every
813   //   non-conflict, add the actual base.
814   //  - For every conflict, add arguments for the base[a] of each input
815   //   arguments.
816   //
817   // Note: A simpler form of this would be to add the conflict form of all
818   // PHIs without running the optimistic algorithm.  This would be
819   // analogous to pessimistic data flow and would likely lead to an
820   // overall worse solution.
821 
822 #ifndef NDEBUG
823   auto isExpectedBDVType = [](Value *BDV) {
824     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
825            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
826            isa<ShuffleVectorInst>(BDV);
827   };
828 #endif
829 
830   // Once populated, will contain a mapping from each potentially non-base BDV
831   // to a lattice value (described above) which corresponds to that BDV.
832   // We use the order of insertion (DFS over the def/use graph) to provide a
833   // stable deterministic ordering for visiting DenseMaps (which are unordered)
834   // below.  This is important for deterministic compilation.
835   MapVector<Value *, BDVState> States;
836 
837 #ifndef NDEBUG
838   auto VerifyStates = [&]() {
839     for (auto &Entry : States) {
840       assert(Entry.first == Entry.second.getOriginalValue());
841     }
842   };
843 #endif
844 
845   auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
846     if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
847       for (Value *InVal : PN->incoming_values())
848         F(InVal);
849     } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
850       F(SI->getTrueValue());
851       F(SI->getFalseValue());
852     } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
853       F(EE->getVectorOperand());
854     } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
855       F(IE->getOperand(0));
856       F(IE->getOperand(1));
857     } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
858       // For a canonical broadcast, ignore the undef argument
859       // (without this, we insert a parallel base shuffle for every broadcast)
860       F(SV->getOperand(0));
861       if (!SV->isZeroEltSplat())
862         F(SV->getOperand(1));
863     } else {
864       llvm_unreachable("unexpected BDV type");
865     }
866   };
867 
868 
869   // Recursively fill in all base defining values reachable from the initial
870   // one for which we don't already know a definite base value for
871   /* scope */ {
872     SmallVector<Value*, 16> Worklist;
873     Worklist.push_back(Def);
874     States.insert({Def, BDVState(Def)});
875     while (!Worklist.empty()) {
876       Value *Current = Worklist.pop_back_val();
877       assert(!isOriginalBaseResult(Current) && "why did it get added?");
878 
879       auto visitIncomingValue = [&](Value *InVal) {
880         Value *Base = findBaseOrBDV(InVal, Cache);
881         if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal))
882           // Known bases won't need new instructions introduced and can be
883           // ignored safely. However, this can only be done when InVal and Base
884           // are both scalar or both vector. Otherwise, we need to find a
885           // correct BDV for InVal, by creating an entry in the lattice
886           // (States).
887           return;
888         assert(isExpectedBDVType(Base) && "the only non-base values "
889                "we see should be base defining values");
890         if (States.insert(std::make_pair(Base, BDVState(Base))).second)
891           Worklist.push_back(Base);
892       };
893 
894       visitBDVOperands(Current, visitIncomingValue);
895     }
896   }
897 
898 #ifndef NDEBUG
899   VerifyStates();
900   LLVM_DEBUG(dbgs() << "States after initialization:\n");
901   for (auto Pair : States) {
902     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
903   }
904 #endif
905 
906   // Iterate forward through the value graph pruning any node from the state
907   // list where all of the inputs are base pointers.  The purpose of this is to
908   // reuse existing values when the derived pointer we were asked to materialize
909   // a base pointer for happens to be a base pointer itself.  (Or a sub-graph
910   // feeding it does.)
911   SmallVector<Value *> ToRemove;
912   do {
913     ToRemove.clear();
914     for (auto Pair : States) {
915       Value *BDV = Pair.first;
916       auto canPruneInput = [&](Value *V) {
917         Value *BDV = findBaseOrBDV(V, Cache);
918         if (V->stripPointerCasts() != BDV)
919           return false;
920         // The assumption is that anything not in the state list is
921         // propagates a base pointer.
922         return States.count(BDV) == 0;
923       };
924 
925       bool CanPrune = true;
926       visitBDVOperands(BDV, [&](Value *Op) {
927         CanPrune = CanPrune && canPruneInput(Op);
928       });
929       if (CanPrune)
930         ToRemove.push_back(BDV);
931     }
932     for (Value *V : ToRemove) {
933       States.erase(V);
934       // Cache the fact V is it's own base for later usage.
935       Cache[V] = V;
936     }
937   } while (!ToRemove.empty());
938 
939   // Did we manage to prove that Def itself must be a base pointer?
940   if (!States.count(Def))
941     return Def;
942 
943   // Return a phi state for a base defining value.  We'll generate a new
944   // base state for known bases and expect to find a cached state otherwise.
945   auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
946     auto I = States.find(BaseValue);
947     if (I != States.end())
948       return I->second;
949     assert(areBothVectorOrScalar(BaseValue, Input));
950     return BDVState(BaseValue, BDVState::Base, BaseValue);
951   };
952 
953   bool Progress = true;
954   while (Progress) {
955 #ifndef NDEBUG
956     const size_t OldSize = States.size();
957 #endif
958     Progress = false;
959     // We're only changing values in this loop, thus safe to keep iterators.
960     // Since this is computing a fixed point, the order of visit does not
961     // effect the result.  TODO: We could use a worklist here and make this run
962     // much faster.
963     for (auto Pair : States) {
964       Value *BDV = Pair.first;
965       // Only values that do not have known bases or those that have differing
966       // type (scalar versus vector) from a possible known base should be in the
967       // lattice.
968       assert((!isKnownBaseResult(BDV) ||
969              !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
970                  "why did it get added?");
971 
972       BDVState NewState(BDV);
973       visitBDVOperands(BDV, [&] (Value *Op) {
974         Value *BDV = findBaseOrBDV(Op, Cache);
975         auto OpState = GetStateForBDV(BDV, Op);
976         NewState = meetBDVState(NewState, OpState);
977       });
978 
979       BDVState OldState = States[BDV];
980       if (OldState != NewState) {
981         Progress = true;
982         States[BDV] = NewState;
983       }
984     }
985 
986     assert(OldSize == States.size() &&
987            "fixed point shouldn't be adding any new nodes to state");
988   }
989 
990 #ifndef NDEBUG
991   VerifyStates();
992   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
993   for (auto Pair : States) {
994     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
995   }
996 #endif
997 
998   // Handle all instructions that have a vector BDV, but the instruction itself
999   // is of scalar type.
1000   for (auto Pair : States) {
1001     Instruction *I = cast<Instruction>(Pair.first);
1002     BDVState State = Pair.second;
1003     auto *BaseValue = State.getBaseValue();
1004     // Only values that do not have known bases or those that have differing
1005     // type (scalar versus vector) from a possible known base should be in the
1006     // lattice.
1007     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) &&
1008            "why did it get added?");
1009     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1010 
1011     if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
1012       continue;
1013     // extractelement instructions are a bit special in that we may need to
1014     // insert an extract even when we know an exact base for the instruction.
1015     // The problem is that we need to convert from a vector base to a scalar
1016     // base for the particular indice we're interested in.
1017     if (isa<ExtractElementInst>(I)) {
1018       auto *EE = cast<ExtractElementInst>(I);
1019       // TODO: In many cases, the new instruction is just EE itself.  We should
1020       // exploit this, but can't do it here since it would break the invariant
1021       // about the BDV not being known to be a base.
1022       auto *BaseInst = ExtractElementInst::Create(
1023           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
1024       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1025       States[I] = BDVState(I, BDVState::Base, BaseInst);
1026     } else if (!isa<VectorType>(I->getType())) {
1027       // We need to handle cases that have a vector base but the instruction is
1028       // a scalar type (these could be phis or selects or any instruction that
1029       // are of scalar type, but the base can be a vector type).  We
1030       // conservatively set this as conflict.  Setting the base value for these
1031       // conflicts is handled in the next loop which traverses States.
1032       States[I] = BDVState(I, BDVState::Conflict);
1033     }
1034   }
1035 
1036 #ifndef NDEBUG
1037   VerifyStates();
1038 #endif
1039 
1040   // Insert Phis for all conflicts
1041   // TODO: adjust naming patterns to avoid this order of iteration dependency
1042   for (auto Pair : States) {
1043     Instruction *I = cast<Instruction>(Pair.first);
1044     BDVState State = Pair.second;
1045     // Only values that do not have known bases or those that have differing
1046     // type (scalar versus vector) from a possible known base should be in the
1047     // lattice.
1048     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) &&
1049            "why did it get added?");
1050     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1051 
1052     // Since we're joining a vector and scalar base, they can never be the
1053     // same.  As a result, we should always see insert element having reached
1054     // the conflict state.
1055     assert(!isa<InsertElementInst>(I) || State.isConflict());
1056 
1057     if (!State.isConflict())
1058       continue;
1059 
1060     auto getMangledName = [](Instruction *I) -> std::string {
1061       if (isa<PHINode>(I)) {
1062         return suffixed_name_or(I, ".base", "base_phi");
1063       } else if (isa<SelectInst>(I)) {
1064         return suffixed_name_or(I, ".base", "base_select");
1065       } else if (isa<ExtractElementInst>(I)) {
1066         return suffixed_name_or(I, ".base", "base_ee");
1067       } else if (isa<InsertElementInst>(I)) {
1068         return suffixed_name_or(I, ".base", "base_ie");
1069       } else {
1070         return suffixed_name_or(I, ".base", "base_sv");
1071       }
1072     };
1073 
1074     Instruction *BaseInst = I->clone();
1075     BaseInst->insertBefore(I);
1076     BaseInst->setName(getMangledName(I));
1077     // Add metadata marking this as a base value
1078     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1079     States[I] = BDVState(I, BDVState::Conflict, BaseInst);
1080   }
1081 
1082 #ifndef NDEBUG
1083   VerifyStates();
1084 #endif
1085 
1086   // Returns a instruction which produces the base pointer for a given
1087   // instruction.  The instruction is assumed to be an input to one of the BDVs
1088   // seen in the inference algorithm above.  As such, we must either already
1089   // know it's base defining value is a base, or have inserted a new
1090   // instruction to propagate the base of it's BDV and have entered that newly
1091   // introduced instruction into the state table.  In either case, we are
1092   // assured to be able to determine an instruction which produces it's base
1093   // pointer.
1094   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1095     Value *BDV = findBaseOrBDV(Input, Cache);
1096     Value *Base = nullptr;
1097     if (!States.count(BDV)) {
1098       assert(areBothVectorOrScalar(BDV, Input));
1099       Base = BDV;
1100     } else {
1101       // Either conflict or base.
1102       assert(States.count(BDV));
1103       Base = States[BDV].getBaseValue();
1104     }
1105     assert(Base && "Can't be null");
1106     // The cast is needed since base traversal may strip away bitcasts
1107     if (Base->getType() != Input->getType() && InsertPt)
1108       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1109     return Base;
1110   };
1111 
1112   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1113   // deterministic and predictable because we're naming newly created
1114   // instructions.
1115   for (auto Pair : States) {
1116     Instruction *BDV = cast<Instruction>(Pair.first);
1117     BDVState State = Pair.second;
1118 
1119     // Only values that do not have known bases or those that have differing
1120     // type (scalar versus vector) from a possible known base should be in the
1121     // lattice.
1122     assert((!isKnownBaseResult(BDV) ||
1123             !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1124            "why did it get added?");
1125     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1126     if (!State.isConflict())
1127       continue;
1128 
1129     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1130       PHINode *PN = cast<PHINode>(BDV);
1131       const unsigned NumPHIValues = PN->getNumIncomingValues();
1132 
1133       // The IR verifier requires phi nodes with multiple entries from the
1134       // same basic block to have the same incoming value for each of those
1135       // entries.  Since we're inserting bitcasts in the loop, make sure we
1136       // do so at least once per incoming block.
1137       DenseMap<BasicBlock *, Value*> BlockToValue;
1138       for (unsigned i = 0; i < NumPHIValues; i++) {
1139         Value *InVal = PN->getIncomingValue(i);
1140         BasicBlock *InBB = PN->getIncomingBlock(i);
1141         if (!BlockToValue.count(InBB))
1142           BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator());
1143         else {
1144 #ifndef NDEBUG
1145           Value *OldBase = BlockToValue[InBB];
1146           Value *Base = getBaseForInput(InVal, nullptr);
1147           // In essence this assert states: the only way two values
1148           // incoming from the same basic block may be different is by
1149           // being different bitcasts of the same value.  A cleanup
1150           // that remains TODO is changing findBaseOrBDV to return an
1151           // llvm::Value of the correct type (and still remain pure).
1152           // This will remove the need to add bitcasts.
1153           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1154                  "Sanity -- findBaseOrBDV should be pure!");
1155 #endif
1156         }
1157         Value *Base = BlockToValue[InBB];
1158         BasePHI->setIncomingValue(i, Base);
1159       }
1160     } else if (SelectInst *BaseSI =
1161                    dyn_cast<SelectInst>(State.getBaseValue())) {
1162       SelectInst *SI = cast<SelectInst>(BDV);
1163 
1164       // Find the instruction which produces the base for each input.
1165       // We may need to insert a bitcast.
1166       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1167       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1168     } else if (auto *BaseEE =
1169                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1170       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1171       // Find the instruction which produces the base for each input.  We may
1172       // need to insert a bitcast.
1173       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1174     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1175       auto *BdvIE = cast<InsertElementInst>(BDV);
1176       auto UpdateOperand = [&](int OperandIdx) {
1177         Value *InVal = BdvIE->getOperand(OperandIdx);
1178         Value *Base = getBaseForInput(InVal, BaseIE);
1179         BaseIE->setOperand(OperandIdx, Base);
1180       };
1181       UpdateOperand(0); // vector operand
1182       UpdateOperand(1); // scalar operand
1183     } else {
1184       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1185       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1186       auto UpdateOperand = [&](int OperandIdx) {
1187         Value *InVal = BdvSV->getOperand(OperandIdx);
1188         Value *Base = getBaseForInput(InVal, BaseSV);
1189         BaseSV->setOperand(OperandIdx, Base);
1190       };
1191       UpdateOperand(0); // vector operand
1192       if (!BdvSV->isZeroEltSplat())
1193         UpdateOperand(1); // vector operand
1194       else {
1195         // Never read, so just use undef
1196         Value *InVal = BdvSV->getOperand(1);
1197         BaseSV->setOperand(1, UndefValue::get(InVal->getType()));
1198       }
1199     }
1200   }
1201 
1202 #ifndef NDEBUG
1203   VerifyStates();
1204 #endif
1205 
1206   // Cache all of our results so we can cheaply reuse them
1207   // NOTE: This is actually two caches: one of the base defining value
1208   // relation and one of the base pointer relation!  FIXME
1209   for (auto Pair : States) {
1210     auto *BDV = Pair.first;
1211     Value *Base = Pair.second.getBaseValue();
1212     assert(BDV && Base);
1213     // Only values that do not have known bases or those that have differing
1214     // type (scalar versus vector) from a possible known base should be in the
1215     // lattice.
1216     assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) &&
1217            "why did it get added?");
1218 
1219     LLVM_DEBUG(
1220         dbgs() << "Updating base value cache"
1221                << " for: " << BDV->getName() << " from: "
1222                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1223                << " to: " << Base->getName() << "\n");
1224 
1225     Cache[BDV] = Base;
1226   }
1227   assert(Cache.count(Def));
1228   return Cache[Def];
1229 }
1230 
1231 // For a set of live pointers (base and/or derived), identify the base
1232 // pointer of the object which they are derived from.  This routine will
1233 // mutate the IR graph as needed to make the 'base' pointer live at the
1234 // definition site of 'derived'.  This ensures that any use of 'derived' can
1235 // also use 'base'.  This may involve the insertion of a number of
1236 // additional PHI nodes.
1237 //
1238 // preconditions: live is a set of pointer type Values
1239 //
1240 // side effects: may insert PHI nodes into the existing CFG, will preserve
1241 // CFG, will not remove or mutate any existing nodes
1242 //
1243 // post condition: PointerToBase contains one (derived, base) pair for every
1244 // pointer in live.  Note that derived can be equal to base if the original
1245 // pointer was a base pointer.
1246 static void
1247 findBasePointers(const StatepointLiveSetTy &live,
1248                  MapVector<Value *, Value *> &PointerToBase,
1249                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1250   for (Value *ptr : live) {
1251     Value *base = findBasePointer(ptr, DVCache);
1252     assert(base && "failed to find base pointer");
1253     PointerToBase[ptr] = base;
1254     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1255             DT->dominates(cast<Instruction>(base)->getParent(),
1256                           cast<Instruction>(ptr)->getParent())) &&
1257            "The base we found better dominate the derived pointer");
1258   }
1259 }
1260 
1261 /// Find the required based pointers (and adjust the live set) for the given
1262 /// parse point.
1263 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1264                              CallBase *Call,
1265                              PartiallyConstructedSafepointRecord &result) {
1266   MapVector<Value *, Value *> PointerToBase;
1267   StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
1268   // We assume that all pointers passed to deopt are base pointers; as an
1269   // optimization, we can use this to avoid seperately materializing the base
1270   // pointer graph.  This is only relevant since we're very conservative about
1271   // generating new conflict nodes during base pointer insertion.  If we were
1272   // smarter there, this would be irrelevant.
1273   if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
1274     for (Value *V : Opt->Inputs) {
1275       if (!PotentiallyDerivedPointers.count(V))
1276         continue;
1277       PotentiallyDerivedPointers.remove(V);
1278       PointerToBase[V] = V;
1279     }
1280   findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache);
1281 
1282   if (PrintBasePointers) {
1283     errs() << "Base Pairs (w/o Relocation):\n";
1284     for (auto &Pair : PointerToBase) {
1285       errs() << " derived ";
1286       Pair.first->printAsOperand(errs(), false);
1287       errs() << " base ";
1288       Pair.second->printAsOperand(errs(), false);
1289       errs() << "\n";;
1290     }
1291   }
1292 
1293   result.PointerToBase = PointerToBase;
1294 }
1295 
1296 /// Given an updated version of the dataflow liveness results, update the
1297 /// liveset and base pointer maps for the call site CS.
1298 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1299                                   CallBase *Call,
1300                                   PartiallyConstructedSafepointRecord &result);
1301 
1302 static void recomputeLiveInValues(
1303     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1304     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1305   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1306   // again.  The old values are still live and will help it stabilize quickly.
1307   GCPtrLivenessData RevisedLivenessData;
1308   computeLiveInValues(DT, F, RevisedLivenessData);
1309   for (size_t i = 0; i < records.size(); i++) {
1310     struct PartiallyConstructedSafepointRecord &info = records[i];
1311     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1312   }
1313 }
1314 
1315 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1316 // no uses of the original value / return value between the gc.statepoint and
1317 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1318 // starting one of the successor blocks.  We also need to be able to insert the
1319 // gc.relocates only on the path which goes through the statepoint.  We might
1320 // need to split an edge to make this possible.
1321 static BasicBlock *
1322 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1323                             DominatorTree &DT) {
1324   BasicBlock *Ret = BB;
1325   if (!BB->getUniquePredecessor())
1326     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1327 
1328   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1329   // from it
1330   FoldSingleEntryPHINodes(Ret);
1331   assert(!isa<PHINode>(Ret->begin()) &&
1332          "All PHI nodes should have been removed!");
1333 
1334   // At this point, we can safely insert a gc.relocate or gc.result as the first
1335   // instruction in Ret if needed.
1336   return Ret;
1337 }
1338 
1339 // Create new attribute set containing only attributes which can be transferred
1340 // from original call to the safepoint.
1341 static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
1342                                             AttributeList AL) {
1343   if (AL.isEmpty())
1344     return AL;
1345 
1346   // Remove the readonly, readnone, and statepoint function attributes.
1347   AttrBuilder FnAttrs = AL.getFnAttributes();
1348   FnAttrs.removeAttribute(Attribute::ReadNone);
1349   FnAttrs.removeAttribute(Attribute::ReadOnly);
1350   for (Attribute A : AL.getFnAttributes()) {
1351     if (isStatepointDirectiveAttr(A))
1352       FnAttrs.remove(A);
1353   }
1354 
1355   // Just skip parameter and return attributes for now
1356   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1357                             AttributeSet::get(Ctx, FnAttrs));
1358 }
1359 
1360 /// Helper function to place all gc relocates necessary for the given
1361 /// statepoint.
1362 /// Inputs:
1363 ///   liveVariables - list of variables to be relocated.
1364 ///   basePtrs - base pointers.
1365 ///   statepointToken - statepoint instruction to which relocates should be
1366 ///   bound.
1367 ///   Builder - Llvm IR builder to be used to construct new calls.
1368 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1369                               ArrayRef<Value *> BasePtrs,
1370                               Instruction *StatepointToken,
1371                               IRBuilder<> &Builder) {
1372   if (LiveVariables.empty())
1373     return;
1374 
1375   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1376     auto ValIt = llvm::find(LiveVec, Val);
1377     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1378     size_t Index = std::distance(LiveVec.begin(), ValIt);
1379     assert(Index < LiveVec.size() && "Bug in std::find?");
1380     return Index;
1381   };
1382   Module *M = StatepointToken->getModule();
1383 
1384   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1385   // element type is i8 addrspace(1)*). We originally generated unique
1386   // declarations for each pointer type, but this proved problematic because
1387   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1388   // towards a single unified pointer type anyways, we can just cast everything
1389   // to an i8* of the right address space.  A bitcast is added later to convert
1390   // gc_relocate to the actual value's type.
1391   auto getGCRelocateDecl = [&] (Type *Ty) {
1392     assert(isHandledGCPointerType(Ty));
1393     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1394     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1395     if (auto *VT = dyn_cast<VectorType>(Ty))
1396       NewTy = FixedVectorType::get(NewTy,
1397                                    cast<FixedVectorType>(VT)->getNumElements());
1398     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1399                                      {NewTy});
1400   };
1401 
1402   // Lazily populated map from input types to the canonicalized form mentioned
1403   // in the comment above.  This should probably be cached somewhere more
1404   // broadly.
1405   DenseMap<Type *, Function *> TypeToDeclMap;
1406 
1407   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1408     // Generate the gc.relocate call and save the result
1409     Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1410     Value *LiveIdx = Builder.getInt32(i);
1411 
1412     Type *Ty = LiveVariables[i]->getType();
1413     if (!TypeToDeclMap.count(Ty))
1414       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1415     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1416 
1417     // only specify a debug name if we can give a useful one
1418     CallInst *Reloc = Builder.CreateCall(
1419         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1420         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1421     // Trick CodeGen into thinking there are lots of free registers at this
1422     // fake call.
1423     Reloc->setCallingConv(CallingConv::Cold);
1424   }
1425 }
1426 
1427 namespace {
1428 
1429 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1430 /// avoids having to worry about keeping around dangling pointers to Values.
1431 class DeferredReplacement {
1432   AssertingVH<Instruction> Old;
1433   AssertingVH<Instruction> New;
1434   bool IsDeoptimize = false;
1435 
1436   DeferredReplacement() = default;
1437 
1438 public:
1439   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1440     assert(Old != New && Old && New &&
1441            "Cannot RAUW equal values or to / from null!");
1442 
1443     DeferredReplacement D;
1444     D.Old = Old;
1445     D.New = New;
1446     return D;
1447   }
1448 
1449   static DeferredReplacement createDelete(Instruction *ToErase) {
1450     DeferredReplacement D;
1451     D.Old = ToErase;
1452     return D;
1453   }
1454 
1455   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1456 #ifndef NDEBUG
1457     auto *F = cast<CallInst>(Old)->getCalledFunction();
1458     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1459            "Only way to construct a deoptimize deferred replacement");
1460 #endif
1461     DeferredReplacement D;
1462     D.Old = Old;
1463     D.IsDeoptimize = true;
1464     return D;
1465   }
1466 
1467   /// Does the task represented by this instance.
1468   void doReplacement() {
1469     Instruction *OldI = Old;
1470     Instruction *NewI = New;
1471 
1472     assert(OldI != NewI && "Disallowed at construction?!");
1473     assert((!IsDeoptimize || !New) &&
1474            "Deoptimize intrinsics are not replaced!");
1475 
1476     Old = nullptr;
1477     New = nullptr;
1478 
1479     if (NewI)
1480       OldI->replaceAllUsesWith(NewI);
1481 
1482     if (IsDeoptimize) {
1483       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1484       // not necessarily be followed by the matching return.
1485       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1486       new UnreachableInst(RI->getContext(), RI);
1487       RI->eraseFromParent();
1488     }
1489 
1490     OldI->eraseFromParent();
1491   }
1492 };
1493 
1494 } // end anonymous namespace
1495 
1496 static StringRef getDeoptLowering(CallBase *Call) {
1497   const char *DeoptLowering = "deopt-lowering";
1498   if (Call->hasFnAttr(DeoptLowering)) {
1499     // FIXME: Calls have a *really* confusing interface around attributes
1500     // with values.
1501     const AttributeList &CSAS = Call->getAttributes();
1502     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1503       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1504           .getValueAsString();
1505     Function *F = Call->getCalledFunction();
1506     assert(F && F->hasFnAttribute(DeoptLowering));
1507     return F->getFnAttribute(DeoptLowering).getValueAsString();
1508   }
1509   return "live-through";
1510 }
1511 
1512 static void
1513 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1514                            const SmallVectorImpl<Value *> &BasePtrs,
1515                            const SmallVectorImpl<Value *> &LiveVariables,
1516                            PartiallyConstructedSafepointRecord &Result,
1517                            std::vector<DeferredReplacement> &Replacements) {
1518   assert(BasePtrs.size() == LiveVariables.size());
1519 
1520   // Then go ahead and use the builder do actually do the inserts.  We insert
1521   // immediately before the previous instruction under the assumption that all
1522   // arguments will be available here.  We can't insert afterwards since we may
1523   // be replacing a terminator.
1524   IRBuilder<> Builder(Call);
1525 
1526   ArrayRef<Value *> GCArgs(LiveVariables);
1527   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1528   uint32_t NumPatchBytes = 0;
1529   uint32_t Flags = uint32_t(StatepointFlags::None);
1530 
1531   SmallVector<Value *, 8> CallArgs(Call->args());
1532   Optional<ArrayRef<Use>> DeoptArgs;
1533   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1534     DeoptArgs = Bundle->Inputs;
1535   Optional<ArrayRef<Use>> TransitionArgs;
1536   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1537     TransitionArgs = Bundle->Inputs;
1538     // TODO: This flag no longer serves a purpose and can be removed later
1539     Flags |= uint32_t(StatepointFlags::GCTransition);
1540   }
1541 
1542   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1543   // with a return value, we lower then as never returning calls to
1544   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1545   bool IsDeoptimize = false;
1546 
1547   StatepointDirectives SD =
1548       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1549   if (SD.NumPatchBytes)
1550     NumPatchBytes = *SD.NumPatchBytes;
1551   if (SD.StatepointID)
1552     StatepointID = *SD.StatepointID;
1553 
1554   // Pass through the requested lowering if any.  The default is live-through.
1555   StringRef DeoptLowering = getDeoptLowering(Call);
1556   if (DeoptLowering.equals("live-in"))
1557     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1558   else {
1559     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1560   }
1561 
1562   Value *CallTarget = Call->getCalledOperand();
1563   if (Function *F = dyn_cast<Function>(CallTarget)) {
1564     auto IID = F->getIntrinsicID();
1565     if (IID == Intrinsic::experimental_deoptimize) {
1566       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1567       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1568       // verifier does not allow taking the address of an intrinsic function.
1569 
1570       SmallVector<Type *, 8> DomainTy;
1571       for (Value *Arg : CallArgs)
1572         DomainTy.push_back(Arg->getType());
1573       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1574                                     /* isVarArg = */ false);
1575 
1576       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1577       // calls to @llvm.experimental.deoptimize with different argument types in
1578       // the same module.  This is fine -- we assume the frontend knew what it
1579       // was doing when generating this kind of IR.
1580       CallTarget = F->getParent()
1581                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1582                        .getCallee();
1583 
1584       IsDeoptimize = true;
1585     } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1586                IID == Intrinsic::memmove_element_unordered_atomic) {
1587       // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1588       // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1589       // Specifically, these calls should be lowered to the
1590       // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1591       // Similarly to __llvm_deoptimize we want to resolve this now, since the
1592       // verifier does not allow taking the address of an intrinsic function.
1593       //
1594       // Moreover we need to shuffle the arguments for the call in order to
1595       // accommodate GC. The underlying source and destination objects might be
1596       // relocated during copy operation should the GC occur. To relocate the
1597       // derived source and destination pointers the implementation of the
1598       // intrinsic should know the corresponding base pointers.
1599       //
1600       // To make the base pointers available pass them explicitly as arguments:
1601       //   memcpy(dest_derived, source_derived, ...) =>
1602       //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1603       auto &Context = Call->getContext();
1604       auto &DL = Call->getModule()->getDataLayout();
1605       auto GetBaseAndOffset = [&](Value *Derived) {
1606         assert(Result.PointerToBase.count(Derived));
1607         unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1608         unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1609         Value *Base = Result.PointerToBase.find(Derived)->second;
1610         Value *Base_int = Builder.CreatePtrToInt(
1611             Base, Type::getIntNTy(Context, IntPtrSize));
1612         Value *Derived_int = Builder.CreatePtrToInt(
1613             Derived, Type::getIntNTy(Context, IntPtrSize));
1614         return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1615       };
1616 
1617       auto *Dest = CallArgs[0];
1618       Value *DestBase, *DestOffset;
1619       std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1620 
1621       auto *Source = CallArgs[1];
1622       Value *SourceBase, *SourceOffset;
1623       std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1624 
1625       auto *LengthInBytes = CallArgs[2];
1626       auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1627 
1628       CallArgs.clear();
1629       CallArgs.push_back(DestBase);
1630       CallArgs.push_back(DestOffset);
1631       CallArgs.push_back(SourceBase);
1632       CallArgs.push_back(SourceOffset);
1633       CallArgs.push_back(LengthInBytes);
1634 
1635       SmallVector<Type *, 8> DomainTy;
1636       for (Value *Arg : CallArgs)
1637         DomainTy.push_back(Arg->getType());
1638       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1639                                     /* isVarArg = */ false);
1640 
1641       auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1642         uint64_t ElementSize = ElementSizeCI->getZExtValue();
1643         if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1644           switch (ElementSize) {
1645           case 1:
1646             return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1647           case 2:
1648             return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1649           case 4:
1650             return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1651           case 8:
1652             return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1653           case 16:
1654             return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1655           default:
1656             llvm_unreachable("unexpected element size!");
1657           }
1658         }
1659         assert(IID == Intrinsic::memmove_element_unordered_atomic);
1660         switch (ElementSize) {
1661         case 1:
1662           return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1663         case 2:
1664           return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1665         case 4:
1666           return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1667         case 8:
1668           return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1669         case 16:
1670           return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1671         default:
1672           llvm_unreachable("unexpected element size!");
1673         }
1674       };
1675 
1676       CallTarget =
1677           F->getParent()
1678               ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy)
1679               .getCallee();
1680     }
1681   }
1682 
1683   // Create the statepoint given all the arguments
1684   GCStatepointInst *Token = nullptr;
1685   if (auto *CI = dyn_cast<CallInst>(Call)) {
1686     CallInst *SPCall = Builder.CreateGCStatepointCall(
1687         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1688         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1689 
1690     SPCall->setTailCallKind(CI->getTailCallKind());
1691     SPCall->setCallingConv(CI->getCallingConv());
1692 
1693     // Currently we will fail on parameter attributes and on certain
1694     // function attributes.  In case if we can handle this set of attributes -
1695     // set up function attrs directly on statepoint and return attrs later for
1696     // gc_result intrinsic.
1697     SPCall->setAttributes(
1698         legalizeCallAttributes(CI->getContext(), CI->getAttributes()));
1699 
1700     Token = cast<GCStatepointInst>(SPCall);
1701 
1702     // Put the following gc_result and gc_relocate calls immediately after the
1703     // the old call (which we're about to delete)
1704     assert(CI->getNextNode() && "Not a terminator, must have next!");
1705     Builder.SetInsertPoint(CI->getNextNode());
1706     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1707   } else {
1708     auto *II = cast<InvokeInst>(Call);
1709 
1710     // Insert the new invoke into the old block.  We'll remove the old one in a
1711     // moment at which point this will become the new terminator for the
1712     // original block.
1713     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1714         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1715         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1716         "statepoint_token");
1717 
1718     SPInvoke->setCallingConv(II->getCallingConv());
1719 
1720     // Currently we will fail on parameter attributes and on certain
1721     // function attributes.  In case if we can handle this set of attributes -
1722     // set up function attrs directly on statepoint and return attrs later for
1723     // gc_result intrinsic.
1724     SPInvoke->setAttributes(
1725         legalizeCallAttributes(II->getContext(), II->getAttributes()));
1726 
1727     Token = cast<GCStatepointInst>(SPInvoke);
1728 
1729     // Generate gc relocates in exceptional path
1730     BasicBlock *UnwindBlock = II->getUnwindDest();
1731     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1732            UnwindBlock->getUniquePredecessor() &&
1733            "can't safely insert in this block!");
1734 
1735     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1736     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1737 
1738     // Attach exceptional gc relocates to the landingpad.
1739     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1740     Result.UnwindToken = ExceptionalToken;
1741 
1742     CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
1743 
1744     // Generate gc relocates and returns for normal block
1745     BasicBlock *NormalDest = II->getNormalDest();
1746     assert(!isa<PHINode>(NormalDest->begin()) &&
1747            NormalDest->getUniquePredecessor() &&
1748            "can't safely insert in this block!");
1749 
1750     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1751 
1752     // gc relocates will be generated later as if it were regular call
1753     // statepoint
1754   }
1755   assert(Token && "Should be set in one of the above branches!");
1756 
1757   if (IsDeoptimize) {
1758     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1759     // transform the tail-call like structure to a call to a void function
1760     // followed by unreachable to get better codegen.
1761     Replacements.push_back(
1762         DeferredReplacement::createDeoptimizeReplacement(Call));
1763   } else {
1764     Token->setName("statepoint_token");
1765     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1766       StringRef Name = Call->hasName() ? Call->getName() : "";
1767       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1768       GCResult->setAttributes(
1769           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1770                              Call->getAttributes().getRetAttributes()));
1771 
1772       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1773       // live set of some other safepoint, in which case that safepoint's
1774       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1775       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1776       // after the live sets have been made explicit in the IR, and we no longer
1777       // have raw pointers to worry about.
1778       Replacements.emplace_back(
1779           DeferredReplacement::createRAUW(Call, GCResult));
1780     } else {
1781       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1782     }
1783   }
1784 
1785   Result.StatepointToken = Token;
1786 
1787   // Second, create a gc.relocate for every live variable
1788   CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
1789 }
1790 
1791 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1792 // which make the relocations happening at this safepoint explicit.
1793 //
1794 // WARNING: Does not do any fixup to adjust users of the original live
1795 // values.  That's the callers responsibility.
1796 static void
1797 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1798                        PartiallyConstructedSafepointRecord &Result,
1799                        std::vector<DeferredReplacement> &Replacements) {
1800   const auto &LiveSet = Result.LiveSet;
1801   const auto &PointerToBase = Result.PointerToBase;
1802 
1803   // Convert to vector for efficient cross referencing.
1804   SmallVector<Value *, 64> BaseVec, LiveVec;
1805   LiveVec.reserve(LiveSet.size());
1806   BaseVec.reserve(LiveSet.size());
1807   for (Value *L : LiveSet) {
1808     LiveVec.push_back(L);
1809     assert(PointerToBase.count(L));
1810     Value *Base = PointerToBase.find(L)->second;
1811     BaseVec.push_back(Base);
1812   }
1813   assert(LiveVec.size() == BaseVec.size());
1814 
1815   // Do the actual rewriting and delete the old statepoint
1816   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1817 }
1818 
1819 // Helper function for the relocationViaAlloca.
1820 //
1821 // It receives iterator to the statepoint gc relocates and emits a store to the
1822 // assigned location (via allocaMap) for the each one of them.  It adds the
1823 // visited values into the visitedLiveValues set, which we will later use them
1824 // for sanity checking.
1825 static void
1826 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1827                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1828                        DenseSet<Value *> &VisitedLiveValues) {
1829   for (User *U : GCRelocs) {
1830     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1831     if (!Relocate)
1832       continue;
1833 
1834     Value *OriginalValue = Relocate->getDerivedPtr();
1835     assert(AllocaMap.count(OriginalValue));
1836     Value *Alloca = AllocaMap[OriginalValue];
1837 
1838     // Emit store into the related alloca
1839     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1840     // the correct type according to alloca.
1841     assert(Relocate->getNextNode() &&
1842            "Should always have one since it's not a terminator");
1843     IRBuilder<> Builder(Relocate->getNextNode());
1844     Value *CastedRelocatedValue =
1845       Builder.CreateBitCast(Relocate,
1846                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1847                             suffixed_name_or(Relocate, ".casted", ""));
1848 
1849     new StoreInst(CastedRelocatedValue, Alloca,
1850                   cast<Instruction>(CastedRelocatedValue)->getNextNode());
1851 
1852 #ifndef NDEBUG
1853     VisitedLiveValues.insert(OriginalValue);
1854 #endif
1855   }
1856 }
1857 
1858 // Helper function for the "relocationViaAlloca". Similar to the
1859 // "insertRelocationStores" but works for rematerialized values.
1860 static void insertRematerializationStores(
1861     const RematerializedValueMapTy &RematerializedValues,
1862     DenseMap<Value *, AllocaInst *> &AllocaMap,
1863     DenseSet<Value *> &VisitedLiveValues) {
1864   for (auto RematerializedValuePair: RematerializedValues) {
1865     Instruction *RematerializedValue = RematerializedValuePair.first;
1866     Value *OriginalValue = RematerializedValuePair.second;
1867 
1868     assert(AllocaMap.count(OriginalValue) &&
1869            "Can not find alloca for rematerialized value");
1870     Value *Alloca = AllocaMap[OriginalValue];
1871 
1872     new StoreInst(RematerializedValue, Alloca,
1873                   RematerializedValue->getNextNode());
1874 
1875 #ifndef NDEBUG
1876     VisitedLiveValues.insert(OriginalValue);
1877 #endif
1878   }
1879 }
1880 
1881 /// Do all the relocation update via allocas and mem2reg
1882 static void relocationViaAlloca(
1883     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1884     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1885 #ifndef NDEBUG
1886   // record initial number of (static) allocas; we'll check we have the same
1887   // number when we get done.
1888   int InitialAllocaNum = 0;
1889   for (Instruction &I : F.getEntryBlock())
1890     if (isa<AllocaInst>(I))
1891       InitialAllocaNum++;
1892 #endif
1893 
1894   // TODO-PERF: change data structures, reserve
1895   DenseMap<Value *, AllocaInst *> AllocaMap;
1896   SmallVector<AllocaInst *, 200> PromotableAllocas;
1897   // Used later to chack that we have enough allocas to store all values
1898   std::size_t NumRematerializedValues = 0;
1899   PromotableAllocas.reserve(Live.size());
1900 
1901   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1902   // "PromotableAllocas"
1903   const DataLayout &DL = F.getParent()->getDataLayout();
1904   auto emitAllocaFor = [&](Value *LiveValue) {
1905     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1906                                         DL.getAllocaAddrSpace(), "",
1907                                         F.getEntryBlock().getFirstNonPHI());
1908     AllocaMap[LiveValue] = Alloca;
1909     PromotableAllocas.push_back(Alloca);
1910   };
1911 
1912   // Emit alloca for each live gc pointer
1913   for (Value *V : Live)
1914     emitAllocaFor(V);
1915 
1916   // Emit allocas for rematerialized values
1917   for (const auto &Info : Records)
1918     for (auto RematerializedValuePair : Info.RematerializedValues) {
1919       Value *OriginalValue = RematerializedValuePair.second;
1920       if (AllocaMap.count(OriginalValue) != 0)
1921         continue;
1922 
1923       emitAllocaFor(OriginalValue);
1924       ++NumRematerializedValues;
1925     }
1926 
1927   // The next two loops are part of the same conceptual operation.  We need to
1928   // insert a store to the alloca after the original def and at each
1929   // redefinition.  We need to insert a load before each use.  These are split
1930   // into distinct loops for performance reasons.
1931 
1932   // Update gc pointer after each statepoint: either store a relocated value or
1933   // null (if no relocated value was found for this gc pointer and it is not a
1934   // gc_result).  This must happen before we update the statepoint with load of
1935   // alloca otherwise we lose the link between statepoint and old def.
1936   for (const auto &Info : Records) {
1937     Value *Statepoint = Info.StatepointToken;
1938 
1939     // This will be used for consistency check
1940     DenseSet<Value *> VisitedLiveValues;
1941 
1942     // Insert stores for normal statepoint gc relocates
1943     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1944 
1945     // In case if it was invoke statepoint
1946     // we will insert stores for exceptional path gc relocates.
1947     if (isa<InvokeInst>(Statepoint)) {
1948       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1949                              VisitedLiveValues);
1950     }
1951 
1952     // Do similar thing with rematerialized values
1953     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1954                                   VisitedLiveValues);
1955 
1956     if (ClobberNonLive) {
1957       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1958       // the gc.statepoint.  This will turn some subtle GC problems into
1959       // slightly easier to debug SEGVs.  Note that on large IR files with
1960       // lots of gc.statepoints this is extremely costly both memory and time
1961       // wise.
1962       SmallVector<AllocaInst *, 64> ToClobber;
1963       for (auto Pair : AllocaMap) {
1964         Value *Def = Pair.first;
1965         AllocaInst *Alloca = Pair.second;
1966 
1967         // This value was relocated
1968         if (VisitedLiveValues.count(Def)) {
1969           continue;
1970         }
1971         ToClobber.push_back(Alloca);
1972       }
1973 
1974       auto InsertClobbersAt = [&](Instruction *IP) {
1975         for (auto *AI : ToClobber) {
1976           auto PT = cast<PointerType>(AI->getAllocatedType());
1977           Constant *CPN = ConstantPointerNull::get(PT);
1978           new StoreInst(CPN, AI, IP);
1979         }
1980       };
1981 
1982       // Insert the clobbering stores.  These may get intermixed with the
1983       // gc.results and gc.relocates, but that's fine.
1984       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1985         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1986         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1987       } else {
1988         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1989       }
1990     }
1991   }
1992 
1993   // Update use with load allocas and add store for gc_relocated.
1994   for (auto Pair : AllocaMap) {
1995     Value *Def = Pair.first;
1996     AllocaInst *Alloca = Pair.second;
1997 
1998     // We pre-record the uses of allocas so that we dont have to worry about
1999     // later update that changes the user information..
2000 
2001     SmallVector<Instruction *, 20> Uses;
2002     // PERF: trade a linear scan for repeated reallocation
2003     Uses.reserve(Def->getNumUses());
2004     for (User *U : Def->users()) {
2005       if (!isa<ConstantExpr>(U)) {
2006         // If the def has a ConstantExpr use, then the def is either a
2007         // ConstantExpr use itself or null.  In either case
2008         // (recursively in the first, directly in the second), the oop
2009         // it is ultimately dependent on is null and this particular
2010         // use does not need to be fixed up.
2011         Uses.push_back(cast<Instruction>(U));
2012       }
2013     }
2014 
2015     llvm::sort(Uses);
2016     auto Last = std::unique(Uses.begin(), Uses.end());
2017     Uses.erase(Last, Uses.end());
2018 
2019     for (Instruction *Use : Uses) {
2020       if (isa<PHINode>(Use)) {
2021         PHINode *Phi = cast<PHINode>(Use);
2022         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
2023           if (Def == Phi->getIncomingValue(i)) {
2024             LoadInst *Load =
2025                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
2026                              Phi->getIncomingBlock(i)->getTerminator());
2027             Phi->setIncomingValue(i, Load);
2028           }
2029         }
2030       } else {
2031         LoadInst *Load =
2032             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
2033         Use->replaceUsesOfWith(Def, Load);
2034       }
2035     }
2036 
2037     // Emit store for the initial gc value.  Store must be inserted after load,
2038     // otherwise store will be in alloca's use list and an extra load will be
2039     // inserted before it.
2040     StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2041                                      DL.getABITypeAlign(Def->getType()));
2042     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2043       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2044         // InvokeInst is a terminator so the store need to be inserted into its
2045         // normal destination block.
2046         BasicBlock *NormalDest = Invoke->getNormalDest();
2047         Store->insertBefore(NormalDest->getFirstNonPHI());
2048       } else {
2049         assert(!Inst->isTerminator() &&
2050                "The only terminator that can produce a value is "
2051                "InvokeInst which is handled above.");
2052         Store->insertAfter(Inst);
2053       }
2054     } else {
2055       assert(isa<Argument>(Def));
2056       Store->insertAfter(cast<Instruction>(Alloca));
2057     }
2058   }
2059 
2060   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2061          "we must have the same allocas with lives");
2062   if (!PromotableAllocas.empty()) {
2063     // Apply mem2reg to promote alloca to SSA
2064     PromoteMemToReg(PromotableAllocas, DT);
2065   }
2066 
2067 #ifndef NDEBUG
2068   for (auto &I : F.getEntryBlock())
2069     if (isa<AllocaInst>(I))
2070       InitialAllocaNum--;
2071   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2072 #endif
2073 }
2074 
2075 /// Implement a unique function which doesn't require we sort the input
2076 /// vector.  Doing so has the effect of changing the output of a couple of
2077 /// tests in ways which make them less useful in testing fused safepoints.
2078 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2079   SmallSet<T, 8> Seen;
2080   erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2081 }
2082 
2083 /// Insert holders so that each Value is obviously live through the entire
2084 /// lifetime of the call.
2085 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2086                                  SmallVectorImpl<CallInst *> &Holders) {
2087   if (Values.empty())
2088     // No values to hold live, might as well not insert the empty holder
2089     return;
2090 
2091   Module *M = Call->getModule();
2092   // Use a dummy vararg function to actually hold the values live
2093   FunctionCallee Func = M->getOrInsertFunction(
2094       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2095   if (isa<CallInst>(Call)) {
2096     // For call safepoints insert dummy calls right after safepoint
2097     Holders.push_back(
2098         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
2099     return;
2100   }
2101   // For invoke safepooints insert dummy calls both in normal and
2102   // exceptional destination blocks
2103   auto *II = cast<InvokeInst>(Call);
2104   Holders.push_back(CallInst::Create(
2105       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
2106   Holders.push_back(CallInst::Create(
2107       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
2108 }
2109 
2110 static void findLiveReferences(
2111     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2112     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
2113   GCPtrLivenessData OriginalLivenessData;
2114   computeLiveInValues(DT, F, OriginalLivenessData);
2115   for (size_t i = 0; i < records.size(); i++) {
2116     struct PartiallyConstructedSafepointRecord &info = records[i];
2117     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
2118   }
2119 }
2120 
2121 // Helper function for the "rematerializeLiveValues". It walks use chain
2122 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2123 // the base or a value it cannot process. Only "simple" values are processed
2124 // (currently it is GEP's and casts). The returned root is  examined by the
2125 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
2126 // with all visited values.
2127 static Value* findRematerializableChainToBasePointer(
2128   SmallVectorImpl<Instruction*> &ChainToBase,
2129   Value *CurrentValue) {
2130   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2131     ChainToBase.push_back(GEP);
2132     return findRematerializableChainToBasePointer(ChainToBase,
2133                                                   GEP->getPointerOperand());
2134   }
2135 
2136   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2137     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2138       return CI;
2139 
2140     ChainToBase.push_back(CI);
2141     return findRematerializableChainToBasePointer(ChainToBase,
2142                                                   CI->getOperand(0));
2143   }
2144 
2145   // We have reached the root of the chain, which is either equal to the base or
2146   // is the first unsupported value along the use chain.
2147   return CurrentValue;
2148 }
2149 
2150 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2151 // chain we are going to rematerialize.
2152 static InstructionCost
2153 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2154                        TargetTransformInfo &TTI) {
2155   InstructionCost Cost = 0;
2156 
2157   for (Instruction *Instr : Chain) {
2158     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2159       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2160              "non noop cast is found during rematerialization");
2161 
2162       Type *SrcTy = CI->getOperand(0)->getType();
2163       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2164                                    TTI::getCastContextHint(CI),
2165                                    TargetTransformInfo::TCK_SizeAndLatency, CI);
2166 
2167     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2168       // Cost of the address calculation
2169       Type *ValTy = GEP->getSourceElementType();
2170       Cost += TTI.getAddressComputationCost(ValTy);
2171 
2172       // And cost of the GEP itself
2173       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2174       //       allowed for the external usage)
2175       if (!GEP->hasAllConstantIndices())
2176         Cost += 2;
2177 
2178     } else {
2179       llvm_unreachable("unsupported instruction type during rematerialization");
2180     }
2181   }
2182 
2183   return Cost;
2184 }
2185 
2186 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2187   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2188   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2189       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2190     return false;
2191   // Map of incoming values and their corresponding basic blocks of
2192   // OrigRootPhi.
2193   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2194   for (unsigned i = 0; i < PhiNum; i++)
2195     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2196         OrigRootPhi.getIncomingBlock(i);
2197 
2198   // Both current and base PHIs should have same incoming values and
2199   // the same basic blocks corresponding to the incoming values.
2200   for (unsigned i = 0; i < PhiNum; i++) {
2201     auto CIVI =
2202         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2203     if (CIVI == CurrentIncomingValues.end())
2204       return false;
2205     BasicBlock *CurrentIncomingBB = CIVI->second;
2206     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2207       return false;
2208   }
2209   return true;
2210 }
2211 
2212 // From the statepoint live set pick values that are cheaper to recompute then
2213 // to relocate. Remove this values from the live set, rematerialize them after
2214 // statepoint and record them in "Info" structure. Note that similar to
2215 // relocated values we don't do any user adjustments here.
2216 static void rematerializeLiveValues(CallBase *Call,
2217                                     PartiallyConstructedSafepointRecord &Info,
2218                                     TargetTransformInfo &TTI) {
2219   const unsigned int ChainLengthThreshold = 10;
2220 
2221   // Record values we are going to delete from this statepoint live set.
2222   // We can not di this in following loop due to iterator invalidation.
2223   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2224 
2225   for (Value *LiveValue: Info.LiveSet) {
2226     // For each live pointer find its defining chain
2227     SmallVector<Instruction *, 3> ChainToBase;
2228     assert(Info.PointerToBase.count(LiveValue));
2229     Value *RootOfChain =
2230       findRematerializableChainToBasePointer(ChainToBase,
2231                                              LiveValue);
2232 
2233     // Nothing to do, or chain is too long
2234     if ( ChainToBase.size() == 0 ||
2235         ChainToBase.size() > ChainLengthThreshold)
2236       continue;
2237 
2238     // Handle the scenario where the RootOfChain is not equal to the
2239     // Base Value, but they are essentially the same phi values.
2240     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2241       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2242       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2243       if (!OrigRootPhi || !AlternateRootPhi)
2244         continue;
2245       // PHI nodes that have the same incoming values, and belonging to the same
2246       // basic blocks are essentially the same SSA value.  When the original phi
2247       // has incoming values with different base pointers, the original phi is
2248       // marked as conflict, and an additional `AlternateRootPhi` with the same
2249       // incoming values get generated by the findBasePointer function. We need
2250       // to identify the newly generated AlternateRootPhi (.base version of phi)
2251       // and RootOfChain (the original phi node itself) are the same, so that we
2252       // can rematerialize the gep and casts. This is a workaround for the
2253       // deficiency in the findBasePointer algorithm.
2254       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2255         continue;
2256       // Now that the phi nodes are proved to be the same, assert that
2257       // findBasePointer's newly generated AlternateRootPhi is present in the
2258       // liveset of the call.
2259       assert(Info.LiveSet.count(AlternateRootPhi));
2260     }
2261     // Compute cost of this chain
2262     InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2263     // TODO: We can also account for cases when we will be able to remove some
2264     //       of the rematerialized values by later optimization passes. I.e if
2265     //       we rematerialized several intersecting chains. Or if original values
2266     //       don't have any uses besides this statepoint.
2267 
2268     // For invokes we need to rematerialize each chain twice - for normal and
2269     // for unwind basic blocks. Model this by multiplying cost by two.
2270     if (isa<InvokeInst>(Call)) {
2271       Cost *= 2;
2272     }
2273     // If it's too expensive - skip it
2274     if (Cost >= RematerializationThreshold)
2275       continue;
2276 
2277     // Remove value from the live set
2278     LiveValuesToBeDeleted.push_back(LiveValue);
2279 
2280     // Clone instructions and record them inside "Info" structure
2281 
2282     // Walk backwards to visit top-most instructions first
2283     std::reverse(ChainToBase.begin(), ChainToBase.end());
2284 
2285     // Utility function which clones all instructions from "ChainToBase"
2286     // and inserts them before "InsertBefore". Returns rematerialized value
2287     // which should be used after statepoint.
2288     auto rematerializeChain = [&ChainToBase](
2289         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2290       Instruction *LastClonedValue = nullptr;
2291       Instruction *LastValue = nullptr;
2292       for (Instruction *Instr: ChainToBase) {
2293         // Only GEP's and casts are supported as we need to be careful to not
2294         // introduce any new uses of pointers not in the liveset.
2295         // Note that it's fine to introduce new uses of pointers which were
2296         // otherwise not used after this statepoint.
2297         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2298 
2299         Instruction *ClonedValue = Instr->clone();
2300         ClonedValue->insertBefore(InsertBefore);
2301         ClonedValue->setName(Instr->getName() + ".remat");
2302 
2303         // If it is not first instruction in the chain then it uses previously
2304         // cloned value. We should update it to use cloned value.
2305         if (LastClonedValue) {
2306           assert(LastValue);
2307           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2308 #ifndef NDEBUG
2309           for (auto OpValue : ClonedValue->operand_values()) {
2310             // Assert that cloned instruction does not use any instructions from
2311             // this chain other than LastClonedValue
2312             assert(!is_contained(ChainToBase, OpValue) &&
2313                    "incorrect use in rematerialization chain");
2314             // Assert that the cloned instruction does not use the RootOfChain
2315             // or the AlternateLiveBase.
2316             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2317           }
2318 #endif
2319         } else {
2320           // For the first instruction, replace the use of unrelocated base i.e.
2321           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2322           // live set. They have been proved to be the same PHI nodes.  Note
2323           // that the *only* use of the RootOfChain in the ChainToBase list is
2324           // the first Value in the list.
2325           if (RootOfChain != AlternateLiveBase)
2326             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2327         }
2328 
2329         LastClonedValue = ClonedValue;
2330         LastValue = Instr;
2331       }
2332       assert(LastClonedValue);
2333       return LastClonedValue;
2334     };
2335 
2336     // Different cases for calls and invokes. For invokes we need to clone
2337     // instructions both on normal and unwind path.
2338     if (isa<CallInst>(Call)) {
2339       Instruction *InsertBefore = Call->getNextNode();
2340       assert(InsertBefore);
2341       Instruction *RematerializedValue = rematerializeChain(
2342           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2343       Info.RematerializedValues[RematerializedValue] = LiveValue;
2344     } else {
2345       auto *Invoke = cast<InvokeInst>(Call);
2346 
2347       Instruction *NormalInsertBefore =
2348           &*Invoke->getNormalDest()->getFirstInsertionPt();
2349       Instruction *UnwindInsertBefore =
2350           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2351 
2352       Instruction *NormalRematerializedValue = rematerializeChain(
2353           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2354       Instruction *UnwindRematerializedValue = rematerializeChain(
2355           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2356 
2357       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2358       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2359     }
2360   }
2361 
2362   // Remove rematerializaed values from the live set
2363   for (auto LiveValue: LiveValuesToBeDeleted) {
2364     Info.LiveSet.remove(LiveValue);
2365   }
2366 }
2367 
2368 static bool insertParsePoints(Function &F, DominatorTree &DT,
2369                               TargetTransformInfo &TTI,
2370                               SmallVectorImpl<CallBase *> &ToUpdate) {
2371 #ifndef NDEBUG
2372   // sanity check the input
2373   std::set<CallBase *> Uniqued;
2374   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2375   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2376 
2377   for (CallBase *Call : ToUpdate)
2378     assert(Call->getFunction() == &F);
2379 #endif
2380 
2381   // When inserting gc.relocates for invokes, we need to be able to insert at
2382   // the top of the successor blocks.  See the comment on
2383   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2384   // may restructure the CFG.
2385   for (CallBase *Call : ToUpdate) {
2386     auto *II = dyn_cast<InvokeInst>(Call);
2387     if (!II)
2388       continue;
2389     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2390     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2391   }
2392 
2393   // A list of dummy calls added to the IR to keep various values obviously
2394   // live in the IR.  We'll remove all of these when done.
2395   SmallVector<CallInst *, 64> Holders;
2396 
2397   // Insert a dummy call with all of the deopt operands we'll need for the
2398   // actual safepoint insertion as arguments.  This ensures reference operands
2399   // in the deopt argument list are considered live through the safepoint (and
2400   // thus makes sure they get relocated.)
2401   for (CallBase *Call : ToUpdate) {
2402     SmallVector<Value *, 64> DeoptValues;
2403 
2404     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2405       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2406              "support for FCA unimplemented");
2407       if (isHandledGCPointerType(Arg->getType()))
2408         DeoptValues.push_back(Arg);
2409     }
2410 
2411     insertUseHolderAfter(Call, DeoptValues, Holders);
2412   }
2413 
2414   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2415 
2416   // A) Identify all gc pointers which are statically live at the given call
2417   // site.
2418   findLiveReferences(F, DT, ToUpdate, Records);
2419 
2420   // B) Find the base pointers for each live pointer
2421   /* scope for caching */ {
2422     // Cache the 'defining value' relation used in the computation and
2423     // insertion of base phis and selects.  This ensures that we don't insert
2424     // large numbers of duplicate base_phis.
2425     DefiningValueMapTy DVCache;
2426 
2427     for (size_t i = 0; i < Records.size(); i++) {
2428       PartiallyConstructedSafepointRecord &info = Records[i];
2429       findBasePointers(DT, DVCache, ToUpdate[i], info);
2430     }
2431   } // end of cache scope
2432 
2433   // The base phi insertion logic (for any safepoint) may have inserted new
2434   // instructions which are now live at some safepoint.  The simplest such
2435   // example is:
2436   // loop:
2437   //   phi a  <-- will be a new base_phi here
2438   //   safepoint 1 <-- that needs to be live here
2439   //   gep a + 1
2440   //   safepoint 2
2441   //   br loop
2442   // We insert some dummy calls after each safepoint to definitely hold live
2443   // the base pointers which were identified for that safepoint.  We'll then
2444   // ask liveness for _every_ base inserted to see what is now live.  Then we
2445   // remove the dummy calls.
2446   Holders.reserve(Holders.size() + Records.size());
2447   for (size_t i = 0; i < Records.size(); i++) {
2448     PartiallyConstructedSafepointRecord &Info = Records[i];
2449 
2450     SmallVector<Value *, 128> Bases;
2451     for (auto Pair : Info.PointerToBase)
2452       Bases.push_back(Pair.second);
2453 
2454     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2455   }
2456 
2457   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2458   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2459   // not the key issue.
2460   recomputeLiveInValues(F, DT, ToUpdate, Records);
2461 
2462   if (PrintBasePointers) {
2463     for (auto &Info : Records) {
2464       errs() << "Base Pairs: (w/Relocation)\n";
2465       for (auto Pair : Info.PointerToBase) {
2466         errs() << " derived ";
2467         Pair.first->printAsOperand(errs(), false);
2468         errs() << " base ";
2469         Pair.second->printAsOperand(errs(), false);
2470         errs() << "\n";
2471       }
2472     }
2473   }
2474 
2475   // It is possible that non-constant live variables have a constant base.  For
2476   // example, a GEP with a variable offset from a global.  In this case we can
2477   // remove it from the liveset.  We already don't add constants to the liveset
2478   // because we assume they won't move at runtime and the GC doesn't need to be
2479   // informed about them.  The same reasoning applies if the base is constant.
2480   // Note that the relocation placement code relies on this filtering for
2481   // correctness as it expects the base to be in the liveset, which isn't true
2482   // if the base is constant.
2483   for (auto &Info : Records)
2484     for (auto &BasePair : Info.PointerToBase)
2485       if (isa<Constant>(BasePair.second))
2486         Info.LiveSet.remove(BasePair.first);
2487 
2488   for (CallInst *CI : Holders)
2489     CI->eraseFromParent();
2490 
2491   Holders.clear();
2492 
2493   // In order to reduce live set of statepoint we might choose to rematerialize
2494   // some values instead of relocating them. This is purely an optimization and
2495   // does not influence correctness.
2496   for (size_t i = 0; i < Records.size(); i++)
2497     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2498 
2499   // We need this to safely RAUW and delete call or invoke return values that
2500   // may themselves be live over a statepoint.  For details, please see usage in
2501   // makeStatepointExplicitImpl.
2502   std::vector<DeferredReplacement> Replacements;
2503 
2504   // Now run through and replace the existing statepoints with new ones with
2505   // the live variables listed.  We do not yet update uses of the values being
2506   // relocated. We have references to live variables that need to
2507   // survive to the last iteration of this loop.  (By construction, the
2508   // previous statepoint can not be a live variable, thus we can and remove
2509   // the old statepoint calls as we go.)
2510   for (size_t i = 0; i < Records.size(); i++)
2511     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2512 
2513   ToUpdate.clear(); // prevent accident use of invalid calls.
2514 
2515   for (auto &PR : Replacements)
2516     PR.doReplacement();
2517 
2518   Replacements.clear();
2519 
2520   for (auto &Info : Records) {
2521     // These live sets may contain state Value pointers, since we replaced calls
2522     // with operand bundles with calls wrapped in gc.statepoint, and some of
2523     // those calls may have been def'ing live gc pointers.  Clear these out to
2524     // avoid accidentally using them.
2525     //
2526     // TODO: We should create a separate data structure that does not contain
2527     // these live sets, and migrate to using that data structure from this point
2528     // onward.
2529     Info.LiveSet.clear();
2530     Info.PointerToBase.clear();
2531   }
2532 
2533   // Do all the fixups of the original live variables to their relocated selves
2534   SmallVector<Value *, 128> Live;
2535   for (size_t i = 0; i < Records.size(); i++) {
2536     PartiallyConstructedSafepointRecord &Info = Records[i];
2537 
2538     // We can't simply save the live set from the original insertion.  One of
2539     // the live values might be the result of a call which needs a safepoint.
2540     // That Value* no longer exists and we need to use the new gc_result.
2541     // Thankfully, the live set is embedded in the statepoint (and updated), so
2542     // we just grab that.
2543     llvm::append_range(Live, Info.StatepointToken->gc_args());
2544 #ifndef NDEBUG
2545     // Do some basic sanity checks on our liveness results before performing
2546     // relocation.  Relocation can and will turn mistakes in liveness results
2547     // into non-sensical code which is must harder to debug.
2548     // TODO: It would be nice to test consistency as well
2549     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2550            "statepoint must be reachable or liveness is meaningless");
2551     for (Value *V : Info.StatepointToken->gc_args()) {
2552       if (!isa<Instruction>(V))
2553         // Non-instruction values trivial dominate all possible uses
2554         continue;
2555       auto *LiveInst = cast<Instruction>(V);
2556       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2557              "unreachable values should never be live");
2558       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2559              "basic SSA liveness expectation violated by liveness analysis");
2560     }
2561 #endif
2562   }
2563   unique_unsorted(Live);
2564 
2565 #ifndef NDEBUG
2566   // sanity check
2567   for (auto *Ptr : Live)
2568     assert(isHandledGCPointerType(Ptr->getType()) &&
2569            "must be a gc pointer type");
2570 #endif
2571 
2572   relocationViaAlloca(F, DT, Live, Records);
2573   return !Records.empty();
2574 }
2575 
2576 // Handles both return values and arguments for Functions and calls.
2577 template <typename AttrHolder>
2578 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2579                                       unsigned Index) {
2580   AttrBuilder R;
2581   if (AH.getDereferenceableBytes(Index))
2582     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2583                                   AH.getDereferenceableBytes(Index)));
2584   if (AH.getDereferenceableOrNullBytes(Index))
2585     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2586                                   AH.getDereferenceableOrNullBytes(Index)));
2587   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2588     R.addAttribute(Attribute::NoAlias);
2589 
2590   if (!R.empty())
2591     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2592 }
2593 
2594 static void stripNonValidAttributesFromPrototype(Function &F) {
2595   LLVMContext &Ctx = F.getContext();
2596 
2597   for (Argument &A : F.args())
2598     if (isa<PointerType>(A.getType()))
2599       RemoveNonValidAttrAtIndex(Ctx, F,
2600                                 A.getArgNo() + AttributeList::FirstArgIndex);
2601 
2602   if (isa<PointerType>(F.getReturnType()))
2603     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2604 }
2605 
2606 /// Certain metadata on instructions are invalid after running RS4GC.
2607 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2608 /// optimize functions. We drop such metadata on the instruction.
2609 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2610   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2611     return;
2612   // These are the attributes that are still valid on loads and stores after
2613   // RS4GC.
2614   // The metadata implying dereferenceability and noalias are (conservatively)
2615   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2616   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2617   // touch the entire heap including noalias objects. Note: The reasoning is
2618   // same as stripping the dereferenceability and noalias attributes that are
2619   // analogous to the metadata counterparts.
2620   // We also drop the invariant.load metadata on the load because that metadata
2621   // implies the address operand to the load points to memory that is never
2622   // changed once it became dereferenceable. This is no longer true after RS4GC.
2623   // Similar reasoning applies to invariant.group metadata, which applies to
2624   // loads within a group.
2625   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2626                          LLVMContext::MD_range,
2627                          LLVMContext::MD_alias_scope,
2628                          LLVMContext::MD_nontemporal,
2629                          LLVMContext::MD_nonnull,
2630                          LLVMContext::MD_align,
2631                          LLVMContext::MD_type};
2632 
2633   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2634   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2635 }
2636 
2637 static void stripNonValidDataFromBody(Function &F) {
2638   if (F.empty())
2639     return;
2640 
2641   LLVMContext &Ctx = F.getContext();
2642   MDBuilder Builder(Ctx);
2643 
2644   // Set of invariantstart instructions that we need to remove.
2645   // Use this to avoid invalidating the instruction iterator.
2646   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2647 
2648   for (Instruction &I : instructions(F)) {
2649     // invariant.start on memory location implies that the referenced memory
2650     // location is constant and unchanging. This is no longer true after
2651     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2652     // which frees the entire heap and the presence of invariant.start allows
2653     // the optimizer to sink the load of a memory location past a statepoint,
2654     // which is incorrect.
2655     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2656       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2657         InvariantStartInstructions.push_back(II);
2658         continue;
2659       }
2660 
2661     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2662       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2663       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2664     }
2665 
2666     stripInvalidMetadataFromInstruction(I);
2667 
2668     if (auto *Call = dyn_cast<CallBase>(&I)) {
2669       for (int i = 0, e = Call->arg_size(); i != e; i++)
2670         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2671           RemoveNonValidAttrAtIndex(Ctx, *Call,
2672                                     i + AttributeList::FirstArgIndex);
2673       if (isa<PointerType>(Call->getType()))
2674         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2675     }
2676   }
2677 
2678   // Delete the invariant.start instructions and RAUW undef.
2679   for (auto *II : InvariantStartInstructions) {
2680     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2681     II->eraseFromParent();
2682   }
2683 }
2684 
2685 /// Returns true if this function should be rewritten by this pass.  The main
2686 /// point of this function is as an extension point for custom logic.
2687 static bool shouldRewriteStatepointsIn(Function &F) {
2688   // TODO: This should check the GCStrategy
2689   if (F.hasGC()) {
2690     const auto &FunctionGCName = F.getGC();
2691     const StringRef StatepointExampleName("statepoint-example");
2692     const StringRef CoreCLRName("coreclr");
2693     return (StatepointExampleName == FunctionGCName) ||
2694            (CoreCLRName == FunctionGCName);
2695   } else
2696     return false;
2697 }
2698 
2699 static void stripNonValidData(Module &M) {
2700 #ifndef NDEBUG
2701   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2702 #endif
2703 
2704   for (Function &F : M)
2705     stripNonValidAttributesFromPrototype(F);
2706 
2707   for (Function &F : M)
2708     stripNonValidDataFromBody(F);
2709 }
2710 
2711 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2712                                             TargetTransformInfo &TTI,
2713                                             const TargetLibraryInfo &TLI) {
2714   assert(!F.isDeclaration() && !F.empty() &&
2715          "need function body to rewrite statepoints in");
2716   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2717 
2718   auto NeedsRewrite = [&TLI](Instruction &I) {
2719     if (const auto *Call = dyn_cast<CallBase>(&I)) {
2720       if (isa<GCStatepointInst>(Call))
2721         return false;
2722       if (callsGCLeafFunction(Call, TLI))
2723         return false;
2724 
2725       // Normally it's up to the frontend to make sure that non-leaf calls also
2726       // have proper deopt state if it is required. We make an exception for
2727       // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
2728       // these are non-leaf by default. They might be generated by the optimizer
2729       // which doesn't know how to produce a proper deopt state. So if we see a
2730       // non-leaf memcpy/memmove without deopt state just treat it as a leaf
2731       // copy and don't produce a statepoint.
2732       if (!AllowStatepointWithNoDeoptInfo &&
2733           !Call->getOperandBundle(LLVMContext::OB_deopt)) {
2734         assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
2735                "Don't expect any other calls here!");
2736         return false;
2737       }
2738       return true;
2739     }
2740     return false;
2741   };
2742 
2743   // Delete any unreachable statepoints so that we don't have unrewritten
2744   // statepoints surviving this pass.  This makes testing easier and the
2745   // resulting IR less confusing to human readers.
2746   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2747   bool MadeChange = removeUnreachableBlocks(F, &DTU);
2748   // Flush the Dominator Tree.
2749   DTU.getDomTree();
2750 
2751   // Gather all the statepoints which need rewritten.  Be careful to only
2752   // consider those in reachable code since we need to ask dominance queries
2753   // when rewriting.  We'll delete the unreachable ones in a moment.
2754   SmallVector<CallBase *, 64> ParsePointNeeded;
2755   for (Instruction &I : instructions(F)) {
2756     // TODO: only the ones with the flag set!
2757     if (NeedsRewrite(I)) {
2758       // NOTE removeUnreachableBlocks() is stronger than
2759       // DominatorTree::isReachableFromEntry(). In other words
2760       // removeUnreachableBlocks can remove some blocks for which
2761       // isReachableFromEntry() returns true.
2762       assert(DT.isReachableFromEntry(I.getParent()) &&
2763             "no unreachable blocks expected");
2764       ParsePointNeeded.push_back(cast<CallBase>(&I));
2765     }
2766   }
2767 
2768   // Return early if no work to do.
2769   if (ParsePointNeeded.empty())
2770     return MadeChange;
2771 
2772   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2773   // These are created by LCSSA.  They have the effect of increasing the size
2774   // of liveness sets for no good reason.  It may be harder to do this post
2775   // insertion since relocations and base phis can confuse things.
2776   for (BasicBlock &BB : F)
2777     if (BB.getUniquePredecessor())
2778       MadeChange |= FoldSingleEntryPHINodes(&BB);
2779 
2780   // Before we start introducing relocations, we want to tweak the IR a bit to
2781   // avoid unfortunate code generation effects.  The main example is that we
2782   // want to try to make sure the comparison feeding a branch is after any
2783   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2784   // values feeding a branch after relocation.  This is semantically correct,
2785   // but results in extra register pressure since both the pre-relocation and
2786   // post-relocation copies must be available in registers.  For code without
2787   // relocations this is handled elsewhere, but teaching the scheduler to
2788   // reverse the transform we're about to do would be slightly complex.
2789   // Note: This may extend the live range of the inputs to the icmp and thus
2790   // increase the liveset of any statepoint we move over.  This is profitable
2791   // as long as all statepoints are in rare blocks.  If we had in-register
2792   // lowering for live values this would be a much safer transform.
2793   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2794     if (auto *BI = dyn_cast<BranchInst>(TI))
2795       if (BI->isConditional())
2796         return dyn_cast<Instruction>(BI->getCondition());
2797     // TODO: Extend this to handle switches
2798     return nullptr;
2799   };
2800   for (BasicBlock &BB : F) {
2801     Instruction *TI = BB.getTerminator();
2802     if (auto *Cond = getConditionInst(TI))
2803       // TODO: Handle more than just ICmps here.  We should be able to move
2804       // most instructions without side effects or memory access.
2805       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2806         MadeChange = true;
2807         Cond->moveBefore(TI);
2808       }
2809   }
2810 
2811   // Nasty workaround - The base computation code in the main algorithm doesn't
2812   // consider the fact that a GEP can be used to convert a scalar to a vector.
2813   // The right fix for this is to integrate GEPs into the base rewriting
2814   // algorithm properly, this is just a short term workaround to prevent
2815   // crashes by canonicalizing such GEPs into fully vector GEPs.
2816   for (Instruction &I : instructions(F)) {
2817     if (!isa<GetElementPtrInst>(I))
2818       continue;
2819 
2820     unsigned VF = 0;
2821     for (unsigned i = 0; i < I.getNumOperands(); i++)
2822       if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
2823         assert(VF == 0 ||
2824                VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
2825         VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
2826       }
2827 
2828     // It's the vector to scalar traversal through the pointer operand which
2829     // confuses base pointer rewriting, so limit ourselves to that case.
2830     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2831       IRBuilder<> B(&I);
2832       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2833       I.setOperand(0, Splat);
2834       MadeChange = true;
2835     }
2836   }
2837 
2838   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2839   return MadeChange;
2840 }
2841 
2842 // liveness computation via standard dataflow
2843 // -------------------------------------------------------------------
2844 
2845 // TODO: Consider using bitvectors for liveness, the set of potentially
2846 // interesting values should be small and easy to pre-compute.
2847 
2848 /// Compute the live-in set for the location rbegin starting from
2849 /// the live-out set of the basic block
2850 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2851                                 BasicBlock::reverse_iterator End,
2852                                 SetVector<Value *> &LiveTmp) {
2853   for (auto &I : make_range(Begin, End)) {
2854     // KILL/Def - Remove this definition from LiveIn
2855     LiveTmp.remove(&I);
2856 
2857     // Don't consider *uses* in PHI nodes, we handle their contribution to
2858     // predecessor blocks when we seed the LiveOut sets
2859     if (isa<PHINode>(I))
2860       continue;
2861 
2862     // USE - Add to the LiveIn set for this instruction
2863     for (Value *V : I.operands()) {
2864       assert(!isUnhandledGCPointerType(V->getType()) &&
2865              "support for FCA unimplemented");
2866       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2867         // The choice to exclude all things constant here is slightly subtle.
2868         // There are two independent reasons:
2869         // - We assume that things which are constant (from LLVM's definition)
2870         // do not move at runtime.  For example, the address of a global
2871         // variable is fixed, even though it's contents may not be.
2872         // - Second, we can't disallow arbitrary inttoptr constants even
2873         // if the language frontend does.  Optimization passes are free to
2874         // locally exploit facts without respect to global reachability.  This
2875         // can create sections of code which are dynamically unreachable and
2876         // contain just about anything.  (see constants.ll in tests)
2877         LiveTmp.insert(V);
2878       }
2879     }
2880   }
2881 }
2882 
2883 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2884   for (BasicBlock *Succ : successors(BB)) {
2885     for (auto &I : *Succ) {
2886       PHINode *PN = dyn_cast<PHINode>(&I);
2887       if (!PN)
2888         break;
2889 
2890       Value *V = PN->getIncomingValueForBlock(BB);
2891       assert(!isUnhandledGCPointerType(V->getType()) &&
2892              "support for FCA unimplemented");
2893       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2894         LiveTmp.insert(V);
2895     }
2896   }
2897 }
2898 
2899 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2900   SetVector<Value *> KillSet;
2901   for (Instruction &I : *BB)
2902     if (isHandledGCPointerType(I.getType()))
2903       KillSet.insert(&I);
2904   return KillSet;
2905 }
2906 
2907 #ifndef NDEBUG
2908 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2909 /// sanity check for the liveness computation.
2910 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2911                           Instruction *TI, bool TermOkay = false) {
2912   for (Value *V : Live) {
2913     if (auto *I = dyn_cast<Instruction>(V)) {
2914       // The terminator can be a member of the LiveOut set.  LLVM's definition
2915       // of instruction dominance states that V does not dominate itself.  As
2916       // such, we need to special case this to allow it.
2917       if (TermOkay && TI == I)
2918         continue;
2919       assert(DT.dominates(I, TI) &&
2920              "basic SSA liveness expectation violated by liveness analysis");
2921     }
2922   }
2923 }
2924 
2925 /// Check that all the liveness sets used during the computation of liveness
2926 /// obey basic SSA properties.  This is useful for finding cases where we miss
2927 /// a def.
2928 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2929                           BasicBlock &BB) {
2930   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2931   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2932   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2933 }
2934 #endif
2935 
2936 static void computeLiveInValues(DominatorTree &DT, Function &F,
2937                                 GCPtrLivenessData &Data) {
2938   SmallSetVector<BasicBlock *, 32> Worklist;
2939 
2940   // Seed the liveness for each individual block
2941   for (BasicBlock &BB : F) {
2942     Data.KillSet[&BB] = computeKillSet(&BB);
2943     Data.LiveSet[&BB].clear();
2944     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2945 
2946 #ifndef NDEBUG
2947     for (Value *Kill : Data.KillSet[&BB])
2948       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2949 #endif
2950 
2951     Data.LiveOut[&BB] = SetVector<Value *>();
2952     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2953     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2954     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2955     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2956     if (!Data.LiveIn[&BB].empty())
2957       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2958   }
2959 
2960   // Propagate that liveness until stable
2961   while (!Worklist.empty()) {
2962     BasicBlock *BB = Worklist.pop_back_val();
2963 
2964     // Compute our new liveout set, then exit early if it hasn't changed despite
2965     // the contribution of our successor.
2966     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2967     const auto OldLiveOutSize = LiveOut.size();
2968     for (BasicBlock *Succ : successors(BB)) {
2969       assert(Data.LiveIn.count(Succ));
2970       LiveOut.set_union(Data.LiveIn[Succ]);
2971     }
2972     // assert OutLiveOut is a subset of LiveOut
2973     if (OldLiveOutSize == LiveOut.size()) {
2974       // If the sets are the same size, then we didn't actually add anything
2975       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2976       // hasn't changed.
2977       continue;
2978     }
2979     Data.LiveOut[BB] = LiveOut;
2980 
2981     // Apply the effects of this basic block
2982     SetVector<Value *> LiveTmp = LiveOut;
2983     LiveTmp.set_union(Data.LiveSet[BB]);
2984     LiveTmp.set_subtract(Data.KillSet[BB]);
2985 
2986     assert(Data.LiveIn.count(BB));
2987     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2988     // assert: OldLiveIn is a subset of LiveTmp
2989     if (OldLiveIn.size() != LiveTmp.size()) {
2990       Data.LiveIn[BB] = LiveTmp;
2991       Worklist.insert(pred_begin(BB), pred_end(BB));
2992     }
2993   } // while (!Worklist.empty())
2994 
2995 #ifndef NDEBUG
2996   // Sanity check our output against SSA properties.  This helps catch any
2997   // missing kills during the above iteration.
2998   for (BasicBlock &BB : F)
2999     checkBasicSSA(DT, Data, BB);
3000 #endif
3001 }
3002 
3003 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
3004                               StatepointLiveSetTy &Out) {
3005   BasicBlock *BB = Inst->getParent();
3006 
3007   // Note: The copy is intentional and required
3008   assert(Data.LiveOut.count(BB));
3009   SetVector<Value *> LiveOut = Data.LiveOut[BB];
3010 
3011   // We want to handle the statepoint itself oddly.  It's
3012   // call result is not live (normal), nor are it's arguments
3013   // (unless they're used again later).  This adjustment is
3014   // specifically what we need to relocate
3015   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
3016                       LiveOut);
3017   LiveOut.remove(Inst);
3018   Out.insert(LiveOut.begin(), LiveOut.end());
3019 }
3020 
3021 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
3022                                   CallBase *Call,
3023                                   PartiallyConstructedSafepointRecord &Info) {
3024   StatepointLiveSetTy Updated;
3025   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
3026 
3027   // We may have base pointers which are now live that weren't before.  We need
3028   // to update the PointerToBase structure to reflect this.
3029   for (auto V : Updated)
3030     Info.PointerToBase.insert({V, V});
3031 
3032 #ifndef NDEBUG
3033   for (auto V : Updated)
3034     assert(Info.PointerToBase.count(V) &&
3035            "Must be able to find base for live value!");
3036 #endif
3037 
3038   // Remove any stale base mappings - this can happen since our liveness is
3039   // more precise then the one inherent in the base pointer analysis.
3040   DenseSet<Value *> ToErase;
3041   for (auto KVPair : Info.PointerToBase)
3042     if (!Updated.count(KVPair.first))
3043       ToErase.insert(KVPair.first);
3044 
3045   for (auto *V : ToErase)
3046     Info.PointerToBase.erase(V);
3047 
3048 #ifndef NDEBUG
3049   for (auto KVPair : Info.PointerToBase)
3050     assert(Updated.count(KVPair.first) && "record for non-live value");
3051 #endif
3052 
3053   Info.LiveSet = Updated;
3054 }
3055