xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision bd43d0e2d0407bde82fc5526af8d45c86bfcd7f3)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/Cloning.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
45 
46 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
47 
48 using namespace llvm;
49 
50 // Print the liveset found at the insert location
51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
52                                   cl::init(false));
53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
54                                       cl::init(false));
55 // Print out the base pointers for debugging
56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
57                                        cl::init(false));
58 
59 // Cost threshold measuring when it is profitable to rematerialize value instead
60 // of relocating it
61 static cl::opt<unsigned>
62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
63                            cl::init(6));
64 
65 #ifdef EXPENSIVE_CHECKS
66 static bool ClobberNonLive = true;
67 #else
68 static bool ClobberNonLive = false;
69 #endif
70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
71                                                   cl::location(ClobberNonLive),
72                                                   cl::Hidden);
73 
74 static cl::opt<bool>
75     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
76                                    cl::Hidden, cl::init(true));
77 
78 namespace {
79 struct RewriteStatepointsForGC : public ModulePass {
80   static char ID; // Pass identification, replacement for typeid
81 
82   RewriteStatepointsForGC() : ModulePass(ID) {
83     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
84   }
85   bool runOnFunction(Function &F);
86   bool runOnModule(Module &M) override {
87     bool Changed = false;
88     for (Function &F : M)
89       Changed |= runOnFunction(F);
90 
91     if (Changed) {
92       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
93       // returns true for at least one function in the module.  Since at least
94       // one function changed, we know that the precondition is satisfied.
95       stripNonValidAttributes(M);
96     }
97 
98     return Changed;
99   }
100 
101   void getAnalysisUsage(AnalysisUsage &AU) const override {
102     // We add and rewrite a bunch of instructions, but don't really do much
103     // else.  We could in theory preserve a lot more analyses here.
104     AU.addRequired<DominatorTreeWrapperPass>();
105     AU.addRequired<TargetTransformInfoWrapperPass>();
106   }
107 
108   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
109   /// dereferenceability that are no longer valid/correct after
110   /// RewriteStatepointsForGC has run.  This is because semantically, after
111   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
112   /// heap.  stripNonValidAttributes (conservatively) restores correctness
113   /// by erasing all attributes in the module that externally imply
114   /// dereferenceability.
115   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
116   /// can touch the entire heap including noalias objects.
117   void stripNonValidAttributes(Module &M);
118 
119   // Helpers for stripNonValidAttributes
120   void stripNonValidAttributesFromBody(Function &F);
121   void stripNonValidAttributesFromPrototype(Function &F);
122 };
123 } // namespace
124 
125 char RewriteStatepointsForGC::ID = 0;
126 
127 ModulePass *llvm::createRewriteStatepointsForGCPass() {
128   return new RewriteStatepointsForGC();
129 }
130 
131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
132                       "Make relocations explicit at statepoints", false, false)
133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
136                     "Make relocations explicit at statepoints", false, false)
137 
138 namespace {
139 struct GCPtrLivenessData {
140   /// Values defined in this block.
141   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
142   /// Values used in this block (and thus live); does not included values
143   /// killed within this block.
144   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
145 
146   /// Values live into this basic block (i.e. used by any
147   /// instruction in this basic block or ones reachable from here)
148   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
149 
150   /// Values live out of this basic block (i.e. live into
151   /// any successor block)
152   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
153 };
154 
155 // The type of the internal cache used inside the findBasePointers family
156 // of functions.  From the callers perspective, this is an opaque type and
157 // should not be inspected.
158 //
159 // In the actual implementation this caches two relations:
160 // - The base relation itself (i.e. this pointer is based on that one)
161 // - The base defining value relation (i.e. before base_phi insertion)
162 // Generally, after the execution of a full findBasePointer call, only the
163 // base relation will remain.  Internally, we add a mixture of the two
164 // types, then update all the second type to the first type
165 typedef MapVector<Value *, Value *> DefiningValueMapTy;
166 typedef SetVector<Value *> StatepointLiveSetTy;
167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>>
168   RematerializedValueMapTy;
169 
170 struct PartiallyConstructedSafepointRecord {
171   /// The set of values known to be live across this safepoint
172   StatepointLiveSetTy LiveSet;
173 
174   /// Mapping from live pointers to a base-defining-value
175   MapVector<Value *, Value *> PointerToBase;
176 
177   /// The *new* gc.statepoint instruction itself.  This produces the token
178   /// that normal path gc.relocates and the gc.result are tied to.
179   Instruction *StatepointToken;
180 
181   /// Instruction to which exceptional gc relocates are attached
182   /// Makes it easier to iterate through them during relocationViaAlloca.
183   Instruction *UnwindToken;
184 
185   /// Record live values we are rematerialized instead of relocating.
186   /// They are not included into 'LiveSet' field.
187   /// Maps rematerialized copy to it's original value.
188   RematerializedValueMapTy RematerializedValues;
189 };
190 }
191 
192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
193   Optional<OperandBundleUse> DeoptBundle =
194       CS.getOperandBundle(LLVMContext::OB_deopt);
195 
196   if (!DeoptBundle.hasValue()) {
197     assert(AllowStatepointWithNoDeoptInfo &&
198            "Found non-leaf call without deopt info!");
199     return None;
200   }
201 
202   return DeoptBundle.getValue().Inputs;
203 }
204 
205 /// Compute the live-in set for every basic block in the function
206 static void computeLiveInValues(DominatorTree &DT, Function &F,
207                                 GCPtrLivenessData &Data);
208 
209 /// Given results from the dataflow liveness computation, find the set of live
210 /// Values at a particular instruction.
211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
212                               StatepointLiveSetTy &out);
213 
214 // TODO: Once we can get to the GCStrategy, this becomes
215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
216 
217 static bool isGCPointerType(Type *T) {
218   if (auto *PT = dyn_cast<PointerType>(T))
219     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
220     // GC managed heap.  We know that a pointer into this heap needs to be
221     // updated and that no other pointer does.
222     return (1 == PT->getAddressSpace());
223   return false;
224 }
225 
226 // Return true if this type is one which a) is a gc pointer or contains a GC
227 // pointer and b) is of a type this code expects to encounter as a live value.
228 // (The insertion code will assert that a type which matches (a) and not (b)
229 // is not encountered.)
230 static bool isHandledGCPointerType(Type *T) {
231   // We fully support gc pointers
232   if (isGCPointerType(T))
233     return true;
234   // We partially support vectors of gc pointers. The code will assert if it
235   // can't handle something.
236   if (auto VT = dyn_cast<VectorType>(T))
237     if (isGCPointerType(VT->getElementType()))
238       return true;
239   return false;
240 }
241 
242 #ifndef NDEBUG
243 /// Returns true if this type contains a gc pointer whether we know how to
244 /// handle that type or not.
245 static bool containsGCPtrType(Type *Ty) {
246   if (isGCPointerType(Ty))
247     return true;
248   if (VectorType *VT = dyn_cast<VectorType>(Ty))
249     return isGCPointerType(VT->getScalarType());
250   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
251     return containsGCPtrType(AT->getElementType());
252   if (StructType *ST = dyn_cast<StructType>(Ty))
253     return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
254                        containsGCPtrType);
255   return false;
256 }
257 
258 // Returns true if this is a type which a) is a gc pointer or contains a GC
259 // pointer and b) is of a type which the code doesn't expect (i.e. first class
260 // aggregates).  Used to trip assertions.
261 static bool isUnhandledGCPointerType(Type *Ty) {
262   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
263 }
264 #endif
265 
266 // Return the name of the value suffixed with the provided value, or if the
267 // value didn't have a name, the default value specified.
268 static std::string suffixed_name_or(Value *V, StringRef Suffix,
269                                     StringRef DefaultName) {
270   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
271 }
272 
273 // Conservatively identifies any definitions which might be live at the
274 // given instruction. The  analysis is performed immediately before the
275 // given instruction. Values defined by that instruction are not considered
276 // live.  Values used by that instruction are considered live.
277 static void
278 analyzeParsePointLiveness(DominatorTree &DT,
279                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
280                           PartiallyConstructedSafepointRecord &result) {
281   Instruction *inst = CS.getInstruction();
282 
283   StatepointLiveSetTy LiveSet;
284   findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
285 
286   if (PrintLiveSet) {
287     errs() << "Live Variables:\n";
288     for (Value *V : LiveSet)
289       dbgs() << " " << V->getName() << " " << *V << "\n";
290   }
291   if (PrintLiveSetSize) {
292     errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
293     errs() << "Number live values: " << LiveSet.size() << "\n";
294   }
295   result.LiveSet = LiveSet;
296 }
297 
298 static bool isKnownBaseResult(Value *V);
299 namespace {
300 /// A single base defining value - An immediate base defining value for an
301 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
302 /// For instructions which have multiple pointer [vector] inputs or that
303 /// transition between vector and scalar types, there is no immediate base
304 /// defining value.  The 'base defining value' for 'Def' is the transitive
305 /// closure of this relation stopping at the first instruction which has no
306 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
307 /// but it can also be an arbitrary derived pointer.
308 struct BaseDefiningValueResult {
309   /// Contains the value which is the base defining value.
310   Value * const BDV;
311   /// True if the base defining value is also known to be an actual base
312   /// pointer.
313   const bool IsKnownBase;
314   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
315     : BDV(BDV), IsKnownBase(IsKnownBase) {
316 #ifndef NDEBUG
317     // Check consistency between new and old means of checking whether a BDV is
318     // a base.
319     bool MustBeBase = isKnownBaseResult(BDV);
320     assert(!MustBeBase || MustBeBase == IsKnownBase);
321 #endif
322   }
323 };
324 }
325 
326 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
327 
328 /// Return a base defining value for the 'Index' element of the given vector
329 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
330 /// 'I'.  As an optimization, this method will try to determine when the
331 /// element is known to already be a base pointer.  If this can be established,
332 /// the second value in the returned pair will be true.  Note that either a
333 /// vector or a pointer typed value can be returned.  For the former, the
334 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
335 /// If the later, the return pointer is a BDV (or possibly a base) for the
336 /// particular element in 'I'.
337 static BaseDefiningValueResult
338 findBaseDefiningValueOfVector(Value *I) {
339   // Each case parallels findBaseDefiningValue below, see that code for
340   // detailed motivation.
341 
342   if (isa<Argument>(I))
343     // An incoming argument to the function is a base pointer
344     return BaseDefiningValueResult(I, true);
345 
346   if (isa<Constant>(I))
347     // Base of constant vector consists only of constant null pointers.
348     // For reasoning see similar case inside 'findBaseDefiningValue' function.
349     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
350                                    true);
351 
352   if (isa<LoadInst>(I))
353     return BaseDefiningValueResult(I, true);
354 
355   if (isa<InsertElementInst>(I))
356     // We don't know whether this vector contains entirely base pointers or
357     // not.  To be conservatively correct, we treat it as a BDV and will
358     // duplicate code as needed to construct a parallel vector of bases.
359     return BaseDefiningValueResult(I, false);
360 
361   if (isa<ShuffleVectorInst>(I))
362     // We don't know whether this vector contains entirely base pointers or
363     // not.  To be conservatively correct, we treat it as a BDV and will
364     // duplicate code as needed to construct a parallel vector of bases.
365     // TODO: There a number of local optimizations which could be applied here
366     // for particular sufflevector patterns.
367     return BaseDefiningValueResult(I, false);
368 
369   // A PHI or Select is a base defining value.  The outer findBasePointer
370   // algorithm is responsible for constructing a base value for this BDV.
371   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
372          "unknown vector instruction - no base found for vector element");
373   return BaseDefiningValueResult(I, false);
374 }
375 
376 /// Helper function for findBasePointer - Will return a value which either a)
377 /// defines the base pointer for the input, b) blocks the simple search
378 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
379 /// from pointer to vector type or back.
380 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
381   assert(I->getType()->isPtrOrPtrVectorTy() &&
382          "Illegal to ask for the base pointer of a non-pointer type");
383 
384   if (I->getType()->isVectorTy())
385     return findBaseDefiningValueOfVector(I);
386 
387   if (isa<Argument>(I))
388     // An incoming argument to the function is a base pointer
389     // We should have never reached here if this argument isn't an gc value
390     return BaseDefiningValueResult(I, true);
391 
392   if (isa<Constant>(I)) {
393     // We assume that objects with a constant base (e.g. a global) can't move
394     // and don't need to be reported to the collector because they are always
395     // live. Besides global references, all kinds of constants (e.g. undef,
396     // constant expressions, null pointers) can be introduced by the inliner or
397     // the optimizer, especially on dynamically dead paths.
398     // Here we treat all of them as having single null base. By doing this we
399     // trying to avoid problems reporting various conflicts in a form of
400     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
401     // See constant.ll file for relevant test cases.
402 
403     return BaseDefiningValueResult(
404         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
405   }
406 
407   if (CastInst *CI = dyn_cast<CastInst>(I)) {
408     Value *Def = CI->stripPointerCasts();
409     // If stripping pointer casts changes the address space there is an
410     // addrspacecast in between.
411     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
412                cast<PointerType>(CI->getType())->getAddressSpace() &&
413            "unsupported addrspacecast");
414     // If we find a cast instruction here, it means we've found a cast which is
415     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
416     // handle int->ptr conversion.
417     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
418     return findBaseDefiningValue(Def);
419   }
420 
421   if (isa<LoadInst>(I))
422     // The value loaded is an gc base itself
423     return BaseDefiningValueResult(I, true);
424 
425 
426   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
427     // The base of this GEP is the base
428     return findBaseDefiningValue(GEP->getPointerOperand());
429 
430   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
431     switch (II->getIntrinsicID()) {
432     default:
433       // fall through to general call handling
434       break;
435     case Intrinsic::experimental_gc_statepoint:
436       llvm_unreachable("statepoints don't produce pointers");
437     case Intrinsic::experimental_gc_relocate: {
438       // Rerunning safepoint insertion after safepoints are already
439       // inserted is not supported.  It could probably be made to work,
440       // but why are you doing this?  There's no good reason.
441       llvm_unreachable("repeat safepoint insertion is not supported");
442     }
443     case Intrinsic::gcroot:
444       // Currently, this mechanism hasn't been extended to work with gcroot.
445       // There's no reason it couldn't be, but I haven't thought about the
446       // implications much.
447       llvm_unreachable(
448           "interaction with the gcroot mechanism is not supported");
449     }
450   }
451   // We assume that functions in the source language only return base
452   // pointers.  This should probably be generalized via attributes to support
453   // both source language and internal functions.
454   if (isa<CallInst>(I) || isa<InvokeInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   // I have absolutely no idea how to implement this part yet.  It's not
458   // necessarily hard, I just haven't really looked at it yet.
459   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
460 
461   if (isa<AtomicCmpXchgInst>(I))
462     // A CAS is effectively a atomic store and load combined under a
463     // predicate.  From the perspective of base pointers, we just treat it
464     // like a load.
465     return BaseDefiningValueResult(I, true);
466 
467   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
468                                    "binary ops which don't apply to pointers");
469 
470   // The aggregate ops.  Aggregates can either be in the heap or on the
471   // stack, but in either case, this is simply a field load.  As a result,
472   // this is a defining definition of the base just like a load is.
473   if (isa<ExtractValueInst>(I))
474     return BaseDefiningValueResult(I, true);
475 
476   // We should never see an insert vector since that would require we be
477   // tracing back a struct value not a pointer value.
478   assert(!isa<InsertValueInst>(I) &&
479          "Base pointer for a struct is meaningless");
480 
481   // An extractelement produces a base result exactly when it's input does.
482   // We may need to insert a parallel instruction to extract the appropriate
483   // element out of the base vector corresponding to the input. Given this,
484   // it's analogous to the phi and select case even though it's not a merge.
485   if (isa<ExtractElementInst>(I))
486     // Note: There a lot of obvious peephole cases here.  This are deliberately
487     // handled after the main base pointer inference algorithm to make writing
488     // test cases to exercise that code easier.
489     return BaseDefiningValueResult(I, false);
490 
491   // The last two cases here don't return a base pointer.  Instead, they
492   // return a value which dynamically selects from among several base
493   // derived pointers (each with it's own base potentially).  It's the job of
494   // the caller to resolve these.
495   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
496          "missing instruction case in findBaseDefiningValing");
497   return BaseDefiningValueResult(I, false);
498 }
499 
500 /// Returns the base defining value for this value.
501 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
502   Value *&Cached = Cache[I];
503   if (!Cached) {
504     Cached = findBaseDefiningValue(I).BDV;
505     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
506                  << Cached->getName() << "\n");
507   }
508   assert(Cache[I] != nullptr);
509   return Cached;
510 }
511 
512 /// Return a base pointer for this value if known.  Otherwise, return it's
513 /// base defining value.
514 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
515   Value *Def = findBaseDefiningValueCached(I, Cache);
516   auto Found = Cache.find(Def);
517   if (Found != Cache.end()) {
518     // Either a base-of relation, or a self reference.  Caller must check.
519     return Found->second;
520   }
521   // Only a BDV available
522   return Def;
523 }
524 
525 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
526 /// is it known to be a base pointer?  Or do we need to continue searching.
527 static bool isKnownBaseResult(Value *V) {
528   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
529       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
530       !isa<ShuffleVectorInst>(V)) {
531     // no recursion possible
532     return true;
533   }
534   if (isa<Instruction>(V) &&
535       cast<Instruction>(V)->getMetadata("is_base_value")) {
536     // This is a previously inserted base phi or select.  We know
537     // that this is a base value.
538     return true;
539   }
540 
541   // We need to keep searching
542   return false;
543 }
544 
545 namespace {
546 /// Models the state of a single base defining value in the findBasePointer
547 /// algorithm for determining where a new instruction is needed to propagate
548 /// the base of this BDV.
549 class BDVState {
550 public:
551   enum Status { Unknown, Base, Conflict };
552 
553   BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
554     assert(status != Base || b);
555   }
556   explicit BDVState(Value *b) : status(Base), base(b) {}
557   BDVState() : status(Unknown), base(nullptr) {}
558 
559   Status getStatus() const { return status; }
560   Value *getBase() const { return base; }
561 
562   bool isBase() const { return getStatus() == Base; }
563   bool isUnknown() const { return getStatus() == Unknown; }
564   bool isConflict() const { return getStatus() == Conflict; }
565 
566   bool operator==(const BDVState &other) const {
567     return base == other.base && status == other.status;
568   }
569 
570   bool operator!=(const BDVState &other) const { return !(*this == other); }
571 
572   LLVM_DUMP_METHOD
573   void dump() const { print(dbgs()); dbgs() << '\n'; }
574 
575   void print(raw_ostream &OS) const {
576     switch (status) {
577     case Unknown:
578       OS << "U";
579       break;
580     case Base:
581       OS << "B";
582       break;
583     case Conflict:
584       OS << "C";
585       break;
586     };
587     OS << " (" << base << " - "
588        << (base ? base->getName() : "nullptr") << "): ";
589   }
590 
591 private:
592   Status status;
593   AssertingVH<Value> base; // non null only if status == base
594 };
595 }
596 
597 #ifndef NDEBUG
598 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
599   State.print(OS);
600   return OS;
601 }
602 #endif
603 
604 static BDVState meetBDVStateImpl(const BDVState &stateA,
605                                  const BDVState &stateB) {
606   switch (stateA.getStatus()) {
607   case BDVState::Unknown:
608     return stateB;
609 
610   case BDVState::Base:
611     assert(stateA.getBase() && "can't be null");
612     if (stateB.isUnknown())
613       return stateA;
614 
615     if (stateB.isBase()) {
616       if (stateA.getBase() == stateB.getBase()) {
617         assert(stateA == stateB && "equality broken!");
618         return stateA;
619       }
620       return BDVState(BDVState::Conflict);
621     }
622     assert(stateB.isConflict() && "only three states!");
623     return BDVState(BDVState::Conflict);
624 
625   case BDVState::Conflict:
626     return stateA;
627   }
628   llvm_unreachable("only three states!");
629 }
630 
631 // Values of type BDVState form a lattice, and this function implements the meet
632 // operation.
633 static BDVState meetBDVState(BDVState LHS, BDVState RHS) {
634   BDVState Result = meetBDVStateImpl(LHS, RHS);
635   assert(Result == meetBDVStateImpl(RHS, LHS) &&
636          "Math is wrong: meet does not commute!");
637   return Result;
638 }
639 
640 /// For a given value or instruction, figure out what base ptr its derived from.
641 /// For gc objects, this is simply itself.  On success, returns a value which is
642 /// the base pointer.  (This is reliable and can be used for relocation.)  On
643 /// failure, returns nullptr.
644 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
645   Value *Def = findBaseOrBDV(I, Cache);
646 
647   if (isKnownBaseResult(Def))
648     return Def;
649 
650   // Here's the rough algorithm:
651   // - For every SSA value, construct a mapping to either an actual base
652   //   pointer or a PHI which obscures the base pointer.
653   // - Construct a mapping from PHI to unknown TOP state.  Use an
654   //   optimistic algorithm to propagate base pointer information.  Lattice
655   //   looks like:
656   //   UNKNOWN
657   //   b1 b2 b3 b4
658   //   CONFLICT
659   //   When algorithm terminates, all PHIs will either have a single concrete
660   //   base or be in a conflict state.
661   // - For every conflict, insert a dummy PHI node without arguments.  Add
662   //   these to the base[Instruction] = BasePtr mapping.  For every
663   //   non-conflict, add the actual base.
664   //  - For every conflict, add arguments for the base[a] of each input
665   //   arguments.
666   //
667   // Note: A simpler form of this would be to add the conflict form of all
668   // PHIs without running the optimistic algorithm.  This would be
669   // analogous to pessimistic data flow and would likely lead to an
670   // overall worse solution.
671 
672 #ifndef NDEBUG
673   auto isExpectedBDVType = [](Value *BDV) {
674     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
675            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
676   };
677 #endif
678 
679   // Once populated, will contain a mapping from each potentially non-base BDV
680   // to a lattice value (described above) which corresponds to that BDV.
681   // We use the order of insertion (DFS over the def/use graph) to provide a
682   // stable deterministic ordering for visiting DenseMaps (which are unordered)
683   // below.  This is important for deterministic compilation.
684   MapVector<Value *, BDVState> States;
685 
686   // Recursively fill in all base defining values reachable from the initial
687   // one for which we don't already know a definite base value for
688   /* scope */ {
689     SmallVector<Value*, 16> Worklist;
690     Worklist.push_back(Def);
691     States.insert({Def, BDVState()});
692     while (!Worklist.empty()) {
693       Value *Current = Worklist.pop_back_val();
694       assert(!isKnownBaseResult(Current) && "why did it get added?");
695 
696       auto visitIncomingValue = [&](Value *InVal) {
697         Value *Base = findBaseOrBDV(InVal, Cache);
698         if (isKnownBaseResult(Base))
699           // Known bases won't need new instructions introduced and can be
700           // ignored safely
701           return;
702         assert(isExpectedBDVType(Base) && "the only non-base values "
703                "we see should be base defining values");
704         if (States.insert(std::make_pair(Base, BDVState())).second)
705           Worklist.push_back(Base);
706       };
707       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
708         for (Value *InVal : PN->incoming_values())
709           visitIncomingValue(InVal);
710       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
711         visitIncomingValue(SI->getTrueValue());
712         visitIncomingValue(SI->getFalseValue());
713       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
714         visitIncomingValue(EE->getVectorOperand());
715       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
716         visitIncomingValue(IE->getOperand(0)); // vector operand
717         visitIncomingValue(IE->getOperand(1)); // scalar operand
718       } else {
719         // There is one known class of instructions we know we don't handle.
720         assert(isa<ShuffleVectorInst>(Current));
721         llvm_unreachable("Unimplemented instruction case");
722       }
723     }
724   }
725 
726 #ifndef NDEBUG
727   DEBUG(dbgs() << "States after initialization:\n");
728   for (auto Pair : States)
729     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
730 #endif
731 
732   // Return a phi state for a base defining value.  We'll generate a new
733   // base state for known bases and expect to find a cached state otherwise.
734   auto getStateForBDV = [&](Value *baseValue) {
735     if (isKnownBaseResult(baseValue))
736       return BDVState(baseValue);
737     auto I = States.find(baseValue);
738     assert(I != States.end() && "lookup failed!");
739     return I->second;
740   };
741 
742   bool Progress = true;
743   while (Progress) {
744 #ifndef NDEBUG
745     const size_t OldSize = States.size();
746 #endif
747     Progress = false;
748     // We're only changing values in this loop, thus safe to keep iterators.
749     // Since this is computing a fixed point, the order of visit does not
750     // effect the result.  TODO: We could use a worklist here and make this run
751     // much faster.
752     for (auto Pair : States) {
753       Value *BDV = Pair.first;
754       assert(!isKnownBaseResult(BDV) && "why did it get added?");
755 
756       // Given an input value for the current instruction, return a BDVState
757       // instance which represents the BDV of that value.
758       auto getStateForInput = [&](Value *V) mutable {
759         Value *BDV = findBaseOrBDV(V, Cache);
760         return getStateForBDV(BDV);
761       };
762 
763       BDVState NewState;
764       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
765         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
766         NewState =
767             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
768       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
769         for (Value *Val : PN->incoming_values())
770           NewState = meetBDVState(NewState, getStateForInput(Val));
771       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
772         // The 'meet' for an extractelement is slightly trivial, but it's still
773         // useful in that it drives us to conflict if our input is.
774         NewState =
775             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
776       } else {
777         // Given there's a inherent type mismatch between the operands, will
778         // *always* produce Conflict.
779         auto *IE = cast<InsertElementInst>(BDV);
780         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
781         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
782       }
783 
784       BDVState OldState = States[BDV];
785       if (OldState != NewState) {
786         Progress = true;
787         States[BDV] = NewState;
788       }
789     }
790 
791     assert(OldSize == States.size() &&
792            "fixed point shouldn't be adding any new nodes to state");
793   }
794 
795 #ifndef NDEBUG
796   DEBUG(dbgs() << "States after meet iteration:\n");
797   for (auto Pair : States)
798     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
799 #endif
800 
801   // Insert Phis for all conflicts
802   // TODO: adjust naming patterns to avoid this order of iteration dependency
803   for (auto Pair : States) {
804     Instruction *I = cast<Instruction>(Pair.first);
805     BDVState State = Pair.second;
806     assert(!isKnownBaseResult(I) && "why did it get added?");
807     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
808 
809     // extractelement instructions are a bit special in that we may need to
810     // insert an extract even when we know an exact base for the instruction.
811     // The problem is that we need to convert from a vector base to a scalar
812     // base for the particular indice we're interested in.
813     if (State.isBase() && isa<ExtractElementInst>(I) &&
814         isa<VectorType>(State.getBase()->getType())) {
815       auto *EE = cast<ExtractElementInst>(I);
816       // TODO: In many cases, the new instruction is just EE itself.  We should
817       // exploit this, but can't do it here since it would break the invariant
818       // about the BDV not being known to be a base.
819       auto *BaseInst = ExtractElementInst::Create(
820           State.getBase(), EE->getIndexOperand(), "base_ee", EE);
821       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
822       States[I] = BDVState(BDVState::Base, BaseInst);
823     }
824 
825     // Since we're joining a vector and scalar base, they can never be the
826     // same.  As a result, we should always see insert element having reached
827     // the conflict state.
828     assert(!isa<InsertElementInst>(I) || State.isConflict());
829 
830     if (!State.isConflict())
831       continue;
832 
833     /// Create and insert a new instruction which will represent the base of
834     /// the given instruction 'I'.
835     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
836       if (isa<PHINode>(I)) {
837         BasicBlock *BB = I->getParent();
838         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
839         assert(NumPreds > 0 && "how did we reach here");
840         std::string Name = suffixed_name_or(I, ".base", "base_phi");
841         return PHINode::Create(I->getType(), NumPreds, Name, I);
842       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
843         // The undef will be replaced later
844         UndefValue *Undef = UndefValue::get(SI->getType());
845         std::string Name = suffixed_name_or(I, ".base", "base_select");
846         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
847       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
848         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
849         std::string Name = suffixed_name_or(I, ".base", "base_ee");
850         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
851                                           EE);
852       } else {
853         auto *IE = cast<InsertElementInst>(I);
854         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
855         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
856         std::string Name = suffixed_name_or(I, ".base", "base_ie");
857         return InsertElementInst::Create(VecUndef, ScalarUndef,
858                                          IE->getOperand(2), Name, IE);
859       }
860     };
861     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
862     // Add metadata marking this as a base value
863     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
864     States[I] = BDVState(BDVState::Conflict, BaseInst);
865   }
866 
867   // Returns a instruction which produces the base pointer for a given
868   // instruction.  The instruction is assumed to be an input to one of the BDVs
869   // seen in the inference algorithm above.  As such, we must either already
870   // know it's base defining value is a base, or have inserted a new
871   // instruction to propagate the base of it's BDV and have entered that newly
872   // introduced instruction into the state table.  In either case, we are
873   // assured to be able to determine an instruction which produces it's base
874   // pointer.
875   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
876     Value *BDV = findBaseOrBDV(Input, Cache);
877     Value *Base = nullptr;
878     if (isKnownBaseResult(BDV)) {
879       Base = BDV;
880     } else {
881       // Either conflict or base.
882       assert(States.count(BDV));
883       Base = States[BDV].getBase();
884     }
885     assert(Base && "Can't be null");
886     // The cast is needed since base traversal may strip away bitcasts
887     if (Base->getType() != Input->getType() && InsertPt)
888       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
889     return Base;
890   };
891 
892   // Fixup all the inputs of the new PHIs.  Visit order needs to be
893   // deterministic and predictable because we're naming newly created
894   // instructions.
895   for (auto Pair : States) {
896     Instruction *BDV = cast<Instruction>(Pair.first);
897     BDVState State = Pair.second;
898 
899     assert(!isKnownBaseResult(BDV) && "why did it get added?");
900     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
901     if (!State.isConflict())
902       continue;
903 
904     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBase())) {
905       PHINode *PN = cast<PHINode>(BDV);
906       unsigned NumPHIValues = PN->getNumIncomingValues();
907       for (unsigned i = 0; i < NumPHIValues; i++) {
908         Value *InVal = PN->getIncomingValue(i);
909         BasicBlock *InBB = PN->getIncomingBlock(i);
910 
911         // If we've already seen InBB, add the same incoming value
912         // we added for it earlier.  The IR verifier requires phi
913         // nodes with multiple entries from the same basic block
914         // to have the same incoming value for each of those
915         // entries.  If we don't do this check here and basephi
916         // has a different type than base, we'll end up adding two
917         // bitcasts (and hence two distinct values) as incoming
918         // values for the same basic block.
919 
920         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
921         if (BlockIndex != -1) {
922           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
923           BasePHI->addIncoming(OldBase, InBB);
924 
925 #ifndef NDEBUG
926           Value *Base = getBaseForInput(InVal, nullptr);
927           // In essence this assert states: the only way two values
928           // incoming from the same basic block may be different is by
929           // being different bitcasts of the same value.  A cleanup
930           // that remains TODO is changing findBaseOrBDV to return an
931           // llvm::Value of the correct type (and still remain pure).
932           // This will remove the need to add bitcasts.
933           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
934                  "Sanity -- findBaseOrBDV should be pure!");
935 #endif
936           continue;
937         }
938 
939         // Find the instruction which produces the base for each input.  We may
940         // need to insert a bitcast in the incoming block.
941         // TODO: Need to split critical edges if insertion is needed
942         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
943         BasePHI->addIncoming(Base, InBB);
944       }
945       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
946     } else if (SelectInst *BaseSI = dyn_cast<SelectInst>(State.getBase())) {
947       SelectInst *SI = cast<SelectInst>(BDV);
948 
949       // Find the instruction which produces the base for each input.
950       // We may need to insert a bitcast.
951       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
952       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
953     } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
954       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
955       // Find the instruction which produces the base for each input.  We may
956       // need to insert a bitcast.
957       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
958     } else {
959       auto *BaseIE = cast<InsertElementInst>(State.getBase());
960       auto *BdvIE = cast<InsertElementInst>(BDV);
961       auto UpdateOperand = [&](int OperandIdx) {
962         Value *InVal = BdvIE->getOperand(OperandIdx);
963         Value *Base = getBaseForInput(InVal, BaseIE);
964         BaseIE->setOperand(OperandIdx, Base);
965       };
966       UpdateOperand(0); // vector operand
967       UpdateOperand(1); // scalar operand
968     }
969   }
970 
971   // Cache all of our results so we can cheaply reuse them
972   // NOTE: This is actually two caches: one of the base defining value
973   // relation and one of the base pointer relation!  FIXME
974   for (auto Pair : States) {
975     auto *BDV = Pair.first;
976     Value *Base = Pair.second.getBase();
977     assert(BDV && Base);
978     assert(!isKnownBaseResult(BDV) && "why did it get added?");
979 
980     DEBUG(dbgs() << "Updating base value cache"
981                  << " for: " << BDV->getName() << " from: "
982                  << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
983                  << " to: " << Base->getName() << "\n");
984 
985     if (Cache.count(BDV)) {
986       assert(isKnownBaseResult(Base) &&
987              "must be something we 'know' is a base pointer");
988       // Once we transition from the BDV relation being store in the Cache to
989       // the base relation being stored, it must be stable
990       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
991              "base relation should be stable");
992     }
993     Cache[BDV] = Base;
994   }
995   assert(Cache.count(Def));
996   return Cache[Def];
997 }
998 
999 // For a set of live pointers (base and/or derived), identify the base
1000 // pointer of the object which they are derived from.  This routine will
1001 // mutate the IR graph as needed to make the 'base' pointer live at the
1002 // definition site of 'derived'.  This ensures that any use of 'derived' can
1003 // also use 'base'.  This may involve the insertion of a number of
1004 // additional PHI nodes.
1005 //
1006 // preconditions: live is a set of pointer type Values
1007 //
1008 // side effects: may insert PHI nodes into the existing CFG, will preserve
1009 // CFG, will not remove or mutate any existing nodes
1010 //
1011 // post condition: PointerToBase contains one (derived, base) pair for every
1012 // pointer in live.  Note that derived can be equal to base if the original
1013 // pointer was a base pointer.
1014 static void
1015 findBasePointers(const StatepointLiveSetTy &live,
1016                  MapVector<Value *, Value *> &PointerToBase,
1017                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1018   for (Value *ptr : live) {
1019     Value *base = findBasePointer(ptr, DVCache);
1020     assert(base && "failed to find base pointer");
1021     PointerToBase[ptr] = base;
1022     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1023             DT->dominates(cast<Instruction>(base)->getParent(),
1024                           cast<Instruction>(ptr)->getParent())) &&
1025            "The base we found better dominate the derived pointer");
1026   }
1027 }
1028 
1029 /// Find the required based pointers (and adjust the live set) for the given
1030 /// parse point.
1031 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1032                              CallSite CS,
1033                              PartiallyConstructedSafepointRecord &result) {
1034   MapVector<Value *, Value *> PointerToBase;
1035   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1036 
1037   if (PrintBasePointers) {
1038     errs() << "Base Pairs (w/o Relocation):\n";
1039     for (auto &Pair : PointerToBase) {
1040       errs() << " derived ";
1041       Pair.first->printAsOperand(errs(), false);
1042       errs() << " base ";
1043       Pair.second->printAsOperand(errs(), false);
1044       errs() << "\n";;
1045     }
1046   }
1047 
1048   result.PointerToBase = PointerToBase;
1049 }
1050 
1051 /// Given an updated version of the dataflow liveness results, update the
1052 /// liveset and base pointer maps for the call site CS.
1053 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1054                                   CallSite CS,
1055                                   PartiallyConstructedSafepointRecord &result);
1056 
1057 static void recomputeLiveInValues(
1058     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1059     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1060   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1061   // again.  The old values are still live and will help it stabilize quickly.
1062   GCPtrLivenessData RevisedLivenessData;
1063   computeLiveInValues(DT, F, RevisedLivenessData);
1064   for (size_t i = 0; i < records.size(); i++) {
1065     struct PartiallyConstructedSafepointRecord &info = records[i];
1066     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1067   }
1068 }
1069 
1070 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1071 // no uses of the original value / return value between the gc.statepoint and
1072 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1073 // starting one of the successor blocks.  We also need to be able to insert the
1074 // gc.relocates only on the path which goes through the statepoint.  We might
1075 // need to split an edge to make this possible.
1076 static BasicBlock *
1077 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1078                             DominatorTree &DT) {
1079   BasicBlock *Ret = BB;
1080   if (!BB->getUniquePredecessor())
1081     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1082 
1083   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1084   // from it
1085   FoldSingleEntryPHINodes(Ret);
1086   assert(!isa<PHINode>(Ret->begin()) &&
1087          "All PHI nodes should have been removed!");
1088 
1089   // At this point, we can safely insert a gc.relocate or gc.result as the first
1090   // instruction in Ret if needed.
1091   return Ret;
1092 }
1093 
1094 // Create new attribute set containing only attributes which can be transferred
1095 // from original call to the safepoint.
1096 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1097   AttributeSet Ret;
1098 
1099   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1100     unsigned Index = AS.getSlotIndex(Slot);
1101 
1102     if (Index == AttributeSet::ReturnIndex ||
1103         Index == AttributeSet::FunctionIndex) {
1104 
1105       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1106 
1107         // Do not allow certain attributes - just skip them
1108         // Safepoint can not be read only or read none.
1109         if (Attr.hasAttribute(Attribute::ReadNone) ||
1110             Attr.hasAttribute(Attribute::ReadOnly))
1111           continue;
1112 
1113         // These attributes control the generation of the gc.statepoint call /
1114         // invoke itself; and once the gc.statepoint is in place, they're of no
1115         // use.
1116         if (isStatepointDirectiveAttr(Attr))
1117           continue;
1118 
1119         Ret = Ret.addAttributes(
1120             AS.getContext(), Index,
1121             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1122       }
1123     }
1124 
1125     // Just skip parameter attributes for now
1126   }
1127 
1128   return Ret;
1129 }
1130 
1131 /// Helper function to place all gc relocates necessary for the given
1132 /// statepoint.
1133 /// Inputs:
1134 ///   liveVariables - list of variables to be relocated.
1135 ///   liveStart - index of the first live variable.
1136 ///   basePtrs - base pointers.
1137 ///   statepointToken - statepoint instruction to which relocates should be
1138 ///   bound.
1139 ///   Builder - Llvm IR builder to be used to construct new calls.
1140 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1141                               const int LiveStart,
1142                               ArrayRef<Value *> BasePtrs,
1143                               Instruction *StatepointToken,
1144                               IRBuilder<> Builder) {
1145   if (LiveVariables.empty())
1146     return;
1147 
1148   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1149     auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1150     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1151     size_t Index = std::distance(LiveVec.begin(), ValIt);
1152     assert(Index < LiveVec.size() && "Bug in std::find?");
1153     return Index;
1154   };
1155   Module *M = StatepointToken->getModule();
1156 
1157   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1158   // element type is i8 addrspace(1)*). We originally generated unique
1159   // declarations for each pointer type, but this proved problematic because
1160   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1161   // towards a single unified pointer type anyways, we can just cast everything
1162   // to an i8* of the right address space.  A bitcast is added later to convert
1163   // gc_relocate to the actual value's type.
1164   auto getGCRelocateDecl = [&] (Type *Ty) {
1165     assert(isHandledGCPointerType(Ty));
1166     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1167     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1168     if (auto *VT = dyn_cast<VectorType>(Ty))
1169       NewTy = VectorType::get(NewTy, VT->getNumElements());
1170     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1171                                      {NewTy});
1172   };
1173 
1174   // Lazily populated map from input types to the canonicalized form mentioned
1175   // in the comment above.  This should probably be cached somewhere more
1176   // broadly.
1177   DenseMap<Type*, Value*> TypeToDeclMap;
1178 
1179   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1180     // Generate the gc.relocate call and save the result
1181     Value *BaseIdx =
1182       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1183     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1184 
1185     Type *Ty = LiveVariables[i]->getType();
1186     if (!TypeToDeclMap.count(Ty))
1187       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1188     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1189 
1190     // only specify a debug name if we can give a useful one
1191     CallInst *Reloc = Builder.CreateCall(
1192         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1193         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1194     // Trick CodeGen into thinking there are lots of free registers at this
1195     // fake call.
1196     Reloc->setCallingConv(CallingConv::Cold);
1197   }
1198 }
1199 
1200 namespace {
1201 
1202 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1203 /// avoids having to worry about keeping around dangling pointers to Values.
1204 class DeferredReplacement {
1205   AssertingVH<Instruction> Old;
1206   AssertingVH<Instruction> New;
1207   bool IsDeoptimize = false;
1208 
1209   DeferredReplacement() {}
1210 
1211 public:
1212   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1213     assert(Old != New && Old && New &&
1214            "Cannot RAUW equal values or to / from null!");
1215 
1216     DeferredReplacement D;
1217     D.Old = Old;
1218     D.New = New;
1219     return D;
1220   }
1221 
1222   static DeferredReplacement createDelete(Instruction *ToErase) {
1223     DeferredReplacement D;
1224     D.Old = ToErase;
1225     return D;
1226   }
1227 
1228   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1229 #ifndef NDEBUG
1230     auto *F = cast<CallInst>(Old)->getCalledFunction();
1231     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1232            "Only way to construct a deoptimize deferred replacement");
1233 #endif
1234     DeferredReplacement D;
1235     D.Old = Old;
1236     D.IsDeoptimize = true;
1237     return D;
1238   }
1239 
1240   /// Does the task represented by this instance.
1241   void doReplacement() {
1242     Instruction *OldI = Old;
1243     Instruction *NewI = New;
1244 
1245     assert(OldI != NewI && "Disallowed at construction?!");
1246     assert((!IsDeoptimize || !New) &&
1247            "Deoptimize instrinsics are not replaced!");
1248 
1249     Old = nullptr;
1250     New = nullptr;
1251 
1252     if (NewI)
1253       OldI->replaceAllUsesWith(NewI);
1254 
1255     if (IsDeoptimize) {
1256       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1257       // not necessarilly be followed by the matching return.
1258       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1259       new UnreachableInst(RI->getContext(), RI);
1260       RI->eraseFromParent();
1261     }
1262 
1263     OldI->eraseFromParent();
1264   }
1265 };
1266 }
1267 
1268 static void
1269 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1270                            const SmallVectorImpl<Value *> &BasePtrs,
1271                            const SmallVectorImpl<Value *> &LiveVariables,
1272                            PartiallyConstructedSafepointRecord &Result,
1273                            std::vector<DeferredReplacement> &Replacements) {
1274   assert(BasePtrs.size() == LiveVariables.size());
1275 
1276   // Then go ahead and use the builder do actually do the inserts.  We insert
1277   // immediately before the previous instruction under the assumption that all
1278   // arguments will be available here.  We can't insert afterwards since we may
1279   // be replacing a terminator.
1280   Instruction *InsertBefore = CS.getInstruction();
1281   IRBuilder<> Builder(InsertBefore);
1282 
1283   ArrayRef<Value *> GCArgs(LiveVariables);
1284   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1285   uint32_t NumPatchBytes = 0;
1286   uint32_t Flags = uint32_t(StatepointFlags::None);
1287 
1288   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1289   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1290   ArrayRef<Use> TransitionArgs;
1291   if (auto TransitionBundle =
1292       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1293     Flags |= uint32_t(StatepointFlags::GCTransition);
1294     TransitionArgs = TransitionBundle->Inputs;
1295   }
1296 
1297   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1298   // with a return value, we lower then as never returning calls to
1299   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1300   bool IsDeoptimize = false;
1301 
1302   StatepointDirectives SD =
1303       parseStatepointDirectivesFromAttrs(CS.getAttributes());
1304   if (SD.NumPatchBytes)
1305     NumPatchBytes = *SD.NumPatchBytes;
1306   if (SD.StatepointID)
1307     StatepointID = *SD.StatepointID;
1308 
1309   Value *CallTarget = CS.getCalledValue();
1310   if (Function *F = dyn_cast<Function>(CallTarget)) {
1311     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1312       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1313       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1314       // verifier does not allow taking the address of an intrinsic function.
1315 
1316       SmallVector<Type *, 8> DomainTy;
1317       for (Value *Arg : CallArgs)
1318         DomainTy.push_back(Arg->getType());
1319       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1320                                     /* isVarArg = */ false);
1321 
1322       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1323       // calls to @llvm.experimental.deoptimize with different argument types in
1324       // the same module.  This is fine -- we assume the frontend knew what it
1325       // was doing when generating this kind of IR.
1326       CallTarget =
1327           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1328 
1329       IsDeoptimize = true;
1330     }
1331   }
1332 
1333   // Create the statepoint given all the arguments
1334   Instruction *Token = nullptr;
1335   AttributeSet ReturnAttrs;
1336   if (CS.isCall()) {
1337     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1338     CallInst *Call = Builder.CreateGCStatepointCall(
1339         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1340         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1341 
1342     Call->setTailCall(ToReplace->isTailCall());
1343     Call->setCallingConv(ToReplace->getCallingConv());
1344 
1345     // Currently we will fail on parameter attributes and on certain
1346     // function attributes.
1347     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1348     // In case if we can handle this set of attributes - set up function attrs
1349     // directly on statepoint and return attrs later for gc_result intrinsic.
1350     Call->setAttributes(NewAttrs.getFnAttributes());
1351     ReturnAttrs = NewAttrs.getRetAttributes();
1352 
1353     Token = Call;
1354 
1355     // Put the following gc_result and gc_relocate calls immediately after the
1356     // the old call (which we're about to delete)
1357     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1358     Builder.SetInsertPoint(ToReplace->getNextNode());
1359     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1360   } else {
1361     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1362 
1363     // Insert the new invoke into the old block.  We'll remove the old one in a
1364     // moment at which point this will become the new terminator for the
1365     // original block.
1366     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1367         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1368         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1369         GCArgs, "statepoint_token");
1370 
1371     Invoke->setCallingConv(ToReplace->getCallingConv());
1372 
1373     // Currently we will fail on parameter attributes and on certain
1374     // function attributes.
1375     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1376     // In case if we can handle this set of attributes - set up function attrs
1377     // directly on statepoint and return attrs later for gc_result intrinsic.
1378     Invoke->setAttributes(NewAttrs.getFnAttributes());
1379     ReturnAttrs = NewAttrs.getRetAttributes();
1380 
1381     Token = Invoke;
1382 
1383     // Generate gc relocates in exceptional path
1384     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1385     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1386            UnwindBlock->getUniquePredecessor() &&
1387            "can't safely insert in this block!");
1388 
1389     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1390     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1391 
1392     // Attach exceptional gc relocates to the landingpad.
1393     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1394     Result.UnwindToken = ExceptionalToken;
1395 
1396     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1397     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1398                       Builder);
1399 
1400     // Generate gc relocates and returns for normal block
1401     BasicBlock *NormalDest = ToReplace->getNormalDest();
1402     assert(!isa<PHINode>(NormalDest->begin()) &&
1403            NormalDest->getUniquePredecessor() &&
1404            "can't safely insert in this block!");
1405 
1406     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1407 
1408     // gc relocates will be generated later as if it were regular call
1409     // statepoint
1410   }
1411   assert(Token && "Should be set in one of the above branches!");
1412 
1413   if (IsDeoptimize) {
1414     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1415     // transform the tail-call like structure to a call to a void function
1416     // followed by unreachable to get better codegen.
1417     Replacements.push_back(
1418         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1419   } else {
1420     Token->setName("statepoint_token");
1421     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1422       StringRef Name =
1423           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1424       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1425       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1426 
1427       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1428       // live set of some other safepoint, in which case that safepoint's
1429       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1430       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1431       // after the live sets have been made explicit in the IR, and we no longer
1432       // have raw pointers to worry about.
1433       Replacements.emplace_back(
1434           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1435     } else {
1436       Replacements.emplace_back(
1437           DeferredReplacement::createDelete(CS.getInstruction()));
1438     }
1439   }
1440 
1441   Result.StatepointToken = Token;
1442 
1443   // Second, create a gc.relocate for every live variable
1444   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1445   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1446 }
1447 
1448 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1449 // which make the relocations happening at this safepoint explicit.
1450 //
1451 // WARNING: Does not do any fixup to adjust users of the original live
1452 // values.  That's the callers responsibility.
1453 static void
1454 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1455                        PartiallyConstructedSafepointRecord &Result,
1456                        std::vector<DeferredReplacement> &Replacements) {
1457   const auto &LiveSet = Result.LiveSet;
1458   const auto &PointerToBase = Result.PointerToBase;
1459 
1460   // Convert to vector for efficient cross referencing.
1461   SmallVector<Value *, 64> BaseVec, LiveVec;
1462   LiveVec.reserve(LiveSet.size());
1463   BaseVec.reserve(LiveSet.size());
1464   for (Value *L : LiveSet) {
1465     LiveVec.push_back(L);
1466     assert(PointerToBase.count(L));
1467     Value *Base = PointerToBase.find(L)->second;
1468     BaseVec.push_back(Base);
1469   }
1470   assert(LiveVec.size() == BaseVec.size());
1471 
1472   // Do the actual rewriting and delete the old statepoint
1473   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1474 }
1475 
1476 // Helper function for the relocationViaAlloca.
1477 //
1478 // It receives iterator to the statepoint gc relocates and emits a store to the
1479 // assigned location (via allocaMap) for the each one of them.  It adds the
1480 // visited values into the visitedLiveValues set, which we will later use them
1481 // for sanity checking.
1482 static void
1483 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1484                        DenseMap<Value *, Value *> &AllocaMap,
1485                        DenseSet<Value *> &VisitedLiveValues) {
1486 
1487   for (User *U : GCRelocs) {
1488     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1489     if (!Relocate)
1490       continue;
1491 
1492     Value *OriginalValue = Relocate->getDerivedPtr();
1493     assert(AllocaMap.count(OriginalValue));
1494     Value *Alloca = AllocaMap[OriginalValue];
1495 
1496     // Emit store into the related alloca
1497     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1498     // the correct type according to alloca.
1499     assert(Relocate->getNextNode() &&
1500            "Should always have one since it's not a terminator");
1501     IRBuilder<> Builder(Relocate->getNextNode());
1502     Value *CastedRelocatedValue =
1503       Builder.CreateBitCast(Relocate,
1504                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1505                             suffixed_name_or(Relocate, ".casted", ""));
1506 
1507     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1508     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1509 
1510 #ifndef NDEBUG
1511     VisitedLiveValues.insert(OriginalValue);
1512 #endif
1513   }
1514 }
1515 
1516 // Helper function for the "relocationViaAlloca". Similar to the
1517 // "insertRelocationStores" but works for rematerialized values.
1518 static void insertRematerializationStores(
1519     const RematerializedValueMapTy &RematerializedValues,
1520     DenseMap<Value *, Value *> &AllocaMap,
1521     DenseSet<Value *> &VisitedLiveValues) {
1522 
1523   for (auto RematerializedValuePair: RematerializedValues) {
1524     Instruction *RematerializedValue = RematerializedValuePair.first;
1525     Value *OriginalValue = RematerializedValuePair.second;
1526 
1527     assert(AllocaMap.count(OriginalValue) &&
1528            "Can not find alloca for rematerialized value");
1529     Value *Alloca = AllocaMap[OriginalValue];
1530 
1531     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1532     Store->insertAfter(RematerializedValue);
1533 
1534 #ifndef NDEBUG
1535     VisitedLiveValues.insert(OriginalValue);
1536 #endif
1537   }
1538 }
1539 
1540 /// Do all the relocation update via allocas and mem2reg
1541 static void relocationViaAlloca(
1542     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1543     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1544 #ifndef NDEBUG
1545   // record initial number of (static) allocas; we'll check we have the same
1546   // number when we get done.
1547   int InitialAllocaNum = 0;
1548   for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1549        I++)
1550     if (isa<AllocaInst>(*I))
1551       InitialAllocaNum++;
1552 #endif
1553 
1554   // TODO-PERF: change data structures, reserve
1555   DenseMap<Value *, Value *> AllocaMap;
1556   SmallVector<AllocaInst *, 200> PromotableAllocas;
1557   // Used later to chack that we have enough allocas to store all values
1558   std::size_t NumRematerializedValues = 0;
1559   PromotableAllocas.reserve(Live.size());
1560 
1561   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1562   // "PromotableAllocas"
1563   auto emitAllocaFor = [&](Value *LiveValue) {
1564     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1565                                         F.getEntryBlock().getFirstNonPHI());
1566     AllocaMap[LiveValue] = Alloca;
1567     PromotableAllocas.push_back(Alloca);
1568   };
1569 
1570   // Emit alloca for each live gc pointer
1571   for (Value *V : Live)
1572     emitAllocaFor(V);
1573 
1574   // Emit allocas for rematerialized values
1575   for (const auto &Info : Records)
1576     for (auto RematerializedValuePair : Info.RematerializedValues) {
1577       Value *OriginalValue = RematerializedValuePair.second;
1578       if (AllocaMap.count(OriginalValue) != 0)
1579         continue;
1580 
1581       emitAllocaFor(OriginalValue);
1582       ++NumRematerializedValues;
1583     }
1584 
1585   // The next two loops are part of the same conceptual operation.  We need to
1586   // insert a store to the alloca after the original def and at each
1587   // redefinition.  We need to insert a load before each use.  These are split
1588   // into distinct loops for performance reasons.
1589 
1590   // Update gc pointer after each statepoint: either store a relocated value or
1591   // null (if no relocated value was found for this gc pointer and it is not a
1592   // gc_result).  This must happen before we update the statepoint with load of
1593   // alloca otherwise we lose the link between statepoint and old def.
1594   for (const auto &Info : Records) {
1595     Value *Statepoint = Info.StatepointToken;
1596 
1597     // This will be used for consistency check
1598     DenseSet<Value *> VisitedLiveValues;
1599 
1600     // Insert stores for normal statepoint gc relocates
1601     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1602 
1603     // In case if it was invoke statepoint
1604     // we will insert stores for exceptional path gc relocates.
1605     if (isa<InvokeInst>(Statepoint)) {
1606       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1607                              VisitedLiveValues);
1608     }
1609 
1610     // Do similar thing with rematerialized values
1611     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1612                                   VisitedLiveValues);
1613 
1614     if (ClobberNonLive) {
1615       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1616       // the gc.statepoint.  This will turn some subtle GC problems into
1617       // slightly easier to debug SEGVs.  Note that on large IR files with
1618       // lots of gc.statepoints this is extremely costly both memory and time
1619       // wise.
1620       SmallVector<AllocaInst *, 64> ToClobber;
1621       for (auto Pair : AllocaMap) {
1622         Value *Def = Pair.first;
1623         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1624 
1625         // This value was relocated
1626         if (VisitedLiveValues.count(Def)) {
1627           continue;
1628         }
1629         ToClobber.push_back(Alloca);
1630       }
1631 
1632       auto InsertClobbersAt = [&](Instruction *IP) {
1633         for (auto *AI : ToClobber) {
1634           auto PT = cast<PointerType>(AI->getAllocatedType());
1635           Constant *CPN = ConstantPointerNull::get(PT);
1636           StoreInst *Store = new StoreInst(CPN, AI);
1637           Store->insertBefore(IP);
1638         }
1639       };
1640 
1641       // Insert the clobbering stores.  These may get intermixed with the
1642       // gc.results and gc.relocates, but that's fine.
1643       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1644         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1645         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1646       } else {
1647         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1648       }
1649     }
1650   }
1651 
1652   // Update use with load allocas and add store for gc_relocated.
1653   for (auto Pair : AllocaMap) {
1654     Value *Def = Pair.first;
1655     Value *Alloca = Pair.second;
1656 
1657     // We pre-record the uses of allocas so that we dont have to worry about
1658     // later update that changes the user information..
1659 
1660     SmallVector<Instruction *, 20> Uses;
1661     // PERF: trade a linear scan for repeated reallocation
1662     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1663     for (User *U : Def->users()) {
1664       if (!isa<ConstantExpr>(U)) {
1665         // If the def has a ConstantExpr use, then the def is either a
1666         // ConstantExpr use itself or null.  In either case
1667         // (recursively in the first, directly in the second), the oop
1668         // it is ultimately dependent on is null and this particular
1669         // use does not need to be fixed up.
1670         Uses.push_back(cast<Instruction>(U));
1671       }
1672     }
1673 
1674     std::sort(Uses.begin(), Uses.end());
1675     auto Last = std::unique(Uses.begin(), Uses.end());
1676     Uses.erase(Last, Uses.end());
1677 
1678     for (Instruction *Use : Uses) {
1679       if (isa<PHINode>(Use)) {
1680         PHINode *Phi = cast<PHINode>(Use);
1681         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1682           if (Def == Phi->getIncomingValue(i)) {
1683             LoadInst *Load = new LoadInst(
1684                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1685             Phi->setIncomingValue(i, Load);
1686           }
1687         }
1688       } else {
1689         LoadInst *Load = new LoadInst(Alloca, "", Use);
1690         Use->replaceUsesOfWith(Def, Load);
1691       }
1692     }
1693 
1694     // Emit store for the initial gc value.  Store must be inserted after load,
1695     // otherwise store will be in alloca's use list and an extra load will be
1696     // inserted before it.
1697     StoreInst *Store = new StoreInst(Def, Alloca);
1698     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1699       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1700         // InvokeInst is a TerminatorInst so the store need to be inserted
1701         // into its normal destination block.
1702         BasicBlock *NormalDest = Invoke->getNormalDest();
1703         Store->insertBefore(NormalDest->getFirstNonPHI());
1704       } else {
1705         assert(!Inst->isTerminator() &&
1706                "The only TerminatorInst that can produce a value is "
1707                "InvokeInst which is handled above.");
1708         Store->insertAfter(Inst);
1709       }
1710     } else {
1711       assert(isa<Argument>(Def));
1712       Store->insertAfter(cast<Instruction>(Alloca));
1713     }
1714   }
1715 
1716   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1717          "we must have the same allocas with lives");
1718   if (!PromotableAllocas.empty()) {
1719     // Apply mem2reg to promote alloca to SSA
1720     PromoteMemToReg(PromotableAllocas, DT);
1721   }
1722 
1723 #ifndef NDEBUG
1724   for (auto &I : F.getEntryBlock())
1725     if (isa<AllocaInst>(I))
1726       InitialAllocaNum--;
1727   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1728 #endif
1729 }
1730 
1731 /// Implement a unique function which doesn't require we sort the input
1732 /// vector.  Doing so has the effect of changing the output of a couple of
1733 /// tests in ways which make them less useful in testing fused safepoints.
1734 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1735   SmallSet<T, 8> Seen;
1736   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1737               return !Seen.insert(V).second;
1738             }), Vec.end());
1739 }
1740 
1741 /// Insert holders so that each Value is obviously live through the entire
1742 /// lifetime of the call.
1743 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1744                                  SmallVectorImpl<CallInst *> &Holders) {
1745   if (Values.empty())
1746     // No values to hold live, might as well not insert the empty holder
1747     return;
1748 
1749   Module *M = CS.getInstruction()->getModule();
1750   // Use a dummy vararg function to actually hold the values live
1751   Function *Func = cast<Function>(M->getOrInsertFunction(
1752       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1753   if (CS.isCall()) {
1754     // For call safepoints insert dummy calls right after safepoint
1755     Holders.push_back(CallInst::Create(Func, Values, "",
1756                                        &*++CS.getInstruction()->getIterator()));
1757     return;
1758   }
1759   // For invoke safepooints insert dummy calls both in normal and
1760   // exceptional destination blocks
1761   auto *II = cast<InvokeInst>(CS.getInstruction());
1762   Holders.push_back(CallInst::Create(
1763       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1764   Holders.push_back(CallInst::Create(
1765       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1766 }
1767 
1768 static void findLiveReferences(
1769     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1770     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1771   GCPtrLivenessData OriginalLivenessData;
1772   computeLiveInValues(DT, F, OriginalLivenessData);
1773   for (size_t i = 0; i < records.size(); i++) {
1774     struct PartiallyConstructedSafepointRecord &info = records[i];
1775     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1776   }
1777 }
1778 
1779 // Helper function for the "rematerializeLiveValues". It walks use chain
1780 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
1781 // values are visited (currently it is GEP's and casts). Returns true if it
1782 // successfully reached "BaseValue" and false otherwise.
1783 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
1784 // recorded.
1785 static bool findRematerializableChainToBasePointer(
1786   SmallVectorImpl<Instruction*> &ChainToBase,
1787   Value *CurrentValue, Value *BaseValue) {
1788 
1789   // We have found a base value
1790   if (CurrentValue == BaseValue) {
1791     return true;
1792   }
1793 
1794   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1795     ChainToBase.push_back(GEP);
1796     return findRematerializableChainToBasePointer(ChainToBase,
1797                                                   GEP->getPointerOperand(),
1798                                                   BaseValue);
1799   }
1800 
1801   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1802     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1803       return false;
1804 
1805     ChainToBase.push_back(CI);
1806     return findRematerializableChainToBasePointer(ChainToBase,
1807                                                   CI->getOperand(0), BaseValue);
1808   }
1809 
1810   // Not supported instruction in the chain
1811   return false;
1812 }
1813 
1814 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1815 // chain we are going to rematerialize.
1816 static unsigned
1817 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1818                        TargetTransformInfo &TTI) {
1819   unsigned Cost = 0;
1820 
1821   for (Instruction *Instr : Chain) {
1822     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1823       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1824              "non noop cast is found during rematerialization");
1825 
1826       Type *SrcTy = CI->getOperand(0)->getType();
1827       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
1828 
1829     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1830       // Cost of the address calculation
1831       Type *ValTy = GEP->getSourceElementType();
1832       Cost += TTI.getAddressComputationCost(ValTy);
1833 
1834       // And cost of the GEP itself
1835       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1836       //       allowed for the external usage)
1837       if (!GEP->hasAllConstantIndices())
1838         Cost += 2;
1839 
1840     } else {
1841       llvm_unreachable("unsupported instruciton type during rematerialization");
1842     }
1843   }
1844 
1845   return Cost;
1846 }
1847 
1848 // From the statepoint live set pick values that are cheaper to recompute then
1849 // to relocate. Remove this values from the live set, rematerialize them after
1850 // statepoint and record them in "Info" structure. Note that similar to
1851 // relocated values we don't do any user adjustments here.
1852 static void rematerializeLiveValues(CallSite CS,
1853                                     PartiallyConstructedSafepointRecord &Info,
1854                                     TargetTransformInfo &TTI) {
1855   const unsigned int ChainLengthThreshold = 10;
1856 
1857   // Record values we are going to delete from this statepoint live set.
1858   // We can not di this in following loop due to iterator invalidation.
1859   SmallVector<Value *, 32> LiveValuesToBeDeleted;
1860 
1861   for (Value *LiveValue: Info.LiveSet) {
1862     // For each live pointer find it's defining chain
1863     SmallVector<Instruction *, 3> ChainToBase;
1864     assert(Info.PointerToBase.count(LiveValue));
1865     bool FoundChain =
1866       findRematerializableChainToBasePointer(ChainToBase,
1867                                              LiveValue,
1868                                              Info.PointerToBase[LiveValue]);
1869     // Nothing to do, or chain is too long
1870     if (!FoundChain ||
1871         ChainToBase.size() == 0 ||
1872         ChainToBase.size() > ChainLengthThreshold)
1873       continue;
1874 
1875     // Compute cost of this chain
1876     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1877     // TODO: We can also account for cases when we will be able to remove some
1878     //       of the rematerialized values by later optimization passes. I.e if
1879     //       we rematerialized several intersecting chains. Or if original values
1880     //       don't have any uses besides this statepoint.
1881 
1882     // For invokes we need to rematerialize each chain twice - for normal and
1883     // for unwind basic blocks. Model this by multiplying cost by two.
1884     if (CS.isInvoke()) {
1885       Cost *= 2;
1886     }
1887     // If it's too expensive - skip it
1888     if (Cost >= RematerializationThreshold)
1889       continue;
1890 
1891     // Remove value from the live set
1892     LiveValuesToBeDeleted.push_back(LiveValue);
1893 
1894     // Clone instructions and record them inside "Info" structure
1895 
1896     // Walk backwards to visit top-most instructions first
1897     std::reverse(ChainToBase.begin(), ChainToBase.end());
1898 
1899     // Utility function which clones all instructions from "ChainToBase"
1900     // and inserts them before "InsertBefore". Returns rematerialized value
1901     // which should be used after statepoint.
1902     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
1903       Instruction *LastClonedValue = nullptr;
1904       Instruction *LastValue = nullptr;
1905       for (Instruction *Instr: ChainToBase) {
1906         // Only GEP's and casts are suported as we need to be careful to not
1907         // introduce any new uses of pointers not in the liveset.
1908         // Note that it's fine to introduce new uses of pointers which were
1909         // otherwise not used after this statepoint.
1910         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1911 
1912         Instruction *ClonedValue = Instr->clone();
1913         ClonedValue->insertBefore(InsertBefore);
1914         ClonedValue->setName(Instr->getName() + ".remat");
1915 
1916         // If it is not first instruction in the chain then it uses previously
1917         // cloned value. We should update it to use cloned value.
1918         if (LastClonedValue) {
1919           assert(LastValue);
1920           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1921 #ifndef NDEBUG
1922           // Assert that cloned instruction does not use any instructions from
1923           // this chain other than LastClonedValue
1924           for (auto OpValue : ClonedValue->operand_values()) {
1925             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
1926                        ChainToBase.end() &&
1927                    "incorrect use in rematerialization chain");
1928           }
1929 #endif
1930         }
1931 
1932         LastClonedValue = ClonedValue;
1933         LastValue = Instr;
1934       }
1935       assert(LastClonedValue);
1936       return LastClonedValue;
1937     };
1938 
1939     // Different cases for calls and invokes. For invokes we need to clone
1940     // instructions both on normal and unwind path.
1941     if (CS.isCall()) {
1942       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
1943       assert(InsertBefore);
1944       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
1945       Info.RematerializedValues[RematerializedValue] = LiveValue;
1946     } else {
1947       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
1948 
1949       Instruction *NormalInsertBefore =
1950           &*Invoke->getNormalDest()->getFirstInsertionPt();
1951       Instruction *UnwindInsertBefore =
1952           &*Invoke->getUnwindDest()->getFirstInsertionPt();
1953 
1954       Instruction *NormalRematerializedValue =
1955           rematerializeChain(NormalInsertBefore);
1956       Instruction *UnwindRematerializedValue =
1957           rematerializeChain(UnwindInsertBefore);
1958 
1959       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
1960       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
1961     }
1962   }
1963 
1964   // Remove rematerializaed values from the live set
1965   for (auto LiveValue: LiveValuesToBeDeleted) {
1966     Info.LiveSet.remove(LiveValue);
1967   }
1968 }
1969 
1970 static bool insertParsePoints(Function &F, DominatorTree &DT,
1971                               TargetTransformInfo &TTI,
1972                               SmallVectorImpl<CallSite> &ToUpdate) {
1973 #ifndef NDEBUG
1974   // sanity check the input
1975   std::set<CallSite> Uniqued;
1976   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
1977   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
1978 
1979   for (CallSite CS : ToUpdate)
1980     assert(CS.getInstruction()->getFunction() == &F);
1981 #endif
1982 
1983   // When inserting gc.relocates for invokes, we need to be able to insert at
1984   // the top of the successor blocks.  See the comment on
1985   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
1986   // may restructure the CFG.
1987   for (CallSite CS : ToUpdate) {
1988     if (!CS.isInvoke())
1989       continue;
1990     auto *II = cast<InvokeInst>(CS.getInstruction());
1991     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
1992     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
1993   }
1994 
1995   // A list of dummy calls added to the IR to keep various values obviously
1996   // live in the IR.  We'll remove all of these when done.
1997   SmallVector<CallInst *, 64> Holders;
1998 
1999   // Insert a dummy call with all of the arguments to the vm_state we'll need
2000   // for the actual safepoint insertion.  This ensures reference arguments in
2001   // the deopt argument list are considered live through the safepoint (and
2002   // thus makes sure they get relocated.)
2003   for (CallSite CS : ToUpdate) {
2004     SmallVector<Value *, 64> DeoptValues;
2005 
2006     for (Value *Arg : GetDeoptBundleOperands(CS)) {
2007       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2008              "support for FCA unimplemented");
2009       if (isHandledGCPointerType(Arg->getType()))
2010         DeoptValues.push_back(Arg);
2011     }
2012 
2013     insertUseHolderAfter(CS, DeoptValues, Holders);
2014   }
2015 
2016   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2017 
2018   // A) Identify all gc pointers which are statically live at the given call
2019   // site.
2020   findLiveReferences(F, DT, ToUpdate, Records);
2021 
2022   // B) Find the base pointers for each live pointer
2023   /* scope for caching */ {
2024     // Cache the 'defining value' relation used in the computation and
2025     // insertion of base phis and selects.  This ensures that we don't insert
2026     // large numbers of duplicate base_phis.
2027     DefiningValueMapTy DVCache;
2028 
2029     for (size_t i = 0; i < Records.size(); i++) {
2030       PartiallyConstructedSafepointRecord &info = Records[i];
2031       findBasePointers(DT, DVCache, ToUpdate[i], info);
2032     }
2033   } // end of cache scope
2034 
2035   // The base phi insertion logic (for any safepoint) may have inserted new
2036   // instructions which are now live at some safepoint.  The simplest such
2037   // example is:
2038   // loop:
2039   //   phi a  <-- will be a new base_phi here
2040   //   safepoint 1 <-- that needs to be live here
2041   //   gep a + 1
2042   //   safepoint 2
2043   //   br loop
2044   // We insert some dummy calls after each safepoint to definitely hold live
2045   // the base pointers which were identified for that safepoint.  We'll then
2046   // ask liveness for _every_ base inserted to see what is now live.  Then we
2047   // remove the dummy calls.
2048   Holders.reserve(Holders.size() + Records.size());
2049   for (size_t i = 0; i < Records.size(); i++) {
2050     PartiallyConstructedSafepointRecord &Info = Records[i];
2051 
2052     SmallVector<Value *, 128> Bases;
2053     for (auto Pair : Info.PointerToBase)
2054       Bases.push_back(Pair.second);
2055 
2056     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2057   }
2058 
2059   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2060   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2061   // not the key issue.
2062   recomputeLiveInValues(F, DT, ToUpdate, Records);
2063 
2064   if (PrintBasePointers) {
2065     for (auto &Info : Records) {
2066       errs() << "Base Pairs: (w/Relocation)\n";
2067       for (auto Pair : Info.PointerToBase) {
2068         errs() << " derived ";
2069         Pair.first->printAsOperand(errs(), false);
2070         errs() << " base ";
2071         Pair.second->printAsOperand(errs(), false);
2072         errs() << "\n";
2073       }
2074     }
2075   }
2076 
2077   // It is possible that non-constant live variables have a constant base.  For
2078   // example, a GEP with a variable offset from a global.  In this case we can
2079   // remove it from the liveset.  We already don't add constants to the liveset
2080   // because we assume they won't move at runtime and the GC doesn't need to be
2081   // informed about them.  The same reasoning applies if the base is constant.
2082   // Note that the relocation placement code relies on this filtering for
2083   // correctness as it expects the base to be in the liveset, which isn't true
2084   // if the base is constant.
2085   for (auto &Info : Records)
2086     for (auto &BasePair : Info.PointerToBase)
2087       if (isa<Constant>(BasePair.second))
2088         Info.LiveSet.remove(BasePair.first);
2089 
2090   for (CallInst *CI : Holders)
2091     CI->eraseFromParent();
2092 
2093   Holders.clear();
2094 
2095   // In order to reduce live set of statepoint we might choose to rematerialize
2096   // some values instead of relocating them. This is purely an optimization and
2097   // does not influence correctness.
2098   for (size_t i = 0; i < Records.size(); i++)
2099     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2100 
2101   // We need this to safely RAUW and delete call or invoke return values that
2102   // may themselves be live over a statepoint.  For details, please see usage in
2103   // makeStatepointExplicitImpl.
2104   std::vector<DeferredReplacement> Replacements;
2105 
2106   // Now run through and replace the existing statepoints with new ones with
2107   // the live variables listed.  We do not yet update uses of the values being
2108   // relocated. We have references to live variables that need to
2109   // survive to the last iteration of this loop.  (By construction, the
2110   // previous statepoint can not be a live variable, thus we can and remove
2111   // the old statepoint calls as we go.)
2112   for (size_t i = 0; i < Records.size(); i++)
2113     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2114 
2115   ToUpdate.clear(); // prevent accident use of invalid CallSites
2116 
2117   for (auto &PR : Replacements)
2118     PR.doReplacement();
2119 
2120   Replacements.clear();
2121 
2122   for (auto &Info : Records) {
2123     // These live sets may contain state Value pointers, since we replaced calls
2124     // with operand bundles with calls wrapped in gc.statepoint, and some of
2125     // those calls may have been def'ing live gc pointers.  Clear these out to
2126     // avoid accidentally using them.
2127     //
2128     // TODO: We should create a separate data structure that does not contain
2129     // these live sets, and migrate to using that data structure from this point
2130     // onward.
2131     Info.LiveSet.clear();
2132     Info.PointerToBase.clear();
2133   }
2134 
2135   // Do all the fixups of the original live variables to their relocated selves
2136   SmallVector<Value *, 128> Live;
2137   for (size_t i = 0; i < Records.size(); i++) {
2138     PartiallyConstructedSafepointRecord &Info = Records[i];
2139 
2140     // We can't simply save the live set from the original insertion.  One of
2141     // the live values might be the result of a call which needs a safepoint.
2142     // That Value* no longer exists and we need to use the new gc_result.
2143     // Thankfully, the live set is embedded in the statepoint (and updated), so
2144     // we just grab that.
2145     Statepoint Statepoint(Info.StatepointToken);
2146     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2147                 Statepoint.gc_args_end());
2148 #ifndef NDEBUG
2149     // Do some basic sanity checks on our liveness results before performing
2150     // relocation.  Relocation can and will turn mistakes in liveness results
2151     // into non-sensical code which is must harder to debug.
2152     // TODO: It would be nice to test consistency as well
2153     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2154            "statepoint must be reachable or liveness is meaningless");
2155     for (Value *V : Statepoint.gc_args()) {
2156       if (!isa<Instruction>(V))
2157         // Non-instruction values trivial dominate all possible uses
2158         continue;
2159       auto *LiveInst = cast<Instruction>(V);
2160       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2161              "unreachable values should never be live");
2162       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2163              "basic SSA liveness expectation violated by liveness analysis");
2164     }
2165 #endif
2166   }
2167   unique_unsorted(Live);
2168 
2169 #ifndef NDEBUG
2170   // sanity check
2171   for (auto *Ptr : Live)
2172     assert(isHandledGCPointerType(Ptr->getType()) &&
2173            "must be a gc pointer type");
2174 #endif
2175 
2176   relocationViaAlloca(F, DT, Live, Records);
2177   return !Records.empty();
2178 }
2179 
2180 // Handles both return values and arguments for Functions and CallSites.
2181 template <typename AttrHolder>
2182 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2183                                       unsigned Index) {
2184   AttrBuilder R;
2185   if (AH.getDereferenceableBytes(Index))
2186     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2187                                   AH.getDereferenceableBytes(Index)));
2188   if (AH.getDereferenceableOrNullBytes(Index))
2189     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2190                                   AH.getDereferenceableOrNullBytes(Index)));
2191   if (AH.doesNotAlias(Index))
2192     R.addAttribute(Attribute::NoAlias);
2193 
2194   if (!R.empty())
2195     AH.setAttributes(AH.getAttributes().removeAttributes(
2196         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2197 }
2198 
2199 void
2200 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2201   LLVMContext &Ctx = F.getContext();
2202 
2203   for (Argument &A : F.args())
2204     if (isa<PointerType>(A.getType()))
2205       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2206 
2207   if (isa<PointerType>(F.getReturnType()))
2208     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2209 }
2210 
2211 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2212   if (F.empty())
2213     return;
2214 
2215   LLVMContext &Ctx = F.getContext();
2216   MDBuilder Builder(Ctx);
2217 
2218   for (Instruction &I : instructions(F)) {
2219     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2220       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2221       bool IsImmutableTBAA =
2222           MD->getNumOperands() == 4 &&
2223           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2224 
2225       if (!IsImmutableTBAA)
2226         continue; // no work to do, MD_tbaa is already marked mutable
2227 
2228       MDNode *Base = cast<MDNode>(MD->getOperand(0));
2229       MDNode *Access = cast<MDNode>(MD->getOperand(1));
2230       uint64_t Offset =
2231           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2232 
2233       MDNode *MutableTBAA =
2234           Builder.createTBAAStructTagNode(Base, Access, Offset);
2235       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2236     }
2237 
2238     if (CallSite CS = CallSite(&I)) {
2239       for (int i = 0, e = CS.arg_size(); i != e; i++)
2240         if (isa<PointerType>(CS.getArgument(i)->getType()))
2241           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2242       if (isa<PointerType>(CS.getType()))
2243         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2244     }
2245   }
2246 }
2247 
2248 /// Returns true if this function should be rewritten by this pass.  The main
2249 /// point of this function is as an extension point for custom logic.
2250 static bool shouldRewriteStatepointsIn(Function &F) {
2251   // TODO: This should check the GCStrategy
2252   if (F.hasGC()) {
2253     const auto &FunctionGCName = F.getGC();
2254     const StringRef StatepointExampleName("statepoint-example");
2255     const StringRef CoreCLRName("coreclr");
2256     return (StatepointExampleName == FunctionGCName) ||
2257            (CoreCLRName == FunctionGCName);
2258   } else
2259     return false;
2260 }
2261 
2262 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2263 #ifndef NDEBUG
2264   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2265          "precondition!");
2266 #endif
2267 
2268   for (Function &F : M)
2269     stripNonValidAttributesFromPrototype(F);
2270 
2271   for (Function &F : M)
2272     stripNonValidAttributesFromBody(F);
2273 }
2274 
2275 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2276   // Nothing to do for declarations.
2277   if (F.isDeclaration() || F.empty())
2278     return false;
2279 
2280   // Policy choice says not to rewrite - the most common reason is that we're
2281   // compiling code without a GCStrategy.
2282   if (!shouldRewriteStatepointsIn(F))
2283     return false;
2284 
2285   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2286   TargetTransformInfo &TTI =
2287       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2288 
2289   auto NeedsRewrite = [](Instruction &I) {
2290     if (ImmutableCallSite CS = ImmutableCallSite(&I))
2291       return !callsGCLeafFunction(CS) && !isStatepoint(CS);
2292     return false;
2293   };
2294 
2295   // Gather all the statepoints which need rewritten.  Be careful to only
2296   // consider those in reachable code since we need to ask dominance queries
2297   // when rewriting.  We'll delete the unreachable ones in a moment.
2298   SmallVector<CallSite, 64> ParsePointNeeded;
2299   bool HasUnreachableStatepoint = false;
2300   for (Instruction &I : instructions(F)) {
2301     // TODO: only the ones with the flag set!
2302     if (NeedsRewrite(I)) {
2303       if (DT.isReachableFromEntry(I.getParent()))
2304         ParsePointNeeded.push_back(CallSite(&I));
2305       else
2306         HasUnreachableStatepoint = true;
2307     }
2308   }
2309 
2310   bool MadeChange = false;
2311 
2312   // Delete any unreachable statepoints so that we don't have unrewritten
2313   // statepoints surviving this pass.  This makes testing easier and the
2314   // resulting IR less confusing to human readers.  Rather than be fancy, we
2315   // just reuse a utility function which removes the unreachable blocks.
2316   if (HasUnreachableStatepoint)
2317     MadeChange |= removeUnreachableBlocks(F);
2318 
2319   // Return early if no work to do.
2320   if (ParsePointNeeded.empty())
2321     return MadeChange;
2322 
2323   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2324   // These are created by LCSSA.  They have the effect of increasing the size
2325   // of liveness sets for no good reason.  It may be harder to do this post
2326   // insertion since relocations and base phis can confuse things.
2327   for (BasicBlock &BB : F)
2328     if (BB.getUniquePredecessor()) {
2329       MadeChange = true;
2330       FoldSingleEntryPHINodes(&BB);
2331     }
2332 
2333   // Before we start introducing relocations, we want to tweak the IR a bit to
2334   // avoid unfortunate code generation effects.  The main example is that we
2335   // want to try to make sure the comparison feeding a branch is after any
2336   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2337   // values feeding a branch after relocation.  This is semantically correct,
2338   // but results in extra register pressure since both the pre-relocation and
2339   // post-relocation copies must be available in registers.  For code without
2340   // relocations this is handled elsewhere, but teaching the scheduler to
2341   // reverse the transform we're about to do would be slightly complex.
2342   // Note: This may extend the live range of the inputs to the icmp and thus
2343   // increase the liveset of any statepoint we move over.  This is profitable
2344   // as long as all statepoints are in rare blocks.  If we had in-register
2345   // lowering for live values this would be a much safer transform.
2346   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2347     if (auto *BI = dyn_cast<BranchInst>(TI))
2348       if (BI->isConditional())
2349         return dyn_cast<Instruction>(BI->getCondition());
2350     // TODO: Extend this to handle switches
2351     return nullptr;
2352   };
2353   for (BasicBlock &BB : F) {
2354     TerminatorInst *TI = BB.getTerminator();
2355     if (auto *Cond = getConditionInst(TI))
2356       // TODO: Handle more than just ICmps here.  We should be able to move
2357       // most instructions without side effects or memory access.
2358       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2359         MadeChange = true;
2360         Cond->moveBefore(TI);
2361       }
2362   }
2363 
2364   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2365   return MadeChange;
2366 }
2367 
2368 // liveness computation via standard dataflow
2369 // -------------------------------------------------------------------
2370 
2371 // TODO: Consider using bitvectors for liveness, the set of potentially
2372 // interesting values should be small and easy to pre-compute.
2373 
2374 /// Compute the live-in set for the location rbegin starting from
2375 /// the live-out set of the basic block
2376 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2377                                 BasicBlock::reverse_iterator rend,
2378                                 SetVector<Value *> &LiveTmp) {
2379 
2380   for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2381     Instruction *I = &*ritr;
2382 
2383     // KILL/Def - Remove this definition from LiveIn
2384     LiveTmp.remove(I);
2385 
2386     // Don't consider *uses* in PHI nodes, we handle their contribution to
2387     // predecessor blocks when we seed the LiveOut sets
2388     if (isa<PHINode>(I))
2389       continue;
2390 
2391     // USE - Add to the LiveIn set for this instruction
2392     for (Value *V : I->operands()) {
2393       assert(!isUnhandledGCPointerType(V->getType()) &&
2394              "support for FCA unimplemented");
2395       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2396         // The choice to exclude all things constant here is slightly subtle.
2397         // There are two independent reasons:
2398         // - We assume that things which are constant (from LLVM's definition)
2399         // do not move at runtime.  For example, the address of a global
2400         // variable is fixed, even though it's contents may not be.
2401         // - Second, we can't disallow arbitrary inttoptr constants even
2402         // if the language frontend does.  Optimization passes are free to
2403         // locally exploit facts without respect to global reachability.  This
2404         // can create sections of code which are dynamically unreachable and
2405         // contain just about anything.  (see constants.ll in tests)
2406         LiveTmp.insert(V);
2407       }
2408     }
2409   }
2410 }
2411 
2412 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2413 
2414   for (BasicBlock *Succ : successors(BB)) {
2415     const BasicBlock::iterator E(Succ->getFirstNonPHI());
2416     for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2417       PHINode *Phi = cast<PHINode>(&*I);
2418       Value *V = Phi->getIncomingValueForBlock(BB);
2419       assert(!isUnhandledGCPointerType(V->getType()) &&
2420              "support for FCA unimplemented");
2421       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2422         LiveTmp.insert(V);
2423       }
2424     }
2425   }
2426 }
2427 
2428 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2429   SetVector<Value *> KillSet;
2430   for (Instruction &I : *BB)
2431     if (isHandledGCPointerType(I.getType()))
2432       KillSet.insert(&I);
2433   return KillSet;
2434 }
2435 
2436 #ifndef NDEBUG
2437 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2438 /// sanity check for the liveness computation.
2439 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2440                           TerminatorInst *TI, bool TermOkay = false) {
2441   for (Value *V : Live) {
2442     if (auto *I = dyn_cast<Instruction>(V)) {
2443       // The terminator can be a member of the LiveOut set.  LLVM's definition
2444       // of instruction dominance states that V does not dominate itself.  As
2445       // such, we need to special case this to allow it.
2446       if (TermOkay && TI == I)
2447         continue;
2448       assert(DT.dominates(I, TI) &&
2449              "basic SSA liveness expectation violated by liveness analysis");
2450     }
2451   }
2452 }
2453 
2454 /// Check that all the liveness sets used during the computation of liveness
2455 /// obey basic SSA properties.  This is useful for finding cases where we miss
2456 /// a def.
2457 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2458                           BasicBlock &BB) {
2459   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2460   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2461   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2462 }
2463 #endif
2464 
2465 static void computeLiveInValues(DominatorTree &DT, Function &F,
2466                                 GCPtrLivenessData &Data) {
2467 
2468   SmallSetVector<BasicBlock *, 32> Worklist;
2469   auto AddPredsToWorklist = [&](BasicBlock *BB) {
2470     // We use a SetVector so that we don't have duplicates in the worklist.
2471     Worklist.insert(pred_begin(BB), pred_end(BB));
2472   };
2473   auto NextItem = [&]() {
2474     BasicBlock *BB = Worklist.back();
2475     Worklist.pop_back();
2476     return BB;
2477   };
2478 
2479   // Seed the liveness for each individual block
2480   for (BasicBlock &BB : F) {
2481     Data.KillSet[&BB] = computeKillSet(&BB);
2482     Data.LiveSet[&BB].clear();
2483     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2484 
2485 #ifndef NDEBUG
2486     for (Value *Kill : Data.KillSet[&BB])
2487       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2488 #endif
2489 
2490     Data.LiveOut[&BB] = SetVector<Value *>();
2491     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2492     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2493     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2494     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2495     if (!Data.LiveIn[&BB].empty())
2496       AddPredsToWorklist(&BB);
2497   }
2498 
2499   // Propagate that liveness until stable
2500   while (!Worklist.empty()) {
2501     BasicBlock *BB = NextItem();
2502 
2503     // Compute our new liveout set, then exit early if it hasn't changed
2504     // despite the contribution of our successor.
2505     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2506     const auto OldLiveOutSize = LiveOut.size();
2507     for (BasicBlock *Succ : successors(BB)) {
2508       assert(Data.LiveIn.count(Succ));
2509       LiveOut.set_union(Data.LiveIn[Succ]);
2510     }
2511     // assert OutLiveOut is a subset of LiveOut
2512     if (OldLiveOutSize == LiveOut.size()) {
2513       // If the sets are the same size, then we didn't actually add anything
2514       // when unioning our successors LiveIn  Thus, the LiveIn of this block
2515       // hasn't changed.
2516       continue;
2517     }
2518     Data.LiveOut[BB] = LiveOut;
2519 
2520     // Apply the effects of this basic block
2521     SetVector<Value *> LiveTmp = LiveOut;
2522     LiveTmp.set_union(Data.LiveSet[BB]);
2523     LiveTmp.set_subtract(Data.KillSet[BB]);
2524 
2525     assert(Data.LiveIn.count(BB));
2526     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2527     // assert: OldLiveIn is a subset of LiveTmp
2528     if (OldLiveIn.size() != LiveTmp.size()) {
2529       Data.LiveIn[BB] = LiveTmp;
2530       AddPredsToWorklist(BB);
2531     }
2532   } // while( !worklist.empty() )
2533 
2534 #ifndef NDEBUG
2535   // Sanity check our output against SSA properties.  This helps catch any
2536   // missing kills during the above iteration.
2537   for (BasicBlock &BB : F) {
2538     checkBasicSSA(DT, Data, BB);
2539   }
2540 #endif
2541 }
2542 
2543 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2544                               StatepointLiveSetTy &Out) {
2545 
2546   BasicBlock *BB = Inst->getParent();
2547 
2548   // Note: The copy is intentional and required
2549   assert(Data.LiveOut.count(BB));
2550   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2551 
2552   // We want to handle the statepoint itself oddly.  It's
2553   // call result is not live (normal), nor are it's arguments
2554   // (unless they're used again later).  This adjustment is
2555   // specifically what we need to relocate
2556   BasicBlock::reverse_iterator rend(Inst->getIterator());
2557   computeLiveInValues(BB->rbegin(), rend, LiveOut);
2558   LiveOut.remove(Inst);
2559   Out.insert(LiveOut.begin(), LiveOut.end());
2560 }
2561 
2562 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2563                                   CallSite CS,
2564                                   PartiallyConstructedSafepointRecord &Info) {
2565   Instruction *Inst = CS.getInstruction();
2566   StatepointLiveSetTy Updated;
2567   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2568 
2569 #ifndef NDEBUG
2570   DenseSet<Value *> Bases;
2571   for (auto KVPair : Info.PointerToBase) {
2572     Bases.insert(KVPair.second);
2573   }
2574 #endif
2575   // We may have base pointers which are now live that weren't before.  We need
2576   // to update the PointerToBase structure to reflect this.
2577   for (auto V : Updated)
2578     if (Info.PointerToBase.insert(std::make_pair(V, V)).second) {
2579       assert(Bases.count(V) && "can't find base for unexpected live value");
2580       continue;
2581     }
2582 
2583 #ifndef NDEBUG
2584   for (auto V : Updated) {
2585     assert(Info.PointerToBase.count(V) &&
2586            "must be able to find base for live value");
2587   }
2588 #endif
2589 
2590   // Remove any stale base mappings - this can happen since our liveness is
2591   // more precise then the one inherent in the base pointer analysis
2592   DenseSet<Value *> ToErase;
2593   for (auto KVPair : Info.PointerToBase)
2594     if (!Updated.count(KVPair.first))
2595       ToErase.insert(KVPair.first);
2596   for (auto V : ToErase)
2597     Info.PointerToBase.erase(V);
2598 
2599 #ifndef NDEBUG
2600   for (auto KVPair : Info.PointerToBase)
2601     assert(Updated.count(KVPair.first) && "record for non-live value");
2602 #endif
2603 
2604   Info.LiveSet = Updated;
2605 }
2606