1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 namespace { 59 struct RewriteStatepointsForGC : public FunctionPass { 60 static char ID; // Pass identification, replacement for typeid 61 62 RewriteStatepointsForGC() : FunctionPass(ID) { 63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 64 } 65 bool runOnFunction(Function &F) override; 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override { 68 // We add and rewrite a bunch of instructions, but don't really do much 69 // else. We could in theory preserve a lot more analyses here. 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 } 72 }; 73 } // namespace 74 75 char RewriteStatepointsForGC::ID = 0; 76 77 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 78 return new RewriteStatepointsForGC(); 79 } 80 81 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 82 "Make relocations explicit at statepoints", false, false) 83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 84 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 85 "Make relocations explicit at statepoints", false, false) 86 87 namespace { 88 // The type of the internal cache used inside the findBasePointers family 89 // of functions. From the callers perspective, this is an opaque type and 90 // should not be inspected. 91 // 92 // In the actual implementation this caches two relations: 93 // - The base relation itself (i.e. this pointer is based on that one) 94 // - The base defining value relation (i.e. before base_phi insertion) 95 // Generally, after the execution of a full findBasePointer call, only the 96 // base relation will remain. Internally, we add a mixture of the two 97 // types, then update all the second type to the first type 98 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 99 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 100 101 struct PartiallyConstructedSafepointRecord { 102 /// The set of values known to be live accross this safepoint 103 StatepointLiveSetTy liveset; 104 105 /// Mapping from live pointers to a base-defining-value 106 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 107 108 /// Any new values which were added to the IR during base pointer analysis 109 /// for this safepoint 110 DenseSet<llvm::Value *> NewInsertedDefs; 111 112 /// The *new* gc.statepoint instruction itself. This produces the token 113 /// that normal path gc.relocates and the gc.result are tied to. 114 Instruction *StatepointToken; 115 116 /// Instruction to which exceptional gc relocates are attached 117 /// Makes it easier to iterate through them during relocationViaAlloca. 118 Instruction *UnwindToken; 119 }; 120 } 121 122 // TODO: Once we can get to the GCStrategy, this becomes 123 // Optional<bool> isGCManagedPointer(const Value *V) const override { 124 125 static bool isGCPointerType(const Type *T) { 126 if (const PointerType *PT = dyn_cast<PointerType>(T)) 127 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 128 // GC managed heap. We know that a pointer into this heap needs to be 129 // updated and that no other pointer does. 130 return (1 == PT->getAddressSpace()); 131 return false; 132 } 133 134 /// Return true if the Value is a gc reference type which is potentially used 135 /// after the instruction 'loc'. This is only used with the edge reachability 136 /// liveness code. Note: It is assumed the V dominates loc. 137 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, 138 LoopInfo *LI) { 139 if (!isGCPointerType(V.getType())) 140 return false; 141 142 if (V.use_empty()) 143 return false; 144 145 // Given assumption that V dominates loc, this may be live 146 return true; 147 } 148 149 #ifndef NDEBUG 150 static bool isAggWhichContainsGCPtrType(Type *Ty) { 151 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 152 return isGCPointerType(VT->getScalarType()); 153 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 154 return isGCPointerType(AT->getElementType()) || 155 isAggWhichContainsGCPtrType(AT->getElementType()); 156 if (StructType *ST = dyn_cast<StructType>(Ty)) 157 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 158 [](Type *SubType) { 159 return isGCPointerType(SubType) || 160 isAggWhichContainsGCPtrType(SubType); 161 }); 162 return false; 163 } 164 #endif 165 166 // Conservatively identifies any definitions which might be live at the 167 // given instruction. The analysis is performed immediately before the 168 // given instruction. Values defined by that instruction are not considered 169 // live. Values used by that instruction are considered live. 170 // 171 // preconditions: valid IR graph, term is either a terminator instruction or 172 // a call instruction, pred is the basic block of term, DT, LI are valid 173 // 174 // side effects: none, does not mutate IR 175 // 176 // postconditions: populates liveValues as discussed above 177 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 178 DominatorTree &DT, LoopInfo *LI, 179 StatepointLiveSetTy &liveValues) { 180 liveValues.clear(); 181 182 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 183 184 Function *F = pred->getParent(); 185 186 auto is_live_gc_reference = 187 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 188 189 // Are there any gc pointer arguments live over this point? This needs to be 190 // special cased since arguments aren't defined in basic blocks. 191 for (Argument &arg : F->args()) { 192 assert(!isAggWhichContainsGCPtrType(arg.getType()) && 193 "support for FCA unimplemented"); 194 195 if (is_live_gc_reference(arg)) { 196 liveValues.insert(&arg); 197 } 198 } 199 200 // Walk through all dominating blocks - the ones which can contain 201 // definitions used in this block - and check to see if any of the values 202 // they define are used in locations potentially reachable from the 203 // interesting instruction. 204 BasicBlock *BBI = pred; 205 while (true) { 206 if (TraceLSP) { 207 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 208 } 209 assert(DT.dominates(BBI, pred)); 210 assert(isPotentiallyReachable(BBI, pred, &DT) && 211 "dominated block must be reachable"); 212 213 // Walk through the instructions in dominating blocks and keep any 214 // that have a use potentially reachable from the block we're 215 // considering putting the safepoint in 216 for (Instruction &inst : *BBI) { 217 if (TraceLSP) { 218 errs() << "[LSP] Looking at instruction "; 219 inst.dump(); 220 } 221 222 if (pred == BBI && (&inst) == term) { 223 if (TraceLSP) { 224 errs() << "[LSP] stopped because we encountered the safepoint " 225 "instruction.\n"; 226 } 227 228 // If we're in the block which defines the interesting instruction, 229 // we don't want to include any values as live which are defined 230 // _after_ the interesting line or as part of the line itself 231 // i.e. "term" is the call instruction for a call safepoint, the 232 // results of the call should not be considered live in that stackmap 233 break; 234 } 235 236 assert(!isAggWhichContainsGCPtrType(inst.getType()) && 237 "support for FCA unimplemented"); 238 239 if (is_live_gc_reference(inst)) { 240 if (TraceLSP) { 241 errs() << "[LSP] found live value for this safepoint "; 242 inst.dump(); 243 term->dump(); 244 } 245 liveValues.insert(&inst); 246 } 247 } 248 if (!DT.getNode(BBI)->getIDom()) { 249 assert(BBI == &F->getEntryBlock() && 250 "failed to find a dominator for something other than " 251 "the entry block"); 252 break; 253 } 254 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 255 } 256 } 257 258 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 259 if (a->hasName() && b->hasName()) { 260 return -1 == a->getName().compare(b->getName()); 261 } else if (a->hasName() && !b->hasName()) { 262 return true; 263 } else if (!a->hasName() && b->hasName()) { 264 return false; 265 } else { 266 // Better than nothing, but not stable 267 return a < b; 268 } 269 } 270 271 /// Find the initial live set. Note that due to base pointer 272 /// insertion, the live set may be incomplete. 273 static void 274 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 275 PartiallyConstructedSafepointRecord &result) { 276 Instruction *inst = CS.getInstruction(); 277 278 BasicBlock *BB = inst->getParent(); 279 StatepointLiveSetTy liveset; 280 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 281 282 if (PrintLiveSet) { 283 // Note: This output is used by several of the test cases 284 // The order of elemtns in a set is not stable, put them in a vec and sort 285 // by name 286 SmallVector<Value *, 64> temp; 287 temp.insert(temp.end(), liveset.begin(), liveset.end()); 288 std::sort(temp.begin(), temp.end(), order_by_name); 289 errs() << "Live Variables:\n"; 290 for (Value *V : temp) { 291 errs() << " " << V->getName(); // no newline 292 V->dump(); 293 } 294 } 295 if (PrintLiveSetSize) { 296 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 297 errs() << "Number live values: " << liveset.size() << "\n"; 298 } 299 result.liveset = liveset; 300 } 301 302 /// True iff this value is the null pointer constant (of any pointer type) 303 static bool LLVM_ATTRIBUTE_UNUSED isNullConstant(Value *V) { 304 return isa<Constant>(V) && isa<PointerType>(V->getType()) && 305 cast<Constant>(V)->isNullValue(); 306 } 307 308 /// Helper function for findBasePointer - Will return a value which either a) 309 /// defines the base pointer for the input or b) blocks the simple search 310 /// (i.e. a PHI or Select of two derived pointers) 311 static Value *findBaseDefiningValue(Value *I) { 312 assert(I->getType()->isPointerTy() && 313 "Illegal to ask for the base pointer of a non-pointer type"); 314 315 // There are instructions which can never return gc pointer values. Sanity 316 // check 317 // that this is actually true. 318 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && 319 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); 320 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) || 321 !cast<Instruction>(I)->isTerminator()) && 322 "With the exception of invoke terminators don't define values"); 323 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) && 324 "Can't be definitions to start with"); 325 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) && 326 "Comparisons don't give ops"); 327 // There's a bunch of instructions which just don't make sense to apply to 328 // a pointer. The only valid reason for this would be pointer bit 329 // twiddling which we're just not going to support. 330 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) && 331 "Binary ops on pointer values are meaningless. Unless your " 332 "bit-twiddling which we don't support"); 333 334 if (Argument *Arg = dyn_cast<Argument>(I)) { 335 // An incoming argument to the function is a base pointer 336 // We should have never reached here if this argument isn't an gc value 337 assert(Arg->getType()->isPointerTy() && 338 "Base for pointer must be another pointer"); 339 return Arg; 340 } 341 342 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) { 343 // base case 344 assert(global->getType()->isPointerTy() && 345 "Base for pointer must be another pointer"); 346 return global; 347 } 348 349 // inlining could possibly introduce phi node that contains 350 // undef if callee has multiple returns 351 if (UndefValue *undef = dyn_cast<UndefValue>(I)) { 352 assert(undef->getType()->isPointerTy() && 353 "Base for pointer must be another pointer"); 354 return undef; // utterly meaningless, but useful for dealing with 355 // partially optimized code. 356 } 357 358 // Due to inheritance, this must be _after_ the global variable and undef 359 // checks 360 if (Constant *con = dyn_cast<Constant>(I)) { 361 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 362 "order of checks wrong!"); 363 // Note: Finding a constant base for something marked for relocation 364 // doesn't really make sense. The most likely case is either a) some 365 // screwed up the address space usage or b) your validating against 366 // compiled C++ code w/o the proper separation. The only real exception 367 // is a null pointer. You could have generic code written to index of 368 // off a potentially null value and have proven it null. We also use 369 // null pointers in dead paths of relocation phis (which we might later 370 // want to find a base pointer for). 371 assert(con->getType()->isPointerTy() && 372 "Base for pointer must be another pointer"); 373 assert(con->isNullValue() && "null is the only case which makes sense"); 374 return con; 375 } 376 377 if (CastInst *CI = dyn_cast<CastInst>(I)) { 378 Value *def = CI->stripPointerCasts(); 379 assert(def->getType()->isPointerTy() && 380 "Base for pointer must be another pointer"); 381 // If we find a cast instruction here, it means we've found a cast which is 382 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 383 // handle int->ptr conversion. 384 assert(!isa<CastInst>(def) && "shouldn't find another cast here"); 385 return findBaseDefiningValue(def); 386 } 387 388 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 389 if (LI->getType()->isPointerTy()) { 390 Value *Op = LI->getOperand(0); 391 (void)Op; 392 // Has to be a pointer to an gc object, or possibly an array of such? 393 assert(Op->getType()->isPointerTy()); 394 return LI; // The value loaded is an gc base itself 395 } 396 } 397 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 398 Value *Op = GEP->getOperand(0); 399 if (Op->getType()->isPointerTy()) { 400 return findBaseDefiningValue(Op); // The base of this GEP is the base 401 } 402 } 403 404 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) { 405 // An alloca represents a conceptual stack slot. It's the slot itself 406 // that the GC needs to know about, not the value in the slot. 407 assert(alloc->getType()->isPointerTy() && 408 "Base for pointer must be another pointer"); 409 return alloc; 410 } 411 412 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 413 switch (II->getIntrinsicID()) { 414 default: 415 // fall through to general call handling 416 break; 417 case Intrinsic::experimental_gc_statepoint: 418 case Intrinsic::experimental_gc_result_float: 419 case Intrinsic::experimental_gc_result_int: 420 llvm_unreachable("these don't produce pointers"); 421 case Intrinsic::experimental_gc_result_ptr: 422 // This is just a special case of the CallInst check below to handle a 423 // statepoint with deopt args which hasn't been rewritten for GC yet. 424 // TODO: Assert that the statepoint isn't rewritten yet. 425 return II; 426 case Intrinsic::experimental_gc_relocate: { 427 // Rerunning safepoint insertion after safepoints are already 428 // inserted is not supported. It could probably be made to work, 429 // but why are you doing this? There's no good reason. 430 llvm_unreachable("repeat safepoint insertion is not supported"); 431 } 432 case Intrinsic::gcroot: 433 // Currently, this mechanism hasn't been extended to work with gcroot. 434 // There's no reason it couldn't be, but I haven't thought about the 435 // implications much. 436 llvm_unreachable( 437 "interaction with the gcroot mechanism is not supported"); 438 } 439 } 440 // We assume that functions in the source language only return base 441 // pointers. This should probably be generalized via attributes to support 442 // both source language and internal functions. 443 if (CallInst *call = dyn_cast<CallInst>(I)) { 444 assert(call->getType()->isPointerTy() && 445 "Base for pointer must be another pointer"); 446 return call; 447 } 448 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 449 assert(invoke->getType()->isPointerTy() && 450 "Base for pointer must be another pointer"); 451 return invoke; 452 } 453 454 // I have absolutely no idea how to implement this part yet. It's not 455 // neccessarily hard, I just haven't really looked at it yet. 456 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 457 458 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) { 459 // A CAS is effectively a atomic store and load combined under a 460 // predicate. From the perspective of base pointers, we just treat it 461 // like a load. We loaded a pointer from a address in memory, that value 462 // had better be a valid base pointer. 463 return cas->getPointerOperand(); 464 } 465 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) { 466 assert(AtomicRMWInst::Xchg == atomic->getOperation() && 467 "All others are binary ops which don't apply to base pointers"); 468 // semantically, a load, store pair. Treat it the same as a standard load 469 return atomic->getPointerOperand(); 470 } 471 472 // The aggregate ops. Aggregates can either be in the heap or on the 473 // stack, but in either case, this is simply a field load. As a result, 474 // this is a defining definition of the base just like a load is. 475 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) { 476 return ev; 477 } 478 479 // We should never see an insert vector since that would require we be 480 // tracing back a struct value not a pointer value. 481 assert(!isa<InsertValueInst>(I) && 482 "Base pointer for a struct is meaningless"); 483 484 // The last two cases here don't return a base pointer. Instead, they 485 // return a value which dynamically selects from amoung several base 486 // derived pointers (each with it's own base potentially). It's the job of 487 // the caller to resolve these. 488 if (SelectInst *select = dyn_cast<SelectInst>(I)) { 489 return select; 490 } 491 492 return cast<PHINode>(I); 493 } 494 495 /// Returns the base defining value for this value. 496 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { 497 Value *&Cached = cache[I]; 498 if (!Cached) { 499 Cached = findBaseDefiningValue(I); 500 } 501 assert(cache[I] != nullptr); 502 503 if (TraceLSP) { 504 errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 505 << "\n"; 506 } 507 return Cached; 508 } 509 510 /// Return a base pointer for this value if known. Otherwise, return it's 511 /// base defining value. 512 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { 513 Value *def = findBaseDefiningValueCached(I, cache); 514 auto Found = cache.find(def); 515 if (Found != cache.end()) { 516 // Either a base-of relation, or a self reference. Caller must check. 517 return Found->second; 518 } 519 // Only a BDV available 520 return def; 521 } 522 523 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 524 /// is it known to be a base pointer? Or do we need to continue searching. 525 static bool isKnownBaseResult(Value *v) { 526 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) { 527 // no recursion possible 528 return true; 529 } 530 if (cast<Instruction>(v)->getMetadata("is_base_value")) { 531 // This is a previously inserted base phi or select. We know 532 // that this is a base value. 533 return true; 534 } 535 536 // We need to keep searching 537 return false; 538 } 539 540 // TODO: find a better name for this 541 namespace { 542 class PhiState { 543 public: 544 enum Status { Unknown, Base, Conflict }; 545 546 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 547 assert(status != Base || b); 548 } 549 PhiState(Value *b) : status(Base), base(b) {} 550 PhiState() : status(Unknown), base(nullptr) {} 551 PhiState &operator=(const PhiState &) = default; 552 PhiState(const PhiState &other) : status(other.status), base(other.base) { 553 assert(status != Base || base); 554 } 555 556 Status getStatus() const { return status; } 557 Value *getBase() const { return base; } 558 559 bool isBase() const { return getStatus() == Base; } 560 bool isUnknown() const { return getStatus() == Unknown; } 561 bool isConflict() const { return getStatus() == Conflict; } 562 563 bool operator==(const PhiState &other) const { 564 return base == other.base && status == other.status; 565 } 566 567 bool operator!=(const PhiState &other) const { return !(*this == other); } 568 569 void dump() { 570 errs() << status << " (" << base << " - " 571 << (base ? base->getName() : "nullptr") << "): "; 572 } 573 574 private: 575 Status status; 576 Value *base; // non null only if status == base 577 }; 578 579 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 580 // Values of type PhiState form a lattice, and this is a helper 581 // class that implementes the meet operation. The meat of the meet 582 // operation is implemented in MeetPhiStates::pureMeet 583 class MeetPhiStates { 584 public: 585 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 586 explicit MeetPhiStates(const ConflictStateMapTy &phiStates) 587 : phiStates(phiStates) {} 588 589 // Destructively meet the current result with the base V. V can 590 // either be a merge instruction (SelectInst / PHINode), in which 591 // case its status is looked up in the phiStates map; or a regular 592 // SSA value, in which case it is assumed to be a base. 593 void meetWith(Value *V) { 594 PhiState otherState = getStateForBDV(V); 595 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 596 MeetPhiStates::pureMeet(currentResult, otherState)) && 597 "math is wrong: meet does not commute!"); 598 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 599 } 600 601 PhiState getResult() const { return currentResult; } 602 603 private: 604 const ConflictStateMapTy &phiStates; 605 PhiState currentResult; 606 607 /// Return a phi state for a base defining value. We'll generate a new 608 /// base state for known bases and expect to find a cached state otherwise 609 PhiState getStateForBDV(Value *baseValue) { 610 if (isKnownBaseResult(baseValue)) { 611 return PhiState(baseValue); 612 } else { 613 return lookupFromMap(baseValue); 614 } 615 } 616 617 PhiState lookupFromMap(Value *V) { 618 auto I = phiStates.find(V); 619 assert(I != phiStates.end() && "lookup failed!"); 620 return I->second; 621 } 622 623 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 624 switch (stateA.getStatus()) { 625 case PhiState::Unknown: 626 return stateB; 627 628 case PhiState::Base: 629 assert(stateA.getBase() && "can't be null"); 630 if (stateB.isUnknown()) 631 return stateA; 632 633 if (stateB.isBase()) { 634 if (stateA.getBase() == stateB.getBase()) { 635 assert(stateA == stateB && "equality broken!"); 636 return stateA; 637 } 638 return PhiState(PhiState::Conflict); 639 } 640 assert(stateB.isConflict() && "only three states!"); 641 return PhiState(PhiState::Conflict); 642 643 case PhiState::Conflict: 644 return stateA; 645 } 646 llvm_unreachable("only three states!"); 647 } 648 }; 649 } 650 /// For a given value or instruction, figure out what base ptr it's derived 651 /// from. For gc objects, this is simply itself. On success, returns a value 652 /// which is the base pointer. (This is reliable and can be used for 653 /// relocation.) On failure, returns nullptr. 654 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 655 DenseSet<llvm::Value *> &NewInsertedDefs) { 656 Value *def = findBaseOrBDV(I, cache); 657 658 if (isKnownBaseResult(def)) { 659 return def; 660 } 661 662 // Here's the rough algorithm: 663 // - For every SSA value, construct a mapping to either an actual base 664 // pointer or a PHI which obscures the base pointer. 665 // - Construct a mapping from PHI to unknown TOP state. Use an 666 // optimistic algorithm to propagate base pointer information. Lattice 667 // looks like: 668 // UNKNOWN 669 // b1 b2 b3 b4 670 // CONFLICT 671 // When algorithm terminates, all PHIs will either have a single concrete 672 // base or be in a conflict state. 673 // - For every conflict, insert a dummy PHI node without arguments. Add 674 // these to the base[Instruction] = BasePtr mapping. For every 675 // non-conflict, add the actual base. 676 // - For every conflict, add arguments for the base[a] of each input 677 // arguments. 678 // 679 // Note: A simpler form of this would be to add the conflict form of all 680 // PHIs without running the optimistic algorithm. This would be 681 // analougous to pessimistic data flow and would likely lead to an 682 // overall worse solution. 683 684 ConflictStateMapTy states; 685 states[def] = PhiState(); 686 // Recursively fill in all phis & selects reachable from the initial one 687 // for which we don't already know a definite base value for 688 // TODO: This should be rewritten with a worklist 689 bool done = false; 690 while (!done) { 691 done = true; 692 // Since we're adding elements to 'states' as we run, we can't keep 693 // iterators into the set. 694 SmallVector<Value*, 16> Keys; 695 Keys.reserve(states.size()); 696 for (auto Pair : states) { 697 Value *V = Pair.first; 698 Keys.push_back(V); 699 } 700 for (Value *v : Keys) { 701 assert(!isKnownBaseResult(v) && "why did it get added?"); 702 if (PHINode *phi = dyn_cast<PHINode>(v)) { 703 assert(phi->getNumIncomingValues() > 0 && 704 "zero input phis are illegal"); 705 for (Value *InVal : phi->incoming_values()) { 706 Value *local = findBaseOrBDV(InVal, cache); 707 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 708 states[local] = PhiState(); 709 done = false; 710 } 711 } 712 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 713 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 714 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 715 states[local] = PhiState(); 716 done = false; 717 } 718 local = findBaseOrBDV(sel->getFalseValue(), cache); 719 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 720 states[local] = PhiState(); 721 done = false; 722 } 723 } 724 } 725 } 726 727 if (TraceLSP) { 728 errs() << "States after initialization:\n"; 729 for (auto Pair : states) { 730 Instruction *v = cast<Instruction>(Pair.first); 731 PhiState state = Pair.second; 732 state.dump(); 733 v->dump(); 734 } 735 } 736 737 // TODO: come back and revisit the state transitions around inputs which 738 // have reached conflict state. The current version seems too conservative. 739 740 bool progress = true; 741 while (progress) { 742 #ifndef NDEBUG 743 size_t oldSize = states.size(); 744 #endif 745 progress = false; 746 // We're only changing keys in this loop, thus safe to keep iterators 747 for (auto Pair : states) { 748 MeetPhiStates calculateMeet(states); 749 Value *v = Pair.first; 750 assert(!isKnownBaseResult(v) && "why did it get added?"); 751 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 752 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 753 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 754 } else 755 for (Value *Val : cast<PHINode>(v)->incoming_values()) 756 calculateMeet.meetWith(findBaseOrBDV(Val, cache)); 757 758 PhiState oldState = states[v]; 759 PhiState newState = calculateMeet.getResult(); 760 if (oldState != newState) { 761 progress = true; 762 states[v] = newState; 763 } 764 } 765 766 assert(oldSize <= states.size()); 767 assert(oldSize == states.size() || progress); 768 } 769 770 if (TraceLSP) { 771 errs() << "States after meet iteration:\n"; 772 for (auto Pair : states) { 773 Instruction *v = cast<Instruction>(Pair.first); 774 PhiState state = Pair.second; 775 state.dump(); 776 v->dump(); 777 } 778 } 779 780 // Insert Phis for all conflicts 781 // We want to keep naming deterministic in the loop that follows, so 782 // sort the keys before iteration. This is useful in allowing us to 783 // write stable tests. Note that there is no invalidation issue here. 784 SmallVector<Value*, 16> Keys; 785 Keys.reserve(states.size()); 786 for (auto Pair : states) { 787 Value *V = Pair.first; 788 Keys.push_back(V); 789 } 790 std::sort(Keys.begin(), Keys.end(), order_by_name); 791 // TODO: adjust naming patterns to avoid this order of iteration dependency 792 for (Value *V : Keys) { 793 Instruction *v = cast<Instruction>(V); 794 PhiState state = states[V]; 795 assert(!isKnownBaseResult(v) && "why did it get added?"); 796 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 797 if (!state.isConflict()) 798 continue; 799 800 if (isa<PHINode>(v)) { 801 int num_preds = 802 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 803 assert(num_preds > 0 && "how did we reach here"); 804 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 805 NewInsertedDefs.insert(phi); 806 // Add metadata marking this as a base value 807 auto *const_1 = ConstantInt::get( 808 Type::getInt32Ty( 809 v->getParent()->getParent()->getParent()->getContext()), 810 1); 811 auto MDConst = ConstantAsMetadata::get(const_1); 812 MDNode *md = MDNode::get( 813 v->getParent()->getParent()->getParent()->getContext(), MDConst); 814 phi->setMetadata("is_base_value", md); 815 states[v] = PhiState(PhiState::Conflict, phi); 816 } else { 817 SelectInst *sel = cast<SelectInst>(v); 818 // The undef will be replaced later 819 UndefValue *undef = UndefValue::get(sel->getType()); 820 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 821 undef, "base_select", sel); 822 NewInsertedDefs.insert(basesel); 823 // Add metadata marking this as a base value 824 auto *const_1 = ConstantInt::get( 825 Type::getInt32Ty( 826 v->getParent()->getParent()->getParent()->getContext()), 827 1); 828 auto MDConst = ConstantAsMetadata::get(const_1); 829 MDNode *md = MDNode::get( 830 v->getParent()->getParent()->getParent()->getContext(), MDConst); 831 basesel->setMetadata("is_base_value", md); 832 states[v] = PhiState(PhiState::Conflict, basesel); 833 } 834 } 835 836 // Fixup all the inputs of the new PHIs 837 for (auto Pair : states) { 838 Instruction *v = cast<Instruction>(Pair.first); 839 PhiState state = Pair.second; 840 841 assert(!isKnownBaseResult(v) && "why did it get added?"); 842 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 843 if (!state.isConflict()) 844 continue; 845 846 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 847 PHINode *phi = cast<PHINode>(v); 848 unsigned NumPHIValues = phi->getNumIncomingValues(); 849 for (unsigned i = 0; i < NumPHIValues; i++) { 850 Value *InVal = phi->getIncomingValue(i); 851 BasicBlock *InBB = phi->getIncomingBlock(i); 852 853 // If we've already seen InBB, add the same incoming value 854 // we added for it earlier. The IR verifier requires phi 855 // nodes with multiple entries from the same basic block 856 // to have the same incoming value for each of those 857 // entries. If we don't do this check here and basephi 858 // has a different type than base, we'll end up adding two 859 // bitcasts (and hence two distinct values) as incoming 860 // values for the same basic block. 861 862 int blockIndex = basephi->getBasicBlockIndex(InBB); 863 if (blockIndex != -1) { 864 Value *oldBase = basephi->getIncomingValue(blockIndex); 865 basephi->addIncoming(oldBase, InBB); 866 #ifndef NDEBUG 867 Value *base = findBaseOrBDV(InVal, cache); 868 if (!isKnownBaseResult(base)) { 869 // Either conflict or base. 870 assert(states.count(base)); 871 base = states[base].getBase(); 872 assert(base != nullptr && "unknown PhiState!"); 873 assert(NewInsertedDefs.count(base) && 874 "should have already added this in a prev. iteration!"); 875 } 876 877 // In essense this assert states: the only way two 878 // values incoming from the same basic block may be 879 // different is by being different bitcasts of the same 880 // value. A cleanup that remains TODO is changing 881 // findBaseOrBDV to return an llvm::Value of the correct 882 // type (and still remain pure). This will remove the 883 // need to add bitcasts. 884 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 885 "sanity -- findBaseOrBDV should be pure!"); 886 #endif 887 continue; 888 } 889 890 // Find either the defining value for the PHI or the normal base for 891 // a non-phi node 892 Value *base = findBaseOrBDV(InVal, cache); 893 if (!isKnownBaseResult(base)) { 894 // Either conflict or base. 895 assert(states.count(base)); 896 base = states[base].getBase(); 897 assert(base != nullptr && "unknown PhiState!"); 898 } 899 assert(base && "can't be null"); 900 // Must use original input BB since base may not be Instruction 901 // The cast is needed since base traversal may strip away bitcasts 902 if (base->getType() != basephi->getType()) { 903 base = new BitCastInst(base, basephi->getType(), "cast", 904 InBB->getTerminator()); 905 NewInsertedDefs.insert(base); 906 } 907 basephi->addIncoming(base, InBB); 908 } 909 assert(basephi->getNumIncomingValues() == NumPHIValues); 910 } else { 911 SelectInst *basesel = cast<SelectInst>(state.getBase()); 912 SelectInst *sel = cast<SelectInst>(v); 913 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 914 // something more safe and less hacky. 915 for (int i = 1; i <= 2; i++) { 916 Value *InVal = sel->getOperand(i); 917 // Find either the defining value for the PHI or the normal base for 918 // a non-phi node 919 Value *base = findBaseOrBDV(InVal, cache); 920 if (!isKnownBaseResult(base)) { 921 // Either conflict or base. 922 assert(states.count(base)); 923 base = states[base].getBase(); 924 assert(base != nullptr && "unknown PhiState!"); 925 } 926 assert(base && "can't be null"); 927 // Must use original input BB since base may not be Instruction 928 // The cast is needed since base traversal may strip away bitcasts 929 if (base->getType() != basesel->getType()) { 930 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 931 NewInsertedDefs.insert(base); 932 } 933 basesel->setOperand(i, base); 934 } 935 } 936 } 937 938 // Cache all of our results so we can cheaply reuse them 939 // NOTE: This is actually two caches: one of the base defining value 940 // relation and one of the base pointer relation! FIXME 941 for (auto item : states) { 942 Value *v = item.first; 943 Value *base = item.second.getBase(); 944 assert(v && base); 945 assert(!isKnownBaseResult(v) && "why did it get added?"); 946 947 if (TraceLSP) { 948 std::string fromstr = 949 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 950 : "none"; 951 errs() << "Updating base value cache" 952 << " for: " << (v->hasName() ? v->getName() : "") 953 << " from: " << fromstr 954 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 955 } 956 957 assert(isKnownBaseResult(base) && 958 "must be something we 'know' is a base pointer"); 959 if (cache.count(v)) { 960 // Once we transition from the BDV relation being store in the cache to 961 // the base relation being stored, it must be stable 962 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 963 "base relation should be stable"); 964 } 965 cache[v] = base; 966 } 967 assert(cache.find(def) != cache.end()); 968 return cache[def]; 969 } 970 971 // For a set of live pointers (base and/or derived), identify the base 972 // pointer of the object which they are derived from. This routine will 973 // mutate the IR graph as needed to make the 'base' pointer live at the 974 // definition site of 'derived'. This ensures that any use of 'derived' can 975 // also use 'base'. This may involve the insertion of a number of 976 // additional PHI nodes. 977 // 978 // preconditions: live is a set of pointer type Values 979 // 980 // side effects: may insert PHI nodes into the existing CFG, will preserve 981 // CFG, will not remove or mutate any existing nodes 982 // 983 // post condition: PointerToBase contains one (derived, base) pair for every 984 // pointer in live. Note that derived can be equal to base if the original 985 // pointer was a base pointer. 986 static void findBasePointers(const StatepointLiveSetTy &live, 987 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 988 DominatorTree *DT, DefiningValueMapTy &DVCache, 989 DenseSet<llvm::Value *> &NewInsertedDefs) { 990 // For the naming of values inserted to be deterministic - which makes for 991 // much cleaner and more stable tests - we need to assign an order to the 992 // live values. DenseSets do not provide a deterministic order across runs. 993 SmallVector<Value*, 64> Temp; 994 Temp.insert(Temp.end(), live.begin(), live.end()); 995 std::sort(Temp.begin(), Temp.end(), order_by_name); 996 for (Value *ptr : Temp) { 997 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs); 998 assert(base && "failed to find base pointer"); 999 PointerToBase[ptr] = base; 1000 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1001 DT->dominates(cast<Instruction>(base)->getParent(), 1002 cast<Instruction>(ptr)->getParent())) && 1003 "The base we found better dominate the derived pointer"); 1004 1005 // If you see this trip and like to live really dangerously, the code should 1006 // be correct, just with idioms the verifier can't handle. You can try 1007 // disabling the verifier at your own substaintial risk. 1008 assert(!isNullConstant(base) && "the relocation code needs adjustment to " 1009 "handle the relocation of a null pointer " 1010 "constant without causing false positives " 1011 "in the safepoint ir verifier."); 1012 } 1013 } 1014 1015 /// Find the required based pointers (and adjust the live set) for the given 1016 /// parse point. 1017 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1018 const CallSite &CS, 1019 PartiallyConstructedSafepointRecord &result) { 1020 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1021 DenseSet<llvm::Value *> NewInsertedDefs; 1022 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs); 1023 1024 if (PrintBasePointers) { 1025 // Note: Need to print these in a stable order since this is checked in 1026 // some tests. 1027 errs() << "Base Pairs (w/o Relocation):\n"; 1028 SmallVector<Value*, 64> Temp; 1029 Temp.reserve(PointerToBase.size()); 1030 for (auto Pair : PointerToBase) { 1031 Temp.push_back(Pair.first); 1032 } 1033 std::sort(Temp.begin(), Temp.end(), order_by_name); 1034 for (Value *Ptr : Temp) { 1035 Value *Base = PointerToBase[Ptr]; 1036 errs() << " derived %" << Ptr->getName() << " base %" 1037 << Base->getName() << "\n"; 1038 } 1039 } 1040 1041 result.PointerToBase = PointerToBase; 1042 result.NewInsertedDefs = NewInsertedDefs; 1043 } 1044 1045 /// Check for liveness of items in the insert defs and add them to the live 1046 /// and base pointer sets 1047 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 1048 const DenseSet<Value *> &allInsertedDefs, 1049 PartiallyConstructedSafepointRecord &result) { 1050 Instruction *inst = CS.getInstruction(); 1051 1052 auto liveset = result.liveset; 1053 auto PointerToBase = result.PointerToBase; 1054 1055 auto is_live_gc_reference = 1056 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 1057 1058 // For each new definition, check to see if a) the definition dominates the 1059 // instruction we're interested in, and b) one of the uses of that definition 1060 // is edge-reachable from the instruction we're interested in. This is the 1061 // same definition of liveness we used in the intial liveness analysis 1062 for (Value *newDef : allInsertedDefs) { 1063 if (liveset.count(newDef)) { 1064 // already live, no action needed 1065 continue; 1066 } 1067 1068 // PERF: Use DT to check instruction domination might not be good for 1069 // compilation time, and we could change to optimal solution if this 1070 // turn to be a issue 1071 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1072 // can't possibly be live at inst 1073 continue; 1074 } 1075 1076 if (is_live_gc_reference(*newDef)) { 1077 // Add the live new defs into liveset and PointerToBase 1078 liveset.insert(newDef); 1079 PointerToBase[newDef] = newDef; 1080 } 1081 } 1082 1083 result.liveset = liveset; 1084 result.PointerToBase = PointerToBase; 1085 } 1086 1087 static void fixupLiveReferences( 1088 Function &F, DominatorTree &DT, Pass *P, 1089 const DenseSet<llvm::Value *> &allInsertedDefs, 1090 ArrayRef<CallSite> toUpdate, 1091 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1092 for (size_t i = 0; i < records.size(); i++) { 1093 struct PartiallyConstructedSafepointRecord &info = records[i]; 1094 const CallSite &CS = toUpdate[i]; 1095 fixupLiveness(DT, CS, allInsertedDefs, info); 1096 } 1097 } 1098 1099 // Normalize basic block to make it ready to be target of invoke statepoint. 1100 // It means spliting it to have single predecessor. Return newly created BB 1101 // ready to be successor of invoke statepoint. 1102 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1103 BasicBlock *InvokeParent, 1104 Pass *P) { 1105 BasicBlock *ret = BB; 1106 1107 if (!BB->getUniquePredecessor()) { 1108 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1109 } 1110 1111 // Another requirement for such basic blocks is to not have any phi nodes. 1112 // Since we just ensured that new BB will have single predecessor, 1113 // all phi nodes in it will have one value. Here it would be naturall place 1114 // to 1115 // remove them all. But we can not do this because we are risking to remove 1116 // one of the values stored in liveset of another statepoint. We will do it 1117 // later after placing all safepoints. 1118 1119 return ret; 1120 } 1121 1122 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1123 auto itr = std::find(livevec.begin(), livevec.end(), val); 1124 assert(livevec.end() != itr); 1125 size_t index = std::distance(livevec.begin(), itr); 1126 assert(index < livevec.size()); 1127 return index; 1128 } 1129 1130 // Create new attribute set containing only attributes which can be transfered 1131 // from original call to the safepoint. 1132 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1133 AttributeSet ret; 1134 1135 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1136 unsigned index = AS.getSlotIndex(Slot); 1137 1138 if (index == AttributeSet::ReturnIndex || 1139 index == AttributeSet::FunctionIndex) { 1140 1141 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1142 ++it) { 1143 Attribute attr = *it; 1144 1145 // Do not allow certain attributes - just skip them 1146 // Safepoint can not be read only or read none. 1147 if (attr.hasAttribute(Attribute::ReadNone) || 1148 attr.hasAttribute(Attribute::ReadOnly)) 1149 continue; 1150 1151 ret = ret.addAttributes( 1152 AS.getContext(), index, 1153 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1154 } 1155 } 1156 1157 // Just skip parameter attributes for now 1158 } 1159 1160 return ret; 1161 } 1162 1163 /// Helper function to place all gc relocates necessary for the given 1164 /// statepoint. 1165 /// Inputs: 1166 /// liveVariables - list of variables to be relocated. 1167 /// liveStart - index of the first live variable. 1168 /// basePtrs - base pointers. 1169 /// statepointToken - statepoint instruction to which relocates should be 1170 /// bound. 1171 /// Builder - Llvm IR builder to be used to construct new calls. 1172 void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables, 1173 const int liveStart, 1174 ArrayRef<llvm::Value *> basePtrs, 1175 Instruction *statepointToken, IRBuilder<> Builder) { 1176 1177 SmallVector<Instruction *, 64> NewDefs; 1178 NewDefs.reserve(liveVariables.size()); 1179 1180 Module *M = statepointToken->getParent()->getParent()->getParent(); 1181 1182 for (unsigned i = 0; i < liveVariables.size(); i++) { 1183 // We generate a (potentially) unique declaration for every pointer type 1184 // combination. This results is some blow up the function declarations in 1185 // the IR, but removes the need for argument bitcasts which shrinks the IR 1186 // greatly and makes it much more readable. 1187 SmallVector<Type *, 1> types; // one per 'any' type 1188 types.push_back(liveVariables[i]->getType()); // result type 1189 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1190 M, Intrinsic::experimental_gc_relocate, types); 1191 1192 // Generate the gc.relocate call and save the result 1193 Value *baseIdx = 1194 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1195 liveStart + find_index(liveVariables, basePtrs[i])); 1196 Value *liveIdx = ConstantInt::get( 1197 Type::getInt32Ty(M->getContext()), 1198 liveStart + find_index(liveVariables, liveVariables[i])); 1199 1200 // only specify a debug name if we can give a useful one 1201 Value *reloc = Builder.CreateCall3( 1202 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1203 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1204 : ""); 1205 // Trick CodeGen into thinking there are lots of free registers at this 1206 // fake call. 1207 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1208 1209 NewDefs.push_back(cast<Instruction>(reloc)); 1210 } 1211 assert(NewDefs.size() == liveVariables.size() && 1212 "missing or extra redefinition at safepoint"); 1213 } 1214 1215 static void 1216 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1217 const SmallVectorImpl<llvm::Value *> &basePtrs, 1218 const SmallVectorImpl<llvm::Value *> &liveVariables, 1219 Pass *P, 1220 PartiallyConstructedSafepointRecord &result) { 1221 assert(basePtrs.size() == liveVariables.size()); 1222 assert(isStatepoint(CS) && 1223 "This method expects to be rewriting a statepoint"); 1224 1225 BasicBlock *BB = CS.getInstruction()->getParent(); 1226 assert(BB); 1227 Function *F = BB->getParent(); 1228 assert(F && "must be set"); 1229 Module *M = F->getParent(); 1230 (void)M; 1231 assert(M && "must be set"); 1232 1233 // We're not changing the function signature of the statepoint since the gc 1234 // arguments go into the var args section. 1235 Function *gc_statepoint_decl = CS.getCalledFunction(); 1236 1237 // Then go ahead and use the builder do actually do the inserts. We insert 1238 // immediately before the previous instruction under the assumption that all 1239 // arguments will be available here. We can't insert afterwards since we may 1240 // be replacing a terminator. 1241 Instruction *insertBefore = CS.getInstruction(); 1242 IRBuilder<> Builder(insertBefore); 1243 // Copy all of the arguments from the original statepoint - this includes the 1244 // target, call args, and deopt args 1245 SmallVector<llvm::Value *, 64> args; 1246 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1247 // TODO: Clear the 'needs rewrite' flag 1248 1249 // add all the pointers to be relocated (gc arguments) 1250 // Capture the start of the live variable list for use in the gc_relocates 1251 const int live_start = args.size(); 1252 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1253 1254 // Create the statepoint given all the arguments 1255 Instruction *token = nullptr; 1256 AttributeSet return_attributes; 1257 if (CS.isCall()) { 1258 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1259 CallInst *call = 1260 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1261 call->setTailCall(toReplace->isTailCall()); 1262 call->setCallingConv(toReplace->getCallingConv()); 1263 1264 // Currently we will fail on parameter attributes and on certain 1265 // function attributes. 1266 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1267 // In case if we can handle this set of sttributes - set up function attrs 1268 // directly on statepoint and return attrs later for gc_result intrinsic. 1269 call->setAttributes(new_attrs.getFnAttributes()); 1270 return_attributes = new_attrs.getRetAttributes(); 1271 1272 token = call; 1273 1274 // Put the following gc_result and gc_relocate calls immediately after the 1275 // the old call (which we're about to delete) 1276 BasicBlock::iterator next(toReplace); 1277 assert(BB->end() != next && "not a terminator, must have next"); 1278 next++; 1279 Instruction *IP = &*(next); 1280 Builder.SetInsertPoint(IP); 1281 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1282 1283 } else { 1284 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1285 1286 // Insert the new invoke into the old block. We'll remove the old one in a 1287 // moment at which point this will become the new terminator for the 1288 // original block. 1289 InvokeInst *invoke = InvokeInst::Create( 1290 gc_statepoint_decl, toReplace->getNormalDest(), 1291 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1292 invoke->setCallingConv(toReplace->getCallingConv()); 1293 1294 // Currently we will fail on parameter attributes and on certain 1295 // function attributes. 1296 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1297 // In case if we can handle this set of sttributes - set up function attrs 1298 // directly on statepoint and return attrs later for gc_result intrinsic. 1299 invoke->setAttributes(new_attrs.getFnAttributes()); 1300 return_attributes = new_attrs.getRetAttributes(); 1301 1302 token = invoke; 1303 1304 // Generate gc relocates in exceptional path 1305 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1306 toReplace->getUnwindDest(), invoke->getParent(), P); 1307 1308 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1309 Builder.SetInsertPoint(IP); 1310 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1311 1312 // Extract second element from landingpad return value. We will attach 1313 // exceptional gc relocates to it. 1314 const unsigned idx = 1; 1315 Instruction *exceptional_token = 1316 cast<Instruction>(Builder.CreateExtractValue( 1317 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1318 result.UnwindToken = exceptional_token; 1319 1320 // Just throw away return value. We will use the one we got for normal 1321 // block. 1322 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1323 exceptional_token, Builder); 1324 1325 // Generate gc relocates and returns for normal block 1326 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1327 toReplace->getNormalDest(), invoke->getParent(), P); 1328 1329 IP = &*(normalDest->getFirstInsertionPt()); 1330 Builder.SetInsertPoint(IP); 1331 1332 // gc relocates will be generated later as if it were regular call 1333 // statepoint 1334 } 1335 assert(token); 1336 1337 // Take the name of the original value call if it had one. 1338 token->takeName(CS.getInstruction()); 1339 1340 // The GCResult is already inserted, we just need to find it 1341 #ifndef NDEBUG 1342 Instruction *toReplace = CS.getInstruction(); 1343 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1344 "only valid use before rewrite is gc.result"); 1345 assert(!toReplace->hasOneUse() || 1346 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1347 #endif 1348 1349 // Update the gc.result of the original statepoint (if any) to use the newly 1350 // inserted statepoint. This is safe to do here since the token can't be 1351 // considered a live reference. 1352 CS.getInstruction()->replaceAllUsesWith(token); 1353 1354 result.StatepointToken = token; 1355 1356 // Second, create a gc.relocate for every live variable 1357 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1358 1359 } 1360 1361 namespace { 1362 struct name_ordering { 1363 Value *base; 1364 Value *derived; 1365 bool operator()(name_ordering const &a, name_ordering const &b) { 1366 return -1 == a.derived->getName().compare(b.derived->getName()); 1367 } 1368 }; 1369 } 1370 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1371 SmallVectorImpl<Value *> &livevec) { 1372 assert(basevec.size() == livevec.size()); 1373 1374 SmallVector<name_ordering, 64> temp; 1375 for (size_t i = 0; i < basevec.size(); i++) { 1376 name_ordering v; 1377 v.base = basevec[i]; 1378 v.derived = livevec[i]; 1379 temp.push_back(v); 1380 } 1381 std::sort(temp.begin(), temp.end(), name_ordering()); 1382 for (size_t i = 0; i < basevec.size(); i++) { 1383 basevec[i] = temp[i].base; 1384 livevec[i] = temp[i].derived; 1385 } 1386 } 1387 1388 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1389 // which make the relocations happening at this safepoint explicit. 1390 // 1391 // WARNING: Does not do any fixup to adjust users of the original live 1392 // values. That's the callers responsibility. 1393 static void 1394 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1395 PartiallyConstructedSafepointRecord &result) { 1396 auto liveset = result.liveset; 1397 auto PointerToBase = result.PointerToBase; 1398 1399 // Convert to vector for efficient cross referencing. 1400 SmallVector<Value *, 64> basevec, livevec; 1401 livevec.reserve(liveset.size()); 1402 basevec.reserve(liveset.size()); 1403 for (Value *L : liveset) { 1404 livevec.push_back(L); 1405 1406 assert(PointerToBase.find(L) != PointerToBase.end()); 1407 Value *base = PointerToBase[L]; 1408 basevec.push_back(base); 1409 } 1410 assert(livevec.size() == basevec.size()); 1411 1412 // To make the output IR slightly more stable (for use in diffs), ensure a 1413 // fixed order of the values in the safepoint (by sorting the value name). 1414 // The order is otherwise meaningless. 1415 stablize_order(basevec, livevec); 1416 1417 // Do the actual rewriting and delete the old statepoint 1418 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1419 CS.getInstruction()->eraseFromParent(); 1420 } 1421 1422 // Helper function for the relocationViaAlloca. 1423 // It receives iterator to the statepoint gc relocates and emits store to the 1424 // assigned 1425 // location (via allocaMap) for the each one of them. 1426 // Add visited values into the visitedLiveValues set we will later use them 1427 // for sanity check. 1428 static void 1429 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1430 DenseMap<Value *, Value *> &allocaMap, 1431 DenseSet<Value *> &visitedLiveValues) { 1432 1433 for (User *U : gcRelocs) { 1434 if (!isa<IntrinsicInst>(U)) 1435 continue; 1436 1437 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1438 1439 // We only care about relocates 1440 if (relocatedValue->getIntrinsicID() != 1441 Intrinsic::experimental_gc_relocate) { 1442 continue; 1443 } 1444 1445 GCRelocateOperands relocateOperands(relocatedValue); 1446 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1447 assert(allocaMap.count(originalValue)); 1448 Value *alloca = allocaMap[originalValue]; 1449 1450 // Emit store into the related alloca 1451 StoreInst *store = new StoreInst(relocatedValue, alloca); 1452 store->insertAfter(relocatedValue); 1453 1454 #ifndef NDEBUG 1455 visitedLiveValues.insert(originalValue); 1456 #endif 1457 } 1458 } 1459 1460 /// do all the relocation update via allocas and mem2reg 1461 static void relocationViaAlloca( 1462 Function &F, DominatorTree &DT, ArrayRef<Value *> live, 1463 ArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1464 #ifndef NDEBUG 1465 int initialAllocaNum = 0; 1466 1467 // record initial number of allocas 1468 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1469 itr++) { 1470 if (isa<AllocaInst>(*itr)) 1471 initialAllocaNum++; 1472 } 1473 #endif 1474 1475 // TODO-PERF: change data structures, reserve 1476 DenseMap<Value *, Value *> allocaMap; 1477 SmallVector<AllocaInst *, 200> PromotableAllocas; 1478 PromotableAllocas.reserve(live.size()); 1479 1480 // emit alloca for each live gc pointer 1481 for (unsigned i = 0; i < live.size(); i++) { 1482 Value *liveValue = live[i]; 1483 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1484 F.getEntryBlock().getFirstNonPHI()); 1485 allocaMap[liveValue] = alloca; 1486 PromotableAllocas.push_back(alloca); 1487 } 1488 1489 // The next two loops are part of the same conceptual operation. We need to 1490 // insert a store to the alloca after the original def and at each 1491 // redefinition. We need to insert a load before each use. These are split 1492 // into distinct loops for performance reasons. 1493 1494 // update gc pointer after each statepoint 1495 // either store a relocated value or null (if no relocated value found for 1496 // this gc pointer and it is not a gc_result) 1497 // this must happen before we update the statepoint with load of alloca 1498 // otherwise we lose the link between statepoint and old def 1499 for (size_t i = 0; i < records.size(); i++) { 1500 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1501 Value *Statepoint = info.StatepointToken; 1502 1503 // This will be used for consistency check 1504 DenseSet<Value *> visitedLiveValues; 1505 1506 // Insert stores for normal statepoint gc relocates 1507 insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); 1508 1509 // In case if it was invoke statepoint 1510 // we will insert stores for exceptional path gc relocates. 1511 if (isa<InvokeInst>(Statepoint)) { 1512 insertRelocationStores(info.UnwindToken->users(), 1513 allocaMap, visitedLiveValues); 1514 } 1515 1516 #ifndef NDEBUG 1517 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1518 // the gc.statepoint. This will turn some subtle GC problems into slightly 1519 // easier to debug SEGVs 1520 SmallVector<AllocaInst *, 64> ToClobber; 1521 for (auto Pair : allocaMap) { 1522 Value *Def = Pair.first; 1523 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1524 1525 // This value was relocated 1526 if (visitedLiveValues.count(Def)) { 1527 continue; 1528 } 1529 ToClobber.push_back(Alloca); 1530 } 1531 1532 auto InsertClobbersAt = [&](Instruction *IP) { 1533 for (auto *AI : ToClobber) { 1534 auto AIType = cast<PointerType>(AI->getType()); 1535 auto PT = cast<PointerType>(AIType->getElementType()); 1536 Constant *CPN = ConstantPointerNull::get(PT); 1537 StoreInst *store = new StoreInst(CPN, AI); 1538 store->insertBefore(IP); 1539 } 1540 }; 1541 1542 // Insert the clobbering stores. These may get intermixed with the 1543 // gc.results and gc.relocates, but that's fine. 1544 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1545 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1546 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1547 } else { 1548 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1549 Next++; 1550 InsertClobbersAt(Next); 1551 } 1552 #endif 1553 } 1554 // update use with load allocas and add store for gc_relocated 1555 for (auto Pair : allocaMap) { 1556 Value *def = Pair.first; 1557 Value *alloca = Pair.second; 1558 1559 // we pre-record the uses of allocas so that we dont have to worry about 1560 // later update 1561 // that change the user information. 1562 SmallVector<Instruction *, 20> uses; 1563 // PERF: trade a linear scan for repeated reallocation 1564 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1565 for (User *U : def->users()) { 1566 if (!isa<ConstantExpr>(U)) { 1567 // If the def has a ConstantExpr use, then the def is either a 1568 // ConstantExpr use itself or null. In either case 1569 // (recursively in the first, directly in the second), the oop 1570 // it is ultimately dependent on is null and this particular 1571 // use does not need to be fixed up. 1572 uses.push_back(cast<Instruction>(U)); 1573 } 1574 } 1575 1576 std::sort(uses.begin(), uses.end()); 1577 auto last = std::unique(uses.begin(), uses.end()); 1578 uses.erase(last, uses.end()); 1579 1580 for (Instruction *use : uses) { 1581 if (isa<PHINode>(use)) { 1582 PHINode *phi = cast<PHINode>(use); 1583 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1584 if (def == phi->getIncomingValue(i)) { 1585 LoadInst *load = new LoadInst( 1586 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1587 phi->setIncomingValue(i, load); 1588 } 1589 } 1590 } else { 1591 LoadInst *load = new LoadInst(alloca, "", use); 1592 use->replaceUsesOfWith(def, load); 1593 } 1594 } 1595 1596 // emit store for the initial gc value 1597 // store must be inserted after load, otherwise store will be in alloca's 1598 // use list and an extra load will be inserted before it 1599 StoreInst *store = new StoreInst(def, alloca); 1600 if (isa<Instruction>(def)) { 1601 store->insertAfter(cast<Instruction>(def)); 1602 } else { 1603 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1604 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) && 1605 "Must be argument or global"); 1606 store->insertAfter(cast<Instruction>(alloca)); 1607 } 1608 } 1609 1610 assert(PromotableAllocas.size() == live.size() && 1611 "we must have the same allocas with lives"); 1612 if (!PromotableAllocas.empty()) { 1613 // apply mem2reg to promote alloca to SSA 1614 PromoteMemToReg(PromotableAllocas, DT); 1615 } 1616 1617 #ifndef NDEBUG 1618 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1619 itr++) { 1620 if (isa<AllocaInst>(*itr)) 1621 initialAllocaNum--; 1622 } 1623 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); 1624 #endif 1625 } 1626 1627 /// Implement a unique function which doesn't require we sort the input 1628 /// vector. Doing so has the effect of changing the output of a couple of 1629 /// tests in ways which make them less useful in testing fused safepoints. 1630 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1631 DenseSet<T> Seen; 1632 SmallVector<T, 128> TempVec; 1633 TempVec.reserve(Vec.size()); 1634 for (auto Element : Vec) 1635 TempVec.push_back(Element); 1636 Vec.clear(); 1637 for (auto V : TempVec) { 1638 if (Seen.insert(V).second) { 1639 Vec.push_back(V); 1640 } 1641 } 1642 } 1643 1644 static Function *getUseHolder(Module &M) { 1645 FunctionType *ftype = 1646 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1647 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1648 return Func; 1649 } 1650 1651 /// Insert holders so that each Value is obviously live through the entire 1652 /// liftetime of the call. 1653 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1654 SmallVectorImpl<CallInst *> &holders) { 1655 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1656 Function *Func = getUseHolder(*M); 1657 if (CS.isCall()) { 1658 // For call safepoints insert dummy calls right after safepoint 1659 BasicBlock::iterator next(CS.getInstruction()); 1660 next++; 1661 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1662 holders.push_back(base_holder); 1663 } else if (CS.isInvoke()) { 1664 // For invoke safepooints insert dummy calls both in normal and 1665 // exceptional destination blocks 1666 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1667 CallInst *normal_holder = CallInst::Create( 1668 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1669 CallInst *unwind_holder = CallInst::Create( 1670 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1671 holders.push_back(normal_holder); 1672 holders.push_back(unwind_holder); 1673 } else 1674 llvm_unreachable("unsupported call type"); 1675 } 1676 1677 static void findLiveReferences( 1678 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1679 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1680 for (size_t i = 0; i < records.size(); i++) { 1681 struct PartiallyConstructedSafepointRecord &info = records[i]; 1682 const CallSite &CS = toUpdate[i]; 1683 analyzeParsePointLiveness(DT, CS, info); 1684 } 1685 } 1686 1687 static void addBasesAsLiveValues(StatepointLiveSetTy &liveset, 1688 DenseMap<Value *, Value *> &PointerToBase) { 1689 // Identify any base pointers which are used in this safepoint, but not 1690 // themselves relocated. We need to relocate them so that later inserted 1691 // safepoints can get the properly relocated base register. 1692 DenseSet<Value *> missing; 1693 for (Value *L : liveset) { 1694 assert(PointerToBase.find(L) != PointerToBase.end()); 1695 Value *base = PointerToBase[L]; 1696 assert(base); 1697 if (liveset.find(base) == liveset.end()) { 1698 assert(PointerToBase.find(base) == PointerToBase.end()); 1699 // uniqued by set insert 1700 missing.insert(base); 1701 } 1702 } 1703 1704 // Note that we want these at the end of the list, otherwise 1705 // register placement gets screwed up once we lower to STATEPOINT 1706 // instructions. This is an utter hack, but there doesn't seem to be a 1707 // better one. 1708 for (Value *base : missing) { 1709 assert(base); 1710 liveset.insert(base); 1711 PointerToBase[base] = base; 1712 } 1713 assert(liveset.size() == PointerToBase.size()); 1714 } 1715 1716 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1717 SmallVectorImpl<CallSite> &toUpdate) { 1718 #ifndef NDEBUG 1719 // sanity check the input 1720 std::set<CallSite> uniqued; 1721 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1722 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1723 1724 for (size_t i = 0; i < toUpdate.size(); i++) { 1725 CallSite &CS = toUpdate[i]; 1726 assert(CS.getInstruction()->getParent()->getParent() == &F); 1727 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1728 } 1729 #endif 1730 1731 // A list of dummy calls added to the IR to keep various values obviously 1732 // live in the IR. We'll remove all of these when done. 1733 SmallVector<CallInst *, 64> holders; 1734 1735 // Insert a dummy call with all of the arguments to the vm_state we'll need 1736 // for the actual safepoint insertion. This ensures reference arguments in 1737 // the deopt argument list are considered live through the safepoint (and 1738 // thus makes sure they get relocated.) 1739 for (size_t i = 0; i < toUpdate.size(); i++) { 1740 CallSite &CS = toUpdate[i]; 1741 Statepoint StatepointCS(CS); 1742 1743 SmallVector<Value *, 64> DeoptValues; 1744 for (Use &U : StatepointCS.vm_state_args()) { 1745 Value *Arg = cast<Value>(&U); 1746 if (isGCPointerType(Arg->getType())) 1747 DeoptValues.push_back(Arg); 1748 } 1749 insertUseHolderAfter(CS, DeoptValues, holders); 1750 } 1751 1752 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 1753 records.reserve(toUpdate.size()); 1754 for (size_t i = 0; i < toUpdate.size(); i++) { 1755 struct PartiallyConstructedSafepointRecord info; 1756 records.push_back(info); 1757 } 1758 assert(records.size() == toUpdate.size()); 1759 1760 // A) Identify all gc pointers which are staticly live at the given call 1761 // site. 1762 findLiveReferences(F, DT, P, toUpdate, records); 1763 1764 // B) Find the base pointers for each live pointer 1765 /* scope for caching */ { 1766 // Cache the 'defining value' relation used in the computation and 1767 // insertion of base phis and selects. This ensures that we don't insert 1768 // large numbers of duplicate base_phis. 1769 DefiningValueMapTy DVCache; 1770 1771 for (size_t i = 0; i < records.size(); i++) { 1772 struct PartiallyConstructedSafepointRecord &info = records[i]; 1773 CallSite &CS = toUpdate[i]; 1774 findBasePointers(DT, DVCache, CS, info); 1775 } 1776 } // end of cache scope 1777 1778 // The base phi insertion logic (for any safepoint) may have inserted new 1779 // instructions which are now live at some safepoint. The simplest such 1780 // example is: 1781 // loop: 1782 // phi a <-- will be a new base_phi here 1783 // safepoint 1 <-- that needs to be live here 1784 // gep a + 1 1785 // safepoint 2 1786 // br loop 1787 DenseSet<llvm::Value *> allInsertedDefs; 1788 for (size_t i = 0; i < records.size(); i++) { 1789 struct PartiallyConstructedSafepointRecord &info = records[i]; 1790 allInsertedDefs.insert(info.NewInsertedDefs.begin(), 1791 info.NewInsertedDefs.end()); 1792 } 1793 1794 // We insert some dummy calls after each safepoint to definitely hold live 1795 // the base pointers which were identified for that safepoint. We'll then 1796 // ask liveness for _every_ base inserted to see what is now live. Then we 1797 // remove the dummy calls. 1798 holders.reserve(holders.size() + records.size()); 1799 for (size_t i = 0; i < records.size(); i++) { 1800 struct PartiallyConstructedSafepointRecord &info = records[i]; 1801 CallSite &CS = toUpdate[i]; 1802 1803 SmallVector<Value *, 128> Bases; 1804 for (auto Pair : info.PointerToBase) { 1805 Bases.push_back(Pair.second); 1806 } 1807 insertUseHolderAfter(CS, Bases, holders); 1808 } 1809 1810 // Add the bases explicitly to the live vector set. This may result in a few 1811 // extra relocations, but the base has to be available whenever a pointer 1812 // derived from it is used. Thus, we need it to be part of the statepoint's 1813 // gc arguments list. TODO: Introduce an explicit notion (in the following 1814 // code) of the GC argument list as seperate from the live Values at a 1815 // given statepoint. 1816 for (size_t i = 0; i < records.size(); i++) { 1817 struct PartiallyConstructedSafepointRecord &info = records[i]; 1818 addBasesAsLiveValues(info.liveset, info.PointerToBase); 1819 } 1820 1821 // If we inserted any new values, we need to adjust our notion of what is 1822 // live at a particular safepoint. 1823 if (!allInsertedDefs.empty()) { 1824 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1825 } 1826 if (PrintBasePointers) { 1827 for (size_t i = 0; i < records.size(); i++) { 1828 struct PartiallyConstructedSafepointRecord &info = records[i]; 1829 errs() << "Base Pairs: (w/Relocation)\n"; 1830 for (auto Pair : info.PointerToBase) { 1831 errs() << " derived %" << Pair.first->getName() << " base %" 1832 << Pair.second->getName() << "\n"; 1833 } 1834 } 1835 } 1836 for (size_t i = 0; i < holders.size(); i++) { 1837 holders[i]->eraseFromParent(); 1838 holders[i] = nullptr; 1839 } 1840 holders.clear(); 1841 1842 // Now run through and replace the existing statepoints with new ones with 1843 // the live variables listed. We do not yet update uses of the values being 1844 // relocated. We have references to live variables that need to 1845 // survive to the last iteration of this loop. (By construction, the 1846 // previous statepoint can not be a live variable, thus we can and remove 1847 // the old statepoint calls as we go.) 1848 for (size_t i = 0; i < records.size(); i++) { 1849 struct PartiallyConstructedSafepointRecord &info = records[i]; 1850 CallSite &CS = toUpdate[i]; 1851 makeStatepointExplicit(DT, CS, P, info); 1852 } 1853 toUpdate.clear(); // prevent accident use of invalid CallSites 1854 1855 // In case if we inserted relocates in a different basic block than the 1856 // original safepoint (this can happen for invokes). We need to be sure that 1857 // original values were not used in any of the phi nodes at the 1858 // beginning of basic block containing them. Because we know that all such 1859 // blocks will have single predecessor we can safely assume that all phi 1860 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1861 // Just remove them all here. 1862 for (size_t i = 0; i < records.size(); i++) { 1863 Instruction *I = records[i].StatepointToken; 1864 1865 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 1866 FoldSingleEntryPHINodes(invoke->getNormalDest()); 1867 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 1868 1869 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 1870 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 1871 } 1872 } 1873 1874 // Do all the fixups of the original live variables to their relocated selves 1875 SmallVector<Value *, 128> live; 1876 for (size_t i = 0; i < records.size(); i++) { 1877 struct PartiallyConstructedSafepointRecord &info = records[i]; 1878 // We can't simply save the live set from the original insertion. One of 1879 // the live values might be the result of a call which needs a safepoint. 1880 // That Value* no longer exists and we need to use the new gc_result. 1881 // Thankfully, the liveset is embedded in the statepoint (and updated), so 1882 // we just grab that. 1883 Statepoint statepoint(info.StatepointToken); 1884 live.insert(live.end(), statepoint.gc_args_begin(), 1885 statepoint.gc_args_end()); 1886 } 1887 unique_unsorted(live); 1888 1889 #ifndef NDEBUG 1890 // sanity check 1891 for (auto ptr : live) { 1892 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 1893 } 1894 #endif 1895 1896 relocationViaAlloca(F, DT, live, records); 1897 return !records.empty(); 1898 } 1899 1900 /// Returns true if this function should be rewritten by this pass. The main 1901 /// point of this function is as an extension point for custom logic. 1902 static bool shouldRewriteStatepointsIn(Function &F) { 1903 // TODO: This should check the GCStrategy 1904 if (F.hasGC()) { 1905 const std::string StatepointExampleName("statepoint-example"); 1906 return StatepointExampleName == F.getGC(); 1907 } else 1908 return false; 1909 } 1910 1911 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 1912 // Nothing to do for declarations. 1913 if (F.isDeclaration() || F.empty()) 1914 return false; 1915 1916 // Policy choice says not to rewrite - the most common reason is that we're 1917 // compiling code without a GCStrategy. 1918 if (!shouldRewriteStatepointsIn(F)) 1919 return false; 1920 1921 // Gather all the statepoints which need rewritten. 1922 SmallVector<CallSite, 64> ParsePointNeeded; 1923 for (Instruction &I : inst_range(F)) { 1924 // TODO: only the ones with the flag set! 1925 if (isStatepoint(I)) 1926 ParsePointNeeded.push_back(CallSite(&I)); 1927 } 1928 1929 // Return early if no work to do. 1930 if (ParsePointNeeded.empty()) 1931 return false; 1932 1933 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1934 return insertParsePoints(F, DT, this, ParsePointNeeded); 1935 } 1936