1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef EXPENSIVE_CHECKS 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 static cl::opt<bool> 75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 76 cl::Hidden, cl::init(true)); 77 78 namespace { 79 struct RewriteStatepointsForGC : public ModulePass { 80 static char ID; // Pass identification, replacement for typeid 81 82 RewriteStatepointsForGC() : ModulePass(ID) { 83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 84 } 85 bool runOnFunction(Function &F); 86 bool runOnModule(Module &M) override { 87 bool Changed = false; 88 for (Function &F : M) 89 Changed |= runOnFunction(F); 90 91 if (Changed) { 92 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 93 // returns true for at least one function in the module. Since at least 94 // one function changed, we know that the precondition is satisfied. 95 stripNonValidAttributes(M); 96 } 97 98 return Changed; 99 } 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 // We add and rewrite a bunch of instructions, but don't really do much 103 // else. We could in theory preserve a lot more analyses here. 104 AU.addRequired<DominatorTreeWrapperPass>(); 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 109 /// dereferenceability that are no longer valid/correct after 110 /// RewriteStatepointsForGC has run. This is because semantically, after 111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 112 /// heap. stripNonValidAttributes (conservatively) restores correctness 113 /// by erasing all attributes in the module that externally imply 114 /// dereferenceability. 115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 116 /// can touch the entire heap including noalias objects. 117 void stripNonValidAttributes(Module &M); 118 119 // Helpers for stripNonValidAttributes 120 void stripNonValidAttributesFromBody(Function &F); 121 void stripNonValidAttributesFromPrototype(Function &F); 122 }; 123 } // namespace 124 125 char RewriteStatepointsForGC::ID = 0; 126 127 ModulePass *llvm::createRewriteStatepointsForGCPass() { 128 return new RewriteStatepointsForGC(); 129 } 130 131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 132 "Make relocations explicit at statepoints", false, false) 133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 136 "Make relocations explicit at statepoints", false, false) 137 138 namespace { 139 struct GCPtrLivenessData { 140 /// Values defined in this block. 141 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 142 /// Values used in this block (and thus live); does not included values 143 /// killed within this block. 144 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 145 146 /// Values live into this basic block (i.e. used by any 147 /// instruction in this basic block or ones reachable from here) 148 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 149 150 /// Values live out of this basic block (i.e. live into 151 /// any successor block) 152 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 153 }; 154 155 // The type of the internal cache used inside the findBasePointers family 156 // of functions. From the callers perspective, this is an opaque type and 157 // should not be inspected. 158 // 159 // In the actual implementation this caches two relations: 160 // - The base relation itself (i.e. this pointer is based on that one) 161 // - The base defining value relation (i.e. before base_phi insertion) 162 // Generally, after the execution of a full findBasePointer call, only the 163 // base relation will remain. Internally, we add a mixture of the two 164 // types, then update all the second type to the first type 165 typedef MapVector<Value *, Value *> DefiningValueMapTy; 166 typedef SetVector<Value *> StatepointLiveSetTy; 167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>> 168 RematerializedValueMapTy; 169 170 struct PartiallyConstructedSafepointRecord { 171 /// The set of values known to be live across this safepoint 172 StatepointLiveSetTy LiveSet; 173 174 /// Mapping from live pointers to a base-defining-value 175 MapVector<Value *, Value *> PointerToBase; 176 177 /// The *new* gc.statepoint instruction itself. This produces the token 178 /// that normal path gc.relocates and the gc.result are tied to. 179 Instruction *StatepointToken; 180 181 /// Instruction to which exceptional gc relocates are attached 182 /// Makes it easier to iterate through them during relocationViaAlloca. 183 Instruction *UnwindToken; 184 185 /// Record live values we are rematerialized instead of relocating. 186 /// They are not included into 'LiveSet' field. 187 /// Maps rematerialized copy to it's original value. 188 RematerializedValueMapTy RematerializedValues; 189 }; 190 } 191 192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 193 Optional<OperandBundleUse> DeoptBundle = 194 CS.getOperandBundle(LLVMContext::OB_deopt); 195 196 if (!DeoptBundle.hasValue()) { 197 assert(AllowStatepointWithNoDeoptInfo && 198 "Found non-leaf call without deopt info!"); 199 return None; 200 } 201 202 return DeoptBundle.getValue().Inputs; 203 } 204 205 /// Compute the live-in set for every basic block in the function 206 static void computeLiveInValues(DominatorTree &DT, Function &F, 207 GCPtrLivenessData &Data); 208 209 /// Given results from the dataflow liveness computation, find the set of live 210 /// Values at a particular instruction. 211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 212 StatepointLiveSetTy &out); 213 214 // TODO: Once we can get to the GCStrategy, this becomes 215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 216 217 static bool isGCPointerType(Type *T) { 218 if (auto *PT = dyn_cast<PointerType>(T)) 219 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 220 // GC managed heap. We know that a pointer into this heap needs to be 221 // updated and that no other pointer does. 222 return (1 == PT->getAddressSpace()); 223 return false; 224 } 225 226 // Return true if this type is one which a) is a gc pointer or contains a GC 227 // pointer and b) is of a type this code expects to encounter as a live value. 228 // (The insertion code will assert that a type which matches (a) and not (b) 229 // is not encountered.) 230 static bool isHandledGCPointerType(Type *T) { 231 // We fully support gc pointers 232 if (isGCPointerType(T)) 233 return true; 234 // We partially support vectors of gc pointers. The code will assert if it 235 // can't handle something. 236 if (auto VT = dyn_cast<VectorType>(T)) 237 if (isGCPointerType(VT->getElementType())) 238 return true; 239 return false; 240 } 241 242 #ifndef NDEBUG 243 /// Returns true if this type contains a gc pointer whether we know how to 244 /// handle that type or not. 245 static bool containsGCPtrType(Type *Ty) { 246 if (isGCPointerType(Ty)) 247 return true; 248 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 249 return isGCPointerType(VT->getScalarType()); 250 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 251 return containsGCPtrType(AT->getElementType()); 252 if (StructType *ST = dyn_cast<StructType>(Ty)) 253 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 254 containsGCPtrType); 255 return false; 256 } 257 258 // Returns true if this is a type which a) is a gc pointer or contains a GC 259 // pointer and b) is of a type which the code doesn't expect (i.e. first class 260 // aggregates). Used to trip assertions. 261 static bool isUnhandledGCPointerType(Type *Ty) { 262 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 263 } 264 #endif 265 266 // Return the name of the value suffixed with the provided value, or if the 267 // value didn't have a name, the default value specified. 268 static std::string suffixed_name_or(Value *V, StringRef Suffix, 269 StringRef DefaultName) { 270 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 271 } 272 273 // Conservatively identifies any definitions which might be live at the 274 // given instruction. The analysis is performed immediately before the 275 // given instruction. Values defined by that instruction are not considered 276 // live. Values used by that instruction are considered live. 277 static void 278 analyzeParsePointLiveness(DominatorTree &DT, 279 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 280 PartiallyConstructedSafepointRecord &result) { 281 Instruction *inst = CS.getInstruction(); 282 283 StatepointLiveSetTy LiveSet; 284 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 285 286 if (PrintLiveSet) { 287 errs() << "Live Variables:\n"; 288 for (Value *V : LiveSet) 289 dbgs() << " " << V->getName() << " " << *V << "\n"; 290 } 291 if (PrintLiveSetSize) { 292 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 293 errs() << "Number live values: " << LiveSet.size() << "\n"; 294 } 295 result.LiveSet = LiveSet; 296 } 297 298 static bool isKnownBaseResult(Value *V); 299 namespace { 300 /// A single base defining value - An immediate base defining value for an 301 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 302 /// For instructions which have multiple pointer [vector] inputs or that 303 /// transition between vector and scalar types, there is no immediate base 304 /// defining value. The 'base defining value' for 'Def' is the transitive 305 /// closure of this relation stopping at the first instruction which has no 306 /// immediate base defining value. The b.d.v. might itself be a base pointer, 307 /// but it can also be an arbitrary derived pointer. 308 struct BaseDefiningValueResult { 309 /// Contains the value which is the base defining value. 310 Value * const BDV; 311 /// True if the base defining value is also known to be an actual base 312 /// pointer. 313 const bool IsKnownBase; 314 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 315 : BDV(BDV), IsKnownBase(IsKnownBase) { 316 #ifndef NDEBUG 317 // Check consistency between new and old means of checking whether a BDV is 318 // a base. 319 bool MustBeBase = isKnownBaseResult(BDV); 320 assert(!MustBeBase || MustBeBase == IsKnownBase); 321 #endif 322 } 323 }; 324 } 325 326 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 327 328 /// Return a base defining value for the 'Index' element of the given vector 329 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 330 /// 'I'. As an optimization, this method will try to determine when the 331 /// element is known to already be a base pointer. If this can be established, 332 /// the second value in the returned pair will be true. Note that either a 333 /// vector or a pointer typed value can be returned. For the former, the 334 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 335 /// If the later, the return pointer is a BDV (or possibly a base) for the 336 /// particular element in 'I'. 337 static BaseDefiningValueResult 338 findBaseDefiningValueOfVector(Value *I) { 339 // Each case parallels findBaseDefiningValue below, see that code for 340 // detailed motivation. 341 342 if (isa<Argument>(I)) 343 // An incoming argument to the function is a base pointer 344 return BaseDefiningValueResult(I, true); 345 346 if (isa<Constant>(I)) 347 // Base of constant vector consists only of constant null pointers. 348 // For reasoning see similar case inside 'findBaseDefiningValue' function. 349 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 350 true); 351 352 if (isa<LoadInst>(I)) 353 return BaseDefiningValueResult(I, true); 354 355 if (isa<InsertElementInst>(I)) 356 // We don't know whether this vector contains entirely base pointers or 357 // not. To be conservatively correct, we treat it as a BDV and will 358 // duplicate code as needed to construct a parallel vector of bases. 359 return BaseDefiningValueResult(I, false); 360 361 if (isa<ShuffleVectorInst>(I)) 362 // We don't know whether this vector contains entirely base pointers or 363 // not. To be conservatively correct, we treat it as a BDV and will 364 // duplicate code as needed to construct a parallel vector of bases. 365 // TODO: There a number of local optimizations which could be applied here 366 // for particular sufflevector patterns. 367 return BaseDefiningValueResult(I, false); 368 369 // A PHI or Select is a base defining value. The outer findBasePointer 370 // algorithm is responsible for constructing a base value for this BDV. 371 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 372 "unknown vector instruction - no base found for vector element"); 373 return BaseDefiningValueResult(I, false); 374 } 375 376 /// Helper function for findBasePointer - Will return a value which either a) 377 /// defines the base pointer for the input, b) blocks the simple search 378 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 379 /// from pointer to vector type or back. 380 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 381 assert(I->getType()->isPtrOrPtrVectorTy() && 382 "Illegal to ask for the base pointer of a non-pointer type"); 383 384 if (I->getType()->isVectorTy()) 385 return findBaseDefiningValueOfVector(I); 386 387 if (isa<Argument>(I)) 388 // An incoming argument to the function is a base pointer 389 // We should have never reached here if this argument isn't an gc value 390 return BaseDefiningValueResult(I, true); 391 392 if (isa<Constant>(I)) { 393 // We assume that objects with a constant base (e.g. a global) can't move 394 // and don't need to be reported to the collector because they are always 395 // live. Besides global references, all kinds of constants (e.g. undef, 396 // constant expressions, null pointers) can be introduced by the inliner or 397 // the optimizer, especially on dynamically dead paths. 398 // Here we treat all of them as having single null base. By doing this we 399 // trying to avoid problems reporting various conflicts in a form of 400 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 401 // See constant.ll file for relevant test cases. 402 403 return BaseDefiningValueResult( 404 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 405 } 406 407 if (CastInst *CI = dyn_cast<CastInst>(I)) { 408 Value *Def = CI->stripPointerCasts(); 409 // If stripping pointer casts changes the address space there is an 410 // addrspacecast in between. 411 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 412 cast<PointerType>(CI->getType())->getAddressSpace() && 413 "unsupported addrspacecast"); 414 // If we find a cast instruction here, it means we've found a cast which is 415 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 416 // handle int->ptr conversion. 417 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 418 return findBaseDefiningValue(Def); 419 } 420 421 if (isa<LoadInst>(I)) 422 // The value loaded is an gc base itself 423 return BaseDefiningValueResult(I, true); 424 425 426 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 427 // The base of this GEP is the base 428 return findBaseDefiningValue(GEP->getPointerOperand()); 429 430 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 431 switch (II->getIntrinsicID()) { 432 default: 433 // fall through to general call handling 434 break; 435 case Intrinsic::experimental_gc_statepoint: 436 llvm_unreachable("statepoints don't produce pointers"); 437 case Intrinsic::experimental_gc_relocate: { 438 // Rerunning safepoint insertion after safepoints are already 439 // inserted is not supported. It could probably be made to work, 440 // but why are you doing this? There's no good reason. 441 llvm_unreachable("repeat safepoint insertion is not supported"); 442 } 443 case Intrinsic::gcroot: 444 // Currently, this mechanism hasn't been extended to work with gcroot. 445 // There's no reason it couldn't be, but I haven't thought about the 446 // implications much. 447 llvm_unreachable( 448 "interaction with the gcroot mechanism is not supported"); 449 } 450 } 451 // We assume that functions in the source language only return base 452 // pointers. This should probably be generalized via attributes to support 453 // both source language and internal functions. 454 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 455 return BaseDefiningValueResult(I, true); 456 457 // I have absolutely no idea how to implement this part yet. It's not 458 // necessarily hard, I just haven't really looked at it yet. 459 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 460 461 if (isa<AtomicCmpXchgInst>(I)) 462 // A CAS is effectively a atomic store and load combined under a 463 // predicate. From the perspective of base pointers, we just treat it 464 // like a load. 465 return BaseDefiningValueResult(I, true); 466 467 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 468 "binary ops which don't apply to pointers"); 469 470 // The aggregate ops. Aggregates can either be in the heap or on the 471 // stack, but in either case, this is simply a field load. As a result, 472 // this is a defining definition of the base just like a load is. 473 if (isa<ExtractValueInst>(I)) 474 return BaseDefiningValueResult(I, true); 475 476 // We should never see an insert vector since that would require we be 477 // tracing back a struct value not a pointer value. 478 assert(!isa<InsertValueInst>(I) && 479 "Base pointer for a struct is meaningless"); 480 481 // An extractelement produces a base result exactly when it's input does. 482 // We may need to insert a parallel instruction to extract the appropriate 483 // element out of the base vector corresponding to the input. Given this, 484 // it's analogous to the phi and select case even though it's not a merge. 485 if (isa<ExtractElementInst>(I)) 486 // Note: There a lot of obvious peephole cases here. This are deliberately 487 // handled after the main base pointer inference algorithm to make writing 488 // test cases to exercise that code easier. 489 return BaseDefiningValueResult(I, false); 490 491 // The last two cases here don't return a base pointer. Instead, they 492 // return a value which dynamically selects from among several base 493 // derived pointers (each with it's own base potentially). It's the job of 494 // the caller to resolve these. 495 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 496 "missing instruction case in findBaseDefiningValing"); 497 return BaseDefiningValueResult(I, false); 498 } 499 500 /// Returns the base defining value for this value. 501 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 502 Value *&Cached = Cache[I]; 503 if (!Cached) { 504 Cached = findBaseDefiningValue(I).BDV; 505 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 506 << Cached->getName() << "\n"); 507 } 508 assert(Cache[I] != nullptr); 509 return Cached; 510 } 511 512 /// Return a base pointer for this value if known. Otherwise, return it's 513 /// base defining value. 514 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 515 Value *Def = findBaseDefiningValueCached(I, Cache); 516 auto Found = Cache.find(Def); 517 if (Found != Cache.end()) { 518 // Either a base-of relation, or a self reference. Caller must check. 519 return Found->second; 520 } 521 // Only a BDV available 522 return Def; 523 } 524 525 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 526 /// is it known to be a base pointer? Or do we need to continue searching. 527 static bool isKnownBaseResult(Value *V) { 528 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 529 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 530 !isa<ShuffleVectorInst>(V)) { 531 // no recursion possible 532 return true; 533 } 534 if (isa<Instruction>(V) && 535 cast<Instruction>(V)->getMetadata("is_base_value")) { 536 // This is a previously inserted base phi or select. We know 537 // that this is a base value. 538 return true; 539 } 540 541 // We need to keep searching 542 return false; 543 } 544 545 namespace { 546 /// Models the state of a single base defining value in the findBasePointer 547 /// algorithm for determining where a new instruction is needed to propagate 548 /// the base of this BDV. 549 class BDVState { 550 public: 551 enum Status { Unknown, Base, Conflict }; 552 553 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 554 assert(status != Base || b); 555 } 556 explicit BDVState(Value *b) : status(Base), base(b) {} 557 BDVState() : status(Unknown), base(nullptr) {} 558 559 Status getStatus() const { return status; } 560 Value *getBase() const { return base; } 561 562 bool isBase() const { return getStatus() == Base; } 563 bool isUnknown() const { return getStatus() == Unknown; } 564 bool isConflict() const { return getStatus() == Conflict; } 565 566 bool operator==(const BDVState &other) const { 567 return base == other.base && status == other.status; 568 } 569 570 bool operator!=(const BDVState &other) const { return !(*this == other); } 571 572 LLVM_DUMP_METHOD 573 void dump() const { print(dbgs()); dbgs() << '\n'; } 574 575 void print(raw_ostream &OS) const { 576 switch (status) { 577 case Unknown: 578 OS << "U"; 579 break; 580 case Base: 581 OS << "B"; 582 break; 583 case Conflict: 584 OS << "C"; 585 break; 586 }; 587 OS << " (" << base << " - " 588 << (base ? base->getName() : "nullptr") << "): "; 589 } 590 591 private: 592 Status status; 593 AssertingVH<Value> base; // non null only if status == base 594 }; 595 } 596 597 #ifndef NDEBUG 598 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 599 State.print(OS); 600 return OS; 601 } 602 #endif 603 604 static BDVState meetBDVStateImpl(const BDVState &stateA, 605 const BDVState &stateB) { 606 switch (stateA.getStatus()) { 607 case BDVState::Unknown: 608 return stateB; 609 610 case BDVState::Base: 611 assert(stateA.getBase() && "can't be null"); 612 if (stateB.isUnknown()) 613 return stateA; 614 615 if (stateB.isBase()) { 616 if (stateA.getBase() == stateB.getBase()) { 617 assert(stateA == stateB && "equality broken!"); 618 return stateA; 619 } 620 return BDVState(BDVState::Conflict); 621 } 622 assert(stateB.isConflict() && "only three states!"); 623 return BDVState(BDVState::Conflict); 624 625 case BDVState::Conflict: 626 return stateA; 627 } 628 llvm_unreachable("only three states!"); 629 } 630 631 // Values of type BDVState form a lattice, and this function implements the meet 632 // operation. 633 static BDVState meetBDVState(BDVState LHS, BDVState RHS) { 634 BDVState Result = meetBDVStateImpl(LHS, RHS); 635 assert(Result == meetBDVStateImpl(RHS, LHS) && 636 "Math is wrong: meet does not commute!"); 637 return Result; 638 } 639 640 /// For a given value or instruction, figure out what base ptr its derived from. 641 /// For gc objects, this is simply itself. On success, returns a value which is 642 /// the base pointer. (This is reliable and can be used for relocation.) On 643 /// failure, returns nullptr. 644 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 645 Value *Def = findBaseOrBDV(I, Cache); 646 647 if (isKnownBaseResult(Def)) 648 return Def; 649 650 // Here's the rough algorithm: 651 // - For every SSA value, construct a mapping to either an actual base 652 // pointer or a PHI which obscures the base pointer. 653 // - Construct a mapping from PHI to unknown TOP state. Use an 654 // optimistic algorithm to propagate base pointer information. Lattice 655 // looks like: 656 // UNKNOWN 657 // b1 b2 b3 b4 658 // CONFLICT 659 // When algorithm terminates, all PHIs will either have a single concrete 660 // base or be in a conflict state. 661 // - For every conflict, insert a dummy PHI node without arguments. Add 662 // these to the base[Instruction] = BasePtr mapping. For every 663 // non-conflict, add the actual base. 664 // - For every conflict, add arguments for the base[a] of each input 665 // arguments. 666 // 667 // Note: A simpler form of this would be to add the conflict form of all 668 // PHIs without running the optimistic algorithm. This would be 669 // analogous to pessimistic data flow and would likely lead to an 670 // overall worse solution. 671 672 #ifndef NDEBUG 673 auto isExpectedBDVType = [](Value *BDV) { 674 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 675 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 676 }; 677 #endif 678 679 // Once populated, will contain a mapping from each potentially non-base BDV 680 // to a lattice value (described above) which corresponds to that BDV. 681 // We use the order of insertion (DFS over the def/use graph) to provide a 682 // stable deterministic ordering for visiting DenseMaps (which are unordered) 683 // below. This is important for deterministic compilation. 684 MapVector<Value *, BDVState> States; 685 686 // Recursively fill in all base defining values reachable from the initial 687 // one for which we don't already know a definite base value for 688 /* scope */ { 689 SmallVector<Value*, 16> Worklist; 690 Worklist.push_back(Def); 691 States.insert({Def, BDVState()}); 692 while (!Worklist.empty()) { 693 Value *Current = Worklist.pop_back_val(); 694 assert(!isKnownBaseResult(Current) && "why did it get added?"); 695 696 auto visitIncomingValue = [&](Value *InVal) { 697 Value *Base = findBaseOrBDV(InVal, Cache); 698 if (isKnownBaseResult(Base)) 699 // Known bases won't need new instructions introduced and can be 700 // ignored safely 701 return; 702 assert(isExpectedBDVType(Base) && "the only non-base values " 703 "we see should be base defining values"); 704 if (States.insert(std::make_pair(Base, BDVState())).second) 705 Worklist.push_back(Base); 706 }; 707 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 708 for (Value *InVal : PN->incoming_values()) 709 visitIncomingValue(InVal); 710 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 711 visitIncomingValue(SI->getTrueValue()); 712 visitIncomingValue(SI->getFalseValue()); 713 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 714 visitIncomingValue(EE->getVectorOperand()); 715 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 716 visitIncomingValue(IE->getOperand(0)); // vector operand 717 visitIncomingValue(IE->getOperand(1)); // scalar operand 718 } else { 719 // There is one known class of instructions we know we don't handle. 720 assert(isa<ShuffleVectorInst>(Current)); 721 llvm_unreachable("Unimplemented instruction case"); 722 } 723 } 724 } 725 726 #ifndef NDEBUG 727 DEBUG(dbgs() << "States after initialization:\n"); 728 for (auto Pair : States) 729 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 730 #endif 731 732 // Return a phi state for a base defining value. We'll generate a new 733 // base state for known bases and expect to find a cached state otherwise. 734 auto getStateForBDV = [&](Value *baseValue) { 735 if (isKnownBaseResult(baseValue)) 736 return BDVState(baseValue); 737 auto I = States.find(baseValue); 738 assert(I != States.end() && "lookup failed!"); 739 return I->second; 740 }; 741 742 bool Progress = true; 743 while (Progress) { 744 #ifndef NDEBUG 745 const size_t OldSize = States.size(); 746 #endif 747 Progress = false; 748 // We're only changing values in this loop, thus safe to keep iterators. 749 // Since this is computing a fixed point, the order of visit does not 750 // effect the result. TODO: We could use a worklist here and make this run 751 // much faster. 752 for (auto Pair : States) { 753 Value *BDV = Pair.first; 754 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 755 756 // Given an input value for the current instruction, return a BDVState 757 // instance which represents the BDV of that value. 758 auto getStateForInput = [&](Value *V) mutable { 759 Value *BDV = findBaseOrBDV(V, Cache); 760 return getStateForBDV(BDV); 761 }; 762 763 BDVState NewState; 764 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 765 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 766 NewState = 767 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 768 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 769 for (Value *Val : PN->incoming_values()) 770 NewState = meetBDVState(NewState, getStateForInput(Val)); 771 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 772 // The 'meet' for an extractelement is slightly trivial, but it's still 773 // useful in that it drives us to conflict if our input is. 774 NewState = 775 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 776 } else { 777 // Given there's a inherent type mismatch between the operands, will 778 // *always* produce Conflict. 779 auto *IE = cast<InsertElementInst>(BDV); 780 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 781 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 782 } 783 784 BDVState OldState = States[BDV]; 785 if (OldState != NewState) { 786 Progress = true; 787 States[BDV] = NewState; 788 } 789 } 790 791 assert(OldSize == States.size() && 792 "fixed point shouldn't be adding any new nodes to state"); 793 } 794 795 #ifndef NDEBUG 796 DEBUG(dbgs() << "States after meet iteration:\n"); 797 for (auto Pair : States) 798 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 799 #endif 800 801 // Insert Phis for all conflicts 802 // TODO: adjust naming patterns to avoid this order of iteration dependency 803 for (auto Pair : States) { 804 Instruction *I = cast<Instruction>(Pair.first); 805 BDVState State = Pair.second; 806 assert(!isKnownBaseResult(I) && "why did it get added?"); 807 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 808 809 // extractelement instructions are a bit special in that we may need to 810 // insert an extract even when we know an exact base for the instruction. 811 // The problem is that we need to convert from a vector base to a scalar 812 // base for the particular indice we're interested in. 813 if (State.isBase() && isa<ExtractElementInst>(I) && 814 isa<VectorType>(State.getBase()->getType())) { 815 auto *EE = cast<ExtractElementInst>(I); 816 // TODO: In many cases, the new instruction is just EE itself. We should 817 // exploit this, but can't do it here since it would break the invariant 818 // about the BDV not being known to be a base. 819 auto *BaseInst = ExtractElementInst::Create( 820 State.getBase(), EE->getIndexOperand(), "base_ee", EE); 821 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 822 States[I] = BDVState(BDVState::Base, BaseInst); 823 } 824 825 // Since we're joining a vector and scalar base, they can never be the 826 // same. As a result, we should always see insert element having reached 827 // the conflict state. 828 assert(!isa<InsertElementInst>(I) || State.isConflict()); 829 830 if (!State.isConflict()) 831 continue; 832 833 /// Create and insert a new instruction which will represent the base of 834 /// the given instruction 'I'. 835 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 836 if (isa<PHINode>(I)) { 837 BasicBlock *BB = I->getParent(); 838 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 839 assert(NumPreds > 0 && "how did we reach here"); 840 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 841 return PHINode::Create(I->getType(), NumPreds, Name, I); 842 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 843 // The undef will be replaced later 844 UndefValue *Undef = UndefValue::get(SI->getType()); 845 std::string Name = suffixed_name_or(I, ".base", "base_select"); 846 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 847 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 848 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 849 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 850 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 851 EE); 852 } else { 853 auto *IE = cast<InsertElementInst>(I); 854 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 855 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 856 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 857 return InsertElementInst::Create(VecUndef, ScalarUndef, 858 IE->getOperand(2), Name, IE); 859 } 860 }; 861 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 862 // Add metadata marking this as a base value 863 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 864 States[I] = BDVState(BDVState::Conflict, BaseInst); 865 } 866 867 // Returns a instruction which produces the base pointer for a given 868 // instruction. The instruction is assumed to be an input to one of the BDVs 869 // seen in the inference algorithm above. As such, we must either already 870 // know it's base defining value is a base, or have inserted a new 871 // instruction to propagate the base of it's BDV and have entered that newly 872 // introduced instruction into the state table. In either case, we are 873 // assured to be able to determine an instruction which produces it's base 874 // pointer. 875 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 876 Value *BDV = findBaseOrBDV(Input, Cache); 877 Value *Base = nullptr; 878 if (isKnownBaseResult(BDV)) { 879 Base = BDV; 880 } else { 881 // Either conflict or base. 882 assert(States.count(BDV)); 883 Base = States[BDV].getBase(); 884 } 885 assert(Base && "Can't be null"); 886 // The cast is needed since base traversal may strip away bitcasts 887 if (Base->getType() != Input->getType() && InsertPt) 888 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 889 return Base; 890 }; 891 892 // Fixup all the inputs of the new PHIs. Visit order needs to be 893 // deterministic and predictable because we're naming newly created 894 // instructions. 895 for (auto Pair : States) { 896 Instruction *BDV = cast<Instruction>(Pair.first); 897 BDVState State = Pair.second; 898 899 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 900 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 901 if (!State.isConflict()) 902 continue; 903 904 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBase())) { 905 PHINode *PN = cast<PHINode>(BDV); 906 unsigned NumPHIValues = PN->getNumIncomingValues(); 907 for (unsigned i = 0; i < NumPHIValues; i++) { 908 Value *InVal = PN->getIncomingValue(i); 909 BasicBlock *InBB = PN->getIncomingBlock(i); 910 911 // If we've already seen InBB, add the same incoming value 912 // we added for it earlier. The IR verifier requires phi 913 // nodes with multiple entries from the same basic block 914 // to have the same incoming value for each of those 915 // entries. If we don't do this check here and basephi 916 // has a different type than base, we'll end up adding two 917 // bitcasts (and hence two distinct values) as incoming 918 // values for the same basic block. 919 920 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 921 if (BlockIndex != -1) { 922 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 923 BasePHI->addIncoming(OldBase, InBB); 924 925 #ifndef NDEBUG 926 Value *Base = getBaseForInput(InVal, nullptr); 927 // In essence this assert states: the only way two values 928 // incoming from the same basic block may be different is by 929 // being different bitcasts of the same value. A cleanup 930 // that remains TODO is changing findBaseOrBDV to return an 931 // llvm::Value of the correct type (and still remain pure). 932 // This will remove the need to add bitcasts. 933 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 934 "Sanity -- findBaseOrBDV should be pure!"); 935 #endif 936 continue; 937 } 938 939 // Find the instruction which produces the base for each input. We may 940 // need to insert a bitcast in the incoming block. 941 // TODO: Need to split critical edges if insertion is needed 942 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 943 BasePHI->addIncoming(Base, InBB); 944 } 945 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 946 } else if (SelectInst *BaseSI = dyn_cast<SelectInst>(State.getBase())) { 947 SelectInst *SI = cast<SelectInst>(BDV); 948 949 // Find the instruction which produces the base for each input. 950 // We may need to insert a bitcast. 951 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 952 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 953 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 954 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 955 // Find the instruction which produces the base for each input. We may 956 // need to insert a bitcast. 957 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 958 } else { 959 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 960 auto *BdvIE = cast<InsertElementInst>(BDV); 961 auto UpdateOperand = [&](int OperandIdx) { 962 Value *InVal = BdvIE->getOperand(OperandIdx); 963 Value *Base = getBaseForInput(InVal, BaseIE); 964 BaseIE->setOperand(OperandIdx, Base); 965 }; 966 UpdateOperand(0); // vector operand 967 UpdateOperand(1); // scalar operand 968 } 969 } 970 971 // Cache all of our results so we can cheaply reuse them 972 // NOTE: This is actually two caches: one of the base defining value 973 // relation and one of the base pointer relation! FIXME 974 for (auto Pair : States) { 975 auto *BDV = Pair.first; 976 Value *Base = Pair.second.getBase(); 977 assert(BDV && Base); 978 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 979 980 DEBUG(dbgs() << "Updating base value cache" 981 << " for: " << BDV->getName() << " from: " 982 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 983 << " to: " << Base->getName() << "\n"); 984 985 if (Cache.count(BDV)) { 986 assert(isKnownBaseResult(Base) && 987 "must be something we 'know' is a base pointer"); 988 // Once we transition from the BDV relation being store in the Cache to 989 // the base relation being stored, it must be stable 990 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 991 "base relation should be stable"); 992 } 993 Cache[BDV] = Base; 994 } 995 assert(Cache.count(Def)); 996 return Cache[Def]; 997 } 998 999 // For a set of live pointers (base and/or derived), identify the base 1000 // pointer of the object which they are derived from. This routine will 1001 // mutate the IR graph as needed to make the 'base' pointer live at the 1002 // definition site of 'derived'. This ensures that any use of 'derived' can 1003 // also use 'base'. This may involve the insertion of a number of 1004 // additional PHI nodes. 1005 // 1006 // preconditions: live is a set of pointer type Values 1007 // 1008 // side effects: may insert PHI nodes into the existing CFG, will preserve 1009 // CFG, will not remove or mutate any existing nodes 1010 // 1011 // post condition: PointerToBase contains one (derived, base) pair for every 1012 // pointer in live. Note that derived can be equal to base if the original 1013 // pointer was a base pointer. 1014 static void 1015 findBasePointers(const StatepointLiveSetTy &live, 1016 MapVector<Value *, Value *> &PointerToBase, 1017 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1018 for (Value *ptr : live) { 1019 Value *base = findBasePointer(ptr, DVCache); 1020 assert(base && "failed to find base pointer"); 1021 PointerToBase[ptr] = base; 1022 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1023 DT->dominates(cast<Instruction>(base)->getParent(), 1024 cast<Instruction>(ptr)->getParent())) && 1025 "The base we found better dominate the derived pointer"); 1026 } 1027 } 1028 1029 /// Find the required based pointers (and adjust the live set) for the given 1030 /// parse point. 1031 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1032 CallSite CS, 1033 PartiallyConstructedSafepointRecord &result) { 1034 MapVector<Value *, Value *> PointerToBase; 1035 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1036 1037 if (PrintBasePointers) { 1038 errs() << "Base Pairs (w/o Relocation):\n"; 1039 for (auto &Pair : PointerToBase) { 1040 errs() << " derived "; 1041 Pair.first->printAsOperand(errs(), false); 1042 errs() << " base "; 1043 Pair.second->printAsOperand(errs(), false); 1044 errs() << "\n";; 1045 } 1046 } 1047 1048 result.PointerToBase = PointerToBase; 1049 } 1050 1051 /// Given an updated version of the dataflow liveness results, update the 1052 /// liveset and base pointer maps for the call site CS. 1053 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1054 CallSite CS, 1055 PartiallyConstructedSafepointRecord &result); 1056 1057 static void recomputeLiveInValues( 1058 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1059 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1060 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1061 // again. The old values are still live and will help it stabilize quickly. 1062 GCPtrLivenessData RevisedLivenessData; 1063 computeLiveInValues(DT, F, RevisedLivenessData); 1064 for (size_t i = 0; i < records.size(); i++) { 1065 struct PartiallyConstructedSafepointRecord &info = records[i]; 1066 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1067 } 1068 } 1069 1070 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1071 // no uses of the original value / return value between the gc.statepoint and 1072 // the gc.relocate / gc.result call. One case which can arise is a phi node 1073 // starting one of the successor blocks. We also need to be able to insert the 1074 // gc.relocates only on the path which goes through the statepoint. We might 1075 // need to split an edge to make this possible. 1076 static BasicBlock * 1077 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1078 DominatorTree &DT) { 1079 BasicBlock *Ret = BB; 1080 if (!BB->getUniquePredecessor()) 1081 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1082 1083 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1084 // from it 1085 FoldSingleEntryPHINodes(Ret); 1086 assert(!isa<PHINode>(Ret->begin()) && 1087 "All PHI nodes should have been removed!"); 1088 1089 // At this point, we can safely insert a gc.relocate or gc.result as the first 1090 // instruction in Ret if needed. 1091 return Ret; 1092 } 1093 1094 // Create new attribute set containing only attributes which can be transferred 1095 // from original call to the safepoint. 1096 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1097 AttributeSet Ret; 1098 1099 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1100 unsigned Index = AS.getSlotIndex(Slot); 1101 1102 if (Index == AttributeSet::ReturnIndex || 1103 Index == AttributeSet::FunctionIndex) { 1104 1105 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1106 1107 // Do not allow certain attributes - just skip them 1108 // Safepoint can not be read only or read none. 1109 if (Attr.hasAttribute(Attribute::ReadNone) || 1110 Attr.hasAttribute(Attribute::ReadOnly)) 1111 continue; 1112 1113 // These attributes control the generation of the gc.statepoint call / 1114 // invoke itself; and once the gc.statepoint is in place, they're of no 1115 // use. 1116 if (isStatepointDirectiveAttr(Attr)) 1117 continue; 1118 1119 Ret = Ret.addAttributes( 1120 AS.getContext(), Index, 1121 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1122 } 1123 } 1124 1125 // Just skip parameter attributes for now 1126 } 1127 1128 return Ret; 1129 } 1130 1131 /// Helper function to place all gc relocates necessary for the given 1132 /// statepoint. 1133 /// Inputs: 1134 /// liveVariables - list of variables to be relocated. 1135 /// liveStart - index of the first live variable. 1136 /// basePtrs - base pointers. 1137 /// statepointToken - statepoint instruction to which relocates should be 1138 /// bound. 1139 /// Builder - Llvm IR builder to be used to construct new calls. 1140 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1141 const int LiveStart, 1142 ArrayRef<Value *> BasePtrs, 1143 Instruction *StatepointToken, 1144 IRBuilder<> Builder) { 1145 if (LiveVariables.empty()) 1146 return; 1147 1148 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1149 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1150 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1151 size_t Index = std::distance(LiveVec.begin(), ValIt); 1152 assert(Index < LiveVec.size() && "Bug in std::find?"); 1153 return Index; 1154 }; 1155 Module *M = StatepointToken->getModule(); 1156 1157 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1158 // element type is i8 addrspace(1)*). We originally generated unique 1159 // declarations for each pointer type, but this proved problematic because 1160 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1161 // towards a single unified pointer type anyways, we can just cast everything 1162 // to an i8* of the right address space. A bitcast is added later to convert 1163 // gc_relocate to the actual value's type. 1164 auto getGCRelocateDecl = [&] (Type *Ty) { 1165 assert(isHandledGCPointerType(Ty)); 1166 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1167 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1168 if (auto *VT = dyn_cast<VectorType>(Ty)) 1169 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1170 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1171 {NewTy}); 1172 }; 1173 1174 // Lazily populated map from input types to the canonicalized form mentioned 1175 // in the comment above. This should probably be cached somewhere more 1176 // broadly. 1177 DenseMap<Type*, Value*> TypeToDeclMap; 1178 1179 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1180 // Generate the gc.relocate call and save the result 1181 Value *BaseIdx = 1182 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1183 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1184 1185 Type *Ty = LiveVariables[i]->getType(); 1186 if (!TypeToDeclMap.count(Ty)) 1187 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1188 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1189 1190 // only specify a debug name if we can give a useful one 1191 CallInst *Reloc = Builder.CreateCall( 1192 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1193 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1194 // Trick CodeGen into thinking there are lots of free registers at this 1195 // fake call. 1196 Reloc->setCallingConv(CallingConv::Cold); 1197 } 1198 } 1199 1200 namespace { 1201 1202 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1203 /// avoids having to worry about keeping around dangling pointers to Values. 1204 class DeferredReplacement { 1205 AssertingVH<Instruction> Old; 1206 AssertingVH<Instruction> New; 1207 bool IsDeoptimize = false; 1208 1209 DeferredReplacement() {} 1210 1211 public: 1212 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1213 assert(Old != New && Old && New && 1214 "Cannot RAUW equal values or to / from null!"); 1215 1216 DeferredReplacement D; 1217 D.Old = Old; 1218 D.New = New; 1219 return D; 1220 } 1221 1222 static DeferredReplacement createDelete(Instruction *ToErase) { 1223 DeferredReplacement D; 1224 D.Old = ToErase; 1225 return D; 1226 } 1227 1228 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1229 #ifndef NDEBUG 1230 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1231 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1232 "Only way to construct a deoptimize deferred replacement"); 1233 #endif 1234 DeferredReplacement D; 1235 D.Old = Old; 1236 D.IsDeoptimize = true; 1237 return D; 1238 } 1239 1240 /// Does the task represented by this instance. 1241 void doReplacement() { 1242 Instruction *OldI = Old; 1243 Instruction *NewI = New; 1244 1245 assert(OldI != NewI && "Disallowed at construction?!"); 1246 assert((!IsDeoptimize || !New) && 1247 "Deoptimize instrinsics are not replaced!"); 1248 1249 Old = nullptr; 1250 New = nullptr; 1251 1252 if (NewI) 1253 OldI->replaceAllUsesWith(NewI); 1254 1255 if (IsDeoptimize) { 1256 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1257 // not necessarilly be followed by the matching return. 1258 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1259 new UnreachableInst(RI->getContext(), RI); 1260 RI->eraseFromParent(); 1261 } 1262 1263 OldI->eraseFromParent(); 1264 } 1265 }; 1266 } 1267 1268 static void 1269 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1270 const SmallVectorImpl<Value *> &BasePtrs, 1271 const SmallVectorImpl<Value *> &LiveVariables, 1272 PartiallyConstructedSafepointRecord &Result, 1273 std::vector<DeferredReplacement> &Replacements) { 1274 assert(BasePtrs.size() == LiveVariables.size()); 1275 1276 // Then go ahead and use the builder do actually do the inserts. We insert 1277 // immediately before the previous instruction under the assumption that all 1278 // arguments will be available here. We can't insert afterwards since we may 1279 // be replacing a terminator. 1280 Instruction *InsertBefore = CS.getInstruction(); 1281 IRBuilder<> Builder(InsertBefore); 1282 1283 ArrayRef<Value *> GCArgs(LiveVariables); 1284 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1285 uint32_t NumPatchBytes = 0; 1286 uint32_t Flags = uint32_t(StatepointFlags::None); 1287 1288 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1289 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1290 ArrayRef<Use> TransitionArgs; 1291 if (auto TransitionBundle = 1292 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1293 Flags |= uint32_t(StatepointFlags::GCTransition); 1294 TransitionArgs = TransitionBundle->Inputs; 1295 } 1296 1297 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1298 // with a return value, we lower then as never returning calls to 1299 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1300 bool IsDeoptimize = false; 1301 1302 StatepointDirectives SD = 1303 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1304 if (SD.NumPatchBytes) 1305 NumPatchBytes = *SD.NumPatchBytes; 1306 if (SD.StatepointID) 1307 StatepointID = *SD.StatepointID; 1308 1309 Value *CallTarget = CS.getCalledValue(); 1310 if (Function *F = dyn_cast<Function>(CallTarget)) { 1311 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1312 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1313 // __llvm_deoptimize symbol. We want to resolve this now, since the 1314 // verifier does not allow taking the address of an intrinsic function. 1315 1316 SmallVector<Type *, 8> DomainTy; 1317 for (Value *Arg : CallArgs) 1318 DomainTy.push_back(Arg->getType()); 1319 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1320 /* isVarArg = */ false); 1321 1322 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1323 // calls to @llvm.experimental.deoptimize with different argument types in 1324 // the same module. This is fine -- we assume the frontend knew what it 1325 // was doing when generating this kind of IR. 1326 CallTarget = 1327 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1328 1329 IsDeoptimize = true; 1330 } 1331 } 1332 1333 // Create the statepoint given all the arguments 1334 Instruction *Token = nullptr; 1335 AttributeSet ReturnAttrs; 1336 if (CS.isCall()) { 1337 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1338 CallInst *Call = Builder.CreateGCStatepointCall( 1339 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1340 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1341 1342 Call->setTailCall(ToReplace->isTailCall()); 1343 Call->setCallingConv(ToReplace->getCallingConv()); 1344 1345 // Currently we will fail on parameter attributes and on certain 1346 // function attributes. 1347 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1348 // In case if we can handle this set of attributes - set up function attrs 1349 // directly on statepoint and return attrs later for gc_result intrinsic. 1350 Call->setAttributes(NewAttrs.getFnAttributes()); 1351 ReturnAttrs = NewAttrs.getRetAttributes(); 1352 1353 Token = Call; 1354 1355 // Put the following gc_result and gc_relocate calls immediately after the 1356 // the old call (which we're about to delete) 1357 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1358 Builder.SetInsertPoint(ToReplace->getNextNode()); 1359 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1360 } else { 1361 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1362 1363 // Insert the new invoke into the old block. We'll remove the old one in a 1364 // moment at which point this will become the new terminator for the 1365 // original block. 1366 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1367 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1368 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1369 GCArgs, "statepoint_token"); 1370 1371 Invoke->setCallingConv(ToReplace->getCallingConv()); 1372 1373 // Currently we will fail on parameter attributes and on certain 1374 // function attributes. 1375 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1376 // In case if we can handle this set of attributes - set up function attrs 1377 // directly on statepoint and return attrs later for gc_result intrinsic. 1378 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1379 ReturnAttrs = NewAttrs.getRetAttributes(); 1380 1381 Token = Invoke; 1382 1383 // Generate gc relocates in exceptional path 1384 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1385 assert(!isa<PHINode>(UnwindBlock->begin()) && 1386 UnwindBlock->getUniquePredecessor() && 1387 "can't safely insert in this block!"); 1388 1389 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1390 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1391 1392 // Attach exceptional gc relocates to the landingpad. 1393 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1394 Result.UnwindToken = ExceptionalToken; 1395 1396 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1397 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1398 Builder); 1399 1400 // Generate gc relocates and returns for normal block 1401 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1402 assert(!isa<PHINode>(NormalDest->begin()) && 1403 NormalDest->getUniquePredecessor() && 1404 "can't safely insert in this block!"); 1405 1406 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1407 1408 // gc relocates will be generated later as if it were regular call 1409 // statepoint 1410 } 1411 assert(Token && "Should be set in one of the above branches!"); 1412 1413 if (IsDeoptimize) { 1414 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1415 // transform the tail-call like structure to a call to a void function 1416 // followed by unreachable to get better codegen. 1417 Replacements.push_back( 1418 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1419 } else { 1420 Token->setName("statepoint_token"); 1421 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1422 StringRef Name = 1423 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1424 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1425 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1426 1427 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1428 // live set of some other safepoint, in which case that safepoint's 1429 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1430 // llvm::Instruction. Instead, we defer the replacement and deletion to 1431 // after the live sets have been made explicit in the IR, and we no longer 1432 // have raw pointers to worry about. 1433 Replacements.emplace_back( 1434 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1435 } else { 1436 Replacements.emplace_back( 1437 DeferredReplacement::createDelete(CS.getInstruction())); 1438 } 1439 } 1440 1441 Result.StatepointToken = Token; 1442 1443 // Second, create a gc.relocate for every live variable 1444 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1445 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1446 } 1447 1448 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1449 // which make the relocations happening at this safepoint explicit. 1450 // 1451 // WARNING: Does not do any fixup to adjust users of the original live 1452 // values. That's the callers responsibility. 1453 static void 1454 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1455 PartiallyConstructedSafepointRecord &Result, 1456 std::vector<DeferredReplacement> &Replacements) { 1457 const auto &LiveSet = Result.LiveSet; 1458 const auto &PointerToBase = Result.PointerToBase; 1459 1460 // Convert to vector for efficient cross referencing. 1461 SmallVector<Value *, 64> BaseVec, LiveVec; 1462 LiveVec.reserve(LiveSet.size()); 1463 BaseVec.reserve(LiveSet.size()); 1464 for (Value *L : LiveSet) { 1465 LiveVec.push_back(L); 1466 assert(PointerToBase.count(L)); 1467 Value *Base = PointerToBase.find(L)->second; 1468 BaseVec.push_back(Base); 1469 } 1470 assert(LiveVec.size() == BaseVec.size()); 1471 1472 // Do the actual rewriting and delete the old statepoint 1473 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1474 } 1475 1476 // Helper function for the relocationViaAlloca. 1477 // 1478 // It receives iterator to the statepoint gc relocates and emits a store to the 1479 // assigned location (via allocaMap) for the each one of them. It adds the 1480 // visited values into the visitedLiveValues set, which we will later use them 1481 // for sanity checking. 1482 static void 1483 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1484 DenseMap<Value *, Value *> &AllocaMap, 1485 DenseSet<Value *> &VisitedLiveValues) { 1486 1487 for (User *U : GCRelocs) { 1488 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1489 if (!Relocate) 1490 continue; 1491 1492 Value *OriginalValue = Relocate->getDerivedPtr(); 1493 assert(AllocaMap.count(OriginalValue)); 1494 Value *Alloca = AllocaMap[OriginalValue]; 1495 1496 // Emit store into the related alloca 1497 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1498 // the correct type according to alloca. 1499 assert(Relocate->getNextNode() && 1500 "Should always have one since it's not a terminator"); 1501 IRBuilder<> Builder(Relocate->getNextNode()); 1502 Value *CastedRelocatedValue = 1503 Builder.CreateBitCast(Relocate, 1504 cast<AllocaInst>(Alloca)->getAllocatedType(), 1505 suffixed_name_or(Relocate, ".casted", "")); 1506 1507 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1508 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1509 1510 #ifndef NDEBUG 1511 VisitedLiveValues.insert(OriginalValue); 1512 #endif 1513 } 1514 } 1515 1516 // Helper function for the "relocationViaAlloca". Similar to the 1517 // "insertRelocationStores" but works for rematerialized values. 1518 static void insertRematerializationStores( 1519 const RematerializedValueMapTy &RematerializedValues, 1520 DenseMap<Value *, Value *> &AllocaMap, 1521 DenseSet<Value *> &VisitedLiveValues) { 1522 1523 for (auto RematerializedValuePair: RematerializedValues) { 1524 Instruction *RematerializedValue = RematerializedValuePair.first; 1525 Value *OriginalValue = RematerializedValuePair.second; 1526 1527 assert(AllocaMap.count(OriginalValue) && 1528 "Can not find alloca for rematerialized value"); 1529 Value *Alloca = AllocaMap[OriginalValue]; 1530 1531 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1532 Store->insertAfter(RematerializedValue); 1533 1534 #ifndef NDEBUG 1535 VisitedLiveValues.insert(OriginalValue); 1536 #endif 1537 } 1538 } 1539 1540 /// Do all the relocation update via allocas and mem2reg 1541 static void relocationViaAlloca( 1542 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1543 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1544 #ifndef NDEBUG 1545 // record initial number of (static) allocas; we'll check we have the same 1546 // number when we get done. 1547 int InitialAllocaNum = 0; 1548 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1549 I++) 1550 if (isa<AllocaInst>(*I)) 1551 InitialAllocaNum++; 1552 #endif 1553 1554 // TODO-PERF: change data structures, reserve 1555 DenseMap<Value *, Value *> AllocaMap; 1556 SmallVector<AllocaInst *, 200> PromotableAllocas; 1557 // Used later to chack that we have enough allocas to store all values 1558 std::size_t NumRematerializedValues = 0; 1559 PromotableAllocas.reserve(Live.size()); 1560 1561 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1562 // "PromotableAllocas" 1563 auto emitAllocaFor = [&](Value *LiveValue) { 1564 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1565 F.getEntryBlock().getFirstNonPHI()); 1566 AllocaMap[LiveValue] = Alloca; 1567 PromotableAllocas.push_back(Alloca); 1568 }; 1569 1570 // Emit alloca for each live gc pointer 1571 for (Value *V : Live) 1572 emitAllocaFor(V); 1573 1574 // Emit allocas for rematerialized values 1575 for (const auto &Info : Records) 1576 for (auto RematerializedValuePair : Info.RematerializedValues) { 1577 Value *OriginalValue = RematerializedValuePair.second; 1578 if (AllocaMap.count(OriginalValue) != 0) 1579 continue; 1580 1581 emitAllocaFor(OriginalValue); 1582 ++NumRematerializedValues; 1583 } 1584 1585 // The next two loops are part of the same conceptual operation. We need to 1586 // insert a store to the alloca after the original def and at each 1587 // redefinition. We need to insert a load before each use. These are split 1588 // into distinct loops for performance reasons. 1589 1590 // Update gc pointer after each statepoint: either store a relocated value or 1591 // null (if no relocated value was found for this gc pointer and it is not a 1592 // gc_result). This must happen before we update the statepoint with load of 1593 // alloca otherwise we lose the link between statepoint and old def. 1594 for (const auto &Info : Records) { 1595 Value *Statepoint = Info.StatepointToken; 1596 1597 // This will be used for consistency check 1598 DenseSet<Value *> VisitedLiveValues; 1599 1600 // Insert stores for normal statepoint gc relocates 1601 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1602 1603 // In case if it was invoke statepoint 1604 // we will insert stores for exceptional path gc relocates. 1605 if (isa<InvokeInst>(Statepoint)) { 1606 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1607 VisitedLiveValues); 1608 } 1609 1610 // Do similar thing with rematerialized values 1611 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1612 VisitedLiveValues); 1613 1614 if (ClobberNonLive) { 1615 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1616 // the gc.statepoint. This will turn some subtle GC problems into 1617 // slightly easier to debug SEGVs. Note that on large IR files with 1618 // lots of gc.statepoints this is extremely costly both memory and time 1619 // wise. 1620 SmallVector<AllocaInst *, 64> ToClobber; 1621 for (auto Pair : AllocaMap) { 1622 Value *Def = Pair.first; 1623 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1624 1625 // This value was relocated 1626 if (VisitedLiveValues.count(Def)) { 1627 continue; 1628 } 1629 ToClobber.push_back(Alloca); 1630 } 1631 1632 auto InsertClobbersAt = [&](Instruction *IP) { 1633 for (auto *AI : ToClobber) { 1634 auto PT = cast<PointerType>(AI->getAllocatedType()); 1635 Constant *CPN = ConstantPointerNull::get(PT); 1636 StoreInst *Store = new StoreInst(CPN, AI); 1637 Store->insertBefore(IP); 1638 } 1639 }; 1640 1641 // Insert the clobbering stores. These may get intermixed with the 1642 // gc.results and gc.relocates, but that's fine. 1643 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1644 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1645 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1646 } else { 1647 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1648 } 1649 } 1650 } 1651 1652 // Update use with load allocas and add store for gc_relocated. 1653 for (auto Pair : AllocaMap) { 1654 Value *Def = Pair.first; 1655 Value *Alloca = Pair.second; 1656 1657 // We pre-record the uses of allocas so that we dont have to worry about 1658 // later update that changes the user information.. 1659 1660 SmallVector<Instruction *, 20> Uses; 1661 // PERF: trade a linear scan for repeated reallocation 1662 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1663 for (User *U : Def->users()) { 1664 if (!isa<ConstantExpr>(U)) { 1665 // If the def has a ConstantExpr use, then the def is either a 1666 // ConstantExpr use itself or null. In either case 1667 // (recursively in the first, directly in the second), the oop 1668 // it is ultimately dependent on is null and this particular 1669 // use does not need to be fixed up. 1670 Uses.push_back(cast<Instruction>(U)); 1671 } 1672 } 1673 1674 std::sort(Uses.begin(), Uses.end()); 1675 auto Last = std::unique(Uses.begin(), Uses.end()); 1676 Uses.erase(Last, Uses.end()); 1677 1678 for (Instruction *Use : Uses) { 1679 if (isa<PHINode>(Use)) { 1680 PHINode *Phi = cast<PHINode>(Use); 1681 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1682 if (Def == Phi->getIncomingValue(i)) { 1683 LoadInst *Load = new LoadInst( 1684 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1685 Phi->setIncomingValue(i, Load); 1686 } 1687 } 1688 } else { 1689 LoadInst *Load = new LoadInst(Alloca, "", Use); 1690 Use->replaceUsesOfWith(Def, Load); 1691 } 1692 } 1693 1694 // Emit store for the initial gc value. Store must be inserted after load, 1695 // otherwise store will be in alloca's use list and an extra load will be 1696 // inserted before it. 1697 StoreInst *Store = new StoreInst(Def, Alloca); 1698 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1699 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1700 // InvokeInst is a TerminatorInst so the store need to be inserted 1701 // into its normal destination block. 1702 BasicBlock *NormalDest = Invoke->getNormalDest(); 1703 Store->insertBefore(NormalDest->getFirstNonPHI()); 1704 } else { 1705 assert(!Inst->isTerminator() && 1706 "The only TerminatorInst that can produce a value is " 1707 "InvokeInst which is handled above."); 1708 Store->insertAfter(Inst); 1709 } 1710 } else { 1711 assert(isa<Argument>(Def)); 1712 Store->insertAfter(cast<Instruction>(Alloca)); 1713 } 1714 } 1715 1716 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1717 "we must have the same allocas with lives"); 1718 if (!PromotableAllocas.empty()) { 1719 // Apply mem2reg to promote alloca to SSA 1720 PromoteMemToReg(PromotableAllocas, DT); 1721 } 1722 1723 #ifndef NDEBUG 1724 for (auto &I : F.getEntryBlock()) 1725 if (isa<AllocaInst>(I)) 1726 InitialAllocaNum--; 1727 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1728 #endif 1729 } 1730 1731 /// Implement a unique function which doesn't require we sort the input 1732 /// vector. Doing so has the effect of changing the output of a couple of 1733 /// tests in ways which make them less useful in testing fused safepoints. 1734 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1735 SmallSet<T, 8> Seen; 1736 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1737 return !Seen.insert(V).second; 1738 }), Vec.end()); 1739 } 1740 1741 /// Insert holders so that each Value is obviously live through the entire 1742 /// lifetime of the call. 1743 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1744 SmallVectorImpl<CallInst *> &Holders) { 1745 if (Values.empty()) 1746 // No values to hold live, might as well not insert the empty holder 1747 return; 1748 1749 Module *M = CS.getInstruction()->getModule(); 1750 // Use a dummy vararg function to actually hold the values live 1751 Function *Func = cast<Function>(M->getOrInsertFunction( 1752 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1753 if (CS.isCall()) { 1754 // For call safepoints insert dummy calls right after safepoint 1755 Holders.push_back(CallInst::Create(Func, Values, "", 1756 &*++CS.getInstruction()->getIterator())); 1757 return; 1758 } 1759 // For invoke safepooints insert dummy calls both in normal and 1760 // exceptional destination blocks 1761 auto *II = cast<InvokeInst>(CS.getInstruction()); 1762 Holders.push_back(CallInst::Create( 1763 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1764 Holders.push_back(CallInst::Create( 1765 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1766 } 1767 1768 static void findLiveReferences( 1769 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1770 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1771 GCPtrLivenessData OriginalLivenessData; 1772 computeLiveInValues(DT, F, OriginalLivenessData); 1773 for (size_t i = 0; i < records.size(); i++) { 1774 struct PartiallyConstructedSafepointRecord &info = records[i]; 1775 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1776 } 1777 } 1778 1779 // Helper function for the "rematerializeLiveValues". It walks use chain 1780 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1781 // values are visited (currently it is GEP's and casts). Returns true if it 1782 // successfully reached "BaseValue" and false otherwise. 1783 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1784 // recorded. 1785 static bool findRematerializableChainToBasePointer( 1786 SmallVectorImpl<Instruction*> &ChainToBase, 1787 Value *CurrentValue, Value *BaseValue) { 1788 1789 // We have found a base value 1790 if (CurrentValue == BaseValue) { 1791 return true; 1792 } 1793 1794 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1795 ChainToBase.push_back(GEP); 1796 return findRematerializableChainToBasePointer(ChainToBase, 1797 GEP->getPointerOperand(), 1798 BaseValue); 1799 } 1800 1801 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1802 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1803 return false; 1804 1805 ChainToBase.push_back(CI); 1806 return findRematerializableChainToBasePointer(ChainToBase, 1807 CI->getOperand(0), BaseValue); 1808 } 1809 1810 // Not supported instruction in the chain 1811 return false; 1812 } 1813 1814 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1815 // chain we are going to rematerialize. 1816 static unsigned 1817 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1818 TargetTransformInfo &TTI) { 1819 unsigned Cost = 0; 1820 1821 for (Instruction *Instr : Chain) { 1822 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1823 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1824 "non noop cast is found during rematerialization"); 1825 1826 Type *SrcTy = CI->getOperand(0)->getType(); 1827 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1828 1829 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1830 // Cost of the address calculation 1831 Type *ValTy = GEP->getSourceElementType(); 1832 Cost += TTI.getAddressComputationCost(ValTy); 1833 1834 // And cost of the GEP itself 1835 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1836 // allowed for the external usage) 1837 if (!GEP->hasAllConstantIndices()) 1838 Cost += 2; 1839 1840 } else { 1841 llvm_unreachable("unsupported instruciton type during rematerialization"); 1842 } 1843 } 1844 1845 return Cost; 1846 } 1847 1848 // From the statepoint live set pick values that are cheaper to recompute then 1849 // to relocate. Remove this values from the live set, rematerialize them after 1850 // statepoint and record them in "Info" structure. Note that similar to 1851 // relocated values we don't do any user adjustments here. 1852 static void rematerializeLiveValues(CallSite CS, 1853 PartiallyConstructedSafepointRecord &Info, 1854 TargetTransformInfo &TTI) { 1855 const unsigned int ChainLengthThreshold = 10; 1856 1857 // Record values we are going to delete from this statepoint live set. 1858 // We can not di this in following loop due to iterator invalidation. 1859 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1860 1861 for (Value *LiveValue: Info.LiveSet) { 1862 // For each live pointer find it's defining chain 1863 SmallVector<Instruction *, 3> ChainToBase; 1864 assert(Info.PointerToBase.count(LiveValue)); 1865 bool FoundChain = 1866 findRematerializableChainToBasePointer(ChainToBase, 1867 LiveValue, 1868 Info.PointerToBase[LiveValue]); 1869 // Nothing to do, or chain is too long 1870 if (!FoundChain || 1871 ChainToBase.size() == 0 || 1872 ChainToBase.size() > ChainLengthThreshold) 1873 continue; 1874 1875 // Compute cost of this chain 1876 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1877 // TODO: We can also account for cases when we will be able to remove some 1878 // of the rematerialized values by later optimization passes. I.e if 1879 // we rematerialized several intersecting chains. Or if original values 1880 // don't have any uses besides this statepoint. 1881 1882 // For invokes we need to rematerialize each chain twice - for normal and 1883 // for unwind basic blocks. Model this by multiplying cost by two. 1884 if (CS.isInvoke()) { 1885 Cost *= 2; 1886 } 1887 // If it's too expensive - skip it 1888 if (Cost >= RematerializationThreshold) 1889 continue; 1890 1891 // Remove value from the live set 1892 LiveValuesToBeDeleted.push_back(LiveValue); 1893 1894 // Clone instructions and record them inside "Info" structure 1895 1896 // Walk backwards to visit top-most instructions first 1897 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1898 1899 // Utility function which clones all instructions from "ChainToBase" 1900 // and inserts them before "InsertBefore". Returns rematerialized value 1901 // which should be used after statepoint. 1902 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 1903 Instruction *LastClonedValue = nullptr; 1904 Instruction *LastValue = nullptr; 1905 for (Instruction *Instr: ChainToBase) { 1906 // Only GEP's and casts are suported as we need to be careful to not 1907 // introduce any new uses of pointers not in the liveset. 1908 // Note that it's fine to introduce new uses of pointers which were 1909 // otherwise not used after this statepoint. 1910 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1911 1912 Instruction *ClonedValue = Instr->clone(); 1913 ClonedValue->insertBefore(InsertBefore); 1914 ClonedValue->setName(Instr->getName() + ".remat"); 1915 1916 // If it is not first instruction in the chain then it uses previously 1917 // cloned value. We should update it to use cloned value. 1918 if (LastClonedValue) { 1919 assert(LastValue); 1920 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1921 #ifndef NDEBUG 1922 // Assert that cloned instruction does not use any instructions from 1923 // this chain other than LastClonedValue 1924 for (auto OpValue : ClonedValue->operand_values()) { 1925 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 1926 ChainToBase.end() && 1927 "incorrect use in rematerialization chain"); 1928 } 1929 #endif 1930 } 1931 1932 LastClonedValue = ClonedValue; 1933 LastValue = Instr; 1934 } 1935 assert(LastClonedValue); 1936 return LastClonedValue; 1937 }; 1938 1939 // Different cases for calls and invokes. For invokes we need to clone 1940 // instructions both on normal and unwind path. 1941 if (CS.isCall()) { 1942 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 1943 assert(InsertBefore); 1944 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 1945 Info.RematerializedValues[RematerializedValue] = LiveValue; 1946 } else { 1947 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 1948 1949 Instruction *NormalInsertBefore = 1950 &*Invoke->getNormalDest()->getFirstInsertionPt(); 1951 Instruction *UnwindInsertBefore = 1952 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 1953 1954 Instruction *NormalRematerializedValue = 1955 rematerializeChain(NormalInsertBefore); 1956 Instruction *UnwindRematerializedValue = 1957 rematerializeChain(UnwindInsertBefore); 1958 1959 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 1960 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 1961 } 1962 } 1963 1964 // Remove rematerializaed values from the live set 1965 for (auto LiveValue: LiveValuesToBeDeleted) { 1966 Info.LiveSet.remove(LiveValue); 1967 } 1968 } 1969 1970 static bool insertParsePoints(Function &F, DominatorTree &DT, 1971 TargetTransformInfo &TTI, 1972 SmallVectorImpl<CallSite> &ToUpdate) { 1973 #ifndef NDEBUG 1974 // sanity check the input 1975 std::set<CallSite> Uniqued; 1976 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 1977 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 1978 1979 for (CallSite CS : ToUpdate) 1980 assert(CS.getInstruction()->getFunction() == &F); 1981 #endif 1982 1983 // When inserting gc.relocates for invokes, we need to be able to insert at 1984 // the top of the successor blocks. See the comment on 1985 // normalForInvokeSafepoint on exactly what is needed. Note that this step 1986 // may restructure the CFG. 1987 for (CallSite CS : ToUpdate) { 1988 if (!CS.isInvoke()) 1989 continue; 1990 auto *II = cast<InvokeInst>(CS.getInstruction()); 1991 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 1992 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 1993 } 1994 1995 // A list of dummy calls added to the IR to keep various values obviously 1996 // live in the IR. We'll remove all of these when done. 1997 SmallVector<CallInst *, 64> Holders; 1998 1999 // Insert a dummy call with all of the arguments to the vm_state we'll need 2000 // for the actual safepoint insertion. This ensures reference arguments in 2001 // the deopt argument list are considered live through the safepoint (and 2002 // thus makes sure they get relocated.) 2003 for (CallSite CS : ToUpdate) { 2004 SmallVector<Value *, 64> DeoptValues; 2005 2006 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2007 assert(!isUnhandledGCPointerType(Arg->getType()) && 2008 "support for FCA unimplemented"); 2009 if (isHandledGCPointerType(Arg->getType())) 2010 DeoptValues.push_back(Arg); 2011 } 2012 2013 insertUseHolderAfter(CS, DeoptValues, Holders); 2014 } 2015 2016 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2017 2018 // A) Identify all gc pointers which are statically live at the given call 2019 // site. 2020 findLiveReferences(F, DT, ToUpdate, Records); 2021 2022 // B) Find the base pointers for each live pointer 2023 /* scope for caching */ { 2024 // Cache the 'defining value' relation used in the computation and 2025 // insertion of base phis and selects. This ensures that we don't insert 2026 // large numbers of duplicate base_phis. 2027 DefiningValueMapTy DVCache; 2028 2029 for (size_t i = 0; i < Records.size(); i++) { 2030 PartiallyConstructedSafepointRecord &info = Records[i]; 2031 findBasePointers(DT, DVCache, ToUpdate[i], info); 2032 } 2033 } // end of cache scope 2034 2035 // The base phi insertion logic (for any safepoint) may have inserted new 2036 // instructions which are now live at some safepoint. The simplest such 2037 // example is: 2038 // loop: 2039 // phi a <-- will be a new base_phi here 2040 // safepoint 1 <-- that needs to be live here 2041 // gep a + 1 2042 // safepoint 2 2043 // br loop 2044 // We insert some dummy calls after each safepoint to definitely hold live 2045 // the base pointers which were identified for that safepoint. We'll then 2046 // ask liveness for _every_ base inserted to see what is now live. Then we 2047 // remove the dummy calls. 2048 Holders.reserve(Holders.size() + Records.size()); 2049 for (size_t i = 0; i < Records.size(); i++) { 2050 PartiallyConstructedSafepointRecord &Info = Records[i]; 2051 2052 SmallVector<Value *, 128> Bases; 2053 for (auto Pair : Info.PointerToBase) 2054 Bases.push_back(Pair.second); 2055 2056 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2057 } 2058 2059 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2060 // need to rerun liveness. We may *also* have inserted new defs, but that's 2061 // not the key issue. 2062 recomputeLiveInValues(F, DT, ToUpdate, Records); 2063 2064 if (PrintBasePointers) { 2065 for (auto &Info : Records) { 2066 errs() << "Base Pairs: (w/Relocation)\n"; 2067 for (auto Pair : Info.PointerToBase) { 2068 errs() << " derived "; 2069 Pair.first->printAsOperand(errs(), false); 2070 errs() << " base "; 2071 Pair.second->printAsOperand(errs(), false); 2072 errs() << "\n"; 2073 } 2074 } 2075 } 2076 2077 // It is possible that non-constant live variables have a constant base. For 2078 // example, a GEP with a variable offset from a global. In this case we can 2079 // remove it from the liveset. We already don't add constants to the liveset 2080 // because we assume they won't move at runtime and the GC doesn't need to be 2081 // informed about them. The same reasoning applies if the base is constant. 2082 // Note that the relocation placement code relies on this filtering for 2083 // correctness as it expects the base to be in the liveset, which isn't true 2084 // if the base is constant. 2085 for (auto &Info : Records) 2086 for (auto &BasePair : Info.PointerToBase) 2087 if (isa<Constant>(BasePair.second)) 2088 Info.LiveSet.remove(BasePair.first); 2089 2090 for (CallInst *CI : Holders) 2091 CI->eraseFromParent(); 2092 2093 Holders.clear(); 2094 2095 // In order to reduce live set of statepoint we might choose to rematerialize 2096 // some values instead of relocating them. This is purely an optimization and 2097 // does not influence correctness. 2098 for (size_t i = 0; i < Records.size(); i++) 2099 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2100 2101 // We need this to safely RAUW and delete call or invoke return values that 2102 // may themselves be live over a statepoint. For details, please see usage in 2103 // makeStatepointExplicitImpl. 2104 std::vector<DeferredReplacement> Replacements; 2105 2106 // Now run through and replace the existing statepoints with new ones with 2107 // the live variables listed. We do not yet update uses of the values being 2108 // relocated. We have references to live variables that need to 2109 // survive to the last iteration of this loop. (By construction, the 2110 // previous statepoint can not be a live variable, thus we can and remove 2111 // the old statepoint calls as we go.) 2112 for (size_t i = 0; i < Records.size(); i++) 2113 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2114 2115 ToUpdate.clear(); // prevent accident use of invalid CallSites 2116 2117 for (auto &PR : Replacements) 2118 PR.doReplacement(); 2119 2120 Replacements.clear(); 2121 2122 for (auto &Info : Records) { 2123 // These live sets may contain state Value pointers, since we replaced calls 2124 // with operand bundles with calls wrapped in gc.statepoint, and some of 2125 // those calls may have been def'ing live gc pointers. Clear these out to 2126 // avoid accidentally using them. 2127 // 2128 // TODO: We should create a separate data structure that does not contain 2129 // these live sets, and migrate to using that data structure from this point 2130 // onward. 2131 Info.LiveSet.clear(); 2132 Info.PointerToBase.clear(); 2133 } 2134 2135 // Do all the fixups of the original live variables to their relocated selves 2136 SmallVector<Value *, 128> Live; 2137 for (size_t i = 0; i < Records.size(); i++) { 2138 PartiallyConstructedSafepointRecord &Info = Records[i]; 2139 2140 // We can't simply save the live set from the original insertion. One of 2141 // the live values might be the result of a call which needs a safepoint. 2142 // That Value* no longer exists and we need to use the new gc_result. 2143 // Thankfully, the live set is embedded in the statepoint (and updated), so 2144 // we just grab that. 2145 Statepoint Statepoint(Info.StatepointToken); 2146 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2147 Statepoint.gc_args_end()); 2148 #ifndef NDEBUG 2149 // Do some basic sanity checks on our liveness results before performing 2150 // relocation. Relocation can and will turn mistakes in liveness results 2151 // into non-sensical code which is must harder to debug. 2152 // TODO: It would be nice to test consistency as well 2153 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2154 "statepoint must be reachable or liveness is meaningless"); 2155 for (Value *V : Statepoint.gc_args()) { 2156 if (!isa<Instruction>(V)) 2157 // Non-instruction values trivial dominate all possible uses 2158 continue; 2159 auto *LiveInst = cast<Instruction>(V); 2160 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2161 "unreachable values should never be live"); 2162 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2163 "basic SSA liveness expectation violated by liveness analysis"); 2164 } 2165 #endif 2166 } 2167 unique_unsorted(Live); 2168 2169 #ifndef NDEBUG 2170 // sanity check 2171 for (auto *Ptr : Live) 2172 assert(isHandledGCPointerType(Ptr->getType()) && 2173 "must be a gc pointer type"); 2174 #endif 2175 2176 relocationViaAlloca(F, DT, Live, Records); 2177 return !Records.empty(); 2178 } 2179 2180 // Handles both return values and arguments for Functions and CallSites. 2181 template <typename AttrHolder> 2182 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2183 unsigned Index) { 2184 AttrBuilder R; 2185 if (AH.getDereferenceableBytes(Index)) 2186 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2187 AH.getDereferenceableBytes(Index))); 2188 if (AH.getDereferenceableOrNullBytes(Index)) 2189 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2190 AH.getDereferenceableOrNullBytes(Index))); 2191 if (AH.doesNotAlias(Index)) 2192 R.addAttribute(Attribute::NoAlias); 2193 2194 if (!R.empty()) 2195 AH.setAttributes(AH.getAttributes().removeAttributes( 2196 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2197 } 2198 2199 void 2200 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2201 LLVMContext &Ctx = F.getContext(); 2202 2203 for (Argument &A : F.args()) 2204 if (isa<PointerType>(A.getType())) 2205 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2206 2207 if (isa<PointerType>(F.getReturnType())) 2208 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2209 } 2210 2211 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2212 if (F.empty()) 2213 return; 2214 2215 LLVMContext &Ctx = F.getContext(); 2216 MDBuilder Builder(Ctx); 2217 2218 for (Instruction &I : instructions(F)) { 2219 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2220 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2221 bool IsImmutableTBAA = 2222 MD->getNumOperands() == 4 && 2223 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2224 2225 if (!IsImmutableTBAA) 2226 continue; // no work to do, MD_tbaa is already marked mutable 2227 2228 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2229 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2230 uint64_t Offset = 2231 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2232 2233 MDNode *MutableTBAA = 2234 Builder.createTBAAStructTagNode(Base, Access, Offset); 2235 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2236 } 2237 2238 if (CallSite CS = CallSite(&I)) { 2239 for (int i = 0, e = CS.arg_size(); i != e; i++) 2240 if (isa<PointerType>(CS.getArgument(i)->getType())) 2241 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2242 if (isa<PointerType>(CS.getType())) 2243 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2244 } 2245 } 2246 } 2247 2248 /// Returns true if this function should be rewritten by this pass. The main 2249 /// point of this function is as an extension point for custom logic. 2250 static bool shouldRewriteStatepointsIn(Function &F) { 2251 // TODO: This should check the GCStrategy 2252 if (F.hasGC()) { 2253 const auto &FunctionGCName = F.getGC(); 2254 const StringRef StatepointExampleName("statepoint-example"); 2255 const StringRef CoreCLRName("coreclr"); 2256 return (StatepointExampleName == FunctionGCName) || 2257 (CoreCLRName == FunctionGCName); 2258 } else 2259 return false; 2260 } 2261 2262 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2263 #ifndef NDEBUG 2264 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2265 "precondition!"); 2266 #endif 2267 2268 for (Function &F : M) 2269 stripNonValidAttributesFromPrototype(F); 2270 2271 for (Function &F : M) 2272 stripNonValidAttributesFromBody(F); 2273 } 2274 2275 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2276 // Nothing to do for declarations. 2277 if (F.isDeclaration() || F.empty()) 2278 return false; 2279 2280 // Policy choice says not to rewrite - the most common reason is that we're 2281 // compiling code without a GCStrategy. 2282 if (!shouldRewriteStatepointsIn(F)) 2283 return false; 2284 2285 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2286 TargetTransformInfo &TTI = 2287 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2288 2289 auto NeedsRewrite = [](Instruction &I) { 2290 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2291 return !callsGCLeafFunction(CS) && !isStatepoint(CS); 2292 return false; 2293 }; 2294 2295 // Gather all the statepoints which need rewritten. Be careful to only 2296 // consider those in reachable code since we need to ask dominance queries 2297 // when rewriting. We'll delete the unreachable ones in a moment. 2298 SmallVector<CallSite, 64> ParsePointNeeded; 2299 bool HasUnreachableStatepoint = false; 2300 for (Instruction &I : instructions(F)) { 2301 // TODO: only the ones with the flag set! 2302 if (NeedsRewrite(I)) { 2303 if (DT.isReachableFromEntry(I.getParent())) 2304 ParsePointNeeded.push_back(CallSite(&I)); 2305 else 2306 HasUnreachableStatepoint = true; 2307 } 2308 } 2309 2310 bool MadeChange = false; 2311 2312 // Delete any unreachable statepoints so that we don't have unrewritten 2313 // statepoints surviving this pass. This makes testing easier and the 2314 // resulting IR less confusing to human readers. Rather than be fancy, we 2315 // just reuse a utility function which removes the unreachable blocks. 2316 if (HasUnreachableStatepoint) 2317 MadeChange |= removeUnreachableBlocks(F); 2318 2319 // Return early if no work to do. 2320 if (ParsePointNeeded.empty()) 2321 return MadeChange; 2322 2323 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2324 // These are created by LCSSA. They have the effect of increasing the size 2325 // of liveness sets for no good reason. It may be harder to do this post 2326 // insertion since relocations and base phis can confuse things. 2327 for (BasicBlock &BB : F) 2328 if (BB.getUniquePredecessor()) { 2329 MadeChange = true; 2330 FoldSingleEntryPHINodes(&BB); 2331 } 2332 2333 // Before we start introducing relocations, we want to tweak the IR a bit to 2334 // avoid unfortunate code generation effects. The main example is that we 2335 // want to try to make sure the comparison feeding a branch is after any 2336 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2337 // values feeding a branch after relocation. This is semantically correct, 2338 // but results in extra register pressure since both the pre-relocation and 2339 // post-relocation copies must be available in registers. For code without 2340 // relocations this is handled elsewhere, but teaching the scheduler to 2341 // reverse the transform we're about to do would be slightly complex. 2342 // Note: This may extend the live range of the inputs to the icmp and thus 2343 // increase the liveset of any statepoint we move over. This is profitable 2344 // as long as all statepoints are in rare blocks. If we had in-register 2345 // lowering for live values this would be a much safer transform. 2346 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2347 if (auto *BI = dyn_cast<BranchInst>(TI)) 2348 if (BI->isConditional()) 2349 return dyn_cast<Instruction>(BI->getCondition()); 2350 // TODO: Extend this to handle switches 2351 return nullptr; 2352 }; 2353 for (BasicBlock &BB : F) { 2354 TerminatorInst *TI = BB.getTerminator(); 2355 if (auto *Cond = getConditionInst(TI)) 2356 // TODO: Handle more than just ICmps here. We should be able to move 2357 // most instructions without side effects or memory access. 2358 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2359 MadeChange = true; 2360 Cond->moveBefore(TI); 2361 } 2362 } 2363 2364 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2365 return MadeChange; 2366 } 2367 2368 // liveness computation via standard dataflow 2369 // ------------------------------------------------------------------- 2370 2371 // TODO: Consider using bitvectors for liveness, the set of potentially 2372 // interesting values should be small and easy to pre-compute. 2373 2374 /// Compute the live-in set for the location rbegin starting from 2375 /// the live-out set of the basic block 2376 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2377 BasicBlock::reverse_iterator rend, 2378 SetVector<Value *> &LiveTmp) { 2379 2380 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2381 Instruction *I = &*ritr; 2382 2383 // KILL/Def - Remove this definition from LiveIn 2384 LiveTmp.remove(I); 2385 2386 // Don't consider *uses* in PHI nodes, we handle their contribution to 2387 // predecessor blocks when we seed the LiveOut sets 2388 if (isa<PHINode>(I)) 2389 continue; 2390 2391 // USE - Add to the LiveIn set for this instruction 2392 for (Value *V : I->operands()) { 2393 assert(!isUnhandledGCPointerType(V->getType()) && 2394 "support for FCA unimplemented"); 2395 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2396 // The choice to exclude all things constant here is slightly subtle. 2397 // There are two independent reasons: 2398 // - We assume that things which are constant (from LLVM's definition) 2399 // do not move at runtime. For example, the address of a global 2400 // variable is fixed, even though it's contents may not be. 2401 // - Second, we can't disallow arbitrary inttoptr constants even 2402 // if the language frontend does. Optimization passes are free to 2403 // locally exploit facts without respect to global reachability. This 2404 // can create sections of code which are dynamically unreachable and 2405 // contain just about anything. (see constants.ll in tests) 2406 LiveTmp.insert(V); 2407 } 2408 } 2409 } 2410 } 2411 2412 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2413 2414 for (BasicBlock *Succ : successors(BB)) { 2415 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2416 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2417 PHINode *Phi = cast<PHINode>(&*I); 2418 Value *V = Phi->getIncomingValueForBlock(BB); 2419 assert(!isUnhandledGCPointerType(V->getType()) && 2420 "support for FCA unimplemented"); 2421 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2422 LiveTmp.insert(V); 2423 } 2424 } 2425 } 2426 } 2427 2428 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2429 SetVector<Value *> KillSet; 2430 for (Instruction &I : *BB) 2431 if (isHandledGCPointerType(I.getType())) 2432 KillSet.insert(&I); 2433 return KillSet; 2434 } 2435 2436 #ifndef NDEBUG 2437 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2438 /// sanity check for the liveness computation. 2439 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2440 TerminatorInst *TI, bool TermOkay = false) { 2441 for (Value *V : Live) { 2442 if (auto *I = dyn_cast<Instruction>(V)) { 2443 // The terminator can be a member of the LiveOut set. LLVM's definition 2444 // of instruction dominance states that V does not dominate itself. As 2445 // such, we need to special case this to allow it. 2446 if (TermOkay && TI == I) 2447 continue; 2448 assert(DT.dominates(I, TI) && 2449 "basic SSA liveness expectation violated by liveness analysis"); 2450 } 2451 } 2452 } 2453 2454 /// Check that all the liveness sets used during the computation of liveness 2455 /// obey basic SSA properties. This is useful for finding cases where we miss 2456 /// a def. 2457 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2458 BasicBlock &BB) { 2459 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2460 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2461 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2462 } 2463 #endif 2464 2465 static void computeLiveInValues(DominatorTree &DT, Function &F, 2466 GCPtrLivenessData &Data) { 2467 2468 SmallSetVector<BasicBlock *, 32> Worklist; 2469 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2470 // We use a SetVector so that we don't have duplicates in the worklist. 2471 Worklist.insert(pred_begin(BB), pred_end(BB)); 2472 }; 2473 auto NextItem = [&]() { 2474 BasicBlock *BB = Worklist.back(); 2475 Worklist.pop_back(); 2476 return BB; 2477 }; 2478 2479 // Seed the liveness for each individual block 2480 for (BasicBlock &BB : F) { 2481 Data.KillSet[&BB] = computeKillSet(&BB); 2482 Data.LiveSet[&BB].clear(); 2483 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2484 2485 #ifndef NDEBUG 2486 for (Value *Kill : Data.KillSet[&BB]) 2487 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2488 #endif 2489 2490 Data.LiveOut[&BB] = SetVector<Value *>(); 2491 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2492 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2493 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2494 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2495 if (!Data.LiveIn[&BB].empty()) 2496 AddPredsToWorklist(&BB); 2497 } 2498 2499 // Propagate that liveness until stable 2500 while (!Worklist.empty()) { 2501 BasicBlock *BB = NextItem(); 2502 2503 // Compute our new liveout set, then exit early if it hasn't changed 2504 // despite the contribution of our successor. 2505 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2506 const auto OldLiveOutSize = LiveOut.size(); 2507 for (BasicBlock *Succ : successors(BB)) { 2508 assert(Data.LiveIn.count(Succ)); 2509 LiveOut.set_union(Data.LiveIn[Succ]); 2510 } 2511 // assert OutLiveOut is a subset of LiveOut 2512 if (OldLiveOutSize == LiveOut.size()) { 2513 // If the sets are the same size, then we didn't actually add anything 2514 // when unioning our successors LiveIn Thus, the LiveIn of this block 2515 // hasn't changed. 2516 continue; 2517 } 2518 Data.LiveOut[BB] = LiveOut; 2519 2520 // Apply the effects of this basic block 2521 SetVector<Value *> LiveTmp = LiveOut; 2522 LiveTmp.set_union(Data.LiveSet[BB]); 2523 LiveTmp.set_subtract(Data.KillSet[BB]); 2524 2525 assert(Data.LiveIn.count(BB)); 2526 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2527 // assert: OldLiveIn is a subset of LiveTmp 2528 if (OldLiveIn.size() != LiveTmp.size()) { 2529 Data.LiveIn[BB] = LiveTmp; 2530 AddPredsToWorklist(BB); 2531 } 2532 } // while( !worklist.empty() ) 2533 2534 #ifndef NDEBUG 2535 // Sanity check our output against SSA properties. This helps catch any 2536 // missing kills during the above iteration. 2537 for (BasicBlock &BB : F) { 2538 checkBasicSSA(DT, Data, BB); 2539 } 2540 #endif 2541 } 2542 2543 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2544 StatepointLiveSetTy &Out) { 2545 2546 BasicBlock *BB = Inst->getParent(); 2547 2548 // Note: The copy is intentional and required 2549 assert(Data.LiveOut.count(BB)); 2550 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2551 2552 // We want to handle the statepoint itself oddly. It's 2553 // call result is not live (normal), nor are it's arguments 2554 // (unless they're used again later). This adjustment is 2555 // specifically what we need to relocate 2556 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2557 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2558 LiveOut.remove(Inst); 2559 Out.insert(LiveOut.begin(), LiveOut.end()); 2560 } 2561 2562 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2563 CallSite CS, 2564 PartiallyConstructedSafepointRecord &Info) { 2565 Instruction *Inst = CS.getInstruction(); 2566 StatepointLiveSetTy Updated; 2567 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2568 2569 #ifndef NDEBUG 2570 DenseSet<Value *> Bases; 2571 for (auto KVPair : Info.PointerToBase) { 2572 Bases.insert(KVPair.second); 2573 } 2574 #endif 2575 // We may have base pointers which are now live that weren't before. We need 2576 // to update the PointerToBase structure to reflect this. 2577 for (auto V : Updated) 2578 if (Info.PointerToBase.insert(std::make_pair(V, V)).second) { 2579 assert(Bases.count(V) && "can't find base for unexpected live value"); 2580 continue; 2581 } 2582 2583 #ifndef NDEBUG 2584 for (auto V : Updated) { 2585 assert(Info.PointerToBase.count(V) && 2586 "must be able to find base for live value"); 2587 } 2588 #endif 2589 2590 // Remove any stale base mappings - this can happen since our liveness is 2591 // more precise then the one inherent in the base pointer analysis 2592 DenseSet<Value *> ToErase; 2593 for (auto KVPair : Info.PointerToBase) 2594 if (!Updated.count(KVPair.first)) 2595 ToErase.insert(KVPair.first); 2596 for (auto V : ToErase) 2597 Info.PointerToBase.erase(V); 2598 2599 #ifndef NDEBUG 2600 for (auto KVPair : Info.PointerToBase) 2601 assert(Updated.count(KVPair.first) && "record for non-live value"); 2602 #endif 2603 2604 Info.LiveSet = Updated; 2605 } 2606