xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision be4d8cba1ccf6f0611db50e8c7ba366ce3a3137d)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Statepoint.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/Verifier.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/Cloning.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
46 
47 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
48 
49 using namespace llvm;
50 
51 // Print the liveset found at the insert location
52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
53                                   cl::init(false));
54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
55                                       cl::init(false));
56 // Print out the base pointers for debugging
57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
58                                        cl::init(false));
59 
60 // Cost threshold measuring when it is profitable to rematerialize value instead
61 // of relocating it
62 static cl::opt<unsigned>
63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
64                            cl::init(6));
65 
66 #ifdef XDEBUG
67 static bool ClobberNonLive = true;
68 #else
69 static bool ClobberNonLive = false;
70 #endif
71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
72                                                   cl::location(ClobberNonLive),
73                                                   cl::Hidden);
74 
75 namespace {
76 struct RewriteStatepointsForGC : public ModulePass {
77   static char ID; // Pass identification, replacement for typeid
78 
79   RewriteStatepointsForGC() : ModulePass(ID) {
80     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
81   }
82   bool runOnFunction(Function &F);
83   bool runOnModule(Module &M) override {
84     bool Changed = false;
85     for (Function &F : M)
86       Changed |= runOnFunction(F);
87 
88     if (Changed) {
89       // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn
90       // returns true for at least one function in the module.  Since at least
91       // one function changed, we know that the precondition is satisfied.
92       stripDereferenceabilityInfo(M);
93     }
94 
95     return Changed;
96   }
97 
98   void getAnalysisUsage(AnalysisUsage &AU) const override {
99     // We add and rewrite a bunch of instructions, but don't really do much
100     // else.  We could in theory preserve a lot more analyses here.
101     AU.addRequired<DominatorTreeWrapperPass>();
102     AU.addRequired<TargetTransformInfoWrapperPass>();
103   }
104 
105   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
106   /// dereferenceability that are no longer valid/correct after
107   /// RewriteStatepointsForGC has run.  This is because semantically, after
108   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
109   /// heap.  stripDereferenceabilityInfo (conservatively) restores correctness
110   /// by erasing all attributes in the module that externally imply
111   /// dereferenceability.
112   ///
113   void stripDereferenceabilityInfo(Module &M);
114 
115   // Helpers for stripDereferenceabilityInfo
116   void stripDereferenceabilityInfoFromBody(Function &F);
117   void stripDereferenceabilityInfoFromPrototype(Function &F);
118 };
119 } // namespace
120 
121 char RewriteStatepointsForGC::ID = 0;
122 
123 ModulePass *llvm::createRewriteStatepointsForGCPass() {
124   return new RewriteStatepointsForGC();
125 }
126 
127 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
128                       "Make relocations explicit at statepoints", false, false)
129 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
130 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
131                     "Make relocations explicit at statepoints", false, false)
132 
133 namespace {
134 struct GCPtrLivenessData {
135   /// Values defined in this block.
136   DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
137   /// Values used in this block (and thus live); does not included values
138   /// killed within this block.
139   DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
140 
141   /// Values live into this basic block (i.e. used by any
142   /// instruction in this basic block or ones reachable from here)
143   DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
144 
145   /// Values live out of this basic block (i.e. live into
146   /// any successor block)
147   DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
148 };
149 
150 // The type of the internal cache used inside the findBasePointers family
151 // of functions.  From the callers perspective, this is an opaque type and
152 // should not be inspected.
153 //
154 // In the actual implementation this caches two relations:
155 // - The base relation itself (i.e. this pointer is based on that one)
156 // - The base defining value relation (i.e. before base_phi insertion)
157 // Generally, after the execution of a full findBasePointer call, only the
158 // base relation will remain.  Internally, we add a mixture of the two
159 // types, then update all the second type to the first type
160 typedef DenseMap<Value *, Value *> DefiningValueMapTy;
161 typedef DenseSet<Value *> StatepointLiveSetTy;
162 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>>
163   RematerializedValueMapTy;
164 
165 struct PartiallyConstructedSafepointRecord {
166   /// The set of values known to be live across this safepoint
167   StatepointLiveSetTy LiveSet;
168 
169   /// Mapping from live pointers to a base-defining-value
170   DenseMap<Value *, Value *> PointerToBase;
171 
172   /// The *new* gc.statepoint instruction itself.  This produces the token
173   /// that normal path gc.relocates and the gc.result are tied to.
174   Instruction *StatepointToken;
175 
176   /// Instruction to which exceptional gc relocates are attached
177   /// Makes it easier to iterate through them during relocationViaAlloca.
178   Instruction *UnwindToken;
179 
180   /// Record live values we are rematerialized instead of relocating.
181   /// They are not included into 'LiveSet' field.
182   /// Maps rematerialized copy to it's original value.
183   RematerializedValueMapTy RematerializedValues;
184 };
185 }
186 
187 /// Compute the live-in set for every basic block in the function
188 static void computeLiveInValues(DominatorTree &DT, Function &F,
189                                 GCPtrLivenessData &Data);
190 
191 /// Given results from the dataflow liveness computation, find the set of live
192 /// Values at a particular instruction.
193 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
194                               StatepointLiveSetTy &out);
195 
196 // TODO: Once we can get to the GCStrategy, this becomes
197 // Optional<bool> isGCManagedPointer(const Value *V) const override {
198 
199 static bool isGCPointerType(Type *T) {
200   if (auto *PT = dyn_cast<PointerType>(T))
201     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
202     // GC managed heap.  We know that a pointer into this heap needs to be
203     // updated and that no other pointer does.
204     return (1 == PT->getAddressSpace());
205   return false;
206 }
207 
208 // Return true if this type is one which a) is a gc pointer or contains a GC
209 // pointer and b) is of a type this code expects to encounter as a live value.
210 // (The insertion code will assert that a type which matches (a) and not (b)
211 // is not encountered.)
212 static bool isHandledGCPointerType(Type *T) {
213   // We fully support gc pointers
214   if (isGCPointerType(T))
215     return true;
216   // We partially support vectors of gc pointers. The code will assert if it
217   // can't handle something.
218   if (auto VT = dyn_cast<VectorType>(T))
219     if (isGCPointerType(VT->getElementType()))
220       return true;
221   return false;
222 }
223 
224 #ifndef NDEBUG
225 /// Returns true if this type contains a gc pointer whether we know how to
226 /// handle that type or not.
227 static bool containsGCPtrType(Type *Ty) {
228   if (isGCPointerType(Ty))
229     return true;
230   if (VectorType *VT = dyn_cast<VectorType>(Ty))
231     return isGCPointerType(VT->getScalarType());
232   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
233     return containsGCPtrType(AT->getElementType());
234   if (StructType *ST = dyn_cast<StructType>(Ty))
235     return std::any_of(
236         ST->subtypes().begin(), ST->subtypes().end(),
237         [](Type *SubType) { return containsGCPtrType(SubType); });
238   return false;
239 }
240 
241 // Returns true if this is a type which a) is a gc pointer or contains a GC
242 // pointer and b) is of a type which the code doesn't expect (i.e. first class
243 // aggregates).  Used to trip assertions.
244 static bool isUnhandledGCPointerType(Type *Ty) {
245   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
246 }
247 #endif
248 
249 static bool order_by_name(Value *a, Value *b) {
250   if (a->hasName() && b->hasName()) {
251     return -1 == a->getName().compare(b->getName());
252   } else if (a->hasName() && !b->hasName()) {
253     return true;
254   } else if (!a->hasName() && b->hasName()) {
255     return false;
256   } else {
257     // Better than nothing, but not stable
258     return a < b;
259   }
260 }
261 
262 // Return the name of the value suffixed with the provided value, or if the
263 // value didn't have a name, the default value specified.
264 static std::string suffixed_name_or(Value *V, StringRef Suffix,
265                                     StringRef DefaultName) {
266   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
267 }
268 
269 // Conservatively identifies any definitions which might be live at the
270 // given instruction. The  analysis is performed immediately before the
271 // given instruction. Values defined by that instruction are not considered
272 // live.  Values used by that instruction are considered live.
273 static void analyzeParsePointLiveness(
274     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
275     const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
276   Instruction *inst = CS.getInstruction();
277 
278   StatepointLiveSetTy LiveSet;
279   findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
280 
281   if (PrintLiveSet) {
282     // Note: This output is used by several of the test cases
283     // The order of elements in a set is not stable, put them in a vec and sort
284     // by name
285     SmallVector<Value *, 64> Temp;
286     Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end());
287     std::sort(Temp.begin(), Temp.end(), order_by_name);
288     errs() << "Live Variables:\n";
289     for (Value *V : Temp)
290       dbgs() << " " << V->getName() << " " << *V << "\n";
291   }
292   if (PrintLiveSetSize) {
293     errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
294     errs() << "Number live values: " << LiveSet.size() << "\n";
295   }
296   result.LiveSet = LiveSet;
297 }
298 
299 static bool isKnownBaseResult(Value *V);
300 namespace {
301 /// A single base defining value - An immediate base defining value for an
302 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
303 /// For instructions which have multiple pointer [vector] inputs or that
304 /// transition between vector and scalar types, there is no immediate base
305 /// defining value.  The 'base defining value' for 'Def' is the transitive
306 /// closure of this relation stopping at the first instruction which has no
307 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
308 /// but it can also be an arbitrary derived pointer.
309 struct BaseDefiningValueResult {
310   /// Contains the value which is the base defining value.
311   Value * const BDV;
312   /// True if the base defining value is also known to be an actual base
313   /// pointer.
314   const bool IsKnownBase;
315   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
316     : BDV(BDV), IsKnownBase(IsKnownBase) {
317 #ifndef NDEBUG
318     // Check consistency between new and old means of checking whether a BDV is
319     // a base.
320     bool MustBeBase = isKnownBaseResult(BDV);
321     assert(!MustBeBase || MustBeBase == IsKnownBase);
322 #endif
323   }
324 };
325 }
326 
327 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
328 
329 /// Return a base defining value for the 'Index' element of the given vector
330 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
331 /// 'I'.  As an optimization, this method will try to determine when the
332 /// element is known to already be a base pointer.  If this can be established,
333 /// the second value in the returned pair will be true.  Note that either a
334 /// vector or a pointer typed value can be returned.  For the former, the
335 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
336 /// If the later, the return pointer is a BDV (or possibly a base) for the
337 /// particular element in 'I'.
338 static BaseDefiningValueResult
339 findBaseDefiningValueOfVector(Value *I) {
340   assert(I->getType()->isVectorTy() &&
341          cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
342          "Illegal to ask for the base pointer of a non-pointer type");
343 
344   // Each case parallels findBaseDefiningValue below, see that code for
345   // detailed motivation.
346 
347   if (isa<Argument>(I))
348     // An incoming argument to the function is a base pointer
349     return BaseDefiningValueResult(I, true);
350 
351   // We shouldn't see the address of a global as a vector value?
352   assert(!isa<GlobalVariable>(I) &&
353          "unexpected global variable found in base of vector");
354 
355   // inlining could possibly introduce phi node that contains
356   // undef if callee has multiple returns
357   if (isa<UndefValue>(I))
358     // utterly meaningless, but useful for dealing with partially optimized
359     // code.
360     return BaseDefiningValueResult(I, true);
361 
362   // Due to inheritance, this must be _after_ the global variable and undef
363   // checks
364   if (Constant *Con = dyn_cast<Constant>(I)) {
365     assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
366            "order of checks wrong!");
367     assert(Con->isNullValue() && "null is the only case which makes sense");
368     return BaseDefiningValueResult(Con, true);
369   }
370 
371   if (isa<LoadInst>(I))
372     return BaseDefiningValueResult(I, true);
373 
374   if (isa<InsertElementInst>(I))
375     // We don't know whether this vector contains entirely base pointers or
376     // not.  To be conservatively correct, we treat it as a BDV and will
377     // duplicate code as needed to construct a parallel vector of bases.
378     return BaseDefiningValueResult(I, false);
379 
380   if (isa<ShuffleVectorInst>(I))
381     // We don't know whether this vector contains entirely base pointers or
382     // not.  To be conservatively correct, we treat it as a BDV and will
383     // duplicate code as needed to construct a parallel vector of bases.
384     // TODO: There a number of local optimizations which could be applied here
385     // for particular sufflevector patterns.
386     return BaseDefiningValueResult(I, false);
387 
388   // A PHI or Select is a base defining value.  The outer findBasePointer
389   // algorithm is responsible for constructing a base value for this BDV.
390   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
391          "unknown vector instruction - no base found for vector element");
392   return BaseDefiningValueResult(I, false);
393 }
394 
395 /// Helper function for findBasePointer - Will return a value which either a)
396 /// defines the base pointer for the input, b) blocks the simple search
397 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
398 /// from pointer to vector type or back.
399 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
400   if (I->getType()->isVectorTy())
401     return findBaseDefiningValueOfVector(I);
402 
403   assert(I->getType()->isPointerTy() &&
404          "Illegal to ask for the base pointer of a non-pointer type");
405 
406   if (isa<Argument>(I))
407     // An incoming argument to the function is a base pointer
408     // We should have never reached here if this argument isn't an gc value
409     return BaseDefiningValueResult(I, true);
410 
411   if (isa<GlobalVariable>(I))
412     // base case
413     return BaseDefiningValueResult(I, true);
414 
415   // inlining could possibly introduce phi node that contains
416   // undef if callee has multiple returns
417   if (isa<UndefValue>(I))
418     // utterly meaningless, but useful for dealing with
419     // partially optimized code.
420     return BaseDefiningValueResult(I, true);
421 
422   // Due to inheritance, this must be _after_ the global variable and undef
423   // checks
424   if (isa<Constant>(I)) {
425     assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
426            "order of checks wrong!");
427     // Note: Finding a constant base for something marked for relocation
428     // doesn't really make sense.  The most likely case is either a) some
429     // screwed up the address space usage or b) your validating against
430     // compiled C++ code w/o the proper separation.  The only real exception
431     // is a null pointer.  You could have generic code written to index of
432     // off a potentially null value and have proven it null.  We also use
433     // null pointers in dead paths of relocation phis (which we might later
434     // want to find a base pointer for).
435     assert(isa<ConstantPointerNull>(I) &&
436            "null is the only case which makes sense");
437     return BaseDefiningValueResult(I, true);
438   }
439 
440   if (CastInst *CI = dyn_cast<CastInst>(I)) {
441     Value *Def = CI->stripPointerCasts();
442     // If we find a cast instruction here, it means we've found a cast which is
443     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
444     // handle int->ptr conversion.
445     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
446     return findBaseDefiningValue(Def);
447   }
448 
449   if (isa<LoadInst>(I))
450     // The value loaded is an gc base itself
451     return BaseDefiningValueResult(I, true);
452 
453 
454   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
455     // The base of this GEP is the base
456     return findBaseDefiningValue(GEP->getPointerOperand());
457 
458   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
459     switch (II->getIntrinsicID()) {
460     case Intrinsic::experimental_gc_result_ptr:
461     default:
462       // fall through to general call handling
463       break;
464     case Intrinsic::experimental_gc_statepoint:
465     case Intrinsic::experimental_gc_result_float:
466     case Intrinsic::experimental_gc_result_int:
467       llvm_unreachable("these don't produce pointers");
468     case Intrinsic::experimental_gc_relocate: {
469       // Rerunning safepoint insertion after safepoints are already
470       // inserted is not supported.  It could probably be made to work,
471       // but why are you doing this?  There's no good reason.
472       llvm_unreachable("repeat safepoint insertion is not supported");
473     }
474     case Intrinsic::gcroot:
475       // Currently, this mechanism hasn't been extended to work with gcroot.
476       // There's no reason it couldn't be, but I haven't thought about the
477       // implications much.
478       llvm_unreachable(
479           "interaction with the gcroot mechanism is not supported");
480     }
481   }
482   // We assume that functions in the source language only return base
483   // pointers.  This should probably be generalized via attributes to support
484   // both source language and internal functions.
485   if (isa<CallInst>(I) || isa<InvokeInst>(I))
486     return BaseDefiningValueResult(I, true);
487 
488   // I have absolutely no idea how to implement this part yet.  It's not
489   // necessarily hard, I just haven't really looked at it yet.
490   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
491 
492   if (isa<AtomicCmpXchgInst>(I))
493     // A CAS is effectively a atomic store and load combined under a
494     // predicate.  From the perspective of base pointers, we just treat it
495     // like a load.
496     return BaseDefiningValueResult(I, true);
497 
498   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
499                                    "binary ops which don't apply to pointers");
500 
501   // The aggregate ops.  Aggregates can either be in the heap or on the
502   // stack, but in either case, this is simply a field load.  As a result,
503   // this is a defining definition of the base just like a load is.
504   if (isa<ExtractValueInst>(I))
505     return BaseDefiningValueResult(I, true);
506 
507   // We should never see an insert vector since that would require we be
508   // tracing back a struct value not a pointer value.
509   assert(!isa<InsertValueInst>(I) &&
510          "Base pointer for a struct is meaningless");
511 
512   // An extractelement produces a base result exactly when it's input does.
513   // We may need to insert a parallel instruction to extract the appropriate
514   // element out of the base vector corresponding to the input. Given this,
515   // it's analogous to the phi and select case even though it's not a merge.
516   if (isa<ExtractElementInst>(I))
517     // Note: There a lot of obvious peephole cases here.  This are deliberately
518     // handled after the main base pointer inference algorithm to make writing
519     // test cases to exercise that code easier.
520     return BaseDefiningValueResult(I, false);
521 
522   // The last two cases here don't return a base pointer.  Instead, they
523   // return a value which dynamically selects from among several base
524   // derived pointers (each with it's own base potentially).  It's the job of
525   // the caller to resolve these.
526   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
527          "missing instruction case in findBaseDefiningValing");
528   return BaseDefiningValueResult(I, false);
529 }
530 
531 /// Returns the base defining value for this value.
532 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
533   Value *&Cached = Cache[I];
534   if (!Cached) {
535     Cached = findBaseDefiningValue(I).BDV;
536     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
537                  << Cached->getName() << "\n");
538   }
539   assert(Cache[I] != nullptr);
540   return Cached;
541 }
542 
543 /// Return a base pointer for this value if known.  Otherwise, return it's
544 /// base defining value.
545 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
546   Value *Def = findBaseDefiningValueCached(I, Cache);
547   auto Found = Cache.find(Def);
548   if (Found != Cache.end()) {
549     // Either a base-of relation, or a self reference.  Caller must check.
550     return Found->second;
551   }
552   // Only a BDV available
553   return Def;
554 }
555 
556 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
557 /// is it known to be a base pointer?  Or do we need to continue searching.
558 static bool isKnownBaseResult(Value *V) {
559   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
560       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
561       !isa<ShuffleVectorInst>(V)) {
562     // no recursion possible
563     return true;
564   }
565   if (isa<Instruction>(V) &&
566       cast<Instruction>(V)->getMetadata("is_base_value")) {
567     // This is a previously inserted base phi or select.  We know
568     // that this is a base value.
569     return true;
570   }
571 
572   // We need to keep searching
573   return false;
574 }
575 
576 namespace {
577 /// Models the state of a single base defining value in the findBasePointer
578 /// algorithm for determining where a new instruction is needed to propagate
579 /// the base of this BDV.
580 class BDVState {
581 public:
582   enum Status { Unknown, Base, Conflict };
583 
584   BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
585     assert(status != Base || b);
586   }
587   explicit BDVState(Value *b) : status(Base), base(b) {}
588   BDVState() : status(Unknown), base(nullptr) {}
589 
590   Status getStatus() const { return status; }
591   Value *getBase() const { return base; }
592 
593   bool isBase() const { return getStatus() == Base; }
594   bool isUnknown() const { return getStatus() == Unknown; }
595   bool isConflict() const { return getStatus() == Conflict; }
596 
597   bool operator==(const BDVState &other) const {
598     return base == other.base && status == other.status;
599   }
600 
601   bool operator!=(const BDVState &other) const { return !(*this == other); }
602 
603   LLVM_DUMP_METHOD
604   void dump() const { print(dbgs()); dbgs() << '\n'; }
605 
606   void print(raw_ostream &OS) const {
607     switch (status) {
608     case Unknown:
609       OS << "U";
610       break;
611     case Base:
612       OS << "B";
613       break;
614     case Conflict:
615       OS << "C";
616       break;
617     };
618     OS << " (" << base << " - "
619        << (base ? base->getName() : "nullptr") << "): ";
620   }
621 
622 private:
623   Status status;
624   Value *base; // non null only if status == base
625 };
626 }
627 
628 #ifndef NDEBUG
629 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
630   State.print(OS);
631   return OS;
632 }
633 #endif
634 
635 namespace {
636 // Values of type BDVState form a lattice, and this is a helper
637 // class that implementes the meet operation.  The meat of the meet
638 // operation is implemented in MeetBDVStates::pureMeet
639 class MeetBDVStates {
640 public:
641   /// Initializes the currentResult to the TOP state so that if can be met with
642   /// any other state to produce that state.
643   MeetBDVStates() {}
644 
645   // Destructively meet the current result with the given BDVState
646   void meetWith(BDVState otherState) {
647     currentResult = meet(otherState, currentResult);
648   }
649 
650   BDVState getResult() const { return currentResult; }
651 
652 private:
653   BDVState currentResult;
654 
655   /// Perform a meet operation on two elements of the BDVState lattice.
656   static BDVState meet(BDVState LHS, BDVState RHS) {
657     assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
658            "math is wrong: meet does not commute!");
659     BDVState Result = pureMeet(LHS, RHS);
660     DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
661                  << " produced " << Result << "\n");
662     return Result;
663   }
664 
665   static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
666     switch (stateA.getStatus()) {
667     case BDVState::Unknown:
668       return stateB;
669 
670     case BDVState::Base:
671       assert(stateA.getBase() && "can't be null");
672       if (stateB.isUnknown())
673         return stateA;
674 
675       if (stateB.isBase()) {
676         if (stateA.getBase() == stateB.getBase()) {
677           assert(stateA == stateB && "equality broken!");
678           return stateA;
679         }
680         return BDVState(BDVState::Conflict);
681       }
682       assert(stateB.isConflict() && "only three states!");
683       return BDVState(BDVState::Conflict);
684 
685     case BDVState::Conflict:
686       return stateA;
687     }
688     llvm_unreachable("only three states!");
689   }
690 };
691 }
692 
693 
694 /// For a given value or instruction, figure out what base ptr it's derived
695 /// from.  For gc objects, this is simply itself.  On success, returns a value
696 /// which is the base pointer.  (This is reliable and can be used for
697 /// relocation.)  On failure, returns nullptr.
698 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
699   Value *def = findBaseOrBDV(I, cache);
700 
701   if (isKnownBaseResult(def)) {
702     return def;
703   }
704 
705   // Here's the rough algorithm:
706   // - For every SSA value, construct a mapping to either an actual base
707   //   pointer or a PHI which obscures the base pointer.
708   // - Construct a mapping from PHI to unknown TOP state.  Use an
709   //   optimistic algorithm to propagate base pointer information.  Lattice
710   //   looks like:
711   //   UNKNOWN
712   //   b1 b2 b3 b4
713   //   CONFLICT
714   //   When algorithm terminates, all PHIs will either have a single concrete
715   //   base or be in a conflict state.
716   // - For every conflict, insert a dummy PHI node without arguments.  Add
717   //   these to the base[Instruction] = BasePtr mapping.  For every
718   //   non-conflict, add the actual base.
719   //  - For every conflict, add arguments for the base[a] of each input
720   //   arguments.
721   //
722   // Note: A simpler form of this would be to add the conflict form of all
723   // PHIs without running the optimistic algorithm.  This would be
724   // analogous to pessimistic data flow and would likely lead to an
725   // overall worse solution.
726 
727 #ifndef NDEBUG
728   auto isExpectedBDVType = [](Value *BDV) {
729     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
730            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
731   };
732 #endif
733 
734   // Once populated, will contain a mapping from each potentially non-base BDV
735   // to a lattice value (described above) which corresponds to that BDV.
736   // We use the order of insertion (DFS over the def/use graph) to provide a
737   // stable deterministic ordering for visiting DenseMaps (which are unordered)
738   // below.  This is important for deterministic compilation.
739   MapVector<Value *, BDVState> States;
740 
741   // Recursively fill in all base defining values reachable from the initial
742   // one for which we don't already know a definite base value for
743   /* scope */ {
744     SmallVector<Value*, 16> Worklist;
745     Worklist.push_back(def);
746     States.insert(std::make_pair(def, BDVState()));
747     while (!Worklist.empty()) {
748       Value *Current = Worklist.pop_back_val();
749       assert(!isKnownBaseResult(Current) && "why did it get added?");
750 
751       auto visitIncomingValue = [&](Value *InVal) {
752         Value *Base = findBaseOrBDV(InVal, cache);
753         if (isKnownBaseResult(Base))
754           // Known bases won't need new instructions introduced and can be
755           // ignored safely
756           return;
757         assert(isExpectedBDVType(Base) && "the only non-base values "
758                "we see should be base defining values");
759         if (States.insert(std::make_pair(Base, BDVState())).second)
760           Worklist.push_back(Base);
761       };
762       if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
763         for (Value *InVal : Phi->incoming_values())
764           visitIncomingValue(InVal);
765       } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
766         visitIncomingValue(Sel->getTrueValue());
767         visitIncomingValue(Sel->getFalseValue());
768       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
769         visitIncomingValue(EE->getVectorOperand());
770       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
771         visitIncomingValue(IE->getOperand(0)); // vector operand
772         visitIncomingValue(IE->getOperand(1)); // scalar operand
773       } else {
774         // There is one known class of instructions we know we don't handle.
775         assert(isa<ShuffleVectorInst>(Current));
776         llvm_unreachable("unimplemented instruction case");
777       }
778     }
779   }
780 
781 #ifndef NDEBUG
782   DEBUG(dbgs() << "States after initialization:\n");
783   for (auto Pair : States) {
784     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
785   }
786 #endif
787 
788   // Return a phi state for a base defining value.  We'll generate a new
789   // base state for known bases and expect to find a cached state otherwise.
790   auto getStateForBDV = [&](Value *baseValue) {
791     if (isKnownBaseResult(baseValue))
792       return BDVState(baseValue);
793     auto I = States.find(baseValue);
794     assert(I != States.end() && "lookup failed!");
795     return I->second;
796   };
797 
798   bool progress = true;
799   while (progress) {
800 #ifndef NDEBUG
801     const size_t oldSize = States.size();
802 #endif
803     progress = false;
804     // We're only changing values in this loop, thus safe to keep iterators.
805     // Since this is computing a fixed point, the order of visit does not
806     // effect the result.  TODO: We could use a worklist here and make this run
807     // much faster.
808     for (auto Pair : States) {
809       Value *BDV = Pair.first;
810       assert(!isKnownBaseResult(BDV) && "why did it get added?");
811 
812       // Given an input value for the current instruction, return a BDVState
813       // instance which represents the BDV of that value.
814       auto getStateForInput = [&](Value *V) mutable {
815         Value *BDV = findBaseOrBDV(V, cache);
816         return getStateForBDV(BDV);
817       };
818 
819       MeetBDVStates calculateMeet;
820       if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
821         calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
822         calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
823       } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
824         for (Value *Val : Phi->incoming_values())
825           calculateMeet.meetWith(getStateForInput(Val));
826       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
827         // The 'meet' for an extractelement is slightly trivial, but it's still
828         // useful in that it drives us to conflict if our input is.
829         calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
830       } else {
831         // Given there's a inherent type mismatch between the operands, will
832         // *always* produce Conflict.
833         auto *IE = cast<InsertElementInst>(BDV);
834         calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
835         calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
836       }
837 
838       BDVState oldState = States[BDV];
839       BDVState newState = calculateMeet.getResult();
840       if (oldState != newState) {
841         progress = true;
842         States[BDV] = newState;
843       }
844     }
845 
846     assert(oldSize == States.size() &&
847            "fixed point shouldn't be adding any new nodes to state");
848   }
849 
850 #ifndef NDEBUG
851   DEBUG(dbgs() << "States after meet iteration:\n");
852   for (auto Pair : States) {
853     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
854   }
855 #endif
856 
857   // Insert Phis for all conflicts
858   // TODO: adjust naming patterns to avoid this order of iteration dependency
859   for (auto Pair : States) {
860     Instruction *I = cast<Instruction>(Pair.first);
861     BDVState State = Pair.second;
862     assert(!isKnownBaseResult(I) && "why did it get added?");
863     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
864 
865     // extractelement instructions are a bit special in that we may need to
866     // insert an extract even when we know an exact base for the instruction.
867     // The problem is that we need to convert from a vector base to a scalar
868     // base for the particular indice we're interested in.
869     if (State.isBase() && isa<ExtractElementInst>(I) &&
870         isa<VectorType>(State.getBase()->getType())) {
871       auto *EE = cast<ExtractElementInst>(I);
872       // TODO: In many cases, the new instruction is just EE itself.  We should
873       // exploit this, but can't do it here since it would break the invariant
874       // about the BDV not being known to be a base.
875       auto *BaseInst = ExtractElementInst::Create(State.getBase(),
876                                                   EE->getIndexOperand(),
877                                                   "base_ee", EE);
878       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
879       States[I] = BDVState(BDVState::Base, BaseInst);
880     }
881 
882     // Since we're joining a vector and scalar base, they can never be the
883     // same.  As a result, we should always see insert element having reached
884     // the conflict state.
885     if (isa<InsertElementInst>(I)) {
886       assert(State.isConflict());
887     }
888 
889     if (!State.isConflict())
890       continue;
891 
892     /// Create and insert a new instruction which will represent the base of
893     /// the given instruction 'I'.
894     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
895       if (isa<PHINode>(I)) {
896         BasicBlock *BB = I->getParent();
897         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
898         assert(NumPreds > 0 && "how did we reach here");
899         std::string Name = suffixed_name_or(I, ".base", "base_phi");
900         return PHINode::Create(I->getType(), NumPreds, Name, I);
901       } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
902         // The undef will be replaced later
903         UndefValue *Undef = UndefValue::get(Sel->getType());
904         std::string Name = suffixed_name_or(I, ".base", "base_select");
905         return SelectInst::Create(Sel->getCondition(), Undef,
906                                   Undef, Name, Sel);
907       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
908         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
909         std::string Name = suffixed_name_or(I, ".base", "base_ee");
910         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
911                                           EE);
912       } else {
913         auto *IE = cast<InsertElementInst>(I);
914         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
915         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
916         std::string Name = suffixed_name_or(I, ".base", "base_ie");
917         return InsertElementInst::Create(VecUndef, ScalarUndef,
918                                          IE->getOperand(2), Name, IE);
919       }
920 
921     };
922     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
923     // Add metadata marking this as a base value
924     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
925     States[I] = BDVState(BDVState::Conflict, BaseInst);
926   }
927 
928   // Returns a instruction which produces the base pointer for a given
929   // instruction.  The instruction is assumed to be an input to one of the BDVs
930   // seen in the inference algorithm above.  As such, we must either already
931   // know it's base defining value is a base, or have inserted a new
932   // instruction to propagate the base of it's BDV and have entered that newly
933   // introduced instruction into the state table.  In either case, we are
934   // assured to be able to determine an instruction which produces it's base
935   // pointer.
936   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
937     Value *BDV = findBaseOrBDV(Input, cache);
938     Value *Base = nullptr;
939     if (isKnownBaseResult(BDV)) {
940       Base = BDV;
941     } else {
942       // Either conflict or base.
943       assert(States.count(BDV));
944       Base = States[BDV].getBase();
945     }
946     assert(Base && "can't be null");
947     // The cast is needed since base traversal may strip away bitcasts
948     if (Base->getType() != Input->getType() &&
949         InsertPt) {
950       Base = new BitCastInst(Base, Input->getType(), "cast",
951                              InsertPt);
952     }
953     return Base;
954   };
955 
956   // Fixup all the inputs of the new PHIs.  Visit order needs to be
957   // deterministic and predictable because we're naming newly created
958   // instructions.
959   for (auto Pair : States) {
960     Instruction *BDV = cast<Instruction>(Pair.first);
961     BDVState State = Pair.second;
962 
963     assert(!isKnownBaseResult(BDV) && "why did it get added?");
964     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
965     if (!State.isConflict())
966       continue;
967 
968     if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
969       PHINode *phi = cast<PHINode>(BDV);
970       unsigned NumPHIValues = phi->getNumIncomingValues();
971       for (unsigned i = 0; i < NumPHIValues; i++) {
972         Value *InVal = phi->getIncomingValue(i);
973         BasicBlock *InBB = phi->getIncomingBlock(i);
974 
975         // If we've already seen InBB, add the same incoming value
976         // we added for it earlier.  The IR verifier requires phi
977         // nodes with multiple entries from the same basic block
978         // to have the same incoming value for each of those
979         // entries.  If we don't do this check here and basephi
980         // has a different type than base, we'll end up adding two
981         // bitcasts (and hence two distinct values) as incoming
982         // values for the same basic block.
983 
984         int blockIndex = basephi->getBasicBlockIndex(InBB);
985         if (blockIndex != -1) {
986           Value *oldBase = basephi->getIncomingValue(blockIndex);
987           basephi->addIncoming(oldBase, InBB);
988 
989 #ifndef NDEBUG
990           Value *Base = getBaseForInput(InVal, nullptr);
991           // In essence this assert states: the only way two
992           // values incoming from the same basic block may be
993           // different is by being different bitcasts of the same
994           // value.  A cleanup that remains TODO is changing
995           // findBaseOrBDV to return an llvm::Value of the correct
996           // type (and still remain pure).  This will remove the
997           // need to add bitcasts.
998           assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
999                  "sanity -- findBaseOrBDV should be pure!");
1000 #endif
1001           continue;
1002         }
1003 
1004         // Find the instruction which produces the base for each input.  We may
1005         // need to insert a bitcast in the incoming block.
1006         // TODO: Need to split critical edges if insertion is needed
1007         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1008         basephi->addIncoming(Base, InBB);
1009       }
1010       assert(basephi->getNumIncomingValues() == NumPHIValues);
1011     } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
1012       SelectInst *Sel = cast<SelectInst>(BDV);
1013       // Operand 1 & 2 are true, false path respectively. TODO: refactor to
1014       // something more safe and less hacky.
1015       for (int i = 1; i <= 2; i++) {
1016         Value *InVal = Sel->getOperand(i);
1017         // Find the instruction which produces the base for each input.  We may
1018         // need to insert a bitcast.
1019         Value *Base = getBaseForInput(InVal, BaseSel);
1020         BaseSel->setOperand(i, Base);
1021       }
1022     } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
1023       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1024       // Find the instruction which produces the base for each input.  We may
1025       // need to insert a bitcast.
1026       Value *Base = getBaseForInput(InVal, BaseEE);
1027       BaseEE->setOperand(0, Base);
1028     } else {
1029       auto *BaseIE = cast<InsertElementInst>(State.getBase());
1030       auto *BdvIE = cast<InsertElementInst>(BDV);
1031       auto UpdateOperand = [&](int OperandIdx) {
1032         Value *InVal = BdvIE->getOperand(OperandIdx);
1033         Value *Base = getBaseForInput(InVal, BaseIE);
1034         BaseIE->setOperand(OperandIdx, Base);
1035       };
1036       UpdateOperand(0); // vector operand
1037       UpdateOperand(1); // scalar operand
1038     }
1039 
1040   }
1041 
1042   // Now that we're done with the algorithm, see if we can optimize the
1043   // results slightly by reducing the number of new instructions needed.
1044   // Arguably, this should be integrated into the algorithm above, but
1045   // doing as a post process step is easier to reason about for the moment.
1046   DenseMap<Value *, Value *> ReverseMap;
1047   SmallPtrSet<Instruction *, 16> NewInsts;
1048   SmallSetVector<AssertingVH<Instruction>, 16> Worklist;
1049   // Note: We need to visit the states in a deterministic order.  We uses the
1050   // Keys we sorted above for this purpose.  Note that we are papering over a
1051   // bigger problem with the algorithm above - it's visit order is not
1052   // deterministic.  A larger change is needed to fix this.
1053   for (auto Pair : States) {
1054     auto *BDV = Pair.first;
1055     auto State = Pair.second;
1056     Value *Base = State.getBase();
1057     assert(BDV && Base);
1058     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1059     assert(isKnownBaseResult(Base) &&
1060            "must be something we 'know' is a base pointer");
1061     if (!State.isConflict())
1062       continue;
1063 
1064     ReverseMap[Base] = BDV;
1065     if (auto *BaseI = dyn_cast<Instruction>(Base)) {
1066       NewInsts.insert(BaseI);
1067       Worklist.insert(BaseI);
1068     }
1069   }
1070   auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI,
1071                                  Value *Replacement) {
1072     // Add users which are new instructions (excluding self references)
1073     for (User *U : BaseI->users())
1074       if (auto *UI = dyn_cast<Instruction>(U))
1075         if (NewInsts.count(UI) && UI != BaseI)
1076           Worklist.insert(UI);
1077     // Then do the actual replacement
1078     NewInsts.erase(BaseI);
1079     ReverseMap.erase(BaseI);
1080     BaseI->replaceAllUsesWith(Replacement);
1081     BaseI->eraseFromParent();
1082     assert(States.count(BDV));
1083     assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI);
1084     States[BDV] = BDVState(BDVState::Conflict, Replacement);
1085   };
1086   const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout();
1087   while (!Worklist.empty()) {
1088     Instruction *BaseI = Worklist.pop_back_val();
1089     assert(NewInsts.count(BaseI));
1090     Value *Bdv = ReverseMap[BaseI];
1091     if (auto *BdvI = dyn_cast<Instruction>(Bdv))
1092       if (BaseI->isIdenticalTo(BdvI)) {
1093         DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n");
1094         ReplaceBaseInstWith(Bdv, BaseI, Bdv);
1095         continue;
1096       }
1097     if (Value *V = SimplifyInstruction(BaseI, DL)) {
1098       DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n");
1099       ReplaceBaseInstWith(Bdv, BaseI, V);
1100       continue;
1101     }
1102   }
1103 
1104   // Cache all of our results so we can cheaply reuse them
1105   // NOTE: This is actually two caches: one of the base defining value
1106   // relation and one of the base pointer relation!  FIXME
1107   for (auto Pair : States) {
1108     auto *BDV = Pair.first;
1109     Value *base = Pair.second.getBase();
1110     assert(BDV && base);
1111 
1112     std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
1113     DEBUG(dbgs() << "Updating base value cache"
1114           << " for: " << BDV->getName()
1115           << " from: " << fromstr
1116           << " to: " << base->getName() << "\n");
1117 
1118     if (cache.count(BDV)) {
1119       // Once we transition from the BDV relation being store in the cache to
1120       // the base relation being stored, it must be stable
1121       assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
1122              "base relation should be stable");
1123     }
1124     cache[BDV] = base;
1125   }
1126   assert(cache.find(def) != cache.end());
1127   return cache[def];
1128 }
1129 
1130 // For a set of live pointers (base and/or derived), identify the base
1131 // pointer of the object which they are derived from.  This routine will
1132 // mutate the IR graph as needed to make the 'base' pointer live at the
1133 // definition site of 'derived'.  This ensures that any use of 'derived' can
1134 // also use 'base'.  This may involve the insertion of a number of
1135 // additional PHI nodes.
1136 //
1137 // preconditions: live is a set of pointer type Values
1138 //
1139 // side effects: may insert PHI nodes into the existing CFG, will preserve
1140 // CFG, will not remove or mutate any existing nodes
1141 //
1142 // post condition: PointerToBase contains one (derived, base) pair for every
1143 // pointer in live.  Note that derived can be equal to base if the original
1144 // pointer was a base pointer.
1145 static void
1146 findBasePointers(const StatepointLiveSetTy &live,
1147                  DenseMap<Value *, Value *> &PointerToBase,
1148                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1149   // For the naming of values inserted to be deterministic - which makes for
1150   // much cleaner and more stable tests - we need to assign an order to the
1151   // live values.  DenseSets do not provide a deterministic order across runs.
1152   SmallVector<Value *, 64> Temp;
1153   Temp.insert(Temp.end(), live.begin(), live.end());
1154   std::sort(Temp.begin(), Temp.end(), order_by_name);
1155   for (Value *ptr : Temp) {
1156     Value *base = findBasePointer(ptr, DVCache);
1157     assert(base && "failed to find base pointer");
1158     PointerToBase[ptr] = base;
1159     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1160             DT->dominates(cast<Instruction>(base)->getParent(),
1161                           cast<Instruction>(ptr)->getParent())) &&
1162            "The base we found better dominate the derived pointer");
1163 
1164     // If you see this trip and like to live really dangerously, the code should
1165     // be correct, just with idioms the verifier can't handle.  You can try
1166     // disabling the verifier at your own substantial risk.
1167     assert(!isa<ConstantPointerNull>(base) &&
1168            "the relocation code needs adjustment to handle the relocation of "
1169            "a null pointer constant without causing false positives in the "
1170            "safepoint ir verifier.");
1171   }
1172 }
1173 
1174 /// Find the required based pointers (and adjust the live set) for the given
1175 /// parse point.
1176 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1177                              const CallSite &CS,
1178                              PartiallyConstructedSafepointRecord &result) {
1179   DenseMap<Value *, Value *> PointerToBase;
1180   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1181 
1182   if (PrintBasePointers) {
1183     // Note: Need to print these in a stable order since this is checked in
1184     // some tests.
1185     errs() << "Base Pairs (w/o Relocation):\n";
1186     SmallVector<Value *, 64> Temp;
1187     Temp.reserve(PointerToBase.size());
1188     for (auto Pair : PointerToBase) {
1189       Temp.push_back(Pair.first);
1190     }
1191     std::sort(Temp.begin(), Temp.end(), order_by_name);
1192     for (Value *Ptr : Temp) {
1193       Value *Base = PointerToBase[Ptr];
1194       errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
1195              << "\n";
1196     }
1197   }
1198 
1199   result.PointerToBase = PointerToBase;
1200 }
1201 
1202 /// Given an updated version of the dataflow liveness results, update the
1203 /// liveset and base pointer maps for the call site CS.
1204 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1205                                   const CallSite &CS,
1206                                   PartiallyConstructedSafepointRecord &result);
1207 
1208 static void recomputeLiveInValues(
1209     Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
1210     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1211   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1212   // again.  The old values are still live and will help it stabilize quickly.
1213   GCPtrLivenessData RevisedLivenessData;
1214   computeLiveInValues(DT, F, RevisedLivenessData);
1215   for (size_t i = 0; i < records.size(); i++) {
1216     struct PartiallyConstructedSafepointRecord &info = records[i];
1217     const CallSite &CS = toUpdate[i];
1218     recomputeLiveInValues(RevisedLivenessData, CS, info);
1219   }
1220 }
1221 
1222 // When inserting gc.relocate calls, we need to ensure there are no uses
1223 // of the original value between the gc.statepoint and the gc.relocate call.
1224 // One case which can arise is a phi node starting one of the successor blocks.
1225 // We also need to be able to insert the gc.relocates only on the path which
1226 // goes through the statepoint.  We might need to split an edge to make this
1227 // possible.
1228 static BasicBlock *
1229 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1230                             DominatorTree &DT) {
1231   BasicBlock *Ret = BB;
1232   if (!BB->getUniquePredecessor()) {
1233     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1234   }
1235 
1236   // Now that 'ret' has unique predecessor we can safely remove all phi nodes
1237   // from it
1238   FoldSingleEntryPHINodes(Ret);
1239   assert(!isa<PHINode>(Ret->begin()));
1240 
1241   // At this point, we can safely insert a gc.relocate as the first instruction
1242   // in Ret if needed.
1243   return Ret;
1244 }
1245 
1246 static int find_index(ArrayRef<Value *> livevec, Value *val) {
1247   auto itr = std::find(livevec.begin(), livevec.end(), val);
1248   assert(livevec.end() != itr);
1249   size_t index = std::distance(livevec.begin(), itr);
1250   assert(index < livevec.size());
1251   return index;
1252 }
1253 
1254 // Create new attribute set containing only attributes which can be transferred
1255 // from original call to the safepoint.
1256 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1257   AttributeSet ret;
1258 
1259   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1260     unsigned index = AS.getSlotIndex(Slot);
1261 
1262     if (index == AttributeSet::ReturnIndex ||
1263         index == AttributeSet::FunctionIndex) {
1264 
1265       for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
1266            ++it) {
1267         Attribute attr = *it;
1268 
1269         // Do not allow certain attributes - just skip them
1270         // Safepoint can not be read only or read none.
1271         if (attr.hasAttribute(Attribute::ReadNone) ||
1272             attr.hasAttribute(Attribute::ReadOnly))
1273           continue;
1274 
1275         ret = ret.addAttributes(
1276             AS.getContext(), index,
1277             AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
1278       }
1279     }
1280 
1281     // Just skip parameter attributes for now
1282   }
1283 
1284   return ret;
1285 }
1286 
1287 /// Helper function to place all gc relocates necessary for the given
1288 /// statepoint.
1289 /// Inputs:
1290 ///   liveVariables - list of variables to be relocated.
1291 ///   liveStart - index of the first live variable.
1292 ///   basePtrs - base pointers.
1293 ///   statepointToken - statepoint instruction to which relocates should be
1294 ///   bound.
1295 ///   Builder - Llvm IR builder to be used to construct new calls.
1296 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1297                               const int LiveStart,
1298                               ArrayRef<Value *> BasePtrs,
1299                               Instruction *StatepointToken,
1300                               IRBuilder<> Builder) {
1301   if (LiveVariables.empty())
1302     return;
1303 
1304   // All gc_relocate are set to i8 addrspace(1)* type. We originally generated
1305   // unique declarations for each pointer type, but this proved problematic
1306   // because the intrinsic mangling code is incomplete and fragile.  Since
1307   // we're moving towards a single unified pointer type anyways, we can just
1308   // cast everything to an i8* of the right address space.  A bitcast is added
1309   // later to convert gc_relocate to the actual value's type.
1310   Module *M = StatepointToken->getModule();
1311   auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace();
1312   Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)};
1313   Value *GCRelocateDecl =
1314     Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
1315 
1316   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1317     // Generate the gc.relocate call and save the result
1318     Value *BaseIdx =
1319       Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i]));
1320     Value *LiveIdx =
1321       Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i]));
1322 
1323     // only specify a debug name if we can give a useful one
1324     CallInst *Reloc = Builder.CreateCall(
1325         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1326         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1327     // Trick CodeGen into thinking there are lots of free registers at this
1328     // fake call.
1329     Reloc->setCallingConv(CallingConv::Cold);
1330   }
1331 }
1332 
1333 static void
1334 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1335                            const SmallVectorImpl<Value *> &BasePtrs,
1336                            const SmallVectorImpl<Value *> &LiveVariables,
1337                            PartiallyConstructedSafepointRecord &Result) {
1338   assert(BasePtrs.size() == LiveVariables.size());
1339   assert(isStatepoint(CS) &&
1340          "This method expects to be rewriting a statepoint");
1341 
1342   // Then go ahead and use the builder do actually do the inserts.  We insert
1343   // immediately before the previous instruction under the assumption that all
1344   // arguments will be available here.  We can't insert afterwards since we may
1345   // be replacing a terminator.
1346   Instruction *InsertBefore = CS.getInstruction();
1347   IRBuilder<> Builder(InsertBefore);
1348 
1349   Statepoint OldSP(CS);
1350 
1351   ArrayRef<Value *> GCArgs(LiveVariables);
1352   uint64_t StatepointID = OldSP.getID();
1353   uint32_t NumPatchBytes = OldSP.getNumPatchBytes();
1354   uint32_t Flags = OldSP.getFlags();
1355 
1356   ArrayRef<Use> CallArgs(OldSP.arg_begin(), OldSP.arg_end());
1357   ArrayRef<Use> DeoptArgs(OldSP.vm_state_begin(), OldSP.vm_state_end());
1358   ArrayRef<Use> TransitionArgs(OldSP.gc_transition_args_begin(),
1359                                OldSP.gc_transition_args_end());
1360   Value *CallTarget = OldSP.getCalledValue();
1361 
1362   // Create the statepoint given all the arguments
1363   Instruction *Token = nullptr;
1364   AttributeSet ReturnAttrs;
1365   if (CS.isCall()) {
1366     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1367     CallInst *Call = Builder.CreateGCStatepointCall(
1368         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1369         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1370 
1371     Call->setTailCall(ToReplace->isTailCall());
1372     Call->setCallingConv(ToReplace->getCallingConv());
1373 
1374     // Currently we will fail on parameter attributes and on certain
1375     // function attributes.
1376     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1377     // In case if we can handle this set of attributes - set up function attrs
1378     // directly on statepoint and return attrs later for gc_result intrinsic.
1379     Call->setAttributes(NewAttrs.getFnAttributes());
1380     ReturnAttrs = NewAttrs.getRetAttributes();
1381 
1382     Token = Call;
1383 
1384     // Put the following gc_result and gc_relocate calls immediately after the
1385     // the old call (which we're about to delete)
1386     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1387     Builder.SetInsertPoint(ToReplace->getNextNode());
1388     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1389   } else {
1390     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1391 
1392     // Insert the new invoke into the old block.  We'll remove the old one in a
1393     // moment at which point this will become the new terminator for the
1394     // original block.
1395     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1396         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1397         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1398         GCArgs, "statepoint_token");
1399 
1400     Invoke->setCallingConv(ToReplace->getCallingConv());
1401 
1402     // Currently we will fail on parameter attributes and on certain
1403     // function attributes.
1404     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1405     // In case if we can handle this set of attributes - set up function attrs
1406     // directly on statepoint and return attrs later for gc_result intrinsic.
1407     Invoke->setAttributes(NewAttrs.getFnAttributes());
1408     ReturnAttrs = NewAttrs.getRetAttributes();
1409 
1410     Token = Invoke;
1411 
1412     // Generate gc relocates in exceptional path
1413     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1414     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1415            UnwindBlock->getUniquePredecessor() &&
1416            "can't safely insert in this block!");
1417 
1418     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1419     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1420 
1421     // Extract second element from landingpad return value. We will attach
1422     // exceptional gc relocates to it.
1423     Instruction *ExceptionalToken =
1424         cast<Instruction>(Builder.CreateExtractValue(
1425             UnwindBlock->getLandingPadInst(), 1, "relocate_token"));
1426     Result.UnwindToken = ExceptionalToken;
1427 
1428     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1429     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1430                       Builder);
1431 
1432     // Generate gc relocates and returns for normal block
1433     BasicBlock *NormalDest = ToReplace->getNormalDest();
1434     assert(!isa<PHINode>(NormalDest->begin()) &&
1435            NormalDest->getUniquePredecessor() &&
1436            "can't safely insert in this block!");
1437 
1438     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1439 
1440     // gc relocates will be generated later as if it were regular call
1441     // statepoint
1442   }
1443   assert(Token && "Should be set in one of the above branches!");
1444 
1445   // Take the name of the original value call if it had one.
1446   Token->takeName(CS.getInstruction());
1447 
1448 // The GCResult is already inserted, we just need to find it
1449 #ifndef NDEBUG
1450   Instruction *ToReplace = CS.getInstruction();
1451   assert(!ToReplace->hasNUsesOrMore(2) &&
1452          "only valid use before rewrite is gc.result");
1453   assert(!ToReplace->hasOneUse() ||
1454          isGCResult(cast<Instruction>(*ToReplace->user_begin())));
1455 #endif
1456 
1457   // Update the gc.result of the original statepoint (if any) to use the newly
1458   // inserted statepoint.  This is safe to do here since the token can't be
1459   // considered a live reference.
1460   CS.getInstruction()->replaceAllUsesWith(Token);
1461 
1462   Result.StatepointToken = Token;
1463 
1464   // Second, create a gc.relocate for every live variable
1465   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1466   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1467 }
1468 
1469 namespace {
1470 struct NameOrdering {
1471   Value *Base;
1472   Value *Derived;
1473 
1474   bool operator()(NameOrdering const &a, NameOrdering const &b) {
1475     return -1 == a.Derived->getName().compare(b.Derived->getName());
1476   }
1477 };
1478 }
1479 
1480 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec,
1481                            SmallVectorImpl<Value *> &LiveVec) {
1482   assert(BaseVec.size() == LiveVec.size());
1483 
1484   SmallVector<NameOrdering, 64> Temp;
1485   for (size_t i = 0; i < BaseVec.size(); i++) {
1486     NameOrdering v;
1487     v.Base = BaseVec[i];
1488     v.Derived = LiveVec[i];
1489     Temp.push_back(v);
1490   }
1491 
1492   std::sort(Temp.begin(), Temp.end(), NameOrdering());
1493   for (size_t i = 0; i < BaseVec.size(); i++) {
1494     BaseVec[i] = Temp[i].Base;
1495     LiveVec[i] = Temp[i].Derived;
1496   }
1497 }
1498 
1499 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1500 // which make the relocations happening at this safepoint explicit.
1501 //
1502 // WARNING: Does not do any fixup to adjust users of the original live
1503 // values.  That's the callers responsibility.
1504 static void
1505 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS,
1506                        PartiallyConstructedSafepointRecord &Result) {
1507   const auto &LiveSet = Result.LiveSet;
1508   const auto &PointerToBase = Result.PointerToBase;
1509 
1510   // Convert to vector for efficient cross referencing.
1511   SmallVector<Value *, 64> BaseVec, LiveVec;
1512   LiveVec.reserve(LiveSet.size());
1513   BaseVec.reserve(LiveSet.size());
1514   for (Value *L : LiveSet) {
1515     LiveVec.push_back(L);
1516     assert(PointerToBase.count(L));
1517     Value *Base = PointerToBase.find(L)->second;
1518     BaseVec.push_back(Base);
1519   }
1520   assert(LiveVec.size() == BaseVec.size());
1521 
1522   // To make the output IR slightly more stable (for use in diffs), ensure a
1523   // fixed order of the values in the safepoint (by sorting the value name).
1524   // The order is otherwise meaningless.
1525   StabilizeOrder(BaseVec, LiveVec);
1526 
1527   // Do the actual rewriting and delete the old statepoint
1528   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result);
1529   CS.getInstruction()->eraseFromParent();
1530 }
1531 
1532 // Helper function for the relocationViaAlloca.
1533 //
1534 // It receives iterator to the statepoint gc relocates and emits a store to the
1535 // assigned location (via allocaMap) for the each one of them.  It adds the
1536 // visited values into the visitedLiveValues set, which we will later use them
1537 // for sanity checking.
1538 static void
1539 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1540                        DenseMap<Value *, Value *> &AllocaMap,
1541                        DenseSet<Value *> &VisitedLiveValues) {
1542 
1543   for (User *U : GCRelocs) {
1544     if (!isa<IntrinsicInst>(U))
1545       continue;
1546 
1547     IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U);
1548 
1549     // We only care about relocates
1550     if (RelocatedValue->getIntrinsicID() !=
1551         Intrinsic::experimental_gc_relocate) {
1552       continue;
1553     }
1554 
1555     GCRelocateOperands RelocateOperands(RelocatedValue);
1556     Value *OriginalValue =
1557         const_cast<Value *>(RelocateOperands.getDerivedPtr());
1558     assert(AllocaMap.count(OriginalValue));
1559     Value *Alloca = AllocaMap[OriginalValue];
1560 
1561     // Emit store into the related alloca
1562     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1563     // the correct type according to alloca.
1564     assert(RelocatedValue->getNextNode() &&
1565            "Should always have one since it's not a terminator");
1566     IRBuilder<> Builder(RelocatedValue->getNextNode());
1567     Value *CastedRelocatedValue =
1568       Builder.CreateBitCast(RelocatedValue,
1569                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1570                             suffixed_name_or(RelocatedValue, ".casted", ""));
1571 
1572     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1573     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1574 
1575 #ifndef NDEBUG
1576     VisitedLiveValues.insert(OriginalValue);
1577 #endif
1578   }
1579 }
1580 
1581 // Helper function for the "relocationViaAlloca". Similar to the
1582 // "insertRelocationStores" but works for rematerialized values.
1583 static void
1584 insertRematerializationStores(
1585   RematerializedValueMapTy RematerializedValues,
1586   DenseMap<Value *, Value *> &AllocaMap,
1587   DenseSet<Value *> &VisitedLiveValues) {
1588 
1589   for (auto RematerializedValuePair: RematerializedValues) {
1590     Instruction *RematerializedValue = RematerializedValuePair.first;
1591     Value *OriginalValue = RematerializedValuePair.second;
1592 
1593     assert(AllocaMap.count(OriginalValue) &&
1594            "Can not find alloca for rematerialized value");
1595     Value *Alloca = AllocaMap[OriginalValue];
1596 
1597     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1598     Store->insertAfter(RematerializedValue);
1599 
1600 #ifndef NDEBUG
1601     VisitedLiveValues.insert(OriginalValue);
1602 #endif
1603   }
1604 }
1605 
1606 /// Do all the relocation update via allocas and mem2reg
1607 static void relocationViaAlloca(
1608     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1609     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1610 #ifndef NDEBUG
1611   // record initial number of (static) allocas; we'll check we have the same
1612   // number when we get done.
1613   int InitialAllocaNum = 0;
1614   for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1615        I++)
1616     if (isa<AllocaInst>(*I))
1617       InitialAllocaNum++;
1618 #endif
1619 
1620   // TODO-PERF: change data structures, reserve
1621   DenseMap<Value *, Value *> AllocaMap;
1622   SmallVector<AllocaInst *, 200> PromotableAllocas;
1623   // Used later to chack that we have enough allocas to store all values
1624   std::size_t NumRematerializedValues = 0;
1625   PromotableAllocas.reserve(Live.size());
1626 
1627   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1628   // "PromotableAllocas"
1629   auto emitAllocaFor = [&](Value *LiveValue) {
1630     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1631                                         F.getEntryBlock().getFirstNonPHI());
1632     AllocaMap[LiveValue] = Alloca;
1633     PromotableAllocas.push_back(Alloca);
1634   };
1635 
1636   // Emit alloca for each live gc pointer
1637   for (Value *V : Live)
1638     emitAllocaFor(V);
1639 
1640   // Emit allocas for rematerialized values
1641   for (const auto &Info : Records)
1642     for (auto RematerializedValuePair : Info.RematerializedValues) {
1643       Value *OriginalValue = RematerializedValuePair.second;
1644       if (AllocaMap.count(OriginalValue) != 0)
1645         continue;
1646 
1647       emitAllocaFor(OriginalValue);
1648       ++NumRematerializedValues;
1649     }
1650 
1651   // The next two loops are part of the same conceptual operation.  We need to
1652   // insert a store to the alloca after the original def and at each
1653   // redefinition.  We need to insert a load before each use.  These are split
1654   // into distinct loops for performance reasons.
1655 
1656   // Update gc pointer after each statepoint: either store a relocated value or
1657   // null (if no relocated value was found for this gc pointer and it is not a
1658   // gc_result).  This must happen before we update the statepoint with load of
1659   // alloca otherwise we lose the link between statepoint and old def.
1660   for (const auto &Info : Records) {
1661     Value *Statepoint = Info.StatepointToken;
1662 
1663     // This will be used for consistency check
1664     DenseSet<Value *> VisitedLiveValues;
1665 
1666     // Insert stores for normal statepoint gc relocates
1667     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1668 
1669     // In case if it was invoke statepoint
1670     // we will insert stores for exceptional path gc relocates.
1671     if (isa<InvokeInst>(Statepoint)) {
1672       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1673                              VisitedLiveValues);
1674     }
1675 
1676     // Do similar thing with rematerialized values
1677     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1678                                   VisitedLiveValues);
1679 
1680     if (ClobberNonLive) {
1681       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1682       // the gc.statepoint.  This will turn some subtle GC problems into
1683       // slightly easier to debug SEGVs.  Note that on large IR files with
1684       // lots of gc.statepoints this is extremely costly both memory and time
1685       // wise.
1686       SmallVector<AllocaInst *, 64> ToClobber;
1687       for (auto Pair : AllocaMap) {
1688         Value *Def = Pair.first;
1689         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1690 
1691         // This value was relocated
1692         if (VisitedLiveValues.count(Def)) {
1693           continue;
1694         }
1695         ToClobber.push_back(Alloca);
1696       }
1697 
1698       auto InsertClobbersAt = [&](Instruction *IP) {
1699         for (auto *AI : ToClobber) {
1700           auto AIType = cast<PointerType>(AI->getType());
1701           auto PT = cast<PointerType>(AIType->getElementType());
1702           Constant *CPN = ConstantPointerNull::get(PT);
1703           StoreInst *Store = new StoreInst(CPN, AI);
1704           Store->insertBefore(IP);
1705         }
1706       };
1707 
1708       // Insert the clobbering stores.  These may get intermixed with the
1709       // gc.results and gc.relocates, but that's fine.
1710       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1711         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1712         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1713       } else {
1714         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1715       }
1716     }
1717   }
1718 
1719   // Update use with load allocas and add store for gc_relocated.
1720   for (auto Pair : AllocaMap) {
1721     Value *Def = Pair.first;
1722     Value *Alloca = Pair.second;
1723 
1724     // We pre-record the uses of allocas so that we dont have to worry about
1725     // later update that changes the user information..
1726 
1727     SmallVector<Instruction *, 20> Uses;
1728     // PERF: trade a linear scan for repeated reallocation
1729     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1730     for (User *U : Def->users()) {
1731       if (!isa<ConstantExpr>(U)) {
1732         // If the def has a ConstantExpr use, then the def is either a
1733         // ConstantExpr use itself or null.  In either case
1734         // (recursively in the first, directly in the second), the oop
1735         // it is ultimately dependent on is null and this particular
1736         // use does not need to be fixed up.
1737         Uses.push_back(cast<Instruction>(U));
1738       }
1739     }
1740 
1741     std::sort(Uses.begin(), Uses.end());
1742     auto Last = std::unique(Uses.begin(), Uses.end());
1743     Uses.erase(Last, Uses.end());
1744 
1745     for (Instruction *Use : Uses) {
1746       if (isa<PHINode>(Use)) {
1747         PHINode *Phi = cast<PHINode>(Use);
1748         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1749           if (Def == Phi->getIncomingValue(i)) {
1750             LoadInst *Load = new LoadInst(
1751                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1752             Phi->setIncomingValue(i, Load);
1753           }
1754         }
1755       } else {
1756         LoadInst *Load = new LoadInst(Alloca, "", Use);
1757         Use->replaceUsesOfWith(Def, Load);
1758       }
1759     }
1760 
1761     // Emit store for the initial gc value.  Store must be inserted after load,
1762     // otherwise store will be in alloca's use list and an extra load will be
1763     // inserted before it.
1764     StoreInst *Store = new StoreInst(Def, Alloca);
1765     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1766       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1767         // InvokeInst is a TerminatorInst so the store need to be inserted
1768         // into its normal destination block.
1769         BasicBlock *NormalDest = Invoke->getNormalDest();
1770         Store->insertBefore(NormalDest->getFirstNonPHI());
1771       } else {
1772         assert(!Inst->isTerminator() &&
1773                "The only TerminatorInst that can produce a value is "
1774                "InvokeInst which is handled above.");
1775         Store->insertAfter(Inst);
1776       }
1777     } else {
1778       assert(isa<Argument>(Def));
1779       Store->insertAfter(cast<Instruction>(Alloca));
1780     }
1781   }
1782 
1783   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1784          "we must have the same allocas with lives");
1785   if (!PromotableAllocas.empty()) {
1786     // Apply mem2reg to promote alloca to SSA
1787     PromoteMemToReg(PromotableAllocas, DT);
1788   }
1789 
1790 #ifndef NDEBUG
1791   for (auto &I : F.getEntryBlock())
1792     if (isa<AllocaInst>(I))
1793       InitialAllocaNum--;
1794   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1795 #endif
1796 }
1797 
1798 /// Implement a unique function which doesn't require we sort the input
1799 /// vector.  Doing so has the effect of changing the output of a couple of
1800 /// tests in ways which make them less useful in testing fused safepoints.
1801 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1802   SmallSet<T, 8> Seen;
1803   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1804               return !Seen.insert(V).second;
1805             }), Vec.end());
1806 }
1807 
1808 /// Insert holders so that each Value is obviously live through the entire
1809 /// lifetime of the call.
1810 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1811                                  SmallVectorImpl<CallInst *> &Holders) {
1812   if (Values.empty())
1813     // No values to hold live, might as well not insert the empty holder
1814     return;
1815 
1816   Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
1817   // Use a dummy vararg function to actually hold the values live
1818   Function *Func = cast<Function>(M->getOrInsertFunction(
1819       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1820   if (CS.isCall()) {
1821     // For call safepoints insert dummy calls right after safepoint
1822     Holders.push_back(CallInst::Create(Func, Values, "",
1823                                        &*++CS.getInstruction()->getIterator()));
1824     return;
1825   }
1826   // For invoke safepooints insert dummy calls both in normal and
1827   // exceptional destination blocks
1828   auto *II = cast<InvokeInst>(CS.getInstruction());
1829   Holders.push_back(CallInst::Create(
1830       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1831   Holders.push_back(CallInst::Create(
1832       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1833 }
1834 
1835 static void findLiveReferences(
1836     Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
1837     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1838   GCPtrLivenessData OriginalLivenessData;
1839   computeLiveInValues(DT, F, OriginalLivenessData);
1840   for (size_t i = 0; i < records.size(); i++) {
1841     struct PartiallyConstructedSafepointRecord &info = records[i];
1842     const CallSite &CS = toUpdate[i];
1843     analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
1844   }
1845 }
1846 
1847 /// Remove any vector of pointers from the live set by scalarizing them over the
1848 /// statepoint instruction.  Adds the scalarized pieces to the live set.  It
1849 /// would be preferable to include the vector in the statepoint itself, but
1850 /// the lowering code currently does not handle that.  Extending it would be
1851 /// slightly non-trivial since it requires a format change.  Given how rare
1852 /// such cases are (for the moment?) scalarizing is an acceptable compromise.
1853 static void splitVectorValues(Instruction *StatepointInst,
1854                               StatepointLiveSetTy &LiveSet,
1855                               DenseMap<Value *, Value *>& PointerToBase,
1856                               DominatorTree &DT) {
1857   SmallVector<Value *, 16> ToSplit;
1858   for (Value *V : LiveSet)
1859     if (isa<VectorType>(V->getType()))
1860       ToSplit.push_back(V);
1861 
1862   if (ToSplit.empty())
1863     return;
1864 
1865   DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
1866 
1867   Function &F = *(StatepointInst->getParent()->getParent());
1868 
1869   DenseMap<Value *, AllocaInst *> AllocaMap;
1870   // First is normal return, second is exceptional return (invoke only)
1871   DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
1872   for (Value *V : ToSplit) {
1873     AllocaInst *Alloca =
1874         new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
1875     AllocaMap[V] = Alloca;
1876 
1877     VectorType *VT = cast<VectorType>(V->getType());
1878     IRBuilder<> Builder(StatepointInst);
1879     SmallVector<Value *, 16> Elements;
1880     for (unsigned i = 0; i < VT->getNumElements(); i++)
1881       Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
1882     ElementMapping[V] = Elements;
1883 
1884     auto InsertVectorReform = [&](Instruction *IP) {
1885       Builder.SetInsertPoint(IP);
1886       Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1887       Value *ResultVec = UndefValue::get(VT);
1888       for (unsigned i = 0; i < VT->getNumElements(); i++)
1889         ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
1890                                                 Builder.getInt32(i));
1891       return ResultVec;
1892     };
1893 
1894     if (isa<CallInst>(StatepointInst)) {
1895       BasicBlock::iterator Next(StatepointInst);
1896       Next++;
1897       Instruction *IP = &*(Next);
1898       Replacements[V].first = InsertVectorReform(IP);
1899       Replacements[V].second = nullptr;
1900     } else {
1901       InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
1902       // We've already normalized - check that we don't have shared destination
1903       // blocks
1904       BasicBlock *NormalDest = Invoke->getNormalDest();
1905       assert(!isa<PHINode>(NormalDest->begin()));
1906       BasicBlock *UnwindDest = Invoke->getUnwindDest();
1907       assert(!isa<PHINode>(UnwindDest->begin()));
1908       // Insert insert element sequences in both successors
1909       Instruction *IP = &*(NormalDest->getFirstInsertionPt());
1910       Replacements[V].first = InsertVectorReform(IP);
1911       IP = &*(UnwindDest->getFirstInsertionPt());
1912       Replacements[V].second = InsertVectorReform(IP);
1913     }
1914   }
1915 
1916   for (Value *V : ToSplit) {
1917     AllocaInst *Alloca = AllocaMap[V];
1918 
1919     // Capture all users before we start mutating use lists
1920     SmallVector<Instruction *, 16> Users;
1921     for (User *U : V->users())
1922       Users.push_back(cast<Instruction>(U));
1923 
1924     for (Instruction *I : Users) {
1925       if (auto Phi = dyn_cast<PHINode>(I)) {
1926         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
1927           if (V == Phi->getIncomingValue(i)) {
1928             LoadInst *Load = new LoadInst(
1929                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1930             Phi->setIncomingValue(i, Load);
1931           }
1932       } else {
1933         LoadInst *Load = new LoadInst(Alloca, "", I);
1934         I->replaceUsesOfWith(V, Load);
1935       }
1936     }
1937 
1938     // Store the original value and the replacement value into the alloca
1939     StoreInst *Store = new StoreInst(V, Alloca);
1940     if (auto I = dyn_cast<Instruction>(V))
1941       Store->insertAfter(I);
1942     else
1943       Store->insertAfter(Alloca);
1944 
1945     // Normal return for invoke, or call return
1946     Instruction *Replacement = cast<Instruction>(Replacements[V].first);
1947     (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
1948     // Unwind return for invoke only
1949     Replacement = cast_or_null<Instruction>(Replacements[V].second);
1950     if (Replacement)
1951       (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
1952   }
1953 
1954   // apply mem2reg to promote alloca to SSA
1955   SmallVector<AllocaInst *, 16> Allocas;
1956   for (Value *V : ToSplit)
1957     Allocas.push_back(AllocaMap[V]);
1958   PromoteMemToReg(Allocas, DT);
1959 
1960   // Update our tracking of live pointers and base mappings to account for the
1961   // changes we just made.
1962   for (Value *V : ToSplit) {
1963     auto &Elements = ElementMapping[V];
1964 
1965     LiveSet.erase(V);
1966     LiveSet.insert(Elements.begin(), Elements.end());
1967     // We need to update the base mapping as well.
1968     assert(PointerToBase.count(V));
1969     Value *OldBase = PointerToBase[V];
1970     auto &BaseElements = ElementMapping[OldBase];
1971     PointerToBase.erase(V);
1972     assert(Elements.size() == BaseElements.size());
1973     for (unsigned i = 0; i < Elements.size(); i++) {
1974       Value *Elem = Elements[i];
1975       PointerToBase[Elem] = BaseElements[i];
1976     }
1977   }
1978 }
1979 
1980 // Helper function for the "rematerializeLiveValues". It walks use chain
1981 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
1982 // values are visited (currently it is GEP's and casts). Returns true if it
1983 // successfully reached "BaseValue" and false otherwise.
1984 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
1985 // recorded.
1986 static bool findRematerializableChainToBasePointer(
1987   SmallVectorImpl<Instruction*> &ChainToBase,
1988   Value *CurrentValue, Value *BaseValue) {
1989 
1990   // We have found a base value
1991   if (CurrentValue == BaseValue) {
1992     return true;
1993   }
1994 
1995   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1996     ChainToBase.push_back(GEP);
1997     return findRematerializableChainToBasePointer(ChainToBase,
1998                                                   GEP->getPointerOperand(),
1999                                                   BaseValue);
2000   }
2001 
2002   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2003     Value *Def = CI->stripPointerCasts();
2004 
2005     // This two checks are basically similar. First one is here for the
2006     // consistency with findBasePointers logic.
2007     assert(!isa<CastInst>(Def) && "not a pointer cast found");
2008     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2009       return false;
2010 
2011     ChainToBase.push_back(CI);
2012     return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue);
2013   }
2014 
2015   // Not supported instruction in the chain
2016   return false;
2017 }
2018 
2019 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2020 // chain we are going to rematerialize.
2021 static unsigned
2022 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
2023                        TargetTransformInfo &TTI) {
2024   unsigned Cost = 0;
2025 
2026   for (Instruction *Instr : Chain) {
2027     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2028       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2029              "non noop cast is found during rematerialization");
2030 
2031       Type *SrcTy = CI->getOperand(0)->getType();
2032       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
2033 
2034     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2035       // Cost of the address calculation
2036       Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
2037       Cost += TTI.getAddressComputationCost(ValTy);
2038 
2039       // And cost of the GEP itself
2040       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2041       //       allowed for the external usage)
2042       if (!GEP->hasAllConstantIndices())
2043         Cost += 2;
2044 
2045     } else {
2046       llvm_unreachable("unsupported instruciton type during rematerialization");
2047     }
2048   }
2049 
2050   return Cost;
2051 }
2052 
2053 // From the statepoint live set pick values that are cheaper to recompute then
2054 // to relocate. Remove this values from the live set, rematerialize them after
2055 // statepoint and record them in "Info" structure. Note that similar to
2056 // relocated values we don't do any user adjustments here.
2057 static void rematerializeLiveValues(CallSite CS,
2058                                     PartiallyConstructedSafepointRecord &Info,
2059                                     TargetTransformInfo &TTI) {
2060   const unsigned int ChainLengthThreshold = 10;
2061 
2062   // Record values we are going to delete from this statepoint live set.
2063   // We can not di this in following loop due to iterator invalidation.
2064   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2065 
2066   for (Value *LiveValue: Info.LiveSet) {
2067     // For each live pointer find it's defining chain
2068     SmallVector<Instruction *, 3> ChainToBase;
2069     assert(Info.PointerToBase.count(LiveValue));
2070     bool FoundChain =
2071       findRematerializableChainToBasePointer(ChainToBase,
2072                                              LiveValue,
2073                                              Info.PointerToBase[LiveValue]);
2074     // Nothing to do, or chain is too long
2075     if (!FoundChain ||
2076         ChainToBase.size() == 0 ||
2077         ChainToBase.size() > ChainLengthThreshold)
2078       continue;
2079 
2080     // Compute cost of this chain
2081     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2082     // TODO: We can also account for cases when we will be able to remove some
2083     //       of the rematerialized values by later optimization passes. I.e if
2084     //       we rematerialized several intersecting chains. Or if original values
2085     //       don't have any uses besides this statepoint.
2086 
2087     // For invokes we need to rematerialize each chain twice - for normal and
2088     // for unwind basic blocks. Model this by multiplying cost by two.
2089     if (CS.isInvoke()) {
2090       Cost *= 2;
2091     }
2092     // If it's too expensive - skip it
2093     if (Cost >= RematerializationThreshold)
2094       continue;
2095 
2096     // Remove value from the live set
2097     LiveValuesToBeDeleted.push_back(LiveValue);
2098 
2099     // Clone instructions and record them inside "Info" structure
2100 
2101     // Walk backwards to visit top-most instructions first
2102     std::reverse(ChainToBase.begin(), ChainToBase.end());
2103 
2104     // Utility function which clones all instructions from "ChainToBase"
2105     // and inserts them before "InsertBefore". Returns rematerialized value
2106     // which should be used after statepoint.
2107     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
2108       Instruction *LastClonedValue = nullptr;
2109       Instruction *LastValue = nullptr;
2110       for (Instruction *Instr: ChainToBase) {
2111         // Only GEP's and casts are suported as we need to be careful to not
2112         // introduce any new uses of pointers not in the liveset.
2113         // Note that it's fine to introduce new uses of pointers which were
2114         // otherwise not used after this statepoint.
2115         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2116 
2117         Instruction *ClonedValue = Instr->clone();
2118         ClonedValue->insertBefore(InsertBefore);
2119         ClonedValue->setName(Instr->getName() + ".remat");
2120 
2121         // If it is not first instruction in the chain then it uses previously
2122         // cloned value. We should update it to use cloned value.
2123         if (LastClonedValue) {
2124           assert(LastValue);
2125           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2126 #ifndef NDEBUG
2127           // Assert that cloned instruction does not use any instructions from
2128           // this chain other than LastClonedValue
2129           for (auto OpValue : ClonedValue->operand_values()) {
2130             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
2131                        ChainToBase.end() &&
2132                    "incorrect use in rematerialization chain");
2133           }
2134 #endif
2135         }
2136 
2137         LastClonedValue = ClonedValue;
2138         LastValue = Instr;
2139       }
2140       assert(LastClonedValue);
2141       return LastClonedValue;
2142     };
2143 
2144     // Different cases for calls and invokes. For invokes we need to clone
2145     // instructions both on normal and unwind path.
2146     if (CS.isCall()) {
2147       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2148       assert(InsertBefore);
2149       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
2150       Info.RematerializedValues[RematerializedValue] = LiveValue;
2151     } else {
2152       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2153 
2154       Instruction *NormalInsertBefore =
2155           &*Invoke->getNormalDest()->getFirstInsertionPt();
2156       Instruction *UnwindInsertBefore =
2157           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2158 
2159       Instruction *NormalRematerializedValue =
2160           rematerializeChain(NormalInsertBefore);
2161       Instruction *UnwindRematerializedValue =
2162           rematerializeChain(UnwindInsertBefore);
2163 
2164       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2165       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2166     }
2167   }
2168 
2169   // Remove rematerializaed values from the live set
2170   for (auto LiveValue: LiveValuesToBeDeleted) {
2171     Info.LiveSet.erase(LiveValue);
2172   }
2173 }
2174 
2175 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
2176                               SmallVectorImpl<CallSite> &ToUpdate) {
2177 #ifndef NDEBUG
2178   // sanity check the input
2179   std::set<CallSite> Uniqued;
2180   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2181   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2182 
2183   for (CallSite CS : ToUpdate) {
2184     assert(CS.getInstruction()->getParent()->getParent() == &F);
2185     assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
2186   }
2187 #endif
2188 
2189   // When inserting gc.relocates for invokes, we need to be able to insert at
2190   // the top of the successor blocks.  See the comment on
2191   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2192   // may restructure the CFG.
2193   for (CallSite CS : ToUpdate) {
2194     if (!CS.isInvoke())
2195       continue;
2196     auto *II = cast<InvokeInst>(CS.getInstruction());
2197     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2198     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2199   }
2200 
2201   // A list of dummy calls added to the IR to keep various values obviously
2202   // live in the IR.  We'll remove all of these when done.
2203   SmallVector<CallInst *, 64> Holders;
2204 
2205   // Insert a dummy call with all of the arguments to the vm_state we'll need
2206   // for the actual safepoint insertion.  This ensures reference arguments in
2207   // the deopt argument list are considered live through the safepoint (and
2208   // thus makes sure they get relocated.)
2209   for (CallSite CS : ToUpdate) {
2210     Statepoint StatepointCS(CS);
2211 
2212     SmallVector<Value *, 64> DeoptValues;
2213     for (Use &U : StatepointCS.vm_state_args()) {
2214       Value *Arg = cast<Value>(&U);
2215       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2216              "support for FCA unimplemented");
2217       if (isHandledGCPointerType(Arg->getType()))
2218         DeoptValues.push_back(Arg);
2219     }
2220     insertUseHolderAfter(CS, DeoptValues, Holders);
2221   }
2222 
2223   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2224 
2225   // A) Identify all gc pointers which are statically live at the given call
2226   // site.
2227   findLiveReferences(F, DT, P, ToUpdate, Records);
2228 
2229   // B) Find the base pointers for each live pointer
2230   /* scope for caching */ {
2231     // Cache the 'defining value' relation used in the computation and
2232     // insertion of base phis and selects.  This ensures that we don't insert
2233     // large numbers of duplicate base_phis.
2234     DefiningValueMapTy DVCache;
2235 
2236     for (size_t i = 0; i < Records.size(); i++) {
2237       PartiallyConstructedSafepointRecord &info = Records[i];
2238       findBasePointers(DT, DVCache, ToUpdate[i], info);
2239     }
2240   } // end of cache scope
2241 
2242   // The base phi insertion logic (for any safepoint) may have inserted new
2243   // instructions which are now live at some safepoint.  The simplest such
2244   // example is:
2245   // loop:
2246   //   phi a  <-- will be a new base_phi here
2247   //   safepoint 1 <-- that needs to be live here
2248   //   gep a + 1
2249   //   safepoint 2
2250   //   br loop
2251   // We insert some dummy calls after each safepoint to definitely hold live
2252   // the base pointers which were identified for that safepoint.  We'll then
2253   // ask liveness for _every_ base inserted to see what is now live.  Then we
2254   // remove the dummy calls.
2255   Holders.reserve(Holders.size() + Records.size());
2256   for (size_t i = 0; i < Records.size(); i++) {
2257     PartiallyConstructedSafepointRecord &Info = Records[i];
2258 
2259     SmallVector<Value *, 128> Bases;
2260     for (auto Pair : Info.PointerToBase)
2261       Bases.push_back(Pair.second);
2262 
2263     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2264   }
2265 
2266   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2267   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2268   // not the key issue.
2269   recomputeLiveInValues(F, DT, P, ToUpdate, Records);
2270 
2271   if (PrintBasePointers) {
2272     for (auto &Info : Records) {
2273       errs() << "Base Pairs: (w/Relocation)\n";
2274       for (auto Pair : Info.PointerToBase)
2275         errs() << " derived %" << Pair.first->getName() << " base %"
2276                << Pair.second->getName() << "\n";
2277     }
2278   }
2279 
2280   for (CallInst *CI : Holders)
2281     CI->eraseFromParent();
2282 
2283   Holders.clear();
2284 
2285   // Do a limited scalarization of any live at safepoint vector values which
2286   // contain pointers.  This enables this pass to run after vectorization at
2287   // the cost of some possible performance loss.  TODO: it would be nice to
2288   // natively support vectors all the way through the backend so we don't need
2289   // to scalarize here.
2290   for (size_t i = 0; i < Records.size(); i++) {
2291     PartiallyConstructedSafepointRecord &Info = Records[i];
2292     Instruction *Statepoint = ToUpdate[i].getInstruction();
2293     splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet,
2294                       Info.PointerToBase, DT);
2295   }
2296 
2297   // In order to reduce live set of statepoint we might choose to rematerialize
2298   // some values instead of relocating them. This is purely an optimization and
2299   // does not influence correctness.
2300   TargetTransformInfo &TTI =
2301     P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2302 
2303   for (size_t i = 0; i < Records.size(); i++)
2304     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2305 
2306   // Now run through and replace the existing statepoints with new ones with
2307   // the live variables listed.  We do not yet update uses of the values being
2308   // relocated. We have references to live variables that need to
2309   // survive to the last iteration of this loop.  (By construction, the
2310   // previous statepoint can not be a live variable, thus we can and remove
2311   // the old statepoint calls as we go.)
2312   for (size_t i = 0; i < Records.size(); i++)
2313     makeStatepointExplicit(DT, ToUpdate[i], Records[i]);
2314 
2315   ToUpdate.clear(); // prevent accident use of invalid CallSites
2316 
2317   // Do all the fixups of the original live variables to their relocated selves
2318   SmallVector<Value *, 128> Live;
2319   for (size_t i = 0; i < Records.size(); i++) {
2320     PartiallyConstructedSafepointRecord &Info = Records[i];
2321     // We can't simply save the live set from the original insertion.  One of
2322     // the live values might be the result of a call which needs a safepoint.
2323     // That Value* no longer exists and we need to use the new gc_result.
2324     // Thankfully, the live set is embedded in the statepoint (and updated), so
2325     // we just grab that.
2326     Statepoint Statepoint(Info.StatepointToken);
2327     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2328                 Statepoint.gc_args_end());
2329 #ifndef NDEBUG
2330     // Do some basic sanity checks on our liveness results before performing
2331     // relocation.  Relocation can and will turn mistakes in liveness results
2332     // into non-sensical code which is must harder to debug.
2333     // TODO: It would be nice to test consistency as well
2334     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2335            "statepoint must be reachable or liveness is meaningless");
2336     for (Value *V : Statepoint.gc_args()) {
2337       if (!isa<Instruction>(V))
2338         // Non-instruction values trivial dominate all possible uses
2339         continue;
2340       auto *LiveInst = cast<Instruction>(V);
2341       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2342              "unreachable values should never be live");
2343       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2344              "basic SSA liveness expectation violated by liveness analysis");
2345     }
2346 #endif
2347   }
2348   unique_unsorted(Live);
2349 
2350 #ifndef NDEBUG
2351   // sanity check
2352   for (auto *Ptr : Live)
2353     assert(isGCPointerType(Ptr->getType()) && "must be a gc pointer type");
2354 #endif
2355 
2356   relocationViaAlloca(F, DT, Live, Records);
2357   return !Records.empty();
2358 }
2359 
2360 // Handles both return values and arguments for Functions and CallSites.
2361 template <typename AttrHolder>
2362 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2363                                    unsigned Index) {
2364   AttrBuilder R;
2365   if (AH.getDereferenceableBytes(Index))
2366     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2367                                   AH.getDereferenceableBytes(Index)));
2368   if (AH.getDereferenceableOrNullBytes(Index))
2369     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2370                                   AH.getDereferenceableOrNullBytes(Index)));
2371 
2372   if (!R.empty())
2373     AH.setAttributes(AH.getAttributes().removeAttributes(
2374         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2375 }
2376 
2377 void
2378 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) {
2379   LLVMContext &Ctx = F.getContext();
2380 
2381   for (Argument &A : F.args())
2382     if (isa<PointerType>(A.getType()))
2383       RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2384 
2385   if (isa<PointerType>(F.getReturnType()))
2386     RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2387 }
2388 
2389 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) {
2390   if (F.empty())
2391     return;
2392 
2393   LLVMContext &Ctx = F.getContext();
2394   MDBuilder Builder(Ctx);
2395 
2396   for (Instruction &I : instructions(F)) {
2397     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2398       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2399       bool IsImmutableTBAA =
2400           MD->getNumOperands() == 4 &&
2401           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2402 
2403       if (!IsImmutableTBAA)
2404         continue; // no work to do, MD_tbaa is already marked mutable
2405 
2406       MDNode *Base = cast<MDNode>(MD->getOperand(0));
2407       MDNode *Access = cast<MDNode>(MD->getOperand(1));
2408       uint64_t Offset =
2409           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2410 
2411       MDNode *MutableTBAA =
2412           Builder.createTBAAStructTagNode(Base, Access, Offset);
2413       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2414     }
2415 
2416     if (CallSite CS = CallSite(&I)) {
2417       for (int i = 0, e = CS.arg_size(); i != e; i++)
2418         if (isa<PointerType>(CS.getArgument(i)->getType()))
2419           RemoveDerefAttrAtIndex(Ctx, CS, i + 1);
2420       if (isa<PointerType>(CS.getType()))
2421         RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2422     }
2423   }
2424 }
2425 
2426 /// Returns true if this function should be rewritten by this pass.  The main
2427 /// point of this function is as an extension point for custom logic.
2428 static bool shouldRewriteStatepointsIn(Function &F) {
2429   // TODO: This should check the GCStrategy
2430   if (F.hasGC()) {
2431     const char *FunctionGCName = F.getGC();
2432     const StringRef StatepointExampleName("statepoint-example");
2433     const StringRef CoreCLRName("coreclr");
2434     return (StatepointExampleName == FunctionGCName) ||
2435            (CoreCLRName == FunctionGCName);
2436   } else
2437     return false;
2438 }
2439 
2440 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) {
2441 #ifndef NDEBUG
2442   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2443          "precondition!");
2444 #endif
2445 
2446   for (Function &F : M)
2447     stripDereferenceabilityInfoFromPrototype(F);
2448 
2449   for (Function &F : M)
2450     stripDereferenceabilityInfoFromBody(F);
2451 }
2452 
2453 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2454   // Nothing to do for declarations.
2455   if (F.isDeclaration() || F.empty())
2456     return false;
2457 
2458   // Policy choice says not to rewrite - the most common reason is that we're
2459   // compiling code without a GCStrategy.
2460   if (!shouldRewriteStatepointsIn(F))
2461     return false;
2462 
2463   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2464 
2465   // Gather all the statepoints which need rewritten.  Be careful to only
2466   // consider those in reachable code since we need to ask dominance queries
2467   // when rewriting.  We'll delete the unreachable ones in a moment.
2468   SmallVector<CallSite, 64> ParsePointNeeded;
2469   bool HasUnreachableStatepoint = false;
2470   for (Instruction &I : instructions(F)) {
2471     // TODO: only the ones with the flag set!
2472     if (isStatepoint(I)) {
2473       if (DT.isReachableFromEntry(I.getParent()))
2474         ParsePointNeeded.push_back(CallSite(&I));
2475       else
2476         HasUnreachableStatepoint = true;
2477     }
2478   }
2479 
2480   bool MadeChange = false;
2481 
2482   // Delete any unreachable statepoints so that we don't have unrewritten
2483   // statepoints surviving this pass.  This makes testing easier and the
2484   // resulting IR less confusing to human readers.  Rather than be fancy, we
2485   // just reuse a utility function which removes the unreachable blocks.
2486   if (HasUnreachableStatepoint)
2487     MadeChange |= removeUnreachableBlocks(F);
2488 
2489   // Return early if no work to do.
2490   if (ParsePointNeeded.empty())
2491     return MadeChange;
2492 
2493   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2494   // These are created by LCSSA.  They have the effect of increasing the size
2495   // of liveness sets for no good reason.  It may be harder to do this post
2496   // insertion since relocations and base phis can confuse things.
2497   for (BasicBlock &BB : F)
2498     if (BB.getUniquePredecessor()) {
2499       MadeChange = true;
2500       FoldSingleEntryPHINodes(&BB);
2501     }
2502 
2503   // Before we start introducing relocations, we want to tweak the IR a bit to
2504   // avoid unfortunate code generation effects.  The main example is that we
2505   // want to try to make sure the comparison feeding a branch is after any
2506   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2507   // values feeding a branch after relocation.  This is semantically correct,
2508   // but results in extra register pressure since both the pre-relocation and
2509   // post-relocation copies must be available in registers.  For code without
2510   // relocations this is handled elsewhere, but teaching the scheduler to
2511   // reverse the transform we're about to do would be slightly complex.
2512   // Note: This may extend the live range of the inputs to the icmp and thus
2513   // increase the liveset of any statepoint we move over.  This is profitable
2514   // as long as all statepoints are in rare blocks.  If we had in-register
2515   // lowering for live values this would be a much safer transform.
2516   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2517     if (auto *BI = dyn_cast<BranchInst>(TI))
2518       if (BI->isConditional())
2519         return dyn_cast<Instruction>(BI->getCondition());
2520     // TODO: Extend this to handle switches
2521     return nullptr;
2522   };
2523   for (BasicBlock &BB : F) {
2524     TerminatorInst *TI = BB.getTerminator();
2525     if (auto *Cond = getConditionInst(TI))
2526       // TODO: Handle more than just ICmps here.  We should be able to move
2527       // most instructions without side effects or memory access.
2528       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2529         MadeChange = true;
2530         Cond->moveBefore(TI);
2531       }
2532   }
2533 
2534   MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
2535   return MadeChange;
2536 }
2537 
2538 // liveness computation via standard dataflow
2539 // -------------------------------------------------------------------
2540 
2541 // TODO: Consider using bitvectors for liveness, the set of potentially
2542 // interesting values should be small and easy to pre-compute.
2543 
2544 /// Compute the live-in set for the location rbegin starting from
2545 /// the live-out set of the basic block
2546 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2547                                 BasicBlock::reverse_iterator rend,
2548                                 DenseSet<Value *> &LiveTmp) {
2549 
2550   for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2551     Instruction *I = &*ritr;
2552 
2553     // KILL/Def - Remove this definition from LiveIn
2554     LiveTmp.erase(I);
2555 
2556     // Don't consider *uses* in PHI nodes, we handle their contribution to
2557     // predecessor blocks when we seed the LiveOut sets
2558     if (isa<PHINode>(I))
2559       continue;
2560 
2561     // USE - Add to the LiveIn set for this instruction
2562     for (Value *V : I->operands()) {
2563       assert(!isUnhandledGCPointerType(V->getType()) &&
2564              "support for FCA unimplemented");
2565       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2566         // The choice to exclude all things constant here is slightly subtle.
2567         // There are two independent reasons:
2568         // - We assume that things which are constant (from LLVM's definition)
2569         // do not move at runtime.  For example, the address of a global
2570         // variable is fixed, even though it's contents may not be.
2571         // - Second, we can't disallow arbitrary inttoptr constants even
2572         // if the language frontend does.  Optimization passes are free to
2573         // locally exploit facts without respect to global reachability.  This
2574         // can create sections of code which are dynamically unreachable and
2575         // contain just about anything.  (see constants.ll in tests)
2576         LiveTmp.insert(V);
2577       }
2578     }
2579   }
2580 }
2581 
2582 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
2583 
2584   for (BasicBlock *Succ : successors(BB)) {
2585     const BasicBlock::iterator E(Succ->getFirstNonPHI());
2586     for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2587       PHINode *Phi = cast<PHINode>(&*I);
2588       Value *V = Phi->getIncomingValueForBlock(BB);
2589       assert(!isUnhandledGCPointerType(V->getType()) &&
2590              "support for FCA unimplemented");
2591       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2592         LiveTmp.insert(V);
2593       }
2594     }
2595   }
2596 }
2597 
2598 static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
2599   DenseSet<Value *> KillSet;
2600   for (Instruction &I : *BB)
2601     if (isHandledGCPointerType(I.getType()))
2602       KillSet.insert(&I);
2603   return KillSet;
2604 }
2605 
2606 #ifndef NDEBUG
2607 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2608 /// sanity check for the liveness computation.
2609 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
2610                           TerminatorInst *TI, bool TermOkay = false) {
2611   for (Value *V : Live) {
2612     if (auto *I = dyn_cast<Instruction>(V)) {
2613       // The terminator can be a member of the LiveOut set.  LLVM's definition
2614       // of instruction dominance states that V does not dominate itself.  As
2615       // such, we need to special case this to allow it.
2616       if (TermOkay && TI == I)
2617         continue;
2618       assert(DT.dominates(I, TI) &&
2619              "basic SSA liveness expectation violated by liveness analysis");
2620     }
2621   }
2622 }
2623 
2624 /// Check that all the liveness sets used during the computation of liveness
2625 /// obey basic SSA properties.  This is useful for finding cases where we miss
2626 /// a def.
2627 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2628                           BasicBlock &BB) {
2629   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2630   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2631   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2632 }
2633 #endif
2634 
2635 static void computeLiveInValues(DominatorTree &DT, Function &F,
2636                                 GCPtrLivenessData &Data) {
2637 
2638   SmallSetVector<BasicBlock *, 200> Worklist;
2639   auto AddPredsToWorklist = [&](BasicBlock *BB) {
2640     // We use a SetVector so that we don't have duplicates in the worklist.
2641     Worklist.insert(pred_begin(BB), pred_end(BB));
2642   };
2643   auto NextItem = [&]() {
2644     BasicBlock *BB = Worklist.back();
2645     Worklist.pop_back();
2646     return BB;
2647   };
2648 
2649   // Seed the liveness for each individual block
2650   for (BasicBlock &BB : F) {
2651     Data.KillSet[&BB] = computeKillSet(&BB);
2652     Data.LiveSet[&BB].clear();
2653     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2654 
2655 #ifndef NDEBUG
2656     for (Value *Kill : Data.KillSet[&BB])
2657       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2658 #endif
2659 
2660     Data.LiveOut[&BB] = DenseSet<Value *>();
2661     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2662     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2663     set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
2664     set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
2665     if (!Data.LiveIn[&BB].empty())
2666       AddPredsToWorklist(&BB);
2667   }
2668 
2669   // Propagate that liveness until stable
2670   while (!Worklist.empty()) {
2671     BasicBlock *BB = NextItem();
2672 
2673     // Compute our new liveout set, then exit early if it hasn't changed
2674     // despite the contribution of our successor.
2675     DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2676     const auto OldLiveOutSize = LiveOut.size();
2677     for (BasicBlock *Succ : successors(BB)) {
2678       assert(Data.LiveIn.count(Succ));
2679       set_union(LiveOut, Data.LiveIn[Succ]);
2680     }
2681     // assert OutLiveOut is a subset of LiveOut
2682     if (OldLiveOutSize == LiveOut.size()) {
2683       // If the sets are the same size, then we didn't actually add anything
2684       // when unioning our successors LiveIn  Thus, the LiveIn of this block
2685       // hasn't changed.
2686       continue;
2687     }
2688     Data.LiveOut[BB] = LiveOut;
2689 
2690     // Apply the effects of this basic block
2691     DenseSet<Value *> LiveTmp = LiveOut;
2692     set_union(LiveTmp, Data.LiveSet[BB]);
2693     set_subtract(LiveTmp, Data.KillSet[BB]);
2694 
2695     assert(Data.LiveIn.count(BB));
2696     const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
2697     // assert: OldLiveIn is a subset of LiveTmp
2698     if (OldLiveIn.size() != LiveTmp.size()) {
2699       Data.LiveIn[BB] = LiveTmp;
2700       AddPredsToWorklist(BB);
2701     }
2702   } // while( !worklist.empty() )
2703 
2704 #ifndef NDEBUG
2705   // Sanity check our output against SSA properties.  This helps catch any
2706   // missing kills during the above iteration.
2707   for (BasicBlock &BB : F) {
2708     checkBasicSSA(DT, Data, BB);
2709   }
2710 #endif
2711 }
2712 
2713 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2714                               StatepointLiveSetTy &Out) {
2715 
2716   BasicBlock *BB = Inst->getParent();
2717 
2718   // Note: The copy is intentional and required
2719   assert(Data.LiveOut.count(BB));
2720   DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2721 
2722   // We want to handle the statepoint itself oddly.  It's
2723   // call result is not live (normal), nor are it's arguments
2724   // (unless they're used again later).  This adjustment is
2725   // specifically what we need to relocate
2726   BasicBlock::reverse_iterator rend(Inst->getIterator());
2727   computeLiveInValues(BB->rbegin(), rend, LiveOut);
2728   LiveOut.erase(Inst);
2729   Out.insert(LiveOut.begin(), LiveOut.end());
2730 }
2731 
2732 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2733                                   const CallSite &CS,
2734                                   PartiallyConstructedSafepointRecord &Info) {
2735   Instruction *Inst = CS.getInstruction();
2736   StatepointLiveSetTy Updated;
2737   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2738 
2739 #ifndef NDEBUG
2740   DenseSet<Value *> Bases;
2741   for (auto KVPair : Info.PointerToBase) {
2742     Bases.insert(KVPair.second);
2743   }
2744 #endif
2745   // We may have base pointers which are now live that weren't before.  We need
2746   // to update the PointerToBase structure to reflect this.
2747   for (auto V : Updated)
2748     if (!Info.PointerToBase.count(V)) {
2749       assert(Bases.count(V) && "can't find base for unexpected live value");
2750       Info.PointerToBase[V] = V;
2751       continue;
2752     }
2753 
2754 #ifndef NDEBUG
2755   for (auto V : Updated) {
2756     assert(Info.PointerToBase.count(V) &&
2757            "must be able to find base for live value");
2758   }
2759 #endif
2760 
2761   // Remove any stale base mappings - this can happen since our liveness is
2762   // more precise then the one inherent in the base pointer analysis
2763   DenseSet<Value *> ToErase;
2764   for (auto KVPair : Info.PointerToBase)
2765     if (!Updated.count(KVPair.first))
2766       ToErase.insert(KVPair.first);
2767   for (auto V : ToErase)
2768     Info.PointerToBase.erase(V);
2769 
2770 #ifndef NDEBUG
2771   for (auto KVPair : Info.PointerToBase)
2772     assert(Updated.count(KVPair.first) && "record for non-live value");
2773 #endif
2774 
2775   Info.LiveSet = Updated;
2776 }
2777